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We study holographic entanglement entropy in dS/CFT and introduce timelike entanglement entropy in
CFTs. Both of them take complex values in general and are related with each other via an analytical
continuation. We argue that they are correctly understood as pseudoentropy. We find that the imaginary part

of pseudoentropy implies an emergence of time in dS/CFT.

DOI: 10.1103/PhysRevLett.130.031601

Introduction.—Holography in de Sitter (dS) space, so
called the dS/CFT correspondence [1], has been much
more mysterious than that in anti—de Sitter (AdS) space [2].
This is mainly because the dual conformal field theory
(CFT) lives on a spacelike surface and the time coordinate
emerges from a Euclidean CFT. Such CFTs turn out to be
nonunitary, being exotic compared with text book examples
of CFTs. Limited examples of CFTs dual to de Sitter spaces
have been known in four dimensional higher spin gravity
[3] and in three dimensional Einstein gravity [4,5].
Holography in two dimensional de Sitter space has also
been developed [6,7]. The nonunitary nature of dual CFTs
can be seen from the absence of spacelike geodesics
between two distinct points on the dS boundary at future
infinity. This makes the holographic entanglement entropy
[8-10] complex valued [5,11-15].

In this Letter, we will argue this complex-valued quantity
can be properly understood as pseudoentropy introduced
in [16] (refer to [17] for a closely related quantity), rather
than the standard entanglement entropy, which is real
and non-negative. Pseudoentropy is defined as follows.
Decomposing the total Hilbert space into those of sub-
systems A and B, we introduce the reduced transition
matrix for two pure states |y) and |¢), by

= Ti, [|l//><fﬂ|}

(plw)

Finally, pseudoentropy is defined by
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SA = —Tr[TA 10g TA]. (2)

See Refs. [18-33] for further developments.

We consider pseudoentropy in dS/CFT because reduced
density matrices in the dual Euclidean CFT are not
Hermitian. Later, we will also point out that an imaginary
part of entanglement entropy, which is properly understood
as pseudoentropy, naturally arises in a timelike counterpart
of entanglement entropy in standard CFTs. This is defined
by rotating a spacelike subsystem into timelike one, via an
analytical continuation. Indeed, we will show that the
pseudoentropy in dS/CFT and the timelike entanglement
entropy in AdS/CFT are directly related. Refer to [34—40]
for earlier discussions on temporal extension of quantum
entanglement, which are different from ours.

Pseudoentropy in dS/CFT.—Consider a d + 1 dimen-
sional de Sitter space (dS,, ) in global coordinate,

ds® = Rig(—dr* + cosh?zdQ?). (3)
We assume the Euclidean instanton, i.e., the semisphere
ds® = Ris(dr% + cos’tpdQ?), (4)

creates the de Sitter universe at 7; = 7 = 0 and later the
Lorentzian evolution occurs following (3) for ¢ > 0. Then
in this setup of the dS/CFT [41], the gravity is dual to a
Euclidean CFT on S?. We can define the reduced density
matrix p, by choosing a subsystem A on the equator of S¢
as depicted in Fig. 1.

The dS/CFT relates the CFT partition function Zcgy to
the Hartle-Hawking wave function of dS [41]:

Pysldol = Zerrldol, (5)

where ¢, is regarded in the bulk and boundary as a
boundary condition for fields ¢ at the future boundary
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FIG. 1. The reduced density matrix p, of a CFT in dS/CFT gets
non-Hermitian, which leads to pseudoentropy. Here, we consider
a CFT on S, i.e., the boundary of de Sitter space.

and a source in the dual CFT, respectively. The wave
functional Wyg is obtained by path integrating all fields:

Wisldhol = / DpeiSeihy,, (6)

where W, denotes the initial state defined by a Euclidean
path integral. Therefore, Zcpr|¢ho] takes complex values in
the classical saddle point approximation. Assuming d = 2
for simplicity, it is given by the Liouville action (this was
evaluated in [42] for its complement region):

Zepr = €75,
ic
Se =2, | £x[(019)° + (020 + e, (7)

where the metric on S? is described by ds* = % (dx? + dx3).
Here, cyg is defined by cys = [(3Rg4s)/(2Gy)]. Since the
path integral on the north and south semisphere gives
different states, the reduced density matrix p, becomes
non-Hermitian as illustrated in Fig. 1. In this way, the
entanglement entropy in dS/CFT should more properly be
regarded as the pseudoentropy. Similar treatment appears
in the context of non-Hermitian condensed matter systems
[43-45].

