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Distillation-Based Semi-Supervised Federated
Learning for Communication-Efficient

Collaborative Training With Non-IID Private Data
Sohei Itahara , Student Member, IEEE, Takayuki Nishio , Senior Member, IEEE,

Yusuke Koda ,Member, IEEE, Masahiro Morikura ,Member, IEEE,

and Koji Yamamoto , Senior Member, IEEE

Abstract—This study develops a federated learning (FL) framework overcoming largely incremental communication costs due to

model sizes in typical frameworks without compromising model performance. To this end, based on the idea of leveraging an unlabeled

open dataset, we propose a distillation-based semi-supervised FL (DS-FL) algorithm that exchanges the outputs of local models

among mobile devices, instead of model parameter exchange employed by the typical frameworks. In DS-FL, the communication cost

depends only on the output dimensions of the models and does not scale up according to the model size. The exchanged model

outputs are used to label each sample of the open dataset, which creates an additionally labeled dataset. Based on the new dataset,

local models are further trained, and model performance is enhanced owing to the data augmentation effect. We further highlight that

in DS-FL, the heterogeneity of the devices’ dataset leads to ambiguous of each data sample and lowing of the training convergence. To

prevent this, we propose entropy reduction averaging, where the aggregated model outputs are intentionally sharpened. Moreover,

extensive experiments show that DS-FL reduces communication costs up to 99 percent relative to those of the FL benchmark while

achieving similar or higher classification accuracy.

Index Terms—Federated learning, knowledge distillation, non-IID data, communication efficiency

Ç

1 INTRODUCTION

FEDERATED Learning (FL) [1], [2], [3], [4] is an emerging
machine learning (ML) framework to perform data-

driven analysis or decision making, leveraging privacy-sen-
sitive data from mobile devices. Typically, in FL, mobile
devices collaboratively train their local ML model through
the periodical exchange and aggregation of ML model
parameters or gradients at central servers rather than
exchanging their raw data. Thus, FL differs from typical ML
in which raw data is acquired and stored in central servers
where the private data of the mobile users can be exposed.
Owing to the privacy advantage, FL can be applied to
model training tasks with privacy-sensitive data. For exam-
ple, Google-keyboard query suggestions from the typing
history of mobile users, containing privacy-sensitive infor-
mation such as the credit card information of the user or
login credentials [5].

Despite the benefits of FL, relying on distributed mobile
devices generally poses new inconveniences related to com-
munication efficiency [1]. Specifically, the periodical model
parameter exchange in typical FL entails communication

overhead that scales up according to the model size. This pro-
hibits the use of large-sized models, particularly when the
mobile devices are connected towireless networkswhile com-
peting for limited radio resources, which can be a crucial bot-
tleneck for building practical ML models. Hence, an FL
framework that can be scalable according to the size of the
models in terms of communication efficiency is required.

Motivated by the inconvenience mentioned above, we
aim to answer the following question: How should an FL
framework be designed scalable according to the model sizes in
terms of communication efficiency while achieving model perfor-
mance comparable to that of the benchmark FL designed in [4]?
Concisely, our answer is leveraging an unlabeled open data
shared among the clients to enhance the model performance
of model output exchange methods.

To achieve the scalability of the communication over-
head, we leverage the principle of FL with model output
exchange instead of model parameter exchange. Here, the
exchanged model outputs of mobile devices are named
“local logit” instead of model parameters. The local logits
are ensembled in a central server into a “global logit” that is
regarded as teacher knowledge. Moreover, this knowledge is
transferred into local models as students. In the model out-
put exchange, communication overheads depend only on
the model output dimension, which is often substantially
smaller than the number of model parameters and cannot
scale up regarding model sizes.

Hence, answering the above question boils down to
designing an FL framework with model output exchange to
achieve similar performance to the benchmark FL designed
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in [4]. Although the FL with model output exchange is
available in the literature, this task remains nontrivial
because of the several challenges we describe below.

Leveraging unlabeled data towards performance similar to that
of benchmark federated learning under non-IID. Typical FL with
model output exchange termed federated distillation (FD)
[6], [7], [8], [9] can achieve scalability of the model size;
however, these methods provide poor models in general. In
FD, each mobile device re-trains local model based on both
the local labeled data and the global logits. However, under
non-IID data distribution, where the local dataset of the
mobile user does not represent the population distribution,
the global logit retains similar information to the local labels
already attached to each mobile device. Hence, this re-train-
ing can be almost identical to local model training. (see
“1. Update” and “6. Distillation” procedures in Fig. 1b in
Section 2 for detail). Thus, the model performance trained
in FD is worse than that in an FL benchmark exchanging
model parameters [8]. Moreover, achieving similar perfor-
mance to the FL benchmark is challenging.

Our key idea is to share the unlabeled open data among
mobile devices and leverage the data for distillation to over-
come this challenge. In this regard, we propose a novel FL
framework-exchanging model outputs named distillation-
based semi-supervised FL (DS-FL). Unlike FD, in the proposed
DS-FL, teacher knowledge is used to label the unlabeled data
instead of local data already labeled. The procedure creates
novel labeled data. Subsequently, through the re-training of
the local models based on the dataset, the model performance
is enhanced due to data augmentation effects (see
“6. Distillation” procedure in Fig. 1c in Section 2 for detail).
The ML experiments show that the proposed DS-FL achieves
similar or higher performance compared to that of the FL
benchmark with model parameter exchange while reducing
communication overheads. To the authors’ best knowledge,
our approach has not been considered before.

Logit Aggregation Towards Faster Convergence. In DS-FL,
uploaded logits are aggregated into a global logit, providing
an inferred probability of each unlabeled data belonging to

a particular class. However, owing to non-IID data distribu-
tions, each uploaded logit exhibits heterogeneity. Moreover,
the aggregated global logit may represent ambiguous knowl-
edge where the global logit exhibits a high entropy. Thus,
indicating that the global logit provides incorrect knowl-
edge regarding which class each sample of the unlabeled
data pertains, resulting in slower convergence of model
training.

Motivated by the challenge mentioned above, we pro-
pose entropy reduction aggregation (ERA) that intentionally
reduces the global logit entropy. The ML experiments show
that DS-FL with ERA leads to faster convergence while
achieving higher classification accuracy than an FL bench-
mark under non-IID distribution. Another positive conse-
quence of introducing ERA is to enhance the robustness
against several attacks of malicious users uploading cor-
rupted local logits, which is also verified in the ML
experiments.

1.1 Our Contributions

The contributions of this paper are summarized as follows:

� Based on the fundamental idea of leveraging unla-
beled open data, we propose an FL framework
named DS-FL, which is communication-efficient and
achieves a high model performance. In more detail,
DS-FL exhibits a model performance similar to that
of an FL benchmark even under non-IID data distri-
butions while achieving scalability according to
model size in terms of communication efficiency.
With the exchanged model outputs, the unlabeled
data acquire labels, based on which each local model
can be further trained. Therefore, model perfor-
mance is enhanced due to the data augmentation
effects. Moreover, DS-FL exchanges model outputs
instead of model parameters, where the communica-
tion overhead cannot scale up according to the
model size. The ML experiments show that DS-FL
reduces the communication overheads by up to

Fig. 1. Operational structures for benchmark schemes and proposed DS-FL.

192 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 1, JANUARY 2023

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



99 percent while achieving similar model perfor-
mance relative to the FL benchmark even under non-
IID data distributions.

� We develop a novel model-output aggregation
method, named ERA, which is robust against the het-
erogeneity of the uploaded model output due to non-
IID data distributions that result in a slow training
convergence. First, we highlight that the heterogene-
ity of the uploaded model output leads to higher
entropy of the aggregated model outputs, which is
the principal cause of the challenging slower conver-
gence. Hence, the key idea behind introducing ERA is
to reduce the entropy of the global logit intentionally
before distributing it into mobile devices. The ML
experiments verify that ERA achieves faster conver-
gence than a baseline considering simple averaging
(SA) aggregation, thus, reducing the cumulative com-
munication cost by up to 75 percent.

