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Abstract: Background: Down syndrome (DS) is the commonest of the congenital genetic defects
whose incidence has been rising in recent years for unknown reasons. This study aims to assess
the impact of substance and cannabinoid use on the DS Rate (DSR) and assess their possible causal
involvement. Methods: An observational population-based epidemiological study 1986–2016 was
performed utilizing geotemporospatial and causal inferential analysis. Participants included all
patients diagnosed with DS and reported to state based registries with data obtained from National
Birth Defects Prevention Network of Centers for Disease Control. Drug exposure data was from the
National Survey of Drug Use and Health (NSDUH) a nationally representative sample interviewing
67,000 participants annually. Drug exposures assessed were: cigarette consumption, alcohol abuse,
analgesic/opioid abuse, cocaine use and last month cannabis use. Covariates included ethnicity
and median household income from US Census Bureau; maternal age of childbearing from CDC
births registries; and cannabinoid concentrations from Drug Enforcement Agency. Results: NS-
DUH reports 74.1% response rate. Other data was population-wide. DSR was noted to rise over
time and with cannabis use and cannabis-use quintile. In the optimal geospatial model lagged
to four years terms including ∆9-tetrahydrocannabinol and cannabigerol were significant (from
β-est. = 4189.96 (95%C.I. 1924.74, 6455.17), p = 2.9 × 10−4). Ethnicity, income, and maternal age co-
variates were not significant. DSR in states where cannabis was not illegal was higher than elsewhere
(β-est. = 2.160 (1.5, 2.82), R.R. = 1.81 (1.51, 2.16), p = 4.7 × 10−10). In inverse probability-weighted
mixed models terms including cannabinoids were significant (from β-estimate = 18.82 (16.82, 20.82),
p < 0.0001). 62 E-value estimates ranged to infinity with median values of 303.98 (IQR 2.50, 2.75 × 107)
and 95% lower bounds ranged to 1.1 × 1071 with median values of 10.92 (IQR 1.82, 7990). Con-
clusions. Data show that the association between DSR and substance- and cannabinoid- exposure
is robust to multivariable geotemporospatial adjustment, implicate particularly cannabigerol and
∆9-tetrahydrocannabinol, and fulfil quantitative epidemiological criteria for causality. Nevertheless,
detailed experimental studies would be required to formally demonstrate causality. Cannabis legal-
ization was associated with elevated DSR’s at both bivariate and multivariable analysis. Findings
are consistent with those from Hawaii, Colorado, Canada, Australia and Europe and concordant
with several cellular mechanisms. Given that the cannabis industry is presently in a rapid growth-
commercialization phase the present findings linking cannabis use with megabase scale genotoxicity
suggest unrecognized DS risk factors, are of public health importance and suggest that re-focussing
the cannabis debate on multigenerational health concerns is prudent.

Keywords: cannabis; cannabinoid; ∆9-tetrahydrocannabinol; cannabigerol; cannabidiol; other drugs;
socioeconomic; ethnocultural; down syndrome
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1. Introduction

Down syndrome (DS) was first described by British physician John Down in 1866 [1]
and is well known to include a variety of facial features, mild to moderate growth retarda-
tion, mild to moderately impaired intellectual development, a single palmar crease, loose
muscle tone or joints and a curved little finger [2]. It also includes a number of lesser known
features including reduced life expectancy, a 6% rate of myeloid leukaemia development
and a number of increased co-morbidities including congenital heart disease [2–4]. As it
was shown in 1959 that the cause of the syndrome is an extra chromosome 21 [1] it repre-
sents an example of a disorder with an altered genome. Down syndrome is increasingly
common which is usually attributed to women having children later in life. Indeed the only
cause mentioned on the Centres for Disease Control (CDC) website relating to this disorder
is advanced maternal age [2]. However, society is changing in other ways, particularly in
exposure to drug substances. US data show that the overall use of tobacco and alcohol
products is declining [5]. In some nations opioid abuse has become widespread and the
cannabis industry appears to be entering a rapidly developing commercialization phase in
nations such as Canada and USA.

We were particularly intrigued by the demonstration in Hawaii in 2007 that cannabis
use alone was associated with an elevated risk of Down syndrome with a report of a rate
ratio of 5.26 (95%C.I. 1.08–15.46) on the basis of only 3 exposed cases amongst 479 to-
tal cases [6]. Researchers from Canada Health have also reported higher rates of Down
syndrome in the northern territories of Canada where more cannabis is known to be con-
sumed [7–10]. A similar link was recently shown in Colorado where Down syndrome has
risen over the decade of cannabis legalization and where the rise is associated more with in-
creased cannabis use during a period where rates of tobacco and alcohol consumption were
declining [11,12]. Similar findings also emerge from an Australian report [13] and recent
European reports [14–16]. Interestingly congenital heart disease has also increased in line
with cannabis consumption in Hawaii, Canada, Colorado and Europe [6,8,12,14,15,17–19].
However, the important issue of the relationship of cannabis use with Down syndrome in
the rich databases of the USA more generally has not as yet been considered in detail but
has only been mentioned en passant [20]. We chose to focus on cannabis use since whilst
similar associations have been described for cannabis they have not been described for
other drugs.

Recent reports have found strong bivariate relationships between exposure to cannabis
and many cannabinoids and both the raw Down syndrome rate (DSR) and estimates of the
DSR corrected for early termination of pregnancy for anomaly (ETOPFA) across USA [17].
Similar recent powerful reports have issued from Europe [14,15]. However, this link has
not been studied in a formal space-time relationship within a causal inferential framework
in USA. The present report addresses this knowledge gap.

We therefore formed three related hypotheses prior to commencing our study. The
first was that a demographic survey of drug use would be highly correlated with DS rates
(DSR) across the USA after controlling for common covariates such as ethnicity, median
household income and maternal age. Our second hypothesis was that cannabis use or
cannabinoid exposure would be positively correlated with DSR epidemiologically across
both space and time. The third hypothesis was that the various legal paradigms relating to
cannabis may be significantly related to the DSR.

2. Methods
2.1. Data

Data on Down Syndrome rates was taken from the annual reports of the National Birth
Defects Prevention Network (NBDPN) overseen by the CDC Atlanta Georgia 1986–2016 [21].
National US reports collate state based data which generally relate to five year periods,
the latest being 2012–2016. Case ascertainment style for each registry was taken from the
NBDPN annual reports. Drug exposure data was taken on a state basis from the National
Survey of Drug Use and Health (NSDUH) an annual survey conducted by the Substance
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Abuse and Mental Health Services Administration (SAMHSA) which is a nationally repre-
sentative survey of the non-institutionalized US population over 18 years [22]. The main
drugs of interest and their NSDUH abbreviations were cigarette use in the past month (cig-
mon), abuse or dependence on alcohol in the past year (abodalc), last month cannabis use
(mrjmon), past year analgesic abuse (anlyr) and past year cocaine use (cocyr). Birth census
and maternal age structure data was obtained from the CDC Wonder birth registries [23].
National state ethnicity figures and median household income were downloaded from US
Census Bureau via tidycensus in “R”. Cannabinoid concentration data was taken from
published Drug Enforcement Agency reports [24,25].

2.2. Derived Data

National cannabinoid concentration data was multiplied by state-based measures
of monthly cannabis use to derive an estimate of state based exposure to the various
cannabinoids. NSDUH data was used to derive a mean number of days of cannabis use
by ethnicity at the national level. This was multiplied by the state monthly cannabis use
and by the reported THC potency to derive an index of state-based ethnic exposure to
∆9-tetrahydrocannabinol (THC). States were divided into cannabis-use quintiles based on
their ranking in the 2015 NSUDH survey. Similarly NSDUH data was used to calculate an
average mean number of days of cannabis used in pregnancy nationally also. This was
multiplied by mrjmon to derive a local estimate of state-based pregnancy use denoted
“First Trimester Cannabis Exposure”. CDC birth census data was used to derive a state-
and year- specific fraction of mothers giving birth who were over 35 years of age to account
for the known age effect on DS incidence.

The only longitudinal time series which could be identified describing the time course
of early termination of pregnancy for anomaly (ETOPFA) for DS was that from the Western
Australia Registry of Developmental Anomalies (WARDA) 1980–2014 [26]. The present
ETOPFA for Down syndrome is 70%. The time course of the increase from the WARDA
dataset until present was used to calculate a fractional maximal ETOPFA rate (FMaxTR)
and the raw NBDPN-reported rates were standardized against that to derive an annual
estimate of DSR inclusive of ETOPFA’s. These data are supported by other international
series [27–29].

2.3. Statistical Analysis and Data Cleaning

Data was processed in “R-Studio” version 1.2.1335 based on “R” from CRAN ver-
sion 3.6.1. Data was manipulated and matched in R packages base and dplyr [30], linear
regression was performed in base, graphs were drawn in ggplot2 [30] and sf [31] and
geofacetted in geofacet [32], correlation matrices were visualized in corrgram [33,34], panel
regression was conducted in plm [35], robust sandwich regressoin was performed in sur-
vey [36], spatial weights and matrices were calculated in spdep [37], and spatial regression
was performed in splm [38,39]. Variables were log transformed based on the Shapiro
test. Lagged instrumental variables were used in two step panel regressions as described.
Models were tidied using broom and broom.mixed [40,41]. Datapoints lying outside
10 standard deviations (sd’s) from the population mean were substituted by temporal
kriging (temporal mean substitution) of that states’ data. This was applied to Nebraska
data for 2011–2015, lying 11.6 sd’s outside the population mean. Data for multivariable
regression was z-transformed to address parameter scale effects. Model reduction from
first to final models was by the classical technique of serial omission of the least significant
term. Only significant terms are presented. The standard spatial regression model used is
the full spatial panel maximum likelihood (spml) model including a maximum likelihood
panel looking at main effects over time and using the spatial error structure of Baltagi [42]
conducted using the R package splm [39,43,44].

The net effect of cannabinoid parameters was summed in multivariable models from
matrix multiplication by multiplying the parameter coefficient by the mean value of the
covariate and multiplying these measures for interactive terms. The total value for the



Int. J. Environ. Res. Public Health 2022, 19, 13340 4 of 37

model was then summed across all covariates in this manner. For robust regression
the survey design included the grouping parameter, the inverse probability weighting
parameter and the standardized dataset.

2.4. Causal Analysis

Causal analysis was conducted in R using the package ipw to assign inverse probability
weights to monthly cannabis use as the exposure of interest [45]. Truncation was not
necessary. These weights were then used in weighted mixed effects models performed
using the nlme package in R [46]. The strength required of unmeasured confounders to
account for the described effects was estimated using E-Values derived from the EValue
package in R [47]. p < 0.05 was considered significant.

