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RESEARCH

Association of cumulative monocyte 
to high-density lipoprotein ratio with the risk 
of type 2 diabetes: a prospective cohort study
Dan Wu1,2,3†, Yulong Lan1,3†, Yuancheng Xu7, Songna Xu2, Yuejun Huang2, Lois Balmer3, Gehendra Maharra4, 
Wencan Xu2*, Wei Wang3,4,5,6* and Shouling Wu8* 

Abstract 

Background: Recent studies have established that monocyte-derived inflammation plays a central role in the patho-
genesis of type 2 diabetes mellitus (T2DM). It is unclear whether chronic metabolic inflammation, reflected by the 
cumulative monocyte to high-density lipoprotein ratio (CumMHR), predisposes the general population to T2DM.

Methods: This study included 40,813 participants without diabetes from a real-life, community-based cohort 
(the Kailuan Study) attending a 2-year cycle of health survey since 2006. Cumulative exposure was obtained from 
2006/2007 to 2010/2011. Follow-up started at 2010/2011 and through 2020. Multivariable-adjusted Cox regression 
models were used to calculate the CumMHR-associated risk of incident T2DM.

Results: Over a median follow-up period of 7.98 (IQR: 5.74–8.87) years, 4,848 T2DM cases occurred. The CumMHR 
was positively associated with the risk of incident T2DM after adjusting for age, sex, smoking, drinking habits, physical 
activities, BMI, triglyceride-glycemia index, log(leukocyte count), log(hsCRP), blood pressure, renal function, and medi-
cation uses with adjusted HRs of 1.0 (ref.), 1.18 (1.05‒1.25), 1.17 (1.07‒1.27), 1.38 (1.26‒1.50), respectively, in CumMHR 
Quartiles 1, 2, 3 and 4. When follow-up ended at 2014/2015, the short-term (4‒year) adjusted T2DM risks in Cum-
MHR Quartiles 2, 3, and 4 were 1.14 (1.01‒1.29), 1.17 (1.04‒1.32), 1.40 (1.25‒1.58), respectively, relative to Quartile 1. A 
significant interaction between CumMHR and cumulative high-sensitivity C-reactive protein (CumCRP) was observed 
(P-interaction: 0.0109). The diabetic risk in the highest quartile of CumMHR was higher (1.53 [1.28‒1.84]) when 
CumCRP < 1 mg/L, attenuated with increasing CumCRP levels (1 ~ 10 mg/L) and disappeared in CumCRP ≥ 10 mg/L. 
Hypertension, overweight, or smoking habits further modified the CumMHR-associated diabetic risk.
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Background
The inflammatory nature of type 2 diabetes mellitus 
(T2DM) is well established. Monocytes and their derived 
macrophages have been proposed to be highly engaged 
in the pathogenesis of T2DM [1], encompassing islet 
inflammation, beta-cell malfunction, and impaired 
insulin signaling [1–4]. Obesity, a well-known cause 
of T2DM, exhibits prominent monocytosis [5], which 
enhances insulin resistance (IR) through the infiltration 
of monocyte-derived macrophages into adipose tissue 
[6]. Animal studies have reported increased monocy-
tosis in mouse models of diabetes [7, 8]. Despite a lack 
of specific monocyte data on human subjects with 
T2DM, observational studies have noted that increases 
in label-free leukocyte counts enhance the diabetic risk 
[9]. Multiple well-known risk factors (e.g., dietary hab-
its [10], sleep disruptions [11], and chronic stress [12]) 
for chronic metabolic diseases are involved in increased 
monocytosis.

Importantly, lipid metabolism has a profound effect on 
hematopoiesis. High-density lipoprotein (HDL) has been 
identified to negatively mediate monocytosis [13] and 
attenuate adverse monocyte-derived proinflammatory 
effects by suppressing monocyte proliferation, activation 
and migration [13–15]. The imbalance of monocytes and 
HDL-C, i.e., the monocyte-to-HDL-C ratio (MHR), has 
been proposed to indicate low-grade metabolic inflam-
mation [16]. The MHR was first found to elevate the 
risk of cardiovascular events among 340 patients with 
chronic kidney disease (CKD) in 2004 [16]. Results from 
later cohort studies supported that the MHR might be 
a novel marker of inflammation and potentially a prog-
nostic indicator of CVD [16–18] and kidney diseases [19, 
20]. Notably, one hallmark of frank diabetes is a low level 
of high-density lipoprotein cholesterol (HDL-C), result-
ing from the milieu of enriched triglycerides (TGs) and 
IR [21, 22]. As such, the high MHR may indicate a dete-
riorated proinflammatory status enhanced by elevated 
monocytosis and the specific HDL deficiency in diabe-
tes-prone milieu, hence being a potential candidate for 
assessing the inflammatory risk in diabetes. However, 
data supporting an epidemiological link between the 
MHR and T2DM incidence have been limited thus far.

Statistical data have substantiated the concern-
ing increasing trend of T2DM [23]. Identifying novel 

biomarkers is a promising way to improve the current 
risk prediction tools and offers new insights for the 
development of additional therapeutic targets of T2DM. 
In the present study, we took advantage of the longitu-
dinal cohort design of the Kailuan Study and used long-
term cumulative MHR to assess the chronic metabolic 
inflammatory exposure, aiding the application of MHR 
into community-based practice on T2DM prevention in 
the general population.

Methods
Study participants
The Kailuan Study, a large ongoing prospective real-life 
cohort study in Tangshan, North China, was initially 
designed to examine risk factors for chronic diseases 
(trial registration number: ChiCTR-TNC-11001489). 
Details of the study design are described elsewhere [24–
27]. In brief, participants in this cohort have undergone 
biennial health surveys since 2006/2007. The latest health 
survey was administered on Dec. 31, 2021. Each partici-
pant provided written informed consent before enroll-
ment. This current investigation was a subset analysis of 
the Kailuan Study, and it was approved by the Kailuan 
General Hospital Ethics Committee, China (2006‒2005) 
and the Human Research Ethics Committee of Edith 
Cowan University (2021‒03159‒BALMER).

