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ABSTRACT
We analyzed tropical cyclones (TC) based on the theory of Maximum Potential Intensity (MPI) 
and Maximum Potential Surge (MPS) for a long-term assessment of extreme TC intensity and 
storm surge heights. We investigated future changes in the MPI fields and MPS for different 
global warming levels based on 150-year continuous scenario projections (HighResMIP) and 
large ensemble climate projections (d4PDF/d2PDF). Focusing on the Western North Pacific 
Ocean (WNP), we analyzed future changes in the MPI and found that it reached a maximum in 
the latitudinal range of 30–40°N in September. We also analyzed future changes in the MPS in 
major bays of East Asia and along the Pacific coast of Japan. Future changes in the MPS were 
projected, and it was confirmed that changes in the MPS are larger in bays where large storm 
surge events have occurred in the past.
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1. Introduction

Based on climate projections that consider global 
warming, various impact assessments have been 
made for temperature, precipitation, water resources, 
and sea-level rise (e.g. the series of Assessment Reports 
by the Intergovernmental Panel on Climate Change 
(IPCC)). In coastal areas, sea-level rise is mainly impor
tant as a gradual change in the coastal environment, 
while extreme events such as tropical cyclones (TC) are 
expected to have a significant impact on storm surges. 
Global warming is expected to affect the characteris
tics of TCs, such as frequency, intensity, and tracks. In 
the Sixth Assessment Report (AR6; Sixth Assessment 
Report of the IPCC, 2021) and Special Report on the 
Ocean and Cryosphere (SROCC; Pörtner et al. 2019), the 
IPCC suggests that the number of TCs generated in the 
future will be fewer overall, but the intensities will be 
stronger on a global scale. In addition, the number of 
intense TC (categories 4–5) is expected to increase 
from present-day values because of climate change 
(e.g. Emanuel 2013; Yoshida et al. 2017; AR6, 2021). 
However, future TC characteristics changes are still 
uncertain on regional and global scales.

Many adaptation measures against global warming 
depend directly on TC-related natural hazard risk 
assessments (e.g. Mori and Takemi 2016; Mori et al. 
2021a). Therefore, it is necessary to project future 
changes of extremes in intensity and frequency for 
disaster risk management, disaster countermeasure 
planning, and other adaptations. For example, the 
Summary for Policymakers (SPM) of AR6 states that 

“In coastal cities, the combination of more frequent 
extreme sea level events (due to sea level rise and 
storm surge) and extreme rainfall/river flow events will 
make flooding more probable (high confidence).” 
Additionally, the AR6 SPM warns that low-likelihood 
consequences of future warming cannot be excluded 
and are part of the risk assessment. Therefore, asses
sing extreme storm surges in a future climate is impor
tant for developing adaptation strategies in low-lying 
coastal areas in the mid-latitudes of the Pacific, North 
Atlantic, and Indian Oceans. However, the number of 
observed extreme storm surge events is extremely 
limited (e.g. Typhoon Haiyan by Tajima et al. 2014; 
Typhoon Jebi by Mori et al. 2019b), and therefore, it 
is difficult to conduct a probabilistic assessment of 
extreme storm surge based on historical events only.

Increasing the number of extreme events, both for 
statistical and dynamic modeling, is helpful for analyz
ing the extremes. A stochastic TC model (e.g. Nakajo 
et al. 2014), a kind of emulator, can increase the num
ber of TCs via a Monte Carlo simulation. It has been 
widely used for strong wind engineering and storm 
surge assessment. However, the stochastic TC model 
is generally calibrated using historical data; therefore, 
it is not easy to implement the effects of climate 
change into the model. On the other hand, a climate 
projection based on a global climate model (GCM) 
forced by a greenhouse gas emission scenario (GHE), 
can produce long-term climatological data (i.e. virtual/ 
synthetic) that is longer than the historical record. 
Many storm surge assessments have been performed 

CONTACT Nobuhito MORI mori@oceanwave.jp

COASTAL ENGINEERING JOURNAL                     
2022, VOL. 64, NO. 4, 630–647 
https://doi.org/10.1080/21664250.2022.2145682

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by- 
nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or 
built upon in any way.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://orcid.org/0000-0001-8284-0668
http://orcid.org/0000-0002-3196-2726
http://orcid.org/0000-0002-0677-3560
http://orcid.org/0000-0001-9082-3235
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21664250.2022.2145682&domain=pdf&date_stamp=2022-11-21


using a dynamic storm surge model forced by GCM- 
derived sea surface pressure and wind fields (e.g. 
Yasuda et al., 2014). However, until the arrival of the 
Coupled Model Intercomparison Project 5 (CMIP5), the 
duration of the climate projection has generally been 
limited to 100 years. Extreme wind, river flood, and 
coastal flood events, which are important for infra
structure development and evacuation planning, are 
conducted for frequencies of 1 by 50 years to 1 by 
hundreds of years. Considering the uncertainty of the 
extreme value estimation, it is difficult to project the 
future change of extreme wind and river and coastal 
flood events with a climate projection of 100 years. In 
2016, a large ensemble climate projection experiment 
spanning over 5000 years was conducted by 
a Japanese team using a single atmospheric GCM 
(AGCM) (Mizuta et al. 2017; Ishii and Mori 2020), and 
the experiment is now beginning to be used for impact 
assessments of extremes (e.g. Ishii and Mori 2020). The 
number of TC events that can be used for analysis has 
dramatically increased in both the present and future 
climate conditions.

Dynamic storm surge models (i.e. shallow water 
equation models) have generally been used to simu
late storm surges for stochastic and synthetic events. 
The accuracy of the dynamical model-based prediction 
is satisfactory for simulating the storm surges of 
a particular historical TC (e.g. Mori et al. 2014; Mikami 
et al. 2016; Mori et al. 2019b; Toyoda, Yoshino, and 
Kobayashi 2022a). In addition, several studies on asses
sing the impact of climate change on the storm surges 
for specific bays have been conducted based on his
torical events, so-called pseudo global warming 
experiments (PGW experiments). The PGW experiment 
quantitatively projects how a given past typhoon and 
storm surge would change in a future climate (e.g. 
Takayabu et al. 2015; Ninomiya et al. 2017; Nakamura 
et al. 2020; Toyoda et al. 2022b). However, it projects 
a limited figure under restricted conditions. An alter
native approach is directly driving the dynamic storm 
surge model by the GCM results (e.g. Kim et al. 2017; 
Shimura et al. 2022). This approach is straightforward 
but can only be used for calculations up to 100 years at 
most. The simulations for periods longer than 
1,000 years are virtually impossible.

Therefore, it is difficult to use a dynamic model to 
simulate storm surge for a long-term assessment if the 
number of TC events or period length is increased 
dramatically using stochastic or climatological models. 
The computational costs of this approach are a major 
challenge for very long climate simulations of 
1000 years or longer (e.g. Kumagai, Mori, and Nakajo 
2016; Wahl, Mudersbach, and C 2015; Igarashi et al., 
2021; Gönnert et al. 2015). In order to reduce compu
tational costs, a simplified model based on climatolo
gical information keeping physical essence and 
accuracy is needed to assess long-term climate change 

impacts on extreme storm surges (Mori et al. 2019a). 
The challenge is developing a projection method that 
balances computational accuracy, modeling, and cost. 
Since storm surge is a localized phenomenon (with 
a scale of tens to a few hundred kilometers), each bay 
has different storm surge characteristics caused by 
different geometrical features. Therefore, conducting 
a global or regional scale assessment is necessary to 
identify regions that are most at risk due to climate 
change. On the other hand, if we assume that 
a typhoon of maximum intensity passes over 
a particular bay at a path and speed that maximizes 
wind-induced surge, we can estimate the maximum 
class of storm surge. In parallel with dynamic storm 
surge projection based on climate projections, it is also 
necessary to make projections of the maximum class 
storm surges based on the above-mentioned progress 
in research on climate change projections and impact 
assessments.

