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Abstract

UNIVERSITY OF SYDNEY

Faculty of Engineering

School of Computer Science

Doctor of Philosophy

by Thilini N Dahanayaka

Encrypted traffic flows have been known to leak information about their underlying

content through statistical properties such as packet lengths and timing. While traffic

fingerprinting attacks exploit such information leaks and threaten user privacy by dis-

closing website visits, videos streamed, and user activity on messaging platforms, they

can also be helpful in network management and intelligence services. Most recent and

best-performing such attacks are based on deep learning models. In this thesis, we iden-

tify multiple limitations in the currently available attacks and defenses against them.

First, these deep learning models do not provide any insights into their decision-making

process. Second, most attacks that have achieved very high accuracies are still limited

by unrealistic assumptions that affect their practicality. For example, most attacks as-

sume a closed world setting and focus on traffic classification after event completion.

Finally, current state-of-the-art defenses still incur high overheads to provide reasonable

privacy, which limits their applicability in real-world applications.

In order to address these limitations, we first propose an inline traffic fingerprinting

attack based on variable-length sequence modeling to facilitate real-time analytics. Next,

we attempt to understand the inner workings of deep learning-based attacks with the

dual goals of further improving attacks and designing efficient defenses against such

attacks. Then, based on the observations from this analysis, we propose two novel

defenses against traffic fingerprinting attacks that provide privacy under more realistic

constraints and at lower bandwidth overheads. Finally, we propose a robust framework

for open set classification that targets network traffic with this added advantage of being

more suitable for deployment in resource-constrained in-network devices.
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Chapter 1

Introduction

The Internet is a network of networks that interconnects computer networks operated

by public, private, academic, business and government entities all over the world, en-

compassing a wide range of services including the World Wide Web (WWW), email

and file sharing applications. Initially developed in the 1960s by the United States De-

partment of Defense to enable time sharing between their computers, the Internet has

been growing fast, surpassing the expectations of the original designers of the underly-

ing Internet architecture. With the introduction of WWW in 1994, the Internet began

its exponential growth and has now become the key component of all communications

worldwide and a vital part of our day-to-day lives. By July 2021, the number of Internet

users worldwide reached 4.9 billion [1], which implies that by then, over two-thirds of

the global population was already connected to the Internet. With the contribution of

the exponentially increasing number of mobile device users and Internet of Things (IoT)

device deployments, and the expansion of social media usage, we can expect the Internet

to continue expanding at a rapid rate.

With the growth in variety and complexity of Internet traffic, service providers and net-

work administrators faced an increasing need to understand the type of traffic (or the

applications that generated the traffic) in their networks, which is known as Traffic Clas-

sification. Thus traffic classification facilitates optimizing network engineering, including

application-based service differentiation and content-sensitive pricing, and network man-

agement tasks such as traffic shaping, policy routing, and packet filtering. Furthermore,

traffic classification is also essential for detecting new forms of malicious traffic patterns

1



Introduction 2

which threaten legitimate services on network links. Finally, in contrast to entities aim-

ing for mere network engineering and management tasks, traffic classification can be

exploited by intelligence services to monitor and censor the Internet activities of the

general public, which raises major privacy concerns.

1.1 Traditional Methods of Traffic Classification

Traffic classification has been studied and carried out since the early 90s. The most

straightforward and therefore, most frequently used method of traffic classification used

to use transport layer (TCP and UDP) port numbers to map traffic to applications that

generated them. This method was based on the intuition that specific application types

are bound to specific port numbers and gave reasonably accurate results in the past.

However, with time, applications began using unpredictable ports because some new

applications have no IANA (Internet Assigned Numbers Authority) registered ports and

hence use already registered (to other applications), randomly selected, or user-defined

ports. In some cases, applications use unpredictable ports with the specific intention

of bypassing traffic classification. As a result, the traditional method of using port

numbers gradually became ineffective. Another approach for traffic classification was to

use the destination IP addresses. For example, if the destination IP address of a packet

is a well-known IP of a video content provider like Youtube, it can be inferred that the

network packet corresponds to video streaming. However, due to deployment of Network

Address Translations (NAT) caused by IPv4 address exhaustion, this approach is also

no longer effective.

As a result, researchers focused more on payload-based methods such as Deep Packet

Inspection (DPI), which inspects packet content to identify the associated application

or perform more complicated analysis tasks. Compared to using transport layer port

numbers, DPI poses significantly higher privacy risks as the actual payload/content

of network packets which are mostly transmitted in plaintext, are exposed to third

parties. For example, sensitive information that is transmitted via the Internet, including

banking details, health information, and other financial details, could fall into the hands

of adversaries who can perform DPI with minimum resources, such as simple packet

sniffing tools. In response to growing privacy concerns of general Internet users, End-to-

End Encryption (E2EE) which ensures that only the sender and the intended receiver
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with keys can access the plain text, was introduced to ensure the confidentiality of

Internet communications. E2EE was first introduced with SSL v1.0 (Secure Socket

Layer) and went through various improvements until it reached TLS v1.3 (Transport

Layer Security) which is currently in use (Figure 1.3). By mid-2021, more than 80% of

global Internet traffic was reported to be end-to-end encrypted [2]. Since DPI depends

on being able to access payload content, the increased deployment of E2EE rendered

DPI less usable. As a result, researchers faced a new challenge to devise novel techniques

to understand traffic types on networks using encrypted traffic.

On the other hand, side-channel leaks and related attacks have been studied for decades,

with documented attacks dating back to 1943 [3]. Side-channel information leaks can

be discussed under many contexts, such as information leaks through electromagnetic

signals, shared memory/registers/files between processes and CPU usage metrics, and

have been used in a wide range of tasks, including breaking cryptographic systems [4]

or inferring keystrokes in SSH [5]. However, in this work, we use the term side-channel

leaks in the context of encrypted communications only, where such information can be

leveraged by a network eavesdropper to infer valuable information from encrypted traffic.

To understand side-channel information leaks, we first pay attention to Figure 1.1.

Figure 1.1: Gift wrapped bike [6]

Figure 1.1 illustrates a gift, well wrapped using opaque wrapping paper covering the en-

tire object. However, regardless of the fact that the entire object is covered by wrapping

paper, anyone looking at it can easily guess that the gift is a bicycle. The reason is that

the crucial information about the object, such as its specific shape and size that can hint

at the object inside, is still visible. The same scenario can be seen with encrypted traffic

as well. Even though encryption ’hides’ the plaintext content of network packets by con-

verting them to unintelligible ciphertexts, features such as packet lengths and timing of
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the encrypted packets can reveal information about its underlying content. More specif-

ically, side-channel information of encrypted traffic flows, such as packet lengths and

timings, can reveal valuable information about encrypted traffic. Attacks that leverage

side-channel information for traffic classification over end-to-end encrypted traffic have

been used since the late 1990s [7].

Since the vast majority of current Internet traffic is end-to-end encrypted, and the

industry can be seen to be moving towards 100% deployment of E2EE for most com-

munications, from this point onward, this work will only cover traffic classification over

encrypted traffic using side-channel information leaks. Furthermore, as side-channel

information can be used to infer various types of information from different types of net-

work traffic types, and not only for mere traffic classification, in the subsequent sections,

we will refer to attacks that leverage side-channel leaks of encrypted traffic as Traffic

Analysis (TA) attacks.

1.2 Traffic Analysis Attacks

We define the term Traffic Analysis attack as the scenario where an attacker passively

eavesdrops on an encrypted channel and makes inferences about the user’s Internet

activities without any decryption. An example scenario of such an attack is illustrated

in Figure 1.2. Here we first consider Attacker 1 i.e., the network administration of a

local network of an institution (Company K) where users connect to the Internet through

the institutional network. Here, Attacker 1 is interested in knowing whether its users

visit restricted websites. First, the attacker will identify a set of websites frequently

visited by its users (including restricted websites) and capture his own network traffic

(encrypted) when visiting each of the websites in the identified list. Next, the attacker

will pre-process (normalizing and feature extraction) the data and use the processed

network traces labeled with the corresponding website to train a machine learning-based

traffic classifier to label the network traces correctly. Then, the attacker can passively

capture network traffic from its users, pre-process and feed the processed network traces

to the trained traffic classifier to correctly identify the website visited by the user. If the

user visits one of the restricted websites, the administration can take appropriate action

and otherwise, allow the user to browse uninterrupted.
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It should be noted that the above scenario is just one example and that the point of

eavesdropping and the purpose of the attack could be varied. For example, an attacker

who is interested in a specific user in Company K can either eavesdrop on the network

layer (same as Attacker 1 if he is someone with access, such as a network admin) or

simply do wifi packet sniffing. A similar attack can be carried out on an intermediate link

as well. Even though such an attacker would find it difficult to target a single user, the

attacker (ISP-level) can still target an enterprise network or a particular geographical

area. For example, Attacker 2 in Figure 1.2, an intelligence service agent eavesdropping

on the network link outside Company K can devise a similar attack as the local admin of

Company K and will be able to map specific website visits with the originating enterprise

network. Accordingly, in the example scenario, intelligence services can identify that

traffic originating from Company Q is harmless, while traffic from Company K includes

a connection to a blacklisted website. Moreover, the target of the TA attack can be

varied too. For example, if the attacker is interested in the user’s streaming activity

instead of their website visits, the attacker can isolate the video streaming traffic (using

IP addresses of content providers such as Youtube and Netflix) and follow an approach

similar to that of the scenario in Figure 1.2 to identify the specific video streamed by

the user.

blacklisted.com

google.com

Passive 
eavesdropping

Traffic Classifier
B Visiting 
google.comNetwork Administrator

User A

User B

Institutional 
Network of 
Company K

Intelligence services

Internet

Traffic Classifier

Company Q

Company Q visiting 
google.com

A Visiting 
blacklisted.com

Company K visiting 
blacklisted.com

Company K visiting 
google.com

Attacker 1
Attacker 2

Figure 1.2: Threat model

Most early works on TA attacks were based on traditional machine learning techniques

such as SVMs, Random forests, Bayesian models, k-Nearest Neighbor method and etc.
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For example, for website fingerprinting over Tor, SVMs [8], k-Nearest Neighbor classi-

fiers [9], Random Forest [10] and Bayesian models [11] were used in early works while

a Hidden Markov model was used for uncovering spoken phrases in VoIP conversa-

tions [12]. While these traditional machine learning models gave reasonable results with

relatively lower training costs, especially for a relatively small number of target classes,

they suffered from drawbacks such as lower accuracies and the dependence on manually

extracted features which require expertise on the behavior of specific traffic types. With

the rapid growth of Internet traffic, a growing amount of training data became available

for training TA attacks, and inspired by the success of deep learning techniques in other

domains like computer vision and natural language processing since 2012, researchers

explored the feasibility of using deep learning models for TA attacks. In most cases,

deep learning models do not require manually engineered features, and they have the

ability to achieve very high accuracies even in the presence of a very large number of

classes, given an adequate amount of training data.

The first attempt at using deep learning for TA was made by Wang [13], where a

Stacked Denoising Autoencoder (SDAE) was used for network protocol recognition on

encrypted traffic. Since then, multiple works have used deep learning methods such as

SDAE, Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and

Multi Layer Perceptron (MLPs) for various TA tasks such as website fingerprinting [14,

15], video stream fingerprinting [16, 17] and voice command fingerprinting on smart

speakers [18], recording over 90% classification accuracy.

A summary of the evolution of traffic classification and traffic analysis attacks, along

with events with a significant effect on such attacks, is given in Figure 1.3.

Even though TA attacks that leveraged deep learning methods achieved very high ac-

curacies, they still face challenges that limit their practical applicability. For example,

most TA attacks presented in prior work assumed that samples from all classes the

classifier might encounter after deployment is available at training, which is not real-

istic in the context of TA attacks due to the large number of target classes available.

On the other hand, the improvements in TA attacks increase the possibility of these

attacks being exploited by malicious parties to undermine privacy guarantees provided

by E2EE. Therefore designing low-cost defenses that provide adequate security against
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Figure 1.3: Evolution of traffic analysis

TA attacks while imposing minimum effect on the functionality of Internet-based appli-

cations is of significant importance. Towards this end, having a clear understanding of

the behavior of deep learning-based classifiers that are, in general considered black-box

attacks could be instrumental. The following sections will address these issues related

to deep learning-based TA attacks. First, Section 1.3 discusses defenses against TA

attacks, and then Section 1.4 explains how concepts in explainable AI can contribute

towards developing better TA attacks as well as defenses. Finally, Section 1.5 presents

how current TA attacks can overcome the limitations of closed set assumption with open

set classification.

1.3 Defenses against Traffic Analysis Attacks

As discussed earlier, traffic analysis attacks aim to infer important information from

encrypted traffic flows. While such attacks are useful for various network management

and malware detection tasks, they also pose a significant threat to the privacy of Inter-

net users, even in the presence of E2EE, as information about the underlying content of

encrypted traffic is exposed to third parties. For instance, Chen et al. [19] showed that

very detailed personal information such as illnesses and family income can be inferred

by simply observing the HTTPS traffic flows, which can cause significant security risks

to the victim. Accordingly, government intelligence agencies as well as third parties with



Introduction 8

malicious intents towards the users can use TA attacks to undermine privacy guaran-

tees provided by E2EE and hence, multiple research has explored possible mitigation

techniques against such attacks.

TA attacks are made possible by the side-channel information leaks of encrypted traffic

flows, such as packet lengths and timing, and therefore, the main goal of a defense

against such attacks would be to obfuscate the side-channel information of encrypted

traffic flows. If we refer back to Figure 1.1 where we explained side-channel information

using the analogy of a gift-wrapped bike, a mitigation technique there will try to hide the

specific shape and size of the wrapped bike. In this case, a naive way of hiding the shape

of the bike would be to put the bike inside a large box and then wrap that box. Even

though this approach completely hides the details of the bike from an observer, it should

be highlighted that it would incur a significantly high cost (i.e., we now need a large

box and much more wrapping paper than required to wrap the bike only). Similarly,

a defense against TA attacks aims to obfuscate the lengths and timing information

of encrypted packets and therefore, will either add dummy data into packets or split

existing packets before encryption to hide packet size and introduce delays for packet

transmissions to obfuscate timing information. Similar to the analogy of hiding the

details of the bike by putting it inside a box, using padding and packet delays incur

additional costs. More specifically, introducing dummy data into packet streams incurs

additional data overheads while time delays incorporated into packet streams cause

timing overheads which can result in severe degradation of user experience for some

applications like streaming services. Accordingly, a defense against TA attacks would

have to leverage either one or both of the above approaches but would have to explore

efficient approaches of doing so without becoming impractical to be implemented in

real-world scenarios.

One of the earliest works against TA attacks was BuFLO [20], which pads/fragments all

packets to a fixed length and sends packets at fixed intervals, which incurs significant

data and timing overheads. Later research [21, 22] attempted to improve the data

and timing overheads of BuFLO but did not succeed in reaching a level where these

defenses can be practically implemented in real-world scenarios. WTF-PAD [23], a

defense against website fingerprinting over Tor which provided reasonable privacy with

tolerable data overheads and zero timing overheads using adaptive padding, was chosen
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as a candidate defense and yet, was later proven ineffective against a recent deep CNN-

based attack Deep Fingerprinting [14]. More recent works such as FRONT [24], which

can be considered as the current state-of-the-art defense against website fingerprinting

over Tor, based its defense on specific traffic patterns of web surfing and focused on

adding more padding at the beginning of a trace thereby reducing the data overhead to an

acceptable level. It should be noted that a vast majority of defenses against TA attacks

focus on website fingerprinting over Tor, and defenses against other types of TA attacks

are scarce. Zhang et al. [25] explored the possibility of using statistical privacy to defend

against such video stream fingerprinting attacks but their methods incur significant

data overheads as well as timing overheads which affects the user experience of video

streaming and are less adaptable for DASH streaming.

Accordingly, it should be noted that further research is needed to defend Internet traf-

fic against TA attacks while incurring reasonable overheads that would not affect the

deployability of such defenses in real-world applications. And we propose that having

a better understanding of the deep learning-based classifiers that are frequently used in

TA attacks would lay a strong foundation towards this objective.

1.4 Explainable Artificial Intelligence

Even though deep learning models have achieved near-perfect results in various tasks,

very little is known about the inner workings of such models. Deep learning models in

general, are neither explainable nor interpretable and are often referred to as black-box

models as they provide no information about the reasoning behind their predictions. It

should be noted that even though a deep learning model gives near-perfect results for

a given task on a specific dataset, not knowing how the classifier arrives at its decision

or what exactly the model is learning can be unsafe in the long-term deploying of such

models in fast-changing environments with novel test data appearing quite frequently.

For example, in [26], DeGrace et al. discovered that most deep learning-based classi-

fiers used to detect COVID-19 using chest radiographs fail to learn the true underlying

pathology reflecting the presence of COVID-19 and instead learn ’shortcuts’ based on

spurious associations between the presence or absence of COVID-19 and radiographic

features that reflect variations in image acquisition. At the same time, not knowing the
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actual decision-making process of a model can cause distrust towards deploying such

models in real-world, safety-critical applications.

As a solution, researchers started exploring techniques that could help humans under-

stand the inner workings of deep learning models and their decision-making process.

This area of research became increasingly popular within the computer vision research

community, and one such attempt was Grad-CAM [27] which uses the gradients of a

given target label flowing into the final convolutional layer of the model to produce a

coarse localization map that highlights the important regions in the image for predicting

that label. In Figure 1.4 we show the results of using Grad-CAM1 on an Xception [28]

model trained on the Imagenet 2 dataset to visualize the pixels of an input image that

are most influential in predicting a specific class label. When Figure 1.4a was fed into the

model, the top two predictions were German shepherd and Rottweiler with class scores

of 0.35 and 0.14 respectively. We then used Grad-CAM to visualize which pixels that

are responsible for the class score for German shepherd, and as shown in Figure 1.4b,

the face of the German Shepard dog is, in fact most responsible. Similarly, when used

to visualize the same for the class Rottweiler, the result is Figure 1.4c where the Rot-

tweiler dog’s face is shown to be responsible for the class score for class Rottweiler. This

visualization is helpful in verifying that the model has correctly learned to focus on the

relevant area of an image to generate class probabilities.

(a) Original image (b) Result for class Ger-
man shepherd

(c) Result for class Rot-
tweiler

Figure 1.4: Sample result from Grad-CAM

This area of research became increasingly popular within the computer vision research

community, with researchers proposing multiple techniques such as Gradient Ascent [29],

Deconvolution [30] and Occlusion experiments [30] to visualize the patterns learned by

various filters from different depths of deep CNNs used in computer vision tasks. For

1https://keras.io/examples/vision/grad_cam/
2Imagenet: https://www.image-net.org/

Pre-trained model: https://keras.io/api/applications/xception/

https://keras.io/examples/vision/grad_cam/
https://www.image-net.org/
https://keras.io/api/applications/xception/
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example, using the above methods, prior work discovered that with most 2D CNNs used

in computer vision tasks, the filters from initial layers focus on very simple patterns,

such as the orientation of lines, while filters of deeper layers learn complex patterns [29].