For the current study, the exposure period was from 
Visit_2006/2007 to Visit_2010/2011. The follow-up 
started from 2010/2011 through Dec. 31, 2020. Base-
line description for the current study were determined 
according to the information at the commencement of 
follow-up. A flowchart of the participants in the cur-
rent study is shown in Fig. 1. Among 57,927 participants 
who attended the first three  health surveys  between 
2006/2007 and 2010/2011, we excluded  those with dia-
betes (n = 8865) and known cancer (n = 331) at base-
line, those with incomplete data on fasting blood glucose 
(FBG), monocyte counts, high-sensitivity C-reactive 
protein (hsCRP) levels, and HDL-C during the exposure 
period (n = 5456). We also excluded participants who 
did not attend any one of the follow-up health visits with 
FBG tests (n = 2462). A total of 40,813 participants were 
included in the final analysis. The number of participants 
and participation in the follow-up visits are reported in 
Additional file 1: Table S1.

Conclusions: Cumulative MHR may be a promising supplement to hsCRP for more comprehensively assessing the 
influence of metabolic inflammation on T2DM susceptibility. For primary prevention, targeting high CumMHR, espe-
cially in cases at low risk of diabetes defined by traditional risk factors, may further help reduce the diabetic risk.

Keywords: Type 2 diabetes, Cohort study, Monocyte to high-density lipoprotein ratio, Inflammation, Cumulative 
exposure
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Exposure
Cumulative exposure was assessed in an approximately 
4‒year (median 3.9, interquartile range [IQR]: 3.7‒4.2) 
period. The cumulative MHR (CumMHR) was calculated 
as [(MHR_Visit1 + MHR_Visit2)/2 × (date_Visit2  -  date_
Visit1)] +  [(MHR_Visit2 +  MHR_Visit3)/2 ×  (date_
Visit3  -  date_Visit2)] [28–30], where the MHR = the 
monocyte count/HDL-C. The cumulative monocyte 
count (CumMON), HDL-C (CumHDL-C), TyG (Cum-
TyG) and high-sensitivity C-reactive protein level (Cum-
CRP) were also calculated using the same algorithm. 
Subgroup analyses were performed according to the 
CumMHR, CumMON, and CumHDL-C quartiles.

Ascertainment of outcome
The primary endpoint of this study was the incidence of 
T2DM (International Classification of Diseases,  10th revi-
sion [ICD-10]: E11). Participants with FBG ≥ 7.0 mmol/L, 
a self-reported diagnosis by a physician, or a self-reported 
use of oral glucose-lowering medications with or with-
out insulin use were considered to have T2DM [31, 32]. 
Confirmation of participant mortality was performed 
with reference to the information from local government 
vital statistics offices [33]. The date of diabetes onset was 
defined as the first follow-up examination at which a par-
ticipant met the diagnostic criteria. The follow-up ended 
at the date of diabetes onset, death, or the last follow-up 
before Dec. 31, 2020, whichever came first. The second-
ary endpoint was the onset of impaired fasting glucose 

(IFG, defined as FBG levels ≥ 6.1  mmol/L [34]) among 
those without IFG during the exposure period.

Covariates
Sociodemographic, lifestyle, medical, and medication 
history variables were collected via face-to-face inter-
views using a standard questionnaire, as detailed else-
where [24]. Anthropometrics, including participant 
height, weight, and blood pressure, were assessed by 
trained physicians in accordance with standardized pro-
tocols. Laboratory assays encompassing routine blood 
tests (including leukocyte and monocyte counts), FBG, 
low-density lipoprotein cholesterol (LDL-C), TGs, total 
cholesterol (TC), and HDL-C as well as levels of creati-
nine, and hsCRP were measured at the central labora-
tory in Kailuan General Hospital using a Hitachi 7600 
autoanalyzer (Hitachi; Tokyo, Japan). As there were no 
available insulin data for calculating the HOMA-IR as an 
assessment of insulin resistance (IR), we used the triglyc-
eride-glycemia index (TyG) (calculated as ln [fasting tri-
glycerides (mg/dL) × fasting plasma glucose (mg/dL)/2] 
[35] and ultrasonography-measured fatty liver degrees 
(normal, gentle, moderate and severe [36]) as alternative 
assessments for IR [37]. The estimated glomerular filtra-
tion rate (eGFR) was calculated according to the Chronic 
Kidney Disease Epidemiology Collaboration Creatinine 
Equation [38]. Hypertension (ICD-10: I10) was defined 
as diastolic blood pressure (DBP) ≥ 90  mmHg, sys-
tolic blood pressure (SBP) ≥ 140  mmHg, self-reported 
use of antihypertensive drugs, or self-reported a prior 

57,927 participants (attended  the survey of visit_2006/2007,
visit_2008/2009 and visit_2010/2011) assessed for eligibility

17,114 ineligible
            8,865 with baseline diabetes
            331 with known cancer
            5,456 with missing of data in monocyte counts,     
                       HDL, hs-CRP between 2006/2007 and         
                       2010/2011
            2,462 did not attend the follow-up visit before
                       31 Dec. 2020

  40,813 included in final dataset

Fig. 1 Flowchart of study participants
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hypertension diagnosis. Blood pressure was catego-
rized as follows: normal blood pressure (SBP < 140  mm 
Hg and DBP < 90  mm Hg), grade I hypertension 
(140 ≤ SBP < 160  mm Hg or 90 ≤ DBP < 100  mm Hg), 
grade II hypertension (160 ≤ SBP < 180  mm Hg or 
100 ≤ DBP < 110  mm Hg), and grade III hypertension 
(SBP ≥ 180  mm Hg or DBP ≥ 110  mm Hg). BMI was 
calculated as weight (kg) divided by height squared 
 (m2) and participants were categorized as underweight 
(BMI ≤ 18 kg/m2), normal weight (18 ≤ BMI < 25 kg/m2), 
overweight (25 ≤ BMI < 30 kg/m2), or obese (BMI ≥ 30 kg/
m2). Participant smoking status was divided into three 
categories: never, former, and current. Participant alco-
hol consumption was categorized as “yes” or “no”.

