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a b s t r a c t 

Objectives: COVID-19 vaccination in Japan started on February 17, 2021. Because the timing of vaccination 

and the risk of severe COVID-19 greatly varied with age, the present study aimed to monitor the age- 

specific fractions of the population who were immune to SARS-CoV-2 infection after vaccination. 

Methods: Natural infection remained extremely rare, accounting for less than 5% of the population by 

the end of 2021; thus, we ignored natural infection-induced immunity and focused on vaccine-induced 

immunity. We estimated the fraction of the population immune to infection by age group using vaccina- 

tion registry data from February 17, 2021, to October 17, 2021. We accounted for two important sources 

of delay: (i) reporting delay and (ii) time from vaccination until immune protection develops. 

Results: At the end of the observation period, the proportion of individuals still susceptible to SARS-CoV- 

2 infection substantially varied by age and was estimated to be ≥90% among people aged 0–14 years, 

in contrast to approximately 20% among the population aged ≥65 years. We also estimated the effective 

reproduction number over time using a next-generation matrix while accounting for differences in the 

proportion immune to infection by age. 

Conclusion: The COVID-19 immune landscape greatly varied by age, and a substantial proportion of young 

adults remained susceptible. Vaccination contributed to a marked decrease in the reproduction number. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Introduction 

Since the COVID-19 epidemic spread on a global scale in 2020, 

it considerably altered daily life. With the hope of mitigating the 

COVID-19 risk, vaccination campaigns began in December 2020 

in many countries, often using a prioritization vaccination strat- 

egy ( Haas et al., 2021 ; Hall et al., 2021 ; Jentsch et al., 2021 ; 

Mathieu et al., 2021 ; Sasanami et al., 2022 ; Thompson et al., 2021 ). 

Mass vaccination campaigns occurred primarily when the origi- 

nal (wild-type) strain, the Alpha variant (B.1.1.7), the Beta vari- 

ant (B.1.351), or other variants were dominant in circulation and 

against which the available vaccines provided substantial protec- 

tion ( Chemaitelly et al., 2021 ; Chung et al., 2021 ; Dagan et al., 

2021 ; Haas et al., 2021 ; Hall et al., 2021 ; Pritchard et al., 2021 ). 

However, additional variants of concern have since been reported, 

including the Delta variant (B.1.617) and the highly transmissi- 

ble Omicron variant (B.1.1.529) ( Belay and Godfred-Cato, 2022 ; 

Elbe and Buckland-Merrett, 2017 ; GISAID, 2022 ; Houhamdi et al., 
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2022 ; Loconsole et al., 2022 ; Nyberg et al., 2022 ; Ramírez et al., 

2022 ; Veneti et al., 2022 ). The effectiveness of the widely used 

messenger RNA (mRNA) vaccines to prevent infection has been 

notably low against the presently widespread Omicron variant 

( Andrews et al., 2022 ; Ferdinands et al., 2022 ; Tseng et al., 2022 ). 

In Japan, there were three eligibility categories for receiving a 

COVID-19 vaccination: (1) healthcare workers, (2) the general pop- 

ulation, and (3) university students and staff and company em- 

ployees. Healthcare workers were prioritized as the first group and 

began receiving vaccinations on February 17, 2021, and the gen- 

eral population ≥65 years became eligible on April 12, 2021. The 

eligible age groups were sequentially expanded in a descending 

manner. To receive a vaccination, individuals needed to present 

a vaccination coupon that they had received from the city coun- 

cil that arranged the vaccination program for the local popula- 

tion. Alongside the general population vaccination program, which 

used the mRNA vaccine BNT162b2, the university and workplace 

vaccination program started on June 21, 2021, and was arranged 

by universities/colleges and companies voluntarily and adminis- 

tered the mRNA-1273 vaccine. The importance of vaccination was 

particularly emphasized when the Delta variant became dominant 

in Japan in mid-May 2021 ( National Institute of Infectious Dis- 
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eases, 2021 ). At this time, the country was preparing to host the 

Tokyo Olympic Games in late July. 

