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A B S T R A C T

Single-cell technology enables the observation of the molecular landscape of

individual cells. This offers unprecedented opportunity to explore diversity of

cells and is transforming precision medicine in recent years. Key to the effective

use of single-cell data to understand disease is the effective analysis of informa-

tion through bioinformatics methods. In this thesis, we examine and address

several challenges in single-cell bioinformatics methods for precision medicine.

While most of the current single-cell analytical tools employ statistical and ma-

chine learning methods, deep learning technology has gained tremendous suc-

cess in the computer science field. Combined with ensemble learning, this fur-

ther improves model performance. Through a review article (Cao et al., 2020),

we share recent key development on this front and examine their contribution

to bioinformatics research. We envisage that the common challenges and op-

portunities identified can inspire future application of ensemble deep learning

technology to the single-cell field.

Bioinformatics tools often use simulation data to assess the proposed method-

ology but evaluation of the quality of single-cell RNA-sequencing (scRNA-seq)

data simulation tools and the quality of the simulation data they produce is

lacking. To address this gap, we develop a comprehensive framework (Cao et al.,

2021), SimBench, that examines a broad range of aspects from data properties

to the ability to maintain biological signals, scalability and applicability. Us-

ing 35 scRNA-seq experimental datasets, we uncover performance differences

among current simulation methods and highlight the varying difficulties and

challenges in the simulation landscape.

While the key to precision medicine is the understanding of individual patient,

there is yet little consensus on the best ways to compress information from
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the complex data structures that single-cell technology produces to summary

statistics that represent each individual. To address this gap, we present scFea-

tures (Cao et al., 2022b), an approach that creates interpretable cellular and

molecular representations for individuals. We demonstrate, using a collection

of 17 datasets across different diseases, that summarising a broad collection of

features at the sample level is both important for understanding disease mech-

anisms and for accurately classifying disease status.

Finally, using multiple COVID-19 single-cell data in a case study, we utilise

scFeatures to generate molecular characterisation of individuals and illustrate

the effect of ensemble learning as well as deep learning on improving disease

outcomes prediction.

Overall, this thesis addresses several gaps in precision bioinformatics in the

single-cell field by highlighting current research advances, developing method-

ologies towards this front and illustrating the practical uses of the methodolo-

gies through experimental datasets and case studies.
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1
I N T R O D U C T I O N

Precision medicine involves measuring individuals’ molecular profiles and pre-

dicting, based on the data, the disease subgroup these patients fall into and

the treatment they would potentially best respond to. In 2018, the Office of the

Chief Scientist of Australia announced the 2030 goal of public healthcare of

quantifying the risk profiles in individuals and customising the care for each

individual including early intervention and personalised treatments. The driv-

ing force behind the transition from standard care to precision care in the near

future is the advances in high-throughput profiling technologies such as DNA

and RNA sequencing and in particular the recent rise of single-cell technolo-

gies.

To transform healthcare through precision medicine is not without challenges.

In particular, in the era of single-cell sequencing technology, single-cell data

exhibit great differences to traditional "bulk" sequencing data generated from

cell population. First of all, unlike bulk sequencing data with minimal zero val-

ues, single-cell RNA-seq data (scRNA-seq) data is characterised by its sparsity,

with many data containing more than 90% of the values being zero due to both

technical and biological effect. Considerable thought is required to handle and

model this sparsity in all downstream analysis. Secondly, with the change in

granularity from patient to cell being the sampling unit, the size of the data

dramatically increases from a typical 20,000 genes by 50 samples matrix to a

20,000 genes by 1,000,000 cells matrix being the norm. This calls for the need to

develop scalable methods. It is important to note that all these challenges stem

from data science problem and central to precision medicine in the single-cell

era is a data analysis challenge.
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2 introduction

Our contribution to the field is as follows. First, we survey the literature space

on the recent success of deep learning models and their application in the bioin-

formatics field to inspire future single-cell deep learning approaches. Second,

we develop a systematic evaluation framework in response to the exponential

increase in the number of single-cell bioinformatics tools and apply it to bench-

mark single-cell data simulation methods. Third, we develop a method to ad-

dress the lack of approach on summarising the molecular profile at individual

level for downstream precision medicine analysis. Together, these works con-

tribute to precision medicine approaches using single-cell data and provide

insights for future method development towards the field.

The rest of this chapter provides the background for the work presented in this

thesis. Section 1.1 provides the background concept and introduces bioinfor-

matics approaches for single-cell data analysis and outlines their applications

in precision medicine. Section 1.2 then discusses the challenges of single-cell

data analysis for precision medicine. Finally, section 1.3 presents an outline of

the works presented in this thesis.

1.1 precision bioinformatics in the single-cell era

1.1.1 Precision medicine

Precision medicine describes the approach where the difference between indi-

viduals is taken into account to provide targeted medical advice or treatment

for each group of patients. Often individuals’ disease phenotypes and their

therapeutic responses can be affected by the genetic profiles. A classic example

of precision medicine is the improvement in drug targeting for patients with

cystic fibrosis (Ashley, 2016). Molecular characterisation of patients discovered

that 5% of patients harbour a genetic mutation that renders them ineffective to

the medicine traditionally used for cystic fibrosis. This led to the development

of a new therapeutic approach to specifically target the subgroup of patients.
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It is to note that despite the promise of precision medicine, significant chal-

lenges from multiple aspects must be addressed. In terms of the technical as-

pects, there exist significant challenges in analysing data generated by the latest

single-cell technology, as the data exhibit great differences to traditional "bulk"

sequencing data. Besides the technical challenges that this thesis will shed light

upon, a number of hurdles in other aspects must be addressed before realising

the potential of precision medicine. For example, in terms of resources, preci-

sion medicine requires significant resources such as sequencing machines and

experts to analyse the data. The resource could be a challenge for putting pre-

cision medicine into practice. In terms of data, there are questions regarding

the cost of storing and maintaining the patient’s genetic data and the privacy

issues behind the storage and access of the data. Even when these hurdles

are addressed, the implementation of precision medicine into everyday clinical

practice requires significant change in the way healthcare is delivered currently

and can potentially take decades for this transition to occur. There is still a long

road ahead to achieve the goal of delivering better outcomes for patients.

1.1.2 Single-cell sequencing technology

Precision medicine is achieved through sequencing technology, a transforma-

tive technology that enables the molecular characterisation of individuals. Since

the first-generation sequencing that costed $2.7 billion USD to sequence 20

individuals in 2001, decade later, the next-generation sequencing technology

brought the cost per human genome down to less than $1000 USD (Goodwin

et al., 2016) and opens the door for sequencing technology to be readily used

as a tool by clinicians and researchers. In 2009, single-cell technology is intro-

duced (Tang et al., 2009) and brings new promises into precision medicine. Be-

fore single-cell technology was introduced, sequencing technology captures the

averaged measurement across multiple cells in a sample and is referred to bulk

sequencing. On the other hand, single-cell technology sequences each individ-

ual cell and allows us to study molecular characteristics one cell at a time (Fig-

ure 1.1). This unlocks an unprecedented amount of novel analysis for precision
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medicine by enabling scientists to extract cell type specific information such as

cell type proportion and cell type interactions that are previously unattainable

by bulk sequencing. The different types of single-cell technology introduced

in recent years (e.g. single-cell transcriptomics sequencing, single-cell DNA se-

quencing, single-cell multiomics sequencing, single-cell spatial transcriptomics)

and their potential to transform research are acknowledged by Nature as meth-

ods of the year in 2013, 2019 and 2021 (Nature Methods, 2014; Teichmann and

Efremova, 2020; Marx, 2021). The current decade is truly an exciting time for

single-cell technology and calls for the development of new data analysis tools

to fully unleash the power of this new technology for precision medicine.

Figure 1.1: Schematic representation of bulk sequencing versus single-cell sequencing
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1.1.3 Bioinformatics approaches to single-cell data

Similar to the introduction of new biotechnologies, the complexity of data gen-

erated by the new technology urges the development of new methodologies to

extract information and understand the data. The data produced by single-cell

technology is characterised by extreme sparsity, with a typical data containing

90% of zero entries (compared to traditional bulk sequencing where almost all

values are non-zero) due to both biological and technical reasons. Here the

entries refer to the gene expression level for a gene in a particular cell. In

addition, since the data is at single-cell resolution, the sample size of typical

data increases exponentially from a typical number of 50 (individuals) as in

bulk sequencing to 1,000,000 (cells). The complex data structure at ultra-high-

resolution of individual cell level has hence inspired more than 1000 methods

for extracting meaningful information from this data (Zappia and Theis, 2021).

In order to extract novel insight from the molecular profile of individual cells

captured by single-cell technology, current single-cell bioinformatics analytical

approaches typically focus on the cell and gene levels. For example, differential

expression methods identify potential features (such as genes) involved in bio-

logical condition by finding the difference in expression pattern (Squair et al.,

2021). Trajectory inference methods infer the relative position of each individual

cell in context of their underlying biological process such as the pathogenesis

from healthy to disease state (Saelens et al., 2019). Gene regulatory network

construction algorithms explore the regulatory relationship between genes and

identify functional modules that are impacted by diseases (Pratapa et al., 2020).

Velocity analysis estimates the direction of transcriptomic change in each cell

and provides information on the dynamic transition between cells (Bergen et al.,

2021).

Since 2021, with the maturation of sequencing platforms and the reduction in

sequencing cost and labour, there is an increasing number of multi-condition

multi-patient studies (Junttila et al., 2022). A challenge for precision medicine

applications in the current single-cell era has emerged as the development of
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single-cell methodologies that represent individuals by summarising the infor-

mation extracted at gene and cell levels for better understanding at the individ-

ual level.

1.1.4 Precision medicine applications leveraging single-cell data

Single-cell data can facilitate precision medicine by revealing the characteristic

of individual cell in disease progress and treatment response and enabling the

identification of critical cellular mechanism in a cell type specific manner. Here

we describe two applications of precision medicine that are enabled by single-

cell data.

An active focus of precision medicine research is to dissect intratumor hetero-

geneity. Heterogeneity refers to the fact that the molecular characteristics of

cells vary across individual cells, even for cells belonging to the same cell type.

This has important implications for diseases such as cancer, as the direct con-

sequence is that not all cells respond equally to cancer treatment (Goldman

et al., 2019). This can be naturally explored using single-cell data as single-cell

data is at the resolution of individual cells. A recent single-cell paper (Kinker

et al., 2019) highlighted the concept of defining patients not by cancer type but

by their programs of intratumor heterogeneity. Through examining single cells

from 22 cancer types, it is found that subpopulations of cells across multiple

cancer types display common patterns of heterogeneity associated with biologi-

cal processes. As some of these recurring programs of heterogeneity are related

to drug resistance, these findings point to the possibility of defining tumors

by expression programs instead of cancer type and elucidate new insights for

future cancer therapeutics.

The recent COVID-19 pandemic is another highlighting example of how preci-

sion medicine actively uses single-cell technology to understand the differential

impact and response across individuals to the virus. The clinical consequences

of COVID-19 infection lie on a broad spectrum, from asymptomatic, to severe

conditions requiring ventilation and fatality. In 2021, within two years since
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COVID-19 virus dominated worldwide, there have been 62 published studies

that utilised single-cell technology including flow cytometry, mass cytometry

(CyTOF), scRNA-seq, CITE-seq, scBCR/TCR-seq to study COVID-19 patients

using various approaches such as differential expression and cell-cell commu-

nication (Tian et al., 2022) and a number of curated databases on COVID-19

single-cell datasets (Jin et al., 2021; Qi et al., 2022; Tian et al., 2022) . Leveraging

the cellular characterisation at single-cell resolution, these studies have enabled

a number of novel discoveries at cell type specific levels, such as the significant

difference in cell type composition between mild and severe conditions, the re-

sponse mechanism in each cell type and the key signalling network between

cell types in different severity.

1.2 challenges in precision bioinformatics in the single-cell

era

While single-cell offers unprecedented opportunities for precision medicine,

the significant difference between single-cell sequencing data from traditional

bulk sequencing data poses a significant challenge to the effective utilisation of

single-cell data for precision medicine. Central to this is a data analysis chal-

lenge, where novel bioinformatics approaches must be developed to unmask

the pattern behind the data to enable downstream application in precision

medicine. Here, we outline a number of major challenges for precision bioinfor-

matics in the single-cell era and how we contribute to the field by addressing

these challenges.

1.2.1 Model stability

A unique characteristic of single-cell sequencing data is that typically 90% of

the values are zero (Ding et al., 2020). This extreme sparsity, also called zero

inflation, arises from two factors, the biological factor that not all genes are

expressed in a given time in a cell and the technical factor of the limitation of

current sequencing technology. On the other hand, bulk sequencing data, where
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the data are aggregated measurements across many cells, does not encounter

such issues and generally has sparsity as low as 10% (Deaton et al., 2011). The

extreme sparsity in single-cell data therefore poses a number of challenges to

existing statistical methods for analysing bulk sequencing data for precision

medicine applications.

One of the key challenges caused by the data sparsity is the reduction of model

stability compared to those built from traditional bulk sequencing data. This is

because in each individual cell, the amount of signal detected is much less com-

pared to bulk sequencing, where the signal comes from the pool of thousands

of cells (Figure 1.2). Statistical models therefore become more unstable as the

stability of the signal reduces. This calls for the development of more robust

methods such as pooling signatures from similar features to enable more stable

parameter estimation (Hafemeister and Satija, 2019).

Ensemble learning, the strategy of combining multiple models, is known to

increase the stability of model output (Dong et al., 2020) and has been applied

to the area of bioinformatics (Yang et al., 2010a). In this thesis, we examine

recent ensemble strategies in conjunction of deep learning model that have

been developed in various areas of bioinformatics research including disease

study and discuss the common challenges and opportunities. We envisage the

examination will inspire the development of novel and more stable learning

models in the single-cell field for precision medicine applications.

Figure 1.2: Data characteristics of single-cell RNA-seq and bulk RNA-seq. (a) shows the

normalised count matrix of single-cell RNA-seq, where the majority of val-

ues are zero, resulting in a bimodal distribution. (b) shows the normalised

count matrix of bulk RNA-seq, which has a normal distribution.
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1.2.2 Model scalability

With the shift in resolution from individual sample to individual cells being

the unit of measurement, another key analytical challenge is the scalability of

methods. In bulk RNA-sequencing, a sample size of 50 patients (and thus a

dataset with 50 columns) is a typical number. In contrast, single-cell data is be-

ing increasingly large in size with datasets in recent years containing millions of

cells (Figure. 1.3) (and thus datasets with millions of columns). Due to the enor-

mous dataset size, many methods originally developed for bulk sequencing are

no longer computationally feasible on single-cell data. Scalability is therefore a

common concern for methods developed for any aspect of single-cell analysis

including analysis for precision medicine.

Deep learning is known to thrive with large input data in terms of model perfor-

mance and at the same time being highly scalable unlike traditional machine

learning. It has gained tremendous success in the computer vision field. Re-

cently, deep learning has also received increasing attention in the single-cell

field (Zappia and Theis, 2021; Bao et al., 2022) and saw application in a range

of scalable analysis of large-scale single-cell data such as imputation (He et al.,

2020), clustering (Xie et al., 2020), batch correction (Zou et al., 2021), and joint

analysis of single-cell multi-omics (Gayoso et al., 2021).

In this thesis, the aforementioned survey explores the current landscape of the

deep learning methodology in conjunction with ensemble learning for bioin-

formatics applications. We envisage the survey will inspire the development of

novel scalable and robust learning approaches in the single-cell field for preci-

sion medicine applications.

1.2.3 Method evaluation

The unique characteristic of single-cell data renders a number of well-established

statistical models for bulk sequencing data no longer optimal for single-cell

data and has prompted a new wave of method development specifically for
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Figure 1.3: The increase in the number of cells in single-cell RNA-sequencing study, as

demonstrated by data sourced from the www.nxn.se/single-cell-studies/

gui database as of August 4th 2022.

single-cell data. In precision medicine, a common analysis, for example, is the

identification of differentially expressed (DE) genes between different condi-

tions. While the limma package (Ritchie et al., 2015a) is one of commonly used

methods for this task, it is developed for bulk sequencing data and is based

on linear model which assumes a unimodal distribution. In single-cell data, the

zero inflation results in a bimodal pattern, requiring new methods that accom-

modates for this (Soneson and Robinson, 2018a; Mou et al., 2020). During the

past few years, over 100 tools are available for single-cell differential expression

alone (Figure 1.4).

As the number of tools continues to increase, a challenge associated with it is

the selection of the most appropriate methodologies for the data and research

question at hand. Having a set of guidelines or comparison of existing methods

becomes increasingly necessary for applied researchers in precision medicine

www.nxn.se/single-cell-studies/gui
www.nxn.se/single-cell-studies/gui
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to perform best-practice data analysis and would accelerate scientific discov-

ery. Therefore, there is an urgent need for the establishment of benchmark-

ing datasets and frameworks and the comprehensive evaluations of single-cell

methods beyond their publications.

In the precision medicine field, of particular need is the benchmarking of simu-

lation methods. In precision medicine, the ground truth behind patient’s molec-

ular profile is unattainable. Therefore, simulation data is often needed to assess

the performance of new methods. Over the past few years, a number of single-

cell data simulation methods have been developed on this front for various

use cases such as the simulation of DE genes with known fold change for the

development of DE methods. However, there is a current lack of benchmark

studies on these simulation methods or a systematic evaluation framework for

performing such benchmark studies. As the quality of simulation data and their

ability to accurately reflect biological data can directly impact the downstream

methodological development on precision medicine, a pressing challenge is to

comprehensively assess current single-cell data simulation tools. Furthermore,

the establishment of such benchmarking datasets and framework can be used

in or inspire future benchmarking of single-cell methods in other applications.

In this thesis, we address both of the above challenges via the development of

benchmark datasets and evaluation framework for assessing scRNA-seq simu-

lation tools. We curate a collection of scRNA-seq datasets containing of 35 data

that have been carefully selected to cover a broad range of sequencing plat-

forms, sampling tissues, cell types, number of cells and organisms and can be

used for future evaluation studies on other single-cell methodologies. We de-

velop a evaluation framework that contains multiple evaluation aspects that are

both specific for assessing scRNA-seq simulation tools and also general criteria

such as scalability analysis and usability assessment that can inspire evaluation

studies on other single-cell methodologies. Moreover, using the datasets and

framework, we benchmark published scRNA-seq simulation tools and address

the lack of such study in the current literature.
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Figure 1.4: Number of single-cell tools in each analysis type, coloured by the broad

category.

1.2.4 Data interpretation

The significant increase in sampling resolution from individual sample contain-

ing thousands of cells being the unit to individual cell being the unit causes

a significant increase in data complexity. The complexity of the data is both

an opportunity and also a challenge to data interpretation. As aforementioned,

over 1000 computational tools have been developed to unravel the data from

multiple aspects and derive useful insights that are unattainable by bulk RNA-

seq.

However, current single-cell analytical tools mostly focus on the characteriza-

tion of individual cells or genes (Figure 1.4). There is a lack of defined frame-

work for summarising the cellular profiles of individual cells into a patient

profile to enable the interpretable of data at individual level (Figure 1.5). This

has important implications for precision medicine analysis, in which individu-

als are the units of interest. While the original expression matrix in the format

of genes by cells can be used as input to infer the transcriptomics change for a

particular individual, the ability to represent an individual with other layers of

information (e.g. interaction of genes and pathways) could uncover additional

insights. Novel methods that construct molecular representations of individu-

als for downstream exploration are therefore of urging need for the effective

usage of single-cell data for precision medicine.
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We address this challenge in Chapter 4 by developing a novel framework for

creating biologically relevant learning features across multiple feature types

and enabling a multi-view representation of individuals for downstream mod-

elling and interpretation of disease outcomes. In total, we constructed a total

of 17 different feature types across six distinct feature categories of i) cell type

proportions, ii) cell type specific gene expressions, iii) cell type specific path-

way expressions, iv) cell type specific cell-cell interaction (CCI) scores, v) over-

all aggregated gene expressions and vi) spatial metrics. Using a collection of

single-cell patient datasets across multiple diseases and cell types, we demon-

strate that different feature types are useful for predicting the disease outcomes

in different datasets and even for the same groups of patients in different treat-

ment stages, thereby showing the importance of representing individuals using

a broad collection of biological features.

Figure 1.5: Data interpretation as a challenge in the effective utilisation of single-cell

data for precision medicine.

1.3 thesis outline and contributions

This thesis is dedicated to exploring the various challenges and opportunities in

precision medicine research with a focus on the field of single-cell data sequenc-

ing. The rest of the thesis is organised into five chapters (Figure 1.6), each of

which addresses a specific challenge in the single-cell analysis workflow. Chap-

ter 2 explores ensemble deep learning methods that have achieved success in

the bioinformatics field, including the single-cell field. An understanding of the

state-of-the-art approaches can foster new applications utilising such strategies
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for single-cell data, for example, to address the dimensionality and sparsity

challenge of the data characteristics. To assess the performance of methodolo-

gies requires realistic simulation data containing group truth, therefore Chapter

3 then establishes a comparison framework for single-cell data simulation stud-

ies. Chapter 4 develops a patient-level analysis strategy from the single-cell data

to enable precision medicine applications. Chapter 5 presents a case study that

utilizes the concepts discussed in the preceding chapters and further illustrates

how these ideas come together to address a precision medicine problem. The

details of each chapter are discussed below:

Figure 1.6: Schematic representation of the workflow relating to this thesis, from single-

cell data collection by sequencing technology, to examples of bioinformatics

analysis for interpreting single-cell data and ultimately, the goal of aiding

precision medicine. The key studies in each chapter of the thesis and their

approximate positions in the analysis workflow are also shown.

Chapter 2. Ensemble deep learning in bioinformatics. This chapter examines

the current application of ensemble deep learning in a range of bioinformatics
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applications including disease outcome analysis. Deep learning is powered by

the ability to handle and improve model training from large-scale data. Ensem-

ble learning is known to increase the stability of model output. We envisage

this chapter can inspire novel applications that utilise the synergistic power

brought by the combination of these two machine learning techniques to ad-

dress both the issue of stability and scalability caused by the unique character-

istic of single-cell data and to promote the usage of single-cell data for precision

medicine research.

Chapter 3. A benchmark study of simulation methods for single-cell RNA se-

quencing data. This chapter curates a collection of single-cell benchmarking

datasets that can be used by any evaluation of single-cell tool in general, as well

as develops a novel evaluation framework, SimBench, for evaluating scRNA-

seq data simulation tools. We utilise SimBench to evaluate current simulation

tools, thereby addressing the lack of such study in the current literature. In the

era where single-cell methods are growing at an incredible rate, the set of rec-

ommendations provided in our study allows method developers and users to

efficiently identify the strengths and limitations of current methods and select

the most appropriate methodology for their data analysis. Both the benchmark-

ing datasets and evaluation framework have been made publicly available as R

packages to the research community and we envisage this work will promote

the future development of methods for precision medicine.

Chapter 4. scFeatures: Multi-view representations of single-cell and spatial data

for disease outcome prediction. This chapter develops a novel method, scFea-

tures, for constructing molecular profiles of individuals and enabling the down-

stream exploration of precision medicine applications such as disease outcome

prediction. As the success of modelling and interpretation of diseases requires

biologically relevant learning features from the data, we generate the feature

vectors based on a broad range of analytical approaches in literature from

cell type specific gene expression to measures of cell-cell (ligand receptor co-

expression) interaction.
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Chapter 5. Case study of precision bioinformatics on COVID-19 single-cell data.

In this chapter, we utilise the work presented in Chapter 2,3 and 4 and conduct a

comparison study on COVID-19 patient severity prediction. We use the patient

representation generated by scFeatures as the input and evaluate the combined

impact of the choice of learning framework ranging from machine learning to

deep learning and choice of ensemble strategy in severity prediction.

Chapter 6. Conclusion and future work. The final chapter summarises the con-

tribution of this thesis and discusses future directions building upon the works

discussed.

In summary, by exploring ensemble deep learning strategies, single-cell data

simulation and patient-focused analytical strategies, this thesis demonstrates

how these approaches can be used to overcome specific technical challenges

in using single-cell data in precision medicine research. The publicly available

frameworks and methods developed in this thesis will not only aid the current

research community but will also aid in aspiring future methodologies.



2
E N S E M B L E D E E P L E A R N I N G I N B I O I N F O R M AT I C S

Single-cell sequencing technology enables the profiling of individual cells and

leads to a plethora of novel applications for precision medicine. However, the

characteristics of extreme sparsity and ultra-high resolution of single-cell data

bring data analysis challenges in terms of model stability and scalability and

hinder the effective utilisation of single-cell data for precision medicine.

In this chapter, we examine the recent emergence of ensemble deep learning

frameworks in the broader bioinformatics field, where synergistic improve-

ments in model scalability, stability and accuracy are achieved through com-

bining the two learning techniques of ensemble learning and deep learning.

We survey recent key developments in ensemble deep learning and how their

contributions have benefited a wide range of bioinformatics research from basic

sequence analysis to systems biology, including disease analysis. The result has

been published as a review article as Cao et al. (2020). To the best of our knowl-

edge, this is the first review article on the topic of ensemble deep learning for

bioinformatics applications.

While the application of ensemble deep learning in bioinformatics is diverse

and multifaceted, this chapter identifies and discusses the common challenges

and opportunities in the context of bioinformatics research. We hope this work

will bring together the broader community of machine learning researchers,

bioinformaticians, and biologists to foster future research and development in

ensemble deep learning and inspire novel precision medicine applications us-

ing single-cell data that achieves both model stability and model scalability.

17
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2.1 introduction

Bioinformatics, an interdisciplinary field of research, is at the centre of modern

molecular biology where computational methods are developed and utilised to

transform biological data into knowledge and translate them for biomedical ap-

plications. Among the various computational methods utilised in bioinformat-

ics research, machine learning, a branch of artificial intelligence characterised

by data-driven model building, has been the key enabling computational tech-

nology (Larranaga et al., 2006). At the forefront of machine learning, ensemble

learning and deep learning have independently made a significant impact on the

field of bioinformatics through their widespread applications from basic nu-

cleotide and protein sequence analysis to systems biology (Eraslan et al., 2019;

Camacho et al., 2018).

