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Review Article
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Abstract: Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining 
popularity after being approved for clinical use in the European Union and the USA. This trend is the 
same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its 
higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better 
contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is 
the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. 
Many structural and functional studies using 7T have been conducted to visualize details in the white matter 
and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, 
thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating 
arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target 
disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric 
disorders, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy, major depressive 
disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased 
chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a 
lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation 
of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain 
disorders. 
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Introduction

The clinical advantages of 7-Tesla (7T) magnetic resonance 
imaging (MRI) include high resolution and high contrast 
for increased lesion detection and applicability to many 
brain disorders (1-8). However, there are several limitations 
to using 7T for clinical protocols, such as increased static 
magnetic field (B0) inhomogeneity, radiofrequency (RF) 
transmit field (B1+) inhomogeneity, and increased specific 
absorption rates (SARs), which cause image inhomogeneity. 
However, applying high-permittivity dielectric pads 
can mitigate B1+ inhomogeneity (9-11), and signal 
inhomogeneity correction can be applied to produce highly 
homogeneous images (12) (Figure 1). This review highlights 
the advantages of 7T neuroimaging for anatomical 
visualization, presents a brief review of 7T neurochemical 
measurements and technical issues, and summarizes the 
principal difficulties of 7T imaging. We recommend other 
reviews for information on 7T-related safety issues (13-18). 

High spatial resolution is achieved at 7T through an 
increased signal-to-noise ratio (SNR) (19). The tesla ratio of 
7/3 is 2.33, and voxels with an isotropic size of 1-mm at 3T 
have equal SNR to those with an isotropic size of 0.75 mm  
at 7T, supposing SNR increases linearly to magnetic field 
strength. However, Pohmann et al. reported that SNR 
increased supra-linearly to the magnetic field strength 
and that for whole-brain measurements, the SNR at 7T 
increased by 3.14 relative to the SNR at 3T (20). Thus, a 
higher SNR can be used to attain higher resolution. 

Magnet i za t ion-prepared  r ap id  g rad ien t  echo 
(MPRAGE) imaging is a 3-dimensional (3D) T1-weighted 
imaging (T1WI) and one of the most commonly used 
sequences, with an isotropic resolution of around 1 mm 
at 3T. Magnetization-prepared 2 rapid gradient echoes 
(MP2RAGE) imaging is widely used at 7T (21,22) with 
an isotropic resolution of around 0.7 mm to provide 
increased signal and homogeneity (23,24). MP2RAGE 
combines 2 different images at different inversion times, 
effectively canceling image inhomogeneity, which is 
highly advantageous in 7T imaging. Moreover, fitting 
the longitudinal signal recovery of 2 images provides an 
additional T1 map (22). This technique has been used to 
investigate the deep gray matter at 3T (25,26). However, 
at 7T, higher resolutions have also been used to investigate 

the cortex (27-29). As an extension, multi-echo MP2RAGE 
can generate an additional T2* map (30,31) that can be used 
for multi-contrast segmentation (32), although separate 
imaging is commonly used. 

T2*-weighted imaging (T2*WI) at 7T shows high 
contrast for myelin and iron. Susceptibility-weighted 
imaging (SWI) is frequently used at 3T to detect subtle 
iron depositions (33-37). At 7T, however, high contrast for 
iron due to the shortening of the T2* value may not require 
SWI, and T2*WI can also provide anatomical details. High 
contrast on T2*WI at 7T enabled easier localization of 
small old hemorrhagic spots within the brain parenchyma 
than did SWI at 3T (Figure 2). However, we found that 
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Figure 1 T1-weighted coronal MPRAGE images before (A) and 
after (B) signal inhomogeneity correction. Gradual signal decrease 
toward the skull base is corrected. MPRAGE, magnetization-
prepared rapid gradient echo. 
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7T imaging advantages were brain-region depend, and 
the advantages of 7T have also been noted in functional 
MRI (fMRI), where the blood-oxygen level-dependent 
(BOLD) contrast is reflected on T2*WI (38-40). The 
degree of chemical shifts of the neural substrates that can 
be observed using MR spectroscopy (MRS) increases as the 
static magnetic field increases, enabling high-resolution 
measurements of the neurochemicals. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-21-969/rc).

Methods of study selection

Al though  much  progre s s  ha s  been  made  in  7T 
neuroimaging, the latest image-based findings focusing 
on regions imaged in relation to pathophysiology need to 
be clarified. For this review, we analyzed relevant articles 
found in a search of the PubMed database. The search 
terms included MR methods, such as “MP2RAGE” and 
“SWI”, and different brain regions. No limitation was set 
for the year of publication, but if articles were found that 
covered a similar topic, the most recent one was chosen 
for our review. Publication status was limited to online or 
printed studies, and the language of the publication was 

limited to English. Our primary target was original research 
articles, although some review articles were included if 
they contained a brief explanation of 7T neuroimaging 
that was considered relevant to this review. No explicit 
exclusion criteria were set, but articles with low relevance 
to the topics were excluded. When similar studies of clinical 
investigations were found, those that enrolled a larger 
number of participants were selected.  

