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This paper employs regression with ARIMA errors (RegARIMA) to quantify the impacts of multiple non-
pharmaceutical interventions, daily new cases, seasonal and calendar effects, and other factors on activity
trends across the timeline of the ongoing COVID-19 pandemic in Japan. The discussion focuses on two contro-
versial policy sets imposed by the Japanese government that aim to contain the pandemic and to stimulate the
recovery of the economy. The containing effect was achieved by stay-at-home requests and declaring a “State of
Emergency” in the combat against the first waves of infectious cases. After observing reduced cases, Go-to-travel
and Go-to-eat campaigns were launched in July 2020 to encourage recreational travel and to revive the economy.
To better understand the impact of the policies we utilize “Google trends” which measure how much these
policies are looked up online. We suggest this reflects how much they are part of the public discussion. A case
study is conducted in Kyoto, a city famous for tourism. The proposed RegARIMA model is compared with linear
regression and time series models. The outperformances in measuring the magnitude of intervention impacts and
forecasting the future trends are confirmed by using a total of twelve activity and mobility indices as the
dependent variable. Nine indices are released by Google and Apple and three are obtained from local Wi-Fi
packet sensors. The effect of the State of Emergency declaration is found to erode at the second implementa-
tion, and the second stage of the Go-to-travel campaign successfully stimulated travel demand in the autumn
sighting season of 2020.

1. Introduction cities, Tokyo and Kyoto. For some policies we can observe a small lag of

Kyoto compared to Tokyo.

In the combat against the globally-spreading COVID-19 pandemic,
more than a hundred countries have taken actions to restrict human
mobility and activities by the end of March 2020 (Parady et al. 2020).
Hale et al. (2020) provide a list of countries that have implemented a
wide range of containing policies such as school closure, workplace
closure, public transportation closure, stay-at-home requests, re-
strictions on public gatherings and events, and so forth. In this paper, we
focus on the COVID-19 timeline of Japan. Japan initially experienced
containing stages against the first wave of infectious cases from March
2020 to May 2020, a restriction-free period with policies to encourage
mobility and activities during July 2020 and December 2020 regardless
of a second wave, and has been under changing restrictions for a long
period since January 2021 due to the third and fourth waves as well as
Tokyo Olympic Games. Table 1 summarizes the key events and the in-
terventions implemented in the COVID-19 timeline of two Japanese
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Among the policies implemented in Japan, there are four types of
non-pharmaceutical interventions: school closures, stay-at-home re-
quests, declarations of a “State of Emergency”, and “Quasi-Emergency
Measures”. All of these have the goal to contain the pandemic by
imposing restrictions on human mobility and activities. The distinctions
between the latter two policies are mainly as follows: Firstly, venues
allow up to 50% of the capacity or 5000 people to attend a public
gathering under State of Emergency, while Quasi-Emergency Measures
allow 100% of the capacity to be used if the audience does neither cheer
nor interacts directly in other ways. Secondly, in a State of Emergency all
the recreational venues providing alcoholic beverages and karaoke
services are closed. Other recreational venues, such as restaurants and
cafes, are requested to shorten business hours and close no later than 8
pm. These requirements on closure and business hour shortening are
loosened to some degree under Quasi-Emergency Measures. Note that
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Table 1

Key interventions and dates in the COVID-19 timeline of Tokyo and Kyoto.

Interventions

Date — Tokyo

Date — Kyoto

School closure
Stay-at-home request
State of Emergency (1)

Go-to-travel Campaign
@

Go-to-travel Campaign
(2)

State of Emergency (2)

Vaccination

Quasi-Emergency
Measures (1)

State of Emergency (3)

Quasi-Emergency
Measures (2)

Quasi-Emergency
Measures (3)

State of Emergency (4)

2 March 2020 - 31 May
2020

28 March 2020 - 31 May
2020

7 Apr 2020 - 25 May
2020

N/A

1 Oct 2020 - 28 Dec 2020

8 Jan 2021 - 21 Mar
2021

12 April 2021 — present
12 April 2021 - 24 April
2021

25 Apr 2021 - 11 May
2021

12 May 2021 - 11 July
2021

N/A

12 Jul 2021 - 30

5 March 2020 - 31 May
2020

10 April 2020 - 31 May
2020

16 Apr 2020 - 21 May 2020

22 Jul 2020 — 30 Sep 2020
1 Oct 2020 — 28 Dec 2020
14 Jan 2021 - 28 Feb 2021

12 April 2021 — present

12 April 2021 - 24 April
2021

25 Apr 2021 — 11 May 2021

12 May 2021 - 11 July
2021

2 August 2021 — 19 August
2021

20 August 2021 - 30

September 2021 September 2021

the State of Emergency was only imposed on Tokyo and Okinawa during
12 Jul 2021 and 22 August 2021 in response to high infection cases and
the Tokyo 2020 Olympic Games, and then extended to 12 September
2021 as well as to several other regions including Kyoto since 20 August
2021 due to the fierce fifth wave. Later a nationwide extension to the
end of September was issued. Accordingly, we can observe in Table 1
that the restrictions in 2021 frequently switch between a full State of
Emergency and Quasi-Emergency Measures. These switches are mainly
driven by the desire to balance pandemic containment needs and to
avoid economic recession. The desire to “quickly return to normality” is
evident in the policies as early as July 2020. The “Go-to-travel
Campaign”, an intervention to stimulate mobility and activities related
to casual travel, is a noteworthy feature of the COVID-19 timeline in
Japan.

Not only in Japan but worldwide, governments are struggling to
understand the right timing to remove or lessen restrictive non-
pharmaceutical interventions and to possibly start promoting certain
activities again. Japan is among the first to launch a series of such
activity-stimulating interventions. Our objective is neither to cast criti-
cism nor approval on this policy. Given the changing nature of the
ongoing COVID-19 pandemic and the multidimensional challenges to
the policy makers, it is demanding to require a definitive correct answer
to the question of how to contain the pandemic while maintaining the
economy. Our goal is to support this discussion by quantifying the ef-
fects of the implemented policies and sharing the lessons learned from
the combat against COVID-19 in Japan.