To record the dispatched and administered doses, the Japanese 

government developed the Vaccination System (V-SYS) and the 

Vaccination Record System (VRS). The V-SYS records allocated 

doses (in contrast with actually administered doses), whereas the 

VRS registers doses administered to those who showed a vaccina- 

tion coupon upon vaccination; the VRS also records the vaccinee’s 

age. As such, not all healthcare workers were recorded in the VRS 

because some were vaccinated before the city councils sent them 

vaccination coupons. In addition, there was a substantial report- 

ing delay in the VRS, particularly for those who were vaccinated 

through the university and workplace vaccination programs. This 

reporting delay was mostly because many of these people were 

young and therefore had not yet received a municipal vaccina- 

tion coupon by the time they were vaccinated under the univer- 

sity or workplace vaccination program. Their vaccination was later 

reported when their vaccination coupons were issued. 

Japan experienced less than 5% of the cumulative risk of con- 

firmed COVID-19 cases by the end of 2021 ( Ministry of Health, La- 

bor and Welfare, 2021a ). Thus, it has been vital for Japan to vac- 

cinate as many people as possible. To understand the immune 

landscape at single points in time, seroepidemiological surveys 

have been conducted in various settings ( Berselli et al., 2022 ; 

Madhi et al., 2022 ; Nopsopon et al., 2021 ; Slot et al., 2020 ; 

Xu et al., 2020 ), but the required time and cost of these surveys 

constrain the continuous implementation of such labor-intensive 

studies. The purpose of the present study was to develop a method 

to enable real-time monitoring of the COVID-19 immune landscape 

using available vaccination surveillance data. The impact of the im- 

mune landscape on the reproduction number over time was also 

examined. 

Materials and methods 

Vaccine registry data 

The VRS and V-SYS do not report the total number of vacci- 

nees, therefore, we used the two datasets to complement each 

other. The VRS data were obtained from the Ministry of Health, 

Labor and Welfare (Supplementary data 1), and the V-SYS data 

were obtained from the website of the Prime Minister’s Office of 

Japan. From V-SYS, we obtained the number of doses allocated 

to healthcare workers, university students/staff, and company em- 

ployees between February 17, 2021, and October 10, 2021. Infor- 

mation on the vaccinees’ age was unavailable in V-SYS, and it 

recorded healthcare workers only up to July 30, 2021. From the 

VRS data, we obtained the number of daily administered doses be- 

tween April 17, 2021, and October 17, 2021. The number of new 

vaccinees was recorded in the VRS, and those not previously re- 

ported in the past weeks were added over time. In addition, we 

used national census data for the Japanese population and working 

population age distributions. These datasets were retrieved from 

the Statics Bureau of Japan. 

Statistical model 

We first estimated the number of vaccinated people based on 

the programs, categorizing vaccinees into five age groups ( n a = 5 ): 

0–14, 15–29, 30–44, 45–64, and ≥65 years. In doing so, the report- 

ing delay in the VRS data was taken into consideration. We then 

calculated the fraction of people susceptible to SARS-CoV-2 infec- 

tion and accounted for the delay during which vaccinated individ- 

uals develop immunity. The impacts of vaccination were quantified 

by examining time-varying reproduction numbers using the next- 

generation matrix (NGM). Hereafter, “immune” refers to individuals 

protected from SARS-CoV-2 infection regardless of manifestation of 

COVID-19 symptoms. 

First doses allocated to healthcare workers 

We mainly used the V-SYS data because not all vaccinated 

healthcare workers were recorded in the VRS. However, because 

the V-SYS does not record age, we calculated the number of daily 

doses distributed to each age group by assuming that their age dis- 

tribution was identical to that recorded in the VRS. 

First doses administered to the general population, university 

students/staff, and company employees 

The VRS data were used to estimate the number of people vac- 

cinated through the general, university, and workplace vaccination 

programs, while the reporting delay was quantified and taken into 

consideration. We also added the number of underreported vacci- 

nees from the V-SYS data. 