A comprehensive description of the results of all the studies 
we reviewed lies beyond the scope of this paper. However, to 
illustrate the latest advantages of imaging at 7T, we present a 
narrative and pictorial review to improve understanding of the 
current situation and encourage future studies on this topic. 

Region-specific advantages of imaging at 7T

The cerebral cortex

The cerebral cortex is one of the main targets of high-
resolution imaging, and isotropic 0.7-mm MP2RAGE imaging 
shows R1 (=1/T1) increase as well as age-related thinning 
(Figure 3). In one study, longitudinal observation of 17 patients 
over 7 years reported an increase of R1 in the cortex but not in 
the white matter. The R1 value was shown to highly correlate 
to the myelin volume fraction in the brain specimen (41). 
Another study reported that in patients with multiple sclerosis 

Figure 2 A patient with a traumatic brain injury. (A) SWI at 3T shows small hemorrhagic lesions as low-intensity spots (arrows), but their 
relation to the background structure is relatively obscured, and their locations in the cortex or sulci are ambiguous. (B) T2*WI at 7T enables 
easy detection of small hemorrhagic spots (arrows), including their anatomical location. SWI, susceptibility-weighted imaging; T2*WI, T2*-
weighted imaging; 3T, 3 Tesla; 7T, 7 Tesla. 
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(MS), layer-specific differences were present for cortical R1 
and R2* (=1/T2*) values and their negative correlations to the 
expanded disability status scale (EDSS) was found (42). 

In high-resolution T2*WI, magnitude and phase play 
important roles in cerebral cortex investigations. One of 
the representative cases was a visualization of the line of 
Gennari in the primary visual cortex (43) by Fukunaga et al., 
who observed high densities of both myelin and iron (44).  
While the R1 and R2* values correlated to the myelin 
volume fraction and iron concentration, R1 was weighted 
more on the former and R2* on the latter factor (41). 
McColgan et al. have recently reported high correlations 
of R2* values across cortical depths to layer-specific cell 
numbers and layer-specific gene expression (45). 

High sensitivity to iron deposition facilitates the 
detection of tiny hemorrhagic lesions in the cortex and 
abnormal signals in the white matter (Figure 4). One study 
showed that on T2*WI, a hemorrhagic lesion appeared 
relatively large due to the blooming effect but appeared 
much smaller on quantitative susceptibility mapping (QSM) 
because QSM deconvolves susceptibility dipoles in the 
phase image for better localization and quantitation of 
susceptibility. Microinfarcts were found more frequently 
in patients with intracerebral hemorrhage and suggested a 
common etiology for underlying small vessel diseases (46),  
including cerebral amyloid angiopathy (CAA) (47). 
Cortical microinfarcts have been detected in vivo at 7T (48)  
and found with increased frequency in patients with 

Alzheimer’s disease (AD) (49). Despite their small size, 
microinfarcts may cause a functional deficit at least 12-
fold greater than the volume of the microinfarct core and 
were shown to contribute to broader brain dysfunction in 
a mouse model (50). This suggests that microinfarcts are 
independently associated with cognitive impairment and 
likely to cause damage to brain structures and function that 
extends beyond their actual lesion boundaries (51). Other 
research reported age-related changes observed at 7T as 
a shortening of cortical T2* values (Figure 5) in addition 
to changes in phase and magnitude (52). Another study 
found that phase differences between the cortex and the 
subcortical white matter were larger in early-onset AD than 
late-onset AD, suggesting the iron load increases in the 
progress of AD (53). High-resolution SWI at 7T reported 
senile plaque-like lesions in AD patients in vivo (54). These 
findings are considered to be rooted in the increased ex vivo 
susceptibility observed at 9.4T (55). 

Double inversion recovery (DIR) imaging at 3T has 
been used to detect lesions in the cortex (56,57) and white 
matter (58,59). High-resolution MPRAGE imaging at 
7T has provided complementary information to 3T fluid-
attenuated inversion recovery (FLAIR) and DIR for 
detecting cortical lesions in patients with MS (60). FLAIR 
and DIR at 7T have performed better than T2*WI (61), 
but they possess SAR limitations. Pracht et al. proposed an 
optimized 7T 3D DIR scan protocol to decrease SAR and 
scan time (62). Another option is the use of fluid and white 

Figure 3 Age-related changes in cortical thickness (mm) and R1 values (1/s) measured using MP2RAGE with 0.7-mm isotropic resolution. 
Surface maps show the average of 22 young (20–30 years old) and 8 aged (>60 years old) subjects. Decreases in cortical thickness and 
increases in R1 values are observed by aging. MP2RAGE, magnetization-prepared 2 rapid gradient echoes.
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Figure 4 Visualization of a small hemorrhagic lesion. (A) 3D T2*WI shows a small cortical hemorrhage as a low signal intensity spot (arrow). 
(B) QSM shows a more localized spot (arrow) with high susceptibility by localizing the susceptibility field dipole. 3D, 3-dimensional; QSM, 
quantitative susceptibility mapping; T2*WI, T2*-weighted imaging. 