In this paper, we develop a regression model with time series errors
that follows classical intervention models proposed by Box and Tiao
(1975) and Tsay (1984). The contributions to the worldwide community
and existing literature are threefold: (1) We suggest this is an approach
to produce less biased estimates for the effects of the policies imple-
mented in the COVID-19 timeline than we found in other papers; (2) we
show that we can forecast future mobility and activity trends at an
acceptable accuracy; (3) We extract some lessons learned from the
unique timeline of Japan characterized by the aforementioned local and
interregional travel demand stimulating policies. These methodological
and practical findings are believed to benefit policy makers.

Cities holding tourism as an important economic driver are antici-
pated to be more sensitive to the aforementioned two diverging policy
sets and mobility patterns in such cities are more fluctuating
(Schmocker, 2021). This is motivating our choice for Kyoto as our case
study. We select 15 February 2020 to 2 April 2021 as the observational

Transportation Research Interdisciplinary Perspectives 13 (2022) 100551

period in order to exclude the effect of pharmaceutical interventions
such as vaccination. By 2 April 2021, less than 1% of the Japanese
population in Japan was vaccinated and this rate was close to zero for
Kyoto as the vaccination in Kyoto officially started on 12 April 2021
(Government CIO portal, 2021).

The remainder of this paper is organized as follows. Section 2 re-
views the studies concerning the impacts of the ongoing COVID-19
pandemic on human mobility and activity patterns and travel
behavior. Section 3 discusses intervention models with time series data
and explains the suitability of regression models with time series errors
for the studied problem. Section 4 provides details on the selection and
data processing of the dependent and independent variables. A focus of
this section is the implementation of Google trends data to better reflect
exogenous policy variables. We show that the consideration of trending
is useful for a range of policies. Section 5 reports the estimated magni-
tude and significance of the exogenous variables, discusses policy im-
plications, and presents the forecasted future trends of higher accuracy
than benchmark models. The conclusion and suggestions for future
research directions given the limitations of this paper and the concerns
on the current pandemic situation in Japan can be found in Section 6.

2. Literature review

This unprecedented pandemic has been globally shaking the status
quo of human society in a variety of aspects. Narrowing the focus on
human mobility and travel behavior, intervention implementation to
contain the spread of the coronavirus has been decreasing travel demand
and reshaping travel behavior. Human mobility is known to be a critical
driver for the spread of this infectious disease (Merler and Ajelli, 2010;
Kraemer et al. 2019; Wei et al. 2020). Non-pharmaceutical interventions
therefore mainly restrict human mobility and activity. Flaxman et al.
(2020) and Lai et al. (2020) illustrate the effects of non-pharmaceutical
interventions on reducing cases and deaths by comparing actual and
virtual scenarios of different interventions and timings. Interventions
falling into this category can be soft policies such as stay-at-home re-
quests relying on self-regulation. They can be upgraded to harder ones
such as a declaration of an emergency state shortening business hours,
closures of recreational places, or even full-scale “lockdowns” of areas.
To note is that in Japan COVID restricting policies were never as strin-
gent as in other countries, for example, there were never penalties
imposed on private gatherings. The government mainly relied on the
collaboration of the population.

Policy impacts are worth attention not only for their immediate ef-
fects but also for possibly profound, longer-term impacts leading to a
different “new normal” in post-COVID periods. The changes may be
twofold: model preference and trip purpose. Beck and Hensher (2020a,
2020b) investigate the effect of restricting interventions carried out in
Australia on travel behavior, using longitudinal surveys in the days
under and right after the restrictions. They confirm the reduction in
travel demand and the change in mode preference driven by the re-
strictions and the pandemic itself. Their latter work finds that the trips
by private car rebounded much more significantly than by public
transport in the days when the restrictions were eased. Jenelius and
Cebecauer (2020) provide evidence on the drop of public transport
ridership using the data of passenger counts and fare collection in
Stockholm, Sweden. Eisenmann et al. (2021) report travel survey results
in Germany and quantify the preference of people to travel by private
car in the lockdown period. Luan et al. (2021) mention that the ride-
hailing industry in China was heavily hit by the pandemic. Note that
these studies show the changes in model preference triggered by the
pandemic but that the definite form in post-COVID times remains vague
and dependent on, among others, what actions are taken by stakeholders
such as transport service providers.

Parady et al. (2020), Abdullah et al. (2020), and Shakibaei et al.
(2021) emphasize the short-run changes in travel purpose before and
during the COVID-19 pandemic using surveys. Parady et al. (2020) find
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that in the early stage of COVID-19 non-essential grocery shopping and
eating-out demand in the Kanto region of Japan was effectively
restricted by self-regulation and soft governmental requests. Abdullah
et al. (2020) receive survey results from various countries via social
media, and their data show that 56.6% of the 1203 respondents never go
to office or college due to COVID-19. Instead, the respondents’ primary
trip purpose shifts from working to shopping. Shakibaei et al. (2021)
confirm a sharp reduction in commuting, social/recreational/leisure,
and shopping demand in Istanbul. The pattern that the commuting and
recreational travel demand recover in the long term is considered to rely
on future policies, such as whether teleworking and online education
will be encouraged in post-COVID, whether policies will be imple-
mented to increase leisure trips. Therefore, tracking behavior changes
over a longer-term is required to provide better predictions.

The above literature informs policy makers of the current situation
and the future trend of travel demand and mode preferences. Yet, the
causality interpretation on the relationship between policies and
mobility changes remains insufficient. Other researchers attempt to es-
timate the effect of COVID-19 policies and forecast future mobility
trends using a range of passive data in line with the approach taken in
this paper. Multiple open datasets ease the difficulties in tracking policy
implementations and mobility changes in time series. The Oxford
COVID-19 Government Response Tracker (OxCGRT) provides an open
dataset that contains a time series of stringency indices for a variety of
countries (Hale et al. 2021). These indices include the anticipated
strength of each policy and the overall stringency level of a country.
Activity and mobility indices are publicly released by Google and Apple,
which will be elaborated in Section 4. As an overview of the relationship
between governmental COVID-19 policy and human mobility, we refer
to McKenzie and Adams (2020) who calculate the similarity between
national stringency and mobility indices for 108 countries. They further
illustrate how the pattern of human response to containing policies
varies from country to country by a cluster analysis. Chan et al. (2021)
also use OxCGRT and mobility indices to uncover the interactions
among policy, mobility, and infectious cases in Hong Kong by a Granger
causality analysis.