The scope of this paper is to design an FL framework, sat-
isfying two requirements: to acquire scalability to the model
size and perform well under non-IID data. The existing FL
framework satisfying the former requirement is FD,
whereas FD’s performance is substantially low under non-
IID data. Thus, designing an FL framework satisfying these
two requirements contributes to the body of knowledge.
Additional requirements, such as performing well under
unbalanced and/or massively distributed data, are out-of-
scope of the study.

In parallel with and independent of this work, a similar
concept of sharing an unlabeled dataset among mobile devi-
ces has presented in [10]. However, the study relies on a dif-
ferent motivation; it is based on enhancing attack
robustness from malicious mobile devices. Our initial
study [11] was presented at a domestic conference in paral-
lel to [10]. Meanwhile, unlike [10], in this study, we investi-
gate how DS-FL can achieve similar performance to FL
benchmark under non-IID distributions in an efficient com-
municational manner. More specifically, we provide a novel
logit aggregation method, i.e., ERA, enhancing communica-
tion efficiency under a non-IID dataset. Moreover, we pro-
vide a comparison between DS-FL, FL benchmark, and FD
through ML experiments using non-IID datasets, which
were not considered in [10].

1.2 Related Work and Paper Organization

Federated Learning. FL [1], [2], [3], [4], [12] is a distributed
learning framework enabling ML model training using pri-
vacy-sensitive datasets of mobile devices while keeping all
the datasets local. In typical FL, mobile devices collabora-
tively train their local ML model through the periodical
exchange and aggregation of ML model parameters or gra-
dients at central servers rather than exchanging their raw
data. Thus, the central server and mobile devices obtain a
qualified ML model, trained using the private dataset on
mobile devices without exposing the privacy-sensitive data.

Communication-Efficient Federated Learning With Model
Parameter Exchange. Several studies have focused on reducing
the communication cost in model parameter exchanges in FL.
For example, the initial study that proposed FL addressed this
problem by increasing the number of local model updates
and exchanging the model parameters less frequently [4]. In

this approach, network traffic reduces drastically compared
to that of algorithms considering iterating local model update
andmodel parameter exchange alternately[13]. An alternative
strategy is to limit the number of participatingmobile users by
selecting the users satisfying the stringent requirement for
model update time[14], [15]. The network traffic can be
reduced relative to all users participating in the FL. Other
approaches generating an additional labeled dataset, distrib-
uted and used on the clients, are [6], [16]. Indeed, these
approaches improve communication efficiency and model
performance. Another stream of research proposed themodel
compression to reduce the communication cost required for
the model parameter exchanges, which can be performed via
several strategies, such as low-rank representation [17], model
parameter quantization [17], [18], [19], neural network prun-
ing [20], update reuse [21], parameter sparsification [17], [22],
and the Chinese remainder theorem [23]. However, these
studies relied on the model parameter exchange, where the
communication-overhead increases proportionally to the
model size. Unlike these studies, we aim to design an FL
framework scalable for model size in terms of communication
efficiency by designing an FL framework exchanging model
outputs instead of the entiremodel parameters.

Distributed Training With Model Output Exchange in Data
Center Application Over Shared Dataset. Co-distillation
(CD) [24], [25] is a basic distributed learning method with
model output exchange. In CD, distributed ML models are
trained over a shared labeled dataset. Subsequently, each
local logit from the trained distributed ML models is
exchanged and aggregated into global logit acting as teacher
knowledge. Finally, the teacher knowledge is transferred
into each distributed ML model acting as a student by re-
training the ML model using the global logit. Note that this
framework is an extension of the knowledge distillation pre-
sented in [26] for multi-party training. Another distributed
learning method similar to CD, named private aggregation
of teacher ensembles (PATE), was proposed in [27], [28],
where the teacher knowledge transfer is performed over the
unlabeled dataset instead of the labeled dataset. While both
CD and PATE improve each distributed ML model in a
communication-efficient manner, the assumption that each
distributed ML model is trained over a shared labeled data-
set is suitable for parallel model training in the data center.
However, the assumption is not suitable for model training
with data generated on mobile devices. Unlike these train-
ing methods, we design an FL framework with model out-
put exchange, enabling model training with mobile device-
generated data subjected to challenging non-IID data distri-
butions, as discussed in the previous section.

Federated LearningWithModel Output Exchange OverMobile
Device-Generated Dataset. FD is proposed in [6], [7], [8], [9] as
an FL framework with model output exchange that trains
ML models considering mobile device-generated dataset.
Unlike CD and PATE that trains distributed ML models
using a shared dataset, each mobile device trains each ML
model using a local dataset, enabling ML model training
with mobile device-generated data. While FD performs well
when the mobile device-generated data is identically and
independently distributed, FD exhibits lower performance
than the FL benchmark with model parameter exchange in
non-IID data distributions. This was experimentally verified
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in [6], [7], [8], [9] and the experiments presented in Section 4.
To fill this gap, we design an FL framework with model out-
put exchange achieving similar or higher performance than
previously proposed approaches even when subjected to
non-IID data distributions.

Semi-Supervised Federated Leanining. A few semi-super-
vised FL frameworks [29, 30, 31], using both unlabeled and
labeled data, have been proposed. The work in [29] aimed
to improve vertical FL (VFL), which builds a machine learn-
ing model based on vertically portioned data (e.g., multi-
view images). In this setting, the model parameters or
gradients are not generally uploaded, and hence, the com-
munication cost is negligible. Being different from [29], as in
the benchmark frameworks [4], [6], this study considers
horizontal partitioned data and addresses the communica-
tion costs for uploading model parameters or gradients.
Other works [30], [31] considered training the model using
labeled data on the server and unlabeled data on the clients.
While the communication costs in [30] and [31] increase
with the model size, we aim to achieve communication effi-
ciency scalable to the model sizes.

Paper Organization. The remainder of this paper is orga-
nized as follows: Section 2 describes the proposed DS-FL
framework. Section 3 presents the proposed logit aggrega-
tion method. Section 4 provides the experimental results
where a comparison between DL-FL, FL benchmark, and
FD is presented. Finally, the concluding remarks are pre-
sented in Section 5.

2 DISTILLATION-BASED SEMI-SUPERVISED

FEDERATED LEARNING METHOD

We propose a DS-FL aiming at communication efficiency
while achieving similar or higher model performance than
several benchmarks. We summarize the benchmark schemes
and the proposedDS-FL in Fig. 1, detailed as follows.

2.1 Benchmark 1. Federated Leaning With Model
Parameter Exchange

In the FL with model parameter exchange, mobile users,
called clients as per terminology, collaboratively train ML
models while exchanging the model parameters, as shown
in Fig. 1a. Specifically, the training procedure in FL
with model parameter exchange includes four steps:
“1. Update,’’ “2. Upload,’’ “3. Aggregation,’’ and
“4. Broadcast.’’ These steps follow an iterative process until
training converges. In “1. Update” step, every client trains
its local ML model using its own labeled dataset. The
“1. Update” step is common to the DS-FL. Subsequently, in
“2. Upload” step, the clients share the model parameters
with a remote server. Finally, the server aggregates the
uploaded model parameters to build the global model in
the “3. Aggregation” step and broadcasts the parameters of
the global model to the clients in the “4. Broadcast” step.

The detailed procedure of FL is described below. In the
following, we consider that each client k ¼ 1; 2; . . .; K holds
the labeled private dataset ðddpi;k; tti;kÞIki¼1, where ddpi;k represents
the vectorized input samples. Moreover, Ik denotes the
number of samples in the labeled dataset. Considering NL

as the number of objective class, the term tti;k ¼
½ti;k;1; . . .; ti;k;NL

�T is the vectorized form of the label attached

to the sample ddpi;k and is in the one-hot representation,
wherein the element ti;k;n equals 1 if the nth label is the
ground-truth and 0 otherwise. For shorthand notation, let
NS � Ik matrix DDp

k denote the concatenation of ðddpi;kÞIki¼1,
whereNS represents the dimension of input samples.