Until recently, ensemble and deep learning models have largely been treated as

independent methodologies in bioinformatics applications. The fast-growing

synergy between these two popular techniques, however, has attracted a new

wave of development and application of next-generation machine learning meth-

ods referred to as ensemble deep learning (Figure 2.1a). The root of ensemble deep

learning can be traced back two decades where ensembles of neural networks

were found to reduce generalisation error (Hansen and Salamon, 1990). How-

ever, the recent resurgence of ensemble of deep learning models has brought

about new ideas, algorithms, frameworks, and architectures that significantly

enrich the old paradigm. Through its novel application to a wide range of

biological and biomedical research, ensemble deep learning is unleashing its

power in dealing with key challenges including small sample size, high- di-

mensionality, imbalanced class distribution, and noisy and heterogeneous data

generated from diverse cellular and biological systems using an array of high-

throughput omics technologies. These computational, methodological and tech-

nological undertakings and breakthroughs together are leading a phenomenal

transformation of bioinformatics.
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Both ensemble learning and deep learning methods have been extensively stud-

ied and reviewed in the context of bioinformatics applications (Yang et al.,

2010b; Min et al., 2017). However, the emergence of ensemble deep learning

and its application in bioinformatics has yet to be documented. With the aim of

providing a reference point to foster research in the increasingly popular field

of ensemble deep learning and its application to various challenges in bioinfor-

matics, in this review, we revisit the foundation of ensemble and deep learning

and summarise and categorise the latest developments in ensemble deep learn-

ing. This is followed by a survey of ensemble deep learning applications in

bioinformatics. We then discuss the remaining challenges and opportunities

which we hope will inspire future research and development across multiple

disciplines.

2.2 basics of ensemble and deep learning

Ensemble learning refers to a class of strategies where instead of building a sin-

gle model, multiple ‘base’ models are combined to perform tasks such as super-

vised and unsupervised learning (Dietterich, 2000). Classic ensemble methods

for supervised learning fall into three categories including bagging-, boosting-

and stacking-based methods. In bagging (Breiman, 1996), individual base mod-

els are trained on subsets of data sampled randomly with replacement (Figure

2.1b). In boosting (Schapire et al., 1998), models are trained sequentially (Figure

2.1c), where subsequent models focus on previous misclassified samples. In

stacking, a meta-learner is trained to optimally combine the predictions made

by base models (Wolpert, 1992). Like supervised ensemble learning, conven-

tional unsupervised ensemble learning such as ensemble clustering (Vega-Pons

and Ruiz-Shulcloper, 2011) also relies on the generation and integration of base

models (Figure 2.1d). While their variants, including more advanced methods

reviewed in the next section, have also been used in ensemble learning, a guid-

ing principle in designing ensemble methods has been ‘many heads are better

than one’ (Altman and Krzywinski, 2017).
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Figure 2.1: The focus of this review and classic ensemble methods. (a) Relationships of

artificial intelligence, machine learning, deep learning, ensemble learning,

and bioinformatics. The red square denotes the focal point of this review.

Classic ensemble learning frameworks including (b) bagging and its vari-

ants; (c) boosting and its variants; and (d) ensemble clustering based on

data perturbation. For all panels, X represents the data input, either orig-

inal data or perturbed data, P represents the probability of classification

outcome and C represents the clustering outcome.

Deep learning, a branch of machine learning, is rooted in artificial neural net-

works (ANNs) (Schmidhuber, 2015). The most fundamental architecture of

deep learning models is the densely-connected neural network (DNN), consist-

ing of a series of layers of neurons; each of these is connected to all neurons in
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the previous layer (Rumelhart et al., 1986). More sophisticated models extend on

the basic architectures. In convolutional neural networks (CNNs) (Krizhevsky

et al., 2012), each layer comprises a series of filters which ‘slide over’ the out-

put of the previous layer to extract local features across different parts of the

input. In recurrent neural networks (RNNs) (Williams and Zipser, 1989), cir-

cuits are created to feed the output of a layer back into the same layer along

with new input, allowing the model to act on dependencies between up- and

downstream values in a sequence. Variants of RNNs have been proposed to

enable more effective learning in long-term dependency tasks, with the two

most common ones being long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997) and gated recurrent unit (GRU) (Cho et al., 2014). In resid-

ual neural networks (ResNet) (He et al., 2016), shortcuts between upstream and

downstream layers are introduced to improve the effectiveness of backprop-

agation in networks with many hidden layers. In autoencoders (Baldi, 2012),

networks are constructed with an encoder and a decoder which together learn

a more efficient latent space representation of the original higher-dimensional

data. Although the difference between traditional neural networks and deep

learning may seem elusive, the latter is increasingly defined by their unique

architectures and ability to learn complex data representations that are beyond

the capacity of classic models (LeCun et al., 2015).

2.3 ensemble deep learning : the synergy

Deep learning is well known for its power to approximate almost any func-

tion and increasingly demonstrates predictive accuracy that surpasses human

experts. However, deep learning models are not without shortcomings: they of-

ten exhibit high variance and may fall into local loss minima during training.

Indeed, empirical results of ensemble methods that combine output of multi-

ple deep learning models have shown to achieve better generalisability than a

single model (Ju et al., 2018). In addition to simple ensemble approaches such

as averaging output from individual models, combining heterogeneous mod-

els enables multifaceted abstraction of data and may lead to better learning
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Figure 2.2: Typical ensemble deep learning frameworks in supervised and unsuper-

vised learning. (a) Ensemble across multiple models. Each neural network

is trained separately on the dataset, usually perturbed to allow the network

to learn from diverse training samples. (b) Ensemble within a single model.

Common strategies for creating intrinsic variants of the network include

randomly deactivating and bypassing layers (indicated by the curved arrow)

and randomly deactivating neurons (indicated by the close-up). (c) Ensem-

ble by model branching. Common strategies include sharing lower layers

and branching out to learn different higher level features with or without

weight sharing. (d) Unsupervised ensemble by data perturbation. Each au-

toencoder is trained with a perturbed dataset such as bootstrapping. The

latent representations are extracted for clustering and combined through

a consensus function. (e) Model perturbation based unsupervised ensem-

ble. Multiple autoencoders each with a different model architecture can be

used to learn diverse representation of the original data. (f) Unsupervised

ensemble within a single model. Similar to the supervised case, random de-

activation of neurons can be used to create intrinsic variants of the network.

For all panels, X represents the data input and C represents the clustering

outcome.

outcomes (Lee et al., 2015). In this section, we categorise and summarise the

most representative ensemble deep learning strategies for both supervised and

unsupervised tasks.
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2.3.1 Supervised ensemble deep learning

2.3.1.1 Ensemble across multiple models

The aggregation of multiple and often independent deep learning models is

the most straightforward application of ensemble deep learning to classifica-

tion (Figure 2.2a). As diversity of individual networks is an essential charac-

teristic of a good ensemble model (Granitto et al., 2005), a variety of strategies

exist to promote diversity of base networks. One approach is to encourage neg-

ative correlation in the classification error of base models (Liu and Yao, 1999).

The key motivation behind promoting negative correlation among base models

is to encourage complementary learning of the training data to achieve bet-

ter generalisability of the ensemble. An alternative approach to increase base

model diversity is through multiple choice learning in which each network is

‘specialised’ on a particular subset of data during the training step (Lee et al.,

2016).

An issue associated with training and storing multiple models is the compu-

tational and storage demand involved. To address this, methods that perform

knowledge distillation have become increasingly popular (Hinton et al., 2015).

One such implementation is based on the concept of a teacher-student network

framework where the teacher networks are selected from a pool of pre-trained

networks and the student network distills knowledge of multiple teachers into

a single and often simpler network (Shen et al., 2019; Parisotto et al., 2016). The

testing phase is storage and computationally efficient, as the samples only need

to pass through a single student network.

2.3.1.2 Ensemble within a single model

Ensemble strategies described above require training of multiple models. Deep

learning models are often computationally costly to train and may take days

or even weeks depending on the scale of the dataset and model. Effort has

been made to develop ‘implicit ensembles’ where a single neural network could

achieve an effect similar to integrating multiple network models. To this end, a
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group of techniques focuses on random deactivation of neurons and layers dur-

ing the training process of a single model. This leads to an implicit ensemble

of networks with different architectures (Figure 2.2b). For example, the random

deactivation of neurons, termed dropout, originally proposed as a regularisation

strategy (Srivastava et al., 2014) for addressing model overfitting is now widely

known as an implicit ensemble strategy (Baldi and Sadowski, 2013; Hara et al.,

2016). This has inspired followup works on random deactivation of ResBlocks

in ResNets (Huang et al., 2016) and the combined random deactivation of neu-

rons and layers (Singh et al., 2016). Besides random deactivation-based methods,

alternative strategies have also been explored. One popular approach is the

Snapshot ensemble technique, where the key idea is to save multiple versions

of a single model during the training process for forming an ensemble (Huang

et al., 2017). In a Snapshot ensemble, a cyclic learning rate scheduler is utilised

where the learning rate is abruptly changed every few epochs to perturb the

network and thus may lead to diversity in the snapshots of the model.

2.3.1.3 Ensemble with model branching

Single-model ensemble approaches greatly reduce training cost compared to

ensembles of multiple models. However, such a reduction in computational de-

mand comes potentially at a cost in base model diversity. Since the information

captured by the lower layers of neural networks is likely to be similar across

models, a group of techniques has emerged with a focus on sharing lower lay-

ers followed by ‘branching’ of additional layers (Han et al., 2017). These model

branching approaches introduce diversity while also enjoying the reduction of

time and computation of training multiple models (Figure 2.2c). Besides re-

ducing computational cost, model branching has also been adapted to address

other challenges in training an ensemble. For example, gradient can be prop-

agated over a shorter path in a branching network, mitigating the vanishing

gradient problem (Wang et al., 2018). In the knowledge distillation framework,

each branch acts as a student model, ensembled to form a teacher model on the

fly to reduce the computationally intensive process of pre-training the teacher

model (Zhu et al., 2018). The key commonality between these model branch-
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ing network ensembles is that by sharing information, the base networks avoid

parameter search from scratch and can converge faster.

2.3.2 Unsupervised ensemble deep learning

2.3.2.1 Ensemble across multiple models

Most unsupervised ensemble deep learning methods employ autoencoders, a

popular unsupervised network architecture. Similar to supervised approach,

unsupervised ensemble methods can be categorised into those that generate

and combine multiple models through data and model perturbation and those

that achieve implicit ensemble within a single model.

For methods based on data perturbation, strategies akin to bagging in super-

vised learning are widely used (Figure 2.2d). For example, Geddes et al. used

random feature projection of the input data to train a set of autoencoders to

create a cluster ensemble (Geddes et al., 2019). Training a series of unsuper-

vised networks with different hyperparameters is a common ensemble strategy

for methods based on model perturbation (Figure 2.2e). An example extending

this approach is to use different activation functions and a weighting scheme

to improve model accuracy Shao et al. (2018). An alternative to data and model

perturbation is to use multi-view clustering when such data are available. Rep-

resentative examples include multi-view representation learning using deep

canonically correlated autoencoders (Wang et al., 2015) and multi-view spec-

tral clustering where multiple embedding networks were used to represent the

original data from different feature sets (Huang et al., 2019).

2.3.2.2 Ensemble within a single model

The power of autoencoders in data dimension reduction has motivated research

around creating better data representations that are robust to noise in the in-

put data. For example, a denoising autoencoder architecture was introduced in

Vincent et al. (2008), where values of a random subset of neurons are masked

(i.e. changed to zero) during each training epoch, forcing the network to over-
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come noise introduced to the data. The concept of randomly masking neurons

in denoising autoencoders is an analogue to the dropout method used in the su-

pervised approach, and hence can be considered as an implicit ensemble within

a single model, or ‘pseudo-ensemble’ (Bachman et al., 2014), for unsupervised

deep learning (Figure 2.2f). In this line of research, a recent study exploits the

flexibility of the dropout algorithm and embeds it in a more advanced varia-

tional autoencoder architecture (Antelmi et al., 2019). The proposed algorithm

employs a novel strategy to learn the dropout parameter, thus alleviating the

need for manual tuning. Another extension in this direction is the ‘stacked’

denoising autoencoders that uses multiple layers of denoising autoencoders

for improving data representation (Vincent et al., 2010). The data representa-

tion learned from such ‘stacked’ denoising autoencoders led to significantly

improved classification accuracy than using raw input data.

2.3.3 Theoretical advances for ensemble deep learning

While early works on the bias-variance trade-off framework have laid the the-

oretical foundation for neural network ensembles (Geman et al., 1992), recent

research on ensemble deep learning mostly relies on empirical experiments due

to the increasingly specialised ensemble methodologies and complex neural net-

work architectures. Nevertheless, efforts have been made to advance the theo-

retical foundation of this fast-growing field (Bengio, 2009). Studies have shown

the existence of multiple local minima in training neural networks, where some

enjoy better generalisability than others (Keskar et al., 2017). This has inspired

ensemble techniques such as Snapshot methods that take advantage of the di-

versity of multiple local minimums (Huang et al., 2017). Theoretical justification

for dropout as a form of averaging has been discussed in Baldi and Sadowski

(2013), where the expectation of the gradient with dropout was shown to be

the gradient of the regularised ensemble error. A recent mathematical frame-

work provided a new perspective of dropout by relating it to a form of data

augmentation (Zhao et al., 2019).
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2.4 bioinformatics applications of ensemble deep learning

This section categorises representative works in different areas of bioinformat-

ics applications (Table 1) and identifies their benefits such as improving model

accuracy, reproducibility, interpretability, and model inference.

Table 1: Categorisation of recent ensemble deep learning methods in bioinformatics

application.
Type of

learning

Ensemble

technique

Deep

learning

architecture

Sequence

analysis

Genome

analysis

Gene

expression

Structural

bio-

informatics

Proteomics Systems

biology

Multi- omics Bioimage

informatics

Supervised

Multiple

models

DNN Grewal et al.

(2019); Xiao

et al. (2018);

West et al.

(2018)

(Demichev

et al., 2020)

Zhang et al.

(2019a)

(Sharifi-

Noghabi

et al., 2019)

Yuan et al.

(2018)

CNN Zhang et al.

(2018b)

Hu et al.

(2018)

Zacharaki

(2017)

Hu et al.

(2019b); Hu

et al. (2019a)

CNN +

RNN

(Bartoszewicz

et al., 2020);

Zhang et al.

(2017)

(Angermueller

et al., 2017)

Li and Yu

(2016);

Torrisi et al.

(2019)

Zohora et al.

(2019)

Karimi et al.

(2019)

(Arefeen

et al., 2019)

CNN +

RNN +

ResNet

He et al.

(2019)

Singh et al.

(2019);

Zhang et al.

(2018a);

(Singh et al.,

2018)

Others Cao et al.

(2018)

Karim et al.

(2019)

Codella et al.

(2017)

Within

single

model

CNN +

RNN

Karim et al.

(2019)

Model

branching

CNN (Song et al.,

2015); Rasti

et al. (2017)

CNN +

ResNet

(Lu et al.,

2020)

Unsupervised

Multiple

models

Autoencoder Geddes et al.

(2019); Tan

et al. (2017)

(Gala et al.,

2019);

(Zhang et al.,

2019b)

Others (Liang et al.,

2014)

Within

single

model

Autoencoder Karim et al.

(2019)

2.4.1 Sequence analysis

Biological sequence analysis represents one of the fundamental applications of

computational methods in molecular biology. RNN and its variants (e.g. LSTM
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and GRU) are well-suited to sequential data. For example, an LSTM/CNN

multi-model was trained to extract distinct features to predict pathogenic poten-

tial of DNA sequences (Bartoszewicz et al., 2020). Compared to DNA sequences,

RNA sequences offer an additional layer of information where instructions en-

coded in genes are transcribed. While traditional methods rely on various man-

ually curated RNA sequence features, ensemble deep learning enables auto-

matic learning from raw data. One example is in predicting localisation of long

non-coding RNAs, where multiple sub-networks were used to integrate distinct

feature sets to maximise model performance (Cao et al., 2018). In another work,

a CNN/RNN ensemble was used to integrate features and raw sequence data

to predict different types of translation initiation sites (Zhang et al., 2017), over-

coming the generalisability issue of traditional methods that can only predict a

specific type of translational initiation sites.

Following transcription, messenger RNAs (mRNAs) are further translated into

proteins that carry out various functions. Similar to RNA sequence analysis,

methods relying on ensembles of multiple sub-networks were used to integrate

information from multiple features sets to predict DNA binding sites (Zhang

et al., 2018b) and post-translational modification (PTM) sites He et al. (2019) on

protein sequences. The study on PTM site prediction has further demonstrated

that features learned by ensemble models are ‘transferable’ for predicting dif-

ferent types of PTMs, a key property for tackling the issue of small sample size

in training data.

2.4.2 Genome analysis

Whilst sequence analysis has led to many biological discoveries, it alone cannot

capture the full repertoire of information encoded in the genome. Additional

layers of genetic information including structural variants (Feuk et al., 2006)

(e.g. copy number variations [CNVs]) and epigenetic modifications (Portela and

Esteller, 2010) of the genome bring important insight to the understanding of

biological systems, populations, and complex diseases.
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A number of ensemble deep learning methods have been developed on this

front, such as classifying cancer types using CNV data and a Snapshot ensem-

ble model comprising CNNs, LSTMs, and convolutional autoencoders (Karim

et al., 2019). The use of supervised CNN and LSTM models allows both global

and local sequential features to be captured, and further integration with un-

supervised convolutional autoencoders enables unsupervised pre-training, an

effective component for handling small sample size (Erhan et al., 2010). Beyond

combining different network architectures, studies have also integrated differ-

ent genomic data modalities to capture distinct and complementary informa-

tion. In one study, DNA sequences and their neighbouring CpG states were

used as input into two sub-networks of an ensemble to explore their relation-

ship in predicting DNA methylation states (Angermueller et al., 2017). This has

led to the identification of sequence motifs related to DNA methylation and

the effect of their mutation on CpG methylation. In another study, an ensemble

network that takes input data either from DNA sequences alone or with the

addition of epigenetic information extracted from chromatin immunoprecipita-

tion (ChIP) and deoxyribonuclease (DNase) sequencing were used to predict

human immunodeficiency virus type 1 (HIV-1) integration sites (Hu et al., 2018). The

ensemble network, comprised of CNNs with attention layers (Bahdanau et al.,

2014), enabled the discovery of DNA sequence motifs that are important for

HIV-1 integration.

2.4.3 Gene expression

Gene expression data including microarray, RNA-sequencing (RNA-seq) and,

recently, single-cell RNA-seq (scRNA-seq) (Yang and Speed, 2002; Ozsolak and

Milos, 2011; Kolodziejczyk et al., 2015a), has been studied extensively to bet-

ter understand complex diseases and to identify biomarkers that can guide

therapeutic decision-making. A recent study on cancer type classification demon-

strated how ensemble deep learning can serve as a potential strategy to address

the key challenge of reproducibility in biomarker research (Grewal et al., 2019).

The use of a DNN ensemble in this work allowed the derivation of important
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genes through consensus ranking across multiple models, resulting in a robust

set of biomarkers. Due to the difficulty of obtaining patient samples, especially

for rare diseases and cancer types, another common challenge in analysing gene

expression data from cancers and diseases is the small sample size. The use of

ensemble learning to mitigate this issue is exemplified by Xiao et al. (2018),

where the authors applied a multi-model approach to generate initial predic-

tions from RNA-seq gene expression profiles of cancer samples and integrated

these predictions using a DNN to produce the final ensemble prediction.

In addition to its role in medical research, ensemble deep learning has been

used in a wide range of applications to improve understanding of basic biological

mechanisms from gene expression data. An example is the use of a DNN ensem-

ble to explore the embryonic to fetal transition process, a defining stage where

cells lose the potential for regeneration (West et al., 2018). A benefit of training

multiple networks is that the prediction scores from each network can be fur-

ther used to generate an integrative score to determine the transition state of a

sample between embryonic and adult state, a strategy that is not possible with

a single model. The utility of unsupervised ensemble deep learning has also

been demonstrated on the extraction of biological pathway signatures (Tan et al.,

2017). By integrating signatures across 100 autoencoders through consensus

clustering, the ensemble model detected more biological pathways with higher

significance than did a single model. Unsupervised deep learning ensembles

have also been applied to cell type identification in single cell research. In (Ged-

des et al., 2019), an ensemble of autoencoders was used to generate a diverse

set of latent representations of scRNA-seq data for subsequent analysis.

2.4.4 Structural bioinformatics

Proteins are the key products of genes and their functions and mechanisms

are largely governed by protein structures encoded in amino acid sequences.

Therefore, modelling and characterising proteins from their primary amino

acid sequences to secondary and tertiary structures is essential for understand-
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ing and predicting their functions (Lee et al., 2007). RNN and its architectural

variants are specifically designed to capture long- and short-range interactions

between sequences, and are hence well-suited to decoding the relationship be-

tween amino acid sequences and the protein structures they encode. Extending

on the use of a single RNN, the ensemble of variants of RNNs with CNNs is

a common hybrid architecture in recent applications that seeks to combine the

power of RNN in analysing sequential data and CNN on extracting local fea-

tures (Li and Yu, 2016; Torrisi et al., 2019). The replacement of CNN with ResNet

(Singh et al., 2019) as well as the addition of residual connections between GRU

and CNN (Zhang et al., 2018a) were also explored to facilitate feature propaga-

tion for improved modelling of long-range dependencies between amino acids.

In these works, ensemble deep learning not only improved generalisability on

independent datasets but also led to the discovery of novel features associated

with protein structures.

Besides predicting protein structures, many studies have focused on directly

predicting protein functions. An example of ensemble deep learning application

in this domain is illustrated by the work of Zacharaki Zacharaki (2017), who

used an ensemble of CNNs for protein enzymatic function prediction. Specifi-

cally, the ensemble is a fusion of two CNNs trained separately on protein prop-

erties and amino acid features for extracting complementary information. In

another example, Singh et al. Singh et al. (2018) built an ensemble deep learning

model to identify residue conformation crucial to protein folding and func-

tion. While the dataset used for model training has an extreme class imbal-

ance (1.4:1000), the ensemble model, consisting of ResNet and LSTM modules,

yielded robust performance on independent test sets without manual genera-

tion of a balanced dataset.

2.4.5 Proteomics

While protein structure and function prediction are essential tasks for charac-

terising individual proteins, technological advances in quantitative mass spec-
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trometry (MS) have now enabled global profiling of the entire proteome in cells,

tissues, and species (Walther and Mann, 2010). Computational analysis of such

large volume datasets is transforming our understanding of proteome dynam-

ics in complex systems and diseases (Cox and Mann, 2011).

Ensemble deep learning has been used as a key technique for addressing var-

ious aspects of proteomics data analysis. The work of Zohora et al. Zohora

et al. (2019) exemplifies the application of ensemble deep learning to peptide

identification from liquid chromatography-MS (LC-MS) map, a critical step for

identifying and quantifying protein abundance. Specifically, a hybrid network

architecture comprising both CNN and RNN modules was designed to detect

sequential features along the axes during the scan of an MS map. The final

model, an ensemble of multiple networks with different parameters, was shown

to achieve state-of-the-art results for protein quantification. Another study pro-

posed an ensemble of DNNs for learning from data-independent acquisition

(DIA) MS data (Demichev et al., 2020). Whilst conventional MS runs select only

a few significant peptides based on their signal levels (i.e. data-dependent ac-

quisition [DDA]) for subsequent quantification, the DIA approach fragments

every single peptide for improved proteome coverage. However, the DIA ap-

proach may lead to an increase in co-eluted peptides and therefore higher

interference in the data. The ensemble framework was able to quantify the

amount of interference between multiple peptides mapped to the same point,

thereby removing interference and improving peptide identification confidence

and quantification accuracy.

2.4.6 Systems biology

Systems biology aims to map interactions of molecule species, regulatory re-

lationships and mechanisms to understand complex biological systems as a

whole (Kitano, 2002). One key aspect of systems biology is the understanding

of what and how biological molecules interact. In recent times, ensemble deep

learning has been applied on this front to predict interactions among different
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biological molecules and entities. The application of an interpretable ensemble

of CNN models for predicting binding affinity between peptides and major

histocompatibility complex (MHC) is an example of ensemble deep learning

in this domain Hu et al. (2019b) and has significant implication in clinics. The

model demonstrated good generalisability across 30 independent datasets and

uncovered binding motifs with literature support. In predicting protein-protein

interactions, an ensemble of DNNs trained on S. cerevisiae achieved more ac-

curate results than other machine learning methods (Zhang et al., 2019a). Sub-

sequently, the model was applied to other datasets generated from different

organisms and the relative accuracy on each dataset was shown to be a good

indicator of the evolutionary relationships of those organisms.

Systems biology also extends to the interaction between biological molecules

and chemical compounds. In particular, the study of protein and chemical com-

pound interaction in drug development has seen a growing number of ensemble

deep learning applications. For example, Karimi et al. proposed an ensemble

model that comprised various network modules for compound-protein affinity

prediction (Karimi et al., 2019). To overcome the limited availability of labelled

datasets, the model exploited abundant unlabelled compound and protein data

through unsupervised pre-training. This was followed by interaction prediction

on labelled data using CNN and RNN modules in the ensemble. In another

work on predicting drug and target protein interactions, a CNN-based ensem-

ble model was used to score the likelihood of interaction of randomly selected

drug-protein pairs Hu et al. (2019a). The trained model revealed that drugs with

similar structures bind to similar target proteins, suggesting potential similarity

in the effects of these drugs.

2.4.7 Multi-omics

Multi-omics analysis is a topic closely related to systems biology where inte-

grative methods are used to understand biological regulation by combining an

array of omics data. There is a growing interest in multi-omic studies as it is
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increasingly recognised that a single type of omics data does not capture the

entire landscape of the complex biological networks Yang et al. (2019b).

Many conventional machine learning methods have been proposed to utilise

the complementary information present across multiple modalities of omics

data (Kim et al., 2020; Ramazzotti et al., 2018). Most conventional approaches,

however, do not account for the relationships among different omics layers. To

this end, Liang et al. proposed to use an ensemble of deep belief networks to

encode gene expression, miRNA expression, and DNA methylation data into

multiple layers of hidden variables for integrative clustering (Liang et al., 2014),

thereby actively exploring regulation across different omics layers. Ensembles

of different deep learning architectures have also been utilised to take advan-

tage of the unique characteristics of different data types. Using an ensemble

of CNNs and LSTMs, both genomic sequences and their secondary structures

can now be integrated for alternative polyadenylation site prediction on pre-

mRNAs (Arefeen et al., 2019). This addressed the gap where existing models

overlooked RNA secondary structures, despite these being important features

to the polyadenylation process. Another application in multi-omics was the

use of a novel ensemble of autoencoders wherein a coupling cost was used to

encourage the base autoencoders to learn from each other (Gala et al., 2019).

This unsupervised model allowed the integration of two vastly different data

types—single cell transcriptomics and electrophysiological profiles, and to iden-

tify common and unique cell types across datasets.