To further understand human response to a specific policy and to
allow for inter-policy comparison, our subsequently proposed model
distinguishes the effect of individual policies by employing policy-
specific exogenous variables. Regression with time series errors is used
to address the model misspecification incurred due to serially correlated
observations and therefore to provide less biased policy effects. A related
research is conducted by Hu et al. (2021). Their work measures the ef-
fect of multiple stay-at-home orders imposed in the United States by a
generalized additive mixed model. They apply the model with spatial
errors to the whole country while our paper focuses on a single city
considering the lag of local policies coming into force compared to na-
tional announcements. In addition to policies, we consider that the
number of infected cases itself has a certain restrictive power on daily
mobility as also proposed in Suzuki and Utsumi (2021). As the popula-
tion in Japan and other countries is frequently exposed to the latest local
and national infection records broadcasted via TV news, website head-
lines, and social media trends, their behavior will to some degree
respond to the potential infection risk according to the virus spread.

3. Models

In this section, we discuss models to quantify the effects of in-
terventions on a dependent time-series variable in general. Let Y; denote
the dependent variable at time t, X; denote the set of exogenous vari-
ables at time t, and f§ be a vector to represent the marginal effect of each
variable in X;. We suppose that ..., Y, 1, Y;, Y1, ... are time series
observations with identical time intervals. A general form of interven-
tion models can be obtained as in Eq. (1) to capture the relationship
between the dependent time-series process and exogenous time-series
processes, where Z, is the noise. Eq. (1) allows for either linear or

Transportation Research Interdisciplinary Perspectives 13 (2022) 100551

nonlinear assumptions on the relationship and various assumptions on
the noise term. The general form is first proposed in a seminal study on
intervention models by Box and Tiao (1975) and can also be found in
Tsay (1984).

Yr:f(erﬂ)+Zt (1)

One can assume Z, to be white noise and therefore to be independent
and identically distributed random variables. However, Box and Tiao
(1975) point out that the successive observations in a time series are
usually serially correlated. This results in a dependent structure of noise
which may violate this basic assumption. They instead model the noise
with a mixed autoregressive moving average (ARMA) process. Tsay
(1984) extends this discussion on ARMA errors by considering Z, as an
unobservable time series process and allowing it to be nonstationary. A
procedure to determine the order of the ARMA model for Z, is also
provided in Tsay (1984).

Given the time series observations after the interventions come into
force, it is difficult to explicitly distinguish the isolated impacts of in-
terventions and to distinguish the influence of the prior days on a certain
observation. We consider the collection of regression models specifying
a time series process for the errors suitable to answer our research
questions. In this paper, we attempt to illustrate the usefulness of
regression models with ARIMA errors (RegARIMA) in measuring the
impact of the afore-mentioned interventions. We assume a linear rela-
tionship for the dependent and exogenous time-series processes. For
comparison purposes, we introduce linear regression (LR) models and
autoregressive integrated moving average models with exogenous var-
iables (ARIMAX) as benchmark methods. The model specification for the
RegARIMA and LR models can be found in Eq. (2). For the LR model, Z,
is simplified to be white noise &, which follows a normal distribution
having mean zero and variance (s,)%.

k
Y=Y pXiu+7, 2
i=1

We select an ARIMA (1,0,0) order for the time series errors of the
RegARIMA model according to the results of the residuals analysis. The
model specification of the error term therefore becomes Eq. (3) with an
ARIMA (1,0,0) process specified for the errors Z,, where B is the back-
shift operator (also often referred to as lag operator L), ¢, is the autor-
egressive coefficient of this (1,0,0) process and can be written as AR(1).
White noise ¢, remains after the original noise Z, is explained by a first-
order autoregressive process. A comprehensive discussion on the ARIMA
process and its general forms can be found in Box et al. (2015).

(1-¢B)Z =¢ 3

The same ARIMA order is applied to an ARIMAX model whose
specification is shown in Eq. (4). The nuances between LR, RegARIMA,
and ARIMAX can be further clarified by comparing the specification of
the three models. The difference between LR and RegARIMA mainly is
due to the assumption specified for the noise, while ARIMAX differs from
RegARIMA by imposing the backshift operation on the dependent var-
iable instead of the noise. This subtle distinction between RegARIMA
and ARIMAX explains why the coefficients estimated by RegARIMA are
considered more interpretable than ARIMAX.

k
(1—@B)Y, = pXi, +e, )
i=1

4. Data analysis and variable selection

This section provides detailed descriptions of the variables we use in
the models. The reasons and data support for variable selection are also
discussed.
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Fig. 1. Daily new cases of COVID-19 in Japan and non-pharmaceutical interventions.
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4.1. Dependent variables

4.1.1. Google mobility indices

In response to the public health challenges of this unprecedented
pandemic, Google released COVID-19 Community Mobility Reports for
various countries since February 2020 and updates them regularly to
assist the policy makers to contain the spread (Google, 2020a). Ac-
cording to Google, this data are generated by using the same raw data
that are used for Google’s “Popular times” service, and the raw data are
based on the users who have opted in to Google Location History
(Google, 2020b). These reports have been used by a number of studies
for an overview regarding the impacts of COVID on human activities in
the studied country or region (Beck and Hensher, 2020a, 2020b; Jene-
lius and Cebecauer, 2020; Parady et al., 2020). A few studies use the
data to analyze the behavioral changes during the COVID-19 timeline
(Cot et al. 2021; Chan et al. 2021). In this paper, we refer to this data as
“Google Mobility Indices”. For each day since middle February 2020, a
percentage change of the visits to a specific category of places is pro-
vided by this data, and the percentage change is compared with a
baseline shortly before the outbreak of the pandemic. More specifically,
the published percentage change for a specific date is the difference of
visits between this day and the average visits on the corresponding day
of the week during the five weeks between 3 January and 6 February
2020. As the baseline is the visits in a fixed month, one has to control the
effects of season and temperature in the analysis. These Google Mobility
Indices are available for six activity/mobility categories: Retail & rec-
reation, Grocery & pharmacy, Parks, Transit station, Workplace, and
Residential. For many countries, the index per category is further
divided into regions and sub-regions. For Japan, the six indices per
category are available at prefecture-level, including Kyoto prefecture,
since 15 February 2020.