1. Update. In this step, each client updates its model with
its private dataset based on the stochastic gradient descent
algorithm [32]. The initial values of the model ww0 is distrib-
uted from the server before each “1. Update” step. Specifi-
cally, the model parameter is updated as follows:

wwk  ww0 � hrfðDDp
k; TTk jww0Þ; (1)

where fð�; � jwwkÞ denotes the loss function that is minimized
in this step. The loss function is exemplified in classification
problems by the cross-entropy. In this case, fðDDp

k; TTk jwwkÞ is
given as follows:

fðDDp
k; TTk jwwkÞ ¼ �

X
i2I rd

k

X
n2N L

tk;i;nlogFnðddpi;k jwwkÞ; (2)

where Fnð� jwwkÞ denotes the nth element of F ð� jwwkÞ. In (1)
and (2), h represents the learning rate, N L :¼ f1; 2; . . .;NLg,
and I rdk � f1; 2; . . .; Ikg is the index set of the minibatch that is
randomly sampled from ðddpi;kÞIki¼1. The update procedure is an
iterative process until a terminating condition, such as conver-
gence or a predefined number of iteration times, is satisfied.

2. Upload. The updated model parameters wwk or its gra-
dients ggk ¼ wwk � ww0 are uploaded from each client to the
server.

3. Aggregation and 4. Broadcast. The server aggregates the
uploaded models from clients to update the global model
ww0, as follows:

ww0 ¼
Xk¼K
k¼1

Ik
I
wwk; (3)

where I ¼PK
k¼1 Ik. Subsequently, the server broadcasts the

global model to all the clients via multicast channels. These
procedures are iterated for a finite number of rounds.

2.2 Benchmark 2. Federated Distillation

Fig. 1b shows the process of FD [6], i.e., one of the FL algo-
rithms with model output exchange, where clients share
per-class logits instead of model parameters. In the FD, each
client treats itself as a student, while aggregated logits act as
teachers, where each local client model is trained using the
aggregated logits. The specific procedure in FD consists of
the following six steps: “1. Update,’’ “2. Prediction & Logit
aggregation per label,’’ “3. Upload,’’ “4. Aggregation,’’
“5. Broadcast,’’ and “6. Distillation,’’ as shown in Fig. 1b.
The differences between FD from the benchmark 1 are in
the second and sixth steps. After the “1. Update” step, using
the trained local ML model, every client calculates the local
logit representing the inferred probability that each data
sample is classified into each class. Subsequently, each local
logit is aggregated to each client on a per-label basis in the
“2. Prediction & Logit aggregation per label” step. The
aggregated logits are uploaded to a remote server in the
“3. Upload” step. The uploaded logits are aggregated in the
server in the “4. Aggregation” step, whereas the aggregated
logits are broadcast to the clients in the “5. Broadcast” step.
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Finally, in the “6. Distillation” step, each client re-trains its
local model using both the pre-attached labels and the
broadcasted logits.

The detailed FD procedures are as follows. In the following,
we consider that kth client’s private dataset can be divided
into NL set ðDDk;nlÞNL

nl¼1, where the sample pertaining to the
class nl is categorized to set DDk;nl , and NL is the number of
objective classes.

2. Prediction & Logit Aggregation Per Label. Each client k
predicts logit of its data input and calculate local-average
logit ttk;nl for each class, as follows:

ttk;nl ¼
1

jDDk;nl j
X

fdd;ttg2DDk;nl

F ðdd jwwkÞ: (4)

If the client dose not have any sample pertaining to class nl,
ttk;nl ¼ 00.

3. Upload, 4. Aggregate, and 5. Broadcast. In the following
“3. Upload” step, the local-average logit ttk;nl are uploaded
from each client to the server. In the “4. Aggregate” step,
the uploaded logits are aggregated to create the global-aver-
age logit ttg;nl per class as follows:

ttg;nl ¼
1

jKKnl j
X
k2KKnl

ttk;nl ; (5)

where KKnl is the subset of clients having any sample per-
taining to class nl. Subsequently, the server broadcasts the
global-average logit to all the clients via multicast channels
in the “5. Broadcast” step.

6. Distillation. Each client k updates the model parame-
ters using the pre-attached labels and the distillation logits:
TTk and T̂T k, where T̂T k ¼ ft̂tk;igIki¼0. The distillation logit T̂T k is
obtained using the broadcasted global-average logit and the
local-average logit. In more detail, considering that the sam-
ple ddpk;i pertains to the class nl, t̂tk;i is obtained as follows:

t̂tk;i ¼ 1

jKKnl j � 1
ðjKKnl j ttg;nl � ttk;nlÞ: (6)

Using TTk and T̂T k, the model is updated as follows:

wwk  wwk � hrffðDDp
k; TTk jwwkÞ þ gfðDDp

k; T̂T k jwwkÞg; (7)

where g is a weight parameter for the distillation regular-
izer. All the procedures, except for “1. Update,” are iterated
for a finite number of rounds.

Negative Effect of Federated Distillation Under Non-IID Data.
The model performance trained by FD is much lower than
FL under non-IID data. The reason is that the global logits
of FD retain similar information to local labels already
attached to each mobile device. The global logit is calculated
as the average of the local per-label average logits among
the clients. In the following, we explain the method to
obtain global logit in FD more formally. We consider that
kth client’s private dataset can be divided into NL subset
ðDDk;nlÞNL

nl¼1, according to the ground-truth labels, where NL

is the number of objective classes. The global logit for class
nl can be represented as follows:

ttg;nl ¼
1

jKKnl j
X
k2KKnl

1

jDDk;nl j
X

fdd;ttg2DDk;nl

F ðdd jwwkÞ; (8)

where KKnl is the subset of clients having any class nl sam-
ple, and wwk is the model weights of the kth client. Consider-
ing the strong non-IID data, where each client only has one
or two class sample, F ðdd jwwkÞ is almost the same as the one-
hot label tt, which is the ground-truth label already attached
to dd. This is because of the over-fitting of tt, due to the use of
few samples. Thus, ttg;nl , which is the average of the almost
one-hot logit F ðdd jwwÞ, is also similar to the one-hot labels.

To support the statement, we analyzed FD’s global logits
under three data distributions; IID, weak non-IID, and
strong non-IID. The number of clients K was fixed to ten.
The strong non-IID distribution used in our original manu-
script implies that each client has a dataset consisting of two
or three classes’ samples. The week non-IID distribution
implies that the clients have the datasets consisting of ten
classes, and the number of data samples on a few of the clas-
ses is much smaller than that of the other classes.

Fig. 2 shows a part of the FD’s global logit under three
data distribution using MNIST, i.e., class probabilities of
class “0,” “1,” and “7” of the global logit for class “1.” Obvi-
ously, the largest probability of the logit is class “1.” Under
strong non-IID data, the probability of class “7” is as large
as that of “0” and smaller than that under IID or weak non-
IID. This implies that the global logit under strong non-IID
is more similar to one-hot than that of IID or week non-IID.
This may be the reason that the FD model performance is
much lower than that of FL under strong non-IID data.

Noted that, under IID or weak non-IID data, the proba-
bility of class “7” is large than that of “0,” which results in
the success of the FD. This difference between class “0” and
class “7” indicates that the digit “1” image is more similar
to the digit “7” than the digit “0,” which is essential to the
success of the knowledge distillation as supported in [26].
Hence, we can conclude that the intensity of non-IID data
distributions exactly affects the model performances.

