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Abstract

Background: A systematic review and network meta-analysis was undertaken to examine the effectiveness of different modes of resistance 
exercise velocity in fast walking speed, timed-up and go, 5-times sit-to-stand, 30-second sit-to-stand, and 6-minute walking tests in older adults.
Methods: CINAHL, Embase, LILACS, PubMed, Scielo, SPORTDiscus, and Web of Science databases were searched up to February 2022. 
Eligible randomized trials examined the effects of supervised high-velocity or traditional resistance exercise in older adults (ie, ≥60 years). The 
primary outcome for this review was physical function measured by fast walking speed, timed-up and go, 5-times sit-to-stand, 30-second sit-to-
stand, and 6-minute walking tests, while maximal muscle power and muscle strength were secondary. A random-effects network meta-analysis 
was undertaken to examine the effects of different resistance exercise interventions.
Results: Eighty articles describing 79 trials (n = 3 575) were included. High-velocity resistance exercise was the most effective for improving 
fast walking speed (standardized mean difference [SMD] −0.44, 95% confidence interval [CI]: 0.00 to 0.87), timed-up and go (SMD −0.76, 
95% CI: −1.05 to −0.47), and 5-times sit-to-stand (SMD −0.74, 95% CI: −1.20 to −0.27), while traditional resistance exercise was the most 
effective for 30-second sit-to-stand (SMD 1.01, 95% CI: 0.68 to 1.34) and 6-minute walking (SMD 0.68, 95% CI: 0.34 to 1.03).
Conclusion: Our study provides evidence that resistance exercise velocity effects are specific in older adults, as evidenced by physical function 
test dependence. We suggest that prescriptions based on the velocity of contraction should be individualized to address the specific functional 
needs of participants.

Keywords:  Muscle power, Physical function, Strength training

Aging, even in the absence of chronic disease, is associated with sev-
eral biological changes in the neural and musculoskeletal systems 
(1,2). While reductions of ~1.0% per year are observed in muscle 
mass (3–5), declines in muscle strength and muscle power (ie, the 

product of force production by the speed of movement) are greater 
and faster (6,7), affecting the ability to undertake activities of daily 
living in older adults (8,9). In addition, older adults presenting with 
lower levels of muscle strength and power are at increased risk of 
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physical disability (10), falling (11,12), and frailty (13), which ul-
timately lead to dependent living and higher risk of hospitalizations 
and all-cause mortality (14,15). Therefore, strategies to preserve 
muscle strength and power, and physical function are critical in older 
adults, as established by the World Health Organization’s concept of 
healthy aging (16).

Resistance exercise is a well-established intervention to im-
prove physical function in older adults (17–20). As previously 
demonstrated, various resistance exercise modes can improve 
muscle strength and power (19–21), which partially accounts for 
gains in physical function (22). Recently, exercise guidelines have 
advocated high-velocity resistance exercise (defined as resistance 
exercise attempted to move the load as fast as possible during the 
concentric phase) as the most effective resistance exercise mode 
for improving physical function in older adults (23,24). This po-
tential superiority of high-velocity compared to traditional re-
sistance exercise (defined as resistance exercise prescribed at a 
set cadence of ≥2 seconds during the concentric phase or not at-
tempting to move the load as fast as possible) relies on superior 
neural rather than muscle fiber adaptations (25) and the greater 
relevance of muscle power production to the performance of daily 
living activities (8,9,26–28). However, conflicting results in phys-
ical function are derived from previous randomized trials (29–
31) and pairwise meta-analyses (32–34). For example, previous 
pairwise meta-analyses from Steib et al. (32). and Tschopp et al. 
(33), involving a small number of studies, indicate an advantage 
in favor of high-velocity compared to traditional resistance exer-
cise when several physical function tests are combined (32,33). 
In contrast, despite similar results, de Rosa Orssatto et  al. (34). 
and Balachandran et  al. (35) suggest that the evidence is incon-
clusive to support such superiority. This may be related to sev-
eral factors, such as (a) studies involving participants with varying 
health status (eg, healthy, frail, and mobility-limited participants), 
(b) studies undertaking resistance exercise combined with aer-
obic or balance exercise interventions, and (c) analyses combining 
several physical function tests which would result in a composite 
measure. These issues likely affect comparisons between these 2 
resistance exercise modes precluding individualization in older 
adults. Therefore, although previous exercise guidelines recom-
mend high-velocity resistance exercise for greater improvements 
in physical function (23,24), a more comprehensive assessment of 
the literature is necessary to better target specific exercise prescrip-
tions to older adults based on individual clinical needs.