High dimensionality and heterogeneity are both issues associated with the

large number of molecular features in multi-omics datasets. The application

of autoencoders is popular in dealing with these challenges. In one instance, an

ensemble of autoencoders was used to extract lower dimension and integrate

over 450,000 features in pan-cancer classification (Zhang et al., 2019b). Stacking

multiple deep learning models, each handling a different modality of omics

data (Sharifi-Noghabi et al., 2019), is another approach that avoids feature con-

catenation which might otherwise exacerbate the issue of high dimensionality

in datasets potentially containing tens of thousands of features.
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2.4.8 Bioimage informatics

Traditionally, analysis of bioimages is often performed manually by field ex-

perts. With the growing number of computer vision applications demonstrating

their superior performance over human experts, automatic analysis has become

an increasing focus in bioinformatics studies.

A primary application of ensemble deep learning in bioimage informatics is

the detection of diseases such as cancers in patient images. For instance, to im-

prove classification of glioma from magnetic resonance images, Lu et al. embed-

ded a branching module into ResNet for integrating multi-scale information

obtained from different receptive fields of the original ResNet (Lu et al., 2020).

Codella et al. proposed an ensemble model that combined network architec-

tures including ResNet, CNN and U-Net, to segment and classify skin lesions

from dermoscopic images (Codella et al., 2017). It is noteworthy that the pro-

posed model achieved a segmentation result with 95% accuracy, surpassing

that of human experts who exhibit an accuracy of around 91%. To segment cer-

vical cell images, Song et al. performed multi-resolution extraction and colour

space transformation of the images to generate diverse feature sets, leading to

enhanced segmentation accuracy (Song et al., 2015).

Besides improving classification and segmentation accuracy, ensemble deep

learning methods have also been explored in addressing various other chal-

lenges in bioimage analysis. For example, an ensemble network with knowl-

edge distillation and a branching strategy was used to reduce the number of

parameters in the model and therefore lower the likelihood of overfitting on

small datasets (Rasti et al., 2017). To deal with the problem of class imbalance,

Yuan et al. (2018) introduced an iterative regularisation approach which, for a

given iteration, penalises misclassification of samples that were correctly classi-

fied in previous iterations. This method alleviated the problem of bias in favour

of majority classes and preserved correctly classified minority examples.
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2.5 challenges and opportunities

The applications reviewed above reveal various challenges and opportunities

surrounding ensemble deep learning in bioinformatics research. As the focus

of this thesis is on the analysis of next-generation omics sequencing data, partic-

ularly single-cell data, below we highlight several key areas in which ensemble

deep learning is likely to have an increasingly significant impact in omics data

research.

2.5.1 Small sample size

Deep learning is known for its exceptional performance on data with large sam-

ple size. While modern omics technologies have enabled the profiling of tens

of thousands of molecular species and biological events in a single experiment,

the number of samples available is usually small owing to the cost in time and

labour. Hence, bioinformatics applications are often confronted with the issue

of limited sample size, causing unstable predictions and thus low reproducibil-

ity in results.

Fortunately, one essential property of ensemble methods is stability. Leverag-

ing this key property, a number of ensemble deep learning methods were pro-

posed to specifically address small sample size challenges, opening up the op-

portunity to utilise deep learning in bioinformatics. While the most popular

approach so far has been using pre-trained models, more specialised meth-

ods have also been explored. Examples include extracting intermediate features

learned by the network to generate additional output for integration and thus

stabilising the ensemble prediction (Xie et al., 2013); and encouraging cooper-

ation among individual models through a pairwise loss, thereby reducing the

variance caused by small sample size (Dvornik et al., 2019). These methods rep-

resent promising strategies that can be explored in future lines of research.
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2.5.2 High-dimensionality and class imbalance

Omics data are well-known for their high-dimensionality, as biological features

(e.g. genes, proteins) frequently outnumber samples. This is further exacerbated

by the issue of small sample size mentioned above. The problem, widely known

as the ‘curse of dimensionality’, has been identified as one of the main causes of

overfitting in deep learning models due to the large number of parameters that

needs to be fitted (Bzdok et al., 2019). While deep learning models seem to be

particularly susceptible to the high-dimensionality of omics data, the combina-

tion of deep learning with ensemble methods such as model averaging (Geddes

et al., 2019) and the implicit ensemble through dropout (Srivastava et al., 2014)

has been demonstrated to be an effective approach for handling this issue.

Imbalanced class distribution is another common issue in many bioinformatics

applications (Yang et al., 2014) where, for example, a biological event of interest

is only present in a small proportion of the data. Ensemble deep learning is

found to be an effective remedy for dealing with this challenge. Bioinformat-

ics applications reviewed include the use of bootstrap sampling– and random

sampling–based ensemble deep learning for dealing with class imbalance in

DNA and protein sequence analyses (Zhang et al., 2017, 2018b). Due to the

increasing use of high-throughput technologies, ensemble deep learning strate-

gies that are capable of dealing with these challenges will remain an active

research direction in bioinformatics.

2.5.3 Data noise and heterogeneity

Biological systems are inherently heterogeneous and noisy. This is further con-

founded by technical noise from various sources including experimental proto-

col and omics platform. A key characteristic of ensemble methods is their ro-

bustness to data noise (Yang et al., 2019a), which can facilitate the reproducible

extraction of biological signals from noisy and heterogeneous data. The ap-

plication of methods such as denoising autoencoders also strengthens model
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robustness (Vincent et al., 2008). The integration of ensemble and deep learning

methods therefore provides an opportunity to address noise and heterogeneity

in biological data.

The development of multi-omics technologies further contributed to hetero-

geneity within datasets in that different molecular species measured across

omics platforms must be combined and analysed integratively to understand

biological systems holistically. Ensemble deep learning methods such as multi-

model approaches reviewed previously have been demonstrated to be highly

effective in combining different omics data for joint inference (Liang et al., 2014)

and classification (Arefeen et al., 2019). Given these intrinsic properties of data

generated from biological systems, we expect ensemble deep learning methods

to play an increasingly important role in omics data analysis and in integrating

large-scale multi-omics data.

2.5.4 Model interpretability

A common criticism of deep learning models is their lack of interpretability.

Besides building accurate model, gaining insight from the model is also critical

in bioinformatics applications, since having an interpretable model of a bio-

logical system may lead to testable hypotheses that can be validated through

experiments.

Several studies reviewed in previous sections have already made notable progress

in this direction. For example, attention layers in ensemble networks were used

to identify motifs of HIV integration sites (Hu et al., 2018) and drug binding

sites (Karimi et al., 2019). The stability and reproducibility offered by ensem-

ble methods such as in feature selection (Abeel et al., 2010) are also making a

significant impact in biomarker discovery (Pusztai et al., 2013). This is evident

from the application of ensemble deep learning methods to identifying molec-

ular markers for the diagnosis of primary and metastatic cancers (Grewal et al.,

2019) and to provide insights into normal development and cancers (West et al.,
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2018). As we move from predictive to preventive biomedical research, models

that offer biological insight into data will become increasingly desirable.

2.5.5 Choice of network architecture

The choice of network architecture is crucial for achieving optimal performance

in a specific domain and application. For example, many studies choose to

employ variants of the RNN such as the LSTM, which is suitable for learning

sequential information in biological sequences (Zhang et al., 2017; Torrisi et al.,

2019). DNN and CNN architectures, on the other hand, are shown to be suitable

for biological applications that handle high-dimensional input (Grewal et al.,

2019; Hu et al., 2018).

The use of multi-model ensembles makes it possible to exploit the power of

hybrid architectures or to combine heterogeneous data types in multi-omics.

Examples reviewed include the ResNet/RNN hybrid used to capture the rela-

tionship between each layer of features in RNA secondary structure prediction

(Singh et al., 2019) and the CNN/LSTM hybrid to learn both RNA sequences

and secondary structures for joint prediction of alternative polyadenylation

sites on pre-mRNAs (Arefeen et al., 2019). While these studies demonstrate the

importance and the application of specialised network architectures in bioin-

formatics, the exponential growth of new network architectures proposed in

computer science literature will likely lead to many more novel applications in

bioinformatics in the coming years.

2.5.6 Computational expense

Deep learning models typically contain large numbers of parameters and the

computational burden of generating an ensemble of multiple deep learning

models could be extremely high especially when working with large-scale omics

data. Nevertheless, recent developments in ensemble deep learning have made

use of the modularity of deep learning architectures and provided a panel of
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ensemble strategies and algorithms to enable more efficient model fitting with

a significant reduction in training time. The improvement of computer hard-

ware and technological advances in computing methods such as distributed

and federated deep learning (Dean et al., 2012; Smith et al., 2017) also facilitate

the application and deployment of ensemble deep learning on large-scale omics

data. Given that the size and complexity of biological data are only expected

to soar as technology progresses, the development of more efficient ensemble

deep learning algorithms and architectures will be another crucial direction in

both machine learning and bioinformatics research.

2.6 future outlook

While the ensemble of neural networks has existed long before the deep learn-

ing era, the recent development of ensemble deep learning has significantly

enriched the field with novel architectures and ensemble strategies that greatly

improve model accuracy, reliability, and efficiency. These innovations together

with properties such as robustness to small sample size, high-dimensionality,

and data noise, have transformed ensemble deep learning into a new force

leading to remarkable and widespread breakthroughs across different fields

of bioinformatics applications. Nonetheless, many of the advanced ensemble

techniques that harness the power of recent deep learning architectures remain

under-explored in their application to bioinformatics. In addition, the develop-

ment and application of models that enable interpretation of biological systems

are still in their infancy. We hope this review has sparked thoughts on ensem-

ble deep learning across multiple disciplines and will inspire future research

and application embracing the myriad of ensemble deep learning strategies to

revolutionise biological research and especially single-cell research.
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A B E N C H M A R K S T U D Y O F S I M U L AT I O N M E T H O D S F O R

S I N G L E - C E L L R N A S E Q U E N C I N G D ATA

Simulation data is frequently used to aid methodological development, particu-

larly for analysis of patient disease datasets when the ground truth is unattain-

able. With the rapid increase in the number of single-cell methods for address-

ing data analysis challenges, a number of single-cell data simulation tools have

been published for meeting the various needs of simulation data. Ensuring the

quality of simulation data, particularly their ability to reflect real experimen-

tal data is of crucial importance, as this can directly impact the development

of computational methods that use simulation data as part of the evaluation

measure. However, while numerous scRNA-seq data simulation methods have

been proposed, a systematic evaluation of these methods is currently lacking.

In this chapter, we address the above challenge by developing SimBench, a

comprehensive evaluation framework for scRNA-seq simulation methods and

applying it to benchmark 12 simulation methods using 35 scRNA-seq experi-

mental datasets. The simulation methods are evaluated on multiple aspects of

criteria, including the ability to capture a panel of data properties, the ability

to maintain biological signals, as well as scalability and applicability. SimBench

has been published as Cao et al. (2021). To the best of our knowledge, this is the

first systematic benchmark study on scRNA-seq simulation methods.

This chapter demonstrates that SimBench uncovers performance differences

among the methods and highlights the varying difficulties in simulating data

characteristics. These results, together with the framework and datasets made

publicly available, will guide simulation methods selection and their future

development. Furthermore, the collection of single-cell benchmarking datasets

41
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and the design behind the evaluation framework is not only applicable to the

specific task of evaluating single-cell simulation methods, but can also be ap-

plied for future evaluation studies.

SimBench is designed as a living benchmark. The SimBench benchmark frame-

work is available as an R package at https://github.com/SydneyBioX/SimBench.

A Shiny web application for interactively exploring the results is available at

http://shiny.maths.usyd.edu.au/SimBench/. As the website can be updated

beyond the publication of study, new simulation methods can be incorporated

when they become available so that our comparative study will stay up-to-date

and will support future method development. The availability of a GitHub site

also enables the broader community to contribute via creating GitHub pulls.

Following the publication of SimBench, we have since updated the living bench-

mark to include an additional six scRNA-seq data simulation methods and

these can be viewed at the Shiny web application.

3.1 introduction

Single-cell RNA-sequencing (scRNA-seq) is a powerful technique for profiling

the transcriptomes at the single-cell resolution and has gained considerable

popularity since its emergence in the last decade (Kolodziejczyk et al., 2015b).

To effectively utilise scRNA-seq data to address biological questions (Luecken

and Theis, 2019), the development of computational tools for analysing such

data is critical and has grown exponentially with the increasing availability

of scRNA-seq datasets. Evaluation of their performance with credible ground

truth has thus become a key task for assessing the quality and robustness of

the growing array of computational resources. While there exist certain con-

trol strategies such as spike-ins with known sequence and quantity, data that

offer ground truth while reflecting the complex structures of a variety of ex-

perimental designs are either difficult or impossible to generate. Thus, in silico

simulation methods for creating scRNA-seq datasets with desired structure and

https://github.com/SydneyBioX/SimBench
http://shiny.maths.usyd.edu.au/SimBench/
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ground truth (e.g. number of cell groups) are an effective and practical strategy

for evaluating computational tools designed for scRNA-seq data analysis.

To date, numerous scRNA-seq data simulation methods have been developed.

The majority of these methods employ a two-step process of using statistical

models to estimate the characteristics of real experimental single-cell data and

using the learnt information as a template to generate simulation data. The dis-

tinctive difference between them is the choice of underlying statistical frame-

work. Early methods often employ negative binomial (NB) (Vieth et al., 2017;

Zappia et al., 2017; Korthauer et al., 2016) as it has been the typical choice for

modelling gene expression count of RNA-seq (Anders and Huber, 2010). Its

variant, zero-inflated NB (ZINB) model takes account of excessive zeros in the

count data and is chosen by other studies to better model the sparsity in single-

cell data (Risso et al., 2018; Van den Berge et al., 2018). In more recent years,

alternative models have been proposed with the aim to increase modelling flex-

ibility including gamma-normal mixture model (Li and Li, 2019), beta-Poisson

(Zhang et al., 2019c), gamma-multivariate hypergeometric (Baruzzo et al., 2020)

and the mixture of zero-inflated Poisson and log-normal Poisson distributions

(Su et al., 2020). Other studies argued that parametric models with strong dis-

tributional assumption are often not appropriate to scRNA-seq data given its

variability and proposed the use of a semi-parametric approach as the simu-

lation framework (Assefa et al., 2020). Similarly, a recent deep learning-based

approach (Marouf et al., 2020) leverages the power of neural networks to infer

underlying data distribution and avoid prior assumptions.

A common challenge of simulation methods is the ability to generate data that

faithfully reflect experimental data (Lähnemann et al., 2020). Given that simu-

lation datasets are widely used for the evaluation and comparison of computa-

tional methods (Vieth et al., 2019), deviations of simulated data from properties

of experimental data can greatly affect the validity and generalisability of the

evaluation results. With the increasing number of scRNA-seq data simulation

tools and the reliance on them to guide other method development as well as

choosing the most appropriate data analytics strategy, a thorough assessment
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of all currently available scRNA-seq simulation methods is crucial and timely,

especially when such an evaluation study is still lacking in the literature.

In this chapter, we present a comprehensive evaluation framework, SimBench,

for single-cell simulation benchmarking. Considering that realistic simulation

datasets are intended to reflect experimental datasets in all data moments in-

cluding both cell-wise and gene-wise properties, as well as their higher-order

interactions, it is important to determine how well simulation methods repre-

sent all these values. To this end, we systematically compare the performance

of 12 simulation methods across multiple sets of criteria, including accuracy

of estimates for 13 data properties, the ability to retain biological signals and

to achieve computation scalability, as well as their applicability. To ensure ro-

bustness of the results, we collect 35 datasets across a range of sequencing

protocols and cell types. Moreover, we implement measure based on kernel

density estimation (Duong et al., 2012) in the evaluation framework to enable

the large-scale quantification and comparison of similarities between simulated

and experimental data across univariate and multivariate distributions, and

thus, avoid visual-based criteria which are often used in other studies (Assefa

et al., 2020; Li and Li, 2019; Baruzzo et al., 2020). To assist development of new

methods, we study potential factors affecting the simulation results and iden-

tify common strength and weakness of current simulation methods. Finally, we

summarise the result into recommendation to the users, and highlight potential

areas requiring future research.

3.2 simbench framework

3.2.1 Dataset collection

A total of 35 publicly available datasets was used for this benchmark study. For

all datasets, the cell type labels are either publicly available or obtained from the

authors upon request (Chen et al., 2018). Details of each dataset including their

accession code are included in the Table A1. The datasets contain a range of
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sequencing protocols including both unique molecular identifiers (UMIs) and

read-based protocols, multiple tissue types and conditions, and from human

and mouse origin.

The raw (unnormalised) count matrix was obtained from each study and qual-

ity control was performed by removing potentially low-quality cells or empty

droplets that expressed less than one percent of UMIs. For methods that re-

quire normalised count, we converted the raw count into log2 counts per mil-

lion reads (CPM), with addition of pseudocount of 1 to avoid calculating log of

zero.

Note the Tabula Muris dataset was only used to benchmark speed and scal-

ability of methods. Properties estimation was evaluated on all other datasets.

For evaluating biological signals, 25 datasets containing multiple cell types or

conditions as specified by Table A1 were used.

3.2.2 Selection and implementation of simulation methods

An extensive literature review was conducted and a total of 12 published single-

cell simulation methods with implementation available in R and Python was

found. The details of each method, including the version of the code used in

this benchmark study and its publication are outlined in Table 1 and Table

A2. Table A3 detailed the execution strategy of each method for data property

estimation and biological signals and is dependent on the input requirement

and the documentation of each method. Where possible, default setting or sug-

gested setting from documentation is followed.

To ensure the simulated data is not simply a memorisation of the original data,

we randomly split each dataset into 50% training and 50% testing (referred

to as the real data in this study). The training data was used as input to esti-

mate model parameters and generate simulated data. The real data was used

as the reference to evaluate the quality of the simulated data, by comparing

the similarity between the simulated data and the real data. The same training
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and testing subset was used for all methods to avoid the data splitting process

being a confounding factor in evaluation.

All methods were executed using a research server with dual Intel(R) Xeon(R)

Gold 6148 Processor (40 total cores, 768GB total memory). For methods that

support parallel computation, we used 8 cores and stopped the methods if the

simulation was not completed within 3h. For methods that run on a single core,

we stopped the methods if not completed within 8h.

3.2.3 Evaluation of data property estimation

3.2.3.1 Data properties measured in this study

We adapted the implementation from countsimQC (v1.6.0) (Soneson and Robin-

son, 2018b), which is an R package developed to evaluate the similarities be-

tween two RNA-seq datasets, either bulk or single-cell and evaluated a total

of 13 data properties across univariate and bivariate distribution. They are de-

scribed in detail below:

• Library size: total counts per cell.

• TMM: weighted trimmed mean of M-values normalisation factor (Robin-

son and Oshlack, 2010).

• Effective library size: library size multiplied by TMM.

• Scaled variance: z-score standardisation of the variance of gene expression

in terms of log2 CPM.

• Mean expression: mean of gene expression in terms of log2 CPM.

• Variance expression: variance of gene expression in terms of log2 CPM.

• Fraction zero cell: fraction of zeros per cell.

• Fraction zero gene: fraction of zeros per gene.

• Cell correlation: Spearman correlation between cells.
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• Gene correlation: Spearman correlation between genes.

• Mean vs variance: the relationship between mean and variance of gene

expression.

• Mean vs fraction zero: the relationship between mean expression and the

proportion of zero per gene.

• Library size vs fraction zero: the relationship between library size and the

proportion of zero per gene.

Note that properties relating to library size, including TMM and effective li-

brary size can only be calculated using unnormalised count matrix and could

not be obtained from methods that generate normalised count. As a result,

these scores were shown as a blank space in all relevant figures.

3.2.3.2 Evaluation measures

In this study, we used a non-parametric measure termed kernel density based

global two-sample comparison test (KDE test) (Duong et al., 2012) to compare

the data properties between simulated and real data. The discrepancy between

two distributions is calculated based on the difference between the probability

density functions, either univariate or multivariate, which are estimated via

kernel smoothing.

The null hypothesis of the KDE test is that the two kernel density estimates are

the same. An integrated squared error (ISE) serves as the measure of discrep-

ancy and is subsequently used to calculate the final test statistic under the null

hypothesis. The ISE is calculated as:

T =

∫
[f1(x) − f2(x)]

2 dx (1)

where f1 and f2 are the kernel density estimates of sample 1 and sample 2,

respectively. The implementation from the R package ks (v1.10.7) was used for

the KDE test performed in this study.
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We used the test statistic from the KDE test as the measure to quantify the

extent of similarity between simulated and real distributions. We applied a

transformation rule by scaling the absolute value of the test statistic to [0,1] and

then taking 1 minus the value as shown in the equation below:

xtransformed =
|x|− |xminimum |

|xmaximum |− |xminimum |
(2)

where x is the raw value before transformation. The transformation is applied

on the KDE scores obtained from all methods across all datasets, thus the xmin-

imum and xmaximum are defined based on those values. The purpose of the

transformation is to follow the principle of, the higher the value the better and

enable easier interpretation.

To assess the validity of the KDE statistic and compare it against other mea-

sures, for example, the well-established KS test for univariate distribution, we

utilised the measures implemented in countsimQC package. It includes the im-

plementation of the following six measures: Average silhouette width, average

local silhouette width, nearest neighbour (NN) rejection fraction, K-S statistics,

scaled area between empirical cumulative distribution functions (eCDFs) and

Runs statistics. For ease of comparing between the six measures and with the

KDE test, we applied transformation rules where applicable such that the out-

puts from all measures are within the range of 0–1, where value closer to 1

indicates greater similarity. Similarly, the transformation is calculated from all

methods across all datasets.

The measures and their transformation rules are:

1. Average silhouette width

For each feature, the Euclidean distances to all other features were calculated.

The feature was either gene or cell, depending on the data properties evaluated.

A silhouette width s(i) was then calculated using the following formula:
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s(i) =
b(i) − a(i)

max(a(i),b(i))
(3)

where b(i) is the mean distance between feature i and all other features in

the simulation data, a(i) is the mean distance between feature i and all other

features in the original dataset.

s(i) of all features is then averaged to obtain the average silhouette width. The

range of silhouette width is [-1, 1]. A positive value close to 1 means the data

point from the simulation data is similar to the original dataset. Value close to

0 means the data point is close to the decision boundary between the original

and simulated. A negative value means the data point from the original dataset

is more similar to the simulation data. The same transformation as described

in Eq. (2) was applied.

2. Average local silhouette width

Similar to the average local silhouette width. The difference is that instead of

calculating the distance with all the features, only the k NNs were used in the

calculation. Default setting of k of 5 was used. The same transformation as

described in Eq. (2) was applied.

3. NN rejection fraction

First, for each feature the k NNs were found using Euclidean distance. A chi-

square test was then performed with the null hypothesis being the composition

of k NNs belonging to original and simulation data is similar to the true com-

position of real and simulation data. The NN rejection fraction was calculated

as the fraction of features for which the test was rejected at a significance level

of 5%.

The output is the range of [0,1], where a higher value indicates greater dissim-

ilarity between the features from real and simulation data. The value was thus

transformed by taking 1 minus the value.

4. Kolmogorov-Smirnov (K-S) statistic
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The K-S measure is based on K-S statistic obtained from performing K-S test,

which measures the absolute max distance between the eCDFs of simulated and

real dataset. The K-S statistics is in range [0, Inf]. The K-S measure was obtained

by log-transformation followed by the transformation rule defined previously.

5. Scaled area between empirical cumulative distribution functions (eCDFs)

The difference between the eCDFs of the properties in simulated and real

dataset. The absolute value of the difference was then scaled such that the dif-

ference between the largest and smallest value becomes 1. The area under the

curve was calculated using the Trapezoidal Rule. The final value is in the range

of [0,1], where a value closer to 1 indicates greater differences between the data

properties distributions of the real and simulation data. The value was then

reversed by taking 1 minus the value such that it follows the general pattern of

higher value being better.

6. Runs statistics

The Runs statistics is the statistic from a one-sided Wald-Wolfowitz runs test.

The values from the simulated and real dataset were ordered and a runs test

was performed. The null hypothesis is that the sequence is a random sequence

with no clear pattern of values from simulated or real dataset next to each other

in position.

3.2.4 Methods comparison through multi-step score aggregation

In order to summarise the results from multiple datasets and multiple crite-

ria, we implemented the following multi-step procedure to aggregate the KDE

scores.

First, we aggregated the KDE scores within each dataset. For most methods,

each cell type in a dataset containing multiple cell types was simulated and

evaluated separately for the reason mentioned in the previous section. This

resulted in multiple KDE scores for a single dataset, one for each cell type. To
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aggregate the scores into a single score for a dataset, we calculated the weighted

sum by using the cell type proportion as weight, defined as the follows:

n∑
i=1

(xi ∗wi) (4)

where n is the number of cell types in the simulated or original datasets, xi is

the evaluation score of the ith cell type and wi is the cell type proportion of the

ith cell type.

Since each method was evaluated using multiple datasets, we then summarised

the performance of each method across all datasets by taking the median score.

This resulted in a single score for each method on each criterion, which then

enabled us to readily rank each method by comparing the score. Cases where

a method was not able to produce result on particular dataset were not consid-

ered in the scoring process. The reasons for failing to simulate a data include

not completing the simulation in the given time limit, error arising in the sim-

ulation methods during the simulation process, and special cases in which the

simulation method is limited to an input dataset containing two or more cell

types and cannot generate result on datasets containing a single cell type. The

breakdown of the number of datasets successfully simulated and the number

of failed cases are reported in detail in Figure A1.

Finally, the overall rank of each method was computed by firstly calculating its

rank for each criterion and then taking the mean rank across all criteria.

3.2.5 Evaluation of biological signals

The five categories of biological signals evaluated in this study were adapted

from29 and their descriptions are detailed below.

1. DE (limma)
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This is the typical differentially expressed genes. Limma (Ritchie et al., 2015b)

was performed to obtain the log fold change associated with each gene. We

selected genes with log2 fold change > 1.

2. DE (DEsingle)

This finds the differentially expressed genes using a DE detection method

DEsingle (Miao et al., 2018) that is specifically designed for scRNA-seq data.

3. DV

DV stands for differentially variable genes. Bartlett’s test for differential vari-

ability was performed to obtain the P-value associated with each gene.

4. DD

DD stands for differentially distributed genes. K-S test was performed to obtain

the P-value associated with each gene.

5. DP

DP is defined as differential proportion genes. We considered genes with log2

expression greater than 1 as being expressed and otherwise as non-expressed.

A chi-square test was then performed to compare the proportion of expression

of each gene between two cell types.