Figure 5 Age-related decreases in cortical T2* values (ms) of healthy participants from 20 to 39 years old. Regional differences are also 
visualized well. 

A B

matter suppression (FLAWS) imaging with an MP2RAGE 
sequence although the basic contrast is different from DIR 
(63,64). 

Transcortical venules can also be visualized at 7T 
(Figure 6). Blinder et al. conducted a histological analysis 
of the vascular architecture and found that blood flow 

in penetrating arterioles is effectively drained by the 
penetrating venules and that lateral perfusion through the 
vascular network is limited (65). Such vascular architecture 
is considered to reflect local energy demands. High-
resolution BOLD fMRI at 7T has been used to map 
localized finger-specific sensory activation (66), but its 
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contrast remains dependent on the susceptibility of veins 
and venules, and the BOLD contrast is not optimal for 
cortical layer-specific visualization of neural activity. 
However, data on the vascular architecture can be used 
to deconvolve the BOLD fMRI signal and reveal cortical 
layer-specific activity (67,68). Other scan methods, such as 
vascular space occupancy (VASO) (69-72), have also been 
used to investigate layer-specific activity by making most of 
the high SNR of 7T imaging (Figure 7) (73-75). 

The hippocampus

For subfield evaluation of the hippocampus at 7T, 2D imaging 
can be conducted with an in-plane resolution of 0.35 mm × 
0.35 mm and a slice thickness of 1–2 mm in 5 min. In 3D, a 
study attained a resolution as high as isotropic 0.35 mm, but 
the total acquisition time was nearly 15 min (76). Through 
the use of fMRI with 1.0 mm × 1.0 mm resolution, activation 
could be localized to subfields of anterior CA2 and CA3 
during learning and posterior CA2 and CA1 during retrieval 

Figure 6 High-resolution 2D T2*WI (0.4 mm × 0.4 mm × 1 mm) shows numerous transcortical venules in addition to the medullary veins 
and small perivascular spaces. The inset shows an enlarged part of the frontal lobe in greater detail. 2D, 2-dimensional; T2*WI, T2*-
weighted imaging.

Figure 7 Cortical activation during a right-hand clenching task. BOLD activation is centered at the cortical surface of the left hand-knob 
area and extends to the postcentral gyrus over the central sulcus. VASO can detect separate activations in the superficial and deep cortical 
layers of the precentral gyrus and the postcentral gyrus. BOLD, blood-oxygen level-dependent; VASO, vascular space occupancy. 

BOLD VASO

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Okada et al. Neuroimaging at 7T: an overview3412

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(6):3406-3435 | https://dx.doi.org/10.21037/qims-21-969

of novel associations (77). 
Pardoe et al. conducted automatic segmentation for the 

hippocampus and amygdala on whole-brain MP2RAGE 
images with 700-μm isotropic resolution, acquired at 
7T using a 3D convolutional neural network (78). The 
results showed high concordance with those of manual 
volumetry. Moreover, high-resolution imaging can be 
exploited to unfold the hippocampus and provide an 
intrinsic coordinate system for subfield segmentations 
and quantitative evaluation (79). Recently, after analyzing 
21,297 individual brain images, van der Meer et al. 
reported that 6 hippocampal subfield volumes had a 
significant correlation with 15 unique genome loci (80). 
The volume of the hippocampal subfields has been related 
to the decline of memory (81), and specific hippocampal 
subfields have been more closely associated with memory 
encoding and retrieval performance in older adults without 
dementia (82). 

The combination of high-resolution 7T imaging and 
automatic subfield segmentation of the hippocampus has 
been applied to investigate AD (83), temporal lobe epilepsy 
(84,85), major depressive disorder (MDD) (86), and vascular 
risk factors (87). However, caution is required when using 
MP2RAGE imaging because its T1 reproducibility and 
volumetry at 7T is affected by B1+ inhomogeneity (88,89). 

The deep gray matter

The deep gray matter is a densely populated area of the 
brain, but only 7% of the individual structures are depicted 
in standard MRI atlases (90). Many efforts have been made 
to use 7T imaging for the comprehensive mapping of 
deep gray structures (91-94). One such effort included the 
evaluation of 17 prominent subcortical structures using 
multicontrast imaging (32). 