2.5. Data Availability Statement

Data including R programming code has been made freely available in the Mendeley
Data Archive at URL: http://dx.doi.org/10.17632/tn46tdhc4c.2 (accessed 13 October 2022).

2.6. Ethics

The study was approved by the Human Research Ethics Committee of the University
of Western Australia on 7 June 2019 No. RA/4/20/4724.

3. Results
3.1. Univariate Data

437 data points for the DS rate (DSR) were derived from the published NBDPN
database from 1986–1988 to 2012–2016. The mid-year of each annual report was taken
as the nominal reference year. This data is displayed in Supplementary Table S1 and
map-graphically in Figure 1. In recent years, hotspots are seen to emerge in Colorado
and Massachusetts. Supplementary Figure S1 illustrates these changes for estimates of
the ETOPFA-corrected DS pregnancy rate calculated as described in Methods. Colorado,
Georgia and Massachusetts stand out prominently both before and after correction for
ETOPFA’s. The details for the only data source in the world we could identify providing a
longitudinal series of ETOPFA rates for DS was the 2015 WARDA report [26]. These data
are provided in Supplementary Table S2.

States were divided into quintiles of cannabis use based on the 2015 NSDUH survey
as shown in Supplementary Table S3. Colorado, Vermont and Alaska were in Quintile 5
which is the highest cannabis exposure quintile, and Maine, Rhode Island, Oregon and
New Hampshire were in the fourth cannabis use quintile.

http://dx.doi.org/10.17632/tn46tdhc4c.2
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Figure 1. Map-graph of raw Down syndrome rates across USA 1987–2014.
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3.2. Bivariate Relationships

Figure 2 shows the DSR categorized in in several ways. Panel A shows a rise over
time of both the raw data and the estimates for ETOPFA corrections. Panel B shows a
rise in time for the three rates reported by NBDPN, as the overall rate, those born to
mothers less than 35 years and those older than this cut-off figure. Time-dependent rises
are noted in each case. Panel C plots the DSR against the monthly cannabis use rate and
notes rises in the overall and under 35 years groups, but not in the older group. Panel
D charts the time course of DSR by each cannabis-use quintile. Importantly the highest
cannabis use quintile has DSR’s is obviously higher than the other quintiles with little
overlap in the standard error shaded zones. Panel E provides the same information as
groups irrespective of time. One reads the chart by noticing where the notches do not
overlap for such non-overlapping areas indicate statistical significance. There is therefore
an impression of a rise with quintile number. Panel F re-presents the same quintile data
showing the highest quintile compared to all of the others, and thus dichotomizes the
quintile data. Since the error zones are largely non-overlapping this suggests an important
statistically significant difference. These dichotomized quintiles are again presented as
boxplots in Panel G where the notches just overlap. Panels H and I present a similar quintile
analysis of the ETOPFA-corrected estimates with generally similar findings.

Supplementary Figure S2 presents the DSR as separate panels on a gridded plot.
Steeply rising rates in Colorado, Georgia, Illinois, Massachusetts and South Carolina are
noted. Supplementary Figure S3 presents these data with each state in its approximate posi-
tion on the map in a geofacetted display. This display allows the rises in the various states
to be grouped by geographical region. This shows a group of states in the midwest which
rose sharply—Wisconsin, Illinois, Tennessee and Mississippi, Georgia and Ohio—and a
group in the northeast—Massachusetts and Rhode Island. Supplementary Figure S4 makes
a similar plot for the ETOPFA-corrected estimates and notes widespread uniform rises
across the country which vary only in the extent of the rise.

Supplementary Figure S5 presents the NSUDH data on daily or near daily cannabis
use (20–30 days per month) and cannabis use in pregnancy at the national level. Dramatic
rises in both indices are noted. As these covariates were not found to be significant in the
following regression models they were omitted from final models.

3.3. Linear Regressions

Supplementary Table S4 presents linear regression of key covariates of the DSR
from these opening data. One notes highly significant terms for time (β-est. = 0.21,
(95%C.I. 0.17, 0.25), p < 2.2 × 10−16), monthly cannabis use (β-est. = 2.97, (1.91, 4.03),
p = 8.2 × 10−8), cannabis use quintiles (β-est. = 3.86, (2.45, 5.27), p = 1.2 × 10−7), di-
chotomized cannabis use quintiles (β-est. = 3.54, (2.19, 4.89), p = 4.4 × 10−7) and time:
quintile interactions.

3.4. Multiway Panelled Plots

Figure 3 presents plots of the DSR against continuous covariates in each of the four
principal domains of interest, (A) drug use, (B) cannabinoid exposure and (C) ethnic back-
ground (as defined by the US census profiles for each state) with median household income
presented in the final panel of the Panel C. The plots are of interest from several points of
view. A strongly positive rising effect is noted with income which is well described in the
literature. There appears to be a fall with tobacco use, no relationship with analgesic use,
but a rise with alcohol abuse, cocaine and cannabis exposure. Four of the five cannabinoids
listed—THC, cannabigerol, cannabichromene, cannabinol-show a positive relationship
with DSR as does daily cannabis use and the First Trimester Cannabis Exposure index. A
strong ethnic trend amongst Hispanic-Americans is also apparent.
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Figure 2. Down Syndrome Univariate analysis. (A) DS rate over time for both raw rates and ETOPFA-corrected estimates. (B) DS rates over time by maternal
age group. (C) DS rates as a function of cannabis use. (D) DS rates over time by cannabis use quintiles. (E) Boxplot of DS rates by cannabis use quintiles. (F) DS
Rates over time by dichotomized quintiles. Quintiles 1–4 have been collapsed into the “Lower category”. The highest quintile is Quintile 5. (G) Boxplot of
dichotomized cannabis use quintiles. (H) Boxplot of cannabis use quintiles of ETOPFA-corrected DS estimates. (I) Boxplot of dichotomized cannabis use quintiles for
ETOPFA-corrected DS Rates. Note that non-overlapping notches signifies statistical significance.
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Figure 3. Bivariate plots of the DSR associations. (A) Drugs. (B) Cannabinoids. (C) Ethnicity and Median Household income.
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3.5. Case Ascertainment

One issue relates to whether the style of case ascertainment of the different birth defects
registries may impact the reporting rate of DS. As shown in Supplementary Figure S6 it
does appear to, however the direction is the reverse of what would likely be expected with
the rate in the active case-finding registries lower than those without. Compared to passive
case-finding registries the rate in the active registries is significantly lower (β-est. = −0.10,
(−0.17, −0.03), p = 0.0080; model F = 4.273, df = 2141, p = 0.0158). However, as this variable
was not found significant in multivariable models during exploratory modelling it was not
considered further.

3.6. Correlograms

Supplementary Figure S7 presents a correlogram for these correlations for drugs
and CDC-derived data on maternal age (as the fraction of mothers over 35 years). The
correlation coefficient together with its confidence interval appear in the upper triangle and
the colour code is from yellow—For strongly positive to maroon strongly negative. The
correlogram is sorted along its diagonal by principal component analysis. The correlation
cannabis use with DSR is shown as 0.31 (95%C.I. 0.21, 0.40) and the correlation of cannabis
use with the ETOPFA-correction for DSR as 0.39 (95%C.I. 0.30, 0.48). The first square in this
chart is for “FrOlder35” the fraction of mothers older than 35 years.

Supplementary Figure S8 performs the same role for state-based exposure to cannabi-
noids. For example, the correlation between state-based THC exposure and ETOPFA-
estimates of DSR is 0.51 (95%C.I. 0.42, 0.58).

Supplementary Figure S9 performs a similar role for ethnicity which is weakly corre-
lated, and for ethnic cannabis exposure which for many ethnicities is strongly correlated
with both the DSR and ETOPFA-corrected DSR (ETOPFAC-DSR). Hence, for cannabis
exposure in the Non-Hispanic African American, Non-Hispanic Caucasian-American,
Hispanic-American and Asian-American communities very high correlation coefficients
are reported with ETOPFAC-DSR (0.55 (0.47, 0.652). 0.56 (0.48, 0.63), 0.59 (0.52, 0.66),
0.56 (0.48, 0.63) respectively).

3.7. Multiple Regression
3.7.1. Panel Regression

Panel regression is a suitable technique to use to regress all of these variables in
datasets such as this which have multiple missing data. Supplementary Table S5 presents
these results for models lagged at zero, two, three and four years. Main effects were
assessed for the five substances, five ethnicities, income and advanced maternal age.
Lagged instrumental variables were used for THC exposure and cannabigerol exposure
and for the THC exposure of the five ethnicities to account for the mediating effect of these
covariates on the main effects. Terms including cannabis are significant from β-est. = 3.38,
(1.61, 5.14), p = 1.72 × 10−4.

3.7.2. Geospatial Regression

This form of data suggests that geospatial analysis should be applicable to it. However,
as no extant geospatial algorithm can cope with missing data it is necessary to impute the
missing data by temporal kriging which is an acceptable method. The kriged dataset is
shown in Supplementary Table S6 which for the period 2005–2014 lists 322 native points, to
which 38 have been added totalling 360 points (with 10.5% kriged).

Supplementary Figure S10 shows this data map-graphically for the raw time series
plot, and Figure 4 for the ETOPFA-adjusted estimates. Supplementary Figure S11 shows
the geospatial links which were derived from R::spdep and edited as indicated to derive
the geospatial weights matrix.
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Figure 4. Log of ETOPFA-corrected Down syndrome rates across USA 2005–2014, kriged data.
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Table 1 shows the results from spatial regression of this data for multivariable models
including cannabis, THC and cannabigerol including all the main socioeconomic, ethnicity
and drug exposure variables. Table considers first the unadjusted DSR and then the DSR
after adjustment for estimated ETOPFA rates. In each case first cannabis, then THC and
then cannabigerol are considered. The columns of the right hand of the table list the value
of the spatial coefficient rho along with its statistical significance.

Table 1. Geospatial spreml Regression of Down Syndrome Rate on Drugs, Cannabinoids, Race
and Income.

