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A B S T R A C T   

Phthalates are used as plasticizers in many products used in daily life worldwide. Due to industrial and economic 
developments, exposure among general population to phthalates may vary geographically and temporally. 
However, studies are lacking for investigating temporal changes in phthalate exposure in the Japanese popu
lation. In the present study, the temporal trends in exposure to various phthalates were assessed among a group 
of Japanese adult female population over 1993–2016 and derived associated risks. For this purpose, urine 
samples of healthy Japanese females in Kyoto, Japan (N = 132) collected in 1993, 2000, 2003, 2009, 2011, and 
2016, were employed and measured for the concentrations of 18 phthalate metabolites. Over this period, the 
detection rates of mono(3-carboxypropyl) phthalate (MCPP) and monoisobutyl phthalate (MiBP) decreased, and 
the geometric means of the urinary concentrations of mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), and 
mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) showed a significant decreasing trend. Cumulative risk due to 
exposure to dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBP), and di-2- 
ethylhexyl phthalate (DEHP) showed a dramatic decrease only between 1993 and 2000. The maximum haz
ard quotient (HQM) was attributed to DEHP in most subjects regardless of sampling year. This study showed the 
temporal trend of the exposure of Japanese females to several phthalate esters over two decades. As of the late 
2010’s, DEHP was still the predominant component of phthalate ester exposure in the population. The HI value, 
however, indicates that direct risk due to phthalate exposure was unlikely among the studied population.   

1. Introduction 

Phthalates are used worldwide as plasticizers for many consumer and 
household products, including polyvinyl chloride (PVC), personal care 
products, flooring, and wall coverings (U.S. EPA, 2013). Phthalates are 
not chemically bound to the host polymers, so are easily released from 
the products. Thus, the general population can be exposed to phthalates 
in daily life, through various routes of ingestion of contaminated food, 
inhalation of indoor air and house dust, as well as dermal application of 
personal care products (Benjamin et al., 2017; Koch et al., 2013). 

Some phthalates are considered endocrine disrupting chemicals 
(EDCs), affecting endocrine systems through androgen antagonism and 
decreasing thyroid hormones (Benjamin et al., 2017). According to 

animal studies, several phthalates, notably di-2-ethylhexyl phthalate 
(DEHP), dibutyl phthalate (DBP), and benzyl butyl phthalate (BBP), are 
found as anti-androgens, which can result in male reproductive abnor
malities such as shortened anogenital distance (Swan, 2008). An 
epidemiological study has shown the potential adverse effects of several 
different phthalates on development and reproduction functions (Tranfo 
et al., 2012). Other epidemiological evidence has also revealed associ
ations of phthalate exposure with thyroid hormone disruption, meta
bolic diseases in pregnancy, birth defects, and allergic diseases (Kim 
et al., 2019; Wittassek et al., 2011). European Food Safety Authority 
published the updated risk assessment for five phthalates and group 
tolerable daily intake of 50 µg/kg bw/day for DBP, BBP, DEHP, and di- 
isononyl phthalate (DiNP) was retained (EFSA, 2019). 
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In the past few decades, the design and formulation of phthalate in 
products have changed because of recent regulatory actions and related 
industrial practices. For instance, DEHP, which was the most commonly 
used phthalate for many years, mainly used as PVC plasticizer, has been 
gradually substituted with other high-molecular-weight phthalates such 
as DiNP and diisodecyl phthalate (DiDP) (Wittassek et al., 2011). The 
Consumer Product Safety Improvement Act of 2008 of the USA banned 
the use of DEHP, DBP, and BBP in toys and other articles for child use at 
concentrations greater than 0.1%, and the United States Consumer 
Product Safety Commission expanded the restriction list to total 8 
phthalates in 2017, including DiNP and diisobutyl phthalate (DiBP) 
(CPSC, 2017). In 1998, Environment Agency of Japan published list of 
67 potential EDCs and DEHP, BBP, DBP, dicyclohexyl phthalate (DCP) 
and diethyl phthalate (DEP) were suggested (Environment Agency of 
Japan, 1998). DEHP and DiNP have also been banned for use in toys in 
Japan in the last two decades (Ministry of Health, Labour and Welfare of 
Japan, 2002). More recently, in 2010, Japan revised the phthalate reg
ulations for toys, which included new restrictions on the use of DBP, 
BBP, DiDP, and di-n-octyl phthalate (DnOP), as well as DEHP and DiNP 
(Ministry of Health, Labour and Welfare of Japan, 2010). 