2.3 Proposed Distillation-Based Semi-Supervised
Federated Learning

2.3.1 Background and Overview of Distillation-Based

Semi-Supervised Federated Learning

The proposed DS-FL is motivated by the lower performance
of the model trained following the FD benchmark presented
in the previous section. In FD, the global logits are used to
distinguish the class to which each sample in the local

Fig. 2. A part of FD’s global logit after 16 rounds, using MNIST dataset,
under IID, weak non-IID, and strong non-IID data distribution. That is,
probabilities of class “0,” “1” and “7” of the logit for class “1.”
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dataset belongs. However, as the dataset is already labeled,
the “6. Distillation” step can result in a similar model to the
one trained in the previous “1. Update” step (see Fig. 1b
and compare “1. Update” and “6. Distillation”). Hence, the
models trained in FD exhibit similar performance to the
local model training, which is lower than the benchmark 1,
i.e., FL, with model parameter exchange.

Hence, the fundamental idea behind the proposed DS-FL
is to share the unlabeled dataset and use global logit to iden-
tify what class each sample in the unlabeled dataset per-
tains. This creates a new labeled dataset, based on which
the local ML model is further trained, as shown in
“6. Distillation” step in Fig. 1c. Due to this training proce-
dure, the proposed DS-FL avoids the similarly in training
between “1. Update” and “6. Distillation” steps can enhance
the model performance benefitting from data augmentation
effects. In other words, DS-FL uses unlabeled distillation,
where a neural network model is trained using other mod-
els’ prediction of the unlabeled data. In the following, we
detail the training procedure of the proposed DS-FL.

2.3.2 Detailed Procedure of Distillation-Based

Semi-Supervised Federated Learning

The detailed procedure of DS-FL is depicted in Fig. 1c. In the
following, we consider that each client k ¼ 1; 2; . . .;K does
not only hold the labeled private dataset ðddpi;k; tti;kÞIki¼1, but also
the shared unlabeled dataset ðddoj ÞI

o

j¼1, where ddpi;k and ddoj denote
the vectorized input samples in the labeled and unlabeled
datasets, respectively.Moreover, Ik and Io denote the number
of samples in the labeled and unlabeled datasets, respectively.
Additionally, oor � f1; 2; . . .; Iog represents index set of the
unlabeled dataset, where r indicates round index. Moreover,
Ior represents the size of oor. ConsideringNL as the number of
objective class, the term tti;k ¼ ½ti;k;1; . . .; ti;k;NL

�T is the vector-
ized form of the label attached to the sample ddpi;k and is in the
one-hot representation, wherein the element ti;k;n equals 1 if
the nth label is the ground-truth and 0 otherwise. For short-
hand notation, let NS � Ik and NS � Io matrices DDp

k and DDo

denote the concatenations of ðddpi;kÞIki¼1 and ðddoj ÞI
o

j¼1, respectively,
and letNL � Ik matrix TTk denote the concatenation of ðtti;kÞIki¼1,
where NS denote the dimension of the input samples. Addi-
tionally, letNS � Ior matrixDor denotes the subset of the unla-
beled dataset ðdo

j Þj2or . The index set oor is determined
randomly by the server and shared among the clients before
“2. Prediction” step.

1. Update. In the “1. Update” step, each client updates its
model with its private dataset, as shown in (1).

2. Prediction. Based on the model learned in the previous
step, each client predicts the local logit, i.e., the labels for
data samples in a shared unlabeled dataset. More specifi-
cally, given the model parameter wwk, and or, each client pre-
dicts local logits t̂tj;k for j 2 or as follows:

t̂tj;k ¼ F ðddoj jwwk Þ: (9)

For shorthand notation, the NL � Ior matrix T̂T k denotes the
concatenation of ðt̂ti;kÞi2oor .

3. Upload. The local logits T̂T k are uploaded from each cli-
ent to the server, differing from FL with model parameter
exchange that uploads the model parameters ŵwk.

4. Aggregation and 5. Broadcast. The server aggregates the
logits from clients to create global logits T̂T . The procedure
for aggregating uploaded logits is described in Section 3.
Subsequently, the server broadcasts global logits to all the
clients via multicast channels.

6. Distillation. The clients update their local model based
on the broadcasted global logits T̂T and shared unlabeled
dataset DDor . More concretely, the model parameters are
updated as follows:

wwk  wwk � hdistrfðDDor ; T̂T jwwkÞ; (10)

where hdist is the learning rate in the proposed distillation
procedure. In addition to the clients’ local models, the
server has a global model wwg. The server updates the global
model based on the broadcasted global logits T̂T and shared
unlabeled dataset DDor . More concretely, the model parame-
ters are updated as follows:

wwg  wwg � hdistrfðDDor ; T̂T jwwgÞ: (11)

In Section 4, the global model is used for evaluating the per-
formance of the DS-FL framework.

These procedures are iterated for a finite number of
rounds. The overall procedures are summarized in
Algorithm 1.

Algorithm 1. DS-FL

0. Initializaton:
Initialize all the client models wwk and the global model wwg

Distribute the open dataDDo to all clients
1. Update:

for Each client k in parallel do
Update the local model parameter wwk via (1)

end for
2. Prediction:
All the clients share the index set or
for Each client k in parallel do
Calculate local logits T̂T k via (9)

end for
3. Upload:

Each client uploads the local logits T̂T k

4: Aggregation:
Server aggregates the logits to create the global logit T̂T
according to (13) in ERA (proposed)
or (16) in SA (baseline)

5. Broadcast:
Broadcast T̂T to all clients

6. Distillation:
for Each client k in parallel do
Update the local model parameter wwk via (10)

end for
Steps 1–6 are iterated for multiple rounds

3 ENTROPY REDUCTION AGGREGATION

This section presents the proposed logit aggregation
method, i.e., ERA, which intentionally reduces the entropy
of global logits. We define the entropy of a logit tt as follows:

feðttÞ ¼ �
XNL

n¼1
tnlog tn: (12)
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First, we detail our motivation to propose ERA by highlight-
ing that the simple baseline-aggregation-method, involving
averaging only the local logits, results in a higher entropy of
global logits in the heterogeneity of data distributions
among clients than those without such heterogeneity. Sub-
sequently, we detail how to reduce entropy in ERA.

3.1 Motivation for Entropy Reduction Aggregation

The motivation for reducing the entropy of global logits is to
accelerate and stabilize DS-FL, particularly in non-IID data
distributions. In the collaborative learning with non-IID
data, the entropy of global logits is much larger than appro-
priate ones. Fig. 3 shows the comparison of global logits
yielded via the simple aggregation method involving the
averaging of the uploaded local logits for IID and non-IID
data distributions. Under non-IID data, the entropy in the
early stage of training is higher than 2.0, which is approxi-
mately the upper limit of the entropy in the ten-class classi-
fication problem. These maximum values of the entropy are
meaningless because they do not identify to what class each
input sample pertains. Hence, it is difficult to train using
such inappropriately high entropy logit in the simple aggre-
gation method, and hence, the reduction of the entropy is
required for training success.

Another favorable consequence of reducing the entropy
of global logits is to enhance the robustness against various
attacks corrupting local logits and noising open data. In DS-
FL, a malicious client can upload local logits that do not
enhance or even harm model performance, which can occur
by, for example, updating the local models over the dataset
that is not labeled properly. In addition to such noisy label,
open data can be noised; for example, the inadequate data
is added to the open data. In these cases, similarly to under
non-IID data distributions, the entropy of global logits
yielded from the simple aggregation method averaging
local logits becomes higher, leading to poorer model per-
formances. This fact is verified in Section 4. Hence, reducing
the entropy of the global logit is expected to enhance the
robustness against such attacks.

3.2 Procedure for Reducing Entropy

The proposed ERA reduces the entropy of the global logits
yielded from averaging uploaded local logits via the pro-
cedure depicted in Fig. 4a. To reduce the entropy of the
global logit, we use the softmax function as an example.