Mori et al. (2021b) developed a framework to seam
lessly project the climatic maximum potential surge 
(MPS; sea surface anomaly height excluding astronom
ical tide in meters) by combining the theory of max
imum potential intensity (MPI; minimum central 
pressure in hPa) of a TC (Emanuel 1988) with climato
logical values projected by a GCM. Mori et al. (2021b) 
applied the MPS method to Tokyo Bay, Ise Bay, and 
Osaka Bay in Japan using time-slice experiments of the 
CMIP5 ensemble. In addition, Mori et al. (2021c) 
applied the same method preliminarily in a study of 
bays along the Pacific coast of Japan using d4PDF; 
however, discussion of the projection was somewhat 
limited in the targeted region and climate scenarios, 
and the analysis needed to be expanded to other TC- 
affected areas. In this study, the MPI theory is applied 
from the CMIP5 time-slice experiments by Mori et al. 
(2021b) to the Meteorological Research Institute’s 150- 
year continuum projections, which is part of the CMIP6 
experiment. Thus, changes from the past to the future 
are investigated. In addition, the MPS projections, 
which were limited to bays in Japan by Mori et al. 
(2021c) are applied to all bays along the Pacific side 
of Japan and six representative bays in East Asia.

Nevertheless, it is very difficult to (1) make projec
tions of extreme storm surge over wide spatial areas 
(regional) and long temporal scales (climate), (2) deter
mine the statistical stability of the projections, or (3) 
estimate the trends of long-term changes from the 
present to the future. However, while the MPS model 
is less accurate due to several assumptions, it can 
evaluate a maximum class of storm surges on (spatial) 
national and (temporal) centennial scales considering 
climate change. Furthermore, large-scale climate 
ensemble calculations (such as the d4PDF ensemble; 
see Section 3) can confirm the statistical stability of the 
maximum class MPI and MPS. Moreover, finally, 
recently-completed climate projections that 
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continuously span 100 years or more can now be used 
to identify trends in long-term changes of the MPI and 
MPS from the past to the end of the century.

This study aims to project future changes in the 
maximum potential storm surge height using the 
MPS model for major bays in East Asia and Japan. 
First, the MPI fields are calculated using monthly 
mean climate values based on 150-year continuous 
scenarios and large ensemble GCM projections (see 
Section 2.2 for details). Second, the MPS model is 
optimized using simulation results from a dynamic 
storm surge model. Finally, the MPS for major bays in 
East Asia and along the Pacific coast of Japan are 
calculated using the MPI data (atmospheric pressure 
and sea surface wind speed), and future changes in 
extreme storm surge heights are projected. This paper 
is not to pursue future changes in cm-accurate storm 
surges but aims to capture and evaluate qualitative 
future change signals from monthly mean values with
out directly calculating storm surge from a large num
ber of climate projections over thousands of years.

2. Methodology of maximum potential 
intensity and storm surge of a TC

This study aims to estimate the maximum potential 
storm surge height using data from the MPI of a TC. 
Here, the maximum potential represents the estimated 
maximum given the background environmental con
ditions. The background environmental conditions 
indicate the kinematic and thermodynamic balance 
during the typhoon’s maximum development and 
the worst path and translation speed of the TC for 
storm surge. In Figure 1, a computational flow of the 
MPS model proposed by Mori et al. (2021b) shows how 
environmental climate conditions (i.e. monthly aver
aged values) can be used to evaluate the climatic 
maximum storm surge height. The MPS model consists 

of two steps: the first is to calculate the MPI fields of 
TCs, and the second step is to calculate the MPS using 
the MPI data. These two maximum potential values are 
analyzed using two different types of climate projec
tions, complementing additional analysis of MPI and 
MPS changes and increasing target bays to our pre
vious study (Mori et al. 2021c).

As will be discussed later, MPS assumes typhoon 
track, so-called the worst-case typhoon track, consider
ing the shape of bay in advance. Therefore, there are 
bays where the worst-case typhoon track assumption 
cannot be applied when referring to historical typhoon 
track records. The worst-case typhoon track assump
tion is not mainly applicable to the Sea of Japan side in 
Japan and some bays in East Asia. The following dis
cussion focuses on representative bays in East Asia and 
the Pacific side of Japan, where the MPS concept 
applies.

2.1. Theoretical framework

2.1.1. Maximum potential intensity (MPI)
The MPI is widely used to estimate the maximum 
intensity of a TC. Two main theories for estimating 
the MPI have been proposed by Emanuel (1988) and 
Holland (1997), and we use the former theory pro
posed by Emanuel (1988) here. The MPI theory uses 
convective available potential energy (CAPE) and sea 
surface temperature (SST) as the main explanatory 
variables and does not require any arbitrary para
meters for adjustment. Based on the MPI theory 
(Emanuel 1988; Bister and Emanuel 2002), the Carnot 
cycle is assumed for an axis-symmetric TC, and the TC’s 
maximum development limit in a given environmental 
field is expected to be the ideal lower limit of central 
pressure (i.e. minimum central pressure) of a TC. The 
maximum possible wind speed, Vm, and minimum pos
sible pressure (which occurs at the radius of maximum 

Figure 1. Schematic view of the maximum potential intensity (MPI) of a tropical cyclone and maximum potential storm-surge- 
height (MPS) framework.
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wind speed), Pm, are estimated using CAPE, SST, verti
cal profiles of atmospheric temperature and humidity 
(i.e. for deriving CAPE), and sea level pressure (SLP) as 

Vm
2 ¼

Ck

CD

Ts

T0
CAPEm

� � CAPEmð Þ (1) 

RdTsln
Penv

Pm
¼

1
2

Vm
2 þ CAPEm � CAPEenvð Þ (2) 

where Ts is the SST, T0 is the tropopause temperature, 
Penv and CAPEenv are the environmental background 
SLP and CAPE, CD and Ck are the momentum and heat 
exchange coefficients at the sea surface (respectively), 
and Rd is the gas constant for dry air. The ratio of CD to 
Ck is defined 0.9 following Emanuel (2021) and see the 
detail of the other definitions in Emanuel (1988), Bister 
and Emanuel (2002) and Mori et al. (2021b). The super
script * denotes the saturated air condition, and the 
same subscript m is used to denote the value evalu
ated at the radius of maximum wind speed. While 
these equations are primarily a function of CAPE and 
SST, CAPEm* and CAPEm depend on the pressure and, 
therefore, Eq. (1) and (2) must be iterated until Pm 

converges. In addition, the vertical air temperature 
gradient is generally more stable due to global warm
ing and suppresses TC generation numbers in the 
future. On the other hand, the maximum intensity 
becomes stronger when the SST is higher by global 
warming (e.g. Yoshida et al. 2017). Future TC character
istic changes are generally balanced between two 
opposing effects of increasing atmospheric stability 
and SST.