The aforementioned regulatory development in Japan may influence 
the pattern of phthalate exposure in Japanese people over the last de
cades. However, few studies have revealed long-term temporal changes 
of exposure and potential health risk to phthalate in the Japanese pop
ulation. The object of our study was to evaluate the temporal trends in 
exposure to various phthalates over the last decades and to assess the 
health risks using the archived urine samples of Japanese females which 
were collected between 1993 and 2016. Understanding temporal 
changes in the exposure and the cumulative risk of phthalates in the 
general population will help identify priority phthalates and develop 
appropriate risk management measures. 

2. Materials and methods 

2.1. Study subjects 

Urine samples were obtained from the Kyoto University Human 
Specimen Bank (Koizumi et al., 2009) donated by 132 healthy Japanese 
women aged from 25 to 80 years old (59.3 ± 12.4, mean ± SD, the 
average ages in each year were 49–65) living in Kyoto and the sur
rounding areas (Kyoto city and Uji city), Japan. Original studies focused 
on associations between chemical exposures and biomarkers of health 
outcomes, and then middle-aged or older females were mainly recruited. 
The spot urine specimens were collected in 1993, 2000, 2003, 2009, 
2011, and 2016, when the women attended cross-sectional healthcare 
checkup programs. First morning urine samples were collected in paper 
cups and transferred to polypropylene tubes. Samples were kept in 
refrigerator in their home until they visited health checkup centers. 
Urine samples were stored at − 30 ◦C until analysis in the Kyoto Uni
versity Human Specimen Bank. The study protocol was approved by the 
Ethics Committee of the Kyoto University Graduate School of Medicine 
(approval number R1478). Informed consent in verbal (before 2000) or 
written form was obtained from every participant before she partici
pated in the study. 

Demographic data of participants are shown in Table 1. All the 
participants were female. The ages of the participants were significantly 
different by the sampling year (p < 0.05). Therefore, the age was 
consequently set as an adjustment factor in the models for comparing 
phthalate metabolite concentrations between groups. 

2.2. Determination of phthalate metabolites in urine samples 

Eighteen metabolites of phthalate esters were analyzed in this study. 
The list of name and abbreviation of phthalate metabolites and their 
surrogate internal standards were shown in Table S1. All compounds 
used for standards and internal standards were purchased from 

Cambridge Isotope Laboratory (Andover, MA, USA) as 100 μg/mL stock 
solution (chemical purity > 98%). 

Measurements of the phthalate metabolites were performed ac
cording to previous studies (Jeong et al., 2011; Lee et al., 2019). Analysis 
batch was a group of study year and order of analysis batch was random. 
Briefly, 480 μL of a urine sample, 20 μL of each internal standard of 500 
ppb, 10 μL of β-glucuronidase/arylsulfatase (Escherichia coli) (Sigma 
Aldrich, St. Louis, MO, USA), and 130 μL of 1 M ammonium acetate 
buffer (pH = 5) were added into glass vials and mixed by a vortex mixer 
for 10 s. The samples were incubated at 37 ◦C for 2 h for hydrolysis, then 
mixed again for 10 s. The deglucuronidation processes were performed 
for the phthalate metabolites are excreted through urine as glucuro
nides. After sonication for 10 min, the samples were mixed by a vortex 
mixer for 10 s, then neutralized with a pre-prepared mixture of 1% 
acetic acid and acetonitrile (50:300 μL) in 1.5-mL polypropylene tubes, 
mixed for 30 s. Next, the samples were centrifuged at 5000 rpm for 10 
min. The supernatant was injected into a column for column-switching 
liquid chromatography with tandem mass spectrometry (LC-MS/MS) 
for analysis. 

The analyses for measuring urinary phthalate metabolites were 
performed using a Shiseido Nanospace II liquid chromatography system 
(Shiseido, Tokyo, Japan) with an AB SCIEX API 4500 tandem mass 
spectrometer (AB SCIEX, Ontario, Canada). On-line separation of 
phthalate monoesters was accomplished by the switching-column 
technique with an on-line solid phase extraction (SPE) column (Water 
Oasis HLB online column, 2.1 i.d. × 20 mm length, 5 μm particle) and 
analytical column (Cadenza CD-C18, 150 × 2.0 mm, 3 μm). The column 
temperature was 40 ◦C, the injection volume was 10 μL, and the flow 
rates were 200 μL/min for the pretreatment and 200–400 μL/min for the 
analytical column. The mobile phases were 0.1% acetic acid in water (A) 
and 0.1% acetic acid in acetonitrile (B). In column switching, two pumps 
were switched to each other for washing, equilibration, and analysis. 
Switching modes for analyzing phthalate metabolites are shown in 
Fig. S1, and Tables S2-S3. Eluents from the analytical column were 
subject to MS/MS. Electrospray ionization in negative ion mode and 
multiple reaction monitoring mode were applied for determination of 
phthalate metabolites. 