A close study of recent TA attacks reveals that for most TA attack types, CNNs perform

best compared to other deep learning and traditional machine learning models [15, 16,

18]. When considering RNNs and CNNs, this observation can be counter-intuitive as

CNNs were mainly designed for image classification, whereas, for time series data such

as network traffic flows, RNNs were shown to be more successful in other domains

such as speech recognition and speaker identification [31, 32]. Accordingly, a better

understanding of the decision-making procedure of CNNs used for TA attacks would help

improve current TA attacks as well as develop efficient defenses against such attacks.

To the best of our knowledge, such analysis has not been done on TA attacks, and we

highlight the need for more research on to this area.

1.5 Open Set Classification

Although deep learning models have shown near-perfect results with classification tasks

in most domains, a majority of those models were evaluated in a closed set setting. A

closed set setting refers to a scenario where the classification model works under the

assumption that all possible target classes were available during training and aims to

classify each test sample into one of the classes seen during training. However, this closed

set scenario is not realistic due to a few reasons. First, given the large number of classes

present, it is not possible to include samples from all those classes at training time which

would increase the resource consumption of the model. Additionally, in most scenarios,

we are not interested in all possible classes but a subset of them, and trying to train

a model for all possible classes would be wasteful. For example, if we consider website

fingerprinting, we would not be interested in fingerprinting all possible websites available

on the world wide web but rather in identifying a subset of websites we are interested

in. Secondly, in the fast-evolving world, new classes would be introduced continuously,

and hence it is not possible to represent all possible classes during training time. For

instance, new websites are introduced every day, and it is expected that the training

set will not contain samples from websites introduced after model training. Due to the

above reasons, once deployed, classification models will encounter samples from classes



Introduction 12

not seen during training. In such a situation, the closed set classifier would assign those

samples from unseen classes to one of the classes it has seen during training, which could

be problematic.

First, let’s consider an example situation where we have a deep CNN network trained

to detect specific bird species with very high accuracy. We are only interested in de-

tecting the bird species Bluejay (A), Magpie (B) and Ostrich (C). Once deployed in the

natural environment, the model will encounter samples outside these three bird species

as illustrated in Figure 1.5. For example, the model will be presented with airplanes,

clouds, trees and animals in addition to the above three bird species. A model trained

in the closed set setting would classify any of these samples as one of the three targeted

bird species, which undermines the original purpose of the classifier. For the model to

achieve its expected goal, it should have the capacity to correctly detect any of the three

bird species while rejecting any inputs from other classes like trees, clouds or dogs.

A
B

C

Figure 1.5: Open set example

A more realistic scenario would be the open set scenario where the goal of the classifier is

to correctly classify samples from classes it has been trained on while effectively rejecting

any sample from previously unseen classes (open set). The most naive way of open set

classification would be to treat all open set classes as a single class (background class)

and train the classifier with an extra class using a few samples of the open set during

training. This method is based on the intuition that all open set samples have similar

characteristics and are different from any known class. However, this assumption is

not always true since an unseen class could have characteristics very much similar to

one of the known classes and significantly different from the samples used as the open

set during training. Hence, this method does not always work and has the additional

disadvantage of requiring a comprehensive subset of the open set for training.
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Another approach would be to assume that a classifier would give lower confidences for

samples from classes not seen during training and reject samples with lower prediction

(softmax) scores as open set samples. This method is called Softmax thresholding. How-

ever, default model training of deep learning models has a closed nature and does not

encourage a classifier to output higher prediction scores for the correct class. Rather it

just needs the prediction score of the correct class to be the highest out of all classes.

Accordingly, the assumption used in softmax thresholding might not be applicable to

all situations.

Since the above two naive methods have considerable drawbacks, researchers have faced

the novel challenge of developing better open set classifiers. The first key work on

open set classification with deep learning models; OpenMax [33], was proposed for the

computer vision domain. Afterward, several other methods [34, 35] were also proposed

by the computer vision community. However, to the best of our knowledge, all previous

work on network traffic domain that handled the open set did not explore beyond the

two naive methods, background class method and softmax thresholding [14, 15, 18].

Furthermore, there is no prior work studying the effectiveness of using open set methods

proposed in the computer vision domain on network traffic. Hence we emphasize the

need to study those methods with network traffic data and customize them to suit the

behavior of network traffic better. At the same time, open set classification in general

can be considered to still be in the early stages, and further research is required to

improve the open set classification results.

1.6 Structure of the Thesis

The rest of this thesis is structured as follows.

Chapter 2 presents related work under the categories: Traffic Analysis Attacks against

End-to-End Encrypted Traffic, Understanding CNNs and Open set Classification.

Chapter 3 first shows the feasibility of using DoH traffic for website fingerprinting

attacks and then presents a more practical Traffic Analysis Attacks on DoH Traffic un-

der realistic assumptions such as inline traffic classification, open set classification and
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working with network traces without explicitly knowing the start of the event.

Chapter 4 identifies the lack of prior work on understanding 1D convolutional networks

(which were observed to be the most successful for many TA tasks) and then explores

several approaches to understand the inner workings of traffic fingerprinting CNNs using

six different network traffic datasets. Finally, based on the observations from the above

experiments, it proposes two novel defenses against traffic analysis attacks on encrypted

network traffic.

Chapter 5 highlights the lack of prior work exploring the open set scenario in TA at-

tacks and evaluates the efficiency of using several key open set classification methods;

two naive methods and four methods proposed for computer vision domain, on encrypted

network traffic. This work also proposes a novel open set classification method leverag-

ing signatures built from neuron activations in deep learning models.

Chapter 7 concludes the thesis by summarizing the results and discussing possible fu-

ture directions of research.



Chapter 2

Related Work

With the exponential growth of internet communications, entities such as ISPs and net-

work administrators face an increasing requirement of understanding the behavior of

network traffic in their networks in order to perform various important tasks such as

network optimization and management, and application/content based service differen-

tiation. On the other hand, intelligence communities also need a way to understand

behavior and underlying patterns of network traffic, which reflects the behavior of in-

ternet users. Hence, Traffic Classification which refers to identifying type of traffic on

networks, emerged in the mid 90’s. In Chapter 1 we discussed how the techniques of

traffic classification evolved through the years, starting from port-based methods and

deep packets inspection until the machine learning/deep learning based current Traffic

Analysis (TA) attacks. As discussed in Chapter 1, our research mainly focuses on TA

attacks on encrypted traffic and defenses as a significant portion of current internet

traffic is end-to-end-encrypted. More specifically, our research attempts to get a better

understanding of the behavior of TA attacks and improve TA attacks and defenses to

better suit real world applications. Accordingly, in this section, we discuss in detail

about key relevant previous research under the following sub topics.

• Traffic analysis attacks on encrypted traffic

• Defenses against TA attacks on encrypted traffic

• Open set classification over deep learning models

• Understanding the behavior of deep leaning models

15
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2.1 Traffic Analysis Attacks

It has been known for a while that side-channel information such as packet lengths and

timings of encrypted traffic can leak important information about the underlying content

such as websites requested [7, 36] or sensitive user data such as health conditions, annual

income and investment details entered via web forms [19]. In this section, we present

previous work that introduces traffic analysis attacks targeting to uncover specific details

from encrypted traffic such as website visits, videos streamed and voice traffic.

2.1.1 Website Fingerprinting (WF)

Website fingerprinting refers to traffic analysis attacks that infer the websites visited

by a user, especially over encrypted traffic flows that are passively observed. A WF

attack can be considered as a supervised classification problem where each traffic trace

is considered as an instance to be assigned a label from the set of labels comprised of the

website domain names under a setting similar to that shown in Figure 1.2. It should be

noted that for most direct website visits (that do not use anonymizing approaches like

Tor or tunneling), the destination IP address itself can be used to identify the website

without resorting to traffic analysis. Therefore, most WF attacks presented after the

release of the anonymity network (Tor) focus on WF attacks over Tor (Figure 2.1), which

uses encryption (HTTPS) on top of providing anonymity. According to Figure 2.1 the

attacker eavesdropping on a user that uses Tor sees the IP address of the entry guard as

the destination IP and therefore, can not identify the website using destination IP only.

Therefore the attacker needs to leverage traffic analysis attacks to fingerprint websites

over Tor. These attacks can be broadly categorized into two types based on whether

the inference was done using entire HTTPS communications or just using the encrypted

DNS communications aiming to resolve requested websites.

2.1.1.1 HTTPS Traffic

One of the first studies on WF attacks was done in 1996, when Wagner et al. revealed

that when a web browser connects to a web server via an encrypted transport chan-

nel such as SSL, the GET request containing the URL leaks the length of the URL

requested, and along with the length of the HTML data received from the server, this
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Figure 2.1: WF attack over Tor network

leakage allows an eavesdropper to identify the website accessed by the user [7]. Andrew

Hintz [37] presented a successful implementation of a WF attack on Safe Web, which is

an encryption-based web proxy.

WF over Tor with traditional ML: Even though Tor has been one of the most

popular tools of web anonymity since its release in 2002, WF potential on Tor was

not studied until 2009. The first evaluation of a WF attack on Tor was performed

by Herrmann et al. [38] using a näıve Bayes classifier with the frequency distribution

of packet lengths as the feature set. Their attack was not effective and achieved a

classification accuracy of only 3%. Their failure was due to Tor’s use of fixed-sized (512

bytes) data units called tor cells to hide the unique packet lengths. In 2011, Panchenko

et al. [8] devised an improved WF attack using an SVM and additional features that

exploited burstiness of traffic (rather than packet length) and achieved a classification

accuracy of 55%. After their work, multiple works incrementally improved WF attacks

using better feature sets.

In 2014, Wang et al. proposed a novel attack using a k-nearest neighbor (k-NN) [39]

classifier, which achieved a significant improvement in classification accuracy compared

to previous work. For their model, the authors used a large, diverse set of features that

included packet ordering, packet concentration, the number of incoming and outgoing

cells and bursts in packets, which was believed to have contributed to the success of their

model. First, the authors formed a distance metric using a combination of weighted

features to measure the similarity between traces of two websites. The weights which

indicate the importance of each feature were learned from traffic instances in the training

set. Then, the authors used the learned weights to compute distance and identify nearest
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neighbors. This k-NN model achieved an accuracy of 91% in a closed world setting with

100 websites.

Two years later, Panchenko et al. proposed CUMUL [40], a model that used a Support

Vector Machine (SVM) with a Radial Basis Function kernel and achieved an overall

accuracy of 92% in a closed world setting of 100 websites. The authors derived the feature

set for the SVM using the cumulative sum of packet lengths computed by adding the

lengths of outgoing packets and subtracting the lengths of incoming packets. Regardless

of the high success rate of the attack, the authors pointed out that WF attacks cannot

scale when applied in a real-world setting because an adversary has to train the classifier

on a large fraction of all websites to achieve high accuracies. It is important to note

that the performance of the above SVM was evaluated on a novel dataset which was

the most realistic dataset at the time that represented the actual websites browsed in

the internet via Tor. The authors used trend links on Twitter, trends on Google, and

censored sites in China to collect the above dataset. Moreover, Panchenko et al. were

the first to distinguish website fingerprinting from webpage fingerprinting and evaluated

the fingerprintability of both single webpages and complete websites.

In the same year, another WF model k-FP, that achieved a similar performance was pro-

posed by Hayes and Danezis [41]. k-FP used a Random Forest Classifier to encode a new

representation of the monitored sites using a combination of features from prior work

and timing information such as the number of packets per second. The output from the

Random Forest Classifier was then fed into a k-NN classifier for the actual classification.

It should be noted that k-FP is the first WF model that considered timing features. As

a part of their study, Hayes and Danezis analyzed and ranked the importance of the

features used in their model. The rankings revealed that the number of packets in a

sequence leaks more information about the identity of the webpage compared to complex

features like packet ordering and inter-packet arrival time.

Drawbacks of using traditional ML for WF: As discussed above, the success of

the above WF models largely depended on manually selecting better feature sets, and

the reason for this is because all above methods use traditional machine learning tech-

niques where manual feature engineering is an important step. Feature engineering is

a process that finds a representation of raw data that projects characteristics that are
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most relevant to the learning problem. Several previous work [20, 42] have also proved

that feature engineering is more important in traditional ML models than the choice of

specific machine learning algorithms. Accordingly, all the above work on WF focused on

feature engineering in order to compose and select the most relevant features for website

identification, making the above attacks highly sensitive to changes in traffic patterns

that affect the selected features. As a result, most countermeasures in the Tor network

that focused on concealing specific features were sufficient to defend against such at-

tacks. The vulnerability of the above attacks to minor changes in traffic patterns, along

with costly manual feature engineering rendered such WF attacks less realistic.

WF over Tor with deep learning: As a solution to the weaknesses of traditional

ML techniques, researchers explored the potential of using Deep Learning (DL) for WF

attacks. The principle motivation for their choice came from the recent success of DL

techniques in other domains such as image recognition and speech recognition [43, 44],

and the capability of DL to automatically extract and learn effective features that are not

easily discovered or understandable by humans as opposed to manual feature engineering

used with traditional ML models.

The first work to apply DL for WF attacks was done by Abe and Goto [45] in 2016.

The authors developed the attack based on Stacked Denoising Autoencoders (SDAE)

and trained the model on raw packet directions, denoted by a sequence of 1’s (outgoing

packets) and -1’s (incoming packets). The performance of the SDAE model was eval-

uated on Wang-kNN’s dataset, and the model achieved an 88% accuracy in the close

world setting. The low performance of the model compared to the state-of-the-art tra-

ditional models was attributed to the limited number of training examples used in the

experiment, even though DL models are known to require large datasets for training.

In 2017, Rimmer et al. proposed using deep learning to devise a website fingerprint-

ing attack with the intention of leveraging the capability of deep learning techniques

to exploit several layers of non-linear mathematical data transformations for automatic

hierarchical feature extraction and selection [15]. Since the main reason for the low per-

formance of the above SDAE model was the lack of sufficient training data, the authors

first focused on generating a larger dataset. Their dataset which was the largest WF

dataset gathered to date, comprised of traces for 900 websites with 2500 traces per web-

site for the closed world setting, 400,000 unknown websites, and 200 monitored websites
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in the open world setting. The authors evaluated the performance of traditional WF

attacks on their new dataset and identified that the CUMUL attack was the state-of-

the-art among them. Next, Rimmer et al. implemented three deep learning models,

namely SDAE, Convolutional Neural Network (CNN) and Long-Short Term Memory

(LSTM), and compared their performance with each other and against CUMUL. The

results of the experiment revealed that all the models using the deep learning approach

were more robust against web content changes than CUMUL, while achieving a similar

performance of approximately 95%. Specifically, LSTM model was observed to be twice

as robust as CUMUL against changing web content, and SDAE showed better results

on a large close world dataset than CUMUL. The authors also identified that among the

three DL models, SDAE had the best overall performance while CNN was the fastest

to train (fewer learnable parameters) though it had a higher risk of overfitting. LSTM

was the slowest but showed the best generalization capabilities. However, the LSTM

model’s constraint in backpropagation had adverse effects on the model’s performance

on long traffic traces.

In 2018, Sirinam et al. developed a WF attack named Deep Fingerprinting [14] using a

CNN model which performed better than [15]. Compared to [15] their DF model used

a more sophisticated variant of CNN with more convolutional layers, better protection

against overfitting, hyperparameters that vary with the depth of each layer, activation

functions tailored to their input function, and a two-layered fully-connected classifica-

tion network. The authors evaluated the performance of Deep Fingerprinting against a

dataset of 100 websites with 1000 traces per site and achieved an accuracy of 98% in

the closed world setting. Hence, DF can be considered the state-of-the-art classifier in

website fingerprinting.

More recently, Sirinam et a.l [46] explored the use of N-shot learning for website finger-

printing, with the main objective of reducing the amount of training data required. Their

work used a triplet network with the CNN from [14] as the base model and achieved

up to 95% accuracy using only 20 traces per website. Furthermore, they compared the

performance of their model against a transfer learning scenario and showed that N-shot

learning is more efficient at handling less training data compared to transfer learning.
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Table 2.1: Summary of WF

Attack Classifier Feature set Number
of
classes

Accuracy Open set

k-FP [41]
2016

Random
forest

Packet length and tim-
ing

100 90.00% N/A

CUMUL [40]
2016

SVM Cumulative sum of
packet lengths

100 93.00% N/A

AWF [15]
2018

CNN Packet direction 900 91.79% Binary classification
with softmax threshold-
ing

DF [14]
2018

CNN Packet direction 95 98% Background class

Triplet Fingerprinting
[46] 2018

CNN Packet direction 100 94.5% Background class

Var-CNN [47]
2018

CNN Cumulative features of
packet size, number
and timing

900 99.0% Background class

2.1.1.2 Encrypted DNS Traffic

Domain Name System (DNS) translates human-readable domain names to numerical IP

addresses. The fact that the domain names that the users are requesting to resolve are

sent out in plain text has been considered a significant privacy threat on the internet

for a long time. As a result, several proposals such as DNS over TLS [48], DNS over

QUIC [49], DNS over HTTPS [50] were made to use encryption as a means to ensure the

privacy and confidentiality of DNS requests and responses. However, later research dis-

covered that encrypted DNS traffic is also prone to side-channel attacks and as a result,

the statistical properties of the DNS packet flows can be used to predict the websites

that are being visited by the users with high accuracy.

WF over Tor with DoT traffic: Early work by Shulman [51] investigated side-

channel privacy leaks of DoT. However, the work focused on using the destination IP

address of the name server as the side-channel. Since name servers often host multiple

zones, the author argued that the risks are limited. Nonetheless, Shulman pointed out

that the implementation of encryption alone is not adequate for protecting the privacy

of DNS. Hence, the use of padding for encrypted DNS traffic flows was introduced and

standardized [52, 53]. More recently, several other works [54, 55] attempted more realistic

attacks that depend only on the destination IP addresses for website fingerprinting while

handling website co-location and the dynamics of domain–IP mappings.
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Houser et al. [56] studied website fingerprinting attacks that exploited information leak-

age of DoT. The authors extracted high-level features (e.g., DNS query or response

lengths and time intervals) from DNS flows and calculated summary statistics (e.g.,

mean and maximum) to train a Random Forest classifier for webpage category iden-

tification (e.g., health insurance, dating and gambling) and an AdaBoost classifier to

identify individual webpages. The authors tested both padded and un-padded data.

The model for identifying individual webpages reported a 2.5% FNR for un-padded

data and a 17% FNR for padded data. Nonetheless, this work did not consider the

open set traffic classification problem. Also, all the classifiers operated on the full trace

length.