The utilization of only direct comparisons between high-velocity 
and traditional resistance exercises may also represent a limitation in 
previous meta-analyses (32–34). For instance, the inclusion of studies 
comparing high-velocity or traditional resistance exercise versus 
control condition would improve precision and comprehensiveness 
in assessing the effects of different velocities of resistance exercise on 
physical function in older adults. Network meta-analysis, comparing 
multiple interventions simultaneously by combining direct and in-
direct evidence within a network of randomized trials, is considered 
very effective in providing comparative effectiveness and supporting 
clinical decision-making (36). As a result, for this systematic review 
and network meta-analysis we aimed to determine which resistance 
exercise velocity mode, high-velocity or traditional, is most effective 
for improving walking speed, lower-limb mobility, power, strength 
and endurance, cardiorespiratory fitness, and walking endurance by 
using a range of tests such as fast walking speed, timed-up and go, 
5-times sit-to-stand, 30-second sit-to-stand, and 6-minute walking 
tests in older adults. These tests are commonly used in exercise trials 

to assess physical function in this age group and are strongly associ-
ated with a variety of clinical endpoints such as mortality, cardiovas-
cular disease and death, and physical disability (37–41). In addition, 
we also examined the moderating effects of physical health status on 
these outcomes.

Methods

Study Eligibility Criteria
To be included, published randomized trials compared traditional 
resistance exercise versus high-velocity resistance exercise versus 
control, traditional resistance exercise versus high-velocity resist-
ance exercise, traditional resistance exercise versus control, or high-
velocity resistance exercise versus control in untrained older adults 
(ie, ≥60 years). High-velocity resistance exercise was defined as re-
sistance exercise that attempted to move the load as fast as possible 
during the concentric phase, while traditional resistance exercise 
was defined as resistance exercise prescribed at a set cadence (eg, 
≥2 seconds) or not attempting to move the load as fast as possible. 
These programs were required to be delivered under supervision 
involving physically healthy or impaired older participants (eg, 
self-reported physical disability, mobility-limited, sarcopenia (42), 
and frailty). The exclusion criteria were: (a) studies including older 
adults exclusively with acute or chronic cardiovascular or metabolic 
conditions (eg, osteoarthritis, type II diabetes, cancer, chronic hemo-
dialysis, heart failure, hospitalized, osteoporosis, and fibromyalgia); 
(b) studies involving within-participant design; (c) interventions 
involving any other type of exercise component (eg, aerobic exercise 
and balance exercise); (d) interventions combining hybrid traditional 
and high-velocity resistance exercise simultaneously; (e) interven-
tions involving nutrition components (eg, protein supplementation 
and caloric restriction); (f) studies with interventions lasting less 
than 4 weeks; (g) not reporting specific outcomes included in this 
review; and (h) studies written in a language other than English, 
Portuguese, or Spanish.

Data Searches and Sources
A systematic search was conducted by a researcher (P.L.) using 
CINAHL, Embase, LILACS, PubMed, Scielo, SPORTDiscus, and 
Web of Science databases from inception to February 2022. The 
search strategy is presented in the Supplementary Appendix 1. All 
procedures undertaken in the present study were reported in ac-
cordance with the Cochrane Back Review Group (CRBG) (43), the 
Implementing Prisma in Exercise, Rehabilitation, Sport medicine 
and SporTs science (PERSiST) (44), and the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses for Network 
Meta-analyses (PRISMA-NMA) statement (45) with registration 
at the international prospective register of systematic reviewers 
(PROSPERO identifier: CRD42022297254).

Study Selection Process and Data Extraction
In the search strategy, titles and abstracts were first independently 
evaluated following the eligibility criteria. Eligibility was assessed in-
dependently in duplicate (P.L. and D.J.P.T.), with differences resolved 
by consensus. When abstracts did not provide sufficient information, 
they were selected for full-text evaluation. Full-text articles meeting 
criteria were retrieved and read independently by both reviewers and 
assessed for inclusion in the study. In addition, a manual search of 
references in selected studies was performed to detect studies poten-
tially eligible for inclusion.
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One reviewer (P.L.) extracted data using a standardized form, 
while a second reviewer (D.J.P.T.) checked the information. Relevant 
information extracted from studies included publication informa-
tion (ie, authors and year of publication), demographic and clinical 
characteristics such as age, body mass index (BMI), and health status 
(eg, self-reported physical disability, mobility-limited, sarcopenia, 
and frailty), experimental design and sample size, prescription char-
acteristics such as delivery, modality, frequency, volume, intensity, 
and concentric and eccentric time of contraction when available.