The putamen

This deep nucleus has been investigated in relation to motor-
related (95-98) and other neurological disorders. Discriminant 
analysis using T2* values and mean diffusivity of the putamen 
at 3T could discriminate among multiple system atrophy-
parkinsonian type (MSA-P), Parkinson’s disease (PD)  
(99-101), and healthy control groups (102) with high accuracy. 
Uchida et al. reported a significant negative correlation between 
susceptibility and dopamine transporter binding ratios at 
the putamen in patients with PD (103). At 7T, the left-right 
asymmetry of increased susceptibility at the dorsolateral part of 
the putamen was similar to the reduction in the specific binding 
ratio of the dopamine-transporter single-photon emission 
computed tomography (SPECT) imaging (Figure 8). Patients 
with premanifest Huntington’s disease had significantly higher 

Figure 8 A patient with MSA-P. (A) QSM at 7T shows increased susceptibility at the dorsolateral part of the putamen, particularly on 
the right side (arrows). (B) Dopamine transporter SPECT imaging shows a reduced specific binding ratio more prominently on the right, 
indicating a negative correlation between the 2 measurements (arrows). SPECT, single-photon emission computed tomography; QSM, 
quantitative susceptibility mapping; MSA-P, multiple system atrophy-parkinsonian type; 7T, 7 Tesla. 
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susceptibility values in the caudate nucleus and putamen, where the 
values were inversely correlated with structure volumes (104). In 
fMRI, the putamen and globus pallidus suffer from substantial 
signal loss due to their high susceptibility, and conventional 
single-echo echo-planar imaging (EPI) for functional imaging 
is subject to a lower temporal SNR (tSNR) than it is for 
cortical imaging. Multiecho EPI can increase tSNR by 84%, 
on average (105). 

The globus pallidus

Separation of the globus pallidus interna (GPi) and 
externa (GPe) is important for deep brain stimulation 
(DBS) (106,107) when the GPi is the target for DBS and 
accurate electrode localization inside the GPi is required 
for successful treatment. The GPi is separated from the 
GPe by the medial medullary lamina (MML) and further 
subdivided into external and internal segments (GPie/
GPii, respectively) by the accessory medullary lamina 
(AML) (108,109). Separation of the globus pallidus into 
substructures is expected to reveal pathological changes. 
Maruyama et al. (110) successfully visualized the internal 
structures of the GPi segments at 7T (Figure 9), and the 
substructures have been segmented automatically using 
deep-learning with 7T data (111). In another study, higher 
globus pallidus and red nucleus susceptibility was found 
more often in a progressive supranuclear palsy (PSP) 
group than in PD, MSA, and healthy control groups (102). 

The globus pallidus is also related to schizophrenia. In an 
analysis of 778 patients, Hashimoto et al. found that illness 
duration was positively associated with bilateral globus 
pallidus volumes (112). Direct and indirect pathways from 
the cortex have overlapping projections to the GPe, and it 
has been suggested that the 2 pathways work cooperatively 
via interactions within the GPe (113). 

The thalamus

The thalamus consists of many subnuclei connected 
to different areas of the cortex and spinal cord and is 
associated with behavioral (114) and cognitive changes 
related to many neurological disorders, including MS  
(115-117) and PD (94,118), among others. The subnuclei 
have different relaxation properties and orientation 
alignments that are dependent on their projections. This 
knowledge enables segmentation of the thalamic subnuclei 
(119-124). Quantitative measurement of T1 and T2 values 
at 3T can also segment the thalamic subnuclei mapped 
on the T1/T2 feature-space, but the scan time can be 
lengthy (125). At 7T, Tourdias et al. optimized MPRAGE 
imaging and delineated deep gray matter structures, 
including the thalamic subnuclei, by nullifying the white 
matter with sufficient SNR (126). Automatic segmentation 
has also been conducted using MP2RAGE (127),  
SWI (128), or multicontrast images (119,129). Analysis 
at the level of the subnuclei is expected to help in the 
investigation of various sorts of neurological disorders. 

The habenula

Located medial to the thalamus, the habenula is a tiny 
but highly important functional structure. It is involved 
in behavioral responses to pain, stress, anxiety, sleep, and 
reward, and its dysfunction is associated with depression, 
schizophrenia, and drug-induced psychosis (130). An 
increased habenula volume has been observed with  
0.7-mm isotropic resolution MP2RAGE imaging at 
7T in patients with unmedicated MDD (131). At 7T, 
resolutions as high as isotropic 0.5 mm can be reached, 
and details of the habenula can be visualized (Figure 10). 
High-resolution imaging is extremely useful in observing 
the habenula, which is divided into functionally distinct 
medial and lateral nuclei that have different influences 
on the subcortical reward and mood systems (132). The 
medial section modulates the activity of the interpeduncular 
nucleus and influences monoamine signaling (133), 

Figure 9 An axial QSM image of a healthy subject at the basal 
ganglia. The globus pallidus interna is separated from the externa 
by the medial medullary lamina (arrows), which is visualized as a 
thin layer of low signal intensity. Differences in susceptibility can 
also be observed among the thalamic subnuclei. QSM, quantitative 
susceptibility mapping.  