6. BD

BD is defined as bimodally distributed genes. Bimodality index defined using

the below formula was calculated for each gene:

BI =
|m1 −m2|

s
√
p(1− p)

(5)

where m1 and m2 are the mean expression of genes in the two cell types, re-

spectively, s is the standard deviation and p is the proportion of cells in the first

cell type.
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For the first five categories, genes with P-value < 0.1 (Benjamini-Hochberg ad-

justed) were selected. This higher threshold was used instead of the typical

threshold of 0.05 to result in a higher proportion of biological signals, as larger

value would enable clearer differentiation of methods’ performance. For the

last category, we used bimodality index (Wang et al., 2009) >0.03 as the cut-off

to yield a reasonable proportion of BD genes (Figure A6).

To quantify the performance of each method, we used SMAPE (Armstrong,

1978):

SMAPE =
1

n

n∑
t=1

|Ft −At|
At+Ft

2

(6)

where Ft is the proportion of biological signals in simulated data and At is the

proportion in the corresponding real data, n is the number of data points, one

from each dataset evaluated. The proportion was calculated as the number of

biological signal genes divided by the total number of genes in a given dataset.

3.2.6 Evaluation of scalability

To reduce potential confounding effect, we measured scalability using the Tab-

ula Muris dataset only. The dataset was subset to the two largest cell types

and random samples of the cells without replacement were taken to generate

datasets containing 50, 100, 250, 500, 750, 1000, 1250, 1500, 2500, 3000, 4000,

6000 and 8000 cells with equal proportion of the two cell types.

Running time of each method was measured using the Sys.time function built-

in R and the time.time function built-in Python. Tasks that did not finish within

the given time limit are considered as no result generated. To record the maxi-

mal memory for R methods we used the function Rprofmem in the built-in utils

Package in R. For Python methods we used the psutil package and measured

the maximal Resident Set Size. All measurements were repeated three times

and the average was reported.
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In the majority of methods, simulation was performed in a two-step process.

In the first step, a range of properties is estimated from a given dataset. This

set of properties are then used in the second step of generating the simulation

data. For these methods, the time and memory usage of the two steps was

recorded separately and shown in Figure A1. For other methods where the

two processes were completed in one single function, we measured the time

and memory usage of this single step and used a dashed line to indicate these

methods in Figure A1.

In order to compare and rank the methods as shown in Figure 3.2, we summed

the time and memory of the methods that use two-step procedure and dis-

played the total time and memory usage, such that their results became com-

parable with methods that involve one single step. Some methods did not com-

plete the simulation within the given time, and the time and memory usage

were unable to be recorded as the result. These timed out simulations would

bias the result when ranking the methods based on the total time and memory

usage. To account for this case, we assigned these simulation jobs a total time

usage as the time limit and a memory usage as the memory of the previous

simulation task. For example, a method that failed to simulate 8000 cells within

the time limit of 8h was assigned 8h as the total time usage, and a memory

usage as the memory recorded when simulating the previous job of 6000 cells.

3.2.7 Evaluation of impact of data characteristics

We selected a subset of datasets to examine the impact of the number of cells

and sequencing technologies. Briefly, each dataset was split into 50% training

and 50% testing. Transformed KDE score was then calculated from the raw

score obtained from all methods across the selected datasets, resulting in values

ranging between 0 and 1.
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3.2.7.1 Impact of number of cells

To assess the impact of the number of cells on the accuracy of data property

estimation, we used the Tabula Muris dataset subset to the two largest cell

types and sampled to create datasets of 100, 200, 500, 1000, 1500, 2000, 2500,

3000, 5000, 6000, 8000, 12,000 and 16,000 cells. Each dataset was split into 50%

training and 50% testing as previously described.

Linear regression was fitted using the lm function in the built-in stats package

in R for each of the 13 data properties. This resulted in a total of 13 regression

models with the formula defined as:

y = β0 +β1x1 (7)

The response variable y was the KDE score corresponding to the data property

and the exploratory variables x1 was the number of cells measured in 1000.

3.2.7.2 Impact of the sequencing protocols

To assess the impact of the sequencing protocols while avoiding potential batch

effect, we utilised two sets of datasets from the same study (Ding et al., 2020)

that sequenced the same tissue type using multiple protocols. It contains hu-

man PBMC data generated using the following six protocols, 10x Genomics,

CEL-seq2, Drop-seq, inDrops, Seq-Well and Smart-seq2 and mouse cortex cells

using the following four protocols of sci-RNA-seq, 10x Genomics, DroNc-seq

and Smart-seq2.

ANOVA was fitted using the built-in stats package in R to examine whether

there was significant change in mean KDE score across the above datasets of

different sequencing technologies for each simulation method. P-values were

displayed on the figures.
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3.2.8 Data availability

All datasets used in this study are publicly available. Details on each dataset

including accession numbers and source websites are listed in A3. Curated ver-

sion of the datasets is available as a Bioconductor package under the name Sim-

BenchData (https://bioconductor.org/packages/devel/data/experiment/html/

SimBenchData.html).

3.2.9 Code availability

The benchmark framework is available as an R package at https://github.

com/SydneyBioX/SimBench34. A Shiny application for interactively exploring

the results is available at http://shiny.maths.usyd.edu.au/.

3.3 results

3.3.1 A comprehensive benchmark of scRNA-seq simulation methods on four key sets

of evaluation criteria using diverse datasets and comparison measure

Our SimBench framework evaluates 12 recently published simulation methods

specifically designed for single-cell data (Figure 3.1a, Table 1 and Table A1). To

ensure robustness and generalisability of the study results and account for vari-

ability across datasets (Figure A2), we curated 35 public scRNA-seq datasets

(Figure 3.1b and Figure A3) that include major experimental protocols, tissue

types, and organisms. To assess a simulation method’s performance on a given

dataset, SimBench splits the data into input data and test data (referred to as the

real data). Simulation data is generated based on the data properties estimated

from the input data and compared with the real data in the evaluation process

(Figure 3.1c). Using four key sets of evaluation criteria (Figure 3.1c-d), we sys-

tematically compare the single-cell simulation methods’ performance for 432

https://bioconductor.org/packages/devel/data/experiment/html/SimBenchData.html
https://bioconductor.org/packages/devel/data/experiment/html/SimBenchData.html
https://github.com/SydneyBioX/SimBench34
https://github.com/SydneyBioX/SimBench34
http://shiny.maths.usyd.edu.au/
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simulation data representing 12 simulation methods applied to 35 scRNA-seq

datasets.

Figure 3.1: Schematic of the benchmarking workflow. (a) A total number of 35 datasets,

covering a range of protocols, tissue types, organisms and sample size was

used in this benchmark study. (b) We evaluated 12 simulation methods avail-

able in the literature to date. (c) Multiple aspects of evaluation were exam-

ined in this study, with the primary focuses illustrated in detail in panel

(d). (e) Finally, we summarised the result into a set of recommendations for

users and identified potential areas of improvement for developers.

The first set of evaluation criteria, termed data property estimation, aims to

assess how realistic is a given simulated data. To address this, we first defined

the properties for a given dataset with 13 distinct criteria and then developed a

comparison process to quantify the similarity between the simulated and real

data (Figure A3). The 13 criteria capture both the distributions of genes and

cells as well as higher-order interactions, such as mean–variance relationship

of genes. We anticipated that not all simulation methods will place emphasis

on the same set of data properties and it is thus important to incorporate a

wide range of criteria. We then examined a number of statistics for measuring

distributional similarity (Soneson and Robinson, 2018c). Figure A4 shows that

all statistics show similar performance with mean correlation of 0.7 and we
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have chosen to use the kernel density based global two-sample comparison

test statistic (Duong et al., 2012) (KDE statistic), in our current study as it is

applicable to both univariate and multivariate distributions.

The other three sets of evaluation criteria seek to assess each simulation method’s

ability to maintain biological signals and computational scalability and its ap-

plicability. For biological signals, we measured the proportion of differentially

expressed (DE) genes obtained in the simulated data using DE detection meth-

ods designed for bulk and single-cell RNA-seq data, as well as four other types

of gene signals of differentially variable (DV), differentially distributed (DD),

differential proportion (DP) and bimodally distributed (BD) genes (see "Sim-

Bench Framework"). A similar proportion to the real data would indicate an

accurate estimation of biological signals present in the data. Scalability reflects

the ability of simulation methods to efficiently generate large-scale datasets.

This is measured through computational run time and memory usage with re-

spect to the number of cells. Applicability examines the practical application

of each method in terms of whether it can estimate and simulate multiple cell

groups and allow simulation of differential expression patterns. Overall, our

framework provides recommendations by taking into account all aspects of

evaluation (Figure 3.1e).

3.3.2 Comparison of simulation methods revealed their relative performance on differ-

ent evaluation criteria

Through ranking the 12 methods on the above four sets of evaluation criteria,

we found that no method clearly outperformed other methods across all criteria

(Figure 3.2). We therefore examined each set of criteria individually in detail

below and the variability in methods’ performance within and across the four

sets of evaluation criteria.

For data property estimation, we observed variability in methods’ performance

across the 13 criteria. ZINB-WaVE, SPARSim and SymSim are the three meth-

ods that performed better than the others across almost all 13 data properties
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Figure 3.2: Ranking of methods across key aspects of evaluation criteria. The colour

and size of the circle denote ranking of methods, where a large blue circle

represents the best possible rank of 1. Missing space indicates where a mea-

surement was not able to be obtained, for example, due to the output format

being normalised count instead of raw count (see "SimBench Framework").

The ranks within each criterion were summarised into an overall tier rank,

with tier 1 being the best tier. (a) Ranking of methods within data property

estimation, ranked by median score across multiple datasets. (b) Ranking of

methods within biological signals, ranked by median score across multiple

datasets. (c) Scalability was ranked by the total computational speed and

memory usage required for properties estimation and dataset generation

across datasets. (d) Applicability was examined in terms of three criteria,

which are explained in more detail in Table 1. The number of datasets used

in the entire evaluation process and the success rate of each method on run-

ning the datasets is reported in Figure A1.

(Figure 3.2a). For the remaining methods, a greater discrepancy was observed

between the 13 criteria, in which the rankings of methods based on each crite-

rion do not show any particular relationship or correlation structure. Overall,
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our results highlight the relative strengths and weaknesses of each simulation

method on capturing the data properties.

We observed that some methods (e.g. zingeR and scDesign) that were not

ranked the highest in data properties estimation performed well in retaining

biological signals (Figure 3.2b). scDesign is designed for the purpose of power

calculation and sample size estimation, while zingeR is designed to evaluate

the DE detection approach in its publication and thus both methods require

an accurate simulation and estimation of biological signals, particularly differ-

ential expression. It is not unexpected that they ranked highly in this aspect

despite not being the most accurate in estimating other data properties.

For computational scalability, the majority of methods showed good perfor-

mance with runtime of under 2h and memory consumption of under eight

gigabytes (GB) (Figure A5) when tested on the downsampled Tabula Muris

dataset19 with 50–8000 cells (see "SimBench Framework"). However, some top

performing methods, such as SPsimSeq and ZINB-WaVE revealed poor scalabil-

ity (Figure 3.2c). This highlights the potential trade-off between computational

efficiency and complexity of modelling framework. SPsimSeq, for example, in-

volves the estimation of correlation structure using Gaussian-copulas model

and scored well in maintaining gene- and cell-wise correlation. Its advantage

came at the cost of poor scalability, taking nearly 6h to simulate 5000 cells. Thus,

despite the ability to generate realistic scRNA-seq data, the usefulness of such

methods may be partially limited if a large-scale simulation dataset is required.

In contrast, methods such as SPARSim, which was ranked second in parameter

estimation as well as being one of top tier methods in scalability, may better

suit needs if a large-scale simulation dataset is required by users.

Lastly, we found that different simulation methods satisfy different numbers of

the applicability criteria (Figure 3.2d). This is due, in part, to the fact that not

all simulation methods are designed as general purpose simulation tools. For

example, powsimR was originally designed as a power analysis tool for differ-

ential expression analysis but was included as a simulation tool by a number

of simulation studies (Li and Li, 2019; Zhang et al., 2019c) in their performance
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comparison with other simulation methods. Being a power analysis tool, its pri-

mary usage is to simulate two cell groups from a homogenous cell population

with a user-defined amount of differential expression. In contrast, a number

of other methods such as SPARSim, SymSim and Splat that are originally in-

tended as general purpose simulation tools are able to simulate multiple cell

groups with user-defined differential expression patterns. We have outlined

the primary purpose and the limitations of each method on this front in more

detail in Table 1, as well as the downstream applications of each method as

demonstrated in their respective publications (Table 2), to guide users in mak-

ing informed decisions on methods that best suited to their needs.

3.3.3 Impact of data- and experimental-specific characteristics on model estimation

Aside from comparing the overall performance of methods to guide method se-

lection, it is also necessary to identify specific factors influencing the outcome of

simulation methods. Here, we examined the impact of data- and experimental-

specific characteristics including cell numbers and sequencing protocols on sim-

ulation model estimation.

To explore the general relationship between cell number and accuracy of data

property estimation across simulation methods, we evaluated each method on

thirteen subsamples of Tabula Muris data with varying numbers of cells but

fixed number of cell types (see "SimBench Framework"). Through regression

analysis, we found certain data properties such as mean–variance relationships

were more accurately estimated under datasets with larger numbers of cells,

as shown by the positive regression coefficients (Figure 3.3a and Figure A6).

Nevertheless, most other data properties in the simulated data were negatively

correlated with the increasing number of cells (e.g. library size, gene correla-

tion). These observations suggest that overall, the increasing cell number may

be accompanied by the increasing complexity of data and thus maintaining

data properties may become more challenging. Future method development
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Figure 3.3: Impact of dataset characteristic on method performance. (a) Impact of the

number of cells on selected properties (see Figure A6 for all properties).

Line shows the trends with increasing cell numbers. Dot indicates where a

measurement is taken. (b) Impact of protocols was examined using two col-

lections of datasets (see Figure A7 for individual methods). Boxplots show

the individual score of each property for each method.

should consider this factor as an aspect of evaluation when assessing model

performance.

To examine the impact of sequencing protocols, we utilised datasets consist-

ing of multiple protocols applied to the same human PBMC and mouse cortex

samples from the same study (Ding et al., 2020). Figure 3.3b and Figure A7 re-

veal no substantial impact was introduced by protocol difference on the overall

simulation results, as indicated by the flatness of the line representing the ac-

curacy of each data property across each protocol. Taken together, these results

indicate that the choice of reference input being shallow sequencing or deep

sequencing has no substantial impact on the overall simulation results. Given

that SymSim and powsimR are the only two methods that require specification

of input data as either deep or shallow protocols, these results suggest that a
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general simulation framework for the two major classes of protocols may be

sufficient.

3.3.4 Comparison across criteria revealed common areas of strength and weakness

While the key focus of our benchmark framework is assessing methods’ perfor-

mance across multiple criteria, we can further use these results to identify crite-

ria where most methods performed well or were lacking (Figure 3.4a). Compar-

ing across criteria, those that display a large difference between the simulated

and real data for most methods are examples of common weakness. This ability

to identify common weakness has implications for future method development

as it highlights ongoing challenges of simulation methods.

First, we compared the accuracy of maintaining each data property, where

a larger KDE score indicates greater similarity between simulated and real

data. Figure 3.4b shows data properties relating to the higher-order interac-

tions including mean–variance relationship of genes revealed larger differences

between the simulated and real data. In comparison, a number of gene- and

cell-wise properties such as fraction of zero per cell had relatively higher KDE

scores, suggesting they were more accurately captured by almost all simula-

tion methods. These observations thus highlight the difficulty in incorporating

higher-order interactions by current simulation methods in general, and the

potential area for method development.

The ability to recapture biological signals was quantified using the metric sym-

metric mean absolute percentage error (SMAPE), where a score closer to 1

indicates greater similarity between simulated and real data (see "SimBench

Framework"). We found differentially distributed (DD) and differential propor-

tion (DP) genes exhibited a greater difference between simulated and real data

(Figure 3.4b). We also noted that four out of the 12 methods consistently had

very low SMAPE score of between 0 and 0.3, indicating the biological signals

in the simulated data were at a very different proportion to that in real data.

Upon closer examination, these methods simulated close to zero proportions of
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Figure 3.4: Comparison of criteria in data property estimation and in biological sig-

nals. (a) Evaluation procedure for data property estimation and biological

signals. (b) The evaluation results and the comparison of criteria within

the two aspects of evaluation. For data property estimation, the KDE score

measures the difference between the distribution of 13 data properties in

simulated and in real data. A score close to 1 indicates a greater similar-

ity. Each boxplot shows the distribution of the median KDE score attained

by all simulation methods (n = 12), with the KDE score attained by each

method shown in individual data point. The box represents quartiles, the

line represents the median, the lower and upper whisker represents the bot-

tom 25% and top 25% of the data. Outliers can be seen from the individual

data points that are outside the whiskers. For biological signals, the SMAPE

score measures the percentage difference between the proportion of biolog-

ical signals detected in simulated and in real data. A score of 1 indicates no

difference in the biological signals detected in real and simulated data and

a score of 0 indicates maximal difference.
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biological signals irrespective of the true proportion in the real data (Figure A6).

Together, these observations point to the need for better strategies to simulate

biological signals.

3.4 discussion

We presented a comprehensive benchmark study assessing the performance of

12 single-cell simulation methods using 35 datasets and a total of 25 criteria

across four aspects of interest. Our primary focus was on assessing accuracy

of data property estimation and various factors affecting it, ability to maintain

biological signals and computational scalability, as well as applicability. Addi-

tionally, using these results we also identified common areas of strength and

weakness of current simulation tools. Altogether, we highlighted recommen-

dations for method selection and identified areas of improvement for future

method development.

We found that various underlying models were used for different simulation

methods (Table 1). Each of the five top performing methods in category 1, for

instance, uses a different underlying statistical approach (Table 1). As another

example, the three methods ZINB-WaVE, zingeR and powsimR differ substan-

tially in detail despite the fact that they are all inspired by representing the

observed counts using the NB family. Specifically, zingeR uses NB distribution

to fit the mean and dispersion of the count data and model the excess zero

using the interaction between gene expression and sequencing depth using

additive logistic regression model. powsimR uses the standard ZINB distribu-

tion to fit the mean and dispersion of the count data, with the zero inflation

modelled using binomial sampling. In ZINB-WaVE, the ZINB distribution is

used to fit the mean and dispersion of the count data, as well as the proba-

bility that a zero is observed. Additionally, the estimation of mean and zero

probability incorporates an additional parameter adapted from the RUV frame-

work (Gagnon-Bartsch and Speed, 2012) to capture unknown cell-level covari-

ates. Therefore, while both powsimR and ZINB-WaVE use ZINB distribution
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to fit the count data, the actual model differs. Interestingly, while deep learn-

ing methods have dominated various fields and applications, cscGAN, a deep

learning-based model, for scRNA-seq data simulation only had moderate per-

formance compared to the other models. This may be due to the large number

of cells required for training the deep neural network in cscGAN as was demon-

strated in their original study (Marouf et al., 2020).

Based on the experiments conducted, we identified several areas of exploration

for future researchers. Maintaining a reasonable amount of biological signal is

desirable and was not well captured by a number of methods. We also observed

the genes generated by some methods (Table 1) were assigned uninformative

names such as gene 1 and exhibit no relationship with genes from the real data.

This limited us to assessing the proportion of biological signals in the simulated

data, instead of assessing whether the same set of genes carrying biological sig-

nals (e.g. marker gene) are maintained in the simulated data. Incorporating the

additional functionality of preserving biologically meaningful genes is likely

to increase the usability of future simulation tools. Furthermore, we noted that

several simulation studies only assessed their methods based on a number of

gene- and cell-wise properties and did not examine higher-order interactions.

Those studies are thus limited in the ability to uncover limitations in their meth-

ods. In comparison, our benchmark framework covered a comprehensive range

of criteria and identified relative weakness of maintaining certain higher-order

interactions compared to gene- and cell-wise properties.

As expected, we identified that none of the simulation methods assessed in

this study could maintain the heterogeneity in cell population that was due to

patient variability. This is potentially related to the paradigm used by current

simulation techniques, as some methods implicitly require input to be a homo-

geneous population. For instance, some simulation studies inferred modelling

parameters and performed simulation on each cell type separately when the

reference input contains multiple cell types. However, experimental datasets

with data from multiple samples, for example multiple patients, would be char-

acterised by sample-to-sample variability within a cell type. This cellular het-
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erogeneity is an important characteristic of single-cell data and has key ap-

plications such as identification of subpopulations. The loss of heterogeneity

can thus be a limiting factor, as in some cases the simulation data could be

an oversimplified representation of single-cell data. Future research such as

phenotype-guided simulation (Sun et al., 2020) can help to extend the use of

simulation methods.

Finally, we found there exists various trade-offs between the four aspects of

criteria and having a well-rounded approach could be more important than

a framework that performs best on one aspect but limiting in the other as-

pects. For example, as single-cell field advances and datasets with hundreds

of thousands of cells become increasingly common, users may be interested

in simulating large-scale datasets to test the scalability of their methods. As a

result, methods that rank highly on scalability while also performing well on

other aspects (e.g. SPARSim, scDesign and Splat) may be more favourable than

other methods under these scenarios. We also note that due to the primary

intended purpose of each method, not all methods allow users to customise

the number of cell groups and the amount of differential expression between

groups. Method that offers a well-rounded approach across multiple aspects of

interests is therefore a direction of future research.

While we aim to provide a comprehensive assessment of available simulation

methods, our study is not without limitations. For example, a few methods

were excluded in this study due to their unique properties. SERGIO (Dibaeinia

and Sinha, 2020) is able to simulate regulation of genes by transcriptional fac-

tors, and therefore requires gene regulatory networks as one of the inputs.

Both PROSSTT (Papadopoulos et al., 2019) and dyngen (Cannoodt et al., 2021)

are designed to simulate scRNA-seq data with trajectory information and re-

quire user-defined lineage trees. Lun (Lun and Marioni, 2017) was originally

designed to tackle confounding plate effects in DE analysis and it requires plate

information to be specified in the input. These simulation methods may need

special considerations and evaluation criteria that could not be captured by the

general framework in this study. Although the choice of DE detection meth-
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ods could affect the evaluation of the simulation methods, our evaluation using

both limma, a DE method originally designed for bulk RNA-seq data, and

DEsingle, a DE method specifically designed for scRNA-seq data demonstrate

a high agreement of the rankings of simulation methods based on the two DE

methods (Figure 3.2b).

In conclusion, we have illustrated the usefulness of our framework by sum-

marising each method’s performance across different aspects to assist with

method selection for users and identify areas of further improvement for method

developers. We advise users to select the method that offers the functionality

best suited to their purpose and developers to address the limitations of current

methods.

The evaluation framework has been made publicly available as the R package

SimBench (https://github.com/SydneyBioX/SimBench). SimBench allows any

new simulation methods to be readily assessed under our framework. It re-

quires two inputs including the simulated data generated by any simulation

method and the real data that was used as the reference input to generate the

simulated data. SimBench then runs the evaluation procedure as performed

in this study. We also provide all datasets used in this study as a Bioconduc-

tor data package SimBenchData (https://bioconductor.org/packages/devel/

data/experiment/html/SimBenchData.html). Together these two packages en-

able future simulation methods to be assessed and compared with the methods

benchmarked in this study.

Additionally, we provide a Shiny application for interactively exploring the

results presented in this study hosted at http://shiny.maths.usyd.edu.au/.

The application allows users to select datasets of their interest, such as within

a certain range of cell numbers, and examine methods performance based on

the specified datasets. Furthermore, we will provide updates to the website

to include the benchmark results from new simulation methods when they

become available so that our comparative study will stay up-to-date and will

support future method development.

https://github.com/SydneyBioX/SimBench
https://bioconductor.org/packages/devel/data/experiment/html/SimBenchData.html
https://bioconductor.org/packages/devel/data/experiment/html/SimBenchData.html
http://shiny.maths.usyd.edu.au/
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Table 1: scRNA-seq simulation methods evaluated in this study.
Methods Year of

publi-
cation

Approach Estimate from
multiple cell
groups

Simulate multi-
ple cell groups

Customise
DE ex-
pres-
siona

Assign
gene
name
to gen-
erated
data

Primary pur-
pose as general
simulation?

scDD
(Ko-
rthauer
et al.,
2016)

2016 Dirichlet pro-
cess mixture of
normals

Restricted to
two groups

Restricted to
two groups

Yes No No, used for
generating
differentially
distributed
genes defined
in the scDD
study and
evaluating the
scDD frame-
work

Splat
(Zappia
et al.,
2017)

2017 Gamma dis-
tribution for
modelling mean
expression; Pois-
son distribution
for modelling
count

No, requires a
homogenous
population (e.g.
one cell type)

Yes, can simu-
late any num-
ber of groups

Yes No Yes

powsimR
(Vieth
et al.,
2017)

2017 Negative bino-
mial or zero-
inflated negative
binomial model

No, requires a
homogenous
population (i.e.
one cell type)

Restricted to
two groups

Yes Yes No, power
analysis tool for
single-cell and
bulk RNA-seq

SparseDC
(Lin et al.,
2020b)

2017 Optimisation
framework

Restricted to
two conditions
with multiple
cell groups
within each
condition

Restricted to
two conditions
with multiple
cell groups
within each
condition

Yes No No, used for
generating the
simulation data
for assessing
the perfor-
mance of the
SparseDC clus-
tering method

zingeR
(Van den
Berge
et al.,
2018)

2018 Negative bino-
mial model with
additive logistic
regression to ac-
count for zeros

Yes, can es-
timate from
any number of
groups

Yes, can simu-
late any num-
ber of groups

Yes No No, used for
generating sim-
ulation data for
assessing the
performance of
the zingeR DE
method

ZINB-
WaVE
(Risso
et al.,
2018)

2018 Zero-inflated
negative bino-
mial model

Yes, can es-
timate from
any number of
groups

Restricted to
the groups in
the input data

No No No, dimen-
sion reduction
method for
scRNA-seq

SymSim
(Zhang
et al.,
2019c)

2019 Kinetic model
using Markov
chain Monte
Carlo

No, requires a
homogenous
population (i.e.
one cell type)

Yes, can simu-
late any num-
ber of groups

Yes No Yes

scDesign
(Li and
Li, 2019)

2019b Gamma-normal
mixture model

Restricted to
one and two
groups

Restricted to
one and two
groups

Yes No No, power
analysis tool for
scRNA-seq

SPARSim
(Baruzzo
et al.,
2020)

2020 Gamma dis-
tribution for
modelling
expression;
multivariate
hypergeometric
distribution for
modelling tech-
nical variability

Yes, can es-
timate from
any number of
groups

Yes, can simu-
late any num-
ber of groups

Yes Yes Yes

SPsimSeq
(Assefa
et al.,
2020)

2020 Estimation of
probability dis-
tribution uses
fast log-linear
model-based
density estima-
tion method;
Gaussian-
copulas for
modelling
gene–gene corre-
lation

Yes, can es-
timate from
any number of
groups

Restricted to
the groups in
the input data

Yes Yes Yes

POWSC
(Su et al.,
2020)

2020 Mixture of zero-
inflated Poisson
for modelling in-
active transcrip-
tion; log-normal
Poisson for mod-
elling the active
transcription

Yes, can es-
timate from
any number of
groups

Restricted to
the groups in
the input data

Yes No No, power
analysis tool for
scRNA-seq

cscGAN
(Marouf
et al.,
2020)

2020 Generative
adversarial
network with
Wasserstein
distance

Yes, can es-
timate from
any number of
groups

Restricted to
the groups in
the input data

No Yes Yes
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Table 2: scRNA-seq simulation methods and their downstream applications as demon-
strated in their publication. We included both the benchmarked and non-
benchmarked methods for comprehensiveness.
DE gene detection DS gene detection Batch effect removal Data imputation Trajectory inference RNA velocity Gene regulatory network

SERGIO ✓ ✓ ✓

Splat ✓ ✓ ✓

SymSim ✓ ✓ ✓

PROSSTT ✓ ✓

ESCO ✓ ✓ ✓

POWSC ✓

SPARSim ✓ ✓

SPsimSeq ✓ ✓

muscat ✓ ✓

SCRIP ✓

BASiCs ✓

scDesign2 ✓

scDesign ✓

ZINB-WaVE ✓

hierarchicell ✓

powsimR ✓

dyngen ✓ ✓ ✓ ✓ ✓

scDD ✓

SparseDC ✓

cscGAN ✓



4
S C F E AT U R E S : M U LT I - V I E W R E P R E S E N TAT I O N S O F

S I N G L E - C E L L A N D S PAT I A L D ATA F O R D I S E A S E

O U T C O M E P R E D I C T I O N

Precision medicine is concerned with the analysis of the differences amongst

patients, in which the patient is the unit of interest. With the recent surge of

large-cohort scale single-cell research, it is of critical importance that analyt-

ical methods can fully utilize the comprehensive characterization of cellular

systems that single-cell technologies produce to provide insights into samples

from individuals. However, currently there is little consensus of the best ways

to compress information from the complex data structures of these technologies

to summary statistics that represent each sample (e.g. individuals).