In this study, the MPI is used as a proxy to assess 
long-term changes in future TC intensity and as an 
input for the MPS model. More specifically, the MPI 
estimates the maximum developmental intensity of 
a TC based on background environmental conditions. 
However, it is unclear what relationship or bias this has 
with TCs that are represented by GCMs. For this reason, 
we compare future changes (in TC intensity) between 
the derived MPI and TCs in GCMs, using a robust, large- 
ensemble climate-change projection dataset (see 
Section 3). Furthermore, this same large-scale climate 
ensemble (such as the d4PDF ensemble) can be used 
to confirm the statistical stability of the estimated 
maximum as represented by the TC intensity by MPI.

2.1.2. Maximum potential storm surge (MPS)
In the MPS model, storm surge is regarded as a linear 
combination of pressure-induced and wind-induced 
effects, which are evaluated independently (Mori 
et al. 2021b). Here we briefly describe the basic 
assumptions used and outline the MPS model. First, it 
is assumed that the minimum central pressure, Pmin, is 
equivalent to the minimum possible pressure obtained 
from the MPI (i.e. Pm); in addition, the definition of Vm 

in time and height from the ground is not clear, and we 

regard Vm is defined 1-minute averaged at 10 m height 
from mean sea level. The maximum wind speed, Vmax , 
is derived using a gradient wind model with an empiri
cal relation between Pm and TC radius (see Mori et al. 
2021b), which uses a conversion coefficient to take 
into account the effects of the super-gradient wind 
(Fuji and Mitsuta, 1986) in the interior of the boundary 
layer, to modify the maximum possible wind speed 
obtained from the MPI (i.e. Vm). Although there is 
several choices of the pressure-wind relationship 
based on the parametric representation (e.g. Knaff 
and Harper, 2010), we use the super-gradient wind 
model for simplicity. Second, a worst-case storm 
surge scenario is assumed to occur in each bay ana
lyzed. Here, the TC translational effect on wind speed 
(longwave speed in the bay) has been added to the 
wind speed input in the model. Third, the wave- 
induced sea surface change (i.e. radiation stress 
effects) is not considered for simplicity.

A pressure-induced surge will occur when the trans
lation speed of the TC, VT , is similar to the longwave 
velocity C in the bay. Here, we assume that any result
ing pressure wave will travel from offshore to onshore 
along the major axis of the bay. For simplicity, we use 
a one-dimensional pseudo channel with a constant- 
cross-sectional bathymetry h = h(x) which varies along 
the major axis of the bay (x) from onshore (x ¼ 0) to 
offshore (x ¼ xend). We also assume that the pressure 
wave, ζp can be given by the following equation, 

ζp
�
�

VT!C ¼
1

ρwg
ϕ t �

x
VT

� �

�
x

2C
ϕ0 t �

x
VT

� �� �

(3) 

where ρw is the density of seawater, g is the accelera
tion of gravity, and ϕ ¼ ϕ xð Þ is the horizontal pressure 
profile. Then, substituting Myers’ pressure distribution 
P into this equation, a maximum value of the pressure- 
induced surge ζp can be obtained. Correspondingly, 
a maximum wind-induced surge ζw can also be derived 
for the pseudo channel, which assumes a worst-case 
scenario with the wind direction aligned with the 
major axis (from offshore to onshore). By considering 
the balance between the sea surface and bottom fric
tion stresses, the sea surface elevation ζw from a wind- 
induced surge can be calculated as, 

ζw ¼ Krev �
ρa

ρwg
� U2 (4) 

Krev ¼ K � 0xend
1

h xð Þ
dx (5) 

where ρa is the air density, K and Krev are bathymetric 
and empirical coefficients (respectively), U is the wind 
speed at 10 m height, and U is linearly combined by Vm 

and VT . Finally, the MPS can be expressed as a linear 
combination of the wind-induced and pressure- 
induced surges as ζp þ ζw neglecting interactions 
between wind and pressure-induced surges (see 
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Figure 1 again for an outline of the MPI-MPS 
framework).

The coefficient K varies depending on the bathy
metry h(x) and needs to be optimized for each bay. 
A series of storm surge simulations using the 
ADvanced CIRCulation (ADCIRC) model were used 
as a reference for the calibration; the top five 
extreme storm surge cases from the model were 
used to estimate an average bay-specific K , as 
noted in Mori et al. (2021b). The ADCIRC simulations 
were performed on an unstructured grid, and the 
computational domain covers a globe composed of 
2.4 million grid cells with variable spatial resolutions 
ranging from 2 km (nearshore) to 25 km (offshore). 
In addition, the model was forced with reanalysis 
data (see Shimura et al. 2022) – hourly sea surface 
winds (U10) and sea level pressure (SLP), and 
monthly sea ice concentrations derived from 150- 
year continuous scenario run and a 55-year atmo
spheric reanalysis dataset (see Section 2.2 for details). 
Therefore, a total of 205 years of simulations were 
used to calibrate Krev . It should be noted that astro
nomical tides are not considered in this study. 
Furthermore, comparisons between the dynamic 
storm surge model and the MPS model are per
formed using the following steps for each bay:

(1) Select storm surge events larger than 1 m;
(2) Retrieve the minimum central pressure Pmin and 

the maximum wind speed Vmax from the selected TCs 
in step 1;

(3) Feed Pmin and Vmax into the MPS model;
(4) Compare the maximum surge heights between 

the dynamic and MPS models.
The application of the MPS model will be discussed 

in Section 4.

2.2. Numerical setup and target area

A previous study by Mori et al. (2021b) analyzed three 
major bays in Japan: Tokyo Bay, Ise Bay, and Osaka Bay. 
Here, we calculate the MPS for seven major bays in East 
Asia, considering the bay shape and hazard exposure 
as population and asset. In addition, we also calculate 
the MPS for 51 bays along the Pacific coast of Japan. 
We have omitted coasts along the Sea of Japan since 
the MPS method assumes a worst-case TC track sce
nario for each bay. It is difficult to apply the method 
from a meteorological point of view (i.e. TCs approach
ing from the north). Figure 2 shows the locations of the 
selected cities or bays for (a) East Asia and (b) Japan. 
Details of the bay geometries have also been added to 
Figure 2b; red lines indicate the major axis of the bays, 
and the colored trapezoids indicate the bay bound
aries and type (blue, open; green, closed). The targeted 
cities in Figure 2a correspond to Jiaozhou Bay around 
Qingdao, Yangtze River Estuary around Shanghai, 
Bohai Sea around Bohai, and Jinhae Bay around 
Masan, respectively. In addition, the Japanese bays 
have been enumerated from the north to the south, 
as shown in Figure 2b.

A bathymetry profile is required to estimate the 
wind-induced surge effect in Eq. (4), and different 
datasets were used for East Asia and Japan. For East 
Asia, we used the General Bathymetric Chart of the 
Oceans (GEBCO; 2020); it has a grid width of 15 arcsec 
(about 470 m) worldwide and is enough to estimate 
the mean cross-sectional depth of the seven large- 
scale bays selected (Figure 2a). For Japan, we used 
the M7000 series coastal bathymetry data by the 
Japan Hydrographic Association (2021). The higher 
resolution M7000 data was converted from meshless 

Figure 2. Map of target coastal cities or bays for projection. Colored lines in panel (b) describe bay type: red, major axis; blue, open 
bay; green, closed bay (see Figure 13 for bay names).
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point-values to gridded averages using bilinear inter
polation; the interpolated data is five arcsec (about 
150 m), which is also enough to represent the bath
ymetries of the smaller and intricate bays. For stability, 
we have limited the water depths from 2 m to 500 m in 
the MPS calculations in order to ensure that the 
hypothetical TC translation speeds do not become 
too fast in bays with very deep water (to match the 
longwave velocity).