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Okada et al. Neuroimaging at 7T: an overview3414

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(6):3406-3435 | https://dx.doi.org/10.21037/qims-21-969

whereas the lateral part mediates the inhibition of the 
ventral tegmental area and downregulates mesolimbic 
reward activity (134,135). The lateral nucleus has shorter 
T1 and T2* values than does the medial nucleus (136). 
High-resolution T1-weighted over T2*-weighted images at 
7T has been shown to enable habenula segmentation (137). 
It should also be noted that high-resolution functional MRI 
at 7T is capable of visualizing the connectivity of small 
structures such as the habenula (Figure 11). 

The brain stem

Observation of the brain stem also benefits from imaging 
at 7T, which permits the visualization of small structures, 

such as the subthalamic nucleus (STN) separate from 
the substantia nigra (SN). The nigrosome-1 located at 
dorsolateral part of the SN can also be clearly depicted. 

The STN

The STN is located in close proximity to the SN. Separation 
of these structures in vivo has been difficult, but 7T imaging 
can clearly distinguish between them (Figure 12). Like 
the GPi, the STN is targeted in DBS to treat movement 
disorders (138-140). Higher iron concentrations have 
been reported within the STN at the medial-inferior 
area (141), and age-related changes have been found in 
the medial-to-lateral directions on 7T images (142). In 
a streptozotocin-treated animal model of sporadic AD, 
QSM found largely decreased susceptibility in the STN in 
the AD model compared to healthy controls, suggesting 
that this alteration may reflect neuronal death and serve 
as a biomarker in AD (143). The STN and SN are 
functionally segregated, but fMRI studies have not been 
able to fully separate their signals (144). De Hollander et al.  
demonstrated that fMRI at 7T with the appropriate 
parameters could better detect the activation of the STN 
and other deep gray matter nuclei (145). 

The SN
 

The SN pars compacta (SNpc) accommodates many 
dopaminergic neurons and contains neuromelanin (NM) 
and high amount of iron. Iron and NM play an important 
role in controlling multiple brain functions, including 
voluntary movement and behavioral processes. NM-
sensitive and iron-sensitive images have been used to 
analyze the SN (5,146). Heavily T1WI is sensitive to the 
paramagnetic properties of NM and shows NM-containing 
area as having high signal intensity (147-151). Reduced 
SNpc size and contrast ratio have been reported in patients 
with PD when they were compared with healthy control 
subjects using NM-sensitive imaging with high differential 
capability (152). NM imaging has predominantly been 
conducted at 3T due to limitations in SARs. 

The susceptibility of SNpc was increased in patients 
with PD relative to healthy control subjects (102).  
According to several studies, nigrosome-1, a densely 
aggregated area of dopaminergic neurons inside the SNpc, 
is better visualized using iron-sensitive imaging, such as 
T2*WI, SWI, and QSM (94,138,153-155). It displays as a 

Figure 10 High-resolution T1WI (0.5 mm isotropic resolution) of 
the habenula (arrows) acquired using MP2RAGE after denoising 
(top: coronal, bottom: axial). On the coronal image, the lateral 
nucleus shows a slightly higher signal reflecting a shorter T1 value 
than that of the medial nucleus (arrowheads). T1WI, T1-weighted 
imaging; MP2RAGE, magnetization-prepared 2 rapid gradient 
echoes.  

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



Quantitative Imaging in Medicine and Surgery, Vol 12, No 6 June 2022 3415

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(6):3406-3435 | https://dx.doi.org/10.21037/qims-21-969

hyperintense, ovoid area at the dorsolateral border of the 
otherwise hypointense SNpc in healthy control subjects. 
This imaging feature has been named the “swallow-tail 
sign” (156). Loss of this sign is recognized as a diagnostic 
imaging biomarker of PD (157-161). Imaging at 7T is 
excellent for evaluating nigrosome-1 (Figure 13) and has 
been used to diagnose PD, MSA, and PSP (146,162,163). 
However, aging decrements this hyperintensity (164) and its 
loss is often a common factor in these disorders, making it 
difficult to discriminate them (165). 

The cerebral white matter

Many structural and connectivity studies have been conducted 
using diffusion tensor imaging (DTI) (166-168) for various 
types of disorders, such as AD (169-172), PD (173-175), 
schizophrenia (176), MDD (177,178), bipolar disorder (179),  
and traumatic brain injury (TBI) (180,181). The SNR of 
DTI increases supralinearly to the increase in magnetic 
field strength, partly due to improved hardware (182). 
This trait can be used to investigate neurological 

Figure 11 Connectivity between the habenula (seed) and other brain regions, including the anterior cingulate cortex, can be detected using 
high-resolution functional MRI (1.6 mm isotropic resolution). The color bar shows the correlation coefficients of the time-course signal. 