In this chapter, we contribute to the field by developing scFeatures, an approach

that creates interpretable cellular and molecular representations of single-cell

and spatial data at the sample level (Cao et al., 2022b). scFeatures generates

features across six categories representing different molecular views of cellular

characteristics. These include i) cell type proportions, ii) cell type specific gene

expressions, iii) cell type specific pathway expressions, iv) cell type specific

cell-cell interaction (CCI) scores, v) overall aggregated gene expressions and vi)

spatial metrics.

This chapter demonstrates that the different types of features constructed en-

able a more comprehensive multi-view representation of the expression data.

In addition, summarising a broad collection of features at the sample level is

both important for understanding underlying disease mechanisms in different

experimental studies and for accurately classifying disease status of individu-

als.

71
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scFeatures is publicly available as an R package at https://github.com/SydneyBioX/

scFeatures.

4.1 introduction

Recent single-cell or near single-cell resolution omics technologies such as spa-

tial transcriptomics enable the discovery of cell- and cell type specific knowl-

edge and have transformed our understanding of biological systems, including

diseases (Longo et al., 2021). Key to the exploration of such data is the ability

to untangle and extract useful information from their high feature dimensions

(Yang et al., 2021) and uncover hidden insights. A plethora of computational

methods has been developed on this front, with the main focus on individual

cell analysis (Stegle et al., 2015), such as cell type identity (Abdelaal et al., 2019;

Kim et al., 2021) and pseudotime ordering within a lineage (Saelens et al., 2019).

While these tools enable characterisation of individual cells, there is a lack of

tools that allow for the representation of individual samples based on their cel-

lular characteristics and the investigation of how these cellular properties are

driving disease outcomes. With the recent surge of multi-condition and multi-

sample single-cell studies on large sample cohort (Lin et al., 2020a), the next

frontier of research is on representing and characterising cellular properties at

the sample (e.g. individual patient) level for linking such information with the

disease outcome.

Creating a representation of each sample from the collection of sequenced cells

is a crucial step for subsequent analysis as successful modelling and interpreta-

tion of disease outcome requires biologically relevant learning features from the

data. While using the original expression matrix as the input to various models

could inform the change in transcriptomics level across disease conditions, the

ability to represent the data with other layers of information is critical for uncov-

ering additional insights given the complex and nonlinear relationships among

the feature dimensions (e.g. interaction of genes, gene networks and pathways).

The single-cell field has a wealth of tools for data exploration (Wu and Zhang,

https://github.com/SydneyBioX/scFeatures.
https://github.com/SydneyBioX/scFeatures.


4.1 introduction 73

2020) which enables exploration of biology underlying the individuals. Most

current tools are not specifically designed to derive a set of features that can

be used to represent an individual. Yet, with careful adaptation, a number of

approaches can be used to construct novel molecular representations of indi-

vidual samples. Cell-cell interactions tools (Armingol et al., 2020), for example,

calculate cell type specific signalling scores between pairs of ligand and recep-

tor molecules. The interaction scores can be used to represent the intercellular

communications of cells and cell types in a sample. Another example is gene

set enrichment analysis (Maleki et al., 2020) which infers the pathway enrich-

ment score of individual cells. By summarising the scores across cell types, a

cell type specific representation of the pathway enrichment of each sample can

be constructed. Our previous publication (Cao et al., 2019) is another motivat-

ing example that demonstrates cell type proportion can be used to represent

samples for distinguishing between disease conditions.

To this end, we develop scFeatures, a tool that generates a large collection of

interpretable molecular representations for individual samples in single-cell

omics data, which can be readily used by any machine learning algorithms

to perform disease outcome prediction and drive biological discovery. Together,

scFeatures generates features across six categories representing different molec-

ular views of cellular characteristics. These include i) cell type proportions, ii)

cell type specific gene expressions, iii) cell type specific pathway expressions,

iv) cell type specific cell-cell interaction (CCI) scores, v) overall aggregated gene

expressions and vi) spatial metrics. The different types of features constructed

thereby enables a multi-view of our data and enables a more comprehensive

representation of the expression data. Based on the generated features, scFea-

tures produces an HTML report containing visual summaries of features most

associated with conditions. In a collection of 17 published single-cell RNA-seq,

single-cell spatial proteomics and spatial transcriptomics datasets, scFeatures

reveal different feature classes are useful for predicting the disease outcomes

in different datasets. Furthermore, through examining the selected features in

two case studies, scFeatures uncovers cell types important to ulcerative colitis

and stratified individuals with distinct survival outcomes in a triple negative
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breast cancer dataset. Together, these results demonstrate that scFeature en-

ables a data-driven generation (or feature engineering) and facilitate unbiased

identification of feature classes most perturbed by the disease conditions.

4.2 scfeatures framework

4.2.1 Data collection and processing

4.2.1.1 scRNA-seq

To demonstrate scFeatures on scRNA-seq data, we collected data from four

published studies and curated a total of 15 datasets from the studies. The data

are described in detail below:

Six Ulcerative Colitis datasets: The UC data Smillie et al. (2019) sequenced

healthy control, inflamed and non-inflamed colon biopsies from multiple in-

dividuals. The data was retrieved from Single Cell Portal with accession ID

SCP259. We subset the data into epithelial, stromal cells and immune subset

according to the original publication, resulting in the following 6 datasets:

• UC healthy vs non-inflamed (Epi)

• UC healthy vs non-inflamed (Fib)

• UC healthy vs non-inflamed (Imm)

• UC inflamed vs non-inflamed (Epi)

• UC inflamed vs non-inflamed (Fib)

• UC inflamed vs non-inflamed (Imm)

where Epi stands for epithelial, Fib stands for stromal and Imm stands for

immune subsets. Inflamed, non-inflamed and healthy are conditions of interest.

Six Lung datasets: The lung data (Adams et al., 2020) sequenced healthy control,

idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease

(COPD) biopsies from multiple individuals. The data was retrieved from Gene
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Expression Omnibus (GEO) with accession ID GSE136831. We subset the data

into epithelial, stromal cells and immune subset according to the original pub-

lication, resulting in the following datasets:

• Lung healthy vs IPF (Epi)

• Lung healthy vs IPF (Fib)

• Lung healthy vs IPF (Imm)

• Lung healthy vs COPD (Epi)

• Lung healthy vs COPD (Fib)

• Lung healthy vs COPD (Imm)

where healthy, IPF and COPD are conditions of interest.

Two melanoma data (Sade-Feldman et al., 2019) sequenced immune cells from

tumour biopsies of melanoma patients prior to and after treatment with im-

mune checkpoint therapy. The data was retrieved from GEO with accession ID

GSE120575. We subset the data into pre-treatment and post-treatment datasets.

The conditions of interest in both datasets are non-responding and responding.

The COVID dataset (Schulte-Schrepping et al., 2020a) sequenced peripheral

blood mononuclear cells (PBMC) from COVID-19 individuals. The data was

retrieved from European Genome-phenome Archive (EGA) with accession ID

EGAS00001004571. We subset the original data into mild and severe individuals

and consider the mild and severe disease stage as the conditions of interest.

4.2.1.2 Spatial proteomics

The triple negative breast cancer dataset (Keren et al., 2019) measured the pa-

tient’s protein expression using MIBI-TOF (multiplexed ion beam imaging by

time of flight) technology. Data was obtained from https://mibi-share.ionpath.

com.

https://mibi-share.ionpath.com.
https://mibi-share.ionpath.com.
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4.2.1.3 Spatial transcriptomics

The amyotrophic lateral sclerosis dataset (Maniatis et al., 2019) sequenced lum-

bar spinal cord tissue of ALS and control mouse at varying time points using

the spatial transcriptomics technology. The data was retrieved from GEO with

accession ID GSE120374. We used the subset of data sequenced at the disease

onset time point.

4.2.2 Implementation of feature types

We generated 17 feature types that can be broadly categorised into six cate-

gories: i) cell type proportions, ii) cell type specific gene expressions, iii) cell

type specific pathway expressions, iv) cell type specific CCI scores, v) overall

aggregated gene expressions and vi) spatial metrics. All feature types except

for the overall aggregated gene expressions category have different implemen-

tations for scRNA-seq and spatial data to better leverage the characteristics of

different data types and the implementation details are described in Table B1.

For spot-based spatial transcriptomics, we performed the following additional

processing in order to allow certain feature classes to be applicable. First, since

the cell type specific feature categories require cell type information while the

spot in spot-based data contains a mixed population of multiple cells, we used

Seurat’s TransferData function to predict the cell type probability of each spot.

A published scRNA-seq data on mouse spinal cord with cell type labels was

used as the reference (Sathyamurthy et al., 2018). Then, given that each spot

contains an unknown number of cells which vary across each spot, we weighted

the contribution of each spot to the generated features by the relative number

of cells it contains. We used library size as an estimate of the relative number of

cells, motivated by a study that found a high correlation between the number

of cells and library size of spots (Saiselet et al., 2020). To calculate the relative

number of cells, we binned the log2 transformed total library size of cells into

100 bins, and assigned each spot a relative number of cells ranging between 1

to 100 according to its bin. The cell type probability of each spot together with
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the relative number of cells were used in the implementation of feature types

for spatial transcriptomics.

4.2.3 Correlation between features and feature classes

Given scFeatures constructs a standard matrix of samples by features, we can

readily compute the Pearson’s correlation between individual features as shown

in Figure B2. We subsampled 100 features from feature types that have more

than 100 features to avoid the correlation plot being dominated by feature types

with greater number of features.

To summarise the correlation between pairs of feature types, the following ap-

proach was taken. First, we calculated the Pearson’s correlation between all

features from a pair of feature types, such as proportion raw and gene mean

celltype. This is repeated for each pairwise combination of feature types for

each dataset. Then we subsampled 1000 values from the correlation values to

reduce the computational burden of plotting. For ease of visual interpretation,

the absolute values of the correlation values were taken.

These correlation values were further summarised by taking the average corre-

lation values, followed by hierarchical clustering to cluster the feature types.

4.2.4 Classification and survival analysis using generated features

In scFeatures, we provide functionality to perform classification and survival

analysis for the convenience of users. The classification function is a wrapper

around a classification package classifyR (Strbenac et al., 2015) that was pub-

lished by our group earlier. By default, we use a random forest model, set the

number of folds to three, perform 20 cross-validation and calculate F1-score.

classifyR has an in-built feature selection function. We used the default setting

that uses the feature selected from the random forest model built on the train-

ing set to evaluate on the test set. These were also the settings used to report

the classification performance in this study and can be specified by the user.
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The only exception being that 100 cross-validation was performed to obtain a

more stable feature importance score for the case study on the "UC healthy vs

non-inflamed (Fib)" dataset.

For survival analysis, we use a cox proportional-hazards model provided in the

rms R package. By default, we set the number of folds to three, perform 20 cross-

validation and calculate C-index. Note that as the cox model is not designed to

take in a large number of features at once, unlike a typical classification model,

we input one feature from the generated feature class at a time for building

the cox model. The best C-index is reported as the performance for the feature

class.

4.2.5 Complementarity of the generated features

To explore the complementarity of the generated features, we compared the

classification accuracy of using features from individual feature types with us-

ing the combination of features from all feature types. In detail, we used the

classification model described above, which is trained on all feature space to

derive the feature importance. We then identified the top 8 features from each

feature type and combined them into the "combined feature set". This set con-

tains 96 features (8 features x 12 feature types) for the ALS dataset and 104

features (8 features x 13 feature types) for the other 15 datasets. The triple nega-

tive breast cancer dataset was excluded from this analysis as Cox proportional-

hazards model is not designed to take in a large number of features at once.

For fair comparison with the individual feature type, we used the top 100 fea-

tures from each individual feature type. For feature types with less than 100

features, i.e., "proportion raw” and “proportion logit", we used all features. We

used the random forest model, set the number of folds to three, performed 50

cross-validation and recorded the F1 score.
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4.2.6 Feature importance score

The runTests function in ClassifyR outputs the features selected by the classi-

fication model. Since repeated cross-validation was performed, this generated

one set of included features for each cross-validation process. Based on all the

derived sets, the frequency of inclusion was considered as the feature impor-

tance score of each feature.

For the cell type specific feature category, given that each feature is associated

with a cell type, it is also of interest to aggregate the feature importance score

associated with each cell type. We approached by summing the feature im-

portance score of all features associated with a cell type, then dividing by the

number of features constructed for that particular cell type to adjust for the dif-

ference in the number of features per cell type. The final score was considered

as the feature importance score of each cell type.

4.2.7 Speed and memory usage

To benchmark the scalability of the 17 features classes, we used the UC inflamed

vs non-inflamed (Imm) dataset and took random samples to construct datasets

with 1000, 2000, 3000, 5000, 10000, 20000, 30000, 50000, 70000 and 100000 cells.

Each dataset contains the same 15 individuals and the same 15 cell types.

For the purpose of evaluating the features classes designed for spot-based data

which require each spot to be associated with a cell type probability vector, we

treated each cell as a "spot" and randomly created a cell type probability vector

for each cell. Similarly, for the purpose of evaluating the feature classes under

the category spatial metrics which require spatial coordinates of each cell, we

randomly assigned a pair of x and y-coordinates to each cell. In addition, the

cell type probability and number of cells in each spot was randomly generated

to represent such data.
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Runtime was measured using the built-in Sys.time function in R. Memory was

measured by recording the peak resident set size, which measures the peak

amount of memory that a process consumes across all cores. All code was run

in parallel using 8 cores for three times and the average measurements were

taken. All processes were carried out using a research server with dual Intel(R)

Xeon(R) Gold 6148 Processor with 40 cores and 768 GB of memory.

4.2.8 Data availability

All data used in this study are publicly available. The accession links are re-

ported in previous sections.

4.2.9 Code availability

scFeatures is publicly available as an R package at https://github.com/SydneyBioX/

scFeatures.

4.3 results

4.3.1 scFeatures performs multi-view feature engineering for single-cell and spot-

based data

We propose scFeatures, a new multi-view feature engineering framework that

creates an interpretable representation of cellular level features for each indi-

vidual sample from a given single-cell or spot-based expression dataset (Figure

4.1a). To capture the wide range of cellular information for sample classifica-

tion (e.g., diseased versus healthy individuals) using single-cell data, we imple-

mented an extensive collection of algorithms to extract over 50,000 interpretable

features from a given dataset. These features, spanning a total of 17 types, are

motivated by established analytical approaches in a broad range single-cell lit-

erature and can be broadly grouped into six distinct categories including i) cell

https://github.com/SydneyBioX/scFeatures
https://github.com/SydneyBioX/scFeatures
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type proportions, ii) cell type specific gene expressions, iii) cell type specific

pathway expressions, iv) cell type specific CCI scores, v) overall aggregated

gene expressions and vi) spatial metrics (Figure 4.1b). These collections of con-

structed features can then be used for various downstream analysis such as

disease outcome prediction, biomarker selection, survival analysis and enable

the identification of interpretable features and feature types associated with

disease conditions.

Figure 4.1: Overview of scFeatures. (a) The input for scFeatures is an omics dataset con-

taining multiple samples such as individuals and cell type labels. scFeatures

extracts different views of the data, thereby transforming the gene by cell

matrix into a vector of features for each sample. (b) scFeatures constructs

17 feature types that can be broadly classified into six categories. Each fea-

ture type consists of multiple individual features. For example, for "gene

mean celltype", 100 features are generated by default per cell type (nct) per

sample (ns) (see "scFeatures framework"). Examples of feature names from

each feature type are given to illustrate the data format.

The six feature categories represent different "views" of the single-cell informa-

tion. Specifically, category I captures cell type proportion information in which

the proportion of cell types for each sample and the ratio of proportions be-

tween two cell types are measured. Category II represents cell type specific

gene expression, and examines the expression of sets of genes or proteins in

each cell type. We implemented different approaches for representing genes
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or proteins measurement, including average expression, proportion of expres-

sion and correlation of expressions. In category III, which calculates cell type

specific pathway scores, by default the 50 hallmark pathways in the Molecular

Signatures Database (MSigDB) (Liberzon et al., 2015; Subramanian et al., 2005)

were used to generate various features such as the average expression of each

pathway in each cell type. Category IV contains the CCI scores, measuring

the probability of ligand-receptor interaction based on the expression values of

each sample. Category V is designed to recreate the bulk expression through

aggregating the expression across cells or spots depending on the data types.

Category VI is designed specifically for spatial data type for capturing spatial

information and includes classical metrics for identifying spatial patterns. For

all feature categories except category V, the values are summarised at per cell

type level, for example, feature x cell type a and feature y cell type b, which

then forms the vector of molecular representation containing over 50,000 fea-

tures for each sample. The implementation details can be found in Table B1.

scFeatures extracts interpretable features from data generated by scRNA-seq,

spatial proteomics, and spatial transcriptomics (Table B1). In particular, spatial

transcriptomics data, a spot-based technique in which the expression value of

each spot is based on a small population of cells, often contains cells from

multiple cell types in each spot. We developed several novel ways to adapt

the 13 feature types to spot-based data whenever possible; this collection of

spatial metrics takes the properties of spot-based technology into consideration

and reveals cell type specific features in spot-based data. For example, spot-

based data precludes direct application of cell type proportion computation

since each spot includes an unknown number of cells while cell type percentage

estimation requires individual cell counts for each cell type. To overcome this

issue, we estimated the number of cells in each spot using the library size

of that location, based on the association between the two values. Table B1

provides more documentation on the implementation details on the adaptation

of feature types from single cell RNA-sequencing to spot-based technologies.
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4.3.2 scFeatures generates large collection of diverse features and is scalable to large

datasets

To demonstrate the characteristics of the feature representation, we applied

scFeatures to 17 datasets measured using scRNA-seq, spatial proteomics and

spatial transcriptomics data (Table B2). For a typical scRNA-seq data, scFea-

tures generated over 50,000 features (Figure 4.2a). As expected, the number of

features generated were mostly associated with the number of cell types in the

dataset and not other data characteristics of number of genes and number of

cells (Figure B1).

To explore the diversity of the features generated from scFeatures, we first exam-

ined the correlation between the features across 17 datasets (Figure 4.2a, Figure

B2). By summarising the correlation values between every pairwise combina-

tion of feature types (Figure B3), we observed that overall the feature types

were poorly correlated, with the median correlation ranging from 0.1 to 0.3

(Figure 4.2b). Hierarchical clustering of the correlations revealed that the higher

correlation was observed between certain feature types from the same feature

category (Figure 4.2c-d). For example, the "gene mean aggregated" and "gene

proportion aggregated" from the aggregated gene expression category had high

correlation within each of the feature types and between the feature types pair.

This is consistent with our expectation of some degree of co-expression linked

with disease conditions.

To further examine the complementarity of the feature types, we compared the

performance of individual feature types with the combination of features across

feature types (Figure B4). The ability to accurately classify disease outcomes

was used as the evaluation metric (see "scFeatures framework"). We found the

combination of features in general performed better than most of the individual

feature types and achieved the best classification performance in 11 out of the

16 datasets, suggesting the complementarity of the feature types.

We next benchmarked the runtime and memory requirements of the feature

types on single-cell scRNA-seq (Figure B5a), spatial proteomics (Figure B5b), as
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well as spot-based spatial transcriptomics datasets (Figure B5c) for evaluating

both the single-cell RNA-sequencing implementation and the spot-based im-

plementation. All datasets contain 1,000 to 100,000 cells. On the largest datasets

with 100,000 cells, the majority of feature types took less than a minute to com-

pute when executed on eight cores, demonstrating that scFeatures is highly

scalable to large datasets. As expected, there was some trade-off between pro-

cessing time and memory. As a result of parallel computation over eight cores,

some feature types required more than 10GB of RAM in total; however, users

can run on a single core to reduce the memory requirement.

We next benchmarked the runtime and memory requirement of the feature

types on single-cell scRNA-seq (Figure B4a), spatial proteomics (Figure B4b),

as well as on spot-based spatial transcriptomics datasets (Figure B4c) for eval-

uating both the single-cell RNA-sequencing implementation and the spot-based

implementation. All datasets contain 1,000 to 100,000 cells. On the largest datasets

with 100,000 cells, the majority of feature types took less than a minute to com-

pute when executed on eight cores, demonstrating that scFeatures is highly

scalable to large datasets. As expected, there was some trade-off between pro-

cessing time and memory. As a result of parallel computation over eight cores,

some feature types required more than 10GB of RAM in total; however, users

can run on a single core to decrease the memory required.

4.3.3 The most informative features classes differ between different datasets

We hypothesised that distinct feature classes would be informative for differ-

ent datasets since each dataset comprises samples with varying characteristics

and disease outcomes. Several datasets were used where each feature type was

evaluated on their ability to predict disease outcomes and the observations are

in alignment with our hypothesis. First, we used a lung disease dataset collec-

tion where the cells were split into the epithelial, immune and fibroblast subset

and the outcome of interest was to classify the individuals into healthy or idio-

pathic pulmonary fibrosis (IPF). In Figure 4.3a, we visualised the classification
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Figure 4.2: Characteristics of the features generated by scFeatures. (a) Compositional

barchart showing the number of features generated by scFeatures for each

dataset. Datasets are first ordered by data types, and then by the number

of cell types. (b) Correlation plot showing Pearson’s correlation of features

on the "Lung healthy vs IPF (Epi)" dataset as a representative example. The

features are colour labelled by feature types for ease of interpretation. (c)

Boxplots summarising the correlation between pairs of features across all

datasets (see "scFeatures framework"). Texts highlight the 10 most and 10

least correlated feature types pairs, coloured according to their feature cate-

gory. (d) Hierarchical clustering of the average correlation between feature

types. Heatmap is colour labelled by feature category for ease of interpreta-

tion.

performance of the feature types on the three subsets and ordered the feature

types according to their performance in the epithelial subsets. This reveals that

feature types related to cell type proportions (i.e., "proportion ratio", "propor-

tion logit" and "proportion raw") achieved the highest accuracy in the epithelial

subset (Figure 4.3a). In contrast, the performance of feature types on the im-

mune and fibroblast subset clearly does not follow the same trend as on the
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epithelial subset, demonstrating that different feature types are useful to the

three datasets.

Similar observation is also found in the melanoma pre-treatment dataset and

melanoma post-treatment dataset where the question of interest is classifying

non-responders and responders. Figure 4.3b illustrates that proportion features

(i.e., "proportion raw" and "proportion logit") more accurately classified individ-

uals in the post-treatment dataset than in the pre-treatment dataset, while path-

way features (i.e, "pathway gsva" and "pathway proportion") provided higher

classification accuracy for pre-treated individuals.

Figure 4.3: Performance of feature types on patient outcomes. (a) shows the epithe-

lial, fibroblast and immune subsets of healthy and IPF individuals, where

the outcome of interest is classifying healthy and IPF status. The feature

types are ordered by their F1 scores on the epithelial subset. (b) shows

pre-treatment and post-treatment melanoma patients, where the outcome

of interest is classifying therapy responders and non-responders. The fea-

ture types are ordered by the difference of the F1 scores between the two

datasets. (c) For each of the 17 datasets, the squares denote the top five fea-

ture types with the highest F1 scores.

We then examined across 17 datasets (Figure B6) and highlighted the five infor-

mative feature types for each dataset (Figure 4.3c) for a more comprehensive as-

sessment of the performance of the feature types. Across the 17 datasets tested,

"gene mean celltype", which examines expression in cell type specific manner,

occurred in 10 datasets as the top five informative feature types. This is perhaps

not surprising, as it elucidates the power of single-cell technology to profile the
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cell type specific expression to uncover changes in response to diseases. Across

the spatial datasets, we saw feature types in the spatial feature category appear-

ing as the top five informative feature types, indicating the effectiveness of this

category to capture spatial information and the potential of spatial data modal-

ity offering complementary information. All together, these findings highlight

that different feature types are useful for exploring disease mechanisms in dif-

ferent datasets and even in different subsets of the same dataset, as seen by the

pre- and post-treatment melanoma datasets and the lung disease dataset subset

by cell types, and argue for the need for a diverse compendium of feature types

for such analyses.