2.2.2. Estimating the number of vaccinees with a reporting delay in 

the VRS 

The number of vaccinees reported in the VRS was expressed by 

using the discrete delay equation ( Tsuzuki et al., 2017 ) as follows: 

c t,x = j t F x −t (1) 

E ( c t,x ) = 

c t,x ′ 

F x ′ −t 

F x −t (2) 

where c t,x is the number of people vaccinated on day t and re- 

ported on day x , and j t represents the true number of people vac- 

cinated on day t . We assumed that the proportion of vaccinees on 

day t who were reported by day x followed F x −t , which is a cumu- 

lative distribution function of the delay and has a gamma distribu- 

tion. The gamma distribution parameters were estimated through 

the maximum likelihood method and assuming that c t,x followed a 

Poisson distribution: 

L ( θ ; c t,x ) = 

m −1 ∏ 

j=1 

x j ∏ 

t=1 

E 
(
c t, x j 

)c t, x j exp 
(
−E 

(
c t, x j 

))
c t, x j ! 

(3) 

where E(.) represents the expected number, x j represents the date 

on which the VRS dataset was obtained, m is the dataset num- 

ber ( m = 10 snapshots), and θ represents the population parame- 

ter governing the gamma distribution. To quantify the uncertainty 

of the parameters, a parametric bootstrap method was employed, 

resampling 1,0 0 0 sets of parameters using a Hessian matrix. The 

number of vaccinees, j t , was calculated, accounting for the esti- 

mated reporting delay. 

In addition, underreported doses, which were recorded in the 

V-SYS only, were added to the number of vaccinees estimated pre- 

viously under the assumption that the doses were administered af- 

ter the age distribution of the working population according to the 

national statistics. 

2.2.3. Estimating the age-specific fraction of people who are 

susceptible to infection 

We assumed that increased vaccine effectiveness since the first 

vaccination follows a cumulative function for a Weibull distribu- 

tion; thus, the cumulative number of people with immune protec- 

tion against infection was calculated as: 

I a, T = V E 

T ∑ 

t=0 

t−1 ∑ 

τ=1 

j a,t−τ h τ (4) 

where I a, T represents the cumulative number of people immune to 

infection at time T in age group a , and V E is the maximum vacci- 

nation effectiveness, which we assumed to be 0.8 against infection 
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with the Delta variant ( Sheikh et al., 2021 ), which was prevalent 

during the period of interest. Note that vaccine effectiveness here 

assumes “all or nothing” rather than “partial” or “leaky” protec- 

tion mechanism, meaning that I a, T is the number of successfully 

immunized people (i.e., given V E, 20% of the vaccinated popula- 

tion would fail to acquire immunity that practically prevents in- 

fection). j a, t−τ represents the number of newly vaccinated people 

in age group a on day t − τ . h τ is the Weibull distribution func- 

tion, representing vaccine effectiveness against infection on day τ
since receiving the first dose. Based on a previously published co- 

hort study, which reported the cumulative number of the docu- 

mented SARS-CoV-2 infection from the day of the first dose vac- 

cination ( Dagan et al., 2021 ), we estimated parameters for the 

Weibull distribution function as well as the probability of getting 

infected with SARS-CoV-2 during each fraction of the follow-up pe- 

riod through the maximum likelihood method, assuming that the 

incidence among vaccinated and unvaccinated population occurred 

after binomial distribution, that is, 

L 
(
θ ; un v a c + v e,τ , un v a c total,τ , v a c + v e,τ , v a c total,τ

)
= 

∏ 

τ

(
un v a c total,τ

un v a c + v e,τ

)
p un v a c + v e,τ ( 1 − p ) 

un v a c total,τ −un v a c + v e,τ

(
v a c total,τ

v a c + ,τ

)

( p ( 1 − h τ ) ) 
v a c + ,τ ( 1 − p ( 1 − h τ ) ) 

v a c total,τ −v a c + v e,τ

(5) 

where un v a c + v e,τ and v a c + v e,τ are the number of documented in- 

fections among unvaccinated and vaccinated population, respec- 

tively at time τ (i.e., days elapsed since receiving the first dose), 

whereas un v a c total,τ and v a c total,τ are the total number at risk dur- 

ing each fraction of follow-up period. τ was determined to be the 

median of each period at risk. We employed the bootstrapping 

method and derived 1,0 0 0 sample parameter sets from a Hessian 

matrix. It should be noted that this time-varying vaccine effective- 

ness since the first dose vaccination is based on the assumption 

that all of those who received the first dose vaccine would take 

the second dose on day 21 after the first dose. This assumption 

was deemed reasonable because the percentage of people who re- 

ceived the first dose but not second dose was only about 1% in 

Japan ( Prime Minister’s Office of Japan, 2022 ). The interpretation 

of the cumulative density function for the estimated Weibull dis- 

tribution is therefore the vaccine effectiveness that increases over 

time since receiving the first dose and eventually plateaus at the 

maximum vaccine effectiveness of the second dose. 