Parameter Model Spatial Parameter, Rho SCC

Parameter Estimate (C.I.) p-Value Value p-Value

Down Syndrome Rate

Cannabis

spml(DS_Rate~Cigarettes * Cannabis_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge)

Asian 0.48 (0.10, 0.86) 0.0140 −0.2453 0.0003 0.5578

Hispanic 0.44 (0.20, 0.67) 2.86 × 10−4

NHWhite 0.39 (0.13, 0.65) 2.86 × 10−3

Cannabis 0.36 (0.20, 0.52) 9.01 × 10−6

NHBlack 0.33 (0.12, 0.54) 0.0022

Cannabis: Alcoholism 0.20 (0.10, 0.30) 0.0001

Median Household Income 0.17 (0.02, 0.32) 0.0290

Alcoholism 0.15 (0.07, 0.24) 7.30 × 10−4

Cigarettes: Alcoholism 0.08 (0.01, 0.15) 0.0314

Cigarettes −0.16 (−0.29, −0.03) 0.0203

Analgesics −0.18 (−0.30, −0.06) 0.0045

Mothers_Older_35_Years −0.54 (−0.77, −0.31) 4.92 × 10−6

THC

spml(DS_Rate~Cigarettes * THC_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge)

THC_Exposure 0.32 (0.16, 0.47) 5.51 × 10−5 -0.2759 4.78 × 10−5 0.2588

Median Household Income 0.20 (0.07, 0.33) 0.0021

Hispanic 0.18 (0.08, 0.27) 0.0002

THC_Exposure: Alcoholism 0.11 (0.00, 0.21) 0.0496

Alcoholism 0.09 (0.00, 0.18) 0.0394

Analgesics −0.16 (−0.27, −0.05) 0.0047

Cigarettes: THC_Exposure: Alcoholism −0.16 (−0.25, −0.08) 0.0001

Mothers_Older_35_Years −0.26 (−0.40, −0.12) 0.0004

Cannabigerol

spml(DS_Rate~Cigarettes * CBG_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge)

Hispanic 0.42 (0.18, 0.65) 0.0005 −1.6944 1.25 × 10−5 0.4159
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Table 1. Cont.

Parameter Model Spatial Parameter, Rho SCC

Parameter Estimate (C.I.) p-Value Value p-Value

CBG_Exposure 0.41 (0.23, 0.59) 5.15 × 10−6

Asian 0.41 (0.03, 0.78) 0.0325

NHWhite 0.34 (0.09, 0.60) 0.0084

NHBlack 0.31 (0.10, 0.52) 0.0035

Median Household Income 0.19 (0.04, 0.34) 0.0153

Alcoholism 0.14 (0.05, 0.23) 0.0024

CBG_Exposure: Alcoholism 0.12 (0.01, 0.22) 0.0379

Cigarettes: CBG_Exposure: Alcoholism −0.11 (−0.20, −0.02) 0.0148

Cigarettes −0.14 (−0.28, 0.00) 0.0439

Analgesics −0.16 (−0.28, −0.04) 0.0086

Mothers_Older_35_Years −0.51 (−0.74, −0.29) 9.26 × 10−6

Estimated Corrected Down Syndrome
Rate

Cannabis

spml(DS_Rate~Cigarettes * Cannabis_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge)

Asian 0.35 (0.05, 0.64) 0.0221 -0.251266 0.0002 0.4128

Hispanic 0.28 (0.10, 0.46) 0.0026

NHWhite 0.27 (0.06, 0.47) 0.0098

Cannabis 0.25 (0.13, 0.37) 5.22 × 10−5

NHBlack 0.21 (0.05, 0.37) 0.0111

Cannabis: Alcoholism 0.16 (0.09, 0.24) 4.64 × 10−5

Alcoholism 0.14 (0.07, 0.21) 8.48 × 10−5

Cigarettes: Alcoholism 0.07 (0.02, 0.13) 0.0108

Analgesics -0.13 (-0.22, -0.03) 0.0087

Cigarettes -0.16 (-0.26, -0.06) 0.0025

Mothers_Older_35_Years -0.33 (-0.50, -0.17) 9.69 × 10−5

THC

spml(DS_Rate~Cigarettes * THC_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge)

THC_Exposure 0.30 (0.16, 0.43) 2.72 × 10−5 −0.2798 3.67 × 10−5 0.4344

Asian 0.29 (0.00, 0.58) 0.0500

Hispanic 0.25 (0.07, 0.43) 0.0055

NHWhite 0.23 (0.04, 0.43) 0.0200

NHBlack 0.18 (0.03, 0.34) 0.0224

THC_Exposure: Alcoholism 0.14 (0.06, 0.22) 0.0006

Alcoholism 0.13 (0.06, 0.20) 0.0002
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Table 1. Cont.

Parameter Model Spatial Parameter, Rho SCC

Parameter Estimate (C.I.) p-Value Value p-Value

Cigarettes: Alcoholism 0.08 (0.02, 0.13) 0.0101

Analgesics −0.11 (−0.20, −0.02) 0.0175

Cigarettes −0.15 (−0.25, −0.05) 0.0026

Mothers_Older_35_Years −0.30 (−0.46, −0.15) 0.0002

Cannabigerol

spml(DS_Rate~Cigarettes * CBG_Exposure * Alcoholism + Analgesics + Cocaine + MHY + 5_Races + AdvMatlAge)

CBG_Exposure 0.22 (0.12, 0.33) 1.24 × 10−5 −0.067 0.3253 0.3114

MHY 0.11 (0.01, 0.22) 0.0408

CBG_Exposure: Alcoholism 0.09 (0.01, 0.17) 0.0281

Mothers_Older_35_Years −0.18 (−0.29, −0.06) 0.0029

Cigarettes −0.19 (−0.27, −0.11) 5.92 × 10−6

Abbreviations: 5_Races:—Caucasian American + African American + Hispanic American + Asian American + American
Indian/Alaskan, Native, rho:-Spatial autoregressive parameter, SCC—Sum Cannabinoid Coefficients.

12 of the 14 terms for cannabinoids in this Table are positive in direction so on the
face of it the effect of cannabinoids appears to be in the positive direction. However, this
may be formally determined in multivariable models by the technique of summation of
term coefficients by the mean value, multiplying them together for interactive terms, and
then adding them across all terms in the model. In this case, since the covariates have all
been standardized (by z-transformation) their mean value in each case is zero. Hence, the
terms can simply by added directly for all the cannabinoid terms in each model. The sum
of these terms is called the Sum of the Cannabinoid Coefficients (SCC) and appears in the
right hand column of the table. In all six models this parameter is strongly positive.

3.8. Legal Status

It was also of interest to see if the legal status of cannabis might be associated with the
DSR. This is illustrated in Figure 5 where the four legal statuses are charted over time in
panel A, the ETOPFA-corrected DSR is charted over time in panel B, the dichotomized legal
status is charted against the DSR in Panel C, as boxplots in panel D, dichotomized boxplots
in panel E and dichotomized boxplots for the ETOPFA-corrected estimates in panel F. In
each case apparently highly significant changes are shown.

These changes are quantified in Table 2 which regresses the DSR against each of the
parameters shown. Cannabis legalization is shown to be associated with an increased DSR
(β-est. = 6.50, (5.02, 8.99), R.R. = 5.97 (3.02, 11.79), p = 4.36 × 10−7) and when the status
is dichotomized by illegal v. more liberal regimes the significance rises (to β-est. = 2.16,
(1.50, 2.82), R.R. = 1.81, (1.51, 2.16), p = 4.7 × 10−10).



Int. J. Environ. Res. Public Health 2022, 19, 13340 14 of 37

Int. J. Environ. Res. Public Health 2022, 19, × FOR PEER REVIEW 14 of 35 
 

 

 
Figure 5. Effect of legal status on DSR. (A) DS over time by legal status. (B) ETOPFA-corrected estimates of DSR over time by legal status. (C) DSR over time by 
dichotomized legal status. The three regimes representing relaxed cannabis laws are collapsed into the “liberal” category. (D) Boxplot of DSR by cannabis legal 
status. Note that non-overlapping notches signifies statistical significance. (E) DSR by dichotomized cannabis legal status. (F) ETOPFA-corrected DSR by dichot-
omized legal status. 

Figure 5. Effect of legal status on DSR. (A) DS over time by legal status. (B) ETOPFA-corrected estimates of DSR over time by legal status. (C) DSR over time
by dichotomized legal status. The three regimes representing relaxed cannabis laws are collapsed into the “liberal” category. (D) Boxplot of DSR by cannabis
legal status. Note that non-overlapping notches signifies statistical significance. (E) DSR by dichotomized cannabis legal status. (F) ETOPFA-corrected DSR by
dichotomized legal status.
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Table 2. Legal Status—Bivariate Linear Regressions.

Parameter
Parameters Model Parameters

Estimate (C.I.) p-Value R-Squared F dF P

lm(Downs_Rate~Legal_Status)

Status-Legal 6.5 (4.02, 8.99) 4.36 × 10−7 0.1085 18.48 3428 2.72 × 10−11

Status-Decriminalised 1.70 (0.89, 2.52) 5.04 × 10−5

Status-Medical 2.27 (1.36, 3.19) 1.40 × 10−6

lm(Downs_Rate~Dichotomized_Legal_Status)

Liberal_Status 2.16 (1.50, 2.82) 4.68 × 10−10 0.0843 40.66 1430 4.68 × 10−10

lm(Downs_Rate~Year * Legal_Status)

Year 0.17 (0.13, 0.21) 5.2 × 10−14 0.2607 22.71 7424 <2.2 × 10−16

Status-Medical 529.63
(48.63, 1010.62) 0.0315

Year:Status-Medical −0.26
(−0.5, −0.02) 0.0319

Year:Status-Decriminalised 0.10 (0.00, 0.21) 0.0569

Status-Decriminalised −203.45
(−413.39, 6.49) 0.0582

lm(Downs_Rate~Year * Dichotomized_Legal_Status)

Liberal_Status 0 (0, 0) 8.2 × 10−5 0.2359 67.54 2429 <2.2 × 10−16

3.9. Inverse Probability Weighted Mixed Effects Regression

Given the strong evidence established from the geospatial models of a close association
across both space and time between DS and survey measurements of drug and cannabinoid
exposure the next logical issue related to a formal investigation of whether it may be
formally possible to demonstrate a causal relationship. This was facilitated by the use of
inverse probability weights in the final kriged model, derived from the ipw Package in R.

Table 3 presents the results of the fixed effects analysis of inverse probability weighted
mixed effects models for three models, a simple additive model, a model interactive in drug
exposures and a model interactive in both drug exposures and ethnicities. All covariates in
this Table have been standardized by z-transformation. All models include all substance
exposures, ethnicities and median household income. For each model covariates are listed
in descending order of their coefficient. In addition to the usual mixed effects models
parameters the Model Parameter column on the right hand of the table include a Sum of
the Cannabinoid Coefficients (SCC) term which has the same meaning as in Table 1. It is
noted that in the second and third models the SCC is strongly positive.