At d = 2, if we choose the subsystem A to be an arc with
the angle 6, on the boundary S?, the geodesic distance L4
between the two boundaries of A leads to

L 2 0
Sa —A——icﬁlog[gsin<—o>]+ﬂcds, (8)

T 4Gy 3 2 6

where the imaginary part comes from the timelike geodesic
in (3) while the real part does from the spacelike one in (4),
see Fig. 2. We introduced the UV cutoff ¢ of the CFT by
e’ = 2/e. We can check that this geodesic indeed satisfies
an extremization condition in a similar way to [5]. This
condition requires that the spacelike geodesic should be the
largest semicircle in the sphere. Thus, the real part does not
depend on the size of A. Furthermore, this real part is
identical to half the de Sitter entropy. Note that the de Sitter
entropy is given by the length of largest circle in the full
Euclidean dS;. This is the holographic pseudoentropy in
the global dS;.

3D hemisphere

FIG. 2. The geodesic that reproduces the pseudoentropy (8).

In the Poincaré dS;, ds® = Rign~2(—dn* + diz + dx?),
the holographic pseudoentropy for an interval A defined by
—x9/2 < x < xo/2 at ty = 0 reads

. Cds X0 TC4s
Sy =—-i—1 — —. 9
" i og<€)+ 5 9)

We can obtain these results (8) and (9) via the direct
computation of geodesic lengths. It would be interesting to
see if the path-integral optimization method [46,47] can
derive these results for S, in dS/CFT.

Timelike entanglement entropy as pseudoentropy.—
Interestingly, when we extend entanglement entropy to
timelike subsystems, which we call timelike entanglement
entropy, we encounter complex values even for standard
unitary CFTs. The entanglement entropy S, for an interval
A whose timelike and spacelike width are given by T, and
X, reads

. X2_T2
SA:CAdslogV 0 0’ (10)

3 €

where cags = [(3Raqs)/(2Gy)] is the central charge of the
dual CFT [48,49]. The timelike entanglement entropy is
obtained by setting X, = 0:

_—
Sa = 10g <€°> + A (11)

We note that this is related to the pseudoentropy (9) in
dS/CFT via an analytic continuation from AdS to dS:
Rags = —iRys, 7 = —in, t = —itp. We will argue that this
quantity is also correctly regarded as pseudoentropy rather
than entanglement entropy.

To see this, we consider its field theoretic calculation.
For illustration purposes, consider a free scalar @ with a
mass m in two dimensions. The space and time coordinate
are denoted by x and ¢, where the former is compactified
with the periodicity f. The action of the scalar field
reads

S — % /_ : dr /0 ! ax[(0,0)? - (0,0) — m2®?].  (12)
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Definition of timelike entanglement entropy.

FIG. 3.

Now, to calculate the timelike entanglement entropy,
we regard ¢ as the “space” direction and x as the Euclidean
time by rotating the spacetime by ninety degree, depicted
in Fig. 3. In this viewpoint we write the total partition
function as

Zg = Tr[e PH], (13)
where the “Hamiltonian” H reads

i

a=-1 /_ : A2 + (,0) — 0. (14)

Here, I1 = i0,® is the canonical momentum. In the mass-
less case m = 0, in terms of the standard positive definite
Hamiltonian (we again regard ¢ as a space coordinate)

1 0
Hcpr = E/ dilIP? + (0,@)°], (15)

the partition function is rewritten as

Zg = TrleiHarr], (16)
If we trace out B, the reduced density matrix p, reads

pa = Trp[ePHem], (17)
which is not Hermitian. Note also that the timelike
entanglement entropy is identical to the entanglement
entropy at imaginary temperature.