Statistical analysis
All data processing and statistical analysis were per-
formed using SAS version 9.4 (SAS Institute, Cary, NC, 
USA). Missing values (< 2%) of potential covariates were 
imputed by multivariate chained imputation. We checked 
the normality of data distributions using the Kolmogo-
rov–Smirnov test. For baseline descriptions, we present 
the mean ± standard deviation (SD), median with IQR, or 
number and percentage (%), as appropriate. To compare 
participants’ baseline characteristics across CumMHR 
quartiles, we used one-way analyses of variance (ANO-
VAs) or Kruskal–Wallis tests for continuous variables 
and Pearson chi-square tests for categorical variables.

The incidence rates (per 1000 person-years) of T2DM 
were calculated. Kaplan–Meier plots were generated with 
the log-rank test to compare the cumulative incidence. 
After confirming that the proportional hazards assump-
tion was satisfied, Cox proportional hazard regression 
models were used to compare the hazard ratios (HRs) 
with 95% confidence intervals (CIs) for T2DM across the 
CumMHR subgroups. In addition, to determine the asso-
ciation of the CumMHR with short-term and long-term 
risks for diabetes, the datasets were divided into two 
subsets, i.e., diabetes occurred between 2010/2011 and 
2014/2015 and diabetes occurred between 2014/2015 
and December 2020. Interactions between the Cum-
MHR and CumCRP, sex, age, and hypertensive and 
overweight statuses as well as smoking, drinking habits, 
physical activities and eGFR levels were tested by the 
likelihood test with the fully adjusted Cox proportional 
hazard regression model. Stratified analyses were per-
formed when a significant interaction was observed. The 
multivariable-adjusted models were as follows: Model 1 
adjusted for age (continuous), sex, smoking status, alco-
hol consumption, physical activity, education level, and 
BMI (categorical); Model 2 further adjusted for base-
line FBG (continuous), eGFR (categorical), log(hsCRP), 
log(leukocyte), blood pressure category, dyslipidemia 

(yes or no), taking antihypertensive medication (yes or 
no), and taking lipid-lowering agents (yes or no); Model 
3: additional adjustment for fatty liver degrees (normal, 
gentle, moderate and severe) on the basis of Model 2. 
Model 4: additionally adjusted for TyG instead of FBG in 
Model 2. Since MHR per se is actually a ratio reflects an 
interaction term in a statistical model, we further addi-
tionally adjusted for both of the separate components 
in an additional model (Model 5) to test the interaction 
term. Additionally, to address the main impacts of both 
components on CumMHR-associated T2DM risks, the 
associations between separate CumMON (Model 6) 
or CumHDL (Model 7) and incident T2DM were also 
examined.

In addition, to examine the robustness and consist-
ency of our findings, several sensitivity analyses were 
performed with the Cox regression models. First, to 
address potential reverse causation, the study endpoints 
recorded at the first follow-up visit were excluded. Sec-
ond, to minimize the influence of acute infection, par-
ticipants with suspected acute infection (whichever 
hsCRP level ≥ 10  mg/L in the exposure period [39]) 
were excluded. Third, participants who took statins were 
excluded to address the potential confounding effect of 
statins on the study endpoint. Fourth, to minimize the 
influence of CVD, participants with preexisting CVD 
were excluded. Fifth, examined the CumMHR-associ-
ated T2DM risks after additional adjustment for cumu-
lative TyG instead of baseline TyG as an assessment for 
cumulative IR (Model 8). Sixth, examine the role of Cum-
MHR in incident T2DM after additional adjustment for 
cumulative hsCRP instead of baseline hsCRP (Model 9). 
Seventh, the analysis was repeated by extending the sam-
ple size among participants who underwent at least two 
MON and HDL-C measures in the exposure visits and 
imputing the missing data with the values measured in 
the nearest health examination.

Two-tailed P < 0.05 was considered statistically signifi-
cant, except in the interaction analysis, where P < 0.1 was 
considered significant.

Results
Baseline characteristics were determined according 
to the information provided at the start of follow-up 
(Table  1). The study participants had a mean age of 
52.2 ± 11.8  years at baseline, and 75.1% of participants 
were men. Participants in higher CumMHR quartiles 
had higher CumCRP, CumTyG and baseline hsCRP, TyG 
levels, leukocyte counts, blood pressures (SBP and DBP), 
TGs, BMI, had more current drinkers and current smok-
ers, meanwhile had lower levels of TC, LDL-C, HDL-C, 
eGFR and education. Notably, there was no significant 
difference in baseline FBG across the CumMHR quartiles 
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Table 1 Baseline characteristics

Characteristic Total
(n = 40,813)

CumMHR < 0.172
(n = 10,203)

0.172 ≤ CumMHR < 0.234
(n = 10,203)

0.234 ≤ CumMHR < 0.316
(n = 10,203)

CumMHR ≥ 0.316
(n = 10,204)

P-value

Age, years 52.2 ± 11.8 53.5 ± 12.0 52.9 ± 11.9 51.9 ± 11.7 50.6 ± 11.5  < 0.0001

Male, n (%) 30,634 (75.1) 6174 (60.5) 7515 (73.7) 8192 (80.3) 8753 (85.8)  < 0.0001

CumCRP, mg/L 1.6 (0.8‒3.1) 1.2 (0.6‒2.3) 1.5 (0.8‒2.9) 1.7 (0.9‒3.4) 2.0 (1.1‒4.0)  < 0.0001

CumMON,  109/L 0.3 (0.3‒0.4) 0.2 (0.2‒0.3) 0.3 (0.3‒0.3) 0.4 (0.3‒0.4) 0.5 (0.4‒0.6)  < 0.0001

CumHDL‒C, mmol/L 1.5 (1.3‒1.8) 1.7 (1.5‒2.0) 1.6 (1.4‒1.8) 1.5 (1.3‒1.6) 1.4 (1.2‒1.6)  < 0.0001

CumTyG 8.9 ± 1.1 8.5 ± 1.1 8.8 ± 1.1 9.0 ± 1.1 9.3 ± 1.1  < 0.0001

BMI, kg/m2 25.0 ± 3.3 24.2 ± 3.2 24.8 ± 3.3 25.3 ± 3.3 25.6 ± 3.4  < 0.0001

BMI categorical  < 0.0001

Underweight 531 (1.3) 225 (2.2) 137 (1.3) 87 (0.9) 82 (0.8)

Normal weight 20,599 (50.5) 6130 (60.1) 5353 (52.5) 4807 (47.1) 4309 (42.2)