End Points
The primary outcome for this review was objectively assessed phys-
ical function measured by: (a) fast walking speed (a measure of gait 
speed), (b) timed-up and go test (ie, time in seconds to rise from the 
chair, walk a distance, turn, walk back to the chair, and sit down; 
a measure of lower-limb function and mobility), (c) 5-times sit-to-
stand test (ie, time in seconds to rise as fast as possible from the 
chair 5 times; a measure of lower-limb power and strength), (d) 
30-second sit-to-stand test (ie, number of times that a participant 
can rise to a full stand from a seated position within 30 seconds; a 
measure of lower-limb strength and endurance), and (e) 6-minute 
walking test (ie, distance covered in meters when participants were 
instructed to walk as far as they could during 6 minutes; a measure 
of cardiorespiratory fitness and walking endurance). Secondary out-
comes included maximal muscle power measured by a multijoint 
lower-limb exercise or task test (eg, leg press exercise, stair climbing, 
countermovement jump, and sit-to-stand test) and expressed as W 
or W.kg−1, and maximal muscle strength measured by the leg press 
1-repetition maximum test (1-RM). Information was extracted from 
baseline versus immediate postintervention assessment. For the out-
comes assessed, when articles did not include dispersion values of 
change such as standard deviation (SD), standard errors, or 95% 
confidence intervals (95% CI), the SD of the change was calcu-
lated assuming a correlation of r = 0.5 between the baseline and 
postintervention assessment measures by the square root of (46) ((
SD2

Baseline + SD2
Post -intervention

)
− (2× r× SDBaseline × SDPost -intervention)

)
.

Study Risk of Bias Assessment and Certainty of 
Evidence (GRADE)
The risk of bias was evaluated according to the Cochrane risk-of-
bias tool 2.0 (RoB 2)  (47), with each assessment focused on the 
outcome level. The study quality assessment for all included studies 
was performed independently by 2 reviewers (P.L. and D.J.P.T.), with 
disagreements resolved by consensus. The certainty of the evidence 
for the network of interventions was assessed using the Grading 
of Recommendations Assessment, Development and Evaluation 
(GRADE) approach for network meta-analysis (48). The several do-
mains considered for downgrading the certainty of evidence were 
study limitations (ie, based on the risk of bias assessment), indirect-
ness (ie, based on transitivity assumption), inconsistency (ie, based 
on inconsistency assumption), imprecision (ie, uncertainty around 
the pairwise estimate with confidence intervals crossing the null 
value or including values favoring different treatments), and pub-
lication bias (ie, based on comparison-adjusted funnel plot and the 
Egger’s test) (48).

Data Synthesis and Analysis
Continuous outcome data in both pairwise and network meta-
analyses (NMA) were summarized as standardized mean differ-
ences (SMD) and their 95% confidence intervals (95% CI). Pairwise 
comparisons between high-velocity resistance exercise, traditional 

resistance exercise, and control conditions were conducted in R (R 
Development Core Team, Vienna, Austria) using the package “meta” 
(49). The frequentist graph theoretical was performed following the 
current PRISMA guideline for NMA (50,51), and it was conducted 
using the R package “netmeta” (52). A random-effects model was 
undertaken as studies differ both clinically and methodologically 
(ie, between-study variability). The between-study variability (ie, 
heterogeneity) of the intervention effects within each intervention 
comparison was assessed by I2, and the magnitude of the between-
study variance (τ 2) and estimated using the generalized DerSimonian 
and Laird estimator and the Q-profile approach. For each NMA, 
we assessed a priori the transitivity and consistency assumptions. 
Statistical assessment of the transitivity assumption implies that 
the distribution of potential treatment effect modifiers is balanced 
across the available direct comparisons (53). We used the percentage 
of male participants, average age, BMI, health status, and overall 
risk of bias as potential intervention effect modifiers, with values re-
ported for each study. We evaluated each network for inconsistency 
using the random-effects design-by-treatment interaction model (54) 
and locally by splitting the direct and indirect evidence (55).

Intervention effects were ranked according to p scores, measuring 
the extent of certainty that an intervention is better than the other 
(56). Comparisons were made when more than 1 study was included 
for each comparator and were considered statistically significant 
when the 95% CI did not include the value of zero effect. According 
to Cohen (57), SMD values of 0.0 to ≤0.5 indicate small; 0.51 to 
0.79, medium; and ≥0.8, large effects. Extreme-study effects (ie, out-
liers) were explored with the forward search algorithm (58) using 
the R package “NMAoutlier” (59). When obvious outliers were de-
tected, these were excluded in a sensitivity analysis to assess the ro-
bustness of the results. NMA with subsets and sensitivity analyses 
were conducted for the primary outcome with consideration for po-
tential intervention effect modifiers, health status, and overall risk of 
bias. When the number of studies was more than 10, a comparison-
adjusted funnel plot was drawn to assess publication bias and small-
study effects.