Supplementary Table S7 shows the fixed effects of final model outputs from increas-
ingly complex mixed models regressing the DSR against six addictive agents (tobacco, alco-
hol abuse, opioid analgesics, cocaine, THC and cannabigerol), four races (Caucasian Amer-
ican, African American, Hispanic American and Asian Americans), the ethnic cannabis
use index for these four ethnicities and median household income. The first model is an
additive model, the second is interactive in terms of the addictive agents (as indicated
in Table 3) and the final model has interactions included both amongst the drugs and
also amongst the ethnic use of cannabis (as indicated). The best model is the final model
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(AIC’s of additive and final interactive models 24,811.022 vs. 1757.386, ANOVA: df 15
vs. 27, Log Likelihood ratio =747.6357, p = 1.50 × 10−17). Many highly significant terms
including cannabinoids appear in final models for both the substances and ethnic cannabis
use indices.

Table 3. Mixed Effects Model with Inverse Probability Weights—Fixed Effects. Standardized Covariates.

Parameter Model

Covariate Estimate (C.I.) p-Value Model
Parameter Value

Additive Model

lme(Downs_Rate~Cigarettes + Alcohol.Abuse + THC.Exposure +Cannabigerol.Exposure + Analgesics + Cocaine + 4_Races+
Median.HH.Income, random = ~1|id, weights = ~sw)

Hispanic 33.2 (32, 34.4) 5.66 × 10−159 AIC 393.005

THC.Exposure 4.28 (4.19, 4.37) 9.29 × 10−226 B IC 3983.781

Cocaine 0.99 (0.95, 1.02) 2.31 × 10−164 LogLik −1954.003

Alcoholism 0.51 (0.43, 0.59) 1.88 × 10−31 S.D. 51446.470

Analgesics −0.16 (−0.19, −0.13) 1.92 × 10−21 SCC −0.020

Cigarettes −0.36 (−0.4, −0.32) 4.24 × 10−43

Median Household Income −1 (−1.04, −0.96) 4.58 × 10−153

CBG.Exposure −4.3 (−4.42, −4.17) 2.91 × 10−186

NHWhite −8.24 (−8.78, −7.7) 2.01 × 10−92

Asian −21.6 (−22.4, −20.8) 6.01 × 10−159

Drug Interactive Model

lme(Downs_Rate~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics + Cocaine + 4_Races+ Median.HH.Income,
random = ~1|id, weights = ~sw)

Alcoholism: THC.Exposure 4.98 (4.2, 5.76) 3.31 × 10−29 AIC 3252.770

Cigarettes: Alcoholism: THC.Exposure 3.12 (2.51, 3.73) 1.41 × 10−20 B IC 3336.416

THC.Exposure 2.72 (2.47, 2.96) 1.21 × 10−64 LogLik −1604.385

Cigarettes: THC.Exposure 1.81 (1.56, 2.05) 8.80 × 10−36 S.D. 23106.340

Hispanic 1.14 (0.69, 1.6) 1.11 × 10−6 SCC 2.196

NHWhite 0.85 (0.62, 1.07) 1.29 × 10−12

Asian 0.83 (0.26, 1.41) 4.47 × 10−3

Cigarettes 0.29 (0.18, 0.41) 9.33 × 10−7

Analgesics 0.18 (0.11, 0.24) 2.01 × 10−7

Median Household Income −0.24 (−0.34, −0.14) 2.15 × 10−6

Alcoholism: THC.Exposure: CBG.Exposure −0.4 (−0.68, −0.12) 4.59 × 10−3

Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure −0.45 (−0.75, −0.15) 3.68 × 10−3

Alcoholism −0.57 (−0.71, −0.44) 5.89 × 10−16

Cigarettes: CBG.Exposure −0.66 (−1.04, −0.28) 7.76 × 10−4

Cigarettes: THC.Exposure: CBG.Exposure −0.77 (−0.87, −0.67) 3.38 × 10−37

THC.Exposure: CBG.Exposure −0.77 (−0.94, −0.61) 6.06 × 10−18
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Table 3. Cont.

Parameter Model

Covariate Estimate (C.I.) p-Value Model
Parameter Value

CBG.Exposure −1.32 (−1.72, −0.91) 6.68 × 10−10

Cigarettes: Alcoholism: CBG.Exposure −2.13 (−2.74, −1.52) 3.82 × 10−11

Alcoholism: CBG.Exposure −3.94 (−4.71, −3.17) 1.55 × 10−20

Drug and Ethnic Interactive Model

lme(Downs_Rate~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics + Cocaine
+NHWhite*NHBlack*Asian*Hispanic+Median.HH.Income, random = ~1|id, weights = ~sw)

NHBlack: Hispanic: Asian 11.4 (8.43, 14.4) 9.42 × 10−13 AIC 3198.600

NHWhite: NHBlack: Asian 8.29 (5.69, 10.9) 1.29 × 10−9 B IC 3311.930

NHWhite: NHBlack: Hispanic: Asian 6.43 (4.6, 8.25) 2.82 × 10−11 LogLik -1569.300

NHBlack: Asian 5.01 (1.89, 8.14) 1.75 × 10−3 S.D. 17081.080

NHWhite: Asian 4.31 (2.55, 6.07) 2.27 × 10−6 SCC 4.749

Alcoholism: THC.Exposure 4.09 (3.38, 4.8) 4.77 × 10−25

NHBlack: Hispanic 3.75 (1.06, 6.45) 6.57 × 10−3

Cigarettes: Alcoholism: THC.Exposure 3.16 (2.36, 3.95) 1.07 × 10−13

THC.Exposure 2.66 (2.13, 3.19) 4.61 × 10−20

Cigarettes: THC.Exposure 2.46 (1.91, 3.01) 1.10 × 10−16

Cigarettes 0.35 (0.21, 0.49) 1.00 × 10−6

Analgesics 0.13 (0.06, 0.2) 2.03 × 10−4

Median Household Income −0.23 (−0.34, −0.12) 4.78 × 10−5

Cocaine −0.3 (−0.46, −0.14) 2.92 × 10−4

Alcoholism −0.67 (−0.79, −0.54) 1.89 × 10−21

CBG.Exposure −0.67 (−1.21, −0.13) 1.46 × 10−2

Cigarettes: CBG.Exposure −1.01 (−1.56, −0.45) 4.04 × 10−4

Alcoholism: THC.Exposure: CBG.Exposure −1.1 (−1.42, −0.79) 2.54 × 10−11

Cigarettes: Alcoholism: THC.Exposure: CBG.Exposure −1.19 (−1.52, −0.85) 2.01 × 10−11

Cigarettes: THC.Exposure: CBG.Exposure −1.4 (−1.63, −1.17) 3.05 × 10−26

THC.Exposure: CBG.Exposure −1.69 (−2.02, −1.36) 1.15 × 10−20

Cigarettes: Alcoholism: CBG.Exposure −1.74 (−2.45, −1.03) 2.23 × 10−6

Asian −1.96 (−3.67, −0.26) 2.40 × 10−2

Alcoholism: CBG.Exposure −2.57 (−3.26, −1.88) 2.38 × 10−12

NHWhite: NHBlack −2.65 (−4.32, −0.98) 1.94 × 10−3

Hispanic: Asian −5.36 (−7.65, −3.07) 6.25 × 10−6

NHWhite: Hispanic −5.68 (−6.72, −4.64) 7.73 × 10−23

Abbreviations: AIC—Akiake Information Criterion, BIC—Bayesian Information Criterion, LogLik—Log likelihood
at model optimization, S.D.—Model Standard Deviation, S.C.C.—Sum of Cannabinoid Coefficients.
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3.10. Robust Regression

Robust regression which accounts for model structure has also been employed using
the R package survey. In these models the state identity, the dataset and inverse probability
weights were all accounted for in the model design term. Table 4 presents these results for
the ETOPFA-corrected DSR. In five of the six models terms for cannabis or cannabinoids
remain significant in final models.

Table 4. Robust Regression Results (from R Survey Package).

Parameter Model

Term Est. (C.I.) p Value Parameter Value

Drugs Additive

svyglm(Downs.ETOPFA.Est.Rate~ Cigarettes + Alcoholism + THC.Exposure + CBG.Exposure + Analgesics + Cocaine)

Analgesics 1.19 (0.75, 1.64) 5.13 × 10−7 AIC −101,077

Cocaine −1.11 (−1.25, −0.97) 4.03 × 10−30 BIC 16.3

Deviance 33.2

Ethnic THC Exposure

svyglm(Downs.ETOPFA.Est.Rate~NHWhite.THC.Exposure + NHBlack.THC.Exposure * Hispanic.THC.Exposure * Asian.THC.Exposure)

Hispanic.THC.Exposure 0.68 (0.58, 0.78) 8.08 × 10−32 AIC 2225

BIC 61

Deviance 2.06

Cannabis-Full Additive Model

svyglm(Downs.ETOPFA.Est.Rate~Cigarettes + Alcoholism + Cannabis.Exposure + Analgesics + Cocaine +

NHWhite + NHBlack + Hispanic + NHAsian + Median.HH.Income)

Cannabis.Exposure 0.41 (0.18, 0.64) 5.33 × 10−04 AIC 2301

Hispanic 0.39 (0.07, 0.71) 0.0156 BIC 88.3

NHWhite 0.36 (0.06, 0.67) 0.0201 Deviance 49.3

Median.HH.Income 0.31 (0.07, 0.55) 0.0124

NHBlack 0.3 (0.05, 0.55) 0.0201

Cocaine −0.53 (−0.78, −0.28) 3.50 × 10−5

Cannabinoids-Full Additive Model

svyglm(Downs.ETOPFA.Est.Rate~Cigarettes + Alcoholism + THC.Exposure + CBG.Exposure + Analgesics + Cocaine +

NHWhite + NHBlack + Hispanic + NHAsian + Median.HH.Income)

THC.Exposure 0.33 (0.14, 0.52) 0.0006 AIC 2279

Median.HH.Income 0.22 (0.01, 0.42) 0.0420 BIC 72.8

Cocaine −0.34 (−0.65, −0.03) 0.0293 Deviance 47.3
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Table 4. Cont.

