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ORIGINAL ARTICLE
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Abstract

Objective. Mechanisms underlying the anaphylactic reaction in
humans are not fully understood. Here, we aimed at improving our
understanding of anaphylaxis by investigating gene expression
changes. Methods. Microarray data set GSE69063 was analysed,
describing emergency department (ED) patients with severe
anaphylaxis (n = 12), moderate anaphylaxis (n = 6), sepsis (n = 20)
and trauma (n = 11). Samples were taken at ED presentation (T0)
and 1 h later (T1). Healthy controls were age and sex matched to ED
patient groups. Gene expression changes were determined using
limma, and pathway analysis applied. Differentially expressed genes
were validated in an independent cohort of anaphylaxis patients
(n = 31) and matched healthy controls (n = 10), using quantitative
reverse transcription-polymerase chain reaction. Results. Platelet
aggregation was dysregulated in severe anaphylaxis at T0, but not
in moderate anaphylaxis, sepsis or trauma. Dysregulation was not
observed in patients who received adrenaline before T0. Seven
genes (GATA1 (adjusted P-value = 5.57 9 10�4), TLN1 (adjusted
P-value = 9.40 9 10�4), GP1BA (adjusted P-value = 2.15 9 10�2),
SELP (adjusted P-value = 2.29 9 10�2), MPL (adjusted P-value =
1.20 9 10�2), F13A1 (adjusted P-value = 1.39 9 10�2) and SPARC
(adjusted P-value = 4.06 9 10�2)) were significantly downregulated
in severe anaphylaxis patients who did not receive adrenaline
before ED arrival, compared with healthy controls. One gene (TLN1
(adjusted P-value = 1.29 9 10�2)) was significantly downregulated
in moderate anaphylaxis patients who did not receive adrenaline
before ED arrival, compared with healthy controls. Conclusion.
Downregulation of genes involved in platelet aggregation and
activation is a unique feature of the early anaphylactic reaction not
previously reported and may be associated with reaction severity.
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INTRODUCTION

Anaphylaxis is a rapidly developing, potentially
life-threatening reaction that is increasing in
incidence worldwide.1 Common triggers include
drugs, foods and venom stings. Anaphylaxis
classically involves IgE-dependent activation of
mast cells, leading to the immediate release of
mediators such as histamine, and a peripheral
blood cell cascade which results in a systemic
reaction.2,3 There is now emerging evidence of
alternative mechanisms of anaphylaxis, including
IgG-mediated reactions and contact system
activation. IgG-dependent reactions have been
demonstrated in mouse models of anaphylaxis
and may be responsible for some cases of drug-
triggered reactions in humans.4 While mouse
models can provide insights into disease
mechanisms, they are limited.5,6 For example,
immunologic disparities exist between mice and
humans, including expression of the high affinity
IgE receptor, FceRI, being limited to mast cells and
basophils in mice.5 Unlike in mice, human
platelets express FceRI and FceRII, and can be
directly activated by IgE.7 IgG-mediated
anaphylaxis is thought to be mediated through
neutrophil, macrophage, basophil or platelet
activation, and release of platelet-activating factor
(PAF), with levels of this mediator correlating with
reaction severity.3,8,9 The contact system involves a
cascade of plasma proteins which drives
inflammatory and coagulation pathways.10 The
contact system can be activated in several ways,
including by mast cell-derived heparin released
during IgE-mediated anaphylaxis.11 Numerous
factors of the contact system have been shown
associated with the severity of anaphylaxis,
including levels of plasma heparin, bradykinin
formation and intensity of activation.10

Additionally, activation of the contact system can
contribute towards clinical features of
anaphylaxis, including vasodilation, increased
vascular permeability, gastro-intestinal
contractions, abdominal pain, angioedema and
hypotension.10

While our understanding of factors driving the
anaphylactic reaction is improving, it is still not
fully understood what progresses anaphylaxis into
a severe, potentially life-threatening reaction, and
why severity varies between patients. Increasingly,
gene expression studies are being used to
investigate allergy and anaphylaxis, providing
mechanistic insights. An exploratory emergency

department (ED) study showed involvement of the
innate immune system (particularly neutrophils)
and inflammatory response, during acute
anaphylaxis in humans.12 A recent study on children
with food-induced anaphylaxis demonstrated
upregulation of microRNAs (miR-21-3p and miR-
487b-3p) postfood challenge, which are involved
in inflammation and immune system regulation.13

Gene expression studies utilising mouse models
of anaphylaxis have supported human studies, by
showing enrichment of genes involved in
immune and inflammatory responses, and the
complement and coagulation cascades, in the
dendritic cells of mice isolated postchallenge.14

Other gene expression studies investigating
allergy have demonstrated dysregulation of
platelet pathways, pathways involved in B- and
T-cell development and enrichment of neutrophil
and macrophage signatures in allergic
individuals.15–18

We have previously interrogated a gene
expression data set on anaphylaxis and sepsis,
with the aim of identifying dysregulated genes
and evaluating biomarker potential.19 We
reported the upregulation of small nucleolar RNA
(snoRNA) networks during acute anaphylaxis, but
not sepsis, and highlighted their potential to act
as biomarkers.19 In the present analysis, we aim to
further explore mechanisms driving anaphylaxis,
and make additional comparisons with a cohort
of trauma patients as an example of noninfectious
inflammation in the ED. Overall, comparisons to
both sepsis and trauma as examples of acute
insults leading to systemic inflammation in ED
patients were made to determine whether gene
expression changes are unique to anaphylaxis.
Further understanding mechanisms and mediators
driving anaphylaxis would improve our overall
understanding of the anaphylactic reaction, and
potentially lead to new therapeutic and
diagnostic avenues.