Let T̂T ðERAÞ denote the global logit yielded from ERA, which
is an NL � Ior matrix. Given the temperature of the softmax
function T , the global logit generated by ERA is described
as follows:

T̂T ðERAÞ ¼ Fs
1

K

XK
k¼1

T̂T k jT
 !

; (13)

where Fsð� jT Þ denotes the softmax function with respect to
temperature T . The softmax function fsðtt jT Þ : RNL ! RNL

is denoted as follows:

fsðtt jT Þ ¼ 1PNL
n¼1 e

tn
T

e
tt
T : (14)

Moreover, FsðTT jT Þ is denoted as follows:

FsðTT jT Þ ¼ ffsðtt1 jT Þ; . . . ; fsðttIr jT Þg: (15)

The higher the temperature, the higher the entropy of the
output of the softmax function, and viceversa.

For example, ERA sets lower temperature of T ¼ 0:1,
while original knowledge distillation (KD) [26] sets a higher
temperature of T ¼ 20. Hinton et al. [26] state that in KD, the
scores in the logits can be interpreted as an inherent similarity
between the corresponding label and the input samples. For
example, one handwritten digit labeled as “7” might provide
a score of 0.1 to the label “1” and that of 0.01 to the label “4.”
Given that the physical meaning of this score is the probabil-
ity that each sample pertains to the corresponding label, these
scores can be interpreted as howmuch the given handwritten

Fig. 3. Entropy of the global logit in SA method versus training rounds.
For IID and non-IID data, using MNIST dataset.

Fig. 4. Illustrative example of proposed ERA at T ¼ 0:1 on three-class
classification task.
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digit is prone to be “1” and “4.” As the above bias of this like-
liness (0.1 to “1” and 0.01 to “4”) may be yielded due to the
similarity between “7” and “1,” the given logit scores are
interpreted as the similarity between the corresponding label
and the input samples. To transfer a similar structure, we
trained the student model using the logit create by the soft-
max function using a high temperature; thus, emphasizing
the non-highest scores. In contrast, particularly under non-
IID data, the global logits of DS-FL is much more ambiguous
than the predictions of a well-trained teacher model such as
the model used in KD [26]. Moreover, the ambiguity may
conceal the true classes each sample pertains, wherein the
lower temperature is expected to be useful to balance the
class information and a similar structure. As shown in
Fig. 4b, at the temperature of T ¼ 0:1, the entropy values out-
putted by the softmax function are generally lower than the
input. Hence, as shown in Fig. 4a, the global logit yielded
from ERA is sharper than that yielded via averaging the
uploaded local logits. Noted that T of ERA discussed here
differs from the temperature of the softmax function that acti-
vates the fully-connected layer on the output side of neural
networks. The former temperature is specific to the training
procedure and is set to a certain value lower than 1.0 (e.g., 0.1
in the experimental evaluation), whereas the latter tempera-
ture is set to 1.0 in the training and inference steps.

The ERA is compared with the baseline of only averaging
uploaded local logit, which is named simple aggregation
(SA). The resultant global logit yielded from SA T̂T ðSAÞ is
given as follows.

T̂T ðSAÞ ¼ 1

K

XK
k¼1

T̂T k: (16)

4 EXPERIMENTAL EVALUATION

4.1 Setup

Datasets. Four datasets were used for evaluation purposes,
including image classification and text classification. For
image classification, two major tasks, MNIST [33] and Fash-
ion-MNIST [34], were used. MNIST [33] is a widely-used
object classification dataset consisting of 60;000 training
images and 10;000 testing images with 10 image classes.
Fashion-MNIST [34] comprises 60;000 training images and
10;000 testing images of 10 different fashion products such
as coats and sneakers. These datasets have been used in sev-
eral machine learning studies. In addition to the image clas-
sification tasks, two major text classification tasks, Internet
movie database (IMDb) review-sentiment and Reuters data-
sets, are used for evaluation purposes. The IMDb dataset
was created in [35], which consists of 50;000 textual reviews
of movies and divided into 25;000 training dataset and
25;000 testing dataset. The reviews are categorized into neg-
ative and positive sentiment class. The Reuters dataset1 con-
sists of 11;228 headline articles, divided into training and
testing dataset in a ratio of 8:2. The headlines are catego-
rized into 46 classes of topics such as “earn” and “trade.”

Pre-Processing of the Sentences. We used different neural
network architecture and different preprocessing method
for IMDb and Reuters datasets. For the IMDb dataset, we
only considered the top 20k words and the first 200 words
of each movie review, following Keras [36] tutorial. Accord-
ing to the frequency appearance, each word is converted to
an integer. Moreover, following the word order in the sen-
tences, each sentence is converted to a sequence of integers.
For Reuters dataset, we only considered the top 10k words
and each word was converted to a integer, as IMDb dataset.
In the sentences categorization task, such as Reuters dataset,
the type of words are more useful than the word order.
Thus, we employed the Bag-of-Words method, which is
often used as a preprocessing for the Reuters dataset [38],
i.e., the headline is converted to a binary vector, indicating
the sentence composition of words.

Data Partitions. The data distribution over the clients was
determined based on [4]. For the image classification tasks,
we fixed the number of clients K to 100. Subsequently, the
dataset was divided into the unlabeled open dataset and the
labeled private dataset. Let denote that the open dataset
consists of Io images, and the private dataset consists of Ip

image-label pairs, where Io þ Ip � 60;000. This study con-
sidered two ways of partitioning the private dataset over
the clients: IID datasets and non-IID datasets. The private
dataset was shuffled and partitioned into K portions for the
clients to obtain the IID datasets. Thus, each client had Ip=K
pairs of images and labels. To generate non-IID datasets, we
sorted the private dataset by its classification label and
divided it into 2K shards of size Ip=2K, among which two
shards are assigned to each client. In this study, the non-IID
data distribution among the clients followed the pioneer
study [4], which considered more severe non-IID data than
that in [6]. Hence, the differences in the data distribution
are the reason for the difference in the test accuracy of the
FD between this study and [6]. In the evaluation, we did not
adapt any data augmentation, such as rotation or flipping of
an image.

For the text classification task, we fixed the number of cli-
ents K to 10. Subsequently, the dataset was divided into the
unlabeled open dataset and the labeled private dataset. For
IMDb dataset, ðIo; IpÞ was ð10;000; 15;000Þ and for Reuters
dataset, ðIo; IpÞ was ð3;982; 5;000Þ. To generate the non-IID
partitioned datasets for IMDb, we divided the dataset so
that, for all clients, the ratio of the number of positive
labeled sentences to that of negative was 9:1 or 1:9. In conse-
quence, some clients had 150 positive labeled sentences and
1;350 negative labeled sentences, and the other had 1;350
positive labeled sentences and 150 negative labeled senten-
ces. To generate non-IID partitioned datasets for Reuters,
we sorted the private dataset by its classification label and
divided it into K shards of size Ip=K, among which one
shard was assigned to each client.

Our evaluation aimed to evaluate FL frameworks under
the same clients’ privacy level. Thus, we avoided to com-
pare with other baselines sharing any clients’ labeled data-
set, such as FD+FAug [6].