4.3.4 scFeatures provides interpretable insight into disease outcome from scRNA-seq

data

To illustrate that scFeatures provides interpretable features for the understand-

ing of diseases, we applied scFeatures to the "UC healthy vs non - inflamed

(Fib)" dataset (Smillie et al., 2019). This scRNA-seq dataset compares fibrob-

last cells of non-inflamed biopsies from ulcerative colitis (UC) individuals with

biopsies from healthy individuals. We focused on the two top performing fea-

ture types of "gene mean celltype" and "proportion raw" based on the classifica-

tion model performance from the previous section (Figure 4.3c) and discovered

different sets of cell types were important to the two feature types. In partic-

ular, for the feature type based on cell type specific gene expression (denoted

by "gene mean celltype"), the fourth-ranked cell type according to feature im-

portance score (see "scFeatures framework") was WNT5B+ 2 (Figure 4.4a). This

cell type was ranked as the 11th cell type in terms of the differences in cell type

proportion (denoted by "proportion raw") (Figure B7), indicating that while the

gene expression was different between disease outcomes, the proportion of cell

types was similar. In contrast, glia was ranked first in terms of gene expres-

sion and second in terms of cell type proportion. These two feature types offer

different perspectives from the same data and reveal distinct collections of cell

types where one group is more concerned with changes in expression and the
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other collection is more concerned with changes in proportion. It would have

been challenging or impossible to accurately disentangle the contributions of

cell type percentage and cell specific gene expression in classical bulk gene

expression data. These observations not only highlight the necessity of single-

cell research, but also emphasize the importance of evaluating various feature

types, as generated by scFeatures.

Figure 4.4: Selected features generated on the "UC healthy vs non - inflamed (Fib)"

dataset and the "triple negative breast cancer" datasets. (a) Scatterplot of

cell type rank for the feature type "cell type proportion" and "gene mean

celltype". (b) Heatmap showing the clustering result using the nearest neigh-

bour correlation. (c) Kaplan-Meier plot of individuals stratified by the clus-

tering output (top) and stratified by patient groups defined in the original

study (bottom).
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4.3.5 scFeatures uncovers data features associated with survival outcome from spatial

proteomics

To demonstrate the utility of scFeatures at extracting spatial information, we

applied scFeatures to a spatial proteomics dataset of tumours from triple neg-

ative breast cancer individuals. The question of interest is classifying tumours

based on cellular organisation into distinct types that are associated with pa-

tient survival. The original study defined three tumour groups based on mixing

scores, where a "cold group" is identified by low immune infiltrate, a "compart-

mentalised group" is identified by compartments formed by almost entirely of

either tumour or immune cells, and a "mixed group" is when there is no clear

boundary separating the tumour and immune cells.

The nearest neighbour correlation is a feature type in scFeatures that was cre-

ated primarily to capture spatial co-expression patterns. It computes the corre-

lation of a cell’s protein expression with that of its nearest neighbour. Therefore,

spatial organisation of cells, such as whether tumour cells are next to immune

cells would affect the correlation of protein expression of cells with neighbour-

ing cells. To construct this feature type, we used scFeatures on selected "triple

negative breast cancer" samples from the dataset and clustered the resulting

features (Figure 4.4b). Survival analysis using the Kaplan-Meier Curve revealed

differences between survival outcomes of individuals from the two clusters (P-

value of 0.07, Figure 4.4c), compared to the patient group defined in the orig-

inal study with P-value of 0.22. This suggests that the new patient subgroup

found by scFeatures has greater association with the survival outcomes and

demonstrates the ability of the spatial feature category at representing spatial

organisations and uncovering novel patterns in the data.
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4.3.6 scFeatures automatically generates an HTML file that report features most as-

sociated with conditions to facilitate interpretable discoveries

One of the commonly investigated questions by researchers is what features

are most associated with disease conditions. scFeatures implemented a function

that takes generated features as input and automatically performs a series of

association studies for each feature type, producing an HTML report as the out-

put. An example of a comphrensivie HTML report can be found in our Github

(https://github.com/SydneyBioX/scFeatures). The HTML report includes a

variety of visual summaries to aid the downstream interpretations of features

(Supplementary notes B3). Here, we used the "COVID" dataset to identify fea-

turess associated with disease severity and illustrate a selected panel of visual

summaries (Figure 4.5). The composition plot visualised the features from "cell

type proportion raw" (Figure 4.5a) and revealed that many cell types underwent

drastic change between mild and severe conditions. The pathway enrichment

plots (Figure 4.5b) summarised that, in the rare cell type plasmablasts, genes

associated with severe condition were enriched in immune pathways. Heatmap

is used to visualise difference between conditions that can be expressed nu-

merically. The heatmap on feature type "CCI" revealed that the cell cell interac-

tions in most pairs of cell types increased in severe patients compared to mild

patients (Figure 4.5c). Overall, the association study and visual summaries pro-

vided by the HTML facilitates a more focused exploration of features for further

analysis.

4.4 discussion

In summary, scFeatures creates a multi-view molecular representation of indi-

viduals by generating over tens of thousands of interpretable features based on

single-cell and spot-based spatial data. The innovation and motivation of scFea-

tures lie in the generation of various literature motivated and biologically rel-

evant feature vectors for phenotype disease modelling and disease prediction.

We have designed 17 feature types across six categories based on a broad range

https://github.com/SydneyBioX/scFeatures
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Figure 4.5: Selected visualisation summaries from the HTML report. The "COVID"

dataset containing mild and severe COVID-19 patients was used to show

a subset of visualisation summaries from the association analysis report. (a)

Composition plot of the "cell type proportion raw" features in mild and se-

vere patients. (b) Enriched pathways of the top 200 features associated with

the plasmoblasts of severe patients. Pathway enrichment in the left plot was

calculated based on features from "cell type specific mean expression". Path-

way enrichment in the right plot was calculated based on features from "cell

type specific mean proportion". Similar pathway terms were grouped by hi-

erarchical clustering. (c) Heatmap shows the difference in the number of

CCI features between mild and severe patients. Positive number indicates

more interactions in the mild patients and negative number indicates more

interactions in the severe patients.

of analytical approaches in literature from cell type specific gene expression

to measures of cell-cell (ligand-receptor co-expression) interaction and demon-

strated that the feature types are diverse with low correlation amongst them.

We illustrated scFeatures on scRNA-seq data from ulcerative colitis and discov-

ered a number of features linked with disease characteristics. scFeatures is also
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able to extract spatial features from a triple negative breast cancer proteomics

data, resulting in the stratification of tumours that are more strongly related

to survival outcomes than the original study’s subgroups. Through the auto-

matic report generation that highlight features most associated with disease,

scFeatures support ease of feature exploration.

The features vector generated by scFeatures can be used for a broader set of

downstream applications and is not limited to the ones illustrated in the case

studies. For example, given the features vectors are generated at the sample

level, this provides the opportunity for the exploration of differential patient re-

sponse to diseases due to heterogeneity between individuals. Even for individ-

uals recorded as responders to treatment, the extent of response and the change

at omics level varies between individuals. The feature vector can be subjected

to latent class analysis, which has typically been applied on single-cell level

for exploring cellular diversity (Cheng et al., 2019; Buettner et al., 2017), to en-

able detection of sub-populations in the cohort, as well as the biology driving

patient heterogeneity. Given that scFeatures creates a representation for each

patient, this also enables the integrative analysis of patients across multiple

datasets to increase the power of analysis and to expand the range of questions

that can be asked. Batch correction methods, such as scMerge (Lin et al., 2019)

and Harmony (Korsunsky et al., 2019), may be needed in this case to remove

the unwanted technical variation due to datasets.

The multiple feature representations generated by scFeatures can be considered

as multiple views of the data and as such leads naturally to multi-view learn-

ing. This is one of the many collections of methods that perform integration

across multiple features classes to enhance model performance. There exists a

number of approaches for data integration (Li et al., 2018), from the simple con-

catenation of features from all feature types into a single vector as the input, to

incorporating and optimising the procedure within the model training process.

While current multi-view learning in bioinformatics typically refers to the use

of multiple omics obtained from the same sample (Nguyen and Wang, 2020) ,
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we envisage the generation of multiple features types by scFeatures opens new

opportunities for multi-view learning for single omic type.

scFeatures is currently designed to perform feature engineering for single-cell

RNA-seq, spatial proteomics and spatial transcriptomics data, but the frame-

work is not limited to these platforms. Taking chromatin accessibility as an ex-

ample, a commonly used analysis strategy is assigning genes based on nearby

peaks, thereby converting the peak matrix to a matrix of gene activity scores

similar to gene expressions (Baek and Lee, 2020). Using this approach, all fea-

ture classes designed for scRNA-seq are then applicable to chromatin accessi-

bility data. In future, we plan to extend scFeatures to other single-cell omics

such as single-cell DNA methylation, single-cell chromatin accessibility and

single-cell genomics, leveraging the common analytical approach in these omics

and constructing specific feature classes. For chromatin accessibility, the co-

accessibility between pairs of peaks, which is used to predict cis-regulatory

interactions, can be constructed and stored as a vector for each sample. The

correlation values between transcription factors (TF) motifs can be readily con-

structed as another class of feature representation vector, and can be used to

identify the modules of TF motifs affected in disease state.

With the recent surge of cohort based single-cell studies and the number of

tools for characterising individual cells, there is an increased demand for defin-

ing samples in a study based on their cellular characterization to guide better

understanding of disease and health. Here, we present scFeatures, a tool that

provides a multi-view extraction of molecular features from single-cell and spot-

based spatial data to characterise cellular features of each individual. scFeatures

efficiently extracts collections of interpretable features from large-scale data and

derives biological insights in both scRNA-seq and spatial data. We envision that

scFeatures, a public R package available at https://github.com/SydneyBioX/

scFeatures, will facilitate better understanding of single-cell data from a sam-

ple (i.e. patient) perspective and the signatures underlying disease conditions

from different angles.

https://github.com/SydneyBioX/scFeatures
https://github.com/SydneyBioX/scFeatures
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5
T O WA R D S A B E N C H M A R K I N G S T U D Y O F E N S E M B L E

D E E P L E A R N I N G A N D S C F E AT U R E S W I T H C O V I D - 1 9

D ATA S E T S

5.1 introduction

Since the outbreak of COVID-19 at the start of 2020, the world has been thrown

into chaos. Two and a half years later, at the time of this thesis, new strains

are still fast-evolving, impacting the global population (Cao et al., 2022a). Many

research efforts globally in all disciplines have been initiated to respond to this

threat and on this front, single-cell technology is one of the technologies actively

used to understand the molecular mechanism behind the differential response

of COVID-19 (Garg et al., 2021).

One of the challenges associated with the exploration of COVID-19 single-

cell data is the analytical choices for such large-scale multi-sample and multi-

condition cohort studies. Currently, there is little consensus on the best ways to

compress information from the complex single-cell data structures to summary

statistics that represent each sample and to apply machine learning techniques

for downstream analysis. In the previous chapters of the thesis, we developed

a number of frameworks towards precision medicine in the single-cell field. In

this chapter, we further use these frameworks to illustrate a framework towards

benchmarking data workflow for handling multi-sample and multi-condition

cohort data using a collection of single-cell RNA-seq COVID-19 datasets. In

particular, we construct molecular representations of each patient sample using

scFeatures developed in Chapter 4 and implement different learning models

from classical machine learning to the more recent deep learning model, as

95
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well as different ensemble strategies surveyed in Chapter 2. Finally, through a

comparison framework (Chapter 3), we evaluate the combined impact of these

key data analytical steps (i.e., model choices, ensemble learning strategy and

integration strategy when using multiple datasets as the input) in disease out-

come prediction for COVID-19 patients.

5.2 designing a comparison framework

As highlighted in detail in Chapter 3, any benchmarking or comparison study

involves three key elements: (1) a collection of datasets that are used for the

evaluation, (2) evaluation strategy for comparing the methods and (3) evalua-

tion metric that quantify the performance. These are described in detail in the

following subsections.

5.2.1 Evaluation datasets collection

As the globe has been heavily impacted by COVID-19 for nearly three years,

COVID-19 data is perhaps one of the largest collections of multi-sample multi-

condition single-cell datasets. Therefore, to examine the data analytics strategy

for cohort analysis, we used five publicly available COVID-19 datasets con-

taining individuals with mild and severe disease progression (Figure 5.1a). All

datasets sequenced the peripheral blood mononuclear cells (PBMC) or whole

blood using scRNA-seq technology. The details of the datasets such as the num-

ber of individuals are provided in Table 1.

5.2.2 Evaluation strategies

The comparison study aims to examine the impact of various analytical strate-

gies in performing patient disease outcome prediction. The evaluation is com-

posed of three key steps, (1) generating features to represent patients, (2) using

features as input into learning models and (3) comparing single-view and multi-
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Figure 5.1: Schematic of the benchmark workflow. (a) Five COVID-19 scRNA-seq

datasets containing mild and severe outcome patients were used in this

benchmark study. (b) We used scFeatures to generate 11 types of molecular

representations of each individuals (i.e., the patients). (c) We implemented

five models containing both deep learning and machine learning, as well as

three ensemble strategies. (d) The analytical strategies resulted in a total of

70 combinations for evaluating patient outcome prediction in each individ-

ual dataset. (e) We also evaluated the performance of analytical strategies

on the combined dataset. To combine the dataset, we implemented three in-

tegration strategies. We used the same base learning models and ensemble

strategies as shown in c. This resulted in another 280 combinations.

Table 1: Additional details of the scRNA-seq simulation methods evaluated in this
study.

Dataset
name

Reference Accession ID Number
of mild in-
dividuals

Number
of severe
individu-
als

Number
of mild
and severe
individu-
als

Number
of cells in
mild and
severe in-
dividuals

Combat Ahern
et al.
(2022)

EGAS00001005493 30 61 91 524,557

Ren Ren et al.
(2021)

GSE158055 68 87 155 872,663

Schulte-
schrepping

Schulte-
Schrepping
et al.
(2020b)

EGAS00001004571 44 51 95 212,023

Stephenson Stephenson
et al.
(2021)

E-MTAB-10026 58 32 90 493,685

Wilk Wilk et al.
(2021)

GSE174072 23 19 42 112, 589

Total 223 250 473 2,215,517
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view features. In step 1, we use our recently developed feature engineering tool,

scFeatures, to generate multi-view molecular representation of each individual

that can be used as input into downstream analytical models (Figure 5.1b). In

step 2, we survey and implement multiple learning platforms from classical

machine learning to modern deep learning methods (Figure 5.1c). In step 3, we

examine the difference in performance between using single-view feature space

versus multi-view feature space via implementing multiple ensemble strategies.

In summary, we examine a total of 70 workflow combinations from 11 feature

representations, five base models and three ensemble strategies (Table 2). Each

of these steps is described in more detail in the below subsections.

Table 2: Summary of the evaluation strategies.
Analytical step Analytical choice
Feature representa-
tion

(1) Proportion ratio, (2) Proportion raw, (3) Proportion logit, (4) Gene mean celltype,
(5) Gene proportion celltype, (6) Pathway gsva, (7) Pathway mean, (8) Pathway pro-
portion, (9) CCI, (10) Gene mean aggregated, (11) Gene proportion aggregated

Base learning model (1) KNN, (2) Lasso, (3) Random Forest, (4) SVM, (5) Neural network
Ensemble strategy (1) Concatenation, (2) Majority voting, (3) Stacking
Level of integration (A) Cell level integration, (B) Individual level integration with no normalisation, (C1)

Individual level integration with RUVg adjustment (using K = 5), (C2) Individual level
integration with RUVg adjustment (using K = 10)

5.2.2.1 Feature generation

We used scFeatures as described in Chapter 4 to generate the molecular rep-

resentation for each individual in each of the COVID-19 datasets. A total of

11 feature types from five feature categories were generated to reflect different

views of the molecular property and were used for downstream analysis. For

example, the feature types "proportion ratio", "proportion raw" and "proportion

logit" represent cell type proportions in a patient. We also included features rep-

resenting gene expression, pathway-level information and cell-cell interaction

(Table 2). Details regarding each of the feature types were discussed in Chapter

4.

5.2.2.2 Base model implementation

To examine the effect of learning models on patient prediction, we implemented

a selection of classical machine learning approaches and the more recent deep
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learning approach. These models served as the base models to model from the

training data set and evaluate on the testing data set.

For classical machine learning approach, we included a range of models in-

cluding KNN, Lasso, Random Forest and SVM with linear kernel using the

implementation in the Caret R package (Kuhn, 2008) version 6.0-93. Each fea-

ture type was used individually as the input to compare the performance of

each feature type. The severity (mild and severe) of the patients’ conditions

was used as the outcome variable. For Lasso which outputs the prediction in

terms of probability instead of discrete outcome, we used 0.5 as the threshold.

For the deep learning approach, we implemented a neural network structure

containing four fully connected layers. For each feature type, we used the same

network structure but varied the number of nodes in the layers depending on

the number of features in the feature type. In detail, the input layer had a

number of nodes equal to the number of features in the respective feature type.

The second layer and third contained different numbers of nodes depending on

the feature types. We describe the detailed implementation below:

• All feature types in the category "cell type proportions" contained less

than 100 features. For these feature types, we set both the first layer and

second layer to 20 nodes.

• All feature types in the category "cell type specific pathway expressions",

"overall aggregated gene expressions" and "cell-cell communications" con-

tained less than 1000 features. For these feature types, we set the first layer

to 500 nodes and the second layer to 100 nodes to reduce the dimension.

• All feature types in "cell type specific gene expression" contained less than

10000 features. To reduce the dimensions for these feature types, we set

the first layer to 1000 nodes and the second layer to 100 nodes.

These node settings were determined using a basic parameter search. The

number of nodes specified above was considered as "baseline". We then

explored four settings of: increasing the numbers of nodes in both layers,

increasing the number of nodes in one layer, decreasing the number of
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nodes both layer, decreasing the number of nodes in one layer. Details on

the number of nodes under each setting are outlined in Table C1. Given

we observe insignificant differences between the prediction accuracy of

these five settings (Figure C2), we chose the "baseline" node settings.

The number of nodes in the output layer was the same for all feature types,

with two nodes that output the probability of mild and severe conditions,

respectively. The condition with higher probability was considered the

predicted condition.

5.2.2.3 Ensemble strategy

scFeatures generates multiple feature types for a given patient, representing

different biological views. It is therefore of interest to combine the feature

types into "multi-view" representation and examine the impact on model per-

formance compared to using each of the feature types individual as "single-

view" representation. Here, we employed three types of ensemble strategies to

obtain a "multi-view" representation. The implementation of these strategies is

described in the following:

• Concatenation involved combining the features across all feature types

and using the concatenated result as the input. The implementation was

the same for both machine learning and deep learning models.

• In majority voting, we first obtained the predicted outcome from each of

the 11 feature types, resulting in 11 predictions of either mild or severe

for each patient. Then the outcome with the most votes was considered to

be the final predicted outcome for the patient. The implementation was

the same for both machine learning and deep learning models.

• Stacked ensemble involved a two step process. First, base learners were

trained on the feature space, this was then followed by a meta-learner that

was trained to best combine the individual base learners. The implemen-

tation was different for machine learning and deep learning models:
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– For machine learning models, base learners were trained and evalu-

ated on each of the individual feature types, resulting in 11 predic-

tions for each patient. The predictions were then used as the input

to build a logistic regression model. The logistic regression model

served as the meta-learner that combined the base learners and pro-

duced the final predicted outcome.

– For deep learning models, we implemented a network (Figure 5.1)

containing 11 subnetworks that took each of the 11 feature types as

input. The subnetwork performed feature extraction for each of the

feature types individually. We used the same network structure as

the network described in the previous section that was used for ex-

tracting features from each feature type individually. The extracted

features from each feature type were then concatenated, resulting in

a vector of 860 features for each individual. This feature vector was

then passed through a subsequent fully connected layer containing

50 nodes, followed by the output layer containing two nodes to pro-

duce the final prediction.

5.2.2.4 Integration strategy

We examine different levels of integration. integration approaches to examine

the optimal choice for predicting patient states when multiple datasets need

to be combined and used as a whole in building a prediction model. The ap-

proaches are described in the following:

• Cell level integration - this approach refers to integration on count matrix:

We used scMerge2 (personal communication) to perform data integration

on the scRNA-seq count matrix. We then generated the patient represen-

tation using scFeatures on the integrated count matrix and used this as

input for learning model.

• Individual level integration with no adjustment: We simply concatenated

the patient representation without any adjustment or normalization, and

used this as input for learning model.
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• Integration on patient representations: We used a well-known batch cor-

rection method RUVg (Risso et al., 2014) to correct for the batch effect in

the patient representation. As k, the number of unwanted variations is

a tunable parameter, we explored two settings of k = 5 (i.e., where the

number of batches is equal to the number of datasets) and k = 10 (i.e., to

introduce a stronger batch correction). The batch-corrected patient repre-

sentation was used as input for learning model.

5.2.3 Evaluation metric

5.2.3.1 Accuracy metric

To quantify the performance of the methods, we recorded the prediction accu-

racy of the severity outcome (Figure 5.1e). To capture the variability in model

performance, all classical machine learning and deep learning models were

trained and tested with repeated three folds cross-validation using 20 repeats.

To control for the potential impact of "good" or "bad" training/testing set splits,

where a "bad" split can result in extreme class imbalance in the modelling phase

and affect model performance, we used the same training and testing splitting

index across all machine learning and deep learning model to ensure a fair

comparison. F1 score was used as the evaluation metric, as not all datasets are

balanced.

5.2.3.2 Aggregation of accuracy metric

Given the number of results from all analytical combinations, we aggregated

the results in order to better quantify and interpret the results. First, we took

the median F1 score across the 20 repeated cross-validation. This was then fol-

lowed by different aggregation strategies depending on whether the input used

individual or combined datasets.

For the result section where we dealt with the five datasets individually, we

further aggregated the median F1 score across datasets by taking the median.

Then, we ranked the feature types across each model choice as well as the
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model choice across each feature type to derive the ranking of feature types

and the ranking of model choice.

5.2.3.3 Computational resource metric

Apart from assessing the performance in terms of accuracy, we also assess

the performance in terms of the computational resources. This was measured

through running time and memory usage averaged over three repeats. All pro-

cesses were executed using a research server with dual Intel(R) Xeon(R) Gold

6148 Processor with 40 cores, 768 GB of memory and two NVIDIA GeForce

RTX 2080 Ti graphics cards.

Running time of each combination was measured using the Sys.time function

built in R and the time.time function built in Python. Memory usage was quan-

tified in terms of CPU memory for combinations involving machine learning

models. For combinations involving deep learning models, the memory usage

was quantified as the sum of CPU and GPU memory, as the deep learning

models were executed on GPU.

5.3 results and discussion

5.3.1 Ensemble strategy improves model performance

scFeatures generates a wide range of feature types. To explore whether ensem-

ble learning using the combination of feature types can improve performance

on downstream analysis, we implemented three common ensemble strategies

and ranked their performance against each of the individual features. Perfor-

mance was evaluated by their prediction accuracy on five COVID-19 patient

outcomes (Table 1).

We observed that consistent across the four machine learning models, majority

voting consistently achieved the best performance, better than the other two en-

semble strategies, as well as better than all individual features (Figure 5.2). This

is followed by concatenation, which was also better than using any of the indi-
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vidual features. These results highlight the effectiveness of ensemble learning

and also suggest that the feature types meet the important criteria of diver-

sity as discussed in Chapter 2, such that different feature types make different

errors and combining them results in improvement in classification model per-

formance. Further examination of the top eight learning model and feature type

combinations (Figure 5.3) revealed that seven of the eight combinations involves

ensemble learning. Interestingly, the more complicated implementation of en-

semble learning called stacked ensemble, in which a meta-learner is trained on

the base learners trained from individual feature types, performed worse than

using any of the individual feature types except for when deep learning was

used.

We then took a closer examination at whether this observation is consistent

irrespective of the learning model choice or dataset. We ranked the feature

types on each of the five types of models and each of the five datasets. We

observed that no individual feature type consistently ranked better or worse

than others across all models and datasets (Figure 5.4). Almost all individual

feature types had ranks that varied from 1 (the best rank) to 14 (the worst

rank). This suggests that different feature types are useful for different models

and different datasets, despite them all being COVID-19 datasets with mild

and severe individuals. In contrast, majority voting achieved a rank of 1 across

multiple models and multiple datasets, again illustrating the power of ensemble

strategy.

5.3.2 Deep Learning performs similarly to classical machine learning

Ranking the learning methods, we noted that there was no clear difference be-

tween deep learning and some of the machine learning models (Figure 5.5a).

In particular, both neural network and random forest achieved a median rank

of 1.75 out of the five learning methods across the 14 feature types and five

datasets, followed closely by SVM with a median rank of 2.5 (Figure 5.5b). Only

lasso and KNN were consistently ranked lower than other methods. Within neu-
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Figure 5.2: Performance of feature types for each model summarised across all datasets.

The dotplot shows the relative rank of each feature type to each other for

each model, with 1 being the best and 14 being the worst. Ranks are sum-

marised across the five datasets using the median and therefore do not

necessarily range from 1 to 14 within each model. Both the colour and cir-

cle size denote the median rank of the given feature type.

ral network, random forest and SVM, we then examined the difference between

the maximum and minimum F1 score achieved by the three top-performing

methods and observed a small median difference of 0.02 (Figure C3). These

result all suggest that deep learning do not significantly outperform certain

machine learning models in this context.

We then compared the computational resource requirement to see whether the

difference in performance came at a cost. Focusing on the feature type "ma-

jority voting", we observed that both neural network and random forest took

around 4 hours on the largest Ren et al. dataset with 153 patients (Figure ??, C5).

On the other hand, while SVM was ranked after neural network and random

forest, it was more computationally efficient, taking less than 1 hour on the

Ren et al. dataset. Accounting for the significant difference in computational

efficiency and the relatively small difference between model performance, one

may consider SVM to be the optimal choice.
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Figure 5.3: Performance of feature types for each model and each dataset. Dotplot

shows the rank of each feature type to each other for each model and each

dataset. A total of 25 points are shown for each feature type, as each feature

type was evaluated on five models and five datasets.

5.3.3 Normalisation is not necessary when combining multiple datasets as the input

Using multiple datasets as input data raises a number of questions, such as

whether to integrate the raw data or the derived features. Here, we explored

three categories of analytical combinations. More specially, different approaches

to data integration, including integration on the count matrix, integration on the

patient representation with and without normalization. Our results are based

on examination of 280 analytical combinations (4 integration types x 14 feature

types [11 individual feature types with 3 ensemble feature types] x 5 model

choices). Interestingly, there was only a slight difference between integration on

the count matrix and concatenation without modification (Figure 5.6), which

both achieved high F1 scores. On the other hand, integration on the patient

representations achieved lower F1 scores, with the stronger the batch removal

setting, the worse the F1 score. This observation is consistent across the choice

of method and the type of feature used (Figure C6,C7).
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Figure 5.4: Performance of models. (a) shows the relative rank of each model to each

other for each feature type with 1 being the best and 5 being the worst.