4.1.2. Apple mobility indices

For similar purposes, Apple started publishing COVID-19 Mobility
Trends Reports (Apple, 2020). In this paper we refer to them as “Apple
Mobility Indices”. They are based on the searches via Apple Maps. Apple
re-scales the searches by taking the searches on 13 January 2020 as 100
and the baseline. Apple Mobility Indices are broken down into three
categories in line with the transportation modes available on Apple
Maps: Driving, Transit, and Walking. We note that these search data may
be different from the number of real trips. The data are also available for
Kyoto prefecture and per transport mode. To make the data comparable
with Google Mobility Indices, the data are processed into percentage
changes from the corresponding day of the week by using the mean
value in January as the baseline.

4.1.3. Wi-Fi mobility indices

To obtain more detailed information regarding mobility changes at
specific, important places in Kyoto we furthermore use information from
Wi-Fi packet sensors. The raw data are the probe requests sent by
portable electronic devices for Wi-Fi access captured by the sensors
installed at specific places. The number of received probe requests
therefore can be considered to reflect the busyness of a place. Twelve
sensors in total are installed throughout Kyoto City, ten of which have
complete data availability in the studied COVID-19 timeline of this
paper. The sensors are located at the main tourist attractions, the central
business district, and Kyoto Station which is the most important railway
station in the city. More details regarding the sensor locations and the
data collection mechanism can be found in Gao (2021). We select the
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data of three sensors as the dependent variables: Kiyomizu Temple
which is one of the most famous and frequently visited tourist attrac-
tions in the city, Nishiki Market which is located in the central business
area of the city and has a collection of restaurants, and Kyoto Station.
Kyoto station is the portal for most visitors coming to Kyoto except for
those from the surrounding cities, in particular Osaka.

In summary, six Google Mobility Indices, three Apple Mobility
Indices, and three Wi-Fi Mobility Indices are employed as the dependent
variables. All of them are processed into percentage changes from the
baseline in January 2020. Twelve models are therefore respectively
fitted for LR, RegARIMA, and ARIMAX.

4.2. Independent variables

4.2.1. Daily new cases

It can be seen in Fig. 1(d) that both times the declaration of a State of
Emergency in Japan lagged behind the peak of the first and third waves
of domestic daily new cases. We note that a correlation between inde-
pendent variables is introduced if both daily new cases and interventions
are taken into the set of exogenous variables, as the soaring cases usually
persuade the intervention implementation. Regardless of this, we
include daily new cases into the set of independent variables X. Another
concern is that the impact of daily new cases on human mobility may not
be linear. Therefore, we first take a common logarithm for daily new
cases and then take the moving average of the past seven days. A
noteworthy fact is that the daily new cases in Japan, Kyoto, Tokyo, and
Osaka are statistically correlated, independent as to whether the original
or processed values are used. The pair-wise correlation coefficient is
always > 0.8. We therefore only keep the cases in Japan in the set of
independent variables and drop the other three, although the pandemic
situations in Kyoto and other major cities with a strong connection to
Kyoto are supposed to be influential on the activity trends in Kyoto.

4.2.2. Temperature and precipitation

The mobility demand tends to be influenced by weather conditions,
in particular in Kyoto with its distinctive seasons. Here we use temper-
ature and precipitation as two weather indicators. To make them com-
parable with the dependent mobility indices which all have a January
2020 baseline, the weather indicators in January 2020 are taken as the
baseline and the baseline means are calculated by day of the week. The
changes in temperature and precipitation from the baseline are used as
independent variables in the models.

4.2.3. Seasonal and calendar effects

To account for other seasonal and calendar effects during the studied
period, weekends, holidays, and two conventional sightseeing seasons
are converted to dummy variables. Kyoto City is globally and domesti-
cally known for its tourism. The harmonious combinations of natural
scenery and historical architecture characterize the unique and
impressive sightseeing experience in Kyoto City, attracting explosive
numbers of tourists especially in spring and autumn. The two sightseeing
dummies are in line with the period for viewing cherry blossom and
maple leaves in spring from 16 March to 15 April and in autumn from 16
November to 15 December.

4.2.4. Intervention policies and Google trends

It is common to interpret an intervention as a dummy variable by
using one to represent its presence if time t is within the time window of
the intervention and zero to denote the absence if it is out of the time
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Table 2
Model fit of the proposed RegARIMA and three benchmark models.
AIC RMSE
LR1 LR2 ARIMAX RegARIMA LR1 LR2 ARIMAX RegARIMA
Retail & recreation 2265.18 2252.33 2189.70 2152.46 6.16 6.05 6.22 6.07
Grocery & pharmacy 2123.52 2130.55 2099.65 2073.82 5.03 5.08 5.14 5.04
Parks 2828.11 2832.19 2795.76 2794.32 13.84 13.92 13.82 13.82
Transit station 2253.60 2193.74 2105.70 2047.21 6.06 5.56 5.68 5.67
Workplace 2321.76 2329.91 2240.48 2254.73 6.69 6.76 6.40 6.71
Residential 1459.40 1462.41 1388.33 1400.59 1.94 1.95 1.86 1.92
Driving 3010.83 2975.19 2706.90 2723.65 17.99 17.10 19.19 17.85
Transit 3268.59 3228.42 2870.91 2900.33 26.06 24.60 27.48 25.93
Walking 3009.97 2942.88 2588.21 2623.11 17.97 16.32 17.29 16.81
Kiyomizu Temple 3164.89 3090.51 2788.56 2801.28 22.45 20.18 19.80 28.13
Nishiki Market 2800.42 2736.69 2472.15 2496.35 13.30 12.14 12.69 13.10
Kyoto Station 2524.32 2437.39 2271.81 2244.97 8.94 7.89 7.97 7.90