ML Model. For the image classification tasks, we exam-
ined two ML models designed for either MNIST or Fashion-
MNIST dataset. Specifically, the model for MNIST was a
convolutional neural network model that consisted of two

1. The Reuters dataset we used was Keras [36] revised subset of Reu-
ters-21578 corpus [37], [37] is freely available for experimentation pur-
poses from http://www.daviddlewis.com/resources/testcollections/
	reuters21578/.
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5� 5 convolution layers (32 and 64 output channels, each of
which was activated by batch normalization and ReLU, fol-
lowed by 2� 2max pooling) and two fully-connected layers
(512 units with ReLU activation and another 10 units acti-
vated by softmax). For Fashion-MNIST, the model consisted
of six 3� 3 convolution layers (32, 32, 64, 64, 128, and 128
channels, each of them activated by ReLU and batch nor-
malized. Every two of them followed by 2� 2 max pooling)
and by three entirely connected layers (382 and 192 units
with ReLU activation and another 10 units activated by soft-
max). For the text classification tasks, we examined two ML
models designed for either IMDb or Reuters dataset. The
IMDb dataset is semantic classification, where the word
order in the sentences is useful. Thus, for the IMDb dataset,
we employed long short-term memory (LSTM), which can
learn the time-dependent relationships among inputs and
outputs. Specifically, the model for IMDb consisted of a sim-
ple LSTM model, which followed Keras [36] tutorial, con-
sisting of a embedding layer (output dimension of each
word was 32), a LSTM layer (32 nodes), and a fully-con-
nected layer (2 unit was activated by softmax). For Reuters
dataset, we employed a simple multi-layer perceptron (text-
DNN). Specifically, the model was a three layer perceptron
(512 and 128 units activated by ReLU and batch normalized
and another 46 units activated by softmax). The ML models
resulted in 583;242 model parameters (2.3 megabytes in a
32-bit float) for the MNIST dataset, 2;760;228model parame-
ters (11.2 megabytes in a 32-bit float) for the Fashion-MNIST
dataset, 646;338 model parameters (2.6 megabytes in a 32-
bit float) for the IMDb dataset, and 5;194;670 (20.8 mega-
bytes in a 32-bit float) model parameters for Reuters dataset.

Training Hyperparameters. When the models were
updated and distilled, the optimizer, mini-batch size, the
number of epochs in each round, and training rate were
selected as stochastic gradient decent, 100, 5, and 0.1,
respectively. For text classification tasks, they are selected
as Adam, 128, 5, and 0.001, respectively. The temperature of
the softmax function T in the DS-FL with ERA was set to
0.1. As shown in Section 3.2, the temperature of the softmax
function that activates the fully-connected layer on the out-
put side of neural networks is set to 1.0 in the training and
inference steps. The amount of unlabeled data used in each
round, i.e., the size of or, was 1;000.

Attack Settings. To evaluate the attack robustness of ERA,
we considered attacks where malicious clients corrupted
local logits. Specifically, we considered noisy labels, noisy
data, and model poisoning attacks. The robustness evalua-
tions of this section used image classification task described
above.

Noisy Labels. First, in the noisy label attack, a particular
client’s images pertaining to a certain class were labeled as
another class to corrupt the local logit. We assumed that all
clients had the same degree of noisy labeled datasets, i.e.,
mistakenly labeled private data. This was regarded as a sit-
uation where all clients can be considered as attackers.
Thus, we evaluated DS-FL and FL in a worst-case scenario,
which we believed was sufficiently worthwhile to under-
stand the attack robustness in practical and severe situa-
tions. More precisely, consider a number of noising class C,
where each client independently selects C classes as source
classes SS ¼ fS1; . . .; SCg and another C classes as false

classes FF ¼ fF1; . . .; FCg. Subsequently, all the images per-
taining to the source class Sc 2 SS are mistakenly classified
to the corresponding false class Fc 2 FF . Assuming 10 objec-
tive classes, CIp=10 images of the private dataset were mis-
takenly labeled. In this evaluation, we used MNIST dataset,
considering IID data distribution.

Noisy Data. Second, we evaluated the robustness of ERA
in a noisy data attack, where a malicious client adds noisy
semantic data into the open dataset. In more detail, consider
training a handwritten digit classifier, where the private
datasets and the test dataset, testing our methods, are the
MNIST dataset. In this experiment, we assumed non-IID
distribution and added In Fashion-MNIST images to Io

MNIST open dataset, i.e., Io þ In images were used for the
unlabeled open dataset. We fixed Io to 20;000 and experi-
mented with In.

Model Poisoning. To evaluate robustness against model
poisoning attack, we conducted the experiment with multi-
ple malicious clients, where the number of malicious clients
is denoted asm. In the evaluation, we fixed the total number
of the clients K to 100. In this analysis, we assumed that the
malicious clients performed a model poisoning attack [39],
which aimed to replace the global model with an arbitrarily
model and introduced a backdoor to the global model. In
this attack, the malicious clients aimed to replace the global
model wwg with a malicious model wwx performing a mali-
cious client selected backdoor task, as in (17).

wwx ¼ 1

K

XK
k¼1

wwk: (17)

As the training process progress, all the clients’ model wwk

converge to wwg. Then, we obtain

wwx ¼ K �m

K
wwg þm

K
wwM; (18)

where wwM is the model parameter uploaded by the mali-
cious clients. Therefore, the malicious clients upload wwM to
replace the global model as follow:

wwM ¼ 1

m
fKwwx � ðK �mÞwwgg: (19)

A single shot attack of the malicious clients replaces the
global model with the malicious model, and the backdoor
survives for long rounds without any attacks. We simply
extend this attack to DS-FL; the malicious clients send the
logit made by wwx, while never updating the model wwx. The
model poisoning attack was designed to attack the FL and
not the DS-FL. Thus, this evaluation could not be fair for FL
and DS-FL; however, the evaluation reveals the toleration of
DS-FL to one of the most powerful attacks designed for FL.

We assumed that the main task was the MNIST task and
the backdoor task was the Fashion-MNIST task. The data
distribution over benignant clients was assumed IID. The
malicious clients’ intention was to classify the images of
handwritten digits and fashion products of the global model
(e.g., classify images of digit “0” and “T-shirt” to class “0”
and images of digit “3” and “Dress” to class “3”). The mali-
cious clients included the model trained using the entire
MNIST training dataset and Fashion-MNIST training
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dataset (containing 120;000 images and corresponding
labels). The malicious clients performed the model poison-
ing attack once every five rounds.

4.2 Results

Communication Cost Per Round. The communication cost per
round with FL, FD, and DS-FL are calculated and listed in
Tables 1 and 2 for image classification and text classification
tasks, respectively. As seen in the tables, the communication
costs of the proposed DS-FL and the FD benchmark is
smaller than that of the FL benchmark and do not depend
on the model sizes. The reason for this result is that the pay-
load size of the logits uploaded in the DS-FL and the FD
benchmark is smaller than that in the ML model parameter
used in the FL benchmark and does not depend on the num-
ber of model parameters. Furthermore, the communication
cost of the FD benchmark is 100 times smaller than that of
DS-FL. The reason is that the number of logits uploaded by
a DS-FL client is more than that of the FD. In the FD bench-
mark, the clients upload local logits on a per-classy basis,
while in the DS-FL, they upload local logits on a per-sample
basis in the unlabeled dataset. However, the proposed DS-
FL exhibits a higher classification accuracy than that of the
FD benchmark, which is verified in the following results.

Although the evaluations are conducted without any
missing clients per round assuming stable and sufficient
communication qualities, the results further implies that
DS-FL is more robust to limited communication qualities
causing such missing clients. This is because of the smaller
payload size of DS-FL than FL. More concretely, the smaller
payload size in DS-FL allows more clients to complete the
uploading of the training results, i.e., model parameters and
logits in FL and DS-FL, respectively, even under the limited
communication quality. Hence, even if some clients are pos-
sibly missing for the communication round, the number of
the missing clients in DS-FL is smaller than that in FL. In
this sense, we believe that these results sufficiently contrib-
ute to solving the FL problem of limited communications in
view of the case for the missing clients.