The limit of detection (LOD) value was obtained according to the 
concept and method of the limit of detection stipulated in the verifica
tion of the analytical procedure defined by the Food and Drug Admin
istration (FDA) (U.S. FDA, 1998). The LODs are shown in Table S4. The 
method validation study was performed at same period in the previous 
study (Lee et al., 2019), and the results (recovery and inter-day varia
tion) were presented in Table S5. Blank sample storages showed no 
detectable parent phthalates. 

2.3. Determination of creatinine concentrations in urine samples 

High-performance liquid chromatography (HPLC) with a UV detec
tor was used to analyze the concentration of urinary creatinine. Urine 
samples (10 μL) were diluted with 990 μL of H2O, and 2, 4, and 6 mg/dL 

Table 1 
Demographic characteristics of participating subjects.   

years of sample collection p  
1993 2000 2003 2009 2011 2016  

No. of 
subjects 

10 25 24 26 22 25  

age (years) 52.7 
± 4.0 

49.4 
± 9.4 

65.9 
± 4.9 

59.0 
±

14.4 

65.5 
±

12.5 

60.2 
±

12.7  

<0.001 

urinary 
creatinine 
(g/L) 

0.8 
± 0.4 

0.8 
± 0.4 

0.7 
± 0.4 

0.8 ±
0.6 

1.0 ±
0.8 

0.9 ±
0.5  

0.373 

Data are the mean and standard deviation. ANOVA was used to test differences 
between the sampling years. 
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standard creatinine solutions were prepared in HPLC vials for 
measurement. 

2.4. Determination of hazard quotient (HQ) and hazard index (HI) 
values 

The daily intake (DI) doses of phthalates were calculated from the 
metabolite concentrations in urine samples using the equation below 
(Reyes, 2018): 

DIi,j,k =
( [(

Meti,k/Cri
)
*CEi

]/[
1000*FUE,i,k

] )
×
(
MWi,j/MWi,j,k

)

in which DIi,j,k (μg/kg/d) is the DI dose for metabolite k of partici
pant i, Meti,k (ng/mL) is the urinary metabolite concentration of 
metabolite k, Cri (g/L) is the urinary creatinine concentration, and CEi 
(mg/kg/d) is the creatinine excretion per day, calculated by the equa
tion considering age, gender (all of the participants were female), and 
race (B = 0 if not black) of the participants (Mage, 2008). 

CEi = 0.993 × 1.64[140 − age](Wt1.5Ht0.5)(1 + 0.18B)/1000/Wt 

The averages of the weights and heights of Japanese women in each 
age group were used. The data was reported by the Ministry of Health, 
Labour and Welfare of Japan in the National Health and Nutrition 
Surveys of 1993, 2000, 2003, 2009, 2011, and 2016 (Ministry of Health 
and Labor and Welfare of Japan, 2004; Ministry of Health and Labor and 
Welfare of Japan, 2010; Ministry of Health and Labor and Welfare of 
Japan, 2012; Ministry of Health and Labor and Welfare of Japan, 2017; 
Ministry of Health of Japan, 1995; Ministry of Health of Japan, 2000b). 

Fue,i,k (unitless) is the molar fraction of metabolite excreted per its 
parent phthalate ingested. MWi,j (g/mol) and MWi,j,k (g/mol) are the 
respective molecular weights of the parent phthalate j and its metabolite 
k (Table S6). 

DI dose of a given phthalate for participant j was calculated by taking 
a weighted mean of the DI of all metabolites k using Fue,i,k with the 
following equation (U.S. EPA, 1986; Reyes, 2018): 

DIi,j =
∑nk

k=1

(

DIi,j,k ×
FUE,i,k

∑nk
l=1FUE,i,l

)

HQi,j = DIi,j/TDIj  

HQM,i = max
j∈{i,…,N}

HQi,j  

HIi =
∑N

j=1
HQi,j 

HQ is defined as DI divided by TDI. HQM is the maximum HQ among 
all the phthalates analyzed (N = 4). HI is the sum of HQ for all analyzed 
phthalates. HI > 1 indicates potential health risk generated by the 
exposure to investigated phthalates. 