window. In this paper we attempt to demonstrate that the consideration
of people’s adaptation process to the interventions can measure the ef-
fects more properly. Given a pandemic situation and the request type
policies without much enforcement we suppose that the population
gradually adjusts its behavior around the time in which the containing
policy comes into effect. To capture the emergence of behavior changes
in mobility as well as the date of the emergence, Google trends data
relevant to the intervention policies are employed. The numbers of
searches for a specific keyword in a time period are rescaled within
0 and 100 by Google trends (Google, 2020c). The data are on a weekly
basis and are thus linearly interpolated to a daily basis in this paper. It is
found in Fig. 1 that the searches of a keyword always reach the peak
several days prior to the starting day of the pandemic containing pol-
icies. The exogenous variable of a specific containing intervention is
therefore synthesized by combining the search data and the policy
window. For a containing intervention, we apply a piecewise function as
in Eq. (5) to synthesize the exogenous variable, where “—” is an operator
to compute the days from the left term to the right term. Logit functions
are used to model the process of gradual adaptation and dropout. We
therefore have ones for time t within the policy window and values from
zero to one for the days before and after the intervention. The policy
strength is assumed to keep the maximum level of 100% during the
policy window and a single policy window is not divided into phases. We
assume that the effect of the policy would be 50% of the full effect at the
time point when the relevant searches reach the peak. The parameter m
controlling the 0.5 point of the logit functions in Eq. (5) is hence ob-
tained by differencing the date of the intervention start and the date of
the searched peak. Stay-at-home requests and declarations of a State of
Emergency are taken as three exogenous variables. The two times of the
State of Emergency are used as separate variables, in order to investigate
whether there is a potential “tiring” or “fade-out” effect of this con-
taining policy. The converted exogenous variables are illustrated by
dotted lines in Fig. 1(c) and 1(d). As the State of Emergency is consid-
ered an upgrade of the Stay-at-home request, we use the difference be-
tween the logit curves of these two policies for the variable of the Stay-
at-home request during its overlapping days with the State of Emer-
gency. As a result, the variable of the Stay-at-home request values zero
during the overlapping days as shown in Fig. 1(c) and the impacts on
mobility changes during that period are attributed to the declaration of
the State of Emergency.

1

, i 1 < dyar
1+ exp(dya—t) —m) wart
Xiries = I, if dyare <t < dena 5)
1
if t>dg

1+ exp((t=dea) —m)’

Another set of interventions introduced in Japan are the policies to
stimulate mobility and associated consuming activities to promote the
recovery of the economy. The first stage of this policy provides 35%

discount on the total travel expense for those who make domestic leisure
travels. Fig. 1(e) shows the search trend of “Go-to-travel Campaign”
which is the major policy of this category. Different from the containing
policies, this policy never received as much attention neither prior to the
starting date nor during its first stage. People’s attention drastically
increased at the start of its second stage where special coupons that
allow for a further 15% discount to the travel expense. Another differ-
ence is that during this second stage the visits to the neighboring pre-
fecture also qualified one to apply for the discount. The adaptation
process considered for containing policies and Eq. (5) are not suitable for
this stimulating policy. The differences are manifold. Firstly, a behav-
ioral response to the policy is not mandatory for anyone. Secondly, the
action of making a journey motivated by this policy is more likely to lag
compared to the search trend. Thirdly, mobility indices receive no in-
fluence of this policy before or after the campaign window since no
discount or gift is released. Therefore a moving average search trend of
the past seven days of time t is computed and divided by 100 to represent
this policy as the associated exogenous variable to the model.

In the following case study, two LR models are used to illustrate the
improvement by considering the adaptation processes for the containing
policies. LR1 uses dummy policy variables and LR2 uses the synthesized
policy variables. With the improvement confirmed, the synthesized
policy variables are applied to RegARIMA and ARIMAX models. We
conclude this section by noting that we do not include any intercept for
the models since we assume no independent constant percentage change
from the baseline.

5. Results and interpretation

As is mentioned in Section 1, the studied timeline is from 15
February 2020 to 2 April 2021. The starting date is due to the data
availability of the dependent mobility indices. The data during 15
February 2020 and 28 January 2021 are used as the sample data, and the
data after 28 January 2021 are used as the test data for forecasting. The
model estimation of LR1, LR2, ARIMAX, and RegARIMA is conducted by
Matlab R2021a. The latter two models are estimated by the Econometric
Modeler of Matlab R2021a. All the mobility indices in the studied time
series pass the augmented Dickey-Fuller test (Dickey and Fuller, 1979)
at a significance level of 0.05 except for Nishiki Market whose p-value is
0.057. As this is still close to the required significance level, we regard
all the dependent time series processes as stationary or trend-stationary.

5.1. Model fit

Four indicators are selected to evaluate the model fit: Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), Root Mean
Square Error (RMSE), and R-squared. The former two indicators are
commonly used to evaluate the model fit for models incorporating time
series processes and are estimated using the maximum likelihood mea-
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Table 3

Estimation results of RegARIMA, significance codes: p-Value < 0.01***, 0.05**, 0.1*

Google Mobility Index (%)

Apple Mobility Index (%)

WiFi Mobility Index (%)

Retail & recreation

Grocery & Parks Transit station ~ Workplace Residential Driving Transit Walking Kiyomizu Nishiki Market ~ Kyoto Station
pharmacy Temple

Daily new cases —4.28%** -0.37 —7.21%%* —9.77%%* —5.40%** 2.61%%* —2.58 —8.08* —7.04** —19.36%** —9.94%x* —4.97%%*
Weather
Temperature (°C) 0.11 0.24x** 0.87+%* —0.02 —0.05 —0.02 0.05 —0.46 —0.08 0.54+* -0.13 0.19*
Precipitation (mm) —0.18%** —0.21%** —0.71%** —0.11%** —0.07* 0.06*** —0.03 —0.04 —0.05 —0.27%** —0.02 —0.01
Seasonal and calendar effects
Weekend —2.44%%% 0.73 —6.59%** —8.80%** —-0.02 —0.92%** -1.87 -0.35 -0.52 3.26%* —0.40 —6.20%**
Holiday 10.52%** 0.28 26.57%** —14.87%** —39.58%** 9.95%** -1.19 —2.68 -1.72 6.29%** —4.06%** —4.84%**
Spring 7.78% %% 4.23%%* 27.58%%* 6.93%%* 6.53* 16.79* 29.78%** 15.28* 16.36 10.44
Autumn 2.85 1.69 10.79%* 2.70 4.04 2.77 8.30 1.11 14.08 -1.30
Policies
Stay-at-home -1.59 —5.54 -15.69 —15.57 —17.64* —24.27*
State of Emergency —4.64*%* —8.13** —38.52%** —45.08** —45.90%** —53.97*

@
State of Emergency —8.22* —4.96 —2.51 -1.15 6.23 —2.07* —13.57 —15.10 —13.69 —13.08 —-16.63 —16.18*