RESULTS

Unique biological processes and pathways
are associated with severe anaphylaxis in
the GSE69063 microarray

Previous analysis on gene set GSE69063 identified
significantly dysregulated genes in anaphylaxis
patients compared with healthy controls and
sepsis patients. Upregulation of a small subset of
snoRNAs was validated in an independent
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cohort.19 The focus of this paper was to further
interrogate this data set and make additional
comparisons with trauma patients as an example
of noninfectious inflammation in the ED.

The original analysis on GSE69063 comparing
patient groups with healthy controls showed 13,
262 and 2434 downregulated genes at T0, and 12,
460 and 2448 downregulated genes at T1, for
moderate anaphylaxis, severe anaphylaxis and
sepsis, respectively.19 Analysis of the trauma
cohort compared with healthy controls showed
874 upregulated genes and 916 downregulated
genes at T0, and 1202 upregulated genes and
1131 downregulated genes at T1 (Supplementary
figures 1 and 2).

The Database for Annotation, Visualisation and
Integrated Discovery (DAVID) Bioinformatics
Resource (version 6.8) gene ontology (GO) and
pathway analysis was performed to associate
genes downregulated in patients compared to
healthy controls with biological processes and
pathways. Significant terms associated with the
262 downregulated genes in severe anaphylaxis at
T0 included ‘platelet aggregation’ (GO:0070527,
P-value = 1.35 9 10�4), ‘actin cytoskeleton
organisation’ (GO:0030036, P-value = 1.96 9 10�4)
and ‘platelet degranulation’ (GO:0002576, P-value
= 2.69 9 10�4; Figure 1a). At T1, the 460
downregulated genes in severe anaphylaxis were
associated with ‘immune response’ (GO:0006955,
P-value = 1.78 9 10�6), ‘embryonic hemopoiesis’
(GO:0035162, P-value = 1.67 9 10�5) and ‘negative
regulation of transcription from RNA polymerase
II promoter’ (GO:0000122, P-value = 4.31 9 10�5;
Figure 1b). The only significant term associated
with the 13 downregulated genes in moderate
anaphylaxis at T0 was ‘mesodermal cell
differentiation’ (GO:0048333, P-value = 3.27 9

10�3). No significant pathways were associated
with the 12 downregulated genes in moderate
anaphylaxis at T1. Significant terms associated
with the 2434 and 2448 downregulated genes in
sepsis at T0 and T1, respectively, included
‘regulation of transcription, DNA-templated’
(GO:0006355, P-value = 8.95 9 10�11 and P-value =
1.30 9 10�8 for T0 and T1, respectively), ‘rRNA
processing’ (GO:0006364, P-value = 5.45 9 10�10

and P-value = 9.74 9 10�8 for T0 and T1,
respectively) and ‘T cell co-stimulation’
(GO:0031295, P-value = 3.83 9 10�10 and P-value =
8.09 9 10�10 for T0 and T1, respectively; Figure 1c,
d). Significant terms associated with the 916
downregulated genes in trauma at T0 included

‘immune response’ (GO:0006955, P-value =
8.38 9 10�11), ‘T cell co-stimulation’ (GO:0031295,
P-value = 8.25 9 10�10) and ‘positive regulation of
T cell proliferation’ (GO:0042102, P-value =
4.09 9 10�7; Figure 1e). Significant terms
associated with the 1131 downregulated genes in
trauma at T1 include ‘adaptive immune response’
(GO:0002250, P-value = 9.38 9 10�10), ‘immune
response’ (GO:0006955,
P-value = 4.24 9 10�9) and ‘regulation of immune
response’ (GO:0050776, P-value = 6.69 9 10�8;
Figure 1f).

Gene Set Enrichment Analysis (GSEA) was
performed to confirm dysregulation of platelet
pathways shown in severe anaphylaxis patients at
T0. The REACTOME pathways of ‘platelet
aggregation and plug formation’ and ‘response to
elevated platelet cytosolic Ca2+’ were found
enriched in healthy controls compared with severe
anaphylaxis patients at T0 (Figure 1g, h). These
pathways were not shown significantly enriched
through GSEA analysis in the other patient groups
(data not shown).

Administration of adrenaline before ED
arrival results in altered gene pathways

As adrenaline is known to affect platelet
activation and aggregation20,21, the data
(GSE69063) was re-analysed to compare changes
in genes expression in patients with severe
anaphylaxis (n = 12) on the basis of prehospital
administration of adrenaline (n = 5), and
compared with healthy controls.