Ranks are summarised across the five datasets using the median and there-

fore do not necessarily range from 1 to 5 within each feature type. (b) further

summarise the ranks of each model across all feature types using the me-

dian. Both the colour and circle size denote the median rank of the given

model.

Figure 5.5: Top 13 combinations of model and feature type. Barplot shows the ranks of

model and feature type. Given that the ranks are summarised across all five

datasets using the median, the values do not necessarily range from 1 to 13.

One of the key strengths of data integration is the ability to examine condition

associated features for a subgroup of individuals. Due to the small number of
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Figure 5.6: Performance of various approaches on combining multiple datasets for

building prediction model. a shows the F1 of these 280 analytical combi-

nations, with the x-axis indicating the type of integration choice used in the

combinations. b further stratifies the F1 score based on high F1 (defined to

be F1 >= 0.75), medium F1 score (defined to be 0.65 < F1 < 0.75) and low

F1 score (defined to be F1 <=0.65) and examines the proportion of each in-

tegration choice in the set of combinations that fall in the stratification.

individuals that typically fall into the subgroup of interest, this type of research

is difficult to conduct using a single dataset. Here, we focused on a subgroup of

patients in the 41-50 age group and investigated whether the identification of

features are affected by different data integration strategy. First, we compared

the rankings of the features obtained according to the feature importance score

from the prediction model and found high consistency of the rankings between

cell level integration and individual level integration without normalisation

(Figure C8a). In comparison, the consistency was much lower between cell level

integration and individual level integration with normalisation. Clustering and

dimension reduction on the features revealed that in both cases the clustering

patterns and sources of variation of the patients were not driven by the dataset

source (Figure C8b,c). The lack of batch effect in the generated features there-

fore potentially suggest that the generated features have self-adjusted in the

feature extraction procedure and explains the minimal difference observed be-
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tween the feature rankings and suggest for no need of normalisation on cell

level or on individual level.

5.4 summary

In this chapter we illustrate how the various work developed in our thesis en-

able an effective design for a comparison study for data analysis.We used scFea-

tures to generate various feature representations for COVID-19 patients and

examined the performance of individual feature types and ensemble feature

types in classifying COVID-19 severity. By evaluating using multiple datasets

and multiple learning methods from classical machine learning to modern deep

learning methods, this study demonstrated that all machine learning methods

perform similarity, with SVM being a slightly better method when account-

ing for the computational efficiency. Through implementing different ensemble

strategies to incorporate multiple feature types as input into machine learning

models, we revealed certain ensemble strategies, in particular majority voting,

consistently led to increased performance compared to the non-ensemble strat-

egy of using individual feature types alone. Stacked ensemble for example,

often did not achieve better performance compared to using individual feature

types. Finally, we suggest that when combining datasets is needed for building

a prediction model, prior data integration is not necessary in terms of improv-

ing prediction performance. On the other hand, normalisation on the derived

patient features decrease prediction performance.

We observed that with the sets of COVID-19 datasets containing 42 to 153 pa-

tients, which is a realistic samples size in the current literature, the more com-

plex approaches do not necessarily outperform than simpler approaches. In

particular, stacked ensemble can be considered the most complex implementa-

tion as it trains additional meta-learner on top of the base models. We observed

that while the other two implementations (majority voting and concatenation)

both performed better than individual features, stacked ensembled had worse

performance compared to using the individual features. We further observed
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that when combining datasets is needed as input, there was minimal improve-

ment obtained by cell level integration before generating sample representation.

In this case study, although we used five datasets only, it is to be noted that the

total number of cells in these datasets reached more than two million. A recent

benchmarking study on single-cell integration methods revealed that the ma-

jority of existing integration methods took from a few hours to days and even

weeks on integrating one million cells (Luecken et al., 2022). Therefore it may

not be worth the time and computational resources to perform integration on

such large-scale datasets.

This chapter shares a similar concept to Chapter 3, where we developed an

evaluation framework SimBench and used it to evaluate the performance of

scRNA-seq data simulation methods. Using this concept, we can extend this

comparison study into a more comprehensive benchmarking study that incor-

porates the impact of various other factors. For example, as we curate more

COVID-19 datasets, one can further assess the impact of sample sizes. Such

systematical benchmarking study would involve using a diverse collection of

datasets, the construction of multiple aspects of evaluation criteria and the de-

velopment of R packages and shiny web application that enable the community

to apply the framework to their own data and methods. We envisage the cur-

rent comparison study and the future study will point direction to an optimised

analytical workflow for disease outcome prediction using single-cell data.
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C O N C L U S I O N

This thesis explores and addresses a number of challenges in the development

of bioinformatics approaches for data analysis to facilitate precision medicine

in the era of single-cell technology.

Firstly, we discussed the success of deep learning in computer science and high-

lighted a number of recent bioinformatics applications that benefit from deep

learning coupled with ensemble learning (Chapter 2). Our summary of recent

ensemble deep learning network structures acts as a resource to inspire future

applications of ensemble deep learning for precision medicine that synergisti-

cally addresses the challenges of model stability and model scalability.

Secondly, we addressed the lack of comprehensive evaluation studies for scRNA-

seq data simulation (Chapter 3). We curated a collection of benchmarking datasets

for evaluation of single-cell tools and developed a novel evaluation framework,

SimBench, and used these to evaluate current simulation tools. This work en-

ables researchers in precision medicine to efficiently select the method best

suited for their research questions and developers to readily identify the areas

of limitation of existing methods for precision medicine applications. More-

over, our benchmarking datasets and evaluation framework, both made pub-

licly available to the scientific community, serve to inspire future evaluation

studies on precision medicine tools. Importantly, SimBench is available as a liv-

ing benchmark, since the accompanying web application is actively updated as

new tools are published and can also be updated from the research community

via GitHub pull requests. After the publication of the study, we have, at the

time of writing this thesis, updated the website to include an additional 6 sim-

111
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ulation tools to a total of 19 tools. This living benchmark extends beyond the

limitations of traditional publication and stays relevant for future applications.

Thirdly, we developed a novel framework, scFeatures, that creates a molecular

representation of individual samples from single-cell and spatial data, enabling

personalised medicine in the single-cell era (Chapter 4). Using a comprehen-

sive collection of disease datasets across multiple diseases and conditions, we

illustrated the ability of scFeatures to perform a range of precision medicine

applications including association studies, supervised classification of disease

outcomes and unsupervised clustering of patients into subgroups with distinct

survival outcomes. This work represents a novel approach towards defining

samples based on their cellular characterization and opens the door for a spec-

trum of future explorations, such as multi-view learning framework utilising

the sample representation to guide better understanding of disease and health.

Finally, using a case study on COVID-19 patients, we demonstrated how the

novel works presented in Chapters 2, 3 and 4 are brought together to enable

precision medicine. We utilised scFeatures to generate molecular characterisa-

tions of patients from COVID-19 single-cell datasets. We implemented ensem-

ble learning techniques as well as deep learning models and observed improve-

ment in prediction accuracy of mild and severe conditions. We also demon-

strated the power of using multiple COVID-19 datasets to address precision

medicine questions that cannot be easily addressed using single datasets. Fu-

ture work could incorporate evaluation of the impact of different integration

strategies on the prediction power as well as on gaining biological insights.

Our evaluation framework SimBench, presented in Chapter 3, can be adapted

to the development of this evaluation study.

During the course of my PhD, the rapid development of single-cell technology

saw a typical experimental dataset grow from hundreds of cells to hundreds

of thousands of cells. During the second and third years of my PhD, when the

COVID-19 pandemic struck, thousands of patients were sequenced globally

using single-cell technologies in the global effort to understand the molecular

mechanism of diseases and assist in the development of therapeutics. As single-
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cell technology continues to advance, we envisage the increasing availability of

large-scale patient datasets and the increasing application of single-cell technol-

ogy in the ongoing fight against diseases. The development of computational

tools is the key to unleashing the enormous potential behind these patient

datasets for precision medicine. The works described in my thesis contribute

to the effective utilisation of single-cell data for precision medicine and provide

insights for future method development towards the field.

In this thesis we have presented computational methods and frameworks for

the effective utilisation of single-cell data for precision medicine. While the last

chapter presents a case study specifically on COVID-19, we believe the concepts

of deep learning, data simulation and the creation of patient-based summary

statistics are general and applicable to other diseases such as cancer, as demon-

strated in Chapter 4. This is the same for the wide repertoire of single-cell

computational methods that address high-level questions, such as differential

expression, data integration and trajectory analysis.

However, we also point out that there also exist distinct differences and chal-

lenges in the precision medicine approach for different diseases. For example,

the approach to the study of cancer differs from that of infectious diseases such

as COVID-19. One major difference is the type of cell population being stud-

ied. Cancer often arises from a small subpopulation of cells that have acquired

genetic changes and the spread of cancer also often stems from a small subpop-

ulation of cells that develop drug resistance. Cancer studies, therefore, benefit

from methodological advance that enables the identification of rare subpopu-

lations and the exploration of heterogeneity of the cells (González-Silva et al.,

2020; Lim et al., 2020). In contrast, infectious diseases are caused by viral in-

fection that affects the cells throughout the entire body. Such studies such as

with COVID-19 typically focus on understanding the disease mechanisms in

known cell types. Another distinct difference is that cancer studies are mostly

concerned with the interactions within the patient’s own cellular system. Cur-

rently, there are a number of cell-cell interaction methods (Armingol et al., 2021)

that can be used to address this task. The understanding of Infectious diseases
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requires the development of methods for exploring the interaction between

pathogen and host, which is a still relatively under-explored area (Penaranda

and Hung, 2019). Methods for detecting infected cells and bystander cells (Bost

et al., 2020) and the interaction amongst them are in need. In future, as single-

cell technology advances, we envisage the single-cell computational field will

continue to evolve the address the general and specific challenges in precision

medicine.
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Figure A1: Number of datasets used for evaluation and simulation completion out-

come. A total of 34 datasets were used for evaluating the simulation meth-

ods on data property estimation, 25 datasets were used for evaluating bi-

ological signals and 12 datasets were used for evaluating scalability (see

Methods). Pie chart denotes the completion outcome of each simulation

method. "Successful" indicates the method produced a simulation dataset

within the given time limit. "Error" indicates the method encountered issues

during simulation. "Timeout" indicates the method was not able to finish the

simulation within the given time limit (see Methods). "Others" indicates a

special situation where the methods require the dataset to have two or more

cell types and therefore could not be tested on datasets containing a single

cell type.
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Figure A2: Mean-variance relationship of genes across multiple datasets. We show the

property of mean-variance relationship of genes in 11 datasets as an exam-

ple to demonstrate the variability of data properties across datasets. Top

panel shows four datasets of different protocols, the first two from human

PBMC samples and the latter two from mouse cortex samples. Middle panel

shows two datasets from tissue source and two datasets with cell line source.

Bottom panel shows datasets of multiple cell types in mouse sample.
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Figure A3: Visual representation of the evaluation criteria in properties estimation and

biological signals. As an illustrative example, we compared the simulation

data generated by POWSC and the original dataset Soumillon that was used

as the reference input. In properties estimation, we compared the concor-

dance of the data characteristics across multiple properties using the KDE

statistic. In biological signals, we compared the concordance of the amount

of proportion of biological signals in simulated and in real data.
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Figure A4: Correlation between seven measures on quantifying similarities for univari-

ate properties. Top panel shows the correlation matrix for the property li-

brary size, enlarged for readability of axis labels. Bottom panel shows cor-

relation matrix for the remaining univariate properties. The axis labels are

consistent and are not shown for readability of the matrix.
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Figure A5: Run time and memory consumption of each method. (a) Runtime of each

method. (b) Maximal memory usage of each method. The number of cells is

shown in log10 scale. Methods that support parallel computing and those

that only support single core are shown separately. Most methods involve a

two-step process of properties estimation and dataset simulation. For those

methods, we recorded and shown results for the two steps separately under

the estimation and simulation panels. A solid line was used to indicate

these methods. For methods that perform the two steps together in a single

function, we displayed the results under the estimation panel. A dashed

line was used to indicate these methods. (c) This shows the same result as

in (b), but with the y-axis in log10 scale for enhanced readability.
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Figure A6: Impact of the number of cells on property estimation. The x-axis shows

the number of cells in log10 scale and y-axis shows the score. The line

shows the trends with increasing cell numbers. The dot indicates where a

measurement is taken. Each measurement was taken three times and the

average was shown in the figure.
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Figure A7: Impact of sequencing protocols on data property estimation. The impact of

sequencing protocols on data property estimation using (a) human PBMC

data collections and (b) mouse cortex data collections. ANOVA was per-

formed to examine the statistical significance of the change in KDE score

due to sequencing protocol effect. The test statistics, effect sizes, degrees of

freedom and P-values are shown on each panel.
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Figure A8: Proportion of biological signals in real and simulated data generated by

simulation methods. The boxplots show the distribution of the proportion

of biological signals for all datasets examined (n = 25 for SPARSim, scDe-

sign, POWSC and cscGAN, n = 24 for ZINB-WaVE, SymSim and Splat, n =

21 for scDD, n = 18 for zinger, n = 15 for powsimR, n = 14 for SPsimSeq).

The proportion of biological signals in the simulated data ideally should be

similar to that of the real data. The box represents quartiles, the line repre-

sents the median, the lower and upper whisker represents the bottom 25%

and top 25% of the data. Outliers are shown as individual data points.
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a.2 supplementary tables

Table A1: Details of the datasets used in this study.

Dataset Accession Name Description Species Protocol Number
of cells

Multiple
cell
types or
condition ?

Source

1 SCP425 cortex
sciR-
NAseq

Comparison of
four protocols
using mouse
cortex

Mouse sci-
RNA-
seq

4912 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP425/
single-cell-comparison-cortex-data#
study-download

2 SCP425 cortex 10x Mouse 10x Ge-
nomics

5367 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP425/
single-cell-comparison-cortex-data#
study-download

3 SCP425 cortex
DroNc-
seq

Mouse DroNc-
seq

2345 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP425/
single-cell-comparison-cortex-data#
study-download

4 SCP425 cortex
Smart-
seq2

Mouse Smart-
seq2

644 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP425/
single-cell-comparison-cortex-data#
study-download

5 SCP424 PBMC
10x

Comparison of
six protocols
using human
PBMC

Human 10x Ge-
nomics

3312 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP424/
single-cell-comparison-pbmc-data#
study-summary

6 SCP424 PBMC
CEL-seq2

Human CEL-
seq2

526 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP424/
single-cell-comparison-pbmc-data#
study-summary

7 SCP424 PBMC
Drop-seq

Human Drop-
seq

6357 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP424/
single-cell-comparison-pbmc-data#
study-summary

8 SCP424 PBMC in-
Drops

Human inDrops 4184 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP424/
single-cell-comparison-pbmc-data#
study-summary

9 SCP424 PBMC
Seq-Well

Human Seq-
Well

2908 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP424/
single-cell-comparison-pbmc-data#
study-summary

10 SCP424 PBMC
Smart-
seq2

Human Smart-
seq2

522 Yes https://singlecell.broadinstitute.
org/single_cell/study/SCP424/
single-cell-comparison-pbmc-data#
study-summary

11 see
source

Tabula
Muris

The 10x subset
of Tabula Muris

Mouse 10x Ge-
nomics

55656 Yes https://tabula-muris.ds.czbiohub.
org/

12 GSE114724 BC09

tumor
Tumor of breast
cancer patient
ID BC09

Human 10x Ge-
nomics

7000 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE114724

13 GSE114725 BC02

tumor
Tumor of breast
cancer patient
ID BC02

Human inDrops 2437 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE114725

14 GSE114725 BC01

blood
Blood of breast
cancer patient
ID BC01

Human inDrops 3034 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE114725

15 GSE114725 BC02

lymph
Lymph node of
breast cancer
patient ID BC02

Human inDrops 6129 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE114725

16 GSE114725 BC01 nor-
mal

Normal breast
tissue of breast
cancer patient
ID BC01

Human inDrops 3607 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE114725

17 GSE106202 breast cell
line

MDA-MB-231

cells cultured
in glucose

Human Drop-
seq

785 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE106202

18 GSE102827 light
endo

Endothelial
smooth muscle
of primary
visual cortex
from mice, ex-
posed to light
for 0h, 1h and
4h

Mouse inDrops 4071 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE102827

19 GSE102827 light
micro

Microglia of pri-
mary visual cor-
tex from visu-
ally stimulated
mice, exposed
to light for 0h,
1h and 4h

Mouse inDrops 10158 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE102827

20 GSE92495 Gierahn Human
HEK293 (em-
bryonic kidney
cells) cell line

Human Seq-
Well

1453 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE92495

21 see
source

293T 293T
(adenovirus-
immortalized
human embry-
onic kidney
cells) cell line

Human 10x Ge-
nomics

2885 No https://support.10xgenomics.com/
single-cell-gene-expression/
datasets/1.1.0/293t

22 see
source

Jurkat
and 293T

Mixture of
Jurkat (human
T lymphocyte)
and 293T

Human 10x Ge-
nomics

6143 Yes https://support.10xgenomics.com/
single-cell-gene-expression/
datasets/1.1.0/jurkat
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23 GSE77288 Tung Three iPSC (In-
duced Pluripo-
tent Stem Cells)
lines

Human SMARTer 564 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE77288

24 GSE113660 Chen Rh41(human
alveolar rhab-
domyosarcoma)
cell line

Human 10x Ge-
nomics

6875 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE113660

25 GSE60361 Zeisel Cortex of mice Mouse STRT-
seq

3005 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE60361

26 GSE72857 Pual Bone mar-
row myeloid
progenitors

Mouse MARS-
seq

6144 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE72857

27 GSE63472 retina Mouse retina Mouse Drop-
seq

6598 No https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE63472

28 GSE87038 Dong
forebrain

Forebrain cells
of E9.5 to E11.5
mouse embryos

Mouse Smart-
seq2

196 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE87038

29 GSE87038 Dong
skin

Skin cells of
E9.5 to E11.5
mouse embryos

Mouse Smart-
seq2

196 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE87038

30 GSE87038 Dong in-
test

Intestine cells
of E9.5 to E11.5
mouse embryos

Mouse Smart-
seq2

196 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE87038

31 GSE87038 Dong
liver

Liver cells of
E9.5 to E11.5
mouse embryos

Mouse Smart-
seq2

196 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE87038

32 GSE90047 Yang liver Liver cells of
E10.5 to E17.5
mouse embryos

Mouse Smart-
seq2

447 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE90047

33 GSE75748 stem cell Human
pluripotent
stem cells
(hPSCs)

Human SMARTer 758 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE75748

34 GSE112004 Francesconi B cell pre-
cursors from
bone marrow,
induced to
either trans-
differentiate to
macrophages
or to reprogram
into iPSCs

Mouse MARS-
Seq

3833 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE112004

35 GSE53638 Soumillon Differentiating
cells of hu-
man adipose-
derived
stem/stromal
cells

Human SCRB-
Seq

2968 Yes https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE53638

Table A2: Additional details of the scRNA-seq simulation methods evaluated in this
study.

Methods Implement-
ation lan-
guage

Year of
publica-
tion

Reference (doi) Software version Input data
(raw/ nor-
malised)

Output data
(raw/nor-
malised)

scDD R 2016 10.1186/s13059-016-1077-y 1.12.0 (implemented
in Splatter)

raw normalised

Splat R 2017 10.1186/s13059-017-1305-0 1.12.0 raw raw
powsimR R 2017 10.1093/bioinformatics/btx435 1.2.3 raw raw
SparseDC R 2017 0.1093/nar/gkx1113 0.1.17 (implemented

in Splatter)
raw raw

zingeR R 2018 10.1186/s13059-018-1406-4 0.1.0 raw raw
ZINB-WaVE R 2018 10.1038/s41467-017-02554-5 1.10.0 (implemented

in Splatter)
raw raw

SymSim R 2019 10.1038/s41467-019-10500-w 0.0.0.9000 raw raw
scDesign R 2019 10.1093/bioinformatics/btz321 1.0.0 raw raw
SPARSim R 2020 10.1093/bioinformatics/btz752 0.9.5 both raw and

normalised
raw

SPsimSeq R 2020 10.1093/bioinformatics/btaa105 0.99.13 raw raw
POWSC R 2020 10.1093/bioinformatics/btaa607 0.1.0 raw raw
CSCGAN Python 2020 10.1038/s41467-019-14018-z GitHub version

379ff6e
raw normalised
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Table A3: Detailed simulation strategy of each method. (*) We used the procedure de-
scribed in "Evaluation of biological signals" of the Methods section to calcu-
late the proportion of differential expressed genes between the two largest
cell types in the real data. This proportion was then used as the input pa-
rameter in the simulation function to control the proportion generated in the
simulation data.

Methods Simulation Strategy for evaluating data property es-
timation

Simulation Strategy for evaluating biological sig-
nals

Splat Estimated the parameters and simulated each cell
type separately.

Estimated parameters from the largest cell type in
a dataset, set the number of groups to 2 and the
proportion of differential expressed (DE) genes to
the proportion between the two largest cell types
in the dataset (*). This is because the genes in the
simulated data do not have a one-to-one matching
relationship with the input data and hence it is not
possible to combine two simulated data generated
from two cell types separately.

powsimR This method generates DE genes from a homoge-
nous population, for example, a particular cell type
from one patient to create two artificial populations.
We therefore estimated the parameters and simu-
lated each cell type separately. The proportion of
DE and log fold change were set to be a null sce-
nario to maintain the biological signals in the origi-
nal cell type population.

This method generates DE genes from a homoge-
nous population. We therefore estimated the param-
eters and simulated the largest cell type. The pro-
portion of DE was set to the proportion between
the two largest cell types in the dataset.

SymSim Estimated the parameters and simulated each cell
type separately.

Estimated the parameters and simulated the two
largest cell types separately.

scDesign Estimated the parameters and simulated each cell
type separately.

This method generates DE genes from a homoge-
nous population. We therefore estimated the param-
eters and simulated the largest cell type. The pro-
portion of DE was set to the proportion between
the two largest cell types in the dataset

SPARSim Estimated the parameters and simulated each cell
type separately.

Estimated the parameters and simulated the two
largest cell types separately. This is because the
method returns gene names in the simulated data
and therefore we can combine the two datasets and
evaluate the biological signals between the two cell
types.

SPsimSeq Estimated the parameters and simulated each cell
type separately.

Estimated the parameters and simulated the two
largest cell types separately.

POWSC Estimated the parameters and simulated each cell
type separately.

Estimated the parameters and simulated the two
largest cell types separately.

zingeR We estimated and simulated every two cell types
at a time with the proportion of DE gene set to
10%. This is the setting used by the authors of this
method when comparing their simulated dataset to
the original dataset.

We estimated and simulated the two largest cell
types at a time with the proportion of DE gene set
to the proportion between these two cell types.

scDD We estimated and simulated every two cell types at
a time with the proportion of DE genes set to 10%.
This is because the method requires two cell types
to be simulated at once with a given proportion of
DE genes between them.

We estimated and simulated the largest two cell
types with the proportion of DE genes set to the
proportion between these two cell types.

ZINB-WaVE This method takes cell types label into considera-
tion in the parameter estimation step, thus estima-
tion and simulation were performed directly on the
entire dataset with cell type labels provided.

Estimation and simulation were performed directly
on the entire dataset with cell type labels provided.
We then evaluated the biological signals between
the two largest cell types.

SparseDC This method requires two conditions such as treat-
ment and control, with multiple cell types in each
condition, as an internal clustering step is per-
formed to differentiate the cell types. We followed
the procedure in he SparseDC documentation and
split half of the cell types into condition 1 and half
of the cell types into condition 2, and specified the
number of clusters to be the number of cell types in
condition 1 and 2.

Due to the unique setting, we did not evaluate this
method for biological signals.

cscGAN This method takes cell types label into considera-
tion in the parameter estimation step, thus estima-
tion and simulation were performed directly on the
entire dataset with cell type labels provided.

Estimation and simulation were performed directly
on the entire dataset with cell type labels provided.
We then evaluated the biological signals between
the two largest cell types.
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b.1 supplementary figures

Figure B1: Impact of dataset characteristics on number of features generated by scFea-
tures. We generated features on 15 scRNA-seq datasets (see Methods). Lin-
ear regression model was fitted to explore the relationship between the num-
ber of features and dataset characteristics such as number of cells, genes, cell
types and patients. The regression coefficient for each variable is shown in
the line plots, with red denoting a significant relationship and blue denoting
an insignificant relationship.
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Figure B2: Correlation amongst feature pairs for each dataset. Plots show the Pear-
son’s correlation between features on each dataset. The features are colour
labelled by feature class for ease of interpretation. To avoid the correlation
plot being dominated by feature classes with more features, we subsampled
100 features from feature classes with more than 100 features.
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Figure B3: Schematic representation of the calculation of correlation between feature
types. (a) First, for a given dataset, the features from all feature types are
created, yielding a samples by features matrix. Pearson’s correlation is calcu-
lated on the features matrix to result in a typical correlation matrix compris-
ing the correlation between the individual features, as shown in (b). Since
each feature is associated with a feature type, we can zoom into a section of
the correlation matrix that contains the correlations of features from two fea-
ture types. For example, (c) shows the section of correlation matrix, which
contains the features from the feature type "gene mean celltype" and "gene
correlation aggregated". A boxplot can then be constructed to summarise
the correlations between these two feature types. d shows another section of
the correlation matrix, which contains the correlations between all the fea-
tures from the feature type "gene correlation aggregated". (e) Repeating this
across each section of the correlation matrix produces boxplots summaris-
ing the correlation between all pairwise combinations of feature types.
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Figure B4: Classification performance of the top 100 features from each individual fea-
ture type and the combined feature set on 16 datasets. Models were first
trained on the entire feature space of each individual feature type (see
Methods). The top 8 features from each feature type were identified and
combined into the “combined feature set” containing around 100 features,
which was used for model training and testing. For comparison, the top 100

features from each feature type were identified and used for model training
and testing. Random forest was used as the model choice and performance
was evaluated in terms of F1 score. Each point represents the average from
50 cross-validation.