We introduce two different states by doubling the Hilbert
space similar to the thermofield double:

%) \/726 i(p+i6) "/2|n )i|n)s,

o) = \/—Z

such that we obtain

"L n), ), (18)

Troly) (| e/ProH
<(P‘ll/> _Trei(/JJri&)H

(19)

t

t=To/2

/

t=-To/2

FIG. 4. The left panel shows the spacelike geodesic (green
curve) in the Poincaré coordinate, which is embedded in the
global coordinate with an additional timelike geodesic (red line)
in the right panel.

where ¢ is an infinitesimally small UV regulator. In this
way, the timelike entanglement entropy for the reduced
density matrix (17) is an example of pseudoentropy (2).

In the dual AdS;, we can interpret the timelike entan-
glement entropy (11) as a geodesic length as follows. In the
Poincaré coordinate, ds® = R} ;gz7*(dz* — di* + dx*), the
relevant geodesic is identified with ¢ = \/EZ_T—%T‘:, via
the Wick rotation of the familiar semicircle geodesic,
depicted in the left panel of Fig. 4. Indeed its geodesic
length

R T
Sy = -AdSop Elog:o (20)

) dZ
4Gy / 2+ T34 3

explains the real part of (11). To understand the imaginary
part, we embed Poincaré coordinate in global one:
ds* = R3s(—cosh’pds® + dp? + sinh’pd6?), as sketched
in the right panel of Fig. 4. The Poincaré coordinate is
covered by the blue region and therefore we need to
connect the two end points at p = 0 and 7 = +(z/2) by
a timelike geodesic. Since the length is 7, this explains the
imaginal part iz(cg5/6) of (11).

If we consider the timelike interval with the length 7, in
the two dimensional CFT on a cylinder, the above global
AdS; geodesic leads to the following estimation of the
timelike entanglement entropy:

2
Sa :C’;ﬁlog Lsin@ﬂ +%m‘. (21)

It is also useful to note that this can also be obtained by
performing the analytical continuation f — —iff [remember
(17)] on the known finite temperature CFT result for a
length L interval A [49]

c s L
Sy = %lo {Esmh 7 } (22)

by setting f = 2z, L = 7 with € — —ie.
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FIG. 5. Space and timelike geodesics whose length gives the
timelike holographic entanglement entropy in the BTZ geometry.
For time intervals not symmetric about the origin (right panel) the
spacelike geodesics intersect the past and future singularities in
different locations.

At finite temperature, the gravity dual is given by the
Bafiados-Teitelboim-Zanelli (BTZ) black hole:

2

dr
ds* = —(r* — r2)di* + oy +r2d¢?,  (23)

where r,. = (2z/f). When A is a timelike interval with
length T, the timelike entanglement entropy can be found
again from the geodesic length, leading to

c s c
SAz%log[Emnh(ﬂ )]—i—% in. (24)

The spacelike and timelike geodesic gives the real and
imaginary part as depicted in Fig. 5.

Higher dimensional extension.—We can straightfor-
wardly extend the above holographic calculations to higher
dimensions. For simplicity, let us only consider the
Poincaré AdS,,

dz?> —dr* + dy* + dx?