We found 114 and 419 upregulated, and 46 and
419 downregulated genes in severe anaphylaxis
patients treated with adrenaline or no adrenaline
before ED arrival, respectively, at T0 (Figure 2a).
We found 949 and 222 upregulated genes, and
768 and 82 downregulated genes for the severe
adrenaline and no-adrenaline groups at T1 (Figure
2b). DAVID GO analysis found significant terms
associated with the 419 downregulated genes in
the severe no-adrenaline group at T0 included
‘inflammatory response’ (GO:0006954, P-value =
4.67 9 10�6), ‘cell adhesion’ (GO:0007155, P-value
= 1.04 9 10�5) and ‘platelet activation’
(GO:0030168, P-value = 7.74 9 10�5; Figure 2c). No
significant terms were associated with the 46
downregulated genes in the severe adrenaline
group at T0. Significant terms associated with the
82 downregulated genes in the severe no-
adrenaline group at T1 included ‘platelet
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degranulation’ (GO:0002576, P-value = 5.67 9

10�4), ‘extracellular matrix organisation’
(GO:0030198, P-value = 7.77 9 10�4) and
‘inflammatory response’ (GO:0006954, P-value =
2.69 9 10�3; Figure 2d). Significant terms
associated with the 768 downregulated genes in
the severe adrenaline group at T1 included
‘immune response’ (GO:0006955, P-value = 6.05 9

10�7), ‘transcription from RNA polymerase II
promoter’ (GO:0006366, P-value = 2.39 9 10�5)
and ‘negative regulation of transcription from
RNA polymerase II promoter’ (GO:0000122,
P-value = 6.76 9 10�5; Figure 2e).

At T0, GSEA showed that REACTOME pathways
of ‘platelet aggregation and plug formation’ and
‘response to elevated platelet cytosolic Ca2+’ were
enriched in healthy controls compared with severe
no-adrenaline patients (Figure 2f, g). Dysregulation
of these pathways was not seen in severe
adrenaline groups at either time point, or the
severe no-adrenaline group at T1 (data not shown).

qRT-PCR analysis validates downregulation
of platelet genes

An independent cohort of 31 anaphylaxis (12
severe, 22 no-adrenaline) patients and 10 age-
and sex-matched healthy controls were selected
for validation of the GSE69063 microarray. Clinical
data characterising the anaphylaxis patients in the
validation cohort are described in Table 1. Timing
between anaphylaxis onset and blood sampling
ranged from 17 min to 2 h and 30 min (median
65 min). Anaphylaxis was primarily triggered by
drugs (n = 11, 35%), food (n = 9, 29%) and venom
(bee sting, n = 6, 19%). All cases of severe
anaphylaxis presented with cardiovascular
features, as was seen in the microarray cohort
(Table 1). While in the microarray cohort, the
majority of severe reactions were caused by drugs
(83%), and all moderate reactions were caused by
foods, in the validation cohort 50% of severe
cases were caused by drugs, and only 37% of
moderate reactions were caused by foods.

The focus of this validation was to confirm the
dysregulation of genes involved in the pathways
of platelet aggregation and degranulation
demonstrated in the microarray comparison of
severe anaphylaxis and healthy controls in gene
set GSE69063. A group of 10 genes – GATA1,
SELP, ITGA2B, MYL9, GP1BA, MPL, F13A1, ITGB3,
SPARC and TLN1 – were chosen for validation and

Figure 1. Pathways associated with gene expression in severe

anaphylaxis, sepsis and trauma patients, in the GSE69063

microarray cohort. Biological processes associated with

downregulated genes (adjusted P-value < 0.05, log fold change ≤

�0.6) in severe anaphylaxis (n = 12) at (a) T0 and (b) T1, sepsis

(n = 20) at (c) T0 and (d) T1, and trauma (n = 11) at (e) T0 and

(f) T1. Gene Set Enrichment Analysis of the pathways of (g)

‘platelet aggregation and plug formation’ and (h) ‘response to

elevated platelet cytosolic Ca2+’ for the comparison of severe

anaphylaxis patients and healthy controls, at T0. †FDR, false

discovery rate; ‡NES, normalised enrichment score.
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will subsequently be referred to as the ‘validation
panel’ (Table 2). These genes were chosen based
on microarray analysis of severe anaphylaxis
compared with healthy controls at T0 (adjusted P-
value < 0.05), and gene involvement in the DAVID
GO pathways of platelet aggregation or
degranulation, and/or core enrichment in the
GSEA analysis of the REACTOME pathway of
platelet aggregation and plug formation at T0
(Table 2).

An initial analysis was performed comparing all
anaphylaxis patients (n = 31) to healthy controls
(n = 10). Six genes (GATA1 (P-value = 2.52 9 10�2),
SELP (P-value = 1.86 9 10�2), MPL (P-value =
2.72 9 10�2), F13A1 (P-value = 1.62 9 10�2),
SPARC (P-value = 2.97 9 10�2) and TLN1 (P-value =
6.13 9 10�3)) were significantly downregulated in
anaphylaxis patients compared with healthy
controls (Figure 3). Subsequent analysis compared
anaphylaxis patients grouped by severity (severe
(n = 12) or moderate (n = 19)), with healthy
controls (n = 10). Two genes (TLN1 (adjusted
P-value = 5.47 9 10�3) and F13A1 (adjusted
P-value = 3.32 9 10�2)) were significantly
downregulated in severe anaphylaxis compared
with healthy controls (Figure 4). TLN1 was also
significantly downregulated in moderate
anaphylaxis compared with healthy controls
(adjusted P-value = 2.19 9 10�2, Figure 4). No
genes were significantly dysregulated between
the moderate and severe groups.