For three open bays in East Asia – Bohai, Shanghai, 
and Tainan, it is difficult to define the bay mouth 
because either the depths are extremely shallow or 
the bays are too wide. Therefore, the optimal value of 
xend in Eq. (5) is searched by setting the initial value to 
60 km provisionally and determining the optimal value 
that minimizes the root mean square error (RMSE) of 
the storm surge estimation.

Environmental conditions (SST, vertical profile of air 
temperature and air humidity, and SLP) are necessary 
to calculate the MPI fields and analyze the MPS for 
present and future climates. Therefore, we used 
monthly mean climate values from three different 
datasets for the climate change impact assessment. 
These datasets are based on simulations from the MRI- 
AGCM3.2 H, a 60 km atmospheric global climate model 
(AGCM) developed by the Meteorological Research 
Institute of the Japan Meteorological Agency (Mizuta 
et al. 2012). Systematic differences (biases) exist in 
climate projection data when compared to atmo
spheric reanalysis data. Bias correction for individual 
scalar variables is possible. However, there is no estab
lished method for bias correction of multivariate, 
three-dimensional data, correlated values (e.g. SST 
and air temperature) It is also quite difficult to apply 
bias corrections for three dimensional multivariate 
keeping dynamical and thermodynamic relationships 
such as those used here. Therefore, in the following 
sections, no bias correction is made for climate projec
tion data, and the data is evaluated using the values as 
they are.

The first dataset, HighResMIP (Haarsma et al. 2016; 
Shimura et al. 2022), is a series of 150-year continuous 
scenario projections (hereafter referred to as the 150- 
year scenario); the present climate experiment (named 
HPD) covers the period 1950–2014, while the future 
climate experiments (named HFD) cover the period 
2015–2099 and use the RCP2.6 and RCP8.5 forcing 
scenarios. RCP2.6 is a scenario to keep global warming 
likely below 2°C at the end of the 21st century, and 
RCP8.5 is very high greenhouse gas emission scenario 
that exceeds 4°C at the end of the 21st century. In 
addition, the present experiments HPD use historical 
SSTs as a lower boundary condition for the MRI- 
AGCM3.2 H, while the future experiments HFD use 
ensemble averages of projected SSTs from the CMIP5 
experiments. Furthermore, it should be noted that the 
present experiments HPD were generated using four 

different initial perturbations (m00-03) to estimate 
internal uncertainty, but the future experiments HFD 
run were only generated for a single member of each 
RCP scenario.

The second dataset we used was the Database for 
Policy Decision-Making for Future Climate Change 
(d4PDF/d2PDF). This large ensemble dataset was men
tioned in the introduction and created to help assess 
changes in climate extremes (Mizuta et al. 2017; Ishii 
and Mori 2020). This dataset, denoted the d4PDF 
ensemble hereafter, was generated using the same 
model (MRI-AGCM3.2 H) for the scenario projection 
but was forced with different future climate conditions. 
Although each ensemble member for both the present 
and future climate conditions was integrated for 
60 years, the present climate condition in the d4PDF 
ensemble dataset uses SST observations as the lower 
boundary condition, while the future climate condition 
uses six different SST warming patterns based on the 
CMIP5 experiments. Additionally, the six future SST 
patterns were perturbed with 15 initial ensembles, 
giving a total of 90 ensemble members (d4PDF ensem
ble present has 100 members). The present climate 
SSTs for the d4PDF ensemble include observed warm
ing trends. On the other hand, the future SSTs of 
d4PDF ensemble are based on the +2 K or +4 K warmer 
global mean SSTs with the addition of natural variabil
ity derived from observations detrended to the 
monthly SST patterns of six different climate models 
from the CMIP5 RCP8.5 experiments (CCSM4, GFDL- 
CM3, HadGen2-AO, MIROC5, MPI-ESM-MR, and MRI- 
CGCM3) (see Mizuta et al. 2017 in detail). Each SST 
trend was rescaled by a multiplying factor that forces 
the MRI-AGCM3.2 to simulate a global-mean surface air 
temperature equivalent to each warming level (see 
Mizuta et al. 2017; Ishii and Mori 2020); therefore, 
a global mean of +2 K and +4 K conditions are added 
exactly to the present climate condition. Aside from 
the significant difference in the number of runs, the 
present experiments of the d4PDF ensemble and the 
150-year scenario are basically the same, except that 
the SST values for the latter follow the guidelines 
according to the HighResMIP experiment.

The third dataset we used was for validation pur
poses and comprised of a 55-year long-term atmo
spheric reanalysis (JRA-55; Kobayashi et al. 2015) and 
SST observational (COBE-SST; Centennial in-situ 
Observation-Based Estimates of the variability of SST 
and marine meteorological variables; Ishii et al. (2005)) 
data by the Japan Meteorological Agency (JMA). This 
reanalysis data is simply referred to as the JRA-55 rea
nalysis hereafter.

2.3. MPS optimization and validation

The MPS model needs to calibrate the empirical coeffi
cient Krev (or K) in Eq. (5) for the wind-induced surge for 
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each bay. The wind-induced surge coefficient Krev is 
dependent on the bathymetric coefficient K , which is 
given by the cross-sectional bathymetry described in 
the previous section and can be calculated using 
a reference storm surge simulation conducted by 
a dynamic model. The calibration needs a variety of 
storm surge simulations, including a worst-case track 
simulation for any TC condition. We used a series of 
150-year scenario global storm surge projection results 
that consider climate change (Shimura et al. 2022) and 
were calculated using the unstructured-grid ADCIRC 
model (Pringle et al. 2021). The calibration of MPS 
requires extreme storm surge events, and the more 
simulations of the teaching data, the better. 
Therefore, we added other previous storm surge simu
lations (Yasuda et al. 2014), which use the SuWAT 
model (Surge-Wave-Tide coupled model) by Kim, 
Yasuda, and Mase (2010) for Osaka and Ariake Bays in 
Japan.