2.5. Statistical analysis 

Data analysis was performed using JMP Pro Statistical Software, 
Version 15 (Cary, NC, USA), and a 2-sided p-value < 0.05 was consid
ered statistically significant. One-way ANOVA was applied to test the 
difference of urinary phthalate metabolite levels by sampling year. The 
Cochran-Armitage trend test was performed to test for a temporal trend 
in the detection rate of phthalate metabolites. For urinary concentra
tions of the metabolites, creatinine adjustment was applied to reduce the 
effect of urine dilution on exposure biomarkers determined in spot 
samples. A partial correlation test was performed using log-transformed 
data of urinary metabolite concentrations, and age was set as a control 
variable. Metabolite concentrations below the LODs were set to LOD/

̅̅̅
2

√

when calculating geometric means (GM), HQ and HI (Jeong et al., 2011; 
Lee et al., 2019). A summary metric for DEHP metabolites (ΣDEHP 

metabolites) was calculated by summing the molecular concentrations 
of MEHP, MECPP, MEHHP, and MEOHP. When calculating HQ and HI, 
only the phthalates whose detection rates for primary metabolite > 50% 
in each year were included. 

3. Results and discussion 

The results of analysis of urine samples between 1993 and 2016 were 
shown and discussed in following order: (1) the distribution and tem
poral changes in the exposure, (2) comparison with other studies in 
Japan, (3) international comparisons, and (4) cumulative risks for the 
investigated phthalates. 

3.1. Levels and temporal trends of phthalate metabolites 

MEP, MCMHP, and MEOHP were detected in all of the samples, 
MECPP was detected in all samples in 1993, 2003, 2009, and 2010 and 
MEHHP was detected in all samples in 1993, 2003, 2010, and 2016 
(Table S7). On the other hand, MnPP and MHxP were not detected in all 
urine samples. Trends in detection rates were summarized in Table S7 
and Fig. S2. The detection rates of MCPP and MiBP were decreasing 
while those of MCHP were increasing. 

Fig. 1, Table S8 and Table S9 show the distribution of the urinary 
concentrations of phthalate metabolites. Creatinine-adjusted and -un
adjusted levels showed similar trends in metabolites, and then analyses 
were based on creatinine-adjusted concentrations. For MEP, while the 
samples obtained between 1993 and 2009 showed a rather increasing 
trend, the samples collected from 2009 to 2011 exhibited a sharp 
decreasing trend (Fig. 1). The GM values of the MCPP concentrations 
were detected at the highest GM levels in the samples collected in 1993, 
and the lowest in those of 2011 (Fig. 1A). Temporal changes in MiBP 
concentrations were not clear, for the GM of the concentration was the 
highest in 1993 and the lowest in 2016, but in 2011, MiBP was not 
detected in any samples (Fig. 1B). This observation may be related to the 
changes in the use pattern for this phthalate in Japan. 

Linear relationship between urinary phthalate metabolites and study 
years was shown in Fig. 2. Only MCPP and MEOHP concentrations 
showed statistically significant declining trends (Pearson’s correlation 
coefficient r = − 0.879, p = 0.021 for MCPP, r = − 0.831, p = 0.041 for 
MEOHP) (Fig. 2). Results of a multiple linear regression analysis 
following an adjustment of age indicated weak but significant negative 
correlations of the urinary concentrations of MCPP, MiBP, MECPP, and 
MEOHP over time (r = − 0.245, p = 0.005 for MCPP, r = − 0.226, p =
0.009 for MiBP, r = − 0.211, p = 0.016 for MECPP, and r = − 0.299, p =
0.001 for MEOHP). 

For ΣDEHP metabolites, a significant negative correlation with the 
year of sampling was also found (r = − 0.261, p = 0.003); however, a 
clear decrease was observed only between 1993 and 2000 (Fig. 1F). The 
concentrations of MECPP and MEOHP, both metabolites of DEHP, did 
not monotonically decrease over time, but the highest GMs of the con
centrations occurred in 1993 (Fig. 1D and E), which was consistent with 
the estimated trend for ΣDEHP metabolites. This decline could be due to 
the regulatory action on PVC gloves was adopted in 2000 (Ministry of 
Health of Japan, 2000a), in addition to nomination of phthalates as 
EDCs (Environment Agency of Japan, 1998). This result suggests that 
DEHP is still the most commonly used phthalate in Japan. 