Overweight 16,774 (41.1) 3414 (33.5) 4046 (40.0) 4498 (44.1) 4816 (47.2)

Obesity 2909 (7.1) 434 (4.3) 667 (6.5) 811 (8.0) 997 (9.8)

SBP, mm Hg 129.6 ± 18.6 128.0 ± 18.8 129.6 ± 18.7 130.2 ± 18.6 130.7 ± 18.1  < 0.0001

DBP, mm Hg 80.7 (79.3‒90.0) 80.0 (77.7‒90.0) 80.7 (80.0‒90.0) 81.7 (80.0‒90.0) 83.0 (80.0‒90.0)  < 0.0001

FBG, mmol/L 5.2 ± 0.6 5.2 ± 0.6 5.2 ± 0.6 5.2 ± 0.6 5.2 ± 0.6 0.0921

HDL-C, mmol/L 1.5 (1.2‒1.8) 1.8 (1.5‒2.1) 1.6 (1.3‒1.9) 1.4 (1.2‒1.7) 1.3 (1.1‒1.5)  < 0.0001

LDL-C, mmol/L 2.6 ± 0.8 2.6 ± 0.8 2.6 ± 0.8 2.6 ± 0.8 2.5 ± 0.8  < 0.0001

TC, mmol/L 5.0 ± 1.0 5.2 ± 1.0 5.0 ± 1.0 4.9 ± 0.9 4.8 ± 0.9  < 0.0001

TG, mmol/L 1.3 (0.9‒1.8) 1.1 (0.8‒1.6) 1.2 (0.9‒1.7) 1.3 (0.9‒1.9) 1.4 (1.1‒2.1)  < 0.0001

TyG 8.6 ± 0.6 8.5 ± 0.6 8.6 ± 0.6 8.7 ± 0.6 8.7 ± 0.6  < 0.0001

Leukocyte counts,  109/L 6.1 (5.2‒7.2) 5.3 (4.5‒6.2) 5.9 (5.1‒6.9) 6.4 (5.5‒7.4) 7.0 (6.0‒8.2)  < 0.0001

eGFR, ml/min/1.73m2 81.9 (59.2‒96.8) 90.0 (68.7‒100.6) 83.6 (60.2‒97.5) 74.5 (57.0‒94.7) 69.4 (55.9‒93.0)  < 0.0001

HsCRP, mg/L 1.0 (0.5‒2.4) 0.9 (0.5‒1.8) 1.0 (0.5‒2.2) 1.1 (0.5‒2.6) 1.3 (0.5‒3.2)  < 0.0001

Alcohol consumption, n (%)  < 0.0001

No 26,752 (65.5) 6966 (68.3) 6703 (65.7) 6582 (64.5) 6501 (63.7)

Yes 14,061 (34.5) 3237 (31.7) 3500 (34.3) 3621 (35.5) 3703 (36.3)

Smoking status, n (%)  < 0.0001

Never smoker 25,248 (61.9) 7235 (70.9) 6447 (63.2) 6082 (59.6) 5484 (53.7)

Former smoker 1796 (4.4) 382 (3.7) 469 (4.6) 451 (4.4) 494 (4.8)

Current smoker 13,769 (33.7) 2586 (25.3) 3287 (32.2) 3670 (36.0) 4226 (41.4)

Family history of diabetes 2162 (5.3) 541 (5.3) 511 (5.0) 511 (5.0) 599 (5.9) 0.0179

Education, n (%)  < 0.0001

Less than high school 31,295 (76.7) 7329 (71.8) 7773 (76.2) 8019 (78.6) 8174 (80.1)

High school and above 9518 (23.3) 2874 (28.2) 2430 (23.8) 2184 (21.4) 2030 (19.9)

Physical activities, n (%)  < 0.0001

Low 13,749 (33.7) 3911 (38.3) 3503 (34.3) 3276 (32.1) 3059 (30.0)

Moderate 21,329 (52.3) 4492 (44.0) 5217 (51.1) 5628 (55.2) 5992 (58.7)

High 5735 (14.1) 1800 (17.6) 1483 (14.5) 1299 (12.7) 1153 (11.3)

Hypertension 19,733 (48.3) 4373 (42.9) 4865 (47.7) 5101 (50.0) 5394 (52.9)  < 0.0001

Dyslipidemia 11,100 (27.2) 2363 (23.2) 2462 (24.1) 2826 (27.7) 3449 (33.8)  < 0.0001

Fatty liver degree  < 0.0001

Normal 24,763 (60.7) 7030 (68.9) 6362 (62.4) 5852 (57.4) 5519 (54.1)

Gentle 10,535 (25.8) 2312 (22.7) 2627 (25.8) 2789 (27.3) 2807 (27.5)
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(P = 0.0921) or differences in the baseline use of statins, 
fibrates, and antihypertensives (Table 2).

Over a medium follow-up of 7.98 (IQR: 5.74‒8.87) 
years, 4848 cases of T2DM were documented among the 
40,813 study participants. There was a graded increase 
in incidence rates across CumMHR quartiles. The 
HRs (95% CIs) in CumMHR Quartile 2, 3 and 4 were 
1.18 (1.08‒1.29), 1.24 (1.13‒1.36) and 1.50 (1.35‒1.65), 
respectively, when compared to that of Quartile 1 
(P-trend < 0.0001) after adjusting for age, sex, BMI, smok-
ing, drinking habits, physical activities, family history 
of diabetes, blood pressure, FBG, eGFR, dyslipidemia, 
log(leucocyte count) and log(hsCRP) values. Further 

adjustment for insulin resistance (IR) attenuated the 
associations, with aHRs (95% CIs) in CumMHR Quartiles 
2, 3 and 4 of 1.17 (1.07‒1.27), 1.21 (1.10‒1.32) and 1.46 
(1.33‒1.60), respectively, after adjustment for fatty liver 
degrees (Model 3), and 1.18 (1.05‒1.25), 1.17 (1.07‒1.27), 
and 1.38 (1.26‒1.50), respectively, after adjustment for 
TyG levels (Model 4)]. Notably, the CumMHR-associated 
T2DM risks were more prominent after adjustment for 
both components [log(CumMON) and log(CumHDL)] 
(Model 5). The CumMHR-associated risks appeared to be 
greatly attenuated after additional adjustment for sperate 
log(CumMON) (Model 6) in comparison to additional 
adjustment for log(CumHDL) (Model 7). Furthermore, 