WF over Tor with DoH traffic: Siby et al. [57] explored website fingerprinting

using DoH traffic flows. The authors used a concatenation of uni-grams and bi-grams

of sizes and directions of TLS records and bursts as features to train a Random Forest

classifier that achieved an F1 score of 0.898 in a closed set setting. The authors also

evaluated their attack on data with EDNS(0) padding and discovered that padding is

not as effective in strengthening DoH privacy since they still could achieve an F1 score

of 0.71 on padded data. The authors handled the open set scenario by training a binary

classifier to make the initial decision of whether a given trace belongs to a monitored

(known) or un-monitored (open set) set and achieved an F1 score of 0.7.

2.1.2 Video Streaming Fingerprinting

According to Cisco’s Visual Networking Index, online video traffic would account for

80% of all web traffic by 2019. Adaptive Bitrate Streaming (ABS) based on HTTP is

gradually becoming the major market of video streaming due to its advantages of flexi-

bility and infrastructure-friendly property. By splitting videos into segments of multiple

quality levels (bitrates), ABS enables a smart client-driven bitrate adaptation. Dynamic

Adaptive Streaming over HTTP (DASH) is a representative implementation of ABS that

has been an international standard since 2011 and is widely used by leading companies

of video streaming such as YouTube, Netflix, Amazon, and Vimeo. A video in DASH is

first encoded into multiple copies of different quality levels with respect to bit rate and

resolution using Variable Bit-Rate (VBR) encoding, and each copy of a video is split into

segments of a fixed length of playback time and stored in web servers. When streaming a
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video, a client will request a video segment in a certain quality level for playback depend-

ing on the current network condition. It is observed that such a mechanism in DASH

results in distinct traffic patterns due to segment-based transmission and segment size

variation of VBR, which can be used to devise a side-channel video identification attack.

A video fingerprinting attack can be considered as a supervised classification problem

where each traffic trace (corresponding to streaming a given video) is considered as an

instance to be assigned a label from the set of labels that comprises of the video titles

under a setting similar to that shown in Figure 1.2. The popularity of video streaming

intensifies the seriousness of such traffic-based information leakages.

Pre-computed fingerprints for video streaming: A. Reed and B. Klimkowski per-

formed one of the first comprehensive studies of side-channel information leaks in video

streaming services [58]. The authors presented an attack that is capable of identifying

the Netflix video being streamed over a secure WPA2 wireless connection (802.11n) with

high accuracy in less than five minutes. The attack was based on the observation that

the combination of DASH and VBR produces sequences of video segment sizes that are

unique for each video. The authors used a script to extract the metadata URLs for

each quality level of a video from the HTTP GET requests sent by the Silverlight player

and downloaded all metadata to calculate the segment sizes of each video. The results

were then used to create a database of fingerprints for a video’s multiple encodings. Fi-

nally, the authors used an algorithm implementing a 6d tree to match captured network

traffic to video segments in their fingerprint database and achieved an accuracy over

90%. In [59], A. Reed and M. Kranch improved the above attack by A. Reed and B.

Klimkowski by fully automating the process of creating fingerprints to generate a larger

collection of Netflix fingerprints (fingerprints for 42027 Netflix videos) which was then

used to conduct a robust assessment of the attack. Using a similar approach to [58]

on the new dataset, the authors were able to identify HTTPS-protected Netflix videos

using IP/TCP headers obtained from passive capture of network traffic in less than 2.5

minutes into the video and achieve an identification accuracy over 99%.

In order to explore whether YouTube video streams playing over HTTPS-protected con-

nections are vulnerable to the same kind of attacks illustrated in [58] and [59], Melcher

Stikkelorum developed an algorithm named WARP (WARP Arrangement Rewarding

Pipeline) [60]. The algorithm used state machines to match video segments and reward
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well-ordered segments. When evaluated on a small dataset, the algorithm reached 80%

accuracy on the detection of videos in a playlist and 88.9% for separately played videos.

However, the author recognized the requirement to perform more experiments on larger

datasets to determine the performance of WARP on larger datasets.

Video stream fingerprinting with deep learning: The first application of Deep

Learning in the context of identifying videos streamed over encrypted channels was

performed by Schuster et al. [17]. The authors observed that most of the previous

work [58, 59] generated many false positives and also were not robust to noise in the net-

work. As a solution to the above issues and to be able to process lower-level features and

construct a more complex model to characterize the network traces of a given video, the

authors proposed using a CNN. The authors defined the problem as a supervised learn-

ing problem where each training instance is a traffic measurement of streaming a video,

labeled with its correct class, which is the identity of the video. The CNN model used

comprised three convolution layers, max pooling, and two dense layers and was trained

using an Adam optimizer on batches of 64 samples using categorical cross-entropy as

the error function. In order to evaluate the performance of the model, a novel dataset

was also created. The authors collected traffic traces on Netflix, YouTube, Amazon,

and Vimeo and, from each captured TCP flow, extracted the time series of down/up/all

bytes per second (BPS), down/up/all packet per second (PPS), and down/up/all aver-

age packet length(PLEN). Using the CNN model described above, the authors trained

separate classifiers for each video streaming service and each feature type. The results

revealed that all classifiers achieved accuracies above 96% with very low false positive

rates (when fed with the trace of a previously unknown video, the classifiers identified

that the video was not seen before with high accuracy). Since it is not practical for an

adversary to collect traces to train the model from the same local network as the victim,

the authors also evaluated the performance of their classifiers on test data which were

collected by streaming videos via a local network different from the network used to

collect the training set, achieving an accuracy of 98%. This result confirmed that the

model was robust to changes in the network conditions.

In 2018, Li et al. investigated the effectiveness of using traffic analysis on wifi traffic

(encrypted at both network and MAC layer) to identify video streaming content [16].

Most works prior to their research had used network layer traffic and hence had access to
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metadata such as IP addresses of source and destination, which can be used to identify

separate traffic flows accurately and conveniently. Accordingly, one of the major chal-

lenges for the authors was the absence of statistical properties of traffic flow and other

metadata. Despite these challenges, the attack model developed in the research achieved

a similar performance (above 97% accuracy) while using fewer resources compared to

the CNN model [17], which was the state of the art for traffic analysis attacks on video

streams using IP traffic. The authors implemented three neural network architectures;

CNN(same as state of the art for comparison), RNN and MLP, and measured their

performance with respect to classification accuracy and resource consumption (time and

computational power). The data set used for the experiment was obtained by capturing

wifi traffic from a laptop that repeatedly streamed the same ten videos. Using MAC

layer parameters such as frame size, frame type, duration, MAC source and destination,

the captured packets were first filtered to separate data frames, and later the separated

data frames were grouped as uplink, downlink and combinational. The features gener-

ated from this dataset included the number of packets in a dataframe, the number of

bytes in a dataframe, min, max, average, and variance of packet size. The results of

the experiment revealed that all three models performed approximately the same with

respect to accuracy. Specifically, the MLP model was faster to train and used much

less resources compared to the other two models. However, the models developed do

not apply to a real-time TA attack since the dataset used corresponded to the first

three minutes of streaming a video and a real-time attack would require performing

the identification using traffic corresponding to a much smaller interval of the video.

Furthermore, they assumed a scenario where the streaming videos do not contain ad-

vertisements, which is a deviation from the real-life scenario. Having advertisements

changes the traffic patterns of streaming a video and hence affects the performance of

the models.

2.1.3 Voice Traffic Fingerprinting

Since the early 2000’s Voice over IP (VoIP) has become increasingly attractive as an al-

ternative to traditional phone services provided by Public Switched Telphone Networks

(PSTN) due to low cost and richer features. With applications like Skype, WhatsApp,

Viber and Telegram seeing exponential growth in recent years, encryption is used to
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ensure confidentiality of the content of voice traffic.

Traffic analysis on VoIP: In 2007, Wright et al. [61] showed that VoIP packets are

compressed with variable bit rate (VBR) encoding schemes to save bandwidth before

being encrypted with a length-preserving stream cipher which can be used to determine

the language of the encrypted conversation. A year later, Wright et al. [62] used a profile-

hidden Markov model trained with speaker and phrase-independent data to detect the

presence of specific phrases in VoIP calls with an average recall and precision of 50%

and 51% respectively, for a wide variety of phonetically rich phrases spoken by a diverse

group of speakers. In 2010, Wright et al. [12] extended their previous work to show how

noise, dictionary size, gender, and audio quality affect the performance of the techniques

proposed in [62].

Zhu and Fu [63] proposed a method that extracts application-level features from en-

crypted traffic flows, which is then used in a class of passive traffic analysis attacks on

Skype VoIP calls. The extracted features are then used to train a Hidden Markov Model

(HMM) that can detect spoken phrases or individual speakers.

Fingerprinting voice commands on smart speakers: Smart speakers, such as

Amazon Echo, Google Home and Apple HomePod, are being increasingly adopted in

households all over the world. If revealed to an outsider, a user’s interactions with

a smart speaker can expose private and personal information about them and their

lifestyle. Wang et al. [18] observed that the content of a response from the corresponding

server to voice commands given via smart speakers is correlated with the voice command

and therefore can be leveraged to identify specific voice commands despite encryption.

More specifically, they proposed a CNN based attack that can identify specific voice

commands given to a smart speaker with over 90% accuracy by simply eavesdropping

on a victim’s WiFi network to capture encrypted traffic.

2.1.4 Traffic Analysis Attacks on Messaging Apps

During the past decade, instant messaging services have become the most dominant form

of communication in the world with over tens of millions of messages, photos and videos
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exchanged each day. For example, Whatsapp which owns the largest market share in

the world for instant messaging, handled 55 billion messages, 4.5 billion photos, and

one billion videos per day by 2017 [64]. Despite most of the instant messaging services

using E2EE to ensure the privacy of their customers, the side-channel information leak

of the encrypted traffic flows of such instant messaging services still pose a threat to

user privacy.

Coull et al. were one of the earliest research groups to explore the potential of traffic

analysis attacks on encrypted instant messaging services [65]. Focusing on the encrypted

traffic of Apple iMessage, the authors investigated the possibility for an eavesdropper

to learn information about user actions, the language of messages, the length of the

message and the operating system running on the device of the user by passively moni-

toring streaming iMessage traffic to or from Apple servers. The authors used a binomial

näıve Bayes classifier (from Weka machine learning library) that used packet length and

direction as features and identified the OS of the observed device with 100% accuracy.

The authors also observed that the stable and deterministic nature of packet lengths

corresponding to most user actions in Apple iMessage (start, stop, text, attachment

(image), and read) renders the use of probabilistic classifiers unnecessary to identify

user actions and therefore used a hash-based lookup table to identify the user action

with approximately 99% accuracy. Furthermore, the authors were also able to iden-

tify the language of the message using the Weka multinomial näıve Bayes classifier and

achieve an accuracy of 93%. The distinct traffic features of the unique mix of character

sets used to encode each language exposed by the corresponding encrypted traffic flows

were identified as the reason for the success of the classifier. Moreover, the authors

performed similar experiments on other instant messaging services (such as Whatsapp,

Viber, and Telegram) and discovered that these services were also vulnerable to traffic

analysis attacks regardless of using E2EE.

While most TA attacks proposed in previous work recorded near-perfect results, we have

observed that they were under assumptions that are less realistic for real-world appli-

cations. Therefore our research aims to improve the attacks by introducing concepts

such as open set classification and inline traffic classification which makes them more

practical for real-world scenarios.
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2.2 Open Set Classification over Deep Learning models

In Section 1.5 we discussed how deep learning models do not recognize samples from

classes not seen during training (unknwons or open set) and would simply treat them

as one of the known classes (closed set or classes seen during training). In real-world

applications it is not possible to train a model on all possible classes and therefore, it

is important that deep learning models be able to detect open set samples. Open set

classification corresponds to a multi-class classifier that can correctly classify samples

from known classes (closed set) while also effectively detecting and rejecting open set

samples. Open set classification is a key requirement for TA attacks as well, because the

Internet is a fast-evolving environment with a large number of classes and an attacker

is mostly interested in a small subset of it. While we note that there has been prior

work done on open set classification over traditional machine learning methods such

as SVMs [66, 67], since the majority of recent TA attacks are based on deep learning

models, we will focus only on methods that support deep learning models. We will first

discuss the few works that attempted to handle open set classification on network traffic

using naive methods and then present key open set classification techniques developed

for the computer vision domain and discuss their applicability to encrypted network

traffic.

Naive methods: One of the naive methods of open set classification is softmax thresh-

olding. The majority of current deep neural networks use softmax activation in the

last layer to obtain a probability vector representing the confidence of a given sample

belonging to each known class. Softmax thresholding-based open set classification is

based on the intuition that any model trained on a set of classes will output a very

low softmax score (confidence) for samples from the open set. More specifically, this

method simply uses a threshold over the softmax probability score of the predicted class

and rejects samples with a probability lower than the threshold as open set samples.

Additionally, the attacker may use a small dataset from known unknowns to decide the

threshold value to obtain a preferred balance between closed set accuracy and open set

accuracy. Nonetheless, since the softmax activation skews the output probabilities to fa-

vor the class with the highest probability and the training procedure does not explicitly

push the model to output low confidences for open set samples, this method cannot be
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expected to always work. For example, it is known that neural networks have very high

confidence even if they make a wrong prediction [33]. Rimmer et al. [15] is one example

work where softmax thresholding was used in traffic classification to handle the open

set.

Background class method is another naive method that assumes that a subset of the open

set (i.e., samples from known-unknown classes) are available during model training, and

are combined to form a single known-unknown or background class. Given an input, the

classifier learns either to put it into one of the known classes or to the background class,

essentially making an n class classification problem into an n + 1 class classification

problem. The background class method is based on the strong assumption that all

the samples from unknown classes will have similar characteristics as the samples from

known-unknown classes. This may not necessarily be true all the time. There might

be samples of unknown-unknown classes that are closer to the known classes than the

combined representation of known-unknown classes. Works in traffic classification such

as [14, 68] used this method to tackle the open set problem.

Ensemble learning: Wang et al. [69] proposed using ensemble learning on top of

softmax thresholding as a way of handling open set traffic classification for website fin-

gerprinting. More specifically, the authors assume that combining the outputs from

multiple model instances that would have learned different sets of features can help the

overall model generalize better towards unknown data as opposed to a single model.

Accordingly, the authors use a threshold on the averaged output from N different model

instances to build an open set website fingerprinting attack. During model training, a

dynamic learning rate is used to separate model locations in the loss function by imme-

diately increasing the learning rate at fresh starts, so that the learning point displaces

by a large distance resulting a new model having different set of parameters and learning

different set of features. Additionally, authors use squeeze and excitation layers as an

attention technique to weight features according to their effectiveness to the final result

and increase the robustness of the model and separable convolution layers to reduce the

computational cost.

Even though work in traffic classification has mostly used the above naive methods, other

domains such as computer vision have developed more advanced open set classification
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methods, and we will next discuss a few key works. We first discuss methods that do

not require open set samples for training.

Distance-based methods: One of the first works that explored open set with deep

neural networks proposed OpenMax [33]. The key idea behind OpenMax (and its vari-

ants [70, 71]) is to leverage the fact that the penultimate layer output of deep neural

networks is a representation of relationships between classes in the closed set and open set

samples will have anomalous behaviors. OpenMax uses Extreme Value Theory (EVT)

modeling on the distance between a given sample and the mean of its predicted class in

the space represented by the prenultimate layer to identify open set samples. Since it

only depends on the distance between a sample and the means of known classes, it has

the added advantage that it does not require samples from the open set during model

training at all. Later Webb [72] explored the possibility of using OpenMax for traffic

classification and required modifications to the method to adapt it to network traffic.

In 2021, Miller et al. proposed Class Anchor Clustering [34] which uses a novel loss

function to force samples from the same known class to cluster closer to pre-defined

class anchors in the space denoted by the output vector from the classifier model. To

achieve this goal, the model replaces the softmax layer with a novel layer that calculates

distances between a given sample and each of the anchors of known classes so that the

loss function can reflect how far each sample is from its actual class anchor and how

close it is to anchors of other classes. Similar to OpenMax, class anchor clustering does

not need known unknowns during training time. To the best of our knowledge, this

method has not been tried on traffic classification data.

Reconstruction loss-based methods: In 2019, Oza et al. proposed Class Condi-

tioned Auto-Encoder for Open-set Recognition (C2AE) [73], which used a combination

of reconstruction loss from a class-conditioned autoencoder and EVT modeling on the

reconstruction loss to distinguish between closed and open set samples. This was based

on the intuition that the autoencoder will do an accurate reconstruction of closed set

samples while it will not do a good job in reconstructing open set samples. The re-

construction loss of the autoencoder model is defined such that the decoder is forced to

perfectly reconstruct the original input when conditioned on the label matching the class

identity of the input, while poorly reconstructing the original input when conditioned
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on a label that does not match the class identity of the input. Later, EVT modeling is

used to decide the threshold on the reconstruction loss which would be used to reject

open set samples.

In the absence of open set samples (known unknowns) for training, using generative

models to generate known-unknown samples and use them during training to improve

the differentiation between the closed set and open set samples is another approach to

handling the open set. We next discuss methods that followed this approach to model

the open set.

Generative methods: Lee et al. [74] proposed a joint confidence method that used

known unknown samples generated by a Generative Adversarial Network (GAN) [75] to

restrain the overconfidence problem of a classifier [33, 76, 77], which is a known artifact of

softmax activation. Instead, this method implicitly calibrates the softmax score through

model training with a joint confidence loss. This method introduced known-unknown

samples generated by a GAN into training and jointly trains the classifier and the GAN

model with an integrated loss (i.e., the joint confidence loss) that includes cross-entropy

loss, original GAN loss, and Kullback–Leibler (KL) loss between the softmax output and

the uniform distribution. The cross-entropy loss item is the basic item of a classifier.

The GAN loss is utilized to generate the most effective known-unknown samples. The

KL loss forces the open set samples to be less confident. Again, to the best of our

knowledge, this has not been adapted to traffic classification data.

In 2017, Ge et al. proposed G-OpenMax [71], which extended OpenMax by using Gen-

erative Adversarial Networks (GANs) to synthesize samples from the open set. More

specifically, the authors used samples generated from mixture distributions of known

classes in the latent space of the GAN, which leads to plausible representation with

respect to the known class domain. Such explicit representation of unknown classes

enables the classifier to locate the decision margin with the knowledge of both known

and unknown samples, thus resulting in better results.

The literature on open set classification also includes methods that operate under the

assumption that samples from a subset of unknown classes (open set) which are repre-

sentative of the entire open set are available during model training. The background
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class method we discussed earlier was a naive method that followed this approach.

Methods using the open set for training : Dhamija et al. [35] proposed using En-

tropic Open-Set Loss which aims to produce equal softmax scores for all classes for open

set samples. The authors had also observed that open set samples generally have lower

feature magnitudes and proposed Objectosphere Loss, which includes Entropic Open-Set

Loss while additionally forcing open set samples to have lower feature magnitudes. To

this end, the authors assumed that a small subset of the open set (known unknowns) is

available at model training and used Objectoshpere loss during model training to effec-

tively identify open set samples.