Given the effect of adrenaline on gene
expression previously noted, gene expression
patterns were explored in this validation cohort
considering anaphylaxis severity as well as
treatment with adrenaline, and compared with
healthy controls. The no-adrenaline and
adrenaline anaphylaxis groups consisted of 22
patients (seven severe, 15 moderate) and nine
patients (five severe, four moderate), respectively.
We found seven genes (GATA1 (adjusted P-value =
5.57 9 10�4), SELP (adjusted P-value =
2.29 9 10�2), GP1BA (adjusted P-value =
2.15 9 10�2), MPL (adjusted P-value = 1.20
9 10�2), F13A1 (adjusted P-value = 1.39 9 10�2),
TLN1 (adjusted P-value = 9.40 9 10�4) and SPARC
(adjusted P-value = 4.06 9 10�2)) significantly
downregulated in the severe anaphylaxis patients
who did not receive adrenaline before ED arrival,
compared with healthy controls (Figure 5). One
gene (TLN1 (adjusted P-value = 1.29 9 10�2)) was

Figure 2. Pathways associated with severe anaphylaxis patients who

did or did not receive adrenaline before ED arrival, in the GSE69063

microarray cohort. Numbers of upregulated/downregulated genes

(adjusted P-value < 0.05, log fold change ≤ �0.6 or ≥ 0.6) in severe

adrenaline (n = 5) and severe no-adrenaline (n = 7) groups at (a) T0 and

(b) T1. Biological processes associated with downregulated genes

(adjusted P-value < 0.05, log fold change ≤ �0.6) in severe anaphylaxis

no-adrenaline groups at (c) T0 and (d) T1, and (e) severe anaphylaxis

adrenaline group at T1. Gene Set Enrichment Analysis of the pathways

of (f) ‘platelet aggregation and plug formation’ and (g) ‘response to

elevated platelet cytosolic Ca2+’ in the microarray comparison of severe

anaphylaxis no-adrenaline groups to healthy controls at T0. †FDR, false

discovery rate. ‡NES, normalised enrichment score.
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Table 1. Clinical reaction features of trauma, sepsis and anaphylaxis presentations assessed in the microarray and validation cohorts.

Trauma patients Sepsis patients

Trauma microarray Trauma validation Sepsis microarray Sepsis validation

n 11 20 20 20

Age, mean (SD) 38.6 (21.4) 43.8 (21.2) 58.20 (16.1) 59.25 (19.6)

Male sex, n (%) 9.0 (82.0) 13.0 (65.0) 10 (50) 13 (65)

MAP (mm Hg) (median) (IQR) 96.0 (32.0) 82.5 (36.8) 88.50 (32) 56.50 (16.3)

WCC (x 109 L�1) (median) (IQR) 13.4 (4.7) 15.5 (6.7) 10.6 (7.1) 10.70 (5.8)

Lactate (mmol L�1) (median) (IQR) 1.9 (1.3) 3.1 (3.4) 2.55 (2.4) 1.75 (1.2)

CCI (median) (IQR) 0.0 (1.0) 0.0 (1.0) 1 (2.5) 2.50 (3)

Med score (median) (IQR) 2.0 (1.0) 3.0 (1.0) - -

SOFA score (median) (IQR) - - 4 (7) 7 (3)

Hypoxia (blood oxygen ≤ 92%), n (%) - 2 (10) - 2 (10)

Hypotension (SBP†† < 90 mm Hg), n (%) - 2 (10) 2 (10) 11 (55)

Length of stay (days) (median) (IQR) 11.0 (29.2) 17.0 (24.7) 7.7 (11.4) 7.50 (11.6)

Death within 30 days, n (%) 5.0 (45.0) 8.0 (40.0) 4 (20) 4 (20)

Anaphylaxis microarray Anaphylaxis validation cohort

Severe anaphylaxis Moderate anaphylaxis Severe anaphylaxis Moderate anaphylaxis

n 12 6 12 19

Age, mean (SD) (years) 45.8 (10.8) 50.6 (19.0) 37.2 (11.1) 35.1 (16.1)

Male sex, n (%) 3 (25.0) 1 (16.7) 7 (58.3) 10 (52.6)

Suspected cause - -

Food, n (%) 2 (16.7) 6 (100.0) 2 (16.7) 7 (36.8)

Non-steroidal anti-inflammatory drugs, n (%) 3 (25.0) - 3 (25.0) 3 (15.8)

Beta-lactam antibiotics, n (%) 7 (58.3) - - 2 (10.5)

Drug other/uncertain, n (%) - - 3 (25.0) -

Venoms, n (%) - - 3 (25.0) 3 (15.8)

Physical, n (%) - - 1 (8.3) 1 (5.3)

Pollen, n (%) - - - 1 (5.3)

Unknown, n (%) - - - 2 (10.5)

Onset to first sample, median (IQR) (min) 62.5 (63) 63.5 (33.8) 57.50 (35.8) 72 (28.5)

Any skin features, n (%) 11 (91.7) 5 (83.3) 12 (100.0) 19 (100.0)

Urticaria, n (%) 6 (50.0) 1 (16.7) 9 (75.0) 9 (47.4)

Erythema, n (%) 9 (75.0) 2 (33.3) 7 (58.3) 14 (73.7)

Angioedema, n (%) 5 (41.7) 3 (50.0) 4 (33.3) 6 (31.6)

Periorbital oedema, n (%) 4 (33) 1 (16.7) 2 (16.7) 3 (15.8)

Any gastrointestinal features, n (%) 5 (41.7) 4 (66.7) 4 (33.3) 5 (26.3)

Nausea, n (%) 5 (41.7) 3 (50.0) 4 (33.3) 5 (26.3)

Vomiting, n (%) 2 (16.7) 1 (16.7) 2 (16.7) 3 (15.8)

Abdominal/pelvic pain, n (%) 2 (16.7) 1 (16.7) - 3 (15.8)

Any respiratory features, n (%) 10 (83.3) 6 (100.0) 12 (100.0) 18 (94.7)