3.2. Comparison with other studies in Japan 

A previous study conducted on a small group of Japanese adults (n =
36) showed that DEHP exposure had decreased from 1998 to 2001 (Itoh 
et al., 2005), as observed in this study. A possible reason for the decline 
can be attributable to a regulation on DEHP use in PVC gloves adopted in 
2000 by the Ministry of Health of Japan (Ministry of Health of Japan, 
2000a). It was reported that DEHP concentration in food decreased and 
average daily intake of DEHP decreased sharply during 1999–2001 
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(Suzuki et al., 2009; Tsumura et al., 2003). Recently, another study on 
the children of Hokkaido, Japan showed that the DEHP metabolites in 
urine did not change significantly during 2012–2017, supporting the 
observations of the present study, i.e., no changes in DEHP metabolites 
after 2000 (Ketema et al., 2021). 

3.3. Comparison with studies in other countries 

In the USA, the urinary concentrations of MnBP and MBzP decreased, 
whereas the urinary concentrations of MiBP and mono-carboxyisooctyl 
phthalate (MCOP) increased dramatically, between 2001 and 2010 
(Zota, et al. 2014) (Table S9). A similar trend was also observed in some 
European countries for DEHP, DnBP and BBzP metabolites. A study 
conducted in Germany showed a decreasing trend for urinary DEHP, 
DnBP, and BBzP metabolite concentrations during the period between 
1988 and 2015: the levels observed in 2015 are approximately 10-fold 
lower than those detected in the late 1980s/early 1990s (Koch et al., 
2017). In Germany, the urinary concentrations of MEP were also found 

to be decreasing after 2009 (Koch et al., 2017). Similarly, the Canadian 
Health Measures Survey found a 75% decline for DEHP metabolite, a 
64% decline for MEP, a 42% decline for MnBP, a 62% decline for MBzP, 
and a 45% decline for MCPP levels in urine samples during 2007–2017 
(Pollock et al., 2021). Decreases in the urinary concentrations of MEP, 
MnBP, and MBzP were also observed in Italy from 2011 to 2016 (Tranfo 
et al., 2018). From 2009 to 2017, the levels of DiBP, DnBP, BBzP, and 
DEHP metabolites were found reducing by more than half among Danish 
young men (Frederiksen et al., 2020). Another study conducted in 
Swedish pregnant women also found DEHP metabolites levels in urine 
samples decreased during 2007–2010, while DiNP metabolites 
increased in the period (Shu et al., 2018). However, in our study, urinary 
MiNP was not detected in most of the samples from all of the 6 years, 
with no observable trends in concentration. Although a sharp decrease 
in MnBP, MBzP, and MiBP concentrations was observed between 1993 
and 2000, no significant temporal change was observed after 2000, and 
the concentrations remained consistently at lower levels compared with 
those in European countries (Gyllenhammar et al., 2017; Tranfo et al., 

Fig. 1. Boxplots of log-transformed creatinine-corrected urinary concentrations of MEP (A), MiBP (B), MCPP (C), MECPP (D), and MEOHP (E) (μg/g creatinine), and 
DEHP metabolites (F) (nmol/g creatinine). The boxes show the interquartile ranges, the center lines in the boxes show the medians, the upper and lower whiskers 
show the 95th and 5th percentiles. 
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2018) and the USA (Koch et al., 2017; Zota et al., 2014). Moreover, the 
median concentrations of urinary MnBP and MiBP measured in our urine 
samples collected in the last decade, were found to be much lower than 
those reported in studies from the USA, several European countries 
(Fillol et al., 2021, Gyllenhammar et al., 2017; Koch et al., 2017; Tranfo 
et al., 2018), and other Asian countries, such as China (Guo et al., 2011a; 
Guo et al., 2011b; Zhang et al., 2018), indicating that the levels of 
exposure to DnBP and DiBP in Japan were relatively lower than other 
countries. A further comparison of the results in different studies was 
shown in Table S10 and Table S11. 