Table 1 (continued)

CumMHR: cumulative monocyte to high-density lipoprotein cholesterol ratio; CumHDL-C: cumulative high-density lipoprotein cholesterol; CumMON: cumulative 
monocytes; CumTyG: cumulative triglyceride-glycemia index; BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood pressure, FBG: fasting 
blood glucose; TC: total cholesterol; TG: triglyceride; TyG: triglyceride-glycemia index; LDL-C: Low-density lipoprotein cholesterol, HDL-C: high-density lipoprotein 
cholesterol; eGFR: estimated glomerular filtration rate; HsCRP: hypersensitive C-reactive protein

Table 2 CumMHR-associated type 2 diabetes risk

Model 1: adjusted for age, sex, education, smoke, drinking status, physical activities, family history of diabetes, BMI; Model 2: Model 1 + FBG, blood pressure, eGFR, 
dyslipidemia (yes or no), antihypertensives (yes or no), lipid-lowering drugs (yes or no), log(hsCRP),log(leukocyte count); Model 3: Model 3 + fatty liver degree 
(categorical); Model 4: Model 2 + TyG instead of FBG; Model 5: Model 4 + log (CumHDL) + log (CumMON); Model 6: Model 3 + log (CumMON); Model 7: Model 3 + log 
(CumHDL-C); Model 8: Model 4 + log(CumCRP) instead of log(hsCRP); Model 9:Model 4 + CumTyG instead of TyG

The incidence rate is per 1,000 person-years

Per SD: risk per unit increment in CumMHR (0.1995)

Abbreviations as Table 1

CumMHR, HRs (95% CIs) P for trend Per SD

Quartile1 Quartile 2 Quartile 3 Quartile 4

Entire cohort

Event/Total 890/10203 1140/10203 1253/10203 1565/10204

Incidence rate 12.12 15.68 17.52 22.38

Unadjusted model Reference 1.29 (1.19,1.41) 1.44 (1.32,1.57) 1.83 (1.69,1.99)  < 0.0001 1.24 (1.20,1.27)

Model 1 Reference 1.20 (1.10,1.31) 1.29 (1.18,1.41) 1.59 (1.46,1.74)  < 0.0001 1.18 (1.14,1.21)

Model 2 Reference 1.18 (1.08,1.29) 1.24 (1.13,1.36) 1.50 (1.35,1.65)  < 0.0001 1.16 (1.12,1.19)

Model 3 Reference 1.17 (1.07,1.27) 1.21 (1.10,1.32) 1.46 (1.33,1.60)  < 0.0001 1.15 (1.11,1.19)

Model 4 Reference 1.18 (1.05,1.25) 1.17 (1.07,1.27) 1.38 (1.26,1.50)  < 0.0001 1.11 (1.08,1.15)

Model 5 Reference 1.18 (1.06,1.31) 1.21 (1.06,1.38) 1.44 (1.21,1.72)  < 0.0001 1.24 (1.11,1.39)

Model 6 Reference 1.08 (0.98,1.19) 1.05 (0.94,1.17) 1.16 (1.02,1.34)  < 0.0001 1.01 (0.95,1.08)

Model 7 Reference 1.16 (1.06,1.27) 1.18 (1.08,1.30) 1.40 (1.27,1.55)  < 0.0001 1.12 (1.08,1.16)

Model 8 Reference 1.14 (1.04,1.25) 1.17 (1.07,1.28) 1.40 (1.27,1.53)  < 0.0001 1.13 (1.09,1.17)

Model 9 Reference 1.12 (1.03,1.23) 1.13 (1.03,1.23) 1.29 (1.18.1.41)  < 0.0001 1.08 (1.05,1,12)

Characteristic Total
(n = 40,813)

CumMHR < 0.172
(n = 10,203)

0.172 ≤ CumMHR < 0.234
(n = 10,203)

0.234 ≤ CumMHR < 0.316
(n = 10,203)

CumMHR ≥ 0.316
(n = 10,204)

P-value

Moderate 4657 (11.4) 795 (7.8) 1052 (10.3) 1312 (12.9) 1498 (14.7)

Severe 858 (2.1) 66 (0.7) 162 (1.6) 250 (2.5) 380 (3.7)

Antihypertensives, n (%) 2201 (5.4) 593 (5.8) 551 (5.4) 537 (5.3) 520 (5.1) 0.1302

Statin, n (%) 230 (0.6) 56 (0.5) 62 (0.6) 45 (0.4) 67 (0.7) 0.1949

Fibrate, n (%) 65 (0.2) 9 (0.1) 16 (0.2) 17 (0.2) 23 (0.2) 0.1075
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the CumMHR-diabetes association was somewhat atten-
uated but still significant after additional adjustment for 
cumulative hsCRP (Model 8) and TyG levels (Model 9). 
Figure 2 displays the Kaplan–Meier curves of the cumu-
lative incidence of T2DM. Additionally, when the follow-
up ended in 2014/2015, the short-term (median: 4.11 
[IQR:3.36‒4.42] years) HRs (95% CIs) for incident T2DM 
in CumMHR Quartiles 2, 3, and 4 were 1.14 (1.01‒1.29), 
1.17 (1.04‒1.32), and 1.40 (1.25‒1.58), respectively, rela-
tive to Quartile 1, with a 1.13 (1.08‒1.17) increase in risk 
per 1-SD increase in log(CumMHR) (P-trend: < 0.001). In 
terms of the long-term risk (excluding diabetes occur-
ring within the first two follow-up visits), the HRs (95% 
CIs) for incident T2DM across the increasing CumMHR 
quartiles (Quartiles 1, 2, 3, and 4) were 1,0 (ref.), 1.16 
(1.02,1.32), 1.16 (1.02‒1.33),1.34 (1.18‒1.53), respectively, 
with a 1.11 (1.06‒1.16) increase in risk per 1‒SD increase 
in log(CumMHR) (P-trend < 0.001; Additional file  1: 
Table S2).