In the diagram below, we visualize a summary of key open set methods we have dis-

cussed in this section.

Open Set Classification Methods

Generative Models [71, 74]

Non-Generative Models

Open Set for Training [35]

No Open Set for Training

Reconstruction loss-based [73]

Distance based [33, 34]

As discussed previously, to the best of our knowledge, all work that handled open set in

the network traffic domain depended on naive methods while all novel methods of open

set classification were proposed targeting computer vision domain. In our research, we

explore the adaptability of such methods to the network traffic datasets and evaluate their

performance using several encrypted network traffic datasets.

2.3 Understanding CNNs

As discussed before, despite their state-of-the-art performance, deep learning models

are often considered black-box models as the model provides very little information
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regarding their decision-making procedure. Understanding this decision-making process

of a deep learning model is very important due to many reasons such as verifying the

model is doing what it is supposed to be doing before being deployed in mission-critical

applications, identifying possible weaknesses in the model that can be exploited by

adversaries, and so on. When studying previous literature on understanding the inner

working of deep learning models, we noted that most work had been done related to

2D CNNs, which are extensively used in computer vision applications. In this section,

we present a few key works that attempted to understand the behavior of deep learning

models.

2.3.1 Retrieving inputs that maximally activate a neuron

Erhan et al. [29] proposed that a maximal activation of a neuron is caused by the pattern

of the input it is most sensitive to. Accordingly, the authors suggested that finding and

visualizing inputs from the dataset that causes maximal activation of a given neuron of

a CNN can help understand what patterns the unit is looking for. Girshick et al. [78]

followed this approach and fed a large set of images to an AlexNet and used the inputs

that corresponded to the highest activations of a selected filter to visualize the features

in the images that the filter is sensitive to. For example, some filters in the 5th pooling

layer were identified to be sensitive to concepts such as people or material properties.

Nonetheless, this method requires a manual inspection to identify common patterns in

selected inputs.

2.3.2 Gradient-based approaches

To overcome manual inspection, Erhan et al. [29] proposed that rather than using ex-

isting inputs from the dataset, gradient ascent can be used to generate an input that

maximizes the activation of a given unit of a CNN. This method feeds a random noisy

sample into the network and the gradient vector of the selected unit is back-propagated

back to the input image. This process is repeated to generate an input sample that max-

imizes the activation. Simonyan et al. [79] used gradient ascent to visualize class models

(input image which maximizes the score for a selected class) learned by CNNs. Zeialer

et al. [30] and Dosovitskiy et al. [80] demonstrated similar ideas using Deconvolutions.
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2.3.3 Occluding parts of the input

Zeiler et al. [30] suggested that if covering up a certain portion of an image causes

significant changes to the output of a neuron of a deep learning model, we can consider

that the neuron is sensitive to the content in the covered part of the image. Based on this

idea, Zeiler et al. [30] demonstrated the capability of an image classifier CNN to localize

the object of interest inside an image by gradually covering portions of the input image

with a grey square and monitoring the resulting class scores. It was observed that the

occlusion of the object of interest caused a significant reduction in the class scores of the

corresponding object, as well as notable reductions in activations of neurons that were

previously identified as sensitive to the occluded object. In Figure 2.2 we demonstrate

this idea using a pre-trained VGG191 model trained on Imagenet. We iteratively covered

12x12 pixel areas of Figure 2.2a before it was fed to the model and observed the class

score for its original label flamingo.2 We show the result in Figure 2.2b as a heat map.

We observe in Figure 2.2b that the class score is only affected when sections of the

flamingo is covered, which reveals that the decision of the classifier is mostly influenced

by the target object in the figure.

(a) Original image (b) Occlusion result

Figure 2.2: Sample result for occluding parts of image

We observe that most of the prior work on understanding the underlying behavior of

deep learning models was done in the domain of computer vision, focusing on 2D convo-

lutional models. Motivated by these recent work, in this chapter, we methodically dissect

several traffic fingerprinting CNN architectures to understand the reasons behind their

performance and the patterns they look for. Such analysis will not only shed light on

understanding why CNNs are highly effective in traffic fingerprinting but also will be

helpful in designing more resilient defenses against traffic fingerprinting.

1https://keras.io/api/applications/vgg/
2https://github.com/saketd403/Visualizing-and-Understanding-Convolutional-neural-networks

https://keras.io/api/applications/vgg/
https://github.com/saketd403/Visualizing-and-Understanding-Convolutional-neural-networks
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2.4 Defenses against Traffic Analysis Attacks

As discussed earlier, end-to-end encryption does not conceal distinctive features of en-

crypted content such as the size, timing and direction of packets, which allows an eaves-

dropper to infer information about the encrypted content. The feasibility of such attacks

led to a body of work proposing mitigation methods. The fundamental idea behind such

countermeasures is to hide statistical properties of encrypted traffic such as size, time

and directional information of packets, by adding dummy packets and/or packet delays

to the traffic flows before encryption. Then the protection provided by the defense can

be measured by classification accuracy over defended traces. It should be noted that high

classification accuracy of a model trained on defended data would reflect better effective-

ness of the defense as such a model assumes that the attacker even has access to defended

data, which is highly favorable to the attacker. Two important parameters that define

the efficiency of countermeasures are data overhead and timing overhead (latency). The

data overhead of a defense refers to the percentage of additional dummy data added to

the traffic flow with respect to the amount of data of the original (undefended) message.

Similarly, timing overhead can be defined as the percentage of the extra amount of time

required to complete the data transmission compared to the original message.

2.4.1 Distribution-based countermeasures

Most of the early work on defenses falls under this category. Dyer et al. proposed Bu-

FLO [20], which pads/fragments all packets to a fixed length and sends packets at fixed

intervals, which incurs large data and timing overheads. CS-BuFLO [21] and Tama-

raw [22] are two extensions to BuFLO that attempted to improve its data overheads.

Another defense Walkie-Talkie [81], requires the browser to communicate with servers

in half-duplex mode and adds dummy packets and delays to create confusions between

traces. All of these defenses were implemented as defenses against website fingerprinting

over Tor. Most of these methods still incurred relatively high overheads or had limi-

tations in practical implementation (such as Walkie-Talkie). A more recent work [82]

explored how universal adversarial perturbations can be used to defend against web-

site fingerprinting attacks and achieved relatively better security with reasonable data

overheads.
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2.4.2 Padding countermeasures

More recent attempts at defending against website fingerprinting belong to this cate-

gory. WTF-PAD [23], is a defense nominated to be implemented on Tor network and

uses adaptive padding to reduce the possibility of website fingerprinting with reason-

able data overheads. However, it was found ineffective against recent attacks like [14].

FRONT [24], which can be considered as the current state-of-the-art defense against

website fingerprinting over Tor, focuses on adding more padding at the beginning of a

trace using a Rayleigh distribution. Compared to defenses against website fingerprinting,

defenses against video fingerprinting is scarce. Zhang et al. [25] explored the possibil-

ity of using statistical privacy to defend against such attacks. The authors attempted

using two ϵ-deferentially private mechanisms, Fourier Perturbation Algorithm (FPA)

and d*-private mechanism. However, the FPA method required the entire traffic trace

to be known in advance, and the d*-private method needed large overheads to provide

adequate privacy, which made it difficult to deploy either of the methods in real-world

applications. In a more recent work [18], Wang et al. presented a proof-of-concept de-

fense against voice command fingerprinting in encrypted smart speaker traffic, using a

combination of adaptive padding and d*-private mechanisms which reduced the attacker

accuracy by 69.89%.

When studying prior work on defenses, we observe that the majority of work has focused

on defending against website fingerprinting attacks. Even with such defenses, we see

room for further improvement, especially with respect to data overhead. Furthermore, to

the best of our knowledge, we only discovered one work that proposed defenses against

video stream fingerprinting [25], and as discussed above, it makes unrealistic assumptions

that make deployment of such methods in real-world applications less practical. As a

result, our research will mainly focus on attempting to bring down overheads of defenses

against TA attacks while providing reasonable privacy under more realistic assumptions

that do not hinder the deployability of such defenses in real-world applications.



Chapter 3

Traffic Analysis Attacks on

DNS-over-HTTPS Traffic

Domain Name System (DNS) translates human-readable domain names to numerical IP

addresses. When a user needs to access content from a particular (web) server on the

internet using its URL, they first need to convert the human-readable URL into the IP

address of the corresponding server. For this purpose, the user needs to communicate

with a DNS server, which is a server on the internet that contains the mapping between

URLs and IP addresses. Figure 3.1 demonstrates DNS resolving process of a user who

needs to access www.cnn.com. First, the user’s browser checks if it already has a saved

entry for the required URL, and since it does not, send a DNS request to its corresponding

recursive resolver requesting the IP address corresponding to www.cnn.com. Then the

recursive resolver communicates with several levels of DNS servers such as root name

servers and TLD name servers to obtain the IP address corresponding to www.cnn.com

and sends it as a DNS response to the user. Finally, after receiving the corresponding IP

address, the user sends an HTTP request to the CNN web server asking for the required

content. In our work, we are not interested in the communications between the recursive

resolver and other DNS servers. Our work primarily focuses on the traffic between the

user and the recursive resolver (indicated in red in Figure 3.1).

Since the security of DNS communications was not a major concern at the time of

its conception, DNS requests and responses have always been sent in plain text form.

However, with the growth of the Internet and along with it, the interest in security

37
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Figure 3.1: DNS resolving process

breaches of secure communications, resolving DNS requests over plain text that allows

any eavesdropper to see and or edit the content of such communications became a major

vulnerability. On one hand, a passive eavesdropper can use the URL requested by a user

for a wide variety of applications that aims to monitor/filter Internet communications

of that user. For example, a majority of enterprise networks that use filtering/access

control to limit users from accessing certain websites, depend on DNS communications

sent over plain text. Since the URLs requested by a user within their network are visible

to an administrator, they can intervene and block the request from reaching the DNS

resolver if the URL corresponds to any content the enterprise wishes to prevent their

users from accessing. At the same time, an active eavesdropper can change the URL in

the DNS request or the IP address in the DNS response to carry out a spoofing attack

where the attacker can force the user to visit a website of attacker’s choice. To mini-

mize such vulnerabilities of plaintext DNS messages, several proposals such as DNS over

TLS [48], DNS over QUIC [49], DNS over HTTPS [50] were proposed to ensure the pri-

vacy and confidentiality of DNS requests and responses. All of these solutions are yet to

become mainstream. However, since 2020 DoH is getting popular due to the availability

of public DoH resolvers from the likes of Google [83], Cloudflare [84], and Quad9 [85]

and to the fact that major web browsers and operating systems started advocating the

use of DoH [86–88].

DoH and other encrypted DNS variants: DNS over HTTPS (DoH) is defined
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in RFC8484 [50]. As the name implies, in DoH the stub resolver (i.e the client) sends

DNS requests using HTTPS to port 443 of the recursive DNS server. The server makes

the necessary requests on behalf of the client and sends the resolved IP address using

the same encrypted channel. The DNS requests are either sent as HTTP GET or POST

messages over TLS in either the DNS wire format or JSON format.

Oblivious DNS over HTTPS (ODoH) defined in RFC 9230 [89] was introduced to

improve the privacy of DoH clients. In addition to the encryption provided by DoH,

ODoH additionally requires a network proxy between clients and DoH servers which is

expected to guarantee that no single entity other than the client, has access to both the

DNS messages (plaintext form) and the client’s IP address at the same time. From the

point of view of an attacker using traffic analysis, ODoH behaves the same way as DoH

and does not prevent such attacks. For example, the selected proxy will have access

to the client’s IP address as well as the encrypted DNS messages which can be used to

carry out a traffic analysis attack to identify which URLs are requested by the particular

client.

DNS over Transport Layer Security (DoT) [48] is another protocol that encrypts

DNS messages. Unlike DoH, DoT has a dedicated port (i.e. port 853) which is now

considered a drawback since a separate port makes it easier to block DoT requests. From

a network management point of view, DoT is considered the preferred choice as it still

allows some visibility of the DNS traffic in a local network. Nonetheless, due to the

marginal privacy benefits provided by DoH by using port 443, it appears that DoH is

more likely to be widely used than DoT in the coming years.

DNSSEC (Domain Name System Security Extension) [90] is another related

term to DNS security. However, DNSSEC does not involve any encryption and as such,

does not guarantee the privacy and confidentiality of DNS messages. Instead, DNSSEC

allows the requester of a DNS record to verify whether the response they received was

indeed from the authoritative name server responsible for the record using a public key

infrastructure-based chain of trust. DNSSEC can be used in conjunction with DoH or

DoT.

Apart from the above, there are a number of other proposals to ensure the privacy

of DNS requests. Such solutions include DNSCrypt [91], DNSCurve [92], DNS over

Datagram Transport Layer Security (DTLS) [93], and DNS over QUIC [49]. However,
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as of now, none of these solutions are mainstream. Since we established that DoH would

be the mainstream encrypted solution, the main focus of this will be on DoH traffic.

3.1 Traffic Analysis Attacks over Encrypted DNS Traffic

While the wide adoption of DoH is a positive step towards a more private and secure

internet, the implications of DoH deployments need to be studied cautiously. First, DoH

might give a false sense of privacy and security to Internet users. As discussed in previous

sections, many internet protocols based on encrypting traffic flows are known to leak

crucial information about online user activities such as videos they may be watching [16,

17], messenger app activities [65, 94], and visited websites [8, 14], through side-channels

despite the network packets being end-to-end encrypted. As such, it is necessary to fully

understand information leaks associated with DoH. Second, there are several legitimate

and useful services that might be disrupted or even become obsolete with the adoption

of DoH. For instance, many organizations and individuals are relying on monitoring un-

encrypted DNS messages for internal network management tasks such as content filtering

(e.g., parental control filtering and blocking access to illegal content) and controlling

malware distribution, and such solutions will not work if the users move to encrypted

DNS (DoH [95]). Furthermore, similar to the use of Tor in illegal activities, there is

a possibility that bad actors can leverage the obscurity provided by encrypted DNS to

conduct cybercrime. Therefore, it is important to look into methods that can facilitate

content filtering and monitoring services when DNS communications are encrypted.

Recent works [56, 57] showed that encrypted DNS traffic is prone to side-channel attacks

and as a result, using the statistical properties of the DNS packet flows the websites that

are being visited by the users can be predicted with high accuracy. This observation

is of significant importance because such attacks undermine the privacy provided by

encrypted DNS. It is also important to note that due to smaller packet sizes and shorter

trace lengths of DNS communications compared to actual HTTPS traffic, both attacks

could achieve high accuracies using light-weight traditional machine learning methods

such as Random Forest and Adaboost classifiers but needed an additional feature en-

gineering step. More importantly, both studies conducted the attacks in the form of

post-analysis (i.e., assuming the full network trace of a DNS burst is available at the

time of the attack). But from a more practical point of view, such as assumption limits
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the usability of an attack. For example, a post-analysis type attack can only detect an

event after its completion and can’t prevent the event from completion which would be

of immense help for network administrators for content filtering malware detection. A

more realistic surveillance task requires a real-time operation and it is vital to have the

ability to progressively make a prediction as the packets arrive which allows the detec-

tion of an event while it is happening and facilitates the prevention of such an event from

completion as early as possible. This is one of the key focuses of our work. Furthermore,

many existing traffic fingerprinting attack demonstrations operate under the closed set

assumption. In real-world settings, the attacker’s task is far more challenging because

the attacker needs to identify the target website visits among a large number of other

website visits happening in the background. Moreover, to the best of our knowledge,

all previous work assumes that the attacker is aware of when an event starts happening

and the attacker has access to the complete packet flow from the very beginning. For

example, if we consider WF attacks over DoH, they assume that the attacker knows

when the user starts requesting the website and therefore he can capture the complete

packet trace from the beginning. However, this assumption is also less realistic and

during our work, we also explore the efficiency of traffic analysis attacks when the traces

are captured from an arbitrary point rather than the very beginning.

3.2 Experiment Design

This section describes the experiment setup and the design choices, the threat model,

and provides a basic characterization of the dataset to explain some of our pre-processing

steps.

3.2.1 Cloudflare implementation

We focus on the Cloudflare DoH resolver. We selected it because, at this stage, it ap-

pears to be the main DoH resolver in use. For instance, the popular web browser Firefox

has started using DoH by default in the US, with rollouts planned for other countries [86].
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DoH endpoint: Cloudflare DoH endpoint is hosted at IP addresses 1.1.1.1 and

1.0.0.1. It is a recursive DNS resolver that resolves DNS requests coming from clients.

In addition to DoH, the endpoint also supports unencrypted DNS as well as DoT.

DoH proxy: Many internet browsers and some operating systems already have native

DoH support. In those browsers, the users have to simply enable the DoH feature and

enter the Cloudflare DNS endpoint address (or any other preferred DoH server). To sup-

port endowments where no native DoH support is available, Cloudflare provides DoH

clients that run as local DNS proxies; cloudflared and dnscrypt-proxy.1 In that case

the users can run one of the local proxies at port 53 and redirect all the DNS queries

there. The proxy will accept the unencrypted DNS requests, convert them to DoH, and

get them resolved from the Cloudflare DoH endpoint as illustrated in Figure 3.2.

1. DNS request (plaintext) 2. DNS request (DoH/encrypted)

3. DNS response (DoH/encrypted)4. DNS response (plaintext)

Client
Selenium3 over 
Ubuntu 18.04

Cloudflared
(CloudFlare DNS proxy)

Cloudflare Recursive 
resolver (DoH)
1.1.1.1/0.0.0.0

Internet
User-side

Figure 3.2: Cloudflare implementation

3.2.2 Threat model

We assume an attacker who can passively observe encrypted DoH messages between the

target users and their DNS resolver. The attacker has a list of target websites and the

goal is to take some action if a user is trying to visit a website from the target list.

We illustrate this attack scenario in Figure 3.3. A victim user communicates with a

chosen DNS resolver over DoH to access ‘google.com’ and the attacker eavesdropping

on the encrypted communication is attempting to figure out whether the victim is trying

to visit a website in the attacker’s target list. If so, the attacker plans to take some action

such as terminating the victim’s connection.

1https://developers.cloudflare.com/1.1.1.1/dns-over-https/cloudflared-proxy/
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Figure 3.3: Threat model

In addition to accomplishing this base task, there are a few other desirable properties

the attacker would prefer to have.

1. Identify the target website visits among all other possible website visits made by

the user (handling open set)

2. Make the decision as quickly as possible (inline).

3. Since the attacker may not always capture user traffic when they initiate the

website visit, be able to make the same decision, yet at arbitrary starting points.