Parameter Model

Term Est. (C.I.) p Value Parameter Value

Cannabinoids-Full Model-Interactive Substances

svyglm(Downs.ETOPFA.Est.Rate~Cigarettes * Cannabis.Exposure * Alcoholism + Analgesics + Cocaine +

NHWhite + NHBlack + Hispanic + NHAsian + Median.HH.Income)

Cigarettes:Cannabis.Exposure 0.53 (0.45, 0.61) 4.60 × 10−31 AIC 2257

Cigarettes 0.16 (0.01, 0.32) 3.88 × 10−02 BIC 71.0

Deviance 49.4

Cannabinoids-Full Model-Substances & Ethnicity

svyglm(Downs.ETOPFA.Est.Rate~Cigarettes * Cannabis.Exposure * Alcoholism + Analgesics + Cocaine +

NHWhite + NHBlack * Hispanic * NHAsian + Median.HH.Income)

NHBlack:Hispanic:NHAsian 0.81 (0.19, 1.44) 0.0112 AIC 2003

NHBlack 0.58 (0.28, 0.89) 0.0002 BIC 104

NHBlack:Hispanic 0.57 (0.11, 1.03) 0.0161 Deviance 53.4

Alcoholism 0.53 (0.24, 0.82) 0.0003

Median.HH.Income 0.47 (0.19, 0.75) 0.0012

Hispanic 0.39 (0.13, 0.66) 0.0040

Cigarettes 0.28 (0.09, 0.48) 0.0038

Analgesics 0.22 (0.02, 0.43) 0.0354

Cigarettes:Cannabis.Exposure 0.21 (0.03, 0.4) 0.0233

Cigarettes:Alcoholism −0.36 (−0.64, −0.08) 0.0124

Cocaine −0.45 (−0.75, −0.16) 0.0029

Mechanistically these changes may be summarized in the following Figure 6 which
presents a Directed Acyclic Graph (DAG) of the various covariates studied. Figure 6a
shows four domains namely, Supervariables, Substances, Ethnicity and Genomic pathology.
Age is a well recognized super-variable as chromosomal and genetic disorders become
more common for many reasons with age. Income is also involved as it affects access to
substances and lifestyle factors. All the substances are implicated in genotoxic outcomes,
most particularly cannabinoids. A strong link is therefore shown between cannabis and
genotoxic outcomes. Ethnicity is also implicated but regression studies show that its effect
is largely accounted for by cannabinoid exposure by ethnicity as its effect disappears after
adjustment. These various domains are joined by two headed arrows indicating largely
two way effects throughout.

However, these effects are not conceptualized in two dimensions. Rather, as shown
in Figure 6b each of these four domains is seen as a vertex connected to each of the other
vertices as in a double tetrahedron in three dimensions. Hence, all four domains are
interconnected both directly and via the other domains. That is both direct (main) effects
and interactive and interdependent effects will be seen and described.
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Figure 6. (a). Directed Acyclic Graph (DAG) showing presumed causal relationships of covariates in
two dimensions (see text for details). (b). Three Dimensional Schema representing mutual interaction
between four main domains of covariates impacting chromosomal anomalies including direct and
indirect effects. Note that each domain impacts the others and the broad and over-arching general
effects of age and income supervariables.
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3.11. Causality and Uncontrolled Confounding

The final question related to quantitation of unmeasured uncontrolled confounding.
This was considered using E-Values (from package EValue in R). These are listed in Table 5.
One notes that minimum E-Values are generally considered to be potentially causal if they
are greater than 1.25 [48]. 52 of the 62 (83.9%) E-Values listed in this table exceed this
threshold. For the E-value estimates the median value is 303.98 (IQR 2.50, 2.75 × 107). For
the 95% lower bound of the E-value confidence interval the median value is 10.92 (IQR 1.82,
7990). For clarity these E-values are presented in tabular form as a list in Table 6. The nexus
between the E-value pairs has been broken in this Table to allow both lists to be presented
in consecutive descending order.

Table 5. Selected E-Values.

Parameter Table Regression Coefficient
(C.I.) R.R. (C.I.) eValues

Linear Regression eTable 4

Downs over Time eTable 4 0.21 (0.17, 0.25) 1.067 (1.055, 1.079) 1.33, 1.29

Downs by Monthly Cannabis Use eTable 4 2.97 (1.91, 4.03) 2.38 (1.72, 3.31) 4.21, 2.83

Downs by Cannabis Use Quintile eTable 4 3.86 (2.45, 5.27) 2.31 (1.59, 3.37) 4.05, 2.56

Downs by Cannabis Use Quintile
Dichotomized eTable 4 3.54 (2.19, 4.89) 2.07 (1.44, 2.97) 3.56, 2.25

Legal Relationship eTable 8

Legal v Illegal Status eTable 8 6.50 (4.02, 8.99) 5.97 (3.02, 11.79) 11.41, 5.49

Medical v Illegal Status eTable 8 2.27 (1.36, 3.19) 1.86 (1.45, 2.39) 3.14, 2.27

Decriminalized v Illegal Status eTable 8 1.70 (0.89, 2.52) 1.61 (1.29, 2.02) 2.60, 1.90

Time * Decriminalized Status eTable 8 529.63 (48.63, 1010.62) Inf (5.6 × 1070, Inf) Inf, 1.1 × 1071

Liberal v Illegal Status (Dichotomized) eTable 8 2.16 (1.50, 2.82) 1.81 (1.51, 2.16) 3.01, 2.39

Geotemporospatial Regression Table 1

Cannabis Table 1 0.36 (0.20, 0.52) 1.67 (1.33, 2.10) 2.79, 2.00

Cannabis: Alcoholism Table 1 0.20 (0.10, 0.30) 1.32 (1.15, 1.54) 1.99, 1.56

THC_Exposure Table 1 0.32 (0.16, 0.47) 1.56 (1.26, 1.94) 2.50, 1.82

THC_Exposure: Alcoholism Table 1 0.11 (0.00, 0.21) 1.16 (1.00, 1.35) 1.60, 1.02

CBG_Exposure Table 1 0.41 (0.23, 0.59) 1.78 (1.39, 2.31) 2.99, 2.14

CBG_Exposure: Alcoholism Table 1 0.12 (0.01, 0.22) 1.17 (1.01, 1.38) 1.64, 1.11

Cannabis Table 1 0.25 (0.13, 0.37) 1.57 (1.26, 1.97) 2.53, 1.84

Cannabis: Alcoholism Table 1 0.16 (0.09, 0.24) 1.35 (1.16, 1.56) 1.04, 1.61

THC _ Exposure Table 1 0.30 (0.16, 0.43) 1.71 (1.33, 2.20) 2.81, 1.99

THC _ Exposure: Alcoholism Table 1 0.14 (0.06, 0.22) 1.29 (1.11, 1.49) 1.90, 1.47

CBG_Exposure Table 1 0.22 (0.12, 0.33) 1.67 (1.31, 2.13) 2.73, 1.96

CBG_Exposure: Alcoholism Table 1 0.09 (0.01, 0.17) 1.16 (1.02, 1.33) 1.60, 1.14
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Table 5. Cont.

Parameter Table Regression
Coefficient (C.I.) R.R. (C.I.) eValues

Mixed Effects iptw Regression

THC.Exposure Table 2 4.28 (4.19, 4.37) 1.00007 (1.00007, 1.00007) 1.0087, 1.0086

Alcoholism: THC.Exposure Table 2 4.98 (4.2, 5.76) 1.0019 (1.00017, 1.00022) 1.014, 1.013

Cigarettes: Alcoholism:
THC.Exposure Table 2 3.12 (2.51, 3.73) 1.0001 (1.00009, 1.0001) 1.011, 1.01

THC.Exposure Table 2 2.72 (2.47, 2.96) 1.0001 (1.00009, 1.0001) 1.01, 1.009

Cigarettes: THC.Exposure Table 2 1.81 (1.56, 2.05) 1.00007 (1.00006, 1.00008) 1.008, 1.0079

Alcoholism: THC.Exposure Table 2 4.09 (3.38, 4.8) 1.002 (1.0001, 1.0002) 1.014, 1.013

Cigarettes: Alcoholism:
THC.Exposure Table 2 3.16 (2.36, 3.95) 1.00016 (1.00013, 1.00021) 1.013, 1.011

THC.Exposure Table 2 2.66 (2.13, 3.19) 1.0001 (1.0001, 1.0002) 1.012, 1.010

Cigarettes: THC.Exposure Table 2 2.46 (1.91, 3.01) 1.0001 (1.0001, 1.0001) 1.011, 1.010

Linear Modelling of Multivariate
Legal Status

Downs Rate

THC.Exposure Table S8 0.37 (0.08, 0.664) 1.28 × 103 (4.88, 3.33 × 105) 2.55 × 103,
9.24

Status-Decriminalised Table S8 0.39 (0.176, 0.611) 1.95 × 103 (31.13, 1.22 × 105) 3.89 × 103,
61.76

Status-Medical Table S8 0.38 (0.0659, 0.697) 1.54 × 103 (3.77, 6.35 × 105) 3.09 × 103,
7.00

CBG.Exposure Table S8 0.65 (0.414, 0.886) 7.44 × 108 (4.66 × 105, 1.19 × 1012) 1.49 × 109,
9.31 × 105

Status-Decriminalised Table S8 2.47 (2.13, 2.81) 5.40 × 105 (4.00 × 103, 7.29 × 107) 1.08 × 106,
7.99 × 103

Status-Medical Table S8 0.42 (0.263, 0.577) 5.16 × 1033 (1.32 × 1029, 2.02 × 1038) 1.03 × 1034,
2.64 × 1029

Cigarettes: CBG.Exposure Table S8 0.52 (0.052, 0.994) 1.37 × 107 (5.72, 3.31 × 1013) 2.75 × 107,
10.92

Cigarettes: THC.Exposure:
CBG.Exposure Table S8 0.39 (0.165, 0.609) 1.91 × 105 (184.19, 1.99 × 108) 3.82 × 105,

367.89

THC.Exposure Table S8 0.38 (0.0965, 0.653) 1.38 × 103 (6.76, 2.81 × 105) 2.75 × 103,
13.02

Dichotomous.Status-Liberal Table S8 0.39 (0.212, 0.567) 1.84 × 103 (61.40, 5.53 × 104) 3.68 × 103,
122.30

CBG.Exposure Table S8 0.96 (0.703, 1.21) 3.46 × 1011 (3.26 × 108, 3.67 × 1014) 6.93 × 1011,
6.54 × 108

Dichotomous.Status-Liberal Table S8 0.82 (0.663, 0.974) 7.87 × 109 (1.06 × 108, 5.80 × 1011) 1.57 × 1010,
2.13 × 108

Cigarettes: Alcoholism:
THC.Exposure Table S8 1.13 (0.864, 1.39) 4.51 × 1013 (3.07 × 1010, 6.63 × 1016) 9.02 × 1013,

6.14 × 1010



Int. J. Environ. Res. Public Health 2022, 19, 13340 23 of 37

Table 5. Cont.