Chest/throat tightness, n (%) 7 (58.3) 5 (83.3) 7 (58.3) 13 (68.4)

Dyspnoea, n (%) 7 (58.3) 4 (66.7) 6 (50.0) 8 (42.1)

Stridor, n (%) 1 (8.3) 1 (16.7) 1 (8.3) 2 (10.5)

Wheeze, n (%) 4 (33.3) 3 (50.0) 4 (33.3) 8 (42.1)

Any cardiovascular features, n (%) 12 (100.0) 1 (16.7) 12 (100.0) 2 (10.5)

Dizziness, n (%) - - 2 (16.7) 2 (10.5)

Diaphoresis, n (%) 4 (33.3) 1 (16.7) 1 (8.3) -

Hypotension (SBP < 90 mm Hg), n (%) 10 (83.3) - 7 (58.3) -

Confusion, n (%) 3 (25.0) - 1 (8.3) -

Collapse, n (%) 4 (33.3) - 7 (58.3) -

Loss of consciousness, n (%) 2 (16.7) - - -

Cyanosis, (blood oxygen ≤ 92%), n (%) 3 (25.0) - 1 (8.3) -

Treated with adrenaline, n (%) 12 (100.0) 6 (100.0) 11 (91.7) 14 (73.7)

(Continued)

2022 | Vol. 11 | e1435

Page 6

ª 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

Platelet dysregulation during anaphylaxis FM McGrath et al.

 20500068, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cti2.1435 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



also significantly downregulated in moderate
anaphylaxis patients who did not receive
adrenaline before ED arrival compared with
healthy controls (Figure 5). No genes were
significantly dysregulated between severe and
moderate no-adrenaline groups. No genes were
significantly downregulated in patients who
received adrenaline before ED arrival (severe or
moderate) compared with healthy controls
(Supplementary figure 3).

Platelet counts of anaphylaxis patients are
within the healthy range

To further understand the involvement of
platelets in anaphylaxis, platelet counts of

anaphylaxis, sepsis and trauma groups were
compared. A healthy baseline of 150–450 9 109

platelets L�1 was also used for comparison.22,23

The aim was to determine whether platelet
numbers were altered during acute anaphylaxis,
and whether this was a unique feature of the
anaphylactic reaction. A combination of patients
from the microarray GSE69063 cohort, anaphylaxis
validation cohort and additional sepsis and
trauma patients (sepsis and trauma validation
cohorts) were used for analysis. Combined, the
cohort included 100 patients (29 anaphylaxis (17
severe, 20 no-adrenaline), 40 sepsis and 31 trauma
patients). Clinical characteristics of the sepsis
validation cohort (n = 20) and trauma validation
cohort (n = 20) can be found in Table 1.

Anaphylaxis patients were initially grouped
based on severity and treatment with adrenaline
before ED arrival. Overall, platelet counts of
anaphylaxis patients were within the healthy
range, and sepsis and trauma patients had
lowered platelet counts (Figure 6). While within
the healthy range, severe anaphylaxis patients
had significantly higher platelet counts compared
with sepsis (adjusted P-value = 3.61 9 10�3) and
trauma (adjusted P-value = 6.46 9 10�3) patients
(Figure 6a). Similarly, patients who did and did
not receive adrenaline before ED arrival had
platelet counts within the normal range, which
were significantly higher compared with sepsis
(adjusted P-value = 7.02 9 10�3 and adjusted
P-value = 2.61 9 10�2, respectively) and trauma
(adjusted P-value = 1.26 9 10�2 and adjusted
P-value = 3.46 9 10�2, respectively) patients
(Figure 6b).

Patients who had not received adrenaline
before ED arrival were subsequently grouped
based on severity. Sepsis and trauma patients had
significantly lower platelet counts than severe no-
adrenaline patients, which were within the

Table 1. Continued.

Anaphylaxis microarray Anaphylaxis validation cohort

Severe anaphylaxis Moderate anaphylaxis Severe anaphylaxis Moderate anaphylaxis

Prior to ED only, n (%) 1 (8.3) - 2 (16.7) 2 (10.5)

In ED only, n (%) 7 (58.3) 5 (83.3) 6 (50.0) 10 (52.6)

Both prior to and in ED, n (%) 4 (33.3) 1 (16.7) 3 (15.8) 2 (10.5)

Length of stay, median (IQR) (days) 0.55 (0.53) 0.25 (0.33) 0.6 (0.7) 0.20 (0.4)

Death, n (%) - - - -

CCI, Charlson comorbidity index; ED, emergency department. Data included in this table under ‘sepsis patients’ and ‘anaphylaxis microarray’ have

been previously published19; IQR, interquartile range; MAP, mean arterial pressure; SBP, systolic blood pressure; SD, standard deviation; SOFA,

sequential organ failure assessment; WCC, total White blood Cell Count.

Table 2. Validation panel genes, selected based on significance in

microarray analysis, GSEA, or DAVID pathway analysis in severe

anaphylaxis at T0 compared with healthy controls.