2

2 _ p2
ds® = Ry -

(25)

where y is a direction that we regard as an alternative “time”
and x € R are the remaining directions. Here, we take a
hyperbolic subsystem A defined by > —x? > T3/4 as a
generalization of a temporal interval in the d = 2 case.
Introducing a radial coordinate & = V1> — x? for the unit
H4-2, the holographic entanglement entropy is evaluated by
varying a functional

5 = Ras_ Vol(H'=2) [ d 5[12,/1—5/( 2. (26)
A= 4G(d+1 L <

with a boundary condition £(0) = T,,/2. The resulting
extremal surface is the union of a spacelike surface & —
7> = (T3/4) and a timelike surface z*> — & = (T3/4). This
can be regarded as a generalization of Fig. 4 in d = 2. Thus,
we find

RI=1 T\ d—=2k=2
Sy = —295_ Vol (H2) i
A 4G(d+1 [Zd 2%k —2 (

iyal (45
+ 2r(g)2 ] (27)
for odd d and
Ri-1 = () [T\ -2
Sa :4G§ldfl Vol(h™ l d—2k- 2( 0)
G iyval (45
v o3 + @ 1 2

for even d, where Vol(H"2) denotes the volume of H9~2,
assumed to be properly regularized.

We can relate this result (27) to the entanglement
entropy for a spherical region [9] in Euclidean AdS,,
by an analytic continuation T, — —iT,, Vol(H%?) —
i972Vol(S“7?). After that, by taking another analytic
continuation from EAdS to dS; Rpagg — —iRys, € = —ié,
we obtain the pseudoentropy for dS,, | /CFT,. It is remark-
able that the resulting pseudoentropy has the real part

d—1_d/2
Rig'n

—_— 29
4Gy T >
which is identical to a half of the de Sitter entropy in dS,, ;.
When d = 2, this reduces to the real part zcy5/6 of (8). On
the other hand, all the divergent terms are purely imaginary,
which come from the timelike extremal surfaces in (3).

Numerical analysis.—Here, we present our numerical
checks for the timelike entanglement entropy illustrated in
Fig. 3 for 2D free scalar and free Dirac fermion theories.
We adapt the correlator method [50-52] to analyze timelike
entanglement. For the case of a continuous spatial direction
and discrete time direction on an infinite lattice, the relevant
correlators for a pure timelike region in the scalar theory are
given by

—ipwg

Trle (o)) = [ KON e

’

22 2wg
B dk th_lﬂ(l}q) ‘ ,
Trle PATI(H)T1()] = 2ﬂ%ekv—w, (30)

where wg (k) = \/m? + (4/€*)sin (k/ 2) and for the Dirac
fermion theory the correlators are given by

Sip 1 /ﬂ dk tanh(=ifoy)
2 27 2wy

sin k m
X .
m —sink

Trle 7AW ()W(7)] =

)eik(t—t’)’ (31)
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FIG. 6. Numerical results for timelike entanglement and the
corresponding fit functions for free scalar and Dirac theories.

where wy (k) = \/m? + (1/€*)sin’k (for our conventions
see the appendix of [53]). The important point in both
theories is that these correlation functions are the same as
the thermal state correlators in a theory with a standard
Hamiltonian after applying the analytic continuation
f — —if. The nontrivial point for our definition of timelike
Hamiltonian is that as the expression of A and Fig. 3 are
hinting, we apply m — im (the IR regulator in the CFT
case) and ¢ —» —ie (the UV cutoff) in these correlators in
order to get timelike entanglement entropy. Figure 6 shows
our numerical results which perfectly agree with our
analytic results.

It is worthwhile to note that the imaginary part can be
also captured in our numerical method by considering more
general regularization prescriptions such as e — —i%,
where a is a real number. The value of a solely affects
the coefficient of the imaginary part, which is independent
of the subregion length.

Discussions.—In this Letter, we argued holographic
entanglement entropy in dS/CFT and timelike entangle-
ment entropy in ordinary CFTs both should correctly be
understood as pseudoentropy. They are related to each
other via an analytical continuation. Our results strongly
imply the imaginary part of pseudoentropy describes an
emergence of time coordinate in holography. This general-
izes an emergent space from quantum entanglement
[54,55]. We expect this will help us understand the
basic mechanism of emergent time in dS/CFT in the near
future.
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Note added—Recently, we noted the preprint [56], which
also analyzes timelike entanglement entropy, and the
preprint [57], which has a partial overlap.
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