Based on the previous study (Mori et al. 2021b), the 
RMSEs of the MPS model to the dynamic model for the 
worst-case track are 0.05 m, 0.11 m, and 0.03 m for 
Tokyo Bay, Osaka Bay, and Ise Bay. Following the pre
vious study, we applied the calibration MPS for six 
major bays in East Asia and Japanese bays along the 
Pacific coast. Figure 3 illustrates the calculation proce
dure used for calibrating the wind-induced surge con
stant Krev . ADCIRC calculations for the present and 
future climate conditions were performed for a total 
of 205 years seamlessly (Shimura et al. 2022) and give 
enough length and quality of storm surge events to 
calibrate the MPS model over the entire domain along 

the Pacific. The ADCIRC simulations were analyzed to 
obtain the peak surge heights, peak time, and TC 
approaching angles for each bay. There is a time lag 
between when a TC is closest to the targeted bay and 
when the maximum storm surge occurs. We have set 
this peak time difference to 24 hours in order not to 
remove any cases of large TCs passing far from the bay. 
Additionally, in the ADCIRC simulations, semi-diurnal 
water level fluctuations due to atmospheric oscillations 
due to diurnal changes in the atmosphere were clearly 
observed in the Yellow Sea and the East China Sea due 
to the wide and shallow water environment in com
passion the other area (e.g. Dai and Wang 1999). Thus, 
these semi-diurnal oscillations were excluded using 
Fourier analysis in those seas, which include Incheon 
Bay. Based on the core data from the ADCIRC simula
tions, the empirical coefficients Krev for the wind- 
induced surge were calibrated to minimize the RMSE 
of peak surge heights for selected cases with a wind 
angle within � 45° to the major bay axis of each bay. 
In the case of Tokyo Bay and Ise Bay, the simplified 
model by Eq. (3) and (5) tends to overestimate the 
combined surges. Therefore, the minimum depth was 
defined as 10 m, and the integration endpoints of Eq. 
(5) were modified carefully to minimize the RMSE of 
peak surge heights. The calibrated Krev gives a RMSE 
less than 0.25 m in all bays except for Matsushima 
(0.32 m), Ise Bay (0.53 m), and Tokyo Bay (0.50 m). 
Figure 4 shows the characteristics of the wind- 
induced surge coefficient Krev for all the bays in 
Japan. The horizontal axis shows the estimated Krev ; 
the vertical axis shows the estimated wind-induced 

Figure 3. Flow chart for estimating wind-induced surge coefficient (Riyadh) and relation with MPS model.
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surge ζw normalized by the given wind speed W, and 
the color indicates the wind angle alignment with the 
bay (zero corresponds to the inward major-bay-axis 
direction). The optimized results follow the line with 
the unit slope, and the estimated wind-induced surge 
ζw for selected cases with a wind angle within � 45°, 
are generally located near this line. Thus, the calibra
tion of Krev for the worst track has been achieved. It 
should be noted that Figure 4 includes Krev for all of the 
targeted bays and indicates its range; the bays with 
large Krev appear to be sensitive to the wind-induced 
surge, while the bays with smaller values less so.

The empirical coefficient Krev expresses the local 
surge amplification characteristics of each bay. It is 

interesting to analyze the relationship between the 
empirical coefficient and bay geometries. In Figure 5, 
a scatter plot is shown between Krev and the bay 
length-to-depth ratio L/h for all the bays. The different 
colors indicate the different regions or different dyna
mical storm surge models used for calibration. In addi
tion, the circle and triangle marks indicate closed/semi- 
closed or open bay shapes, which are based on the 
maximum bay width-to-bay mouth width (offshore) 
ratios. Notice that a larger value of Krev indicates stron
ger wind-induced surge effects for the same wind 
speed, and a larger value of L/h indicates a longer 
and shallower bay shape in the major axis direction 
(in a simple rectangular bay geometry, the wind- 
induced surge is proportional to L/h as shown in equa
tions (4) and (5)). Except for Shanghai, which has a very 
shallow open bay, most of the bays with larger Krev 

values tend to be closed/semi-closed. Also, the effect 
of long-period bay oscillations (e.g. seiche, tidal sub- 
oscillation) on storm surge is considered to be strong 
since this effect is indirectly incorporated into the cali
bration process due to the training data used by the 
dynamic storm surge model. Aside from Matsushima, 
bays with an estimated Krev coefficient larger than 6 
show significant changes in storm surge and will be 
discussed in the following section. In addition, bays 
with a large value of Krev will have a large maximum 
wind-induced surge, resulting in a potentially large 
storm surge. Therefore, all the bays in Figure 5 which 
have a large value of Krev – Tokyo Bay, Osaka Bay, Ise 
Bay, Ariake Sea, Incheon, Qingdao, and Shanghai – are 
expected to have potentially large projected future 
changes due to climate change. This will also be ana
lyzed in the next section.

Figure 4. Relationship between wind-induced surge coeffi
cient (Krev) and estimated wind-induced surge (ζw) normalized 
by wind speed. Wind direction relative to bay is indicated by 
color bar.

Figure 5. Relationship between bay length-depth ratio and wind-induced surge coefficient. Bay region and type are indicated by 
color (Japan: black, brown and blue; East Asian: red) and shape (closed: circles; open: triangles).
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3. Biases and future changes in the MPI

Our analysis mostly concentrates on variations of the 
MPI in the western North Pacific Ocean (WNP). For 
simplicity, some of the analyses use monthly mean 
MPI data spatially averaged over the TC-prone WNP 
(defined here as 10–40°N and 100–180°E) and focus on 
the four most active TC months (July through October; 
hereafter referred to as TC season). Since it is not clear 
what relationship or bias the MPI has with TCs that are 
represented by GCMs, we also compare present and 
future changes (in TC intensity) between the derived 
MPI and TCs in GCMs, using the JRA-55 reanalysis 
(present) and d4PDF ensemble (future) datasets. TCs 
were picked up from the projections based on TC 
tracking methods by Webb, Shimura, and Mori (2019). 
The characteristics and validation of modeled TCs by 
MRI-AGCM have been discussed by Yoshida et al. 
(2017).

3.1. Biases in the MPI

Before analyzing future changes in the MPI, we will 
discuss biases in the MRI-AGCM for the present climate 
conditions. Figure 6 (top) shows the monthly mean 
MPI for September for the 150-year scenario, as well 
as Figure 6 (bottom) the spatial distribution differences 
with the JRA-55 reanalysis dataset. We can see that the 
September monthly mean MPI from the 150-year sce
nario dataset decreases monotonically off the Pacific 
coast of East Asia from the equator to the north. It has 
a value of about 940–950 hPa near the southern coast 
of Japan. Additionally, differences between the two 

MPI monthly means indicate that the 150-year scenario 
tends to be weaker than the JRA-55 reanalysis over 
most Pacific oceans. The differences between the two 
MPIs are about ±10 hPa, with a positive bias (under
estimation) from the equatorial region to the southern 
coast of Japan, and a negative bias (overestimation) 
north of this latter region. Since the SSTs for both 
datasets are climatologically equivalent, the main 
cause of this bias seems to be differences in the vertical 
distributions of air temperature; the JRA-55 reanalysis 
uses data assimilation for the vertical distribution of 
atmospheric temperature and other variables, while 
the d4PDF ensemble does not since it performs climate 
calculations.