(@3]
Go-to-travel(1) 1.69 -7.27 -3.13 14.12* 10.04 —5.19* 62.76%%* 57.74*% 65.87%* 7.86 11.94 16.05
Go-to-travel(2) 7.40%* 0.69 22.20%** 19.15%** 11.44** —5.45%** 43.50%* 65.06%* 59.09%** 25.21 18.75%* 13.50**
Time series errors
AR, 0.53%** 0.42%** 0.36%** 0.64%** 0.47%** 0.42%** 0.76%** 0.81%** 0.80%** 0.88%** 0.77%**
Variance (o,)? 26.23%** 20.92%** 165.89** 19.38%** 35.19%** 3.02%** 135.40%** 224.96%** 101.43%** 169.24+** 70.46%** 34.22%**
Model fit
AIC 2152.46 2073.82 2794.32 2047.21 2254.73 1400.59 2723.65 2900.33 2623.11 2801.28 2496.35 2244.97
BIC 2206.40 2127.75 2848.25 2101.14 2308.66 1454.52 2777.58 2954.26 2677.04 2855.21 2550.28 2298.90
RMSE 6.07 5.04 13.82 5.67 6.71 1.92 17.85 25.93 16.81 28.13 13.10 7.90
R-squared 0.75 0.29 0.59 0.83 0.78 0.82 0.60 0.58 0.72 0.46 0.66 0.83
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Table 4
Forecast performance of LR, ARIMAX, and RegARIMA.
RMSE R-squared
LR1 LR2 ARIMAX RegARIMA LR1 LR2 ARIMAX RegARIMA
Retail & recreation 7.82 5.15 5.16 4.65 0.60 0.73 0.72 0.76
Grocery & pharmacy 4.03 4.31 4.40 3.99 0.43 0.41 0.38 0.47
Parks 14.17 14.16 14.08 13.85 0.66 0.66 0.65 0.67
Transit station 8.80 4.00 4.15 4.02 0.28 0.80 0.78 0.81
Workplace 3.97 3.94 4.31 3.76 0.78 0.79 0.75 0.80
Residential 2.78 1.57 1.60 1.64 0.32 0.70 0.69 0.68
Driving 31.13 22.94 24.48 23.95 0.66 0.78 0.76 0.82
Transit 42.39 33.26 39.36 36.54 0.65 0.74 0.75 0.75
Walking 31.57 21.11 25.54 22.64 0.64 0.80 0.80 0.81
Kiyomizu Temple 54.53 44.38 47.91 52.94 0.64 0.76 0.85 0.83
Nishiki Market 28.13 19.34 21.07 17.25 0.26 0.81 0.83 0.86
Kyoto Station 23.51 17.30 18.20 17.85 0.81 0.82 0.79 0.83
—Observation Counterfactual Forecast Containing policies GotoTravel campaign [_____]Out-of-sample forecast window

(a) Google - Retail and recreation

(b) Google - Grocery and pharmacy

(c) Google - Parks

20 1007
0 0
20 -20 0
-40 -40
Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021
(d) Google - Transit station (e) Google - Workplace (f) Google - Residential
0
-20 | l I 20
-50
-40 10
-60
-100 0
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1
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(j) WiFi - Kiyomizu Temple (k) WiFi - Nishiki Market (I) WiFi - Kyoto Station
100 20
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0
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Fig. 2. Forecast results of RegARIMA model.

sure. Let L be the maximum value of the likelihood function, n be the
sample size, k be the number of parameters including variable co-
efficients, intercept, and error variance. With these definitions we obtain
Egs. (6) and (7) to compute AIC and BIC respectively. Lower values of
AIC and BIC are favorable. Both AIC and BIC add a penalty for the
number of parameters to adjust the model fit. RMSE and R-squared here
are based on the difference between in-sample forecast values and
observations.

AIC = 2k —2In(L) (6)

BIC = kIn(n) — 2In(L) )

Table 2 compares the model fit of the RegARIMA model with the
other three models. Only AICs are listed since AIC and BIC show the
same tendency in this comparison. RMSEs are provided to show the in-
sample forecast errors of the models. For most categories AIC and RMSE
are decreased from LR1 to LR2, showing the effectiveness of using

Google trends data to synthesize the policy variables. Moreover, sig-
nificant improvement is achieved by the two models more capable of
describing time series data. We can observe a pronounced drop in AIC
from LR2 to ARIMAX and RegARIMA for each mobility category.
Considering the time-series nature of the data can account for this
improvement in model soundness. It can be found in Appendix B that the
significant autocorrelation in the residuals of LR2 is addressed by these
two models incorporating an ARIMA process. Among these two models,
each is superior in half of the categories with respect to AIC. We judge
the RegARIMA model as preferred because the contributions of the
exogenous variables to the dependent variable are considered to be
“diluted” in the ARIMAX model by the time series term ¢, shown in Eq.
(4). To illustrate this, comparing the estimation results of LR2 and
ARIMAX in Appendix C with the results of RegARIMA in Table 3, one can
find that the magnitude of the coefficients estimated by LR2 are similar
to those obtained by RegARIMA while ARIMAX estimates much smaller
coefficients than RegARIMA. Therefore, we report the estimation result
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of our preferred RegARIMA model in Table 3, including the estimated
coefficient and significance of each variable as well as the indicators of
model fit. The results of other models can be found in Appendix C. For
the variables related to time series errors, we report the coefficient of the
autoregressive term and the variance of white noise &,.

5.2. Measured impacts of policies and other factors

The impacts of the five implementations or stages of three policies
are measured by the model and reported in Table 3. The unit of the
estimated coefficients is percentage as the dependent variable of the
models is always the percentage change from a baseline in January
2020. Among the policies, State of Emergency was used twice in the
studied timeline, and we use the number in brackets to distinguish the
first time and second time of this policy implementation. Also for the
two Go-to-travel campaigns, the number in brackets is used to distin-
guish the different stages.

Among the three implementations of restrictive policies, the first
State of Emergency in general imposed the most significant impact in
reducing mobility and activity demand. It reduced the activity at retail &
recreational places by 26.35% and it reduced the visits of transit stations
by 26.25%. Furthermore, it decreased workplace visits only by 11.65%,
indicating that the working-from-home strategy had not been widely
adopted by the companies during the initial waves of the pandemic. The
impact of the first State of Emergency was not obvious for places cate-
gorized as grocery & pharmacy or parks. As these places mainly serve for
daily minor shopping and leisure demand and are mostly less crowded,
it is in line with our expectations that the associated visits were not
strongly restricted by the State of Emergency. We also notice that for all
categories the impact of the first implementation of the State of Emer-
gency was much more pronounced than the effect of the Stay-at-home
request.