4. Not to miss any target website visits even if that means having false positives from

other website visits. (ideally, the attacker would like less false positives as possible)

3.2.3 Data collection

To collect data, we set up Ubuntu 18.04 virtual machines with cloudflared DoH proxy

that forwards Operating System (OS) DNS queries to Cloudflare public resolvers in DoH

format. We use Selenium32 to automatically visit a webpage from a list of websites,

triggering DNS lookups for URLs associated with the page. Since the Cloudflared proxy

is configured to use Cloudflare recursive resolver (at 1.1.1.1 or 0.0.0.0), all the traffic

related to the DoH resolving process can be isolated using the resolver’s IP address.

2https://www.selenium.dev/
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In our main data collection (below closed set and open set), we restarted the browser in

between webpage visits and flush the system cache to ensure that the DNS cache and

in-memory browser cache do not affect the data collection. During each data collection,

we let cloudflared proxy run continuously and never restarted it. Using this setup we

collected the following datasets.

i) Closed set: In our closed set experiment, we collected traces from the top 201

webpages in Alexa’s top million websites list on March 2018 [96]. We ran this experiment

for 11 continuous weeks recording more than 1 million traces per website. We use the

data collected during the first two weeks for the basic evaluations of our proposed model

and use the rest to investigate the effects of changes in DoH traffic over time on traffic

analysis.

ii) Open set: We selected 1,500 webpages from the top, middle, and bottom 500

webpages in Alexa’s top million websites and removed the top-201 webpages as proposed

in [57]. We use this dataset as a background class to simulate more realistic attacks where

the target website visits are blended with all other visits. We collected DoH traces for

these 1,286 webpages for 11 continuous weeks.

iii) User behavior emulation dataset: In order to investigate the effect of user

behavior and its artifacts (such as caching) on DoH traffic fingerprinting, we emulate

25 different users using Daily Pageviews per Visitor Score (DPV score) provided by the

Alexa top websites list [96]. DPV score refers to the daily unique pageviews per visitor

on a given website and since it reflects how frequently a user would visit that website,

we use this value to assign probabilities for a given user choosing to visit this website.

Each user has a list of 50 websites along with corresponding probabilities of the user

visiting those websites, and the user keeps continuously browsing websites for 2 hours at

a time, by picking websites according to the given probability values. The probability

assigned to each website is proportional to its DPV score. To emulate realistic user

browsing patterns, we select the 50 websites assigned to each user from three categories.

• Top-10 websites of Alexa’s top million websites list, representing websites that are

popular among all the users.
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Table 3.1: Summary of datasets

Dataset Number of
Classes

Total Traces Duration

closed set 2013 1,138,229 11 Weeks
open set 1,286 295,233 11 Weeks
User behavior emulation 994 121,695 9 Weeks

• Ten websites (excluding top 10) with DPV score > 1, randomly picked based on

their probability values to represent the websites that are specific to a user that

are visited frequently, yet not as frequent as the top-10 websites.

• Thirty websites (excluding top-10) with DPV score = 1, randomly picked based

on their probability values to represent random websites a user may visit.

Accordingly, for the 9 weeks from the second week after the original data collection

started, we allocated a separate machine to emulate 25 user behaviors. Each user was

allowed to continuously browse websites from his list for 2 hours at a time before that

user is suspended and the next user was allowed to browse without flushing the system

DNS cache.

In Table 4.1 we show a summary of our datasets before applying any pre-processing

steps.

3.2.4 Pre-processing

We represent each network trace by a sequence of L integers < x1, x2, ..., xL >, where the

absolute value of each integer corresponds to the size of the packet (i.e., TCP segment

length) and the sign represents the direction (i.e., +’ve for queries and -’ve for responses).

The length of the sequence L is the maximum length of a trace we observe in our data,

which is 1,015. If a particular website visit had not generated a total of 1,015 packets,

we pad the remainder of the sequence with zeros. After we remove unsuccessful page

visits resulting in sequences with less than 4 packets, the final dataset contains 5,650

traces per class.

3We selected 201 classes to ensure the no. of classes after pre-processing reaches 150.
4This dataset does not contain all 201 classes because some classes had very low probabilities of being

selected in the user model.
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In Figure 3.4, we visualize a data sample and the mean of the class (i.e., the average of all

data samples of a class) for two example websites, ebay.com and craigslist.org. In each

figure, the orange line depicts a randomly picked sample trace from the corresponding

class while the line in dark blue depicts the average of all traces belonging to the class.

The area shaded in light blue corresponds to the +/- standard deviation from the mean.

For clarity, we show only the first 100 packets of traces. According to the figures, the

two websites show very different DoH traffic patterns and also it is noticeable that the

values of negative points are always much higher than that of positive points. This is

expected since DNS responses generally have larger sizes compared to DNS requests.
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Figure 3.4: Mean traffic trace for two sample websites

Next, we characterize our main dataset, i.e., closed set (first 2 weeks), to explain some

of the data pre-possessing steps.

3.2.5 Pruning traces
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Figure 3.5: CDF of trace lengths for all websites

In Figure 3.5, we show the cumulative distribution function (CDF) of the trace lengths.

Approximately 80% of the traces are less than length 100. Also, we found the majority
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of the samples that have less than or equal to five packets were from 12 websites. Further

investigations show that those websites were not fully browsed due to two main reasons.

• No proper website or the website is not functional - The top website list con-

tained currently non-functional rogue websites such as ntd.tv and nextoptim.com.

• Websites blocked by IP addresses - Inside the enterprise network we con-

ducted our experiments, adult and pornographic websites were blocked using an

SSL proxy. In this setting, even if the first DoH request gets resolved the first

HTTPS request is blocked by the SSL proxy, avoiding any further progress in

loading the website.

We removed blocked/non-functional sites from our analysis.

3.2.6 Website-wise entropy

We represent each website with a discrete joint probability distribution PS(X,Y ); where

X represents the packet sequence number (0 to 100) and Y represents the packet length

binned over B = 447 bins. For a given website, P (X = xi, Y = yj) represents the

probability of packet xi belonging to bin yj . Thus, the normalized Shannon entropy of

a website, H(S) ([0, 1]) can be calculated as Equation 3.1:

In Figure 3.6a and 3.6b, we show the histogram and the CDF of website-wise entropy.

As can be seen, the entire probability mass of the entropy values is accumulated closer to

zero indicating that there is less variance between different samples of the same website,

which shows the feasibility of website fingerprinting over DoH traffic.

H(S) =
1

L ∗ log2 B

L∑
i=0

B∑
j=0

−P (X = xi, Y = yj) log2[P (X = xi, Y = yj)] (3.1)

3.2.7 Removing website from same owners

Next, we investigate the distribution differences between websites using Kullback-Leibler

divergence (KL divergence), which is a common metric used to compare probability

distributions. We calculate the KL divergence between two websites S1 and S2 as defined

in Equation 3.2.
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Figure 3.6: Website-wise entropy distribution
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Figure 3.7: Empirical CDF of KL-Divergence

KL(S1||S2) =

L∑
i=0

B∑
n=0

PS1(X = xi, Y = yj) ∗ log2
PS1(X = xi, Y = yj)

PS2(X = xi, Y = yj)
(3.2)

Here, in PSi(X,Y ); X represents the packet sequence number (ranging from 0 to 100)

and Y represents the packet length binned over 447 bins. For a given website Si, PSi(X =

xi, Y = yj) represents the probability of packet xi belonging to bin yj , which can be

calculated empirically. We provide further details of this joint probability distribution

in Appendix A where we show the general low entropy of DoH flows.

In Figure 3.7a, we show the cumulative probability distribution of KL divergence between

the same website and different websites. To calculate the KL divergence between the

same class samples, we calculate two probability distributions by randomly splitting

the samples of a single class into two. According to the figure, the KL divergences of

the distributions representing the same class are significantly lower compared to the KL

divergences between different websites. This indicates that the variance between different
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samples of the same class is less than that between different samples of different classes,

which can potentially facilitate traffic signatures.

Nonetheless, in Figure 3.7a we notice that there are different website pairs that result in

lower KL divergence. Further analysis showed that these were various Google websites.

To elaborate this further, in Figure 3.7b, we show the cumulative probability distribution

of KL divergence between different URLs of Google domains (Eg: google.co, google.ru,

google.fr), between URLs of Google and non-Google domains and different non-Google

domain URLs. When comparing the graph in blue and the graph in purple, it can be seen

that while only ¡1% of KL divergence values between all non-Google classes are less than

0.1, more than 60% of KL divergence values between different classes of Google domain

are less than 0.4. Thus, in our experiments, we drop all other Google domains except

for google.com. The observation of Google domains showing similar traffic patterns is

observed in previous work as well [15, 56].

After dropping eight classes that correspond to non-functional and blocked websites,

and dropping 43 other Google domains, the final dataset we use in subsequent analysis

contains 150 classes.

3.3 Methodology

Previous attacks on encrypted DNS [56, 57] considered only fixed-sized inputs and oper-

ated over the full trace length. In such attacks, the attackers can make useful inferences

only after the event has happened. A more realistic attack requirement is to do real-time

inferences about the websites a user visits whilst the event is happening and identifying

target traffic flows in the mix of all the other DoH flows. This work introduces a novel

attack using three key ideas;

i) LSTM-based variable length sequence modeling

ii) A novel meta-recognition-based open set traffic classification method

iii) Imbalanced sampling
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3.3.1 Variable length LSTM model

A simple RNN architecture as illustrated in Figure 3.8, takes xt as input at each time

step t, and updates a hidden state variable ht and produces an output yt. Here, ht =

tanh(Whhht−1 +Wxhxt) and yt = Whyht where Whh,Wxh, and Why are weight matrices

that will be learned during model training. This is repeated over many unrolled time

steps to accept time series data. It is important to note that the weight matrices of the

RNN layer are shared across all time steps and hence are independent of the length of

the input. Thus, an RNN layer can handle inputs of varying lengths as it only needs to

repeat the same RNN cell to match the input length. Similarly, the LSTM (Long Short

Term Memory) layer [97] we use in this work, is a more complex version of a simple

RNN capable of modeling long-term dependencies that also can handle variable length

inputs.

Whh
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Why

+
Whh

Wxh

Why

+

ytht

xt

Whh

Wxh
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+

xt-1 xt+1

ht-1 yt-1 ht+1 yt+1

Figure 3.8: Simple RNN

Figure 3.9 shows the variable length LSTM model we use to demonstrate DoH finger-

printing attacks. It contains two stacked LSTM layers wrapped by dropout layers. The

length of the input layer, N (i.e., the number of DoH packets to observe) is not fixed

and varies according to the length of the input.

………....

………....

………....………....

Input Layer
1x N

LSTM
128 hidden units

0.2 Dropout

LSTM
128 hidden units

0.2 Dropout

Dense 
150 units

Softmax
1x150

Figure 3.9: Variable Length LSTM Model
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3.3.2 open set classification

The most frequently used closed set classification trains a classifier that can assign a

given data sample to one of the classes from a known set with some confidence probabil-

ity. In the context of website fingerprinting, this means the attacker is operating under

the strong assumption that all the possible websites a target user may be visiting are

known upfront, and samples from all those websites were available during training time.

On many occasions, this is not a realistic assumption since the target user can visit

any random website while the attacker is interested in knowing whether a user visits a

website from a target list (cf. Section 3.2.2). Thus, a more realistic attack requires the

ability to handle unknown classes.

As discussed in Sections 1.5 and 2.2, open set classification [33, 98], aims to cor-

rectly classify traces from a set of target websites while effectively rejecting traces from

websites outside the target set. We explore two existing methods (Background class

and OpenMax ) and propose a novel Jaccard Similarity Index-based method that offer

different trade-offs when it comes to balancing true-positive and false-positive rates and

training data requirements.

3.3.2.1 Background class

The background class method handles unknown classes using a single class background

class to represent all unknown classes together and requires samples from a subset of

the open set at training time (i.e. known unknowns).

3.3.2.2 OpenMax

Originally proposed by Bendale and Boult [33], for open set image classification. It is

built on the intuition that the values from the penultimate layer (the layer before the

softmax activation layer) of a deep neural network provide a distribution of how classes

are related to each other as opposed to being independent per-class score estimates.
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3.3.2.3 Jaccard Similarity Index (JSI) of top-n predictions

OpenMax has some inherent limitations when it comes to handling negative logit values

and open set samples that have revised activation vectors that are much closer to the

Mean Activation Vectors (MAVs) of closed set classes. Therefore, we propose a new

meta-recognition open set classification solution using the Jaccard Similarity Index of

the top-K predictions (K classes with highest softmax probabilities) from a closed set

classifier. Similar to OpenMax, this approach also does not require samples from the

open set during training time.

The intuition behind JSI method is that the top K predictions for a sample from a given

class have to be stable (i.e., a given class is always closer to a known set of other classes).

For open set samples, this closer set of classes is expected to change and that change

could be used to separate out open set samples.

We illustrate this point in Figure 3.10 through some examples. We first used the closed

set classifier described in Section 3.3.1 and built the set Sci
K that consists of the union of

top-K predicted classes for each correctly classified sample belonging to class ci in the

training set (we use K = 30 in this example). Then for each known class ci, ∀sj ∈ Sci
K ,

we calculate Q
sj
ci which is the percentage of number of samples from ci having the class

sj in their top-K predictions. The intuition behind Q
sj
ci is that if class sj is constantly

appearing in the top-K predictions for class ci, value of Q
sj
ci will be close to 100%. For

a given class ci in the closed set, we hypothesize that there will be a limited number of

classes with an Q
sj
ci close to 100%.

In Figure 3.10a and Figure 3.10c we plot the Q
sj
ci values for dailymotion.com and

craigslist.org in descending order. For comparison, the same figures for open set sam-

ples classified as dailymotion.com and craigslist.org are shown in Figure 3.10b and Fig-

ure 3.10d, respectively. According to Figures 3.10a and 3.10c, we see that given a class

the majority of its samples have a fixed set of classes (approximately 30 classes) present

in their Sci
K as opposed to samples from the open set which are classified as a given

closed set class where the distribution is more dispersed (i.e. for each incorrect classified

sample from the open set as class ci has a different set of classes in top-K).

On the other hand, Jaccard Similarity Index (JSI) measures the similarity between two

sets of data to see which elements are shared between the two sets and which elements
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Figure 3.10: Composition of the set of top-30 predictions

are unique to a given set. More specifically, JSI value between two sets A and B is

calculated as shown in Equation 3.3.

J(A,B) =
A ∩B

A ∪B
(3.3)

Based on our observation of the stability of the top-k predictions of closed set classes,

we propose to use the JSI measure to devise a new open set classification method named

JSI method. Accordingly, the JSI method will use the JSI value between the SK of an

input sample and that of its predicted class to identify open set samples. We refer to the

SK set of closed set class as its Mode Prediction Vector (MPV) which is defined as given

in Equation 3.4 and calculated as shown in Equation 3.5. Here MPV ci
K refers to the

MPV of class ci with respect to top-K predictions, Mo() refers to the statistical mode,

and Jci is the number of correctly classified samples from class ci. We use the statistical

mode for this calculation instead of using mean or median as we are interested in the

frequency of a class appearing in the SK of a sample rather than the actual numerical

value of the class label.

MPV ci
K = {{ci} ∪ {K − 1 closest class to ci}} (3.4)
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MPV ci
K = {lk|lk = Mo(SK(xjci)[k]), k ∈ [1,K], j ∈ [1, Jci ]} (3.5)

Next, we use an example to demonstrate how thresholding on the JSI value between

a sample and the MPV of its predicted class can be used to identify open set samples

as described above. In Figure 3.11a and 3.11c we plot JSI values of all samples in the

validation set for two example classes; whatsapp.com and espn.com for K = 30. For

comparison, in Figure 3.11b and 3.11d we plot the JSI values of the open set samples

that are labeled as the corresponding closed set class by the closed set classifier. The

horizontal green and red lines mark the mean and mean - standard deviation of closed

set training samples of the corresponding class.

In Figure 3.11a and Figure 3.11b, we observe that the JSI between the MPV of what-

sapp.com and a sample trace from the same website has a mean value of approximately

0.81 while almost all open set samples labeled as whatsapp.com have JSI values below

0.8. Similarly, the mean value of JSI for a sample trace from espn.com is approximately

0.58 while almost all open set samples labeled as espn.com have JSI values below 0.5.

We observed similar trends with other classes as well, suggesting that by using an ap-

propriate threshold value on the JSI value, open set samples can be effectively rejected.

After experimenting with different threshold values, we used class-wise (mean-standard

deviation) of JSI values of the validation set as the open set rejection threshold. As

can be seen in both figures, using mean as the rejection threshold would still reject a

significant number of actual closed set samples compared to (mean-standard deviation)

as the threshold.

Finally, we summarize the procedure of using JSI method for open set classification as an

algorithm. The two main goals during the training phase of JSI method are to identify

a set MPV ci
K for each of the known class and to determine the rejection threshold which

represents the extent to which the set SK of an input sample can vary from MPV ci
K of

its actual predicted class ci, where SK is the set of top-K predicted classes of the input

sample.

Algorithm 1 describes the training phase of the method given K is the number of top

predictions to consider (we use K = 30), N is the number of known closed set classes,

and Jci is the number of correctly classified training samples from class ci.



Traffic Analysis Attacks on DNS-over-HTTPS Traffic 55

0 40 80 120 160
Sample ID

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

In
de

x

Mean - STD
Mean

(a) whatsapp.com (closed set)

0 100 200 300 400
Sample ID

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

In
de

x

Mean - STD
Mean

(b) whatsapp.com (open set)

0 40 80 120 160
Sample ID

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

In
de

x

Mean - STD
Mean

(c) espn.com (closed set)

0 20 40 60 80 100120140160
Sample ID

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

ar
d 

In
de

x
Mean - STD
Mean

(d) espn.com (open set)

Figure 3.11: Distribution of JSI at input length 10

Algorithm 1: JSI method: Training

Require: Softmax layer output from closed set classifier for input x:
v(x) = v1(x)......vN (x)

1 Define SK(x) = [argsort(v(x))][1 : K]

2 For each known class ci, calculate SK(xjci) for each correctly classified training
sample j from class ci.

3 for ci = 1.....N do
4 Compute Mode Prediction Vector

MPV ci
K = {lk|lk = Mo(SK(xjci)[k]), k ∈ [1,K], j ∈ [1, Jci ]}

5 For each known class ci, let JSIK(xjci) =
{MPV

ci
K ∩SK(xj

ci
)}

{MPV
ci
K ∪SK(xj

ci
}

for all samples from class

ci in the validation set.
6 for ci = 1.....N do

7 Compute rejection threshold JSI T ci
K = mean(JSIK(xjci)) − std(JSIK(xjci))

8 return MPV ci
K and JSI T ci

K

At inference time, the JSI method follows Algorithm 2 where the main goal is to de-

termine whether the deviation of the JSI value of an input is within the predetermined

range of the predicted class and if not to reject the sample as coming from the open

set. The step given in lines 7 and 8 of Algorithm 2 is optional and used to further

optimize the performance of the JSI method on closed set samples by directly accepting
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Algorithm 2: JSI method: Inference

Require: Softmax layer output from closed set classifier for input x:
v(x) = v1(x)......vN (x)

Require: MPV ci
K and JSI T ci

K for ci = 1.....N
1 Predicted label c̃(x) = argmax(v(x))
2 SoftMax probability of c̃(x), P (c̃(x)) = max(v(x))
3 SK(x) = [argsort(v(x))][1 : K]

4 JSI(x) =
{MPV

c̃(x)
K ∩SK(x)}

{MPV
c̃(x)
K ∪SK(x)}

5 if JSI(x) ⩾ JSI T
c̃(x)
K then

6 Output c̃(x)

7 else if P (c̃(x)) ⩾ ϵ then
8 Output c̃(x)

9 else
10 Reject x as open set sample

the prediction from the closed set classifier for samples that the closed set classifier is

highly confident in labeling (i.e. the Softmax score for the predicted class is very close

to 1). In our experiments, ϵ was set as .9999.