Gene name Microarray (adjusted P-value)a GSEAb DAVIDc

GATA1 2.87 9 10�2 NO YES

SELP 1.52 9 10�3 NO YES

ITGA2B 3.44 9 10�2 YES YES

MYL9 1.02 9 10�2 NO YES

GP1BA 1.09 9 10�3 YES YES

MPL 4.23 9 10�3 YES YES

F13A1 1.25 9 10�3 NO YES

ITGB3 3.86 9 10�3 YES YES

SPARC 5.12 9 10�3 NO YES

TLN1 3.85 9 10�2 YES NO

Genes chosen for validation based on:
aThe microarray analysis comparison of severe anaphylaxis groups to

healthy controls (adjusted P-value < 0.05).
bCore enrichment in healthy controls compared with severe

anaphylaxis at T0 in Gene Set Enrichment Analysis (GSEA) of the

RECTOME pathway of platelet aggregation and plug formation.
cGene involvement in the Database for Annotation, Visualisation and

Integrated Discovery (DAVID) biological process of platelet

aggregation or platelet degranulation (the Benjamini–Hochberg false

discovery rate q < 0.50 and P-value < 0.01).

ª 2022 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.
2022 | Vol. 11 | e1435

Page 7

FM McGrath et al. Platelet dysregulation during anaphylaxis

 20500068, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cti2.1435 by N

H
M

R
C

 N
ational C

ochrane A
ustralia, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



normal range (Figure 6c, adjusted P-value = 2.94
9 10�2 and adjusted P-value = 4.42 9 10�2,
respectively).

Figure 3. qRT-PCR validation of platelet-related validation panel

genes for the comparison of anaphylaxis patients (n = 31) to healthy

controls (n = 10). Log2 fold-changes were determined using the

2�DDCT method where groups were normalised to healthy controls.

Welch’s unequal variance t-tests were used to determine statistically

significant differences between experiment groups. *adjusted P-value

< 0.05, **adjusted P-value < 0.01.

Figure 4. qRT-PCR validation of platelet-related validation panel

genes for anaphylaxis patients grouped by severity. Log2 fold changes

were determined using the 2�DDCT method where groups were

normalised to healthy controls. Comparison groups included severe

anaphylaxis (n = 12), moderate anaphylaxis (n = 19) and healthy

controls (n = 10). One-way ANOVA with the Tukey’s honestly

significant difference (HSD) adjustment, or the Kruskal–Wallis test

with the Bonferroni adjustment, were used to determine statistically

significant differences between experiment groups. *adjusted P-value

< 0.05, **adjusted P-value < 0.01.
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Figure 5. qRT-PCR validation of platelet-related validation panel

genes for anaphylaxis patients who did not receive adrenaline

before ED arrival, grouped by severity. Log2 fold-changes were

determined using the 2�DDCT method where groups were

normalised to healthy controls. Comparison groups included

anaphylaxis patients who did not receive adrenaline before ED

arrival (n = 22), grouped as severe (n = 7), or moderate (n = 15),

and healthy controls (n = 10). One-way ANOVA with the

Tukey’s honestly significant difference (HSD) adjustment was

used to determine statistically significant differences between

experiment groups. *adjusted P-value < 0.05, ***adjusted P-value

< 0.001.

Figure 6. Platelet counts of anaphylaxis, sepsis and trauma patients.

Boxplots consist of (a) anaphylaxis patients grouped based on severity

(severe anaphylaxis n = 17, moderate anaphylaxis n = 12), (b)

anaphylaxis patients grouped based on no treatment (n = 20) or

treatment (n = 9) with adrenaline before emergency department arrival

and (c) anaphylaxis patients who did not receive adrenaline before

emergency department arrival grouped based on severity (severe n = 10,

moderate n = 10), and compared with sepsis (n = 40) and trauma

(n = 31) patients. The healthy range of platelet counts is indicated by the

grey area. The Kruskal–Wallis test with the Bonferroni adjustment was

used to determine statistically significant differences between experiment

groups. *adjusted P-value < 0.05, **adjusted P-value < 0.01.
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DISCUSSION

While our understanding of anaphylaxis is
improving, it is still unclear how the reaction
progresses, and why severity varies between
individuals. We analysed a microarray data set
with the aim of identifying pathways and genes
dysregulated during acute anaphylaxis, and
validated findings. Analysis showed
downregulation of platelet aggregation and
degranulation in severe anaphylaxis patients, but
not sepsis or trauma patients, suggesting this
dysregulation is not a general feature of systemic
inflammation. Dysregulation of platelet pathways
including aggregation and degranulation was
seen primarily at T0 in severe anaphylaxis patients
who had not received adrenaline before ED
arrival. This was confirmed by GSEA, which
identified the pathways of platelet aggregation
and plug formation, and response to elevated
platelet cytosolic Ca2+, to be downregulated in
severe anaphylaxis. These results suggest the
observed suppression of platelet responses occurs
early during the reaction.

Platelets are known primarily for their role in
thrombosis; however, evidence of their
involvement in allergic inflammation is
accumulating.24,25 Platelets have been shown to
contribute towards allergic reactions through
release of inflammatory mediators and
recruitment of pro-inflammatory leukocytes.24

Platelet-activating factor (PAF) is released by mast
cells in IgE-mediated reactions, and by basophils
in IgG-mediated reactions, and can result in
platelet activation and release of serotonin.26

Serotonin release contributes towards reaction
severity by increasing vascular permeability.4,27

Interestingly, the lungs have been identified as a
significant contributor towards platelet
biogenesis, accounting for around 50% of platelet
production, and platelets have been implicated in
numerous allergic lung diseases.25,28 A recent
study using human IgG receptor-expressing mouse
models found platelet numbers dropped
immediately post anaphylaxis.4 Platelet activation
by human aggregated IgG was demonstrated in
vitro and in vivo, and release of serotonin
contributed towards the severity of anaphylaxis.4

Depletion of platelets in the mice before the
induction of anaphylaxis attenuated the reaction,
suggesting platelets are necessary for IgG-
dependent anaphylaxis.4 Similarly, in a human
cohort with drug-induced anaphylaxis, platelet

activation and consequent reduction in circulating
platelets were shown to be associated with
reaction severity.4 Case series have also
demonstrated lowered platelet numbers post
anaphylaxis.29,30 Combined, this evidence suggests
that platelet aggregation and subsequent
reduction in circulating platelets is a physiological
response to anaphylaxis, which may be linked to
downregulation of genes involved in these
processes as is observed in this study.