3.4. Risk assessment 

Based on the temporal trends in two decades in this study, changes in 
risks from exposures to phthalates were assessed. Fig. 3 shows the 
temporal trends in HQ and HI values. The highest HQ values of all four 
phthalates were found in the samples collected in the 1990s. For other 
phthalates such as DiNP, the detection rates in all sampling years did not 
exceed 50% so that they were not included in the calculation. The HQM 
value was found mainly with DEHP and DBP. DEHP was dominant in 
exposures among the target population during 1993–2016, similar to 
findings in the USA (Reyes, 2018) during 2005–2008, whereas an 
overall decline in the exposure to DEHP and an increase in the exposure 
to DiNP were observed in the USA during 2005–2014. 

In only one participant showed an HI value > 1 among the total 
population. This subject was recruited in 1993. The HI values showed a 
sharp decrease between 1993 and 2000 (mean HI value from 0.21 to 
0.048) and remained almost constant from 2000 until 2016. In addition, 
the HI values showed a quite similar trend as the HQ values of DEHP, as 
DEHP contributed most to the overall HI value during the whole study 
period (Fig. 4). 

3.5. Strengths and limitations of this study 

The major strength of this study is that the sampling design in this 
study focused on adult females living in Kyoto and the vicinity. They 
were recruited at community health checkup centers in same manner 
through the periods and their backgrounds of population would not 
change. In addition, all of the samples were analyzed at approximately 
the same time using archived urine samples, allowing us to observe the 
long-term temporal trends of exposures for over two decades. 

This study has several limitations. First, because of the limited 
number of study population and study area, the present observations 
hence cannot be generalized to other areas in Japan. Number of samples 
was 10–26 in each study year and statistical power was limited. How
ever, we applied power analysis to estimate the detectable effect size of 
this study (Table S12). For most of the analytes, the result indicates that 

Fig. 2. Trend of creatinine-corrected concentrations (μg/g creatinine) of MCPP 
and MEOHP in urine collected between 1993 and 2016. The dots indicate GM 
and the bands show the 95% confidence intervals. 

Fig. 3. Distribution of HQs of DBP, DiBP, BBP, and DEHP and their HI values determined for the Japanese women recruited between 1993 and 2016. The boxes show 
the interquartile ranges, the center lines in the boxes show the medians, the upper and lower whiskers show the maximums and minimums except for outliers, and the 
dots indicate outliers. 
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temporal changes can be detected if there would be 2 to 5 times change 
between years (e.g., MECPP and MEOHP). For MiBP and MnBP, the 
estimated effect sizes were larger, while drastic changes in exposure 
matrices may still be detected. It was noted that the study population 
was middle aged females in a community, and details of socio-economic 
factors were not investigated in this study. Hence, it is not necessarily 
extrapolated to entire population of Japan. Second, spot urine samples 
were used, and the concentration of metabolites may vary according to 
the timing of the sample collection. Third, creatinine adjustment was 
conducted, but potential biases could be possible and also inter-day 
variations in exposure may occur. Fourth, the samples have been 
archived in freezers, and during storage, possible degradation of target 
analytes might have occurred. Thus, the exposure calculated from older 
samples could be underestimated. Fifth, our study did not include some 
other emerging phthalates, such as di (2-propylheptyl) phthalate 
(DPHP), or alternative plasticizers such as 1,2-cyclohexane dicarboxylic 
acid diisononyl ester. It has been reported that the exposure to some 
alternative plasticizers increased in the past decade in various regions 
(Calafat et al., 2015; Frederiksen et al., 2020; Schwedler et al., 2020; Shu 
et al., 2018). Some studies conducted in European countries reported 
human exposure to DPHP in general populations (Porras et al., 2020a; 
Schwedler et al., 2020). While the DPHP exposure was much lower than 
exposure to most other phthalates (Porras et al., 2020b; Schmidtkunz 
et al., 2019), the substitution of DEHP will cause changes in exposure 
components. In Japan, limited information was published on the alter
natives and comprehensive analysis of plasticizers is required in future 
studies. 

4. Conclusion 

The present study analyzed the urinary concentrations of 18 phtha
late metabolites among a Japanese female population during 
1993–2016. The results showed the temporal trend in the exposure to 
several phthalates among Japanese females over the two decades. As of 
the late 2010’s, DEHP was still the predominant component of phthalate 
exposure in the population. The HI value indicates however that direct 
risk due to phthalate exposure was unlikely among the Japanese adult 
females. To date, limited studies have revealed long-term temporal 
trends of various phthalate exposure in Japan. Further estimations are 
also warranted regarding alternative plasticizers. 
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