3.3.3 Imbalanced sampling

The variable length LSTM model proposed in Section 3.3.1 can be trained and tested on

inputs of arbitrary length. We include several instances of the same sample at different

selected lengths in to the training set so that the model can learn to identify traffic

patterns in traces of different lengths. We feed more samples from shorter lengths to

obtain higher accuracies at lower lengths. We noticed that including only a few input

lengths from lengths greater than 10 is sufficient to get over 90% test set accuracy

for all input lengths greater than 10. Therefore, we include samples with lengths l ∈

L and L = {5, 6, 7, 8, 9, 10, 14, 20, 100} in to the training set. We extract samples at

each trace length l from the entire training set to build the final training set of size,

|L| ∗N ∗ number of traces per class.

3.3.4 Arbitrarily sampled segments

Capturing network traffic traces from beginning to end could be difficult in some situ-

ations. Almost all the existing work in traffic fingerprinting assumes that the start of

the activity is known in traffic traces [14–16]. Nonetheless, a more realistic attack is to
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consider whether an attacker can start from an arbitrary point of the traffic flow, observe

packets for some time and make a prediction. Therefore, here we segment our training

dataset with a sliding window of length w with w− 1 overlap. If the trace length is not

sufficient to fill a window, the rest of the window is filled with zeros. We tested with

different w values as we discuss in Section 3.4.3.

3.4 Results

In this section, we present the results of the inline traffic fingerprinting attacks in both

closed set and open set settings. In the following experiments, the closed set dataset

comprises of traces from 150 classes with 900 traces from each class and the open set of

1,286 classes with 20 traces from each class (cf. Closed set and open set in Table 4.1).

While we had more data samples that could be used to train the closed set LSTM model,

we selected these values because increasing training samples had only diminishing returns

yet large training times that are inherent to variants of RNNs [99].

3.4.1 Closed set classification

3.4.1.1 Experiment 1: Temporal analysis

Our primary closed set dataset was collected over 11 weeks. In this experiment, we used

the data collected within the first two weeks to provide results over multiple training

and test set splits based on time, to understand the generalization of the attack better.

First, we divided the total dataset from the first two weeks into three sub-datasets so

that data from four consecutive days fall into one sub-dataset and a one-day gap was

left between two datasets. For each sub-dataset, a training and test set was chosen such

that the training set comprised 120 samples per class randomly picked from the first

three days of each dataset, and the test set comprised of 65 samples per class randomly

picked from the last day of each dataset.

Next, for each training dataset, we trained our model for 500 epochs using input lengths

as explained in Section 3.3.3 and used its own test set as the validation set to choose

the model with the lowest validation loss. Finally, we evaluated the trained model on

its own test set as well as the other two test sets.
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Figure 3.12: Overall accuracy at varying input lengths

In Figure 3.12, we show the accuracy of the three models trained on the three datasets,

when tested on the combined test set of the other two datasets than its own at all input

lengths. We observe that even though the model was trained only with a few input

lengths, it yields correct classification at any input length greater than 10, with over

90% accuracy.

We show detailed cross-dataset results in Table 3.2. For brevity, we show results of only

three lengths. According to columns 3, 4, and 5 of Table 3.2, all test scenarios of input

lengths over 10 achieved over 90% accuracy, and at the full trace length of 100, the

accuracy was in the range of ∼96%–99%. Noticeably, observing only the five packets

of the trace could still result in ∼42%–44% accuracy. Observing only 10 packets gives

an accuracy above 90%, which is close to that of observing the full trace. Finally, there

was a gap of at least seven days between the training set of Dataset-1 and the test set of

Dataset-3, and yet that scenario resulted in 90%-96% accuracy indicating the short-term

invariance of DoH patterns.

Next, we used the same three small datasets but a different splitting strategy. We

randomly picked 120 and 65 traces per class from each dataset as training and test sets.

We show the results in the last three columns of Table 3.2. They are similar to the

previous results, further indicating that there are no major changes to DoH patterns

within a few days. Therefore, for all the subsequent experiments, we randomly split the

total closed set dataset into training, validation, and test sets, with 500, 200, and 200

traces per class, respectively.
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Table 3.2: Temporal Analysis

Trained On

Split based on time Random split

Input
length

Tested On Dataset
1

Dataset
2

Dataset
3

Dataset
1

Dataset
2

Dataset
3

Dataset-1 42.81% 41.99% 43.32% 39.75% 41.43% 41.34%
5 Dataset-2 42.42% 42.45% 43.84% 39.54% 42.30% 40.93%

Dataset-3 42.43% 42.34% 43.97% 39.94% 42.02% 39.50%

Dataset-1 96.03% 92.36% 94.41% 94.85% 94.63% 94.84%
10 Dataset-2 95.76% 93.04% 95.40% 94.59% 95.74% 93.80%

Dataset-3 94.80% 91.92% 96.27% 93.67% 94.72% 91.16%

Dataset-1 99.36% 96.65% 97.96% 99.17% 98.54% 98.91%
100 Dataset-2 98.73% 97.16% 98.76% 98.93% 99.32% 98.43%

Dataset-3 97.52% 96.58% 99.48% 98.17 % 98.48% 99.30%

3.4.1.2 Experiment 2: closed set classifier from full dataset

Next, we built a closed set classifier from the above-described randomly split data.

First, we trained a variable length LSTM model and select the model having the lowest

validation loss. We used the same input lengths as described in Section 3.3.3.

In Figure 3.13 we plot the class-wise test set accuracy at input lengths 10 and 100.

Though there are more classes with lower accuracy at input length 10, their performance

improves as the input length increases.

We also studied confusion matrices for the model at various input lengths and observed

that for all classes that record accuracy below 80% for input lengths higher than 10, the

model labels all the incorrectly classified traces into one specific class. Such errors work

in favor of the attacker. For example, in Figure 3.14 we report the top-2 (i.e. correct

label is within the first two predictions) and top-5 prediction accuracies along with the

top-1 prediction accuracy. We observe that even when using just 5 packets, the attack

accuracy can be increased to 63% when considering top-2 predictions; considering the

top-5 predictions, it further improves to 89%.

3.4.1.3 Experiment 3: Concept drift results

We next investigated the performance of our LSTM model trained in Section 3.4.1.2

on a test set captured at a much later point in time than the original training set (i.e.
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Figure 3.13: closed set accuracy of the full dataset at different trace lengths
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Figure 3.14: closed set top-n results

concept drift). We extracted four test sets with 30,000 traces (200 traces per class) in

each from the closed set dataset, which was collected 2, 4, 6, and 8 weeks after the

collection of the original dataset. We show the accuracy of these datasets on the model

trained in Section 3.4.1.2 in Table 3.3. When comparing the rest of the columns with

the second column (0th-week test set), we observe that there is no significant drop in

accuracy even if the test set was collected 8 weeks after the training set.

Table 3.3: Accuracy: Concept drift

Accuracy (%)

Input
length

0 weeks 2 weeks 4 weeks 6 weeks 8 weeks

5 44.37 43.20 42.92 42.43 42.06
10 97.13 95.59 94.69 93.14 91.44
20 99.00 97.55 96.87 96.20 94.69
50 99.14 97.59 96.73 96.26 94.52
100 99.71 98.50 98.18 97.54 95.94
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3.4.2 open set Classification

In this section, we explore the ability of the variable length LSTM attack model to handle

samples from unknown classes, using three methods; Background Class, Openmax, and

the proposed JSI method as explained in Section 3.3.2.

For all open set experiments, we used the combination of our closed set dataset used in

Section 3.4.1.2 and the entire open set in Table 4.1. For the background class method

only, we added randomly chosen 500 and 200 traces from the open set to the training and

validation sets, respectively. Each method was evaluated on a test set that combined

the test set from Section 3.4.1.2 and the entire open set. Note that for the background

class method, we made sure that open set samples used for training and validation were

removed from the test set.

For performance evaluation, we used closed set accuracy, open set accuracy, and F score.

closed set accuracy refers to the percentage number of correctly classified samples from

known classes, while open set accuracy refers to the percentage number of samples from

unknown classes that are rejected as open set samples. We calculate the F score under

the open set as defined by Júnior et al. [100], where samples from the open set that are

correctly identified by the model are not considered as true positives because it does not

make sense to consider all unknown classes as a single positive class when the training

set does not have samples from all possible unknown classes.

3.4.2.1 Background Class

We trained a variable-length LSTM for 151 classes (150 known classes and the back-

ground class) and selected the model with the lowest validation loss. To negate any bias

due to random sampling from the open set, we repeated this experiment for five different

splits from the open set for training, validation, and test sets. We report the average

accuracy and the standard deviations at several input lengths in Table 3.4.

We notice that the closed set performance of the background class model remained

almost the same as that of the closed set model in Section 3.4.1.2 and the performance

of the model on the open set is only in ∼20%–58.7%. We further note that the random

split of the open set does not significantly affect the performance. Finally, we highlight
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Table 3.4: open set results: Previous Methods

Background class (LSTM) OpenMax

F score Mean Accuracy (%) F score Mean Accuracy (%)

Input
Length

closed set open set closed
set

open set

5 0.42±0.00 42.93± 0.53 20.00± 2.99 0.61 39.68 45.15
10 0.96±0.00 96.75± 0.17 49.522± 1.97 0.97 86.11 61.32
20 0.98±0.00 98.75± 0.06 57.47± 2.65 0.98 87.48 62.93
50 0.99±0.00 99.40± 0.34 58.31± 3.06 0.98 87.52 60.73
100 0.99±0.00 99.72± 0.02 58.67± 2.32 0.98 88.67 59.23

Table 3.5: open set results: JSI methods

JSI without SoftMax thresholding JSI with SoftMax thresholding

F score Mean Accuracy (%) F score Mean Accuracy (%)

Input
Length

closed set open set closed
set

open set

5 0.42 41.66 44.11 0.42 41.76 42.26
10 0.81 81.30 80.48 0.89 89.67 61.66
20 0.83 83.00 76.33 0.97 97.44 57.97
50 0.84 83.95 77.83 0.97 97.27 57.51
100 0.85 84.64 75.52 0.98 98.48 56.58

that the model is not exposed to all unknown classes at training time since the maximum

number of classes that could be included in the training set is 500 (out of 1,286 classes).

3.4.2.2 OpenMax

Next we used the same variable length LSTM model from Section 3.4.1.2 as the base

model for OpenMax (with η=25). We report the test results in Table 3.4. While Open-

Max achieves closed set accuracy in the range ∼86.11%–88.67% at all input lengths

greater than 10, the open set accuracy remains in ∼59.23%–61.32%. When compared

with the background class results, OpenMax underperforms in the closed set but per-

forms slightly better with the open set.
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3.4.2.3 JSI method

Next, we use the same LSTM model to evaluate the JSI method. In Table 3.5 we

show the results of JSI method on the test set based on Algorithm 2 with and without

softmax thresholding. In comparison to OpenMax, even though the JSI method without

softmax thresholding has similar performance on the closed set, it has better performance

on the open set. JSI method without softmax thresholding has approximately similar

performance as the background class method despite not using open set samples during

training.

When we compare the performance of JSI method with and without softmax threshold-

ing, softmax thresholding on top of JSI method improves the performance in the closed

set with a decrease in the open set results. For example, at input length 20, softmax

thresholding increases the closed set accuracy by 17.4% while reducing the open set

accuracy by 24.1%.

In summary, our proposed JSI method enables the attacker to filter out traffic traces

that are out of the target list without the requirement of having samples of such traces

at training time. The attacker can decide whether to use softmax thresholding or not

based on the attack requirements. For example, if the attacker does not want to miss any

website visit from the target list, but can accommodate some false positives, they can

use JSI with softmax thresholding. Otherwise, if the attacker needs a balanced accuracy

between the closed set and open set, they can use JSI with softmax thresholding, which

gives accuracies in the range of 81%–84% and 75%–80% for closed set and open set,

respectively, for trace lengths>10.

3.4.3 Arbitrary starting points

We next evaluate the attacker’s ability to fingerprint traffic traces when the start of a

DoH traffic flow is unknown by segmenting the closed set dataset using a window size

of 20 as described in Section in 3.3.4. We trained an LSTM model on the training

set (1,909,239 samples) for 100 epochs and used the validation set (1,275,822 samples)

loss to select the best model. When evaluated on the test set (1,280,861 samples), the

model achieved an accuracy of 73.16% suggesting that it is indeed feasible to fingerprint

websites starting from arbitrary points of a DoH trace. Here, we highlight that the test
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set was completely disjoint from the training and validation sets since we do the sample

separation before windowing. A similar attack using a window size of 10 achieved an

accuracy of only 37.45%. Overall, the accuracy increases with the window length as the

input gets closer to the complete trace.

3.4.4 User behavior emulation

To investigate the effect of user behavior (such as DNS caching) on traffic analysis

attacks, we collected another dataset User behavior emulation dataset (cf. Table 4.1).

First we extracted a dataset from the closed set dataset (cf. Table 4.1) collected during

the same period as User behavior emulation data to train a variable length LSTM on the

it using the same train:valid:test split and procedure as in section 3.4.1.2. Then we com-

pared the model performance on the test set extracted from closed set vs. User behavior

emulation dataset as shown in Table 3.6 (no retraining), which shows a slight perfor-

mance gap between the test sets with the highest performance gap of 7.34% occurring

at input length 20.

Next, we check the possibility of training a classifier that can even handle possible

caching by incorporating user behavior during training. Thus, we combined the dataset

from the closed set and the User behavior emulation dataset used above and trained a

new variable-length LSTM model. We have reported the accuracy of the test sets from

closed set and User behavior emulation set separately in Table 3.6 (with retraining)

which shows that the test sets from both datasets record similar accuracies on the

model at all input lengths except 5. The overall result suggests that there is minimal

effect on DoH fingerprinting due to the effects of user behavior. The better performance

of the test set at length 5 on User behavior emulation set can be attributed to the lesser

number of classes present in that set. As websites with lower DPV scores have a lower

probability of being visited, the user behavior emulation dataset had only 99 classes

compared to the previous 150.

3.4.5 Confusion analysis

Despite the high overall performance, confusion matrices show that a few websites are

not clearly distinguishable to the model and result in below 80% class-wise accuracies at
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Table 3.6: Accuracy: User behavior emulation

Accuracy at varying input length(%)

Retrained Test-set 5 10 20 50 100

No closed set 43.31 96.67 98.63 99.42 99.53
User emulation 40.14 90.49 91.39 93.03 93.06

Yes closed set 42.07 95.45 98.18 98.88 99.42
User emulation 65.82 94.76 95.87 96.32 96.89

shorter input lengths. For instance, at input length 10, 58% of deviantart.com samples

gets confused as tribunnews.com.

To further understand this, in Figure 3.15 we show the box plots of mean packet lengths

at each trace position for correctly and mis-classified samples for deviantart.com and

tribunnews.com.

When comparing the boxplots for correctly classified samples from deviantart.com (Fig-

ure 3.15a) and tribunnews.com (Figure 3.15c), we notice that, except for 3rd and 7th

positions, the distributions of all others are similar. Thus, the model would mostly de-

pend on the 3rd and 7th packets to distinguish between the two websites. In Figure 3.15a

and Figure 3.15b, we see that the main difference between correctly and mis-classified

samples is in 3rd and 7th packet. The mean value of 3rd packet in Figure 3.15b (216.5)

is closer to that of Figure 3.15c (223.3) than that of Figure 3.15a (226.7). A similar

pattern can be seen with the 7th packet too. We noticed similar trends among other

classes with low accuracy.

3.4.6 Defense analysis

Multiple prior works on network traffic fingerprinting [22–24] have suggested using

padding as a defense aiming to hide packet lengths. Thus, RFC8467 [53] recommends

DNS clients padding queries to the closest multiple of 128 octets and DNS servers

padding responses to a multiple of 468 octets.

Next, we evaluated the effectiveness of our model against padding by simulating defended

traffic using a subset of our closed set dataset. We trained a variable length LSTM on the

defended training set and report its results on the defended test set in Table 3.7 where

overhead refers to the mean of the percentage amount of extra bytes added per trace.

Since prior work [56, 57] has reported differences in padding between DNS resolvers and
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Figure 3.15: Box plots (deviantart.com vs. tribunnews.com)

clients, we considered three different scenarios; only the queries are padded, only the

responses are padded, and both queries and responses are padded.

Table 3.7: Defense analysis

Method Input
length

Accuracy
(%)

Overhead
(%)

Recommended padding 10 3.31 213.62
(query and response) 100 70.57 213.71
Recommended padding 10 80.03 50.01
(query only) 100 97.39 36.66
Recommended padding 10 76.86 163.58
(response only) 100 98.12 176.98

Table 3.7 shows how the recommended padding policy is effective only with both client

and server padding. Even then, the model achieves 70% accuracy at input length 100.

For all other padding combinations, the model achieves over 75% accuracy.

This result is important as we did not find any straightforward way of enabling padding

on the browser side (also observed by [56, 57]), and some DoH resolvers did not pad

even if clients requested[57]. Overall, we highlight that current DoH implementations

lack padding in their stock configurations and, as such, do not deliver the full privacy

benefits of DoH.
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3.5 Discussion and Concluding Remarks

In this chapter, our main aim was to propose a practical website fingerprinting attack

that enables inline website fingerprinting while handling the open set scenario at the

same time. First, we showed that DoH traffic flows of websites have low entropies leav-

ing them vulnerable to traffic analysis. Next, we presented an inline traffic analysis

attack against DoH using a variable length LSTM model, which achieves over 96% ac-

curacy by observing only the first 10 packets of a DoH flow. Then we extended our

attack with a novel open set classification method which achieves 75%–80% accuracy on

both closed set and open set. Then we also presented a more challenging but realistic

scenario where the exact starting point of a trace is not known and showed that even

when the trace is captured at an arbitrary point, a classifier can still achieve over 70%

accuracy. Next, we showed that the effects of user behavior such as caching, can drop

the accuracy of the original model, but that effect can easily be negated by retraining

using cached traffic traces. Finally, we showed that padding as a defense is not effective

as attacks can still achieve ∼70% accuracy.