Accuracy Improvement Per Communication Cost in Training.
Figs. 5a and 5b show the accuracy as a function of the cumu-
lative communication cost for MNIST and Fashion-MNIST,
respectively, with fIp; Iog ¼ f20000; 20000g and non-IID
datasets. The cumulative communication cost of DS-FL
includes an initial cost to distribute the unlabeled data to
the clients in addition to the per round cost, while that of
other baselines did not include the initial cost. The initial
cost is described as ComU@I in Table 3. In both the FL and
DS-FL, as the training processes progress, i.e., the cumula-
tive communication costs to share models or logits increase,

and the accuracy improves. DS-FL performance is evaluated
using the global model, which is trained on the server as
described in Section 2.3.2. Meanwhile, the FD accuracy
remains approximately 20 percent, which is almost similar
to that of a single client. In both tasks: MNIST and Fashion-
MNIST, the proposed DS-FL outperforms the FL (bench-
mark 1) in terms of cumulative communication cost while
achieving comparable accuracy. As shown in Table 1, the
results could be due to the communication cost per round
of the DS-FL that is lower than that of FL. If the aggregation
methods in DS-FL are compared, the proposed ERA obtains
almost the same accuracy as that of the SA baseline, while
the cumulative communication cost to the convergence of
ERA is smaller than that of SA due to the acceleration effect
of ERA. Based on these results, we can conclude that the
DS-FL with the proposed ERA reduces the communication
costs substantially while achieving similar performance to
the FL benchmark, i.e., ERA accelerates the convergence
speed.

Figs. 5c and 5d show the accuracy as a function of the
cumulative communication cost for IMDb and Reuters. The
results show a similar trend to computer vision tasks, i.e.,
MNIST and Fashion-MNIST tasks. In both the FL and DS-
FL, as the training processes progress, i.e., the cumulative
communication costs to share models or logits increases,
and the accuracy improves. In both tasks, IMDb and Reu-
ters, the proposed DS-FL outperforms the FL (benchmark 1)
in terms of cumulative communication cost while achieving
comparable accuracy. In contrast, the accuracy of FD is
much lower than that of FL, i.e., 23.3 and 39.0 percent lower
for IMDb and Reuters, respectively. If the aggregation meth-
ods in DS-FL are compared, the proposed ERA obtains
almost the same accuracy as that of the SA baseline, while
the cumulative communication cost to the convergence of
ERA is smaller than that of SA, due to the acceleration effect
of ERA.

Moreover, these results are also verified in Table 3. The
table lists the cumulative communication costs required to
achieve a test classification accuracy of x%, and the highest
testing accuracy among the training process, referred to as
ComU@x%, and Top-Accuracy, respectively. In Table 3, the
DS-FL with ERA achieves lower ComU@x% than that using
DS-FL with SA and FL for all cases. For example, regarding
Fashion-MNIST, DS-FL with ERA achieves 99.0 percent
lower ComU65% and 99.4 percent lower ComU@75% than
FL. Moreover, regarding Reuters, DS-FL with ERA achieves
99.4 percent lower ComU@65% and higher Top-Accuracy
than FL.

Test Accuracy Comparison. Table 3 lists the highest accu-
racy for all the training rounds denoted as Top-Accuracy.

TABLE 1
Comparison of Communication Cost Per Round

in the Image Classification Tasks

Method MNIST Fashion-MNIST

(smaller model) (larger model)

Benchmark 1: FL 236.1 MB 1.1 GB
Benchmark 2: FD 40.4 kB 40.4 kB
Proposed: DS-FL 4.0 MB 4.0 MB

TABLE 2
Comparison of Communication Cost Per Round

for Text Classification Tasks

Method IMDb Reuters

(LSTM) (text-DNN)

Benchmark 1: FL 28.6 MB 228.8 MB
Benchmark 2: FD 176 B 93 kB
Proposed: DS-FL 88 kB 2.0 MB
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The table indicates that the DS-FL with ERA achieves simi-
lar or superior Top-Accuracy compared to that of FL and
DS-FL with SA. Comparing DS-FL with ERA to the FL

benchmark in the MNIST task, the Top-Accuracy of DS-FL
with ERA reaches up to 98.5 percent when Io ¼ 40;000,
which is only 0.2 percent lower than that of FL. In the

Fig. 5. Test accuracy versus cumulative communication costs under non-
IID data. For MNISTand Fashion-MNIST, the numbers of samples in the
local and open unlabeled dataset are 20;000 and 20;000, respectively.

TABLE 3
Comparison of Communication Cost and Top-Accuracy

With the Size of the Open Dataset Io

ComU@I indicates the initial communication cost to distribute open dataset to
all the clients for DS-FL. ComU@x indicates the cumulative communicate
cost required to achieve a testing classification accuracy of x. Top-Accuracy
indicates the highest testing accuracy among the training process. Single client
indicates the accuracy without any collaboration between the clients.
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Fashion-MNIST and Reuters tasks, the Top-Accuracy of
the DS-FL with ERA is higher than that of FL for all cases.
In the IMDb task, the Top-Accuracy of the DS-FL with
ERA is 4.7 percent lower than that of FL, whereas it is 18.6
percent higher than that of FD. Hence, we can again con-
clude that DS-FL with ERA achieves similar test perfor-
mance to the FL benchmark while drastically reducing the
communication costs. Comparing the Top-Accuracy of the
proposed ERA and SA baseline, SA achieves higher Top-
Accuracy relative to ERA for the MNIST task even though
the difference becomes smaller as the number of samples
in the unlabeled open dataset increases. Meanwhile,
regarding the Fashion-MNIST task, the proposed ERA
achieves higher Top-Accuracy than SA, where the differ-
ence ranges from 4.0 to 13.7 percent. Hence, recall that
Fashion-MNIST is a more complicated task than
MNIST [34]. In the IMDb and Reuters tasks, the proposed
ERA achieves higher accuracy than SA. These results pro-
vide insight into the importance of reducing the entropy
global logits, particularly in more complicated tasks, to
enhance the DS-FL model performance.

Both FD+FAug [6], which is an advanced method of FD,
and DS-FL with ERA deal with non-IID data distribution.
Moreover, and FD+FAug outperforms FD. However, FD
+FAug requires clients to upload a part of their labeled
data, which does not satisfy the intentions of comparing FL

frameworks under the same clients’ privacy level. Thus,
comparing DS-FL to other approaches that let clients share
their raw data, such as FD+FAug and [16] is beyond the
scope of this study.

Effect of Temperture T on Entropy Reduction Aggregation. To
evaluate the effect of the temperature on the ERA, we evalu-
ated the performance of ERA according to various T using
the MNIST dataset considering non-IID data. Figs. 6a
and 6b show the test accuracy and entropy of global logit as
functions of the training round. When T ¼ 0:5, the entropy
is larger than that of SA, and the training is slower than
when considering SA and ERA with smaller T . For T ¼ 0:1
and 0.01, the entropy is lower than that of SA, and the train-
ing is faster than that when considering SA. Thus, we note
that ERA with a low T accelerates training.

Attack Robustness of Entropy Reduction Aggregation for
Noisy Labels. Fig. 7 shows the Top-Accuracy for MNIST as a
function of the number of noising classes C. All the clients
hold noisy labeled and properly labeled data samples with a
ratio C : 10� C. Regarding the DS-FL with SA and FL, Fig. 7
shows that as the noised classes increase, the Top-Accuracy
decreases. However, the DS-FL with ERA maintains the
Top-Accuracy, when the noised-classes increase. This indi-
cates that the DS-FL with ERA is more robust to IID noising
than the FL. The following section presents an analysis of the
global logit entropy to explain the robustness.

Attack Robustness of Entropy Reduction Aggregation for
Noisy Open Dataset. Fig. 8 shows the Top-Accuracy for
MNIST as a function of the number of noised samples in the
open unlabeled dataset. First, the FL is unaffected by the
noisy open data because FL does not use open data. Overall,
as the number of noisy datasets in the open dataset In

increases, the Top-Accuracy of DS-FL decreases. From the
perspective of decreasing the Top-Accuracy with a particu-
lar number of noisy open datasets from that with In ¼ 0
(i.e., the open dataset includes any noisy image) comparing
the proposed ERA and the SA baseline, the decrease in Top-
Accuracy of ERA is smaller than that of SA. Hence, we can
conclude that the proposed ERA is more robust against a
noisy open dataset than the SA baseline. This result is
because the proposed ERA alleviates the increase in the
entropy of global logits due to the noisy unlabeled data rela-
tive to the SA baseline, as shown in the following section.