Results

Following the deletion of duplicates and records marked as ineli-
gible, a total of 2 375 potential records were identified. Of these, 
1 333 records were excluded based on titles and abstracts due to 
their irrelevance to the research question, and 14 reports were not 
available for full-text assessment, resulting in 1 028 records deemed 
eligible for full-text review. A total of 955 reports were excluded due 
to reasons described in Supplementary Figure 1. After including 7 
additional studies (30,60–65) via reference lists, a total of 80 articles 
(29–31,60–136) describing 79 randomized trials were included in the 
present systematic review and network meta-analysis (fast walking 
speed, n = 12; timed-up and go, n = 40; 5-times sit-to-stand test, 
n = 18; 30-second sit-to-stand test, n = 24; 6-minute walking test, 
n = 15; leg press muscle power [expressed in W], n = 10; leg press 
muscle power [expressed in W.kg−1], n = 4; stair climbing muscle 
power, n = 3; sit-to-stand muscle power, n = 3; countermovement 
jump muscle power, n = 3; and leg press muscle strength, n = 24).

Study, Participant, and Intervention Characteristics
A total of 3 575 participants (women, n = 2 491; men, n = 836; not 
reported, n = 248) with a median age of 70.2  years (interquartile 
range [IQR] = 67.3 to 72.6 yrs) and BMI of 27.6 kg.m−2 (IQR = 25.6 
to 28.6  kg.m−2) were included. Most studies included physically 
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healthy participants (55 out of 79 studies, 69.2%), followed by par-
ticipants with a self-reported disability or mobility limitations (8 out 
of 79 studies, 10.1%), sarcopenia (6 out of 79 studies, 7.6%), and 
frailty (5 out of 79 studies, 6.3%). Five studies included both phys-
ically healthy and participants with some physical disability (6.3%).

From the 80 articles included, a total of 101 interventions were 
analyzed. While 31 interventions examined high-velocity resistance 
exercise (30.7%), 70 examined traditional resistance exercise (69.3%). 
Regarding exercise prescription characteristics, the median interven-
tion duration of studies evaluating high-velocity resistance exercise 
was 12 weeks (IQR: 12–14 weeks), with a median of 36 sessions (IQR: 
24–36 sessions). Information about high-velocity resistance exercise 
volume was reported for 29 out of the 31 interventions (93.5%) with 
a median of 42 sets per week (IQR: 32–61 sets per week), while peak 
intensity was reported for 25 out of the 31 interventions (80.6%) with 
a median of 70% of 1-RM (IQR: 50%–75% of 1-RM). For studies 
examining traditional resistance exercise, the median duration was 12 
weeks (IQR: 12–16 weeks) and 36 sessions (IQR: 24–38 sessions). 
Information about volume was reported for 60 out of the 70 interven-
tions (85.7%) with a median of 50 sets per week (IQR: 36–72 sets per 
week), while intensity was reported for 50 out of the 70 interventions 
with a median of 75% of 1-RM (IQR: 70%–80% of 1-RM). Sixty-
seven out of the 79 studies included were randomized controlled trials. 
Studies were designed to compare resistance exercise programs versus 
nonactive controls (53 out of 67 studies, 79.1%), stretching control (5 
out of 67 studies, 7.5%), health education control (5 out of 67 studies, 
7.5%), walking control (2 out of 67 studies, 3.0%), and nutrition pla-
cebo control (2 out of 67 studies, 3.0%). The characteristics of the 
individual studies are presented in Supplementary Table 1.

Risk of Bias Assessment
A total of 57 studies examined the effects of resistance exercise vel-
ocity modes on physical function, while 20 and 24 studies examined 
muscle power and muscle strength, respectively. For the primary out-
come of this review, 70.2% of the studies presented a high risk of 
bias (40 out of 57 studies), and 26.3% of the studies presented some 
concerns in physical function assessment (15 out of 57 studies). For 
the secondary outcomes, 70.0% of the studies presented a high risk 
of bias (14 out of 20 studies) in muscle power assessment, while 
79.2% of the studies presented a high risk of bias (19 out of 24 
studies) in muscle strength assessment. The individual risk of bias 
assessment is presented in Supplementary Tables 2–4.