MRI, magnetic resonance imaging.

Figure 13 T2*WI at 7T (0.4 mm × 0.4 mm × 1 mm) enables clear 

visualization of the nigrosome-1 (arrows) in a healthy subject. 
T2*WI, T2*-weighted imaging.

Figure 12 A coronal QSM image of the midbrain (0.5 mm 
isotropic resolution). The subthalamic nucleus (arrows) can be 
easily separated from the substantia nigra (arrowheads). QSM, 
quantitative susceptibility mapping.
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disorders. The semiautomatic segmentation of 72 
major white-matter tracts was technically feasible (183).  
This method was developed using 3T DTI data from the 
human connectome project (HCP) and validated using other 
3T DTI data with various scan parameters. This method is 
expected to be applicable to high-resolution 7T DTI data. 

Cerebral microbleeds (CMBs) are small chronic brain 
hemorrhages that are likely to be caused by abnormalities 
in the small vessels of the brain. One study revealed that in 
72% of patients with moderate-to-severe head injury, diffuse 
axonal injury was found in the form of traumatic CMBs (184).  
In another study, the total number of traumatic CMBs in 
10 patients were 485 and 584 using SWI at 3T and 7T, 
respectively with a similar spatial resolution. The number of 
observed lesions increased to 684 at 7T when a higher spatial 
resolution was used (185). Radiation therapy is associated 
with CMBs in brain tumors (186). Observation at 7T found 
the total number and volume of CMBs increased annually 
by 18% and 11%, respectively, while fractional anisotropy 
(FA) decreased by a median of 6.5% per year (187).  
CMBs have shown an increasing association with AD 
in imaging conducted at a higher magnetic field (188). 
Deposition of β-amyloid on PET imaging was increased at 
CMB sites (189-191). 

The perivascular space (PVS)

Dilated PVSs at the level of the centrum semiovale are a 
marker of underlying arteriopathy in patients with lobar 
hemorrhage (192) and are highly prevalent in sporadic 
CAA and superficial siderosis, which impair interstitial fluid 

drainage from the cerebral white matter (193). CMBs are an 
indirect marker of CAA, and MRI-visible PVS is considered 
to be related to this pathology. The dilatation of the 
juxtacortical PVS was significantly higher around CMBs than 
at the reference sites, and this colocalization suggests common 
underlying pathophysiology that is most likely to be CAA (194). 
The PVSs are more clearly displayed when a higher resolution 
is employed (195). High-resolution 3D T2-weighted brain 
imaging at 7T has enabled the automatic segmentation of 
small, hyperintense, fluid-filled PVSs and shown a significant 
increase in PVS density in patients with AD (196). 

Recent MR investigations suggest that PVS is related to 
the glymphatic system (197-204), a waste-draining system 
within the brain (205-208). Naganawa et al. suggested 
that the space between the pial sheath and the cortical 
venous wall may connect to the meningeal lymphatics. 
Their study used a gadolinium-based contrast agent and 
3D-real inversion recovery imaging at 3T (209). Taoka et al. 
detected a reduction in glymphatic activity along the PVS 
using DTI in patients with AD (210). High-resolution 7T 
imaging could depict PVS along small arterial branches, 
including the lenticulostriate arteries (LSA) (211). 

The cerebral vasculature

The T1 value is longer at 7T than at 3T, which is highly 
advantageous to visualizing distal small branches by 
suppressing the background signal in MR angiography 
(MRA). In addition to stroke, moyamoya disease (MMD) 
is one of the most common vascular stenosis disorders, 
especially in Asia. In MMD, stenosis is observed at the 
circle of Willis, and collateral circulation has been evaluated 
using contrast-enhanced CT angiography (212) and black-
blood MRA at 1.5T and 3T (213-215). However, at 7T, 
conventional inflow MRA can visualize the LSA as bright 
blood at a resolution of approximately 0.25 mm, assisting 
in the investigation of pathological conditions (216-223).  
One case we reviewed (Figure 14) showed a patient with 
MMD and dilated LSA branches for collateral circulation. 
In the same patient, the FLAIR “ivy sign”, showing the slow 
retrograde flow of dilated pial vasculature (224), was depicted 
more clearly at 7T than at 3T. Increased susceptibility 
at the ischemic lesions and medullary veins (225)  
was also observed in the right frontal area (Figure 15). 
Uwano et al. were able to detect impaired cerebrovascular 
reactivity in patients with chronic cerebral ischemia using 
whole-brain 7T MRA (226). 