Parameter Table Regression
Coefficient (C.I.) R.R. (C.I.) eValues

ETOPFA-Est. Downs Rate

Status-Decriminalised Table 6 0.28 (0.113, 0.44) 1.17 × 103 (18.35, 7.48 × 103) 2.34 × 103,
36.19

Cannabis.Exposure Table 6 0.2 (0.0917, 0.301) 152.24 (10.65, 2.17 × 103) 303.98, 20.79

Status-Decriminalised Table 6 0.27 (0.107, 0.435) 977.51 (15.41, 6.19 × 104) 1.95 × 103,
30.32

THC.Exposure Table 6 1.65 (1.42, 1.88) 267.50 (18.46, 3.87 × 103) 534.51, 36.41

Cigarettes: Alcoholism:
THC.Exposure Table 6 0.66 (0.546, 0.772) 3.62 × 1013 (1.75 × 1011, 7.47 × 1015) 7.25 × 1013,

3.51 × 1011

Cigarettes: Alcoholism:
THC.Exposure: CBG.Exposure Table 6 0.63 (0.458, 0.8) 8.75 × 1012 (2.81 × 109, 2.72 × 1016)

1.75E+13, 5.62
× 109

CBG.Exposure Table 6 0.59 (0.424, 0.759) 1.44 × 1012 (5.38 × 108, 3.88 × 1015) 2.89 × 1012,
1.07 × 109

Cigarettes: CBG.Exposure Table 6 0.55 (0.151, 0.943) 1.79 × 1011 (1.46 × 103, 2.21 × 1019) 3.59 × 1011,
2.95 × 103

Cigarettes: THC.Exposure:
CBG.Exposure Table 6 0.33 (0.0888, 0.568) 5.60 × 106 (68.97, 4.56 × 1011) 1.12 × 107,

137.45

Status-Medical Table 6 0.23 (0.121, 0.34) 8.90 × 1033 (2.09 × 1029, 3.78 × 1038) 1.78 × 1034,
4.19 × 1029

Status-Decriminalised Table 6 0.23 (0.121, 0.34) 5.66 × 104 (327.53, 9.78 × 106) 1.13 × 105,
654.55

Dichotomous Status-Liberal Table 6 0.39 (0.212, 0.567) 165.93 (6.01, 4.58 × 103) 331.35, 11.50

Cannabis.Exposure Table 6 0.38 (0.0965, 0.653) 75.43 (5.78, 967.81) 150.36, 11.23

THC.Exposure Table 6 0.44 (0.237, 0.65) 1.04 × 105 (497.78, 2.18 × 107) 2.08 × 105,
995.06

Dichotomous Status-Liberal Table 6 0.26 (0.124, 0.387) 782.59 (26.10, 2.34 × 104) 1.56 × 103,
51.69

Cigarettes: Alcoholism:
THC.Exposure: CBG.Exposure Table 6 1.22 (0.999, 1.43) 3.60 × 1020 (8.53 × 1016, 1.52x 1024) 7.230 × 1020,

1.71E+17

Cigarettes: Alcoholism:
THC.Exposure Table 6 1.18 (0.779, 1.59) 7.63 × 1019 (1.213 × 1013, 4.69 × 1026) 1.53 × 102,

2.48 × 1013

THC.Exposure Table 6 1 (0.736, 1.27) 7.07 × 1016 (2.51 × 10 × 1012, 1.99 ×
1021)

1.41 × 1017,
5.03 × 1012

Dichotomous Status-Liberal Table 6 0.61 (0.494, 0.715) 1.56 × 1010 (2.19 × 108, 1.11 × 1012) 3.13 × 1010,
4.39 × 108

Table 6. E-Value List.

Number E-Value Estimate E-Value Lower Bound

1 Infinity 1.10 × 1071

2 1.78 × 10 × 1034 4.19 × 1029

3 1.03 × 10 × 1034 2.64 × 1029

4 7.23 × 10 × 1020 1.71 × 1017

5 1.41 × 10 × 1017 2.48 × 1013
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Table 6. Cont.

Number E-Value Estimate E-Value Lower Bound

6 9.02 × 10 × 1013 5.03 × 1012

7 7.25 × 10 × 1013 3.51 × 1011

8 1.75 × 10 × 1013 6.14 × 1010

9 2.89 × 10 × 1012 5.62 × 109

10 6.93 × 1011 1.07 × 109

11 3.59 × 1011 6.54 × 108

12 3.13 × 1010 4.39 × 108

13 1.57 × 1010 2.13 × 108

14 1.49 × 109 9.31 × 105

15 2.75 × 107 7.99 × 103

16 1.12 × 107 2.95 × 103

17 1.08 × 106 995.06

18 3.82 × 105 654.55

19 2.08 × 105 367.89

20 1.13 × 105 137.45

21 3.89 × 103 122.3

22 3.68 × 103 61.76

23 3.09 × 103 51.69

24 2.75 × 103 36.41

25 2.55 × 103 36.19

26 2.34 × 103 30.32

27 1.95 × 103 20.79

28 1.56 × 103 13.02

29 534.51 11.5

30 331.35 11.23

31 303.98 10.92

32 1.53 × 102 9.24

33 150.36 7

34 11.41 5.49

35 4.21 2.83

36 4.05 2.56

37 3.56 2.39

38 3.14 2.27

39 3.01 2.25

40 2.99 2.14

41 2.81 2

42 2.79 1.99

43 2.73 1.96

44 2.6 1.9

45 2.53 1.84
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Table 6. Cont.

Number E-Value Estimate E-Value Lower Bound

46 2.5 1.82

47 1.99 1.61

48 1.9 1.56

49 1.64 1.47

50 1.6 1.29

51 1.6 1.14

52 1.33 1.11

53 1.04 1.02

54 1.014 1.013

55 1.014 1.013

56 1.013 1.011

57 1.012 1.01

58 1.011 1.01

59 1.011 1.01

60 1.01 1.009

61 1.0087 1.0086

62 1.008 1.0079

3.12. Multivariate Regression of Cannabis Legal Status

It was of interest to determine if cannabis legal status was significant after multi-
variable adjustment. Inverse probability weight linear regression was used for this study.
Supplementary Table S8 presents the results of additive and interactive models for the legal
status and the dichotomized legal status with the Down syndrome rate as the dependent
variable. Table 7 performs the same exercise for the ETOPFA-adjusted DSR in additive
and interactive model. These studies showed that in each case legal status continued to be
significant in all models after adjustment for the full panel of substance exposure, ethnicity
and income covariates.

Table 7. Multivariable Linear Regression of Cannabis Legal Status. With ETOPFA-Corrected DSR as
the Dependent Variable.

Model and Term
Term Parameters Model Parameters

Estimate (C.I.) p-Value Parameter Value

Legal Status

Additive Cannabis

lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+Cannabis.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+Status,
weights = sw)

Median Household Income 0.56 (0.431, 0.682) 1.19 × 10−16 Adj R Squ. 0.7535

Hispanic 0.43 (0.291, 0.562) 1.63 × 10−9 F 90.14

NHBlack 0.4 (0.269, 0.522) 2.42 × 10−9 dF 12, 338

NHWhite 0.28 (0.135, 0.428) 1.85 × 10−4 S.D. 0.0356
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Table 7. Cont.

Model and Term
Term Parameters Model Parameters

Estimate (C.I.) p-Value Parameter Value

Status-Decriminalised 0.28 (0.113, 0.44) 9.89 × 10−4 P 1.52 × 10−97

Analgesics 0.23 (0.128, 0.323) 7.92 × 10−6

Cannabis.Exposure 0.2 (0.0917, 0.301) 2.62 × 10−4

Alcoholism 0.18 (0.106, 0.254) 2.47 × 10−6

Cigarettes 0.17 (0.0734, 0.275) 7.49 × 10−4

Status-Medical −0.11 (−0.308, 0.098) 0.3090

Status-Legal −0.52 (−56.8, 55.8) 0.9850

Cocaine −0.53 (−0.624, −0.439) 2.95 × 10−25

Additive Cannabinoids

lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+THC.Exposure+Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+
Median.HH.Income+Status, weights = sw)

Median Household Income 0.42 (0.285, 0.548) 1.55 × 10−9 Adj R Squ. 0.7535

Status-Decriminalised 0.27 (0.107, 0.435) 0.0013 F 90.14

NHBlack 0.22 (0.13, 0.316) 3.44 × 10−6 dF 12, 338

THC.Exposure 0.22 (0.115, 0.326) 5.22 × 10−5 S.D. 0.0356

Hispanic 0.21 (0.113, 0.309) 3.04 × 10−5 P 1.52 × 10−97

Alcoholism 0.21 (0.136, 0.28) 3.13 × 10−8

Analgesics 0.2 (0.0999, 0.297) 9.05 × 10−5

Cigarettes 0.13 (0.0272, 0.238) 0.0138

Status-Medical −0.05 (−0.248, 0.157) 0.6570

Status-Legal −0.42 (−57, 56.1) 0.9880

Cocaine −0.43 (−0.518, −0.342) 1.64 × 10−19

Interactive Cannabinoids

lm(ETOPFA.Corrected.DSR~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+
Median.HH.Income+Status, weights = sw)

NHWhite: NHBlack: Hispanic: Asian 27.8 (24, 31.7) 1.15 × 10−35 Adj R Squ. 0.9285

NHBlack: Hispanic: Asian 23.6 (20.7, 26.5) 1.98 × 10−43 F 152.6

NHWhite: NHBlack: Asian 14.2 (12, 16.4) 4.26 × 10−30 dF 30, 320

NHWhite: Hispanic: Asian 14 (11.6, 16.3) 1.94 × 10−26 S.D. 0.0358

NHBlack: Asian 12.3 (10.4, 14.1) 1.39 × 10−32 P 1.69 × 10−170

Hispanic: Asian 9.64 (7.77, 11.5) 3.33 × 10−21

NHWhite: Asian 8.78 (7.25, 10.3) 4.03 × 10−25

NHWhite: NHBlack: Hispanic 7.51 (6.39, 8.63) 4.71 × 10−32

NHBlack: Hispanic 7.03 (6.13, 7.93) 2.47 × 10−40

Asian 5.54 (4.52, 6.56) 6.96 × 10−23

NHBlack 3.48 (2.98, 3.98) 1.44 × 10−33

NHWhite: NHBlack 3.14 (2.55, 3.72) 1.54 × 10−22
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Table 7. Cont.