We further evaluated the association between the 
CumMHR and the incidence of T2DM in 7091 partici-
pants who exhibited IFG at any visit during the exposure 
period and documented 2166 cases of diabetes during 
the follow-up. The CumMHR was independently associ-
ated with the risk of T2DM, with an adjusted HR (95% 
CI) of 1.58 (1.39‒1.79) in the highest CumMHR quartile. 
In participants without IFG (n = 33,722), 2682 cases of 

T2DM occurred. The highest CumMHR quartile had a 
significant risk of T2DM (HR: 1.41, 95% CI [1.25‒1.58], 
Additional file  1: Table  S3). No significant interaction 
between IFG status and CumMHR was found to be asso-
ciated with developing T2DM (P-interaction: 0.7130). We 
additionally examined the CumMHR-associated risks for 
incident IFG among participants free of IFG during the 
exposure period. A total of 8293 participants had IFG 
onset among the 33,722 non-IFG participants. Cumula-
tive MHR was significantly associated with IFG onset 
independent potential risk factors (Additional file  1: 
Table S4).

Notably, a significant interaction between the Cum-
MHR and CumCRP was observed and associated 
with incident T2DM [P-interaction: CumMHR quar-
tiles × CumCRP thresholds (1, 3, 10  mg/L) = 0.0109]. 
Although the diabetic incidence rates tended to con-
sistently increase with increases in CumCRP, the Cum-
MHR-associated diabetic risks attenuated greatly with 
grade elevation in CumCRP levels, with adjusted HRs 
(95% CIs) of 1.53 (1.28‒1.84), 1.30 (1.15‒1.48), 1.24 
(1.03‒1.49), and 1.01 (0.64‒1.61), respectively, for the 
CumCRP < 1, 1 ≤ CumCRP < 3, 3 ≤ CumCRP < 10, and 
CumCRP ≥ 10  mg/L strata (Fig.  3, Additional file  1: 
Table  S5). In addition, significant interactions were 
observed between the CumMHR and participants’ 
hypertensive (P-interaction: 0.0300) and overweight 

No. at risk
G1 10,203 10,116 9,768 9,289 8,970 8,168 7,792 6,443 5,158
G2 10,203 10,128 9,741 9,211 8,810 8,062 7,621 6,343 5,176
G3 10,203 10,121 9,736 9,121 8,658 7,934 7,450 6,218 5,062
G4 10,204 10,116 9,632 9,033 8,446 7,752 7,265 6,022 4,936

Fig. 2 Kaplan‒Meier curves of cumulative incidence of T2DM. CumMHR Quartile 1 was used as the Reference group. CumMHR: cumulative 
monocytes to high-density lipoprotein ratio
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statuses (P-interaction: 0.0885 for IR assessed by fatty 
liver degrees and 0.1481 for IR assessed by TyG) as well 
as smoking habits (never smokers, ex-smokers and cur-
rent smokers) (P-interaction: 0.0805) (Additional file  1: 
Tables S6, S7, S8). As anticipated, the MHR-associated 
diabetic risks were attenuated by baseline hypertension, 
overweight, or smoking habits. The CumMHR-associ-
ated T2DM risks appeared to be more prominent among 
those with impaired renal function (eGFR < 90  ml/
min/1.73m2), albeit an insignificant interaction among 
CumMHR and eGFR levels being found (P-interaction: 
0.3725; Additional file  1: Table  S9). There were no sig-
nificant interactions between the CumMHR quartiles 
and sex (P-interaction: 0.2677), age subgroups (< 45, 
45–60, ≥ 60  years) (P-interaction: 0.7306), alcohol con-
sumption (yes or no) (P-interaction: 0.2942), physical 
activities (low, moderate, high) (P-interaction: 0.5122).

The results were robust, as indicated by the similar 
main outcomes in the sensitivity analyses when exclud-
ing events that occurred at the first follow-up visit, 

participants with suspected acute infections (hsCRP lev-
els ≥ 10  mg/L during the visits in the exposure period), 
participants who took statins, who had baseline CVD, or 
who had missing data on the key covariates (Additional 
file 1: Table S10). Repeated analyses among participants 
with at least two MHR data in the exposure visits yielded 
similar results (Additional file 1: Table S11).

We additionally examined the associations between 
separate components of MHR (MON and HDL-C) and 
incident T2DM. Isolated cumulative monocyte counts 
influenced the adjusted HR (95% CI) when comparing 
the two extreme quartiles, at 1.33 (95% CI, 1.22‒1.45; 
P-trend < 0.001; Additional file 1: Table S12). Although a 
downward trend in the incidence rates and risk of T2DM 
in the crude model was observed with increasing Cum-
HDL-C, there was not a statistically significant associa-
tion between CumHDL-C and the risk of T2DM in the 
fully multivariable-adjusted model with IR assessed as 
fatty liver degree. However, higher HDL-C tended to be 

Subgroup Event/Total Incidence Rate HR (95% CI)
Entire Cohort
 CumMHR Q1 890/10203 12.12 1
 CumMHR Q2 1140/10203 15.68 1.15 (1.05,1.25)
 CumMHR Q3 1253/10203 17.52 1.17 (1.07,1.27)
 CumMHR Q4 1565/10204 22.38 1.38 (1.26,1.50)
Stratification Analysis
CumCRP < 1mg/L
 CumMHR Q1 259/4365 8.12 1
 CumMHR Q2 268/3378 10.87 1.20 (1.01,1.43)
 CumMHR Q3 256/2909 12.39 1.20 (1.01,1.44)
 CumMHR Q4 266/2268 16.89 1.53 (1.28,1.84)
1 ≤ CumCRP < 3mg/L
 CumMHR Q1 437/4146 14.73 1
 CumMHR Q2 566/4418 18.15 1.15 (1.01,1.30)
 CumMHR Q3 553/4388 17.98 1.08 (0.95,1.23)
 CumMHR Q4 698/4460 22.79 1.30 (1.15,1.48)
3 ≤ CumCRP < 10mg/L
 CumMHR Q1 169/1496 16.19 1
 CumMHR Q2 274/2079 18.95 1.07 (0.88,1.30)
 CumMHR Q3 398/2467 23.52 1.23 (1.02,1.48)
 CumMHR Q4 491/2856 25.3 1.24 (1.03,1.49)
CumCRP ≥ 10mg/L
 CumMHR Q1 25/196 17.18 1
 CumMHR Q2 32/328 13.38 0.65 (0.38,1.11)
 CumMHR Q3 46/439 14.53 0.63 (0.38,1.04)
 CumMHR Q4 110/620 26.49 1.01 (0.64,1.61)