Arterial spin labeling (ASL) has been used to visualize 

Figure 14 Coronal maximum intensity projection MR angiography 
of a patient with Moyamoya disease. The 0.25-mm isotropic 
resolution was acquired in 6 min. Dilated lenticulostriate arteries 
for collateral circulation are fewer on the right side (indicated as R), 
and the distal part of the middle cerebral artery is hypovisualized 
on the same side. MR, magnetic resonance.
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cerebral blood flow (CBF). Togao et al. showed distal 
circulation in MMD and arterio-venous malformation 
using 4D-ASL at 3T (227-229). ASL at 7T benefits from 
T1 prolongation for measuring CBF when appropriate 
spin labeling methods are implemented (230-234). Kashyap  
et al. applied ASL at submillimetric resolutions to observe 
cortical laminar fMRI responses (233). In addition to 
blood flow, vascular wall imaging, such as delay alternating 
with nutation for tailored excitation (DANTE) prepared 
imaging, has been optimized for 7T (235) and can be used 
to check vascular wall lesions. 

MRS and chemical exchange saturation transfer 
(CEST) imaging

Chemical shift increases in correlation to increase in 
magnetic field strength. MRS at 7T better separates 
neurochemicals and increases detectability compared with 
measurements at lower magnetic fields (236). Due to 7T’s 
higher SNR (237), a small amount of averaging is able to 
attain sufficient SNR, and scan time can be reduced (238). 
High measurement repeatability is also attained at 7T  
(239-245). MRS at 7T has been used to investigate multiple 

Figure 15 The same patient as in Figure 12. FLAIR images acquired at 3T (A) and 7T (B). Both images show similar white-matter lesions 
as hyperintense, but “ivy-signs”, representing slow collateral flow, are better depicted at 7T (arrows). (C) CBF measured using iodine-123 
N-isopropyl-p-iodoamphetamine SPECT at rest. CBF is widely lower on the right frontal area. (D) QSM acquired at 7T (0.5 mm isotropic 
resolution) shows increased susceptibility at the cortex, medullary veins, and ischemic lesions in the same area. The right side of the images 
shows the left side of the patient. CBF, cerebral blood flow; FLAIR, fluid-attenuated inversion recovery; 3T, 3 Tesla; 7T, 7 Tesla; SPECT, 
single-photon emission computed tomography; QSM, quantitative susceptibility mapping.
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brain regions or specific neurochemicals in many disorders, 
such as brain tumors (246), epilepsy (247), MS (248), 
schizophrenia/psychosis (249-252), depression (253,254), 
attention-deficit hyperactive disorder (ADHD) (255), 
among others. It has also been used to observe dynamic 
changes in neurotransmitters (Figure 16) (256,257). 

MRS imaging (MRSI) is frequently used for 2D and 
3D investigation. In MRSI, 2D ultra-short TE imaging 
at 9.4T has enabled measurements of low-concentration 
neurochemicals, such as gamma-aminobutyric acid (GABA), 
glutamine, aspartate, and taurine (258). In addition, this 
2D scan was successfully accelerated to 5.6 times faster, 
applying deep-learning for high-resolution metabolite 
maps (matrix size of 64×64) in 2.8 min (259). At 7T, high-
resolution MRSI with a matrix size of 100×100 clearly 
displayed the neurochemical profiles of MS plaques (260)  
and glial tumors, including the edematous or infiltrated 
surroundings (261). MRSI measurement has enabled area-wise 
correlation mapping between many pairs of neurochemical 
concentrations and elucidated differences between 
patients with epilepsy and healthy control subjects (262).  
In addition to neurochemicals, macromolecules (MMs) are 
drawing growing attention. They confound the quantitation 
of neurochemicals, and spectral editing (263) has been used to 
investigate metabolites, such as GABA, in small quantities (264). 
However, MMs are physiological metabolites, and their 
quantities may indicate pathological states (265,266). 

CEST imaging can also be used to obtain 2D/3D 
information of a specific metabolite. It saturates mobile 
protons in amide (-NH), amine (-NH2), and hydroxyl 
(-OH), among others, and these protons are exchanged with 
those of the bulk water (267-270). One of the representative 
applications is amide proton transfer (APT)-weighted 
imaging that suppresses the signal of amide protons 

located 3.5 ppm away from the water signal (271). APT 
imaging has been widely used at 3T to investigate brain 
tumors (272-277). At 7T, additional CEST measurements 
are conducted for such effects as the nuclear Overhauser 
effect (NOE) (278,279), among others (280). Glutamate is 
another important target for brain CEST imaging at 7T. 
Glutamate-specific CEST is known as GluCEST (281). 
Higher concentrations of glutamate were found on the 
epileptogenic side in patients of nonlesional temporal lobe 
epilepsy (282,283). GluCEST showed low concentrations in 
patients on the psychosis spectrum (284). 