Model and Term
Term Parameters Model Parameters

Estimate (C.I.) p-Value Parameter Value

NHWhite: Hispanic 2.76 (2.21, 3.31) 2.84 × 10−20

Hispanic 2.41 (1.93, 2.88) 1.17 × 10−20

NHWhite 1.76 (1.46, 2.06) 1.04 × 10−25

Status-Medical 1.65 (1.42, 1.88) 3.11 × 10−36

Cigarettes: Alcoholism:
THC.Exposure 0.66 (0.546, 0.772) 9.79 × 10−26

Cigarettes: Alcoholism:
THC.Exposure: CBG.Exposure 0.63 (0.458, 0.8) 3.31 × 10−12

CBG.Exposure 0.59 (0.424, 0.759) 2.13 × 10−11

Cigarettes: CBG.Exposure 0.55 (0.151, 0.943) 6.94 × 10−3

Cigarettes: THC.Exposure:
CBG.Exposure 0.33 (0.0888, 0.568) 7.37 × 10−3

Analgesics 0.3 (0.216, 0.381) 6.13 × 10−12

Median Household Income 0.23 (0.0867, 0.377) 1.83 × 10−3

Status-Decriminalised 0.23 (0.121, 0.34) 4.26 × 10−5

Cocaine 0.28 (0.384, 0.181) 9.12 × 10−8

Alcoholism: THC.Exposure:
CBG.Exposure −0.38 (−0.513, −0.251) 2.17 × 10−8

Cigarettes −0.51 (−0.672, −0.342) 4.33 × 10−9

Cigarettes: THC.Exposure −0.72 (−1.02, −0.421) 3.31 × 10−6

Alcoholism: CBG.Exposure −0.92 (−1.07, −0.769) 2.71 × 10−28

Status-Legal −1.04 (−31.4, 29.3) 0.9460

Dichotomous Legal Status

Additive Cannabis

lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+Cannabis.Exposure+Analgesics+Cocaine+4_Races+ Median.HH.Income+
Dichotomized.Status, weights = sw)

Median Household Income 0.87 (0.666, 1.07) 6.37 × 10−16 Adj R Squ. 0.7519

Dichotomous Status-Liberal 0.39 (0.212, 0.567) 2.05 × 10−5 F 107.1

THC.Exposure 0.38 (0.0965, 0.653) 0.0085 dF 10, 340

NHBlack 0.33 (0.212, 0.457) 1.52 × 10−7 S.D. 0.0357

Analgesics 0.27 (0.149, 0.383) 1.06 × 10−5 P 1.08 × 10−98

Alcoholism 0.26 (0.158, 0.357) 5.52 × 10−7

Hispanic 0.24 (0.0851, 0.392) 0.0024

Cigarettes 0.21 (0.0624, 0.348) 0.0050

Cocaine −0.3 (−0.435, −0.156) 3.99 × 10−5

Asian −0.49 (−0.827, −0.144) 0.0055

CBG.Exposure −0.49 (−0.813, −0.174) 0.0026
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Table 7. Cont.

Model and Term
Term Parameters Model Parameters

Estimate (C.I.) p-Value Parameter Value

Additive Cannabinoids

lm(ETOPFA.Corrected.DSR~Cigarettes+Alcohol.Abuse+THC.Exposure+Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+
Median.HH.Income+Dichotomized.Status, weights = sw)

Median Household Income 0.53 (0.384, 0.682) 9.91 × 10−12 Adj R Squ. 0.7631

Cannabis.Exposure 0.44 (0.237, 0.65) 2.97 × 10−5 F 103.5

Hispanic 0.26 (0.145, 0.372) 1.09 × 10−5 dF 11, 339

Dichotomous Status-Liberal 0.26 (0.124, 0.387) 1.55 × 10−4 S.D. 0.0349

NHBlack 0.22 (0.132, 0.314) 2.09 × 10−6 P 2.92 × 10−101

Alcoholism 0.17 (0.0948, 0.242) 9.22 × 10−6

Cigarettes 0.15 (0.0483, 0.26) 0.0044

Analgesics 0.14 (0.0564, 0.23) 0.0013

CBG.Exposure −0.24 (−0.481,
−0.00715) 0.0435

Cocaine −0.39 (−0.494, −0.287) 8.68 × 10−13

Asian −0.47 (−0.722, −0.215) 3.16 × 10−4

Interactive Cannabinoids

lm(ETOPFA.Corrected.DSR~Cigarettes*Alcohol.Abuse*THC.Exposure*Cannabigerol.Exposure+Analgesics+Cocaine+4_Races+
Median.HH.Income+Dichotomized.Status, weights = sw)

NHWhite: NHBlack: Hispanic: Asian 26.8 (21.9, 31.6) 1.19 × 10−23 Adj R Squ. 0.8934

NHBlack: Hispanic: Asian 20 (16.5, 23.5) 3.31 × 10−25 F 109.7

NHWhite: Hispanic: Asian 15.1 (12.2, 18.1) 7.40 × 10−21 dF 27, 323

NHWhite: NHBlack: Asian 14 (11.2, 16.8) 2.64 × 10−20 S.D. 0.0234

NHBlack: Asian 11 (8.76, 13.3) 2.27 × 10−19 P 2.37 × 10−145

Hispanic: Asian 10.8 (8.46, 13.1) 8.68 × 10−18

NHWhite: Asian 9.09 (7.14, 11) 5.81 × 10−18

NHWhite: NHBlack: Hispanic 6.86 (5.49, 8.24) 3.87 × 10−20

NHBlack: Hispanic 5.56 (4.49, 6.62) 1.07 × 10−21

Asian 5.44 (4.12, 6.76) 1.12 × 10−14

NHWhite: Hispanic 3.04 (2.37, 3.72) 4.41 × 10−17

NHWhite: NHBlack 3 (2.27, 3.73) 1.46 × 10−14

NHBlack 2.88 (2.28, 3.48) 9.10 × 10−19

Hispanic 2.7 (2.14, 3.25) 4.92 × 10−19

NHWhite 1.72 (1.34, 2.1) 4.80 × 10−17

Cigarettes: Alcoholism:
THC.Exposure: CBG.Exposure 1.22 (0.999, 1.43) 3.76 × 10−24

Cigarettes: Alcoholism:
THC.Exposure 1.18 (0.779, 1.59) 2.04 × 10−8

THC.Exposure 1 (0.736, 1.27) 1.19 × 10−12

Dichotomous Status-Liberal 0.61 (0.494, 0.715) 2.71 × 10−23
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Table 7. Cont.

Model and Term
Term Parameters Model Parameters

Estimate (C.I.) p-Value Parameter Value

Analgesics 0.35 (0.25, 0.443) 8.75 × 10−12

Cigarettes: Alcoholism 0.29 (0.00514, 0.571) 4.60 × 10−2

Median Household Income 0.25 (0.0671, 0.438) 7.76 × 10−3

Cocaine −0.34 (−0.444, −0.242) 9.40 × 10−11

Alcoholism: THC.Exposure:
CBG.Exposure −0.66 (−0.876, −0.451) 2.51 × 10−9

Alcoholism: CBG.Exposure −0.92 (−1.15, −0.689) 4.18 × 10−14

Cigarettes −1.03 (−1.34, −0.714) 3.49 × 10−10

Cigarettes: THC.Exposure −1.03 (−1.36, −0.698) 3.09 × 10−9

4. Discussion
4.1. Main Findings

The study examined socioeconomic, ethnocultural and substance exposure data that
may represent key variables underlying the present rise in US DS rate. We found that
the rate is rising quite sharply in many US states and particularly so when estimates of
ETOPFA-corrected DSR are considered. The DSR also rises with increase of cannabis
exposure and cannabis exposure quintile. When considered by formal multivariable
regression across both time and space including median household income, state ethnic
composition, cannabinoid- and other drug (cigarette, alcohol, analgesic/opioid, cocaine)
exposure and the state rate of mothers older than 35 years, terms including tobacco, ∆9THC,
cannabigerol and analgesics/opioids were significant in the final model (p < 0.001), and
terms including ethnicity, income and maternal age were not.

Relaxation of the laws relating to the cannabis legal status were also related to raised
DSR (β-est. = 2.159 ± 0.339, p = 4.7 × 10−10).

Exploration of the potentially causal nature of the cannabis-DS relationship by the
use of inverse probability weighting in mixed effects models and E-Value calculation
(which quantitates uncontrolled and unmeasured confounding) showed that the association
fulfilled causal criteria with tiny probabilities on weighted mixed effects modelling and
significant E-Values in geospatial modelling.

Interestingly our studies linking Down syndrome and cannabis are consistent with
prior reports from Hawaii, Colorado, Canada and Australia [6,8,12,13]. The strength of
evidence provided in this paper is stronger than that reported previously from other
independent datasets and jurisdictions. The present results are reminiscent of recent
powerful studies in Europe on this issue [14,15,18].

4.2. Pathways and Mechanisms

Various biological pathways have been described which may contribute to the aeti-
ology of chromosomal aneuploidy. In particular cannabis exposure has been shown to
interfere with the synthesis and action of tubulin which is the key monomer from which
microtubules are polymerized [49]. Microtubules form the cytoskeletal framework upon
which chromosomes are segregated during anaphase and the de-railing of chromosomes
during their separation can cause micronucleus formation (to which cannabis has long
been known to contribute) and chromosomal pulverization [50]. For these reasons cannabis
has been described as an indirect genotoxin. Cannabis has been described as deforming
human gross sperm morphology [51] and cannabinol and cannabidiol have been linked
with sperm chromosomal breaks [52–54]. Cannabis has also been described as being highly
toxic to primary oocytes with chromosomal breakages, linkages, rings and microsatellites
formed after in vitro culture and exposure to ∆9THC [55].
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It has also been well established that most DS is related to disturbances of female
meiosis I, which is a very prolonged phase which can extend from foetal in utero life
to the end of a woman’s reproductive life at age 50 years [56–58]. This implies that the
female gametes are actually susceptible to genetic damage throughout the woman’s life
which implicates on a theoretical basis prenatal, adolescent and young adult cannabinoid
exposures as potentially genotoxic and teratogenic.