We next discuss limitations and possible extensions to our work.

Browser and the Operating System - Our data collection process used Chrome as

the browser and Ubuntu as the client OS. We speculate that it is possible for the DoH

signature of a given website to change between browsers and OSs used when capturing

traffic. However, we note that the attacker can include samples from various browser

and OS combinations during the training phase to make the attack model independent

from the browser/OS setting of the capturing procedure. More importantly, user-specific

configurations such as the use of ad-blockers can make the attack more challenging.

Handling concept drift - Though we showed the invariance of DoH patterns over a

period of a few weeks, in the long run the DoH patterns can change due to changes in a

given web pages’ dynamic content (e.g., advertisements). Therefore, the attackers may

need to retrain models periodically to capture such changes. For that, the attacker can

leverage the ideas of transfer learning [101] or online learning [102].
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Open set classification - One of our major contributions is introducing a new open

set classification method that enables identifying target websites amid background traf-

fic. We demonstrated this feasibility using the traffic traces of 1,286 websites as the

background traffic. While more websites can be added as the background traffic, since

internet browsing patterns follow Zip’s law [103], we believe our dataset sufficiently rep-

resents results closer to the real world. Finally, the area of open set classification is still

nascent. As this area develops, we expect the accuracy of the attack to increase further.

Moreover, it would be more beneficial to develop an attack that is capable of identifying

new classes within rejected open set samples, auto-labeling them, and modifying the

classifier to accommodate new classes: i.e., open world recognition [104].



Chapter 4

Dissecting Traffic Fingerprinting

CNNs

Over the past decade, deep learning models have achieved remarkable success in a va-

riety of pattern recognition tasks, including image classification [105, 106], text classifi-

cation [107] and natural language processing [108, 109], surpassing traditional machine

learning models. Despite their impressive performance, deep learning models provide

very little insight into their inner workings and decision-making process and therefore

are commonly referred to as ‘black-box’ models. As discussed in Chapter 1.4, blindly

depending on such models without adequate understanding of how they work or what

their decision-making process is based on could be unsafe, especially in mission-critical

applications. For instance, it is important to make sure a model has actually learned

the exact task it was supposed to learn and that there is no bias in the performance of

the model towards the specific nuances of the dataset used to train and test the model.

Therefore, various prior works (mostly targeting 2D CNN models used in computer vi-

sion tasks) attempted to understand these models using multiple techniques, such as

visualizing filters at various layers [30] and identifying inputs or sections of inputs re-

sponsible for the decision of a model [27, 29].

At the same time, the recent advances in deep learning motivated researchers in the net-

working community to leverage them for traffic fingerprinting tasks. Most recent traffic

fingerprinting attacks leveraged Multi-Layer Perceptrons (MLPs), Convolutional Neu-

ral Networks (CNNs), Recurrent Neural Networks (RNNs), and Auto Encoders (AEs)

69
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to achieve very high accuracies surpassing previous traditional machine learning-based

attacks and became an increasingly realistic threat to user privacy. Furthermore, some

deep learning-based traffic fingerprinting attacks [14, 47] are successful against state-of-

the-art defenses. As a result, understanding the behavior of deep learning models used

in traffic fingerprinting task has become an important research area. More specifically, a

thorough understanding of the deep learning models used in traffic fingerprinting could

be helpful in both improving the performance of current attacks as well as in designing

better defenses against such attacks.

One of the non-trivial results that have been observed across multiple independent works

is the fact that for traffic fingerprinting, CNNs are showing better performances com-

pared to any other deep learning or non-deep learning methods [15–18]. This can be

counter-intuitive because CNNs were mainly designed for image classification and for

time series data such as network traffic flows, RNNs were proven to be more successful

in other domains such as speech recognition and speaker identification [31, 32].

In this chapter, we methodically dissect network traffic fingerprinting CNNs with the ob-

jectives of understanding what information from input data has the highest contribution

towards their decision, what patterns they learn from input data, and then exploring

the possibility of leveraging that information to train traffic fingerprinting CNNs with

lesser training data and time. Moreover, the insights obtained from such analysis can

also make significant contributions to designing efficient and practical defenses against

such attacks. Even though there are some defense mechanisms proposed against traffic

fingerprinting, most of them still require significant improvements to come to a level

where they can be deployed in real-world scenarios. For example, there has been a body

of work on defenses against website fingerprinting attacks [22–24]. Nonetheless, even

the state-of-the-art defense [24] incurs around 40% data overhead to provide reasonable

security. Most other types of traffic fingerprinting attacks, such as video fingerprinting

and voice command fingerprinting, have very few or no defenses proposed against them

at all. To the best of our understanding, this is the first work to explore the internal

workings of network traffic fingerprinting CNNs as well as 1D CNNs in general, which

are less common compared to 2D CNNs used heavily in computer vision applications.

Then, based on our findings, we propose two new defense techniques against website

fingerprinting and video fingerprinting attacks.
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4.1 Dataset and CNN architectures

In this section, we present an overview of three publicly available datasets and associated

CNN models that are used in all subsequent experiments.

4.1.1 Datasets under study

We use three datasets introduced in previous work; i) Automated website fingerprinting

(AWF) by Rimmer et al. [15], ii) Deep fingerprinting (DF) by Sirinam et al. [14], and

iii) Deep content (DC) by Li et al. [16]. All three datasets are publicly available. Next,

we provide an overview of the three datasets.

4.1.1.1 Automated website fingerprinting (AWF) dataset [15]

The AWF dataset contains network traffic traces for visiting homepages of top-200 Alexa

websites over Tor network. Each site visit is represented by the first 5,000 Tor packets

in either direction. That is, in this dataset, a data sample is a sequence of +1s (uploads)

and -1s (downloads). If a particular homepage visit did not generate a total of 5,000

packets in either direction, the remainder of the sequence was padded with zeros. For

each website, there are 2,500 traces making a total dataset size of 500,000 traces. The

authors also provided a mapping between the class label and the actual website URL.

4.1.1.2 Deep fingerprinting (DF) dataset [14]

The DF dataset has the same format as AWF dataset. However, the dataset contains

traces only for the top-95 Alexa websites, and there are 1,000 traces per website. This

dataset does not provide a mapping between the class label and the actual website

URL. Therefore, despite having common classes with the AWF dataset, we can not

conclusively identify them in the DF dataset, which becomes a limitation in our analysis

as we discuss later in Section 4.3.
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(a) AWF Dataset (b) DF Dataset (c) DC Dataset

Figure 4.1: Example data points and mean traffic trace for a sample class

4.1.1.3 Deep content (DC) dataset [16]

The DC dataset contains traffic traces for streaming the first three minutes of selected

YouTube videos, collected at the data-link layer (WiFi). The three-minute interval is

binned into 500 time slots (0.36s each), and each time slot is represented by summary

statistics of packets observed during that time. Even though the original dataset is

comprised of 24 features per trace, the authors observed that the number of packets on

uplink traffic of video streaming trained the most accurate model, and hence we only

use that feature. Accordingly, this dataset represents a traffic trace as a sequence of

500 integers between 0 and 736, which is the maximum number of non-data packets ob-

served within 0.36 seconds. For each YouTube video, there are 320 traces. Unlike other

datasets, the public version of this dataset does not contain the original train and test

split. Thus, we randomly split the dataset to build the training, validation, and test sets.

We provide a summary of the datasets in Table 4.1. Figure 4.1, visualizes a data

sample and the example mean class (e.g., the average of all data samples of a class)

of a randomly picked class from each dataset. It should be noted that we use only the

first 1,500 packets of a trace from the AWF and DF datasets in our experiments for

better comparison between the CNNs with RNNs, as explained later in Section 4.4. In

both AWF and DF datasets, most traffic instances have +1s in the initial part, which

correspond to HTTP GET requests sent to the relevant web servers. The middle and later

parts of these traffic traces are mostly -1s which correspond to downloading website

content. The traffic traces that require padding to generate 1,500 packets usually bring

the value of the average traffic trace of their relevant classes between zero and -1 in the

corresponding segments. In contrast to the first two datasets, the traffic traces in DC

dataset have periodic patterns that correspond to DASH chunk fetching.
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While we do a comprehensive study of these three datasets when answering our research

questions in Sections 4.2 - 4.4, we check the generalizability of our results using few

other publicly available network traffic datasets in Section 4.5.

Table 4.1: Summary of datasets

Dataset No. of Classes Traces per
class

Training
set size

Validation
set size

Test set
size

AWF [15] 200 2,500 350,000 75,000 75,000
DF [14] 95 1,000 76,000 9,500 9,500
DC [16] 10 320 2,510 50 640

4.1.2 CNN Architectures

The CNN architectures we focus on in this chapter are the architectures proposed in the

work corresponding to each dataset used. In all three scenarios, CNN architectures gave

the best performance compared to other deep learning and traditional machine learning

methods the authors evaluated. Moreover, as the authors of previous work had already

tuned the hyperparameters of these models to obtain the best performance, we used the

exact same parameters. For AWF and DF datasets, the deep CNN architecture proposed

in [14] (i.e., multiple convolutions and pooling layers followed by two dense layers) gave

the best performance, and for the DC dataset, the best performing architecture is a

CNN with three convolutional layers followed by a max pooling layer and a dense layer.

We show these two CNN architectures in Figure 4.2. This results in three test scenarios

that will be used throughout this paper as follows.

i DF CNN on AWF dataset (AWF model)

ii DF CNN on DF dataset (DF model)

iii DC CNN on DC dataset (DC model)

While most works on website fingerprinting such as DF and AWF that are based on deep

learning models used only the directional information, some recent work [110] used both

directional and timing information. Since using timing information may require some

manual feature engineering and using only directional information can still achieve over

95% accuracy, in this work, we focus on website fingerprinting CNNs that use directional

information only. We note that attacks that use both timing and directional data may

need modifications to the architecture and need to be understood separately.
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(a) DF CNN [37] (b) DC CNN [24]

Figure 4.2: CNN architectures used

4.2 Impact of Patterns and Lengths of Network Traces

In this section, we methodically study how network traffic patterns activate filters in

traffic fingerprinting CNNs with the objective of understanding what patterns they pick

from input data and specific parts of the input the filters learn to focus on. As we

discuss along the way, this type of analysis not only provides directions to improving

traffic fingerprinting attacks but also provides insights on how to develop techniques

to bypass deep learning-based traffic fingerprinting tools to design better mitigation

techniques that can circumvent traffic fingerprinting. Also, our observations shed light

on developing techniques to train traffic fingerprinting CNNs faster and with less training

data.

4.2.1 Filter Weight Distributions

First, we present the distribution of all trainable parameters of the three scenarios we

consider; DF CNN on AWF dataset, DF CNN on DF dataset, and DC CNN on DC

dataset. We trained five model instances for each scenario i.e., five model instances

of the same architecture trained on the same dataset and show the distribution of all

the trainable parameters (normalized to be in the range between -1 and +1) for each

scenario in the form of probability distribution functions (PDFs) in Figure 4.3. We

also show the distribution before normalization in the corresponding sub-figures. The

figures show that, over different model instances, the distribution of trainable parameters



Dissecting Traffic Fingerprinting CNNs 75

remains in the same range and shows similar probability distributions. Therefore, for the

subsequent analysis, we use one model instance per scenario. Since weight distributions

remain similar over multiple trained instances, the results we subsequently derive are

general and not specific to one trained model instance.

(a) AWF Model (b) DF Model

(c) DC Model

Figure 4.3: Probability distribution of trainable weights compared over multiple
model instances

4.2.2 Visualizing 1D Convolution Filters

Given an input sequence, x1, x2, ..., xN and a 1D convolution filter of size N with weights

w1, w2, ...wN , the convolution between them is given by
∑i=N

i=1 wixi + b where b is

the bias term. This is analogous to the cross-correlation function, which measures the

similarity between two sequences as a function of the displacement of one relative to the

other. Accordingly, the convolution between an input and a filter can be seen as finding

sections of the input that match the pattern of the filter.

To demonstrate this idea which is one of the building blocks of our subsequent analysis,

in Figure 4.4-(a) and (b), we show an example input (top), an example filter (middle),

and the filter output (bottom) for AWF/DF and DC models. In different colors, we
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highlight different parts of the input, and positions where the highest filter activation

is reached corresponding to that input part, are shown in the same color in the output.

For instance, in each figure, when the blue section of the input is convoluted with the

filter, the resulting value of the output is also shown in blue. As the figures show,

the maximum values in the output correspond to the positions in the input where the

sections that exactly match the filter begin.

For instance, in the case of AWF/DF models, i.e., Figure 4.4-(a) where the input can

take either -1 or +1 only, for a single convolution between a filter and a section of the

input, the corresponding value in the output takes the maximum possible value if the

sign (positive or negative) of the input is same as that of the weight in the filter for

all positions. The output value will be closer to the maximum possible value when the

sign of the value in the input is the same as that of the weight in the filter for at least

the positions where the absolute value of the weight of the filter is high. Similarly, the

output will take the least possible value (largest negative) when the signs of the values of

the input and the filter are exact opposites. As seen in Figure 4.4-(a), when the signs of

the filter and input are exact opposites, especially in positions where the absolute value

of the weight of the filter is high, the result will be a large negative value. However,

the negative values of the filter output have minimum effect on the performance of the

model as the non-linearity functions like Rectified Linear Unit (ReLU) and Exponential

Linear Unit (ELU) that immediately follow convolution layers shut off these values by

making them zero or very close to zero.

In the case of DC model, i.e., Figure 4.4-(b), where the input can only take integer

values between 0 and 736 (maximum number of packets observed in the uplink during

a 0.36s time window), the output will be closer to the maximum possible value if values

of input in positions corresponding to large filter weights have larger values and values

of input in positions corresponding to negative filter weights have values closer to zero.

The opposite scenario will result in large negative values in the output; nonetheless,

as explained above, the non-linear functions used in the considered CNN models will

eliminate the effects of these values.

This intuition can be helpful in understanding features learned by filters of a single

convolutional layer, as one can visualize the weights of a filter of a convolution layer at

a given depth and figure out the patterns in the immediate input to that layer the filter
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(a) AWF/DF Model (b) DC Model

Figure 4.4: Pattern matching behavior of 1D convolutions

is sensitive to. However, this method is only suitable for the input convolution layer.

The stacked components such as pooling and non-linear activations used in the model,

make it infeasible to use this method to visualize the patterns of the original input that

maximally activate the filters of subsequent convolutional layers. To address that, we

use two different methods for the AWF/DF and DC datasets that were drawn from the

comparable work in understanding image classifying CNNs.

4.2.2.1 Visualizing DC model filters with Gradient Ascent

As we discussed earlier, the part of an input that maximally activates a given filter (i.e.,

maximizes the output for the given filter) can be considered as the pattern that the

filter is looking for. This idea can be reformed into an optimization problem as given in

Equation (4.1), where θ is the set of parameters of the deep neural network and hij(θ, x)

is the mean activation of the ith filter of the jth layer we are interested in [29]. ρ refers

to the modulus of the input x when its elements fall within the range of an element in

a valid input to the network. For example, if the input to the network is a sequence of

packet sizes, elements of x should be within the valid range for packet size. The aim of

this optimization problem is to find an input x∗ such that it maximizes the output of

the ith filter of the jth layer of the model.
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Figure 4.5: Gradient ascent learned inputs (Layer 1 DC model)
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Figure 4.6: Gradient ascent learned inputs (Layer 3 DC model)

x∗ = arg max
x s.t.∥x∥=ρ

hij(θ, x) (4.1)

This optimization problem can be solved using gradient ascent in the input space, i.e.,

by computing the gradient of hij(θ, x) and moving x in the direction of this gradient.

This is a non-convex optimization problem, and therefore, gradient ascent will find a

local maximum.

Example inputs learned by the gradient ascent method that maximize the mean acti-

vation of selected filters of Layer 1 and Layer 3 of DC model are shown in Figure 4.5

and Figure 4.6 respectively, where each figure shows an input of length 500 that gives

maximum activation value when convoluted with a given 1x16 filter. The orange-colored

sections of each figure correspond to the receptive fields (i.e., the part of the original

input that affects the value of a given position of the output) of a few selected high

activations in the output of the convolution between the given filter and input. The

repetitive nature of high activations suggests that video fingerprinting CNNs respond to

bursts in their inputs with specific shapes and lengths.
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4.2.2.2 Visualizing DF and AWF model filters

Since the traces in DF and AWF datasets are represented with only two discrete values

(-1s and 1s), performing gradient ascent on a random input to optimize average filter ac-

tivation is not feasible. The reason being at each step, gradient ascent will be flipping the

sign of the input value without converging. Thus, we propose a simple non-parametric

method that uses the input trace with the highest filter activation value from the train-

ing set to approximate the features learned by filters of deeper convolution layers. We

first feed the entire training set into the model and find the highest activation value from

the output of the filter to be visualized. Then we track the input trace corresponding to

that activation and, using the receptive field of the filter, identify the exact sequence of

values that resulted in the activation value. Since the set of traces used in this method

and the set of traces used to train the weights of the model are the same, we can safely

assume that the result of this method is in fact, the pattern the filter is looking for. In

Figure 4.7 and Figure 4.8 we show the traffic patterns derived using the above method

for three selected 1x8 filters from the first and second convolutional layers of both AWF

and DF models. Accordingly, it can be seen that all filters look for specific patterns

with combinations of +1s and -1s in the input traffic trace, an observation we further

elaborate on later.

(a) AWF Model (b) DF Model

Figure 4.7: Patterns learned by Layer 1 filters

(a) AWF Model (b) DF Model

Figure 4.8: Patterns learned by Layer 2 filters

4.2.3 Impact of Traffic Patterns on Classifiers

Having established the necessary background of 1D convolutions, in the following sec-

tions, we try to address a few research questions. The first research question we try to
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answer is:

RQ 1: What type of patterns do traffic fingerprinting CNNs learn?

To answer this question, we visualize the filter weight distribution of all filters for selected

convolutional layers. For all layers except the first, each filter consists of n number of

1x8 sub-filters where n is the number of filters in the previous layer. Hence for clarity,

we only visualize the first sub-filter of each filter in layers other than the first layer.

Figure 4.9a and Figure 4.9b show that in Tor website fingerprinting CNNs, almost all

filters look for sequences with a combination of +1s and -1s (uploads and downloads),

and not for sequences of all +1s or all -1s (i.e. as highlighted by lack of all “red variant”

or all “blue variant” vertical lines in the figure).