For all activity categories, except for residential, the impact of the
State of Emergency on restricting activities eroded significantly at the
second implementation, such as from 26.35% to 8.22% for retail &
recreation and from 26.25% sharply to 1.15% for transit station. This
fading-away effect due to repeated implementations can be also
observed in the results estimated from all the Apple indices. The
measured effect magnitude on driving, transit usage, and walking
compared to the baseline were all significantly less in the second stage.
The coefficients for our models with the Wi-Fi mobility indices also
confirm these trends. On average, the impact of the second imple-
mentation was one-third of the first one.

We then turn our focus to the policies to stimulate travel demand. As
noted before the second stage of Go-to-travel Campaign provided a more
attractive discount therefore larger effects are explainable. For example,
our model suggests that the second stage increased activities at transit
stations by a significant 19.15%, whereas the effect of the first campaign
is found to be only weakly significant at 14.12%. For the places
considered to be likely target destinations of tourists, the second stage
increased the visits by 7.4% at retail & recreation, 22.2% at parks, and
25.21% at Kiyomizu Temple, which is a famous tourist attraction. The
significance and magnitude for the variables of the second stage are in
general much larger.

Finally, the following observations on other influential factors
appear also important: First, the increases in temperature and precipi-
tation imposed opposite effects on mobility. We note that the baseline is
in January which is the coldest season of the year in Kyoto. Favorable
weather with higher temperature and less precipitation significantly
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motivated the trips to open spaces such as parks and sightseeing places
such as Kiyomizu Temple. The visits to parks were increased by 0.87% if
the temperature was higher than that in January by 1 °C and decreased
by 0.71% per 1 mm rainfall more than that in January. Second, as the
baseline distinguishes workdays and weekends, the effect of weekend
shows the difference of a weekend during COVID-19 from a weekend
before COVID-19. It can be seen that the mobility generated on week-
ends was generally decreased during COVID-19. On the contrary, the
baseline does not treat holidays differently so that the effect of holiday is
amplified by comparing a holiday with a normal day; in particular the
model estimates that holidays reduced the visits to a workplace by
39.58%. Third, we can observe significantly positive effects of the two
sightseeing seasons. The effect is found more pronounced in spring than
in autumn.

5.3. Forecast performance

We now focus on the out-of-sample forecast performance of the
models. RMSE and R-squared are used as performance indicators.
Table 4 reports the indicators of each model and each mobility category.
The unit of RMSE is percentage in this analysis as the dependent variable
is the percentage change. The improvement from LR1 to LR2 shows the
advantages of using the logit-transformed policy variables over the
traditional dummy variable approach. It can be seen that the LR2 model
produces more accurate predictions than LR1 for all categories except
for grocery & pharmacy. Notably, the error is reduced by half for transit
stations and residential locations, and the R-squared is improved by 0.1
for the three Apple indices and 0.55 for Nishiki Market. The differences
between LR2, ARIMAX, and RegARIMA then emphasize the various
considerations of time series errors in the models. Different from the
performance of in-sample forecast, RegARIMA produces the best per-
formance in terms of RMSE for four out of six Google mobility cate-
gories. For the other two Google indices, Apple indices, and WiFi
indices, it usually produces the second-best performance. Furthermore,
RegARIMA outperforms other models in terms of R-squared for ten out
of twelve categories. For the two categories where it does not perform
best, the gap is merely 0.02. We therefore conclude that RegARIMA is
more suitable for forecasting future mobility trends under COVID-19
interventions.

We do note, however, that the differences in many cases are not very
large. Among LR2, ARIMAX, and RegARIMA, the difference between the
best and the worst model per category is usually within 3 units for RMSE
and 0.1 for R-squared. The forecast capability of LR2 and ARIMAX is
acceptable, even though, we remind our previous discussion that the
former one fails to address the serial correlation and the policy magni-
tude obtained from the latter may be diluted and difficult to interpret.

A closer look at the forecast performance of RegARIMA is given in
Fig. 2 which illustrates the forecasted mobility trends. The policy win-
dows of containing and stimulating interventions are shaded by different
colors, in-sample and out-of-sample windows are distinguished, and
counterfactual estimates are introduced. The counterfactuals create the
curves using the fitted models but assuming no policy is forced in the
COVID-19 timeline.

We observe that our model captures the drops due to the restrictive
interventions and the rebounds provoked by the stimulating ones as well
as the sightseeing seasons during the in-sample window. More impor-
tantly, it successfully forecasts the trends in the out-of-sample window.
The out-of-sample window contains several weeks during the second
State of Emergency from 28 January 2021 to 28 February 2021. The
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initial days in the spring sightseeing season of 2021 are also included in
this window. The acceptable forecast results for Google indices indicate
that the effects of the second State of Emergency and the spring sight-
seeing season are properly measured. However, some concerns of un-
derestimation of general spring effects arise given the downward
deviation of the forecasts from the observations at the end of the time-
line for the three Wi-Fi indices located at important attractions in Kyoto
City. This underestimation is not surprising in that the spring effect is
estimated from the spring of 2020 in the sample data. In the spring of
2020 the sightseeing desire was reduced by the emerging risks of the
pandemic and the mobility was partially restricted by soft interventions
such as the Stay-at-home request. However, the spring of 2021 overlaps
with a restriction-free period and is embraced by the rebounding travel
desire. Accordingly, the forecast gap is more significant for the popular
recreation places.

6. Conclusion and further research

In this paper, we shed light on the estimation of non-pharmaceutical
intervention effects and the forecast of future mobility and activity
trends for the ongoing COVID-19 pandemic with a regression model
incorporating time series errors. We specify an ARIMA process of (1,0,0)
for the errors and obtain interpretable estimates on the effects, in light of
the classical intervention models proposed by Box and Tiao (1975) and
Tsay (1984). Our model also succeeds to forecast future trends at an
acceptable accuracy. The model is tested by twelve activity and mobility
indices including nine of them published by Google and Apple at pre-
fecture level based on the usage of their digital map services. Google’s
indices are broken down into activity categories while Apple’s are spe-
cific to transport modes. The remaining three are processed by our own
data at critical places in the city. We are therefore presenting overviews
on the policy effects at city level and closer looks at some specific places.