Cannabis also has quite marked epigenotoxic effects with marked genome-wide al-
teration of DNA methylation profiles shown in both human and rat sperm [59,60]. This
is important as the epigenome is increasingly being understood to effect many genomic
features including double-stranded DNA breakage [61,62]. Moreover, epigenomic disrup-
tion of key steps in formation of the mitotic spindle, disruption of the post-translational
modifications of tubulin which polymerize to form microtubules of the spindle rays, kineto-
chore function and binding of chromosomes to the microtubules of the mitotic and meiotic
spindles, formation of the centromeric chromatin at which the kinetochores will bind,
formation of the centrosomes which draw together then ends of the mitotic spindles to
form the normal bipolar arrangement which predicts cell division into two daughter cells,
have all been now documented in the detailed epigenomic findings of cannabis withdrawal
and dependence [63]. These data imply that the marked degree of epigenomic derange-
ment inherent in cannabinoid exposure is likely a key factor driving the chromosomal
mis-segregation events underlying reported cannabis-related chromosomal and genetic
anomalies in recently population wide studies [6,13,14,17,20,64,65].

Importantly a longitudinal study of the effects of cannabis on the human and rodent
epigenome by DNA methylation noted many changes in the machinery of the centromere
and kinetochore and damage to the polymerized tubulin polymers of the microtubules of
the mitotic spindle induced by cannabis dependence and withdrawal which will greatly
increase the error rate of chromosomal segregation, and lead to chromosomal isolation
independent of the mitotic spindle, aneuploidy and micronucleus formation [63]. These
changes are discussed at length elsewhere [9,15,66,67].

4.3. Causal Assignment

Some exposition of the causal inference analysis employed in this paper is appropriate
to clarify the techniques employed for the benefit of readers who might be less familiar
with the application of modern statistical techniques to causal inference in direct refutation
of the “causalophobic” reputation for which classical statistics is so well known [68]. The
major short-coming of classical regression techniques in causal assignment has been the
potential for unobserved variables to confound the analysis, and in particular the potential
for the exposure of interest to be more common amongst the tested group than amongst the
control group, a fallacy which results in a comparison of “apples with oranges”. Inverse
probability weighting of an observational or ecological population can be applied to the
regression model so that the exposure in the two groups becomes equivalent thereby
constructing so-called “pseudo-randomized” equally exposed populations, from which
causal conclusions can indeed be drawn. This is equally true for continuous variables as
was used in the present study. This methodology is further strengthened by the use of
robust regression techniques as was employed herein.

Another major way in which causality can be assessed is by the use of “Expected
Values”, known as “E-Values” [69]. This is best illustrated by a classical illustration from
recent medical history which has been eloquently recounted by one of the foremost causal
inferential statisticians of our time Judea Pearl [70]. Prior to the 1950′s lung cancer was a
very rare disease. However, with the rise of tobacco and then cigarette smoking lung cancer
became common. It was realized before long that cigarette smoking posed a considerable
exposure risk with a relative risk elevation amongst smokers of nine-fold. However, the de-
bate was protracted and conflicted since many of the world’s leading scientists—including
leading statisticians—smoked tobacco. The debate centred upon whether the observed
effect might be confounded by unobserved variables—such as a pre-disposing genetic
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risk—which might confound the observed relationship. Eventually a genetic risk was
indeed identified in 2016 with the identification of a gene which doubled the lung cancer
risk. The gridlock was resolved when Robins showed that it was inconceivable that an
unobserved confounder variable—which has to be related to both the exposure and the
outcome—would be sufficiently powerful to account for all of the observed tobacco effect.

The demonstration in the present study then of many elevated minimum E-Values
strongly suggests that the association between cannabis use and Down syndrome is likely
to be causal. For example, the present results compares favourably with many modern
reports which often have typical E-Values of about 1.25 [48]. However, since both inverse
probability weighting and E-values have a number of underlying theoretical assumptions
formal demonstration of the causal nature of the link must await further experimental
studies. Given the strong evidence presented in the present report such studies should be
pursued with high and urgent priority.

Moreover, it is further noted that the present work fulfills all the qualitative Hill criteria
of causality as well [71]. Strength of association, consistency amongst studies [6,13,64,65],
specificity, temporal sequence (see geotemporospatial analysis), coherence with known
data, biological plausibility, dose–response relationships, analogy with similar situations
elsewhere [6,13,64,65] and experimental confirmation are all very adequately fulfilled
by the epidemiological analyses presented herein and published experimental work as
summarized in the Section 4.2 above. These findings may be summarized in the following
Table 8.

Table 8. Summary of Hill Criteria.

Hill Criterion Supporting Evidence

Strength of Association Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21–23])

Consistency Amongst Studies Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21–23])

Specificity Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21–23])

Temporality Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21–23])

Coherence with Known Data Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21–23])

Biological Plausibility
Yes. Linked with both micronucleus formation and chromosomal mis-segregation.
Also damage to eggs and sperm. Also many epigenetic mechanisms. See
mechanistic discussion and also Ref. [15]

Dose–response Relationships Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21–23])

Analogy with Similar Situations Elsewhere Yes. Hawaii, Colorado, Europe, USA, Australia, Canada (Refs. [3,15,17,21–23])

Experimental Confirmation Yes. Linked with both micronucleus formation and chromosomal mis-segregation.
See mechanistic discussion.

4.4. Implications for Policy

Chromosome 21 is 48 million megabases in length so the now repeated demonstra-
tion of strong associations between cannabis use and Down syndrome in a sixth loca-
tion [6,8,12,13] and in a causal paradigm necessarily implies the implication of cannabis in
clinical genotoxic syndromes at the chromosomal megabase scale. The known associations
of Down syndrome with congenital heart disease on the one hand and acute lymphoid
leukaemia on the other [2–4] further imply that adult exposure to cannabinoids is necessar-
ily linked with intergenerational and transgenerational transmission of cannabinoid-related
teratogenicity and cannabinoid-related carcinogenicity which are each major aspects of
cannabinoid-related genotoxicity. Indeed cannabis has been noted to be an indirect chromo-
somal clastogen by lab researchers [54,72,73] and has been implicated in a host of genotoxic
and epigenotoxic activities as enumerated briefly above [50,52,54,59,72–83].
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Since data implicate cannabis in heritable genotoxic syndromes it follows that access
to cannabinoid products should be restricted and controlled in the same way as other
known genotoxic agents including chemotherapeutic cancer drugs and known genotoxins
such as thalidomide. Indeed it is of considerable interest that cannabis shares many of the
pathophysiological cellular and molecular mechanisms of thalidomide [84–90] and is also
linked with congenital heart defects [91] and limb outgrowth defects [6,13,65,92] just as
thalidomide has been [21,84,89,93–96].

In short the well described implication of cannabis with heritable clinical genotoxic
syndromes is a major motivation for carefully controlling the community penetration of
cannabinoid products of all types in line with the way known genotoxins are handled,
addressed and carefully controlled in every other entry in the pharmacopeia of western
medicine. This statement in relation to cannabinoid genotoxicity is strongly supported by
the now known causal links relating to cannabinoid neurotoxicity both in the exposed, ex-
pressed as high rates of mental illness in young American adults [97], and in their offspring,
expressed as high and rapidly increasing rates of child autism across USA [98–100].

4.5. Time-Dependent Changes in Down Syndrome Rates

It is clear that improved diagnostic techniques are applied to antenatal diagnosis in
more recent times so it is possible that there has been a secular rise in the diagnosis of DS
which might contribute in part to some of the findings reported. However, the principle
results persist even when the uncorrected DSR’s are used (results not shown). Moreover,
it may be argued that the rate of termination for anomaly has risen over time. Whilst
the present analysis accounts for this it is important also to note that similar—and even
more marked-findings were noted in the European dataset where this effect was explicitly
included in the raw data themselves [14]. Thus the European data is more robust that the
USA data in this respect as the ETOPFA effect could only be estimated for the USA data.
Where the ETOPFA effect was known and available the cannabis effect was actually found
to be stronger than that documented in the present report [14].

4.6. Generalizability

Since the subject of our study was USA, which by many metrics is the world’s leading
nation, and is consistent with reports from several other western nations [6,8,12–14] and
especially from the large European dataset [14], we feel that study findings are generalizable
to other developed nations. However, in view of the rapidly expanding nature of cannabis
commercialization, and the widespread misunderstanding of its supposedly benign nature,
more research needs to be performed at both the genotoxicity / epigenotoxicity level, and
at the epidemiological level. NBDPN-CDC recently published an analysis of gastroschisis
at the US county level [101] and a similar high definition geospatiotemporal investigation
in the area of cannabis and DS is urgently required. This highly generalizable view is
supported by similar reports from multiple other jurisdictions including Hawaii, Colorado,
Australia, Canada and most recently Europe [6,13,14,17,20,64,65].

4.7. Strengths and Limitations

This study has various strengths and limitations. Its strengths relate to its study of the
USA providing the best public data in the world, its population-census wide nature of both
its underlying population and birth defect data, its use of the NSDUH which is a robust
widely used nationally representative sample, the use of a wide spectrum of covariates,
and the application of geospatial and causal inference statistical techniques to this area
for the first time to our knowledge. Its limitations relate mainly to its design and the
unavailability of individual case-level data. This implies that strictly causal relationships
cannot be established. Nevertheless, the present ecological report does pursue this line
of investigation as far as this is possible with population level data. Moreover, cannabis
use may be associated with other covariates of teratological significance such as tobacco
and alcohol use. While these have been adjusted for herein using regression techniques
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some residual confounding might still exist. Inverse probability weighting minimized this
effect. The use of E-Values quantifies the extent to which such effects may be significant. As
demonstrated uncontrolled confounding does not perturb the major conclusions emerging
from geospatial models. Cannabis use has been shown in many studies to be inversely
associated with maternal age so consideration of this variable would likely increase the
observed effects. For these reasons further research in this area is urgently required.

4.8. Conclusions

Our interpretation of study findings is that there exist solid grounds for accepting a
positive epidemiological association between cannabis exposure and DS across both space
and time in the present study and also in many other recent series. These results from USA
are consistent with similar data from several other states and nations [6,13,14,17,20,64,65]
and are further strengthened in the context of the known genotoxicity and epigenotoxicity
of multiple ethnobiological cannabinoids. Clearly more research in this area is necessary.
Furthermore, in view of its public health implications a greatly augmented public education
campaign of current empirical findings should be encouraged following the public health
model and approach to tobacco.
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