In fact, in AWF and DF CNNs, there were only 2 filters out of 32 filters in the first layer

that had all positives, and no filter had all negatives. This means traffic fingerprinting

CNNs rely on transitions between uploads and downloads of a trace rather than the

length of downloads. This observation could be one of the main contributing factors

for the resilience of DF CNN model [14] against WTF-PAD [23], a candidate defense

against Tor website fingerprinting which uses adaptive padding that adds padding only

when the channel usage is low.

According to the filter weights shown in Figure 4.9c and Figure 4.9d, the combinations

of positive and negative values in the DC filters suggest that video fingerprinting CNNs

look for sequences of different number of packets per unit time. This means filters are

sensitive to traffic bursts, yet they do not focus only on the envelope of the burst signal

but rather consider the finer sub-bursts associated with a major burst. Otherwise, the

positive filter values will be available only towards the middle part of the filter.

Thus, based on the learned filter weights, we can conclude that website fingerprinting

CNNs learn to focus on the transitions between uploads and downloads within a trace,

as opposed to sequences of consecutive uploads/ downloads.
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(a) AWF Model Layer 1
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(b) AWF Model Layer 6

0 5 10 15 20 25 30
Filter Index

0
2
4
6
8

10
12
14
16

Fi
lte

r W
ei

gh
ts

0.10

0.05

0.00

0.05

0.10

(c) DC Model Layer 1
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(d) DC Model Layer 3

Figure 4.9: Filter weights of selected convolution layers

4.2.4 Positions of Traces with Maximum Activations

The next research question we attempt to answer is;

RQ 2: Is there any part of the trace the traffic fingerprinting CNNs focus more on?

To answer this question, we took a random sample of inputs from each dataset and

calculate the filter output for each filter at each layer for all three CNN architectures we

consider.

First, we present the analysis for AWF and DF datasets. We studied the mean activation

of 500 random input network traces for all filters per each layer of DF and AWF models.

In Figure 4.10a and Figure 4.10b, we show the mean filter activation for all filters in

Layer 1 and Layer 5 as examples. The figures show that high-filter activations are

happening either at the beginning of the trace or at the end of the trace. We show

zoomed-in versions of the first 60 inputs of Layer 1 in Figure 4.11a and Figure 4.11b. To

further emphasize this fact, in Figure 4.12 we plot the zoomed-in versions of Layer 1 for
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two example classes; twitter.com and aliexpress.com. As can be seen from Figure 4.12,

there are significantly high activations in the initial parts of the traces.

As explained in Section 4.1.1, for most traffic traces for website fingerprinting, the initial

parts contain a lot of +1s that correspond to HTTP GET messages, and therefore for most

of the input traffic traces, a high concentration of transitions can be seen in the initial

parts. Depending on the weights of the filters where they closely match the patterns of

the input, convolution will give very high activations, while the segments of the input

that are closer to the exact opposite of the patterns learned by the filter will give very

small activation values. Apart from the initial parts of the activation maps, the last few

positions are also seen to be having very high/low values. This is due to the zeros added

to traffic traces either at the data processing stage to make all traces have a constant

length as explained in Section 4.1.1 or during convolution layers to preserve the original

length of the input (‘same’ padding). To further emphasize the above observation, in

Figure 4.13 we plot the mean filter output of the entire training set for all filters in

each block of AWF model. It can be seen from all the sub-figures that the highest filter

activations correspond to either the beginning of the trace or the end of the trace.

(a) DF Model

(b) AWF Model

Figure 4.10: Activation maps of AWF and DF models

Next, we perform similar experiments with the DC Model. The activation map for 30

random input traces for the first and third convolutional layers of the model are shown in
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(a) DF Model (b) AWF Model

Figure 4.11: Zoomed-in activation maps of Layer 1
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(b) aliexpress.com

Figure 4.12: Zoomed-in activation maps of Layer 1 for example AWF classes

Block 3

Block 2Block 1

Block 4

Figure 4.13: Block-wise activation maps of AWF model

Figure 4.14. In contrast to the activation maps of AWF and DF models, the activation

maps of DC model have high variations along the entire length of the output. The main

reason for the above difference is that unlike traces of visiting websites, streaming videos
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Figure 4.14: Activation maps of DC model

Conv1 Conv3

Figure 4.15: Layer-wise activation map of DC model

involve periodic requests to the relevant servers and hence contain bursts throughout

the input, which causes variations in the output in corresponding positions. Similar to

AWF and DF models, depending on the extent to which the filter matches the pattern

in the input, the activations can take higher or lower values. The mean filter outputs

of the entire training set of the DC model for all filters in Layers 1 and 3, as shown in

Figure 4.15, further emphasize the above observation.

In summary, the filter activation analysis corroborates our previous finding; i.e. traffic

fingerprinting CNNs focus more on parts of the traces where more HTTPS activities are

happening. This means for website fingerprinting, the classifiers place more weight on

the initial part of a traffic trace which contains a relatively high concentration of uploads

that correspond to initial HTTP GET requests and replies. It should be noted that our

observations are comparable with previous work that found that features extracted from

the first thirty packets are relatively more important [41] and that the first few incom-

ing packets correspond to the initial unique HTML page that helps discriminate between

webpages [8]. In video streaming, there are periodic bursts and accordingly, the CNNs

filters focus on the finer shapes of those bursts.
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Figure 4.16: Test accuracy with masking

4.2.5 Impact of the Trace Length on Classifier

Since we established that for web traffic fingerprinting CNNs, what matters the most is

the initial part of the trace, the next research question we attempt to answer is;

RQ 3: Would the initial trace portion alone be sufficient to make accurate predictions?

To investigate this, we masked the last 10%, 25%, 50%, and 75% of the inputs of the

three test sets with zeros. Then, we used the trained models to predict the class of the

input. In Figure 4.16, we show the accuracies we obtained compared to the unmasked

(0% masking) accuracies for all three datasets. As the figure shows, website CNNs show

strong resilience to masking, corroborating our previous observation that they are more

focused on the initial parts of the trace. For example, the AWF CNN and DF CNN

models showed 93% and 80% accuracy, respectively even if the input is masked by 50%.

The better resilience of AWF model compared to DF model can be attributed to the

fact that the DF model is more prone to overfitting due to the less number of classes

and fewer traces per class in its dataset compared to the AWF model. DC model as

expected, is highly susceptible to masking because it focuses on the periodic transfers

of DASH chunks. Nonetheless, even its accuracy does not drop significantly until 25%

masking, indicating video content identification can be done with a lesser length than

the originally used three-minute interval.
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We next analyze the effect of masking on individual classes to understand the accuracy

drop further. In Figure 4.17a and Figure 4.17b, we show the number of classes that lost

accuracy by different percentages when the last 10% and 50% of the trace is masked

in website fingerprinting models. At 50% of masking in AWF dataset, only 8.50%

of classes had more than 20% drop in accuracy, and the corresponding number for

DF dataset was 16.50%, indicating that the accuracy drop is majorly coming from a

limited set of classes and the majority of the classes are not affected by masking at all.

Visualizing the average traffic trace for these classes explains the reasoning behind the

above observation. For example, the average traffic trace for class 2 of the AWF dataset

shown in Figure 4.18a shows a cluster of positive ones around the 700th position that

will be ignored by masking which causes the model to classify the instances incorrectly.

In contrast, the average traffic trace of class 197, i.e., Figure 4.18b shows that almost

all packets after the 600th position are -1s, which provide no additional information and

hence masking these packets does not affect the classification accuracy of the class at

all.

To conclude, this analysis further reinforces our observations in RQ1 and RQ2 and

shows that the initial part of a trace is more important and itself sufficient to achieve

a reasonable classification accuracy in network traffic fingerprinting and corroborates

similar observations in previous works [8, 41].
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Figure 4.17: Class based effect on accuracy from masking
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Figure 4.18: Mean traffic traces of two example classes affected by masking

4.3 Transfer Learning Capabilities

One of the main reasons CNNs are used heavily in image classification and many other

computer vision tasks is their transfer learning capabilities [111]. CNN filters learn to

match different patterns related to image classification tasks, and it does not matter

which dataset the model is trained on as long as the filters learn common patterns. This

allows pre-trained CNNs to be modified to classify new image classes with far less data

than usually required to do the original training, as well as fewer training epochs (i.e.,

the number of passes of the full training dataset, which is one of the main reasons why

CNN training takes a significant amount of time). Thus, the next research question we

explore is:

RQ 4: Do network traffic fingerprinting CNNs have similar transfer learning capabili-

ties, and can we leverage that to optimize the training process?

To investigate this, we split each dataset into two parts, A and B, such that all instances

of one class (i.e., websites or videos) belong to one part only. Next, we pre-train a model

instance of the corresponding CNN architecture on dataset A and then keeping the

feature extraction part of the model (i.e., convolutional blocks) fixed, fine-tune only the

classifier part of the model (i.e., the fully connected layers) on dataset B by progressively

increasing the number of traces per class (tpc) to check whether a high accuracy can be

achieved with lesser number of samples.
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(b) 80:120
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(c) 100:100

Figure 4.19: Test accuracy of transfer learning with varying number of traces per
class in training set
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Figure 4.20: Transfer learning on DC dataset.
* tpc refers to traces per class
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Figure 4.21: Convergence of test accuracy with transfer learning.
* tpc refers to traces per class

In Figure 4.19, we compare the test set (which was 7.50% of B) accuracy of a model

trained from scratch on dataset B, and the transfer learned model explained above for

different A : B ratios for the AWF dataset. In all three cases shown in Figure 4.19,

the transfer learned model reaches the accuracy plateau with a lesser number of traces

per class. If no transfer learning is applied, approximately 150 more traces per class

are required to reach the same level of accuracy. Also, transfer learned models start

with accuracies over 90% with training data as less as 10 traces per class. The DF

dataset showed similar behavior; thus, we have not included the results here. This is
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an important observation as it allows to build traffic classifiers with less training data.

Also, this observation indicates that the patterns learned by the convolutional blocks are

generalizable. Finally, we highlight that we have not included the cross-dataset transfer

learning between AWF and DF datasets because we could not identify common classes

between them (cf. Section 4.1.1). To demonstrate the ability to use a feature extractor

trained on one set of classes on a new set of classes, it is important that there is no

overlap between datasets A and B.

Then we conduct similar experiments with the DC dataset keeping the ratio between

the number of videos in A and B as 3:2. We do not experiment with different A : B

ratios in DC dataset as it has only a few classes. In Figure 4.20a, we compare the test

set (which was 12.50% of B) accuracy of a model trained from scratch on dataset B

vs. the transfer learned model explained above, and it shows that the transfer learned

model achieves over 85% accuracy with just 10 traces per class and also records the

better performance even with 256 traces per class (max tpc in the dataset). Since the

dataset is much smaller compared to AWF and DF datasets, the advantage of transfer

learning quickly diminishes.

We next show how transfer learning can help to improve the training time of traffic

fingerprinting CNNs. In Figure 4.21 we show the number of epochs (full passes over the

training set) till the accuracy plateaued for the three A : B split scenarios we described

earlier. In each graph, we compare three cases; 10, 20, and 50 traces per class with and

without transfer learning. The advantage of transfer learning is evident when there is

a lesser number of traces per class. For example, when there are 10 traces per class,

transfer learning reaches the accuracy plateau in less than 40 epochs, whereas training

from scratch does not reach the same level even after 100 epochs, and it is most likely

to not even reach that level of accuracy. 20 traces per class show a similar tendency,

and transfer learned models reach the plateaued level of accuracy in less than 10 epochs,

and there is a gap of 10% in accuracy even after 100 epochs. The advantages of transfer

learning are diminished at 50 traces per class scenario, and it can be expected there

is enough data points to start from scratch. A similar improvement in the number of

epochs needed to train DC model is shown in Figure 4.20b.
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Thus, we conclude that network traffic fingerprinting CNNs indeed possess transfer learn-

ing capabilities analogous to image classifying CNNs and as such, it is possible to fine-

tune pre-trained models to accommodate new classes (i.e., websites or videos) with much

less labeled data. While it is true that there are other methods for reducing data re-

quirements of traffic fingerprinting attacks (e.g., N-shot learning [46]), we leave such

comparisons as out of scope for this work since our objective was only to show the fea-

sibility of transfer learning in traffic fingerprinting CNNs.

4.4 Network Traffic Classification: CNNs vs. RNNs

Since RNNs are known for their capabilities in sequence modeling, they are a natural

choice to try when building traffic fingerprinting classifiers. Nonetheless, several works

highlighted that in practice, CNNs outperform RNNs, in some cases by a significant

margin [15, 16]. For example, as reported by the original work [15], the CNN achieved

96.52% accuracy while the LSTM RNN achieved only 93.17% accuracy on the AWF

dataset. Similarly, for the DC dataset, the original work reports that the LSTM RNN

model showed 2% less accuracy compared to the CNN model. Finally, the original work

corresponding to DF dataset did not report any comparisons between LSTM and CNN

models. Thus, we trained an LSTM model and found that there was a 13% gap in

accuracy between the CNN (98.3%) and RNN (85.39%) models.

Here, we also highlight a detail that might be helpful in reproducing these results. The

LSTM model used by Rimmer et al. [15] had only 150 steps (LSTM model 150 ) compared

to the CNN, which accepted all 3,000 packets as the input. The authors reduced the

input length to the LSTM model since LSTMs can not handle longer inputs due to the

vanishing gradient problem. Since this might not allow a fair comparison between the

CNNs and RNNs, for our subsequent analysis, we use 1,500 packets for both types of

models for DF and AWF datasets. We note that both models of AWF and DF achieve

close to 98% accuracy with input length 1500, and masking the latter parts further had

less effect on model performance (Figure 4.16). In the LSTM model 1,500, we feed 10

consecutive points from a traffic trace as the input to each step to keep the number of

time steps constant. As mentioned in Section 4.1.2, for all the LSTM models used in

this section, we conducted hyperparameter tuning.
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Furthermore, when evaluating the classification accuracy of traffic traces captured at a

much later point in time than the training set (defined as concept drift by Rimmer et

al. [15]), the CNN architecture surpasses the performance of both models; LSTM 150

by the original authors and LSTM 1,500 by us, as shown in Table 4.2. Having estab-

lished the higher performance of CNNs for traffic fingerprinting tasks, the next research

question we attempt to answer is;

RQ 5: Why CNNs perform better compared to RNNs?

Table 4.2: CNNs vs. LSTMs - Resilience to concept drift

LSTM model Number of days between test set and train set cap-
ture

3 10 14 28 42

CNN 99.80% 97.90% 94.00% 89.00% 87.40%
LSTM 150 92.87% 88.91% 84.01% 77.25% 76.20%
LSTM 1500 93.50% 90.10% 84.80% 76.30% 73.20%

We conduct experiments based on the intuition that the patterns of uploads and down-

loads of multiple traffic traces of the same class would not be in exactly the same relative

positions and can be shifted either left or right by random amounts due to varying net-

work conditions. We hypothesize that the main reason behind the better performance

of CNNs is their ability to identify burst patterns in a traffic trace irrespective of the

pattern’s relative position, analogous to the translation invariance property in image

classification. To verify this, we evaluate the effect on the accuracy of models on DF

dataset when traffic traces of the test set are shifted according to four scenarios;

i) shift right by n steps from initial packet

ii) shift right by n steps from a random position

iii) shift left by n steps from last packet

iv) shift left by n steps from a random position,

where n is a random number from a normal distribution with varying mean and standard

deviation 50.

Figure 4.22 confirms this assumption. CNN performs significantly better than the LSTM

models in all scenarios. For scenario (i), i.e. Figure 4.22a, the CNN model is able to
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maintain its accuracy above 70% up to a 10% right shift. In contrast, both LSTM mod-

els achieve accuracies below 30% irrespective of the amount of shifting. The slightly

better performance of LSTM 1,500 compared to LSTM 150 can be attributed to the

longer context available to LSTM 1,500 model. For scenario (ii), i.e. Figure 4.22b, the

CNN model succeeds in maintaining the accuracy above 85% up to 10% shift, and above

50% irrespective of the amount of shifting. However, the accuracy of the LSTM 1,500

model drastically declines with the amount of shifting and falls below 50% when the

amount of shifting exceeds 20%. It should be noted that the accuracy of the LSTM

150 model remains almost constant because when the 1,500-long traffic trace is shifted

left from a random position, the possibility of the initial 150 packets being affected is

minimal. Furthermore, the accuracy of all three models is considerably better in sce-

nario (ii) compared to scenario (I), as the initial part of the traces which carry more

information, is less affected when shifted from a random position. Figure 4.22c and Fig-

ure 4.22d correspond to more challenging situations compared to scenarios (i) and (ii)

as shifting to the left always drops the initial parts of traces, and hence all models have

lower performances compared to the first two scenarios. One possible way of addressing

the above performance gap between RNNs and CNNs would be to train RNN models with

augmented data [112] that represents such random shifts in traffic traces.

Nonetheless, theoretically, it might still be possible to train RNN models that can come

close to or even surpass the performance of current CNN models. However, in practice,

the effort needed to make that happen appears to be very high. Previous work and our

own results show that making a CNN work for traffic fingerprinting requires way less

effort and hyperparameter tuning compared to RNNs.

We also compared the performance of CNN and LSTM architectures with Var-CNN [110],

which is a model architecture recently used for website fingerprinting using the DF

dataset. The model accuracies of CNN, LSTM, and Var-CNN [110] models are 98.30%,

85.39%, and 97.89% respectively showing that CNNs perform best. We note that as

the model architectures were evaluated on the DF dataset, which does not contain tim-

ing information, Var-CNN was trained in the direction-only mode. The use of both

directional and timing information may give different performances for Var-CNN.

To summarize, our analysis shows that compared to RNNs, CNNs are far more resilient
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(c) Shifted left from end
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(d) Shifted left from random position

Figure 4.22: Test accuracy after shifting for DF dataset

to shifts in burst patterns of the input data. This makes CNNs a better option for traffic

fingerprinting and classification since network traces inherently contain such noise caused

by network delays.

4.5 Applicability to Other Datasets

In this section, we investigate the wider applicability of our observations by extending

our analysis to three additional datasets. The new datasets include; i) FRONT [24] -

a website traffic fingerprinting dataset, ii) SETA [113] - a video traffic fingerprinting

dataset, and iii) VT [18] - a smart speaker voice command traffic fingerprinting dataset.

We provide a summary of these datasets in Table 4.3.

We define a numerical metric for each research question so that we can compare the

validity of our observations across datasets. For example, for RQ1, we need to verify

whether a model has a negligible number of filters with all positive or all negative weights.
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Table 4.3: Summary of additional datasets

Dataset Traffic Type Details

FRONT [24] Website 100 websites (90 traces per class)
SETA [113] Video 20 Netflix videos (100 traces per class)
VT [18] Voice commands 98 commands on Google Home (∼1500 traces

per class)

Therefore, for a given model, we calculate the percentage number of filters having all

positive or all negative weights.

Similarly, for RQ4 we need to validate whether transfer learning can reduce the number

of training samples