B.1 supplementary figures 131

Figure B5: Scalability analysis of feature types. The x and y axes are displayed on a
log10 scale in all panels. (a) The runtime and memory usage of feature types
benchmarked on subsampled scRNA-seq data. (b) The runtime and memory
usage of feature types benchmarked on subsampled spatial proteomics data.
(c) The runtime and memory usage of the feature types adapted for the spot-
based data, evaluated using spatial transcriptomics data.
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Figure B6: Model performance of each feature class on all datasets. For datasets with
disease outcome, random forest was used and model performance was eval-
uated in terms of F1 score. For the dataset “Triple negative breast cancer”
with survival outcome, cox proportional-hazard model was used and model
performance was evaluated in terms of C-index. Each point represents the
average from 50 cross-validation models.
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Figure B7: Cell type proportion of the patients in the "UC healthy vs non - inflamed
(Fib)" dataset. Wilcoxon test was performed on each cell type to compare
the cell type proportion between the non-inflamed and healthy samples.
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b.2 supplementary tables

Table B1: Implementation details of each feature type.
Feature category Feature class Applicable data

types
Implementation details

Cell type proportions

Proportion raw scRNA-seq and
spatial proteomic

Calculates the proportion of each cell type in each sample.

spatial transcrip-
tomics

Each spot is represented as multiple single cells by multiplying the rel-
ative number of cells with the cell type probability of each spot. The
proportion of each cell type is then calculated based on this single cell
representation.

Proportion logit scRNA-seq and
spatial proteomics

Performs logit transformation of the cell type proportion as it is one of
the most common transformations for proportional data.

spatial transcrip-
tomics

Performs logit transformation of the cell type proportion based on the
single cell representation as described in the implementation of “Propor-
tion raw”.

Proportion ratio scRNA-seq and
spatial proteomics

Computes the pairwise ratio of two cell types’ proportions, i.e. cell type
1 divided by cell type 2. This is calculated for each paired cell type com-
bination. To avoid dividing by zero when a cell type is not present in a
patient, we add 1 to both the numerator and denominator. The range of
value is then scaled using log2 transformation.

spatial transcrip-
tomics

Computes the pairwise ratio of two cell types’ proportions based on the
single cell representation as described in the implementation of “Propor-
tion raw”.

Cell type specific
gene expressions

Gene mean celltype scRNA-seq and
spatial proteomics

Calculates the mean expression of genes within each cell type. Users
can provide their own genes of interest to the function. If not provided
(the setting presented in this paper), we restrict to the top variable genes
to reduce the dimensions of the feature. This is particularly important
for scRNA-seq data as it generally contains more than 20,000 genes. We
calculate two sets of highly variable genes, 1) across all cells within each
cell type and 2) across all cells.
First, for each cell type, the genes of interest are obtained by selecting
the top variable genes per sample, followed by taking the union of the
genes across all samples. The default number of variable genes is set to
100 per cell type and is a parameter that can be specified by the user.
Since the variable genes are calculated separately for each cell type, this
results in a different set of genes for each cell type.
Then, the top variable genes across all cells are calculated per sample,
followed by taking the union of the genes across all samples. The default
number of variable genes is set to 100 and is also a parameter that can
be specified by the user.
The final output is a vector of mean expression for the variable genes.

spatial transcrip-
tomics

Given the expression values in each spot represents multiple cells of
potentially different cell types, we devised the following approach. For
each gene, we regress the count against the probability of each cell type
across all spots in a sample to obtain the coefficient and P-value of each
cell type. Then for each cell type identify the top genes that have smallest
P-values on average across all samples. These would be the genes most
associated with the cell type. The regression coefficients of these genes
are then the features. The number of top genes is default to 50.

Gene proportion
celltype

scRNA-seq and
spatial proteomics

For each gene, we calculate the proportion that this gene is expressed
across all cells. This is performed separately for each cell type of each
patient. Users can provide their own genes of interest to the function. If
not provided (the setting presented in this paper), we restrict to the top
variable using the same procedure as defined in “gene mean celltype”.
The final output is a vector of proportion expressed for the subset of cell
type specific genes.

spatial transcrip-
tomics

N/A as the expression values in each spot represents multiple cells of
potentially different cell types

Gene correlation
celltype

scRNA-seq and
spatial proteomics

Users can provide their own genes of interest to the function. If not pro-
vided (the setting presented in this paper), we restrict to the top variable
using the same procedure as defined in “gene mean celltype”. Then, for
the selected genes, we calculate the pairwise correlation between two
genes based on their expression values. The final output is a vector of
genewise correlation for the subset of cell type specific genes.

spatial transcrip-
tomics

N/A as the expression values in each spot represents multiple cells of
potentially different cell types

Cell type specific
pathway expressions

Pathway GSVA
scRNA-seq We implemented methods from the GSVA (Hänzelmann et al., 2013)

package to obtain the gene set enrichment score for each single cell of a
patient. Implementation of AUCell (Aibar et al., 2017) is also provided as
an option to the user. The enrichment score is then summarised for each
cell type by averaging the scores from all the single cells within a cell
type. As a result, this approach converts the matrix of gene expressions
by single cells into pathways by cell types for each patient. The matrix
of pathways by cell types is further converted into a single vector by
concatenating the scores from each cell type.
By default (the setting presented in this paper), we use the 50 hallmark
pathways from MSigDB (Liberzon et al., 2015). Users can also provide
their own pathways of interest to the function.

spatial proteomics N/A as the number of proteins in spatial proteomics is generally too
few to calculate pathway enrichment.

spatial transcrip-
tomics

We obtain the regression coefficients of each gene associated with each
cell type as described in the implementation details of “Gene mean cell-
type”. The regression coefficients for all the genes involved in a partic-
ular pathway are then summed. The summation is done separately for
each cell type.
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Pathway mean
scRNA-seq For each pathway, we average the gene expression values for all the

genes in the pathway across all cells. This is done separately for each
cell type of each patient.
By default (the setting presented in this paper), we use the 50 hallmark
pathways from MSigDB (Liberzon et al., 2015). Users can also provide
their own pathways of interest to the function.

spatial proteomics N/A as the number of proteins is too small to calculate pathway enrich-
ment.

spatial transcrip-
tomics

N/A as the expression values in each spot represents multiple cells of
potentially different cell types.

Pathway proportion
scRNA-seq For each pathway, we average the gene expression values for all the

genes in the pathway for each cell and used the third quantile of this
value as a threshold. We then calculate the proportion of cells in each
patient that have a higher average expression greater than the threshold.
This is done separately for each cell type so that the final output for a
patient is a vector
By default (the setting presented in this paper), we use the 50 hallmark
pathways from MSigDB (Liberzon et al., 2015). Users can also provide
their own pathways of interest to the function.

spatial proteomics N/A as the number of proteins is too small to calculate pathway enrich-
ment.

spatial transcrip-
tomics

N/A as the expression values in each spot represents multiple cells of
potentially different cell types

Cell-cell interactions CCI
scRNA-seq We implemented methods from the CellChat30 package to calculate the

cell - cell interaction probability between ligand and receptor pairs. This
feature class is cell type specific, as the interaction between ligand and
receptor is quantified separately for each cell type. The final output is a
vector of interaction probabilities for each patient.

spatial proteomics N/A as the number of proteins is too small to query the cell cell interac-
tions.

spatial transcrip-
tomics

N/A as calculation of cell-cell interaction relies on expression of individ-
ual cells.

Overall aggregated
gene expressions

Gene mean aggre-
gated

scRNA-seq, spa-
tial proteomics
and spatial tran-
scriptomics

First the mean expression of genes across all cells is computed for each
sample. We then restrict to the top variable genes using the same proce-
dure as defined in “gene mean celltype”. The number of variable genes
is set to 1500 by default and can be specified by the user.
Alternatively, users can provide their own genes of interest to the func-
tion. The function then uses the provided set of genes instead of the top
variable genes.

Gene proportion
aggregated

scRNA-seq, spa-
tial proteomics
and spatial tran-
scriptomics

For each gene, we calculate the proportion that this gene is expressed
across all cells for each patient. We then restrict to the top variable genes
using the same procedure as defined in “gene mean celltype”. The num-
ber of variable genes is set to 1500 by default and can be specified by the
user.
Alternatively, users can provide their own genes of interest to the func-
tion. The function then uses the provided set of genes instead of the top
variable genes.

Gene correlation
aggregated

scRNA-seq, spa-
tial proteomics
and spatial tran-
scriptomics

We first obtain top variable genes using the same procedure as defined
in “gene mean celltype”. The number of variable genes is set to 100 by
default and can be specified by the user. Then, for the selected genes,
we calculate the pairwise correlation between two genes based on their
expression values. The final output is a vector of genewise correlation.
Alternatively, users can provide their own genes of interest to the func-
tion. The function then uses the provided set of genes instead of the top
variable genes.

Spatial metrics

L function
scRNA-seq data N/A as there are no spatial coordinates.
spatial proteomics The L values between the pairs of proteins are calculated using the L

function defined in literature 31 and used as the features. L value greater
than zero indicates spatial attraction of the pair of proteins whereas L
value less than zero indicates spatial repulsion.

spatial transcrip-
tomics

We calculate the L function based on the single cell representation as
described in the implementation of “Proportion raw”.

Cell type interaction
scRNA-seq data N/A as there are no spatial coordinates.
spatial proteomics We find the nearest neighbours of each cell and the cell types of these

neighbours. These are considered as spatial interaction pairs. The cell
type composition of the spatial interaction pairs are used as features.

spatial transcrip-
tomics

We assume that the nearest neighbours should be the cells captured
within each spot and consider them as the spatial interaction pairs. We
use single cell representation as described in the implementation of “Pro-
portion raw” to calculate the following procedure: for a spot containing
n1 cell type x and n2 cell type y, the spatial interaction composition of of
cell type x with cell type x is calculated as n1 / (n1+n2) * n1 / (n1+n2).
Similarly for the spatial interaction composition of cell type x with cell
type y. We then sum the spatial interaction composition across all spots
and use them as the features.

Moran’s I scRNA-seq data N/A as there are no spatial coordinates.
spatial proteomics
and spatial tran-
scriptomics

Moran’s I are calculated using the function defined in literature 32 and
used as the features. It calculates the spatial autocorrelation based on
both the locations and values simultaneously. A value closer to 1 indi-
cates clustering of similar values and a value closer to -1 indicates clus-
tering of dissimilar values. A value of 0 indicates no particular clustering
structure, ie, the values are spatially distributed randomly.

Nearest neighbour
correlation

scRNA-seq data N/A as there are no spatial coordinates.
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spatial proteomics
and spatial tran-
scriptomics

Pearson correlation is calculated for the protein expression between a
cell with its nearest neighbour cell for spatial proteomics and for gene
expression between a spot with its nearest neighbour spot for spatial
transcriptomics.
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Table B2: Details of the datasets used in the study.
Dataset name referred
in the study

Study reference Outcome Number of
genes/proteins

Number of
cells/spots

Number
of samples

Species Type of data

Lung healthy vs
IPF (Epi)

Adams et al. (2020)

Healthy vs
IPF

45947 17970 53 Human scRNA-seq

Lung healthy vs
IPF (Fib)

Healthy vs
IPF

45947 12753 49 Human scRNA-seq

Lung healthy vs
IPF (Imm)

Healthy vs
IPF

45947 208774 60 Human scRNA-seq

Lung healthy vs
COPD (Epi)

Healthy vs
COPD

45947 7888 38 Human scRNA-seq

Lung healthy vs
COPD (Fib)

Healthy vs
COPD

45947 5286 36 Human scRNA-seq

Lung healthy vs
COPD (Imm)

Healthy vs
COPD

45947 149875 46 Human scRNA-seq

UC healthy vs
non-inflamed (Epi)

Smillie et al. (2019)

Healthy vs
non-inflamed

20028 99962 30 Human scRNA-seq

UC healthy vs
non-inflamed (Fib)

Healthy vs
non-inflamed

19076 21627 30 Human scRNA-seq

UC healthy vs
non-inflamed (Imm)

Healthy vs
non-inflamed

19076 118784 30 Human scRNA-seq

UC inflamed vs
non-inflamed (Epi)

Inflamed vs
non-inflamed

20028 72748 35 Human scRNA-seq

UC inflamed vs
non-inflamed (Fib)

Inflamed vs
non-inflamed

19076 23392 36 Human scRNA-seq

UC inflamed vs
non-inflamed (Imm)

Inflamed vs
non-inflamed

20529 159242 36 Human scRNA-seq

Melanoma
pre-treatment Sade-Feldman et al. (2019)

Responder vs
non-responder

50513 5925 19 Human scRNA-seq

Melanoma
post-treatment

Responder vs
non-responder

50513 10357 29 Human scRNA-seq

COVID Schulte-Schrepping et al. (2020a) Mild vs severe 24794 48069 27 Human scRNA-seq
Amyotrophic
lateral sclerosis Maniatis et al. (2019) ALS vs normal 9129 23373 33 Mouse Spatial

transcriptomics
Triple negative
breast cancer Keren et al. (2019) Survival period 38 199817 39 Human Spatial

proteomics
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This file runs association study using the given features and sample conditions and plots the key features
from each feature category using a representative figure. The purpose is not to provide a comprehensive
analysis in a single HTML but to help point directions for future investigation.
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Overview of the association study result
Here we provide a brief overview of the association study result, including the number of features in each
feature type, and the number of features that are significantly associated ( P-value < 0.1) with the conditions
of the interest.

Cell type proportions

knitr::include_graphics( system.file("extdata/figure", "celltypeproportion_example_figures.png", package = "scFeatures") )

1. Barplot shows the composition of cells types

2. Boxplot shows the top cell types that differs between conditions

3. PCA plot shows the separation of conditions based on the cell type proportion features
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Boxplot of top features
## [1] "up regulated in Responder"
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PCA plot
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Cell type specific gene expressions

knitr::include_graphics( system.file("extdata/figure", "celltypegene_example_figures.png" , package = "scFeatures") )
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1. Heatmaps shows the top cell type specific gene expression features that differs between conditions

2. MA plot shows the expression and log2 fold change of the cell type specific gene expression features

3. Volcano plot shows the log2 fold change and P-values of the cell type specific gene expression features

4. PCA plot shows the separation of conditions based on the cell type specific gene expression features

5. Dot plot shows the pathway enrichment of the top cell type specific gene expression features that differs
between conditions

6. Enrichment map of the top cell type specific gene expression features that differs between conditions

7. Functional grouping of the top cell type specific gene expression features that differs between conditions
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MA plot
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Volcano plot
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PCA plot

−4

0

4

−5 0 5
pc1

pc
2

condition

Non−responder

Responder

Dot plot
## [1] "up regulated"

145



T cell differentiation

RNA splicing, via
transesterification reactions

mRNA splicing, via spliceosome

RNA splicing, via
transesterification

reactions with bulged
adenosine as nucleophile

lymphocyte differentiation

mRNA processing

mononuclear cell
differentiation

leukocyte differentiation

RNA splicing

mRNA metabolic process

0.08 0.10 0.12 0.14
GeneRatio

Count

12

16

20

24

0.0005

0.0010

0.0015
p.adjust

Enrichment map

mRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic processmRNA metabolic process

RNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicingRNA splicing

lymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiationlymphocyte differentiation

mononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiationmononuclear cell differentiation

RNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophileRNA splicing, via transesterification reactions with bulged adenosine as nucleophile

mRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosomemRNA splicing, via spliceosome

RNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactionsRNA splicing, via transesterification reactions

leukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiationleukocyte differentiation mRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processingmRNA processing

T cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiationT cell differentiation

number of genes

12

16

20

24

0.0005

0.0010

0.0015
p.adjust

146



Functional grouping

translation
cellular
biosynthetic
amide

via
transesterification
reactions
adenosine

translational
initiation
apoptotic
assembly

thymic
cell
selection
thymus

lymphocyte
leukocyte
mononuclear
activation

mRNA metabolic process
RNA splicing

RNA splicing, via transesterification reactions with bulged adenosine as nucleophile
mRNA splicing, via spliceosome

RNA splicing, via transesterification reactions
mRNA processing

lymphocyte differentiation
mononuclear cell differentiation
leukocyte differentiation

T cell differentiation

lymphocyte activation
T cell activation

regulation of cellular macromolecule biosynthetic process
regulation of translation
regulation of cellular amide metabolic process

translation
peptide biosynthetic process

translational initiation

ribonucleoprotein complex biogenesis

positive regulation of miRNA transcription
RNA localization

regulation of mRNA metabolic process
regulation of RNA splicing

ribonucleoprotein complex assembly

cytoplasmic translational initiation

regulation of neuron apoptotic process

ribonucleoprotein complex subunit organization

thymic T cell selection
T cell differentiation in thymus

T cell selection

number of genes

5

10

15

20

25

0.003

0.006

0.009

Cell type specific pathway expressions

knitr::include_graphics( system.file("extdata/figure", "pathway_example_figures.png" , package = "scFeatures") )

1. Heatmaps shows the top cell type specific pathway expression features that differs between conditions

2. Boxplot shows the top cell type specific pathway expression features that differs between conditions

3. PCA plot shows the separation of conditions based on the cell type specific pathway expression features
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PCA plot
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Cell type specific cell-cell communications

knitr::include_graphics( system.file("extdata/figure",
"CCI_example_figures.png" , package = "scFeatures") )
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1. Heatmap shows the top cell cell interactions features that differs between conditions
2. Heatmap shows the difference in the number of interactions between conditions

For each interacting cell type, the difference is calculated as:

total number of non − zero interactions in condition1 patients

number of condition1 patients
− total number of non − zero interactions in condition2 patients

number of condition2 patients

3. PCA plot shows the separation of conditions based on the cell type specific pathway expression features

4. Network plot shows the difference in the number of interactions between conditions
5. Boxplot shows the top cell cell interaction features that differs between conditions

Heatmap of top cell cell interactions
## [1] "up regulated in Responder"

P
re_P

8_cond_R
esponder

P
re_P

7_cond_R
esponder

P
re_P

28_cond_R
esponder

P
re_P

1_cond_R
esponder

P
re_P

33_cond_R
esponder

P
re_P

29_cond_R
esponder

P
re_P

4_cond_N
on−

responder
P

re_P
20_cond_N

on−
responder

P
re_P

35_cond_R
esponder

P
re_P

24_cond_R
esponder

P
re_P

15_cond_N
on−

responder
P

re_P
25_cond_N

on−
responder

P
re_P

31_cond_N
on−

responder
P

re_P
2_cond_N

on−
responder

P
re_P

3_cond_N
on−

responder
P

re_P
27_cond_N

on−
responder

P
re_P

6_cond_N
on−

responder
P

re_P
12_cond_N

on−
responder

Cytotoxic CD8 −> Cytotoxic CD8−−HLA−F_CD8A

Cytotoxic CD8 −> Cytotoxic CD8−−HLA−A_CD8A

Cytotoxic CD8 −> CD8, T Effector Memory−−HLA−E_CD8B

CD8, T Effector Memory −> CD8, T Effector Memory−−CD99_CD99

Cytotoxic CD8 −> Cytotoxic CD8−−HLA−B_CD8A

Cytotoxic CD8 −> Cytotoxic CD8−−HLA−C_CD8A

Cytotoxic CD8 −> CD8, T Effector Memory−−HLA−F_CD8B

Cytotoxic CD8 −> CD8, T Effector Memory−−HLA−B_CD8B

Cytotoxic CD8 −> CD8, T Effector Memory−−HLA−C_CD8B

Naive T Cells −> Cytotoxic CD8−−LCK_CD8A_CD8B1

CD8, T Effector Memory −> Naive T Cells−−HLA−DPA1_CD4

CD8, T Effector Memory −> Naive T Cells−−HLA−DPB1_CD4

Cytotoxic CD8 −> Naive T Cells−−HLA−DPB1_CD4

Cytotoxic CD8 −> Cytotoxic CD8−−HLA−E_CD8A

Naive T Cells −> CD8, T Effector Memory−−HLA−E_CD8B

Cytotoxic CD8 −> Cytotoxic CD8−−HLA−E_KLRK1

CD8, T Effector Memory −> Cytotoxic CD8−−CCL4_CCR5

CD8, T Effector Memory −> CD8, T Effector Memory−−CCL4_CCR5

Cytotoxic CD8 −> CD8, T Effector Memory−−CCL5_CCR5

CD8, T Effector Memory −> CD8, T Effector Memory−−CCL5_CCR5

condition condition
Non−responder
Responder

−3

−2

−1

0

1

2

3

151



Heatmap of difference in number of interactions
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Overall aggregated gene expressions

knitr::include_graphics( system.file("extdata/figure",
"aggregatedgene_example_figures.png" , package = "scFeatures") )

154



1. Heatmaps shows the top aggregated gene expression features that differs between conditions

2. MA plot shows the expression and log2 fold change of the aggregated gene expression features

3. Volcano plot shows the log2 fold change and P-values of the aggregated gene expression features

4. PCA plot shows the separation of conditions based on the aggregated gene expression features

5. Dot plot shows the pathway enrichment of the top aggregated gene expression features that differs
between conditions

6. Enrichment map of the top aggregatedgene expression features that differs between conditions

7. Functional grouping of the top aggregated gene expression features that differs between conditions

Heatmap
## [1] "up regulated in Responder"
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MA plot

0

5

10

15

20

Cyto
tox

ic 
CD8 

−>
 C

yto
tox

ic 
CD8−

−H
LA

−E
_C

D8A

CD8,
 T

 E
ffe

cto
r M

em
or

y −
> 

Naiv
e 

T C
ell

s−
−H

LA
−D

PB1_
CD4

Cyto
tox

ic 
CD8 

−>
 C

yto
tox

ic 
CD8−

−H
LA

−B
_C

D8A

Var1

va
lu

e

cond

Non−responder

Responder

156



Volcano plot
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PCA plot
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Functional grouping
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Spatial metrics

knitr::include_graphics( system.file("extdata/figure",
"spatial_example_figures.png", package = "scFeatures") )

1. Heatmaps shows the top spatial features that differs between conditions

2. Boxplot shows the top spatial features that differs between conditions

3. PCA plot shows the separation of conditions based on the spatial features

Heatmap
## [1] "up regulated in WT"

160



L7C
N

89_D
1_cond_G

93A

L7C
N

90A
_D

1_cond_G
93A

L7C
N

91_D
2_cond_G

93A

L7C
N

32_D
2_cond_W

T

L7C
N

62_D
1_cond_G

93A

L7C
N

91_C
2_cond_G

93A

L7C
N

91_C
1_cond_G

93A

L7C
N

62_E
1_cond_G

93A

L7C
N

62_E
2_cond_G

93A

L7C
N

62_D
2_cond_G

93A

L7C
N

90A
_C

2_cond_G
93A

L7C
N

90A
_C

1_cond_G
93A

L7C
N

91_D
1_cond_G

93A

L7C
N

94_D
1_cond_W

T

L7C
N

94_E
1_cond_W

T

L7C
N

94_D
2_cond_W

T

L7C
N

32_E
1_cond_W

T

L7C
N

94_E
2_cond_W

T

L7C
N

94_C
2_cond_W

T

L7C
N

32_C
1_cond_W

T

L7C
N

32_D
1_cond_W

T

L7C
N

62_C
2_cond_G

93A

L7C
N

32_C
2_cond_W

T

L7C
N

32_E
2_cond_W

T

L7C
N

93_E
2_cond_G

93A

L7C
N

91_E
1_cond_G

93A

L7C
N

62_C
1_cond_G

93A

L7C
N

76_C
2_cond_G

93A

L7C
N

94_C
1_cond_W

T

L7C
N

89_D
2_cond_G

93A

L7C
N

91_E
2_cond_G

93A

L7C
N

89_E
1_cond_G

93A

L7C
N

90A
_E

1_cond_G
93A

Pum2

Rps5

Prx

Fam178b

Tsn

Drp2

Cpsf6

Ash1l

Rpl23a

Bcas1

Arhgef12

Rps23

Pcnp

Vtn

Zfp706

Rpl9

Igf2

Tm9sf2

Tmcc3

Tmsb4x

condition condition
G93A
WT

−4

−2

0

2

4

Boxplot
## [1] "up regulated in WT"

161



−0.05

0.00

0.05

0.10

Cps
f6

Tsn

Fa
m

17
8b

Var1

va
lu

e

cond

G93A

WT

162



PCA plot
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C.1 supplementary figures 165

Figure C1: Schematic of the stacked ensemble approach for deep learning. The neural
network is composed of a total of 11 subnetworks, each takes one feature
type as the input and performs feature extraction for that feature type. The
extracted features from each feature type are then concatenated and passed
through another network for feature extraction and final prediction.
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Figure C2: Performance of outcome prediction model on each dataset. Each data point
in the boxplot represents one F1 score. Each box is made up of 20 F1 scores
from the 20 repeated cross-validation performed on the individual dataset.
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Figure C3: Performance of outcome prediction model on each dataset. Each data point
in the boxplot represents one F1 score. Each box is made up of 20 F1 scores
from the 20 repeated cross-validation performed on the individual dataset.

Figure C4: Difference in median F1 between neural network, random forest and SVM.
For each feature type, we calculate the difference between the maximum
and minimum F1 score obtained by neural network, random forest and
SVM.
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Figure C5: Run time of each feature type for the five COVID-19 datasets. Run time
was recorded as the CPU time it took to train 20 repeated cross-validation
models for each feature type.
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Figure C6: Peak memory usage of each feature type for the five COVID-19 datasets. For
deep learning model, this was recorded as the sum of peak memory usage
from both CPU and GPU. For machine learning models, this was recorded
as peak CPU memory.
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Figure C7: Performance of outcome prediction model on the combination of five
datasets. Each data point in the boxplot represents one F1 score. Each box
is made up of 20 F1 scores from the 20 repeated cross-validation performed
on the combined dataset.



C.1 supplementary figures 171

Figure C8: The F1 score for different integration choices and method choices using the
ensemble feature type majority voting. Each data point in the boxplot rep-
resents one F1 score. Each box is made up of 20 F1 scores from repeated
cross-validation with 20 repetitions performed on the combined dataset us-
ing the ensemble feature type majority voting.
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Figure C9: Examination into the features for the different integration choices. We se-
lected patients in the 41-50 age group, and ran prediction model using
the concatenated features as input and SVM as the classification method.
We then obtained the rankings of the features based on feature importance
score. a compares the ranks of the features from different integration choices.
The heatmap in b plots the values of the top 200 features in each patient. The
patient is colour coded by the dataset to reveal any potential batch effect in
the features. c shows the PCA of the top 200 features, where each dot repre-
sents a patient, coloured by the dataset.
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c.2 supplementary tables

Table C1: Parameter search settings for the neural network structure. The numbers in
the bracket denote the number of nodes in the first layer and second layer of
the network.

Feature type Increase
both
layers

Increase
one
layer

Baseline Decrease
both lay-
ers

Decrease
one
layer

proportion raw, proportion
logit, proportion ratio

[50, 50] [50, 20] [20, 20] [20, 10] [10,10]

pathway mean, pathway
gsva, pathway proportion,
gene mean aggregated,
gene proportion aggre-
gated

[1000,
200]

[1000,
100]

[500,
100]

[500, 50] [200, 50]

gene mean celltype, gene
proportion celltype

[2000,
200]

[2000,
100]

[1000,
100]

[1000,
50]

[500, 50]
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