The number of immune individuals was converted into the frac- 

tion who were susceptible: 

s a,T = 1 − I a,T 

N a 
(6) 

where s a,T represents the fraction of people susceptible to infec- 

tion in age group a at time T , and N a is the number of people 

in age group a . The 95% CIs for s a,T were computed by two sets 

of samples: parameters for the gamma distribution, representing 

the reporting delay in the VRS, and the Weibull distribution, repre- 

senting the time-dependent vaccine effectiveness. This study mon- 

itored the immune landscape near the end of the two-dose pro- 

gram; for simplicity, we did not account for waning immunity. 

2.2.4. Next-generation matrix 

To investigate transmission across age groups, the NGM was 

employed ( Kayano et al., 2019 ), and the time-varying reproduction 

number was computed as the largest eigenvalue of the NGM, { R ab } , 
calculated as: 

R ab = k a m ab (7) 

where k a is the relative susceptibility to infection through an ef- 

fective contact with a COVID-19 case in age group a . m ab is the 

contact rate between an infectee in age group a and an infector in 

age group b, obtained from a contact survey conducted in Japan 

( Munasinghe et al., 2019 ), while we modified the matrix to be 

consistent with the previously mentioned five age groups. To es- 

timate the relative susceptibility, the after renewal equation was 

employed: 

c a,t = 

t−1 ∑ 

τ=1 

n a ∑ 

b=1 

R ab u b,t−τ g τ (8) 

where u a,t represents the number of newly infected COVID-19 

cases in age group a on day t , and g τ is the probability mass func- 

tion of the generation time. We quantified the NGM during the pe- 

riod in which the Alpha variant was initially present in Japan, us- 

ing the confirmed case data (representing the incidence of symp- 

tom onset on day t) and the serial interval ( Nishiura et al., 2020 ). 

As explained previously, R ab is an element of the NGM { R ab }. Fitting 

Equation (8) to the incidence data, the relative susceptibilities were 

estimated during the exponential growth phase in Osaka owing to 

the introduction of Alpha from March 1, 2021 to April 12, 2021. 

We assumed that the distribution of case counts by age group was 

sufficiently captured by a Poisson distribution, and the likelihood 

function was written as: 

L ( θ ; c a,t ) = 

∏ 

t 

∏ 

a 

E ( u a,t ) 
c a,t e −E ( c a,t ) 

c a,t ! 
(9) 

where E( u a,t ) represents the expected number of cases derived 

from the right-hand side of Equation (8) . Minimizing the negative 

logarithm of Equation (9) , we obtained the unknown parameter θ , 

i.e., { k a }. The 95% CIs were calculated using parametric bootstrap- 

ping. 

2.2.5. Time-dependent reproduction number 

The time-dependent NGM reflects the immune landscape and 

was modeled as: 

R 

v 
ab,t = s a,t R ab (10) 

where s a,t represents the fraction of people who are susceptible to 

infection in age group a at time t estimated from Equation (6) , and 

R ab is the NGM as derived from the Alpha variant epidemic. We set 

June 6, 2021 as the starting point for applying Equation (10) ; this 

day was just before vaccinations shifted from focusing on older 

people to the younger age groups. The relative reduction of the 

reproduction number was explored using the dominant eigenvalue 

of the time-dependent NGM over time. We used the R ab from the 

Alpha variant epidemic, but the monitoring was carried out dur- 

ing the period when the Delta variant was dominant. We therefore 

further assessed an impact of the replacement of Alpha by Delta, 

by adjusting the estimated largest eigenvalues on the basis of the 

relative transmissibility of the variants ( Ito et al., 2021 ). 

Results 

The V-SYS recorded 6,532,164 first dose vaccines allocated to 

healthcare workers between February 17, 2021 and July 30, 2021. 