0 1 2

Fig. 3 Forest plot of multivariable-adjusted association between CumMHR and T2DM onset in the overall participants and stratified by CumCRP 
levels. P-interaction: CumMHR quartiles × CumCRP thresholds (1, 3, 10 mg/L) = 0.0109. All models are adjusted for age, sex, education, smoking, 
drinking status, physical activities, family history of diabetes, BMI (categorical), blood pressure (categorical), eGFR (categorical), dyslipidemia (yes or 
no), antihypertensives (yes or no), lipid-lowering drugs (yes or no), TyG (continuous), log(leukocyte counts)(continuous), log(hsCRP) (limited to in 
the entire cohort) BMI: body mass index; CumCRP: cumulative hypersensitive C-reactive protein; CumMHR: cumulative monocyte to high-density 
lipoprotein cholesterol ratio, eGFR: estimated glomerular filtration rate; TyG: triglyceride-glycemia index
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a risk factor for incident T2DM after adjusting for TyG 
(Additional file 1: Table S13).

Furthermore, we also investigated the association 
between the baseline MHR (BasMHR) and incident 
T2DM, with adjusted HRs (95% CIs) of 0.99 (0.91‒1.08), 
1.17 (1.07‒1.28), and 1.22 (1.11‒1.33), respectively, in 
BasMHR Quartiles 2, 3, and 4, by reference to Quartile 1 
(P-trend < 0.0001; Additional file 1: Table S14).

Discussion
Principle findings
For the first time, we reported that both the cumulative 
increase in a leukocyte subpopulation rich in monocytes 
and the MHR were independently associated with the 
risk of T2DM in the general population of 40,813 par-
ticipants. Within a follow-up period of approximately 
eight years. More importantly, the CumMHR-associated 
risk for incident T2DM varied remarkably across differ-
ent CumCRP strata and was particularly higher in the 
absence of elevated hsCRP levels. Additionally, hyperten-
sive and overweight statuses as well as smoking prefer-
ence further refined the MHR-associated diabetic risks.

Strengths and limitations compared with other studies
Consistent with our findings, recent experiment-based 
studies have substantiated the critical role of monocyte-
derived immunity, which contributes to beta-cell mal-
function, insufficient insulin secretion and IR, in the 
pathogenesis of T2DM [1–4]. Glucose metabolism was 
found to impact monocyte activity [40]; treatment of 
hyperglycemia significantly reduced the number of cir-
culating monocytes [41]. The prominent monocytosis 
observed in mouse models of obesity provided a source 
for the infiltration of macrophages into adipose tissue, 
driving the progression to IR and the onset of diabetes 
[6]. In line with these findings, increased monocyto-
sis due to the activation of precursors in bone marrow 
has been observed in mouse models of diabetes [7, 8]. 
Additionally, reduced monocyte mobilization from the 
bone marrow after fasting [10] was significantly linked 
to the anti-inflammatory benefits of caloric restriction 
[42]. Indeed, reducing the number of circulating mono-
cytes and macrophages may serve as a novel approach to 
reduce diabetes-related vascular complications [14, 40].

It is essential to know that the circulating monocyte 
pool is highly dynamic and substantially influenced by 
defective cholesterol metabolism. While LDL-C pro-
motes monocytosis [43], HDL-C has the opposite effect 
[41]. Studies in recent years have continuously found that 
HDL-C has potent anti-inflammatory properties, par-
ticularly against monocytic inflammation [13–15]. Ele-
vated levels of HDL-C decrease monocyte counts [13] by 
suppressing monocyte proliferation and motivation, as 

well as the proliferation of bone marrow progenitors with 
mechanisms involved favoring cholesterol efflux from 
these cells [14]. Notably, in IR and overt diabetes, low 
levels of HDL-C [21, 22] and impaired anti-inflamma-
tory properties of HDL-C [44] are commonly observed. 
Thus, decreases in the suppression of monocyte-associ-
ated inflammation by HDL-C consequently aggravate 
the imbalance between pro- and anti-inflammatory pro-
cesses, supporting the potential use of MHR as an appro-
priate marker for metabolic inflammation in diabetes.

Studies in recent years have increasingly yielded out 
the significance of MHR as a promising inflammation 
marker for cardiovascular diseases and kidney function 
from the predictive and prognostic perspectives, albeit 
in studies with relatively small sample sizes and short fol-
low-up periods and were restricted to a specific group of 
patients. The results from our study fill in the gap in the 
current understanding of the relationships between the 
risk of T2DM and monocytes and the MHR, particularly 
on a large population scale.

Importantly, the attenuation of the positive graded 
association between quartiles of CumMHR and incident 
diabetes by increasing CumCRP levels is of interest. The 
risk upon exposure to the elevated CumMHR was higher 
in the absence of elevated CumCRP (CumCRP < 1 mg/L), 
attenuated with a gradual increase in CumCRP, and 
finally disappeared in the high-grade inflammation stra-
tum (CumCRP ≥ 10  mg/L). Nevertheless, the incidence 
rates tended to consistently rise as CumCRP increased, 
consistent with the dose-dependent relationship 
between hsCRP levels and the risk of T2DM observed 
in previous studies [45, 46]. The significant CumMHR-
CumCRP-interaction may be accounted for by the bidi-
rectional relationship between hsCRP and monocytic 
inflammation in the biological background [47, 48]. On 
the one hand, the production of CRP is largely depend-
ent on response to monocytic cytokines; elevated 
levels of monocytic interleukin-1β (IL-1β) and the IL-1β-
secondary IL-6 drive the production of CRP [49, 50]. On 
the other hand, elevated CRP levels negatively mediate 
the activation and secretion of IL-1β [48] and subsequent 
production of monocytes [6], thereby attenuating mono-
cyte-derived inflammation and protecting against detri-
ments to overall health. As such, the downward trend in 
the CumMHR-associated diabetic risk that accompanied 
the increase in CumCRP levels is likely to result from the 
potential negative mediation of hsCRP on monocytic 
inflammation and the main influence of CRP rather than 
MHR on developing T2DM among participants with 
elevated CumCRP levels. In light of the evidence here, it 
is reasonable to postulate that the MHR may represent 
the earliest stage of metabolic inflammation, prior to the 
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production of hsCRP and even prior to the elevation of 
circulating monocytic cytokines.