Technical issues

Our review found that not all studies were able to visualize 
all brain areas well at 7T. Signal reduction or dropout and 
image distortion were frequently observed in regions at the 
skull base, such as the orbitofrontal and inferior temporal 
areas. Signal reduction was also observed in the cerebellum. 
There are several major technical problems related to these 
phenomena: B0 inhomogeneity, B1+ inhomogeneity (20) 
and increased SAR (285). Local B0 inhomogeneity results 
in signal defects, and information on some parts of the 
brain, especially at the skull base, remains unobtainable. 
It also introduces structural distortion, and corrections 
are thus crucial for surface-based analysis at 7T (286).  
Moreover, B0 fluctuation caused by respiration can 
deteriorate image quality. It can be monitored using field 
probes (287), and real-time correction improved the quality 
of T2*WI (288), high-resolution MRA (289), and QSM 
imaging (290,291). With motion correction, the whole 
brain could be scanned at a 380-μm isotropic resolution, 
taking nearly 1 hour (292), although real-time B0 correction 
and sequences that can cope with such correction are not 
readily available for implementation. We consider the use 
of simultaneous multislice (SMS) 2D gradient echo imaging 
might be an alternative. Its SNR was lower than that of 3D 
imaging by 13.0% to 17.6%, but SMS 2D susceptibility 
imaging was found to generate significantly higher gray/
white matter or globus pallidus/putamen contrast by 13.3% 
to 87.5% (293) due to a much longer time of repetition 
(TR). SMS 2D imaging is more robust because the motion 
artifact affects only a single slice or several slices, and it is 
considered suitable for patients who cannot keep still for a 
long time. 

To improve B1+ inhomogeneity, high permittivity 
dielectric pads are frequently placed at the bilateral 
zygomatic areas and/or the back of the head (9,294), but 

Figure 16 Dynamic glutamate changes during conditions of rest 
and the right finger tapping (each for 2.5 min) observed in the left 
motor cortex using 7T. Glutamate increases were observed during 
tapping (yellow boxes). 7T, 7 Tesla.
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they are not perfect. At low B1+ areas, such as the skull 
base, the gray-to-white contrast is reduced, resulting in 
segmentation errors (295). When compared to 3T in 
voxel-based morphometry, higher gray-matter volumes 
have been estimated for 7T, predominantly in the superior 
cortical areas, the caudate nucleus, cingulate cortex, and 
hippocampus, whereas the opposite has been found in the 
inferior cortical areas of the cerebrum, putamen, thalamus, 
and cerebellum (296). Misclassifications have been observed 
in the lower brain areas, and caution should be paid to these 
areas. This error can be mitigated by correcting the B1+ 
inhomogeneity (88) using the transmit field map (297). 

Parallel transmission (pTx) has been shown to increase 
B1+ uniformity across the brain (298). In resting-state 
fMRI at 7T, RF shimming (299) reduced the coefficient of 

variation for whole-brain flip-angle distribution by nearly 
40% on average (300) and increased the signal uniformity 
of 3D T2-weighted imaging (301). Such pTx with RF 
shimming is advantageous at 7T, but it takes a long time 
and is accompanied by a certain risk of local SAR increases, 
known as “hot spots” (302). A simpler option is the k-t point 
pulse (303,304). This has recently been implemented as the 
universal pulse (UP) and allows “plug and play” use without 
subject-specific measurement and optimization (305), while 
maintaining low intersubject variability for safety (306). 
The UP has achieved flip-angle homogeneity comparable 
to that of a clinical 3T system (307). It was used for 3D 
T2WI with higher signal homogeneity at 7T (308,309). 
Recent advances in machine learning have opened the way 
for a different approach to calibration-free dynamic RF 
shimming (310). 

MR findings need to be validated by histopathology, 
animal models, autopsy specimens, and other lines of 
evidence. MR imaging with higher resolutions can be 
conducted using the 7T human MR system but requires an 
additional transmit-receive coil system. A small-size volume 
coil that can be inserted into a vendor-provided coil without 
wiring offers easy implementation. Okada et al. recently 
fabricated such coils and presented high-resolution images 
of small specimens (Figure 17) (311). Implementation in this 
manner is expected to extend the role of 7T imaging. 

Conclusions

This review examined the advantages of increased 
contrast, resolution, and specificity in visualizing the 
pathophysiological conditions of many neurological 
disorders. We found that neuroimaging at 7T has helped 
to identify neurodegenerative changes and potential 
biomarkers that are not visible under lower magnetic field 
strengths. However, many study reports were limited 
by small-size participant cohorts and/or the absence of 
longitudinal data (312). To overcome these limitations, 
many collaborative investigations, such as the European 
ultra-high field imaging network for neurodegenerative 
diseases (EUFIND) (313), are encouraging the use of 7T 
neuroimaging in clinical and research applications. The 7T 
human MR system is expected to be an indispensable tool 
in the near future. 
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