The VRS recorded 87,700,381 vaccinees who received a first dose 

as a member of the general population, a university student/staff

member, or a company employee between April 17, 2021 and Oc- 

tober 17, 2021. In addition, the V-SYS recorded 1,123,840 first doses 

distributed through the university and workplace vaccination pro- 

grams that were not counted in the VRS. 

Figure 1 shows the number of people who received a first dose 

recorded in the VRS. The data show that many people who were 

vaccinated had their information updated in the VRS as time went 

on. For instance, from June, 2021 to September 2021, 3,50 0,0 0 0–

4,0 0 0,0 0 0 first doses were administered per week according to 

the most recent data (updated October 17, 2021); this is compared 

with the 3,0 0 0,0 0 0–3,50 0,0 0 0 doses initially reported in real time. 
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Figure 1. Weekly number who received the first dose between April 12, 2021, 

and October 17, 2021 (except for healthcare workers) according to the Vaccination 

Record System (VRS). 

The lines represent the number of vaccinees reported to VRS, indicating that some 

previously unreported vaccinees were included later as the data were updated. 

Figure 2. Delay while immune protection against SARS-CoV-2 infection builds up. 

The points represent empirically observed vaccine effectiveness against SARS-CoV-2 

infection ( Dagan et al., 2021 ). The line and shaded area show our estimate for the 

Weibull distribution and the 95% confidence intervals (CIs), respectively. The distri- 

bution applies to those who were successfully immunized (and protected) against 

infection. There would be a certain fraction of vaccination failures; these are not 

shown here but were included in our immune landscape calculations as V E. 

Using 10 different datasets (i.e., 10 snapshot observations of the 

VRS data), the mean reporting delay was estimated to be 13.93 

days (95% CI: 13.88–13.98). 

Figure 2 shows the estimated time-dependent vaccine effec- 

tiveness since the first dose (i.e., the cumulative density function 

for the estimated Weibull distribution), based on a published co- 

hort study ( Dagan et al., 2021 ). The jointly estimated probability 

of getting infected with SARS-CoV-2 during the period of the co- 

hort study was 0.0038 (95% CI: 0.0037– 0.0039), and the mean 

and SD of the cumulative Weibull distribution were estimated to 

be 21.49 days (95% CI: 20.80– 22.15) and 32.09 days (95% CI: 27.17–

Figure 3. Age-specific proportion susceptible to SARS-CoV-2 infection from Febru- 

ary 17, 2021, to October 17, 2021. 

The lines represent the proportion susceptible. The shaded areas indicate the 95% 

confidence intervals (CIs) based on the parametric bootstrap method. 

39.17), respectively, That is, it was estimated to take approximately 

20 days to reach 50% maximum vaccine effectiveness after the first 

dose. 

Accounting for the reporting delays and the delay in vaccine 

effectiveness, the population fractions susceptible to COVID-19 in- 

fection on October 17, 2021 were estimated to be 93.55% (95% 

CI: 93.41– 93.70), 51.31% (95% CI: 50.84– 51.78), 44.23% (95% CI: 

43.85– 44.65), 31.01% (95% CI: 30.78– 31.25), and 23.93% (95% CI: 

23.89– 23.97), respectively, among people aged 0–14, 15–29, 30–

44, 45–64, and ≥65 years ( Figure 3 ; Supplementary data 2). The 

oldest group has the highest risk of severe disease ( Jordan et al., 

2020 ) but had the largest immune fraction. In contrast, a substan- 

tial fraction of younger adults and children remained susceptible 

as of October 17, 2021. 

Relative susceptibility parameters were estimated to be 0.08 

(95% CI: 0.07–0.08), 0.27 (95% CI: 0.26–0.28), 0.24 (95% CI: 0.23–

0.25), 0.35 (95% CI: 0.33–0.36), and 0.27 (95% CI: 0.26–0.28) for 

individuals aged 0–14, 15–29, 30–44, 45–64, and ≥65 years, re- 

spectively. People aged 45–64 years had the highest susceptibility, 

whereas those who were younger than 15 had the lowest suscep- 

tibility. Figure 4 compares the observed and predicted number of 

confirmed COVID-19 cases in Osaka. The predicted age-dependent 

patterns were well captured overall and did not deviate from the 

observed counts. In addition, in the early stage of the Alpha epi- 

demic from March 1 to April 12, 2021 in Osaka (which was un- 

affected by strong countermeasures such as a state of emergency 

declaration, which took place later), the largest estimated eigen- 

value of the NGM was 1.39 (95% CI: 1.35–1.44). 