3.2. Future changes in the temporal MPI in the 
WNP

In Figure 7, time series of (spatially) basin-averaged 
MPI are shown for the WNP that were calculated 
using the 150-year scenario and JRA-55 reanalysis 
datasets during the TC season. In order to understand 
the interannual characteristics of the MPI, TC seasonal 
means are shown with their 10-year moving averages’ 
respective standard deviations (STDs). Figure 7a shows 
the change in the TC seasonal MPI for the HPD four- 
ensemble-mean (blue), HFD RCP2.6 (yellow), HFD 
RCP8.5 (orange), and JRA-55 reanalysis (black) datasets, 
while panel (b) shows the change from each of the 
respective present climate conditions. Figure 7a) 
reveals a bias in the MPI calculations between the 
reanalysis and the present climate runs (HPD). 
Compared with the MPI in the reanalysis run, the 

Figure 6. Monthly mean MPI for period-averaged in September (top: present climate in 150-year scenario, bottom: difference 
between 150-year scenario and JRA-55).
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present climate run shows higher MPIs (i.e. weaker TCs) 
of about 10 hPa. As mentioned in the last section, the 
main cause of this bias in CAPE is due to differences in 
the vertical distribution of atmospheric temperature. 
Since the SST boundary conditions for the AGCM in the 
present climate run are basically equivalent to those in 
the reanalysis run, the major bias in the MPI in the 
present climate run HPD depends on a bias in CAPE. 
We did not analyze it in detail due to out of the scope 
of our study. The bias correction is a future work due to 
the complexity of the multivariate relationship. 
Furthermore, the MPI for the 150-year scenario runs 
shows continuous strengthening trends from the pre
sent to the end of the 21st century; the MPI in the 
RCP8.5 run shows a monotonically decreasing trend, 
while the RCP2.6 run stabilizes around the middle of 
the 21st century. Future changes in the 10-year moving 
averages of the (TC seasonal) MPI indicate reductions 

of −3.5 hPa and −8.9 hPa for the RCP2.6 and RCP8.5 
scenarios (respectively) at the end of the century.

Next, we examine the characteristics of the signal 
(both biases and future change) found in the MPI from 
the 150-year scenario by comparing it with the d4PDF 
ensemble. In Figure 8, the time series of the ensemble 
mean of each SST cluster in the d4PDF ensemble data
set are compared with the 150-year scenario during 
the TC season. Similar to Figure 7, the time series show 
(spatially) basin-averaged MPI for the WNP during the 
TC season but for the +2 K and +4 K warming condi
tions. Here, Figure 8 shows that the MPI from the 150- 
year scenario is generally consistent with the d4PDF 
ensemble total (ensemble) means (both present and 
future); additionally, it also shows that interannual 
changes in the MPI are relatively large in the d4PDF 
ensemble dataset, as well as differences among the 
different future SST conditions. Based on the 

Figure 7. Time series comparisons of MPI (basin-averaged over WNP) during TC-season for 150-year scenario and reanalysis 
datasets. Colors represent different runs; blue: HPD four-ensemble-mean, yellow: HFD RCP2.6, Orange: HFD RCP8.5, and black: JRA- 
55 reanalysis. Thin lines represent TC-seasonal means while thick lines and shaded regions represent their 10-year moving 
averages and STD widths, respectively.

Figure 8. Time series comparisons of MPI (basin-averaged over WNP) during TC-season for 150-year scenario and d4PDF ensemble 
datasets. Blue yellow, and Orange lines and shadings for 150-year scenario runs are same as in Figure 6. In d4PDF ensemble 
dataset, colors in legend represent future SST-cluster ensemble means (not moving averages as in Figure 6), while black lines and 
gray shadings represent present and future total ensemble means and spreads of d4PDF ensemble datasets, respectively.
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description paper of d4PDF (Mizuta et al. 2017), HA 
(HadGEM2-AO), MP (MPI-ESM-MR) and MR (MRI-GCM3) 
are El Niño–like pattern of SST change, but the others 
are typical SST warming in the eastern equatorial 
Pacific. The future projection based on El Niño–like 
pattern of SST shows similar MPI but the others are 
scattered. On the other hand, large peaks are observed 
around 40 years (1990 or 2070) from the start of the 
projection in the d2PDF/d4PDF ensemble dataset. This 
is also seen in the results of JRA55, and seems to be 
one of the major decadal variations. In addition, com
pared with the 10-year moving average of the JRA-55 
reanalysis MPI in Figure 7a, the d4PDF ensemble MPI is 
closer to the results of the 150-year scenario during the 
present climate, indicating that there is a similar bias 
between the d4PDF ensemble and the 150-year sce
nario as described above.

3.3. Future changes in the spatial MPI in the WNP

In order to examine future changes in the MPI in the 
WNP in more detail, we analyzed the latitudinal char
acteristics of future changes in the mean (total ensem
ble) MPI of the d4PDF ensemble dataset between the 
TC season and September. Figure 9 shows the results of 
the zonally averaged MPI in 10° latitudinal bands for the 
full WNP (extended to cover 10–60°N here). For 
September, the month with the largest future changes, 
the maximum future changes in the MPI are observed 
in the 30–40°N band where the East Asia countries are 
located, with average changes of −7.8 hPa and −16.5 
hPa for the +2 K and +4 K warming conditions 

(respectively). These values are approximately three 
times larger than the TC seasonal mean future changes 
for the same latitudinal band. Therefore, future changes 
in TC intensity in the WNP strongly depend on both 
month and latitude. These results are consistent with 
the previous study of the MPI with the CMIP5 experi
ments (Mori et al. 2021b). Additionally, any future 
changes in the MPI at higher latitudes may lead to 
a northward expansion of the developmental limit for 
a TC in the WNP, which necessitates a more detailed 
analysis (e.g. Kossin, Emanuel, and Camargo 2016).

In typical time-slice experiments of 20 to 30 years, the 
projection period is too short to effectively use the MPI to 
evaluate future changes in the maximum intensity of 
a TC. In addition, time-slice experiments also typically 
include a warming trend, so the projections are non- 
stationary. Since the MPI theory only relies on back
ground environmental conditions, the first problem can 
be overcome by using a large ensemble dataset; how
ever, the accuracy and any biases of future changes will 
still need to be verified. Figure 10 shows the future 
changes in the WNP in the mean MPI for all d4PDF 
ensemble members (+4 K scenario) during the TC season 
and the mean minimum central pressure of the top 10% 
strongest TCs (central pressure at maximum develop
ment) as directly extracted from the d4PDF ensemble 
members (denoted SLP10%). The future changes in the 
mean MPI of the TC season and future changes in the 
SLP10% of the GCM TCs with the top 10% intensity are 
similar in value (−15% approximately) but are different 
spatial distributions. These results suggest that the max
imum potential TC intensity represented by the MPI is 
equivalent to the top 10% of the intensity in the model. In 
the Northwest Pacific results shown in Figure 10, MPI and 
SLP10% TC is weakly correlated, and it’s the correlation 
coefficient is 0.5 approximately. The correlation coeffi
cient is highest when the SLP10% TC distribution is 
shifted 3.4 degrees to the south. Both spatial distributions 
show significant future changes in the north-south direc
tion, which confirms the latitudinal dependence of the 
mean MPI of TC season and the future changes of GCM 
TCs as well as the future changes of MPI in the latitudinal 
direction shown in Figure 9. While the spatial distribution 
of MPI sharply increases or decreases in a latitudinal 
direction, the spatial distribution of SLP10%TC has 
a much larger north-south spread. This latitudinal differ
ence is interpreted/evaluated as a spatial bias of the TC to 
the maximum development as assessed by the MPI.