Fig. 6. Test accuracy and entropy of global logit versus training rounds
with temperature of ERA, using non-IID and MNIST dataset.

Fig. 7. Impact of noisy labels. Top-Accuracy as a function of the number
of noising classes C. We use MNIST dataset with Ip : Io ¼ 40;000 :
20;000. The data distribution over client was IID.
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Entropy Analysis Under Noisy Data Attack. To explain the
difference between the proposed ERA and SA baseline, we
show in Fig. 9 the entropy of the global logits when the
datasets include or not noises. When the dataset includes
noises, both SA and ERA entropies become larger relative
to that without noises. Meanwhile, the difference in ERA
is smaller than that of SA. In the SA baseline, the high
entropy target vectors are used to train each client’s model,
making the SA process vulnerable to the noisy open data-
set. Simultaneously, the proposed ERA alleviates the
increase in the entropy of global logits, leading to high
model performance.

Attack Robustness of Distillaion-Based Semi-Supervised Fed-
erated Learning for Model Poisoning. In Table 4, the malicious
clients achieved their objective in FL, while the attack failed
in DS-FL with SA and ERA. Note that the objective of the
malicious clients was to replace the global model with the
model achieving high-test accuracy on both the main and
the backdoor tasks. Table 4 shows the test accuracy of the
global model after 100 rounds for the main (MNIST) and
backdoor tasks (Fashion-MNIST) by the DS-FL and FL, for
the number of the malicious clients of 1,10 and, 50. In FL,
for every case, the global model achieved high-test accuracy
on both the main and the backdoor tasks. This result implies

that the objective of the malicious clients was achieved. In
contrast, for every case, in DS-FL with SA and with ERA,
the test accuracy of the global model on the main task was
as high as that in FL, while the accuracy on the backdoor
task was much lower than that in FL. This result implies the
failure of the attack. The reason is that DS-FL asks clients to
transmit only logit but not ML model parameters, which
prevents the malicious clients from the attack that corrupts
the uploaded model parameters.

5 CONCLUSION

We proposed a cooperative learning method, named DS-FL,
designed to be scalable according to model sizes in terms of
communication efficiency while achieving similar accuracy
to benchmarks FL algorithms. The fundamental idea of the
proposed DS-FL was the model output exchange for an
unlabeled open dataset. Additionally, we proposed a logit
aggregation method for the DS-FL, which aimed to acceler-
ate the training process and enhance robustness under the
non-IID data. The simulations showed that the proposed
DS-FL method outperformed the benchmark method FL in

Fig. 8. Impact of noisy open dataset. Top-Accuracy as a function of the
number of noisy open datasets In. Using MNIST dataset as clean open
dataset and Fashion-MNIST dataset as noisy open dataset. The size of
the clean open dataset was fixed to 20;000. The data distribution over cli-
ent was non-IID.

Fig. 9. Entropy of the global logits with or without noises dataset.

TABLE 4
Impact of Model Poisoning Attack

Num. malicious
clients

Method Accuracy of
main task%

Accuracy of
backdoor task%

1 FL 98.9 90.4
DS-FL w. SA 97.5 9.6
DS-FL w. ERA 97.9 8.7

10 FL 98.9 90.4
DS-FL w. SA 98.5 9.9
DS-FL w. ERA 98.1 9.1

50 FL 98.9 90.6
DS-FL w. SA 98.8 7.9
DS-FL w. ERA 98.7 10.0

Test accuracy implies the classification accuracy after 100 rounds. The total
number of malicious clients and benignant clients is 100.
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terms of communication cost and robustness while achiev-
ing similar or superior accuracy to that of the FL. Moreover,
the experimental results showed that the DS-FL with ER
was more communication efficient and robust than the DS-
FL with SA. To explain the performance of the proposed
methods, we analyzed the experimental results from the
perspective of entropy. Additionally, the impact of the open
dataset volume was evaluated.

The future works will include developing the logit aggre-
gation method, considering the individual device character-
istics. For example, enhancing the impact of the logits
uploaded by the reliable or high-performance client with
respect to the global logit. However, how to evaluate the
reliability of the clients, and how to control the impact of
the uploaded logit are unknown. Another interesting direc-
tion is leveraging the logits had uploaded in the past round.
In this work, the server and the clients used the logits
uploaded at the current round. However, it might be useful
to note that the logits had been uploaded in the past rounds.
Moreover, another direction of future work is to design an
FL framework performing under non-IID data distributions
and unbalanced and massively distributed data while
achieving communication costs scalability. To evaluate the
FL framework under unbalanced and massively distributed
data, the benchmarking framework for FL, LEAF [40], will
be helpful.

ACKNOWLEDGMENTS

This work was supported in part by the JSPS KAKENHI
under Grants JP17H03266 and JP18K13757, in part by the
JST PRESTO under Grant JPMJPR2035, and in part by the
KDDI Foundation.

REFERENCES

[1] P. Kairouz et al., “Advances and open problems in federated
learning,” Found. Trends Mach. Learn., vol. 14, no. 1, pp. 1–121,
Mar. 2021.

[2] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless net-
work intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp.
2204–2239, Nov. 2019.

[3] W. Y. B. Lim et al., “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surv. Tut., vol. 22, no. 3,
pp. 2031–2063, Third Quarter 2020.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. yAr-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artif. Intell. Statist., 2017,
pp. 1273–1282.

[5] T. Yang et al., “Applied federated learning: Improving google key-
board query suggestions,” 2018, arXiv: 1812.02903.

[6] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated
distillation and augmentation under Non-IID private data,” in
Proc. Conf. Neural Inf. Process. Syst., 2nd Workshop Mach. Learn.
Phone Other Consum. Devices, Nov. 2018, pp. 1–6.

[7] S. Oh, J. Park, E. Jeong, H. Kim, M. Bennis, and S. L. Kim,
“Mix2FLD: Downlink federated learning after uplink federated
distillation with two-way mixup,” IEEE Commun. Lett., vol. 24, no.
10, pp. 2211–2215, Oct. 2020.

[8] J.-H. Ahn, O. Simeone, and J. Kang, “Wireless federated distilla-
tion for distributed edge learning with heterogeneous data,” in
Proc. IEEE 30th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun.,
2019, pp. 1–6.

[9] J.-H. Ahn, O. Simeone, and J. Kang, “Cooperative learning via fed-
erated distillation over fading channels,” in Proc. IEEE Int. Conf.
Acoust. Speech, Signal Process., 2020, pp. 8856–8860.

[10] H. Chang, V. Shejwalkar, R. Shokri, and A. Houmansadr,
“Cronus: Robust and heterogeneous collaborative learning with
black-box knowledge transfer,” 2019, arXiv: 1912.11279.

[11] S. Itahara, T. Nishio, M. Morikura, and K. Yamamoto, “A study for
knowlege distillation based semi-supervised federated learning
with low communication cost,” in Proc. RISING, Nov. 2019, p. 1.

[12] Y. Liu, X. Yuan, Z. Xiong, J. Kang, X. Wang, and D. Niyato,
“Federated learning for 6G communications: Challenges, meth-
ods, and future directions,” China Commun., vol. 17, no. 9,
pp. 105–118, Sep. 2020.

[13] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous SGD,” 2017, arXiv:1604.00981.

[14] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in Proc. IEEE Int.
Conf. Commun., pp. 1–7.

[15] S. Dhakal, S. Prakash, Y. Yona, S. Talwar, and N. Himayat,
“Coded federated learning,” in Proc. IEEE Globecom Workshops,
2019, pp. 1–6.

[16] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra,
“Federated learning with Non-IID data,” 2018, arXiv:1806.00582.
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