Figure 5 shows the time-dependent eigenvalues of the NGM 

over the study period relative to the estimated value on June 6. The 

eigenvalues can be interpreted as the Alpha or Delta variant repro- 

duction number, which explicitly accounted for an increasingly im- 

mune population owing to vaccination. As the immune fraction of 

the population increased, the reproduction numbers for Alpha de- 

creased to 0.96 (95% CI: 0.92–1.01), 0.87 (95% CI: 0.83–0.92), 0.77 

(95% CI: 0.73–0.80), and 0.62 (95% CI: 0.59–0.65) on July 18, August 

15, September 12, and October 10, 2021, respectively. As being ex- 

pected, the reproduction numbers for Delta was estimated to be 

substantially higher than that for Alpha, and they were 2.07 (95% 
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Figure 4. Comparison between the observed and predicted numbers of confirmed cases in Osaka from March 1, 2021, to April 12, 2021. 

The dots represent the daily confirmed cases of COVID-19 by age group in Osaka prefecture in the growth phase of the fourth wave, i.e., during the Alpha variant wave. The 

lines indicate the predicted daily confirmed cases of COVID-19 by age group in Osaka based on the maximum likelihood estimation that inferred the next-generation matrix. 

Figure 5. Relative value of the largest eigenvalue, as computed from the next-generation matrix covering Japan from June 6, 2021, to October 10, 2021. 

The relative changes in the largest eigenvalues of the next-generation matrix were explored. The baseline value was taken on June 6, 2021, and estimates were updated 

at two-week intervals. The green and red points represent the relative value of the largest eigenvalues for the Delta and Alpha variants, respectively. The gray dashed line 

indicates unity for the Alpha variant (i.e., the value of 1.0 below which the epidemic can be brought under control). The error bars represent the 95% confidence intervals 

based on the parametric bootstrap method. 

CI: 1.98–2.16), 1.87 (95% CI: 1.79–1.96), 1.65 (95% CI: 1.57–1.72), 

1.33 (95% CI: 1.27–1.39) for the same date as previously mentioned. 

Discussion 

We provided a real-time estimate of the fraction of the Japanese 

population susceptible to SARS-CoV-2 infection while addressing 

two important delay distributions: (i) reporting delays in the vac- 

cine registration systems and (ii) the time required for vaccinated 

individuals to become immune to infection. We estimated an ap- 

proximately 2-week reporting delay in the VRS. Furthermore, it 

takes approximately 3 weeks for 50% of successfully vaccinated 

people to become immune to infection after receiving the first 

dose. The susceptible proportion was much higher in younger and 

more socially active age groups. Of those aged 15–29 years, more 

than 90% were still susceptible to infection at the end of the study 

period, in contrast with approximately 20% of those aged ≥ 65. The 

time-dependent reduction in the susceptible fraction strongly con- 

tributed to reducing the reproduction number. By the end of the 

study period, the reproduction number was reduced by approxi- 

mately 40% regardless of the variant of interest compared with be- 

fore the vaccines became widely available. 
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By accounting for the two sources of delay, the present study 

allowed real-time monitoring of the COVID-19 immune landscape 

using vaccine registration datasets. The reporting delay can be sub- 

stantial, especially when a new registration system is launched, 

which was the case for the systems used in Japan. Furthermore, 

it can take weeks after vaccination to develop immune protection 

against infection, and some people will be susceptible during this 

time. If the reported vaccination coverage is regarded as equal to 

population immunity, it would be an overestimation and could po- 

tentially create a false sense of security. The timely estimation of 

the fraction susceptible to infection enabled us to monitor the rel- 

ative change in the effective reproduction number that was solely 

attributable to vaccination. Our framework clarified the population 

impacts of vaccination and was used to evaluate the vaccination 

campaign in a low-incidence country. To our knowledge, this is the 

first study to report monitoring the immune landscape based on 

data from vaccine registration systems. 