We confirm the restriction effects of containing policies on mobility
trends and show that the effects of the recurrence of an intervention or
an event may be substantially different. We demonstrate the fading-
away effect by comparing the estimated effects of the first and second
State of Emergency. One may expect the effect to be further declining for
the third and fourth times so that reduced coefficients might be used to
forecast the future trends. However, the decay is not likely to be linear so
that the reduced policy effect is ambiguous. Moreover, the concurrence
with other unexperienced events and the upgrade of the policy itself may
make the effect on mobility trends more unpredictable. This is more of
concern for out-of-sample forecasting than for in-sample estimation.
Similar issues exist for the seasonal effects. As a lesson learned from the
estimation on the spring effect, the rebounding effect caused by con-
taining interventions should be considered. This can be resolved to some
extent by taking the data from previous normal years into account,
though Google and Apple mobility reports are unfortunately not avail-
able for times before January 2020.

We demonstrate people’s reactions to the implemented interventions
by using Google trends data that help to enrich the exogenous variables.
This improves the forecast accuracy of the model. The online searches
for a policy indicate people’s attention, though, their attitudes and
behavioral connections to it are not clear. For future work we suggest
that search frequency and a “population sentiment analysis” based on,
for example, Twitter data could be used to further improve the model-
ling of the population adaptation process.
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Japan was among the first countries to implement “reverse in-
terventions” to stimulate domestic travel demand. These interventions
have the potential to help the recovery of the economy, however, at the
risk of accelerating the virus spread. We confirm their motivating effects
on mobility, especially for the stage with a more favorable discount to
travel expenses. For further work, we recommend investigations into the
interactions among pandemic cases, mobility trends, and economic in-
dicators in terms of correlation and causation.

The effect of vaccination is excluded in this paper by cutting the
studied timeline before the national and regional vaccination rates
exceed 1% of the associated population. After the studied timeline in this
paper, Japan entered the third State of Emergency from 25 April 2021 to
11 May 2021, which involves four prefectures as Tokyo, Kyoto, Osaka,
and Hyogo. Tokyo and Okinawa entered the fourth one initially sched-
uled from 12 July to 22 August, partly in response to the Summer
Olympic Games. The fourth one was extended to 30 September 2021 and
expanded to several other prefectures including Kyoto. Meanwhile, the
vaccination rate was increasing fast and had reached 65.10% (55.50%
fully vaccinated) by the end of September in Kyoto (Government CIO
portal, 2021). It then gradually increased to 72.99% (72.42% fully
vaccinated) in the middle of January 2022. Given such a mixture of
interventions, we hope that extensions of this work, including a longer
timeline, could help to also clarify the effect of vaccinations on the
population’s mobility and activity. Given “COVID tiredness” and less
risk perception among the vaccinated population we suspect that the
effect of policy interventions is declining compared to our model
estimates.
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Appendix B. Autocorrelation in the residuals of the models

Fig. 3
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Fig. 3. (continued).

Appendix C. Estimation results of benchmark models

Tables 5-7
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Table 7

Estimation results of ARIMAX, significance codes: p-Value < 0.01***, 0.05**, 0.1*

Google Mobility Index (%)

Apple Mobility Index (%)

WiFi Mobility Index (%)

Retail & recreation  Grocery & pharmacy  Parks Transit station ~ Workplace Residential ~ Driving Transit Walking Kiyomizu Temple  Nishiki Market ~ Kyoto Station
Daily new cases —2.58%%* -0.12 —5.41%%* —6.027%%* —3.76%*%  1.85%** —-0.65 -1.36 —1.32% —5.17%** —2.04*%* —2.33%%*
Weather
Temperature (°C) 0.02 0.14%%* 0.63%** —-0.07 —-0.03 —-0.01 0.07 -0.11 0.05 -0.11 —-0.05 0.21 %%
Precipitation (mm) —0.17%%* —0.18%** —0.71%%* —0.11%%* —-0.06 0.06%** —-0.01 0.03 —0.04 —0.29%** —-0.01 0.01
Seasonal and calendar effects
Weekend —1.75%* 0.73 —5.32%%* —7.46%** 0.45 —1.01%** 2.41% 6.35%%* 4.44%= 5.40%* -0.32 —4.44%*
Holiday 8.75%** —0.57 27.16%** —11.65%** —39.03%** 9.66%** —10.59%** —12.76%** —10.56%** 11.05%** —7.17%%* —2.98%*
Spring 5,32k 3.11%* 22.80%** 5.49%%* 5.09%%*  —2,15%%* 3.87 4.30 1.71 1.82 6.25%**
Autumn 1.97 0.89 8.34* 3.59%** 3.34 -1.11* 0.67 0.77 -0.27 —-0.57 —0.90
Policies
Stay-at-home —5.49%%% -0.82 -3.99 —7.75%%* -2.71 1.99%** —5.27 —5.66 —4.61 —8.21%* —5.97%* —6.87%**
State of Emergency(1) —17.03%** —3.31%%* —6.84%* —16.69%** —8.22%**  5,00%** —7.49** —6.24 —6.40** —15.50%** —8.46%** —17.74%%**
State of Emergency(2) —6.19%** —4.33%* —2.54 -1.36 4.44%* —1.38%* —2.40 —2.88 -1.53 —-6.13 —4.01 —5.61%*
Go-to-travel(1) 1.05 —4.66 -3.20 11.71%** 8.43 —4.57%* 11.02 9.85 8.88 —0.46 3.28 2.41
Go-to-travel(2) 4.89%%* 0.60 17.17%** 11.79%%** 7.26%%%  —3.75%%* 6.49 8.93 7.30 10.56%* 5.93%* 5.31%*
Time series terms
AR(D)¢, 0.36%** 0.26%** 0.23%** 0.35%** 0.27%%* 0.27%** 0.82%** 0.87%** 0.87%** 0.74%*x 0.79%** 0.58%**
Variance (6,)* 29.72%%% 22,93+ 170.44% %+ 23.33 %% 34.40%%%  2.95%xx 131.93%%%  211.65%** 93.71%%%  166.94%%* 67.07% %% 37.65% %+
Model fit
AIC 2189.70 2099.65 2795.76 2105.70 2240.48 1388.33 2706.90 2870.91 2588.21 2788.56 2472.15 2271.81
BIC 2243.59 2153.54 2849.65 2159.59 2294.37 1442.22 2760.79 2924.80 2642.10 2842.45 2526.04 2325.70
RMSE 6.22 5.14 13.82 5.68 6.40 1.86 19.19 27.48 17.29 19.80 12.69 7.97
R-squared 0.73 0.26 0.59 0.83 0.79 0.83 0.54 0.52 0.70 0.74 0.68 0.82
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