Due to a large number of ensembles, results from the 
d4PDF ensemble dataset can be used to discuss the MPI 
occurrence probabilities directly. Here, we compare dis
crete probability distributions of the mean (total ensem
ble) MPI in the typhoon-prone WNP for different 
ensemble sizes. Figure 11 shows changes in the prob
ability distributions of the (spatially) basin-averaged MPI 
for the WNP that were calculated using the d4PDF 
ensemble dataset with an increasing number of 

Figure 9. Zonal distribution of future changes in MPI (tempo
rally and spatially averaged in 10° latitudinal bands over WNP) 
for d4PDF ensemble dataset. Red and blue lines (shadings) 
represent total ensemble means (spreads) during September 
for +4 K and +2 K future conditions, respectively; solid black 
and dashed lines represent total ensemble means in 
September for +4 K and +2 K future conditions, respectively.
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ensemble members during the TC season. Since the 
typhoon months are defined as July through October, 
there are 120 months of average MPI for each member. 
An equal number of members were selected from each 
SST cluster in the future climate condition. The blue and 
red colors represent the present and +4 K future climate 
conditions (respectively), while the triangles and circles 
on the horizontal axis represent the top 1st and 5th MPI 
percentiles (respectively). Figure 11 shows that the MPI 
method does not require a large number of ensembles, 
but the distribution becomes smoother as the number 
of ensembles increases. By comparing the typical per
centile values, an ensemble with as few as six members 
can produce results almost as good as the larger ensem
bles. Since Figure 8 shows a large variability among the 
different future SST clusters, it is ideal to use enough 
future SST variations from AOGCMs rather than increas
ing the number of initial ensemble members.

4. Future changes in the MPS

Since the statistical characteristics of the MPI from the 
d4PDF ensemble and the 150-year scenario datasets are 
clear, we have used the 150-year scenario to perform the 

MPS analyses for the targeted bays in East Asia and Japan. 
The MPS are calculated using the monthly mean MPI 
values of the four nearest grid cells (central pressure 
and maximum wind speed), as documented in Figure 1. 
A sample spatial distribution of the MPI is shown in 
Figure 6 for the September monthly mean over the 
dataset period; since the MPI field is smooth, the differ
ences between the average and any of the nearest MPI 
gridded neighbors depend on the latitude. It should be 
noted that MPI of 150-year scenario datasets has a bias 
that is overestimated and underestimated biases in the 
south and north around 30 degrees north latitude, 
respectively. Here, we will analyze each bay’s long-term 
changes in the mean MPS during the TC season (from 
July to October).

4.1. Future changes in the MPS at major bays in 
East Asia

In Figure 12, time series of the MPS are shown for the 
East Asian bays. As in Figure 7, TC seasonal means are 
shown with their 10-year moving averages and respec
tive STDs for the present climate HPD four-ensemble- 
mean (blue), future climate HFD RCP2.6 (yellow), and 

Figure 10. Future changes (+4 K) in mean MPI of TC season and SLP of strong TCs calculated by d4PDF ensemble and their two- 
dimensional cross-correlation (1.25X1.25-degree grid). (a) Future change in mean MPI, (b) Future change in the mean SLP of the 
top 10% strongest typhoons, (c) Cross-correlation function between (a) and (b) (red box indicates significant area for cross- 
correlation analysis).
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future climate HFD RCP8.5 (orange) runs. Figure 12 
shows that the MPS will increase in the future for 
most East Asian bays. As with future changes in the 
MPI (but with an inverse trend), the MPS in the RCP8.5 
run shows a monotonically increasing trend, while (the 
MPS in) the RCP2.6 run increased initially but stabilize 
around the middle of the 21st century.

Furthermore, the gray horizontal line in Figure 12 
shows the maximum storm surge from the dynamic 
storm surge simulation used for calibrating the MPS 
model. The maximum MPS (present and future) 
exceeds the dynamically simulated maximum storm 
surges except at Shanghai, Busan, and Masan. Since 
the MPS method estimates the maximum possible 
value, the MPS should be higher than (but within 
range of) the maximum values of the dynamical 
model simulations. Thus, the overestimation of the 
MPS for Shanghai, Busan and Masan indicates that 
the Krev value needs to be reduced, while underesti
mating the Bohai Sea indicates the opposite. There are 
several reasons for the difference between the MPS 
and the model maximum. First, Krev value may not 
have been estimated properly by the calibration pro
cess. This is the case for Masan, which has a more 
complex bay shape, and Shanghai, which has a wide 
and shallow bay shape than assumed in the MPS fra
mework. On the other hand, based on the relationship 
between L/h and Krev in Figure 5, the three bays are not 

an outlier to other bays. Therefore, it is not the main 
cause of the error. Second, the model maximum esti
mate may be missing events, and a strong typhoon 
may not have passed over the worst-case track. Third, 
input TC information-related error, the bias of MPI, may 
cause the difference. However, we do not know the 
detailed source of error to optimize the results for 
these three cities at the moment, and more detail of 
calibration is necessary with more teaching datasets 
for these bays. Overall, though the results are generally 
consistent; however, further optimization is needed for 
some bays, especially open ones.

4.2. Future change in the MPS along the Pacific 
coast of Japan

Although there are many long-term assessments of 
storm surges for specific bays and periods in Japan, 
few comprehensive studies cover wide areas or con
duct a nationwide analysis with consistent forcing (e.g. 
Yasuda et al. 2014). The advantage of the MPI-MPS 
framework is a low-cost calculation with a consistent 
climatological approach that uses monthly environ
mental values and is based on the maximum possible 
assumption. Here, we focus on the future projected 
changes in the MPS along the Pacific coast of Japan 
(using the 150-year scenario dataset).

First, we analyzed the statistical distributions of the 
MPS in the Pacific Japanese bays during the TC season 
(using the 150-year scenario dataset). In Figure 13a, 
a box plot shows the quartile distributions (medians, 
white dots; lower and upper quartiles, solid boxes; 0th 

and 100th percentiles, whiskers; and outliers, colored 
dots) of the MPS in each bay for the present climate 
HPD four-ensemble-mean (blue), HFD RCP2.6 (yellow), 
and HFD RCP8.5 (orange) runs. There are positive 
changes in the (MPS) quartiles for most of the bays, 
with larger increases in the higher global warming 
scenario (RCP8.5). As in Figure 12 and Figure13a, the 
gray lines indicate the maximum storm surge from the 
dynamic storm surge simulations (ADCIRC and 
SuWAT), which generally coincide with the upper quar
tiles of the box plots at many of the bays. This indicates 
the consistency of the MPS assumption with the 
dynamic storm surge model. Basically, the storm 
surge height by the MPS should be higher than the 
dynamic storm surge simulation. Comparing the 
results of the calibrated MPS with the teaching dataset 
(i.e. dynamic model), the results of the dynamic storm 
surge simulation should not exceed the results of the 
MPS. This is an important indicator for the calibration 
and validation results of the MPS in each bay. The 
overall performance of the MPS model is better for 
the Japanese bays than the East Asia ones and may 
be related to the size and shape of the bays. In addi
tion, the MPS spatial distribution along the Pacific 
coast shows that the median MPS are higher in the 

Figure 11. Comparison of probability density distributions of 
MPI (basin-averaged over WNP) for different ensemble sizes 
during TC-season of d4PDF ensemble dataset. Blue and red 
colors represent present and +4 K future climate conditions, 
respectively; triangles and circles represent top 1st and 5th 

percentiles, respectively.
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southwestern parts of Japan; this can be attributed to 
the TC tracks.