Our validation work demonstrated the
downregulation of six platelet-related genes
(TLN1, GATA1, SELP, SPARC, MPL and F13A1) in
anaphylaxis patients compared with healthy
controls. Seven genes (TLN1, GATA1, SELP, GP1BA,
MPL, F13A1 and SPARC) were also downregulated
in patients with severe anaphylaxis who did not
receive adrenaline before ED arrival, compared
with healthy controls. TLN1 downregulation was
observed in severe and moderate anaphylaxis
irrespective of treatment with adrenaline,
suggesting downregulation of this gene is
independent of treatment and severity. These
genes have numerous functions relating to
platelet activity, specifically platelet aggregation
and activation. Talin-1, encoded by the TLN1
gene, is an integrin-binding cytoplasmic adaptor.
Talin is crucial for platelet aggregation and
adhesion, and is also involved in T-cell activation
and crucial for T regulatory cell functions.31–34

Specifically, Talin-deficient mice were shown to
have lower numbers of T regulatory cells with
reduced function.34 Interestingly, T regulatory cell
deficiency has been associated with the
development of allergic diseases.35 No role of
TLN1 in anaphylaxis has previously been
described. GATA1 is a gene known to mediate
platelet development.36,37 In in vivo models of
anaphylaxis in mice, reduced GATA1 activity was
shown to heighten IgE-mast cell-mediated
anaphylaxis and was associated with an amplified
T helper 2 cell response.38 While the role of
GATA1 in anaphylaxis has only been linked to
mast cell activation, reduced GATA1 activity in
anaphylaxis patients may drive reaction severity
through downstream effects on platelets and
other cell types. SELP encodes the P-selectin
protein which mediates platelet-leukocyte
interactions post-platelet activation, and stabilises
platelet aggregates.39,40 Interestingly, during IgG-
mediated anaphylaxis in mice, 80% of circulating
neutrophils and 90% of circulating monocytes
were covered in platelets, although these
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aggregates did not appear essential for the
progression of anaphylaxis.4 Platelets bound to
leukocytes can release leukocyte activating agents,
for example PAF and leukotriene B4, which can
activate leukocytes such as neutrophils.41 GP1BA
encodes the glycoprotein Ib-alpha surface
membrane protein, which facilitates platelet
adhesion to the endothelium, and can promote
platelet activation.42 MPL encodes the
thrombopoietin receptor protein and is important
for megakaryocyte proliferation, and subsequently
platelet development.43 F13A1 encodes subunits
for factor XIII, which helps stabilise clots by
supporting platelet adhesion to the
endothelium.44 Lastly, SPARC encodes a
glycoprotein secreted by platelets upon activation,
which regulates the activity of growth factors
including platelet-derived growth factor.45,46

While our work demonstrates for the first time
the dysregulation of platelet signatures during
acute anaphylaxis in humans, downregulation of
platelet pathways has been previously described
in severe allergy.15 Microarray analysis on patients
with profilin-mediated food allergy showed
platelet activation, and aggregation was
downregulated in severe allergy compared with
moderate and mild allergy.15 Specifically,
ingenuity pathway analysis found activation of
blood platelets, and binding of blood platelets
was downregulated in severe allergy patients. Our
independent analysis of this data set supported
these results (data not shown).

In contrast to results finding downregulation of
platelet genes during anaphylaxis, experimental
and observational studies have demonstrated the
activation of platelets and subsequent aggregation
during anaphylaxis.4,29,30 We therefore hypothesise
that observed downregulation of genes involved in
platelet activation and aggregation is a negative
feedback response to enhanced platelet activity
during anaphylaxis. This negative feedback is
initiated early during platelet activation and
involves downregulation of platelet adhesive
receptors to regulate platelet aggregation, as
suggested by the downregulation of GP1BA.
Regulation of platelet adhesive receptors can occur
via four different mechanisms: internalisation,
microvesiculation, secretion and ectodomain
shedding.47 Of particular interest, ectodomain
shedding results in rapid downregulation of
platelet receptors such as GP1BA, which our analysis
showed to be downregulated at the genetic level
during severe anaphylaxis. We therefore propose

that platelet activation is initiated early during the
anaphylactic reaction, followed by rapid
downregulation of aggregation receptors to
mitigate the response. Interestingly, our work has
previously shown the pathway of, ‘cellular response
to platelet derived growth factor stimulus’ was
upregulated during severe anaphylaxis at ED arrival,
further supporting this theory.19 Adrenaline is
known to promote platelet activation and
aggregation, and downregulation of platelet
aggregation was not observed in patients who
received adrenaline before ED arrival. This could
suggest that treatment with adrenaline counteracts
the negative feedback response hypothesised.