Analysis of the Outcomes

Physical function outcomes
All pairwise comparison results estimated in the meta-analysis 
model are reported in Supplementary Tables 5–9. The network 
geometry of studies examining physical function outcomes is pre-
sented in Figure 1. High-velocity resistance exercise was the most 
effective for improving fast walking speed (p score = 92.8%) and 
reducing the time to perform the timed-up and go (p score = 89.5%) 
and the 5-times sit-to-stand test (p score = 82.1%) compared to con-
trols (Table 1). Traditional resistance exercise was the most effective 
intervention for improving 30-second sit-to-stand (p score = 85.1%) 
and 6-minute walking test (p score = 79.1%; Table 1). Statistically 
significant differences were not observed between traditional and 
high-velocity resistance exercise for physical function outcomes 
(p = .239–.837).

Subgroup analyses for physical health status are presented 
in Figures 2 and 3. High-velocity resistance exercise resulted in 
significant improvements in fast walking speed (SMD = 1.28, 
95% CI: 0.74 to 1.82), timed-up and go (SMD = −0.88, 95% CI: 
−1.21 to −0.54), 30-second sit-to-stand (SMD = 0.93, 95% CI: 
0.43 to 1.43), and 6-minute walking test (SMD = 0.74, 95% CI: 
0.11 to 1.38) for those physically healthy but not 5-times sit-to-
stand where significant effects were only observed in physically 
impaired participants (SMD = −1.26, 95% CI: −2.20 to −0.32). 
In traditional resistance exercise, significant effects were ob-
served regardless of physical health status on timed-up and go 
(SMD = −0.74 to −0.62), 5-times sit-to-stand (SMD = −1.09 to 
−0.52), and 30-second sit-to-stand (SMD = 0.77 to 1.10). For fast 
walking speed and 6-minute walking test, traditional resistance 
exercise resulted in significant effects for mixed physically healthy 
and physically impaired participants (SMD = 0.47, 95% CI: 0.10 
to 0.84) and physically healthy participants (SMD = 0.76, 95% 
CI: 0.36 to 1.16), respectively.

The heterogeneity I2 ranged from 61.1% to 69.9% in NMA for 
the outcomes of physical function. The global test for inconsistency 
(ie, design-by-treatment interaction random-effects model) indicated 
inconsistency for fast walking speed (Q = 18.2, p < .001). The locally 
side-split analyses for fast walking speed indicated a source of incon-
sistency between direct and indirect evidence for high-velocity re-
sistance exercise versus control (p = .049; Supplementary Table 10). 
Visual assessment of comparison-adjusted funnel plots suggested no 
evidence of small-study effects (Egger test, p = .137–.743), except 
5-times sit-to-stand outcome (Egger test, p = .025; Supplementary 
Figure 2). There was no evidence of publication bias after omitting 
the outlier (Coelho-Junior & Uchida (64)) from 5-times sit-to-stand 
(p = .114). Outliers were detected with the forward search algorithm 
for fast walking speed (Ortega & Cuartas, 2020 (127)), 5-times sit-to-
stand (Coelho-Junior & Uchida, 2021 (64)), 30-second sit-to-stand, 
and 6-minute walking test (Filho et al., 2022 (65); Supplementary 
Figure 3). After omitting outliers, sensitivity analyses results were 
not different from the primary analyses for 5-times sit-to-stand and 
6-minute walking test. Sensitivity analysis for fast walking speed 
provided traditional resistance exercise (SMD = 0.27, 95% CI: 0.01 
to 0.52, p = .042; p score = 76.6%) as the best intervention modality, 
while heterogeneity reduced from 63.8% in the primary analysis to 
40.2% (Supplementary Table 11). For 30-second sit-to-stand, we 
found high-velocity resistance exercise (SMD = 1.08, 95% CI: 0.66 
to 1.49, p < .001; p score = 85.8%) as the best intervention modality 

Figure 1. Network geometry of studies examining (A) fast walking speed, (B) 
timed-up and go, (C) 5-times sit-to-stand, (D) 30-second sit-to-stand, and (E) 
6-minute walking. k, number of comparisons; n, sample size.
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Table 1. Network Meta-Analysis Results for Physical Function Outcomes

Comparisons k SMD 95% CI p-Value I2 p-Score Certainty 

Fast walking speed        
 HVRE vs Control groups 5 0.44 0.00 to 0.87 .048 63.8% HVRE: 92.8%  