In Figure 13b, a lollipop plot shows the future change 
in the MPS in the future climate scenarios from the 
present climatology (∆MPS) during the TC season. The 

solid circle and triangle markers indicate the TC seasonal 
means and STDs (respectively). There are two specific 
characteristics of ∆MPS. First, larger future changes (in 
the MPS) can be seen in bays with larger MPS in the 
present climate condition HPD, such as in Tokyo Bay 

Figure 12. Time series comparisons of MPS for East Asian cities during TC-season for 150-year scenario dataset. Colors represent 
different runs: blue, HPD four-ensemble-mean; yellow, HFD RCP2.6; and Orange, HFD RCP8.5. Thin lines represent TC-seasonal 
means while thick lines and shaded regions represent their 10-year moving averages and STDs, respectively; gray line represents 
maximum storm surge by dynamic model.
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(#59), Ise Bay (#67), Osaka Bay (next to #69), and Ariake 
Bay (next to #75). Second, larger future changes (in the 
MPS) are located in the southern and western areas of 
Tokyo Bay. First, future changes in the MPI in the western 
part than the northern part of Japan. Additionally, these 
bays have characteristics occurring large wind-induced 
surges as shown in Figure 5. Therefore, it can be 
reworded to the typical intensities and tracks of TCs 
that make landfall in Japan, which generally approach 
from the west before turning toward the northeast. The 
largest projected future changes of the MPS occur in 
Ariake Bay in the RCP8.5 run, with an additional water 
level of +0.72 m from the present run HPD. Similar 
magnitudes of future changes are also projected in 
Tokyo Bay, Ise Bay, and Osaka Bay, which are long and 
shallow bays in Japan. On the other hand, the relative 
differences between the RCP scenarios is generally larger 
north of 38°N than south. Regarding temporal changes 
of the MPS, the time series are similar to those of the MPI, 
as shown in Figure 7. In the RCP2.6 experiment, the peak 
MPS in most bays (except Hokkaido) is found to occur 
during the period 2070–2080; likewise, in the RCP8.5 
experiment, the MPS increases monotonically toward 

the end of the century, similarly to the MPI intensity 
(figures excluded due to a manuscript limitation).

4.3. Sensitivity of the MPS along the Pacific coast 
of Japan

The MPS method estimates the maximum potential 
storm surge height based on the MPI values expressed 
in terms of minimum pressure and maximum wind 
speed. In Figure 14, a scatter plot compares future 
changes in the MPS (∆MPS) that are divided by two 
different MPI inputs ∆Vmax and ∆Pmin in each bay for 
the (a) HFD RCP2.6 and (b) HFD RCP8.5 runs, respec
tively. The horizontal and vertical axes are divided by 
future changes of maximum wind speed (∆Vmax) and 
minimum central pressure (∆Pmin) in each bay, respec
tively. The circles and triangles represent closed/semi- 
closed and open bays (respectively), while crosses 
represent simulations conducted by the SuWAT 
model. Most of the bays in Figure 14 fall below the 
1–1 relation shown in the black line, and therefore, the 
sensitivity of the MPS due to wind speed is greater 

Figure 13. Distributions of bay-averaged MPS along Pacific coasts of Japan during TC-season for 150-year scenario dataset; bay 
names and identifiers are listed along horizontal axis (see Figure 2 for locations). Box plot in panel (a) shows medians (white dots), 
lower and upper quartiles (solid boxes), 0th and 100th percentiles (whiskers), and outliers (colored dots); lollipop plot in panel (b) 
shows means and STDs (large and small respectively). Colors represent different runs: blue, HPD four-ensemble-mean (top only); 
yellow, HFD RCP2.6; and Orange, HFD RCP8.5. Gray line represents maximum storm surge by dynamic model.
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than that due to atmospheric pressure. Interestingly, 
the relative ratio of MPS does not appear to be sig
nificantly sensitive to the RCP scenario, even though 
the wind-induced surge is parameterized as a function 
of the square of wind speed as shown in Eq. (4). In 
general, the northern bays exhibit relatively greater 
sensitivity to atmospheric pressure, while the southern 
bays exhibit greater sensitivity to wind speed. 
Additionally, the ratio of ∆MPS/∆Pmin to ∆MPS/∆Vmax 

tends to decrease in the south, indicating that the 
sensitivity of wind speed to atmospheric pressure 
increases southward. Furthermore, the closed/semi- 
closed bays tend to deviate from the linear relationship 
more than the open bays. And finally, the bays with the 
highest sensitivity to wind speed correspond to bays 
with the largest future changes in the MPS, as shown in 
Figure 13. These results indicate hot spots for future 
changes in storm surge.

5. Conclusion

This study evaluates the maximum potential intensity 
and storm surge of TCs for bays in East Asia and along 
the Pacific coast of Japan using the MPI-MPS model 
framework. Future changes of the MPI are analyzed for 
the WNP using two climate projection datasets gener
ated by the high-resolution MRI-AGCM3.2 H model: 
150-year continuous scenario runs (HighResMIP) and 
large ensemble (d4PDF/d2PDF). Trends and spatial 
characteristics of future change are evaluated with 
sensitivity analyses for different global warming sce
narios. The following is a summary of the major find
ings of this study.

(A) Empirical coefficients for the wind-induced 
surge were estimated for seven bays in East 
Asia and 51 bays in Japan. Shallower and longer 
bays have larger wind-induced surge coeffi
cients (Krev).

(B) Interannual changes in the MPI over WNP show 
a monotonically decreasing trend (increasing 
TC intensity) at the end of the century. The 
decreasing (intensifying TC) MPIs at the end of 
the century are −3.5 hPa and −8.9 hPa for the 
RCP2.6 and RCP8.5 scenarios (respectively) 
using the 150-year scenario dataset.

(C) Future changes in the MPI are greatest during 
September in the 30–40°N latitude band of the 
extended WNP, with average changes of −7.8 
hPa and −16.5 hPa for the +2 K and +4 K future 
conditions (respectively) using the d4PDF 
ensemble dataset.

(D) Future changes in the MPS were projected, and 
it was confirmed that changes in the MPS are 
larger in bays where large storm surge events 
have occurred in the past.

(E) Sensitivity analysis results show that the MPS 
sensitivity to wind speed is greater in south
western Japan and tends to be larger in 
closed/semi-closed bays.

These results suggest that the future trends of the 
maximum storm surge in East Asia can be understood 
by targeting bays in hot spots.

This paper applied a framework for MPI and MPS 
derived from climate values without using extreme 
typhoon projections in GCMs, which are subject to 

Figure 14. Sensitivity analysis of future changes of MPS along Pacific coast of Japan (with bay names marked) during TC-season for 
150-year scenario dataset; horizontal and vertical axes are MPI ratio to future changes of maximum wind speed and minimum 
central pressure, respectively. Transition from north to south is indicated by color, while closed and open bays use circles and 
triangles, respectively.
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large statistical uncertainty to the Pacific coast of Japan 
and the major coastal cities in East Asia. It focuses on 
providing examples of future projections as first-order 
approximations covering East Asia. There are several 
further expanding frameworks and taking uncertain
ties to improve the projections. First, the improve
ments to MPI are described below. As the spatial 
distribution of MPS is different from the Pmin by TC 
tracks, it is necessary to improve the correlation 
between MPI and TC tracks. In addition, there will be 
bias corrections for the climatic environment as SST, 
CAPE, and others. The uncertainty of the MPI and Pmin 
and the pressure-wind relationship need to be imple
mented in the framework. Second, the improvements 
to MPS are described below. The current MPS theory 
assumes the worst-case typhoon track and is therefore 
applicable to a limited number of bays. It is necessary 
to expand that limitation for the assessment for gen
eral bays. Furthermore, we plan on discussing the 
occurrence probability in more detail. Finally, it is 
important to use different climate projections for the 
MPS and related analyses.
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