Study size is a limitation which should be noted.
In particular, analysis of subgroups may be
underpowered, and further investigations with
larger sample sizes are needed to determine
whether dysregulation of platelet pathways is
dependent on severity and treatment with
adrenaline, or universal to all anaphylactic
reactions. Additionally, it should be noted that
treatment of anaphylaxis patients in the ED
depends in part on whether adrenaline was
administered before arrival. Specifically, it is
uncommon for patients who have had prehospital
adrenaline to receive more on ED arrival. These
differences in treatment post-ED arrival may
impact T1 gene expression profiles for the
adrenaline and no-adrenaline groups. Bleeding
during trauma, and activation of the coagulation
cascade, is a potential confounder which likely
contributes to low platelet counts seen in this
group. Despite limitations, findings from this
study support recent literature suggesting an
association between platelet activation and
aggregation, and severe allergy and
anaphylaxis.4,15,29,30 Specifically, we have
demonstrated for the first time the
downregulation of platelet-related genes during
the acute anaphylactic reaction in humans. Our
results suggest this involvement occurs early
during the acute reaction, and we hypothesise
this is a negative feedback response to platelet
activation and aggregation. Additionally, our
results suggest the downregulation of platelet-
related genes is a unique feature of anaphylaxis,
and not a general feature of systemic
inflammation. Further understanding pathways
and genes driving this platelet involvement would
help improve our understanding of the reaction,
and potentially guide therapeutic techniques to
attenuate the reaction and reduce severity.
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METHODS

Patient cohorts

We analysed two independent patient cohorts: (1)
GSE69063 microarray cohort; and (2) validation cohorts
(comprising anaphylaxis, sepsis and trauma validation
cohorts). Full descriptions of all cohorts can be found
below. All patients and healthy controls in the GSE69063
microarray cohort and validation cohorts were recruited
through our Critical Illness and Shock Study (CISS), as
previously described.19,48,49 Anaphylaxis patients in both
cohorts were graded using the Brown severity scale by
study investigators DF, GA and SB (acknowledged), who
were blinded to results.50 Severe anaphylaxis was classified
by presentation with cardiovascular symptoms including
hypotension, cyanosis, loss of consciousness and collapse.

Gene sets

GSE69063 (McGrath et al. 2021)19 raw gene expression
profile was downloaded from the public functional
genomics data repository: Gene Expression Omnibus (GEO).
This data set was generated using the Affymetrix Human
Gene 2.1 ST Array.

GSE69063 includes samples from severe anaphylaxis (n =
12), moderate anaphylaxis (n = 6), sepsis (n = 20) and
previously unpublished trauma (n = 11) patients taken
during the acute reaction; and controls age and sex
matched to the anaphylaxis (n = 10), sepsis (n = 11) and
trauma (n = 12) cohorts. Samples were taken at
presentation to the ED (T0), and 1 h later (T1). Triggering
allergens included foods and drugs. Clinical characteristics
of all cohorts are described in Table 1.

Microarray analysis

Microarray data were analysed in the R environment for
statistical computing (version 4.0.3), as previously
described.19 Briefly, this included robust multi-array
expression (RMA) measure normalisation using the oligo
Bioconductor package, and identification of differentially
expressed genes (DEGs; false discovery rate (FDR) adjusted
P-value < 0.05 and a log2 fold change ≥ 0.6, or ≤�0.6) using
the limma Bioconductor package.51 Probe sets were
mapped to genes using hugene21sttranscriptcluster (version
8.7.0). DAVID Bioinformatics Resource (version 6.8) and
GSEA were used for pathway analysis.

Validation: RNA Extraction and quality
control

Samples taken at T0 from an independent cohort of 31
anaphylaxis patients (12 severe) and 10 age- and sex-
matched healthy controls were selected to validate findings
from the GSE69063 microarray. Total RNA was extracted
employing the PAXgene Blood RNA Extraction Kits
(PreAnalytiX GmbH, Hombrechtikon, Switzerland) using an
automated QIAcube protocol (QIAGEN, Melbourne,

Australia), following the manufacturer’s recommendations.
RNA quantity was measured using the Qubit Flex
Fluorometer 4 Extended Range (XR) assay (ThermoFisher
Scientific, Melbourne, Australia), and RNA integrity number
(RIN) was measured using a Bioanalyzer (Agilent
Technologies, Santa Clara, United States). Median RNA
quantity was 444 ng lL�1 (IQR 380–503 ng lL�1). Median
RIN was 8.9 (IQR 8.6–9.1).

qRT-PCR analysis

Triplicate quantitative reverse transcription-polymerase
chain reaction (qRT-PCR) reactions were performed using
TaqMan gene expression assay probes, on a ViiATM7 Real-
Time PCR System (ThermoFisher Scientific, Melbourne,
Australia). No template controls, no reverse transcription
controls and water blanks were run for each target.
Expression data were normalised to four housekeeper
genes (PSMC4, ELF1, POP4 and ATP6), selected following
analysis of samples using TaqManTM Array Human
Endogenous Control plates, employing GenEx software. The
2�DDCT method was applied to determine normalised
relative expression values.

Statistical analysis

To determine statistically significant differences in gene
expression between anaphylaxis patients and healthy
controls, Welch’s unequal variance t-tests were used.
Anaphylaxis patients were subsequently grouped based on
severity or treatment before ED arrival, and one-way
ANOVA with Tukey’s honestly significant difference (HSD)
adjustment was used to determine statistically significant
differences between normally distributed patient groups. In
cases of skewed data, the Kruskal–Wallis test with the
Bonferroni adjustment was used to determine statistically
significant differences between groups.
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