TRE: 47.8%
⊕⊖⊖⊖  
Very low*,†,‡ TRE vs Control groups 9 0.16 −0.16 to 0.48 .329

 HVRE vs TRE 3 0.28 −0.19 to 0.74 .239
Timed-up and go        
 HVRE vs Control groups 10 −0.76 −1.05 to −0.47 <.001 61.1% HVRE: 89.5%  

TRE: 60.6%
⊕⊕⊖⊖  
Low*,‡ TRE vs Control groups 32 −0.64 −0.83 to −0.45 <.001

 HVRE vs TRE 11 −0.11 −0.41 to 0.17 .422
Five-times sit-to-stand        
 HVRE vs Control groups 4 −0.74 −1.20 to −0.27 .002 63.1% HVRE: 82.1%  

TRE: 67.9%
⊕⊖⊖⊖  
Very low*,‡,§ TRE vs Control groups 14 −0.66 −0.96 to −0.34 <.001

 HVRE vs TRE 6 −0.08 −0.52 to 0.36 .716
30-Second sit-to-stand        
 HVRE vs Control groups 7 0.89 0.43 to 1.34 <.001 76.3% TRE: 85.1%  

HVRE: 64.9%
⊕⊕⊖⊖  
Low*,‡ TRE vs Control groups 18 1.01 0.68 to 1.34 <.001

 HVRE vs TRE 7 −0.12 −0.58 to 0.33 .597
6-Minute walking        
 HVRE vs Control groups 4 0.63 0.07 to 1.18 .027 69.9% TRE: 79.1%  

HVRE: 70.3%
⊕⊕⊖⊖  
Low*,‡ TRE vs Control groups 14 0.68 0.34 to 1.03 <.001

 HVRE vs TRE 5 −0.06 −0.59 to 0.48 .837

Notes: 95% CI = 95% confidence interval; HVRE = high-velocity resistance exercise; k  =  number of comparisons; TRE =  traditional resistance exercise; 
SMD = standardized mean difference.

*Certainty of evidence downgraded due to study limitations, with studies most studies presenting with high risk in the risk of bias assessment.
†Certainty of evidence downgraded due to inconsistency, with a source of inconsistency between direct and indirect evidence identified.
‡Certainty of evidence downgraded due to imprecision, with confidence intervals from interventions crossing null values or including values favoring both 

interventions tested.
§Certainty of evidence downgraded due to publication bias, with visual assessment of comparison-adjusted funnel plots suggesting evidence of small-study ef-

fects.

Figure 2. Network meta-analysis on (A) fast walking speed, (B) 5-times sit-to-stand, (C) 30-second sit-to-stand, and (D) 6-minute walking test based on health 
status. White squares indicate studies involving physically impaired participants; gray squares indicate studies involving mixed participants; black squares 
indicate studies involving physically healthy participants. CI = confidence interval; HVRE = high-velocity resistance exercise; TRE = traditional resistance exercise.
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with a small reduction of heterogeneity (Supplementary Table 11). 
Regarding the certainty of the evidence, the ranking of interven-
tions for improving physical function outcome was graded low for 
timed-up and go, 30-second sit-to-stand, and 6-minute walking tests, 
while a very low grade was observed for fast walking speed and 
5-times sit-to-stand (Table 1).

Muscle power and muscle strength outcomes
Pairwise meta-analysis models for muscle power outcomes and 
muscle strength are presented in Supplementary Tables 12–17. The 
network geometry of studies examining muscle power and muscle 
strength outcomes is presented in Supplementary Figure 4. High-
velocity resistance exercise was the most effective for improving 

leg press muscle power (expressed in W) compared to traditional 
resistance exercise and control condition (p score = 99.9%; Table 
2). For leg press muscle strength, traditional resistance exercise 
was the most effective intervention compared to the control (p 
score = 86.6%; Table 2). There was a statistical difference between 
traditional and high-velocity resistance exercises for leg press muscle 
power (p = .003) but not for leg press muscle strength (p = .538). 
NMA were not undertaken for leg press muscle power (expressed 
in W.kg−1), stair climbing, sit-to-stand, and countermovement jump 
muscle power, given the small number of studies for each com-
parator (≤1).

Subset analyses for physical health status are presented in 
Supplementary Figures 5 and 6. Both traditional and high-velocity 
resistance exercise resulted in significant improvements in leg 
press muscle power (expressed in W) for those physically healthy 
(SMD = 0.61 to 0.99) and mixed physically healthy and physically im-
paired participants (SMD = 0.78 to 1.03), but not for those physically 
impaired. Improvements in leg press muscle strength were only ob-
served in physically healthy participants following high-velocity resist-
ance exercise (SMD = 1.12, 95% CI: 0.75 to 1.50), while traditional 
resistance exercise provided significant results for leg press muscle 
strength regardless of physical health status (SMD = 0.95 to 1.22).