Furthermore, the presence of hypertension and over-
weight attenuated the CumMHR-associated diabetic 
risk. However, the incidence rate of diabetes increased 
in those with hypertension or overweight or smoking 
preference, consistent with them being risk factors for 
T2DM. Additionally, the subset analysis among non-
CVD participants observed a moderately increased asso-
ciation between CumMHR and incident diabetes. These 
findings suggested that additional targeted assessment 
and management of CumMHR, especially in participants 
at low risk of diabetes defined by traditional risk factors, 
are instrumental for further reduction in the occurrence 
of diabetes.

Implications of this study
The dual advantages of wide availability and cost-effec-
tiveness of MHR in clinical settings warrant further 
attention into the potential use of MHR for determining 
the inflammatory risk for T2DM beyond that indicated 
by hsCRP levels. Measurements of cumulative MHR 
along with hsCRP levels may allow a more comprehen-
sive assessment of the influence of chronic systemic 
metabolic inflammation on developing T2DM. Addition-
ally, targeted assessment and management of CumMHR, 
especially in participants at low diabetic risks defined 
by traditional risk factors (e.g., CRP, hypertension, over-
weight, smoking habits), are instrumental for further 
improvement of diabetic outcome. Moreover, the signifi-
cant epidemiological interaction between the cumula-
tive MHR and hsCRP observed in this current study may 
provide directions for further in-depth exploration to 
disentangle the intertwined association of monocyte pro-
liferation, HDL-C, and CRP levels in chronic metabolic 
inflammatory diseases.

China has the largest number of patients with diabetes 
worldwide, accounting for 24% of all patients with diabe-
tes [51]. Given that prevention and remission of T2DM 
represent unmet, high-priority targets to alleviate the 
health and economic burden [51], it is essential to iden-
tify potential risk factors and promote primary, even pri-
mordial prevention against its occurrence. Convincing 
evidence has demonstrated that reduced monocytosis 
improves cardiovascular outcomes without compromis-
ing the emergency mobilization of monocytes for tissue 
repair and acute infectious inflammation, highlighting 
its compelling benefits [10]. Multiple manipulations, e.g., 
caloric restriction [10], a high-quality or sufficient sleep-
ing manner [11], and moderate emotional and stress 
release [12], can promote reductions in circulating 
monocytes and elevations in HDL-C, thereby favoring 
both metabolic and cardiometabolic health.

To put our work in a broader context, the dual advan-
tages of cost-effectiveness and wide availability of meth-
ods to determine the MHR in current clinical practice 
potentiate their widespread use as convenient tools for 
evaluating the risk of cardiometabolic diseases. Apart 
from the current T2DM disease, MHR was identified to 
be associated with renal disease onset among partici-
pants with or without diabetes [19, 52]. Higher monocyte 
counts and lower plasma high-density lipoprotein choles-
terol levels were indicated in subjects with lower levels of 
renal function [53, 54], potentiating the use of MHR for 
risk prediction of renal dysfunction. Additionally, emerg-
ing studies have also identified a significant association 
between MHR and cardiovascular diseases (CVDs) [17, 
18, 55, 56]. The critical role of monocytic inflammation 
in atherogenesis [57, 58] and the well-established benefi-
cial effect of HDL-C on CVDs regarding its anti-inflam-
mation and anti-atherogenic properties [14, 15, 59–61] 
enhanced the utility of MHR as a clinician-friendly bio-
marker in the risk assessment and stratification of CVDs.

Strength and limitations of this study
Monocytic inflammation has been increasingly empha-
sized in the pathophysiology of T2DM in recent years. 
Our study, for the first time, provides epidemiologi-
cal insight into the association between easily available 
monocytic biomarkers and T2DM incidence. Addition-
ally, as circulating monocytes are highly dynamic and 
influenced by a diversity of basal behaviors and meta-
bolic conditions [40], including eating [10] and sleeping 
[11], there is a need for data measured with duplicates 
to ensure a more rigorous and credible analysis. In this 
study, utilizing the repeated-measured data from the Kai-
luan Cohort, we applied cumulative exposure to assess 
chronic inflammation, thus providing more stable and 
reliable findings and minimizing the potential for an 
underestimation of the true association. Other merits 
of this study include the use of high-quality data from a 
well-designed, prospective cohort and its high mainte-
nance of follow-up rates.

However, limitations of the current study should be 
addressed. First, we failed to further identify specific 
monocyte subsets and/or phenotypes (e.g., proinflam-
matory [M1] or anti-inflammatory [M2] phenotypes) to 
provide more detailed information on monocyte-associ-
ated inflammation in the development of T2DM. How-
ever, our results are of high importance for both clinical 
and epidemiological settings, providing convincing evi-
dence of the relationship between the MHR and the risk 
of diabetes with widely available items in routine clinical 
tests. Second, we could not distinguish type 2 and type 
1 diabetes in this cohort; however, there would be mini-
mal misclassification given the advanced age of the study 
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population relative to the younger age of onset for type 
1 diabetes. Third, the current study primarily consisted 
of participants from an occupation-specific Han Chinese 
community in North China, potentially limiting the gen-
eralizability of the findings to the whole country or for 
other ethnicities/races. Nevertheless, the relative homo-
geneity of this study population in terms of diet and envi-
ronmental exposures, enhances the internal validity of 
our findings.

Conclusions
Our present study, for the first time, provides longi-
tudinal epidemiological insights into the associations 
between monocyte-derived inflammatory markers and 
developing T2DM. Chronic subclinical inflammation, 
assessed by the CumMHR, may be an important supple-
ment to hsCRP for a more comprehensive assessment of 
the inflammatory risk for T2DM. Targeted assessment 
and management of CumMHR in participants at low 
risk of diabetes, are promising ways to further reduce its 
occurrence.
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