The fraction of the population susceptible to COVID-19 infec- 

tion considerably varied by age. One reason for the variation was 

the prioritization of vaccination order by age ( Jordan et al., 2020 ). 

Older people became eligible earlier than younger people. Higher 

vaccination coverage was achieved in the older age groups, per- 

haps because they are at higher risk of severe disease and death. 

In contrast, not all young adults have yet received a first dose, 

and most remained susceptible to infection throughout the study 

period. Vaccine hesitancy may also have contributed to variations 

in susceptibility by age. According to a nationwide cross-sectional 

survey in Japan, young people were more likely to be hesitant to 

get a COVID-19 vaccination ( Okubo et al., 2021 ). However, young 

adults also tend to have more contacts, which drives transmissions 

( Mossong et al., 2008 ) and can contribute to mismatches between 

the individual and public benefits of vaccination. 

Here, we combined immune landscape monitoring with the ef- 

fective reproduction number to account for the vaccine-induced re- 

duction in the susceptible fraction of the population in real time. 

By employing an NGM, the fraction of the population immune to 

infection and the transmission dynamics over time were quantita- 

tively assessed, showing that vaccination contributed to a substan- 

tial decrease in the reproduction number. The present study ex- 

plored the immune landscape toward the end of the second-dose 

campaign; thus, for simplicity, we did not account for waning im- 

munity. The intrinsic mechanism of waning, booster dose vaccina- 

tion, and exposure to infectious individuals during the protected 

period would complicate the immune fraction computation, and 

we will examine these impacts in the future study. 

This study has some limitations. First, we assumed that vac- 

cine effectiveness was identical in all age groups. However, given 

that the immunogenicity after vaccination with BNT162b2 can dif- 

fer by age ( Abu Jabal et al., 2021 ), the time delay between vac- 

cination and becoming immune and the vaccine efficacy might 

vary with age. Second, our model relied on published values of 

BNT162b2 effectiveness ( Dagan et al., 2021 ). However, a small frac- 

tion of people received the mRNA-1273 or ChAdOx1-S vaccine, and 

they were assumed to have had the same benefit as those who 

received BNT162b2. The true differences in benefit were deemed 

negligible because the mRNA vaccines showed similar efficacy in 

the initial vaccine trials ( Baden et al., 2021 ; Polack et al., 2020 ), 

and only 0.06% of the population received a first dose of ChAdOx1- 

S ( Prime Minister’s Office of Japan, 2022 ). Third, we did not use the 

data on the number of people who were fully vaccinated. How- 

ever, we believe that our approach with focus on the first dose 

vaccination provided more precise immune landscape, given the 

rapidly growing number of the first-dose vaccinees, because the 

immunity should start building up upon the first dose vaccination. 

Moreover, the estimated time-dependent vaccine effectiveness in- 

corporates the effectiveness of second dose vaccination because of 

our assumption that all individuals who received the first dose will 

take the second dose. As briefly mentioned earlier, we considered 

this assumption reasonable because it was reported that there is 

only 1% of people who did not take the second dose among those 

were vaccinated with the first dose. Fourth, to estimate the suscep- 

tibilities in the NGM, we used the data on COVID-19 cases when 

the Alpha variant was dominant; however, it had been replaced by 

Delta when we estimated the NGM ( Ministry of Health, Labor and 

Welfare, 2021b ). It was not feasible to estimate the susceptibilities 

during the time that Delta was dominant because the vaccination 

coverage had rapidly increased. Thus, we instead examined the im- 

pact of Delta by accounting for the relative transmissibility of Delta 

to that of Alpha. Finally, the contact matrix we used in the NGM 

was estimated before the pandemic started, and it might have dif- 

fered from the contact patterns at the time of the study owing to 

the considerable behavior changes associated with the PHSMs and 

people’s perceptions of COVID-19 risk. 

Despite these avenues for future improvement, the present 

study offers a novel approach to monitoring the age-related im- 

mune landscape over time in Japan. By accounting for reporting 

delays and the time required to build immunity, our calculations 

provided fundamental insights into COVID-19 protection at a pop- 

ulation level. Moreover, our framework can be easily extended to 

include other sophisticated analyses such as monitoring herd im- 

munity by measuring the reproduction number under additional 

vaccination scenarios (e.g., vaccination among children). 
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