The heterogeneity I2 was 49.6% and 58.6% for leg press muscle 
power and muscle strength, respectively. The global test for incon-
sistency was not significant for leg press muscle power (Q = 4.59, 
p = .205) and muscle strength (Q = 1.72, p = .633), and differences 
between direct and indirect evidence were not observed in locally 
side-split analyses (Supplementary Table 18). Visual assessment of 
comparison-adjusted funnel plots suggested no evidence of small-
study effects for leg press muscle power (Egger test, p = .970) but 
did for muscle strength (Egger test, p < .001; Supplementary Figure 
7). Outliers were detected with the forward search algorithm for leg 
press muscle power (Fielding et al. (29)) and muscle strength (Filho 
et al. (65); Supplementary Figure 8). After omitting outliers, sensi-
tivity analyses results were not different from the primary analyses 
(Supplementary Table 19). Heterogeneity was reduced from 49.6% 
in the primary analysis to 0% in leg press muscle power, while a small 
reduction was observed in leg press muscle strength (Supplementary 
Table 19). Based on the GRADE approach, the certainty of evidence 
was considered moderate for leg press muscle power and very low 
for leg press muscle strength (Table 2).

Table 2. Network Meta-Analysis Results for Muscle Strength and Muscle Power Outcomes

Comparisons k SMD 95% CI p-Value I2 p-Score Certainty 

Leg press muscle power        
HVRE vs Control groups 4 0.90 0.49 to 1.30 <.001 49.6% HVRE: 99.9%  

TRE: 48.1%
⊕⊕⊕⊖  
Moderate*TRE vs Control groups 5 0.35 −0.04 to 0.73 .080

HVRE vs TRE 7 0.55 0.19 to 0.92 .003
Leg press 1-RM        
HVRE vs Control groups 8 1.10 0.75 to 1.46 <.001 58.6% TRE: 86.6%  

HVRE: 63.4%
⊕⊖⊖⊖  
Very low*,†,‡TRE vs Control groups 23 1.21 0.95 to 1.46 <.001

HVRE vs TRE 11 −0.10 −0.44 to 0.23 .538

Notes: 1-RM = 1-repetition maximum; 95% CI = 95% confidence interval; HVRE = high-velocity resistance exercise; k = number of comparisons; SMD = 
standardized mean difference; TRE = traditional resistance exercise; W = Watts.

*Certainty of evidence downgraded due to imprecision, with confidence intervals from interventions crossing null values or including values favoring both 
interventions tested.

†Certainty of evidence downgraded due to study limitations, with studies most studies presenting with high risk in the risk of bias assessment.
‡Certainty of evidence downgraded due to publication bias, with visual assessment of comparison-adjusted funnel plots suggesting evidence of small-study ef-

fects.

Figure 3. Network meta-analysis on timed-up and go based on health status. 
White squares indicate studies involving physically impaired participants; 
gray squares indicate studies involving mixed participants; black squares 
indicate studies involving physically healthy participants. CI = confidence 
interval; HVRE = high-velocity resistance exercise; TRE = traditional resistance 
exercisel.
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Discussion

In the present systematic review with network meta-analysis, we 
investigated the effects of high-velocity and traditional resist-
ance exercise on physical function, muscle power, and strength 
outcomes in physically healthy and impaired older adults. 
Although both resistance exercise velocities effectively improved 
performance-based physical function outcomes in these partici-
pants, we found that the neuromuscular changes derived are vel-
ocity specific, as evidenced by physical function test dependence. 
While high-velocity resistance exercise provided better results for 
fast walking speed, 5-times sit-to-stand, timed-up and go, and 
muscle power outcomes, traditional resistance exercise resulted in 
greater effects on 30-second sit-to-stand, 6-minute walking, and 
muscle strength. These findings indicate that resistance exercise 
prescription based on the velocity of contraction should be indi-
vidualized in older adults to optimize improvements in the specific 
physical function outcomes desired.

It is well recognized that resistance exercise is an efficient inter-
vention to improve physical function in older adults (17–20,23,24). 
However, there is a lack of information on the most effective resist-
ance exercise mode. In the current study, we found that resistance 
exercise velocity effects are specific and depend on the characteris-
tics the test is quantifying. Attempting to achieve a high execution 
velocity resulted in greater improvements in physical function tests 
with a time component, while endurance tasks, where participants 
had to work longer, derived superior benefits from traditional low-
to-moderate-velocity movement. This difference may be related to 
the specific neuromuscular adaptations promoted by fast or slow 
controlled contractions within resistance exercise (137). Therefore, 
we suggest that resistance exercise velocity should be individualized 
to specifically address deficits in older adults’ neuromuscular per-
formance per the concept of one-size-does-not-fit-all.

Older adults with a higher risk of disabilities, such as those suf-
fering from frailty or mobility limitations, are vulnerable to stressors 
and adverse outcomes (13). Given reductions in a physical reserve 
capacity, interventions targeting basic tasks of daily living such 
as walking, change of direction, balance, and standing up from a 
chair are critical in these individuals. Therefore, older adults who 
are physically impaired could especially benefit from targeted high-
velocity resistance exercise. This may provide a greater safety margin 
before the threshold for disabilities is reached and assist in reducing 
the risk of falls and hospitalizations (28,138,139). Subsequently, 
goals such as improving muscular endurance could be prioritized by 
introducing traditional resistance exercises or even different exercise 
components such as aerobic and balance exercises within a multi-
modal exercise program (23,24).

In regards to physically healthy older adults, this group can be 
targeted based on initial assessment, preventing physical disability 
and maintaining healthy aging (16). For example, participants who 
perform poorly on 30-second sit-to-stand or 6-minute walking tests 
can be targeted with traditional resistance exercise, the most effective 
intervention for these outcomes. Alternatively, hybrid programs 
comprising both velocity modes can be used to develop different 
components of physical function simultaneously (140), although 
further investigations are required to elucidate the response to this 
model, including within an overall periodized program. Therefore, 
individualizing the resistance exercise program using high-velocity 
or traditional resistance exercises can target participants at different 
stages, such as reversing physical disability or preserving physical 
function before the threshold for disabilities.

The strengths of the present study are: (a) the inclusion of 79 
resistance exercise randomized trials with 3  575 older adults; (b) 
studies examining resistance exercise modes without the inter-
ference of other exercise components such as aerobic or balance 
interventions; (c) a network meta-analysis involving simultaneous 
comparison among high-velocity and traditional resistance exercise 
and control conditions; (d) investigation of the most effective re-
sistance exercise velocity mode for different physical function tests; 
and (e) subgroup analyses providing specific information for physic-
ally healthy or impaired older adults. However, there are also limi-
tations worthy of comment. First, the majority of studies had a high 
risk of bias. Several concerns regarding the randomization process, 
measurement of outcomes, and selection of reported results were 
identified. These affected the precision, magnitude, and certainty 
of the evidence. Second, we observed a high heterogeneity across 
analyses on physical function. This may be a result of different set-
tings or characteristics of studies included, in addition to the lack 
of or poor reporting of resistance exercise characteristics such as 
volume and intensity in the studies included. Third, participants in 
the high-velocity resistance exercise group likely had their perform-
ance affected by accumulated fatigue throughout sessions, sets and 
repetitions, reducing their ability to recruit all motor units at op-
timal discharge rates and maintain appropriate velocity (141). As 
a result, this may have reduced our ability to observe even greater 
differences between resistance exercise velocities. Fourth, we did not 
include other commonly used physical function tests, such as the 
usual walking speed or the 400-m walk. Given the availability of 
studies assessing performance measures or sensitivity to change fol-
lowing resistance exercise, this systematic review and meta-analysis 
were planned to focus on those with a higher number of studies 
available (eg, 6-minute walking test vs 400-m walk test) and higher 
sensitivity to change following resistance exercise programs (eg, fast 
walking speed and timed-up and go vs usual walking speed) in older 
adults (37,142). Finally, only a few studies were conducted on pa-
tients who were physically impaired, and these may have limited our 
findings for this group.

In conclusion, our study provides evidence that resistance exer-
cise effects on physical function are velocity specific, as evidenced 
by physical function test dependence in older adults. While high-
velocity resistance exercise promoted greater improvements in phys-
ical function tests with a time component, traditional resistance 
exercise was the most effective intervention for improving perform-
ance where participants had to work longer. These results are of clin-
ical importance as they indicate that resistance exercise prescription 
based on the velocity of contraction should be individualized and 
specific to target the relative deficits of participants’ and their needs 
within the resistance exercise program. Moreover, older adults will 
often present with a range of deficits in physical function and con-
sequently, both high-velocity and traditional resistance exercise may 
be required to enhance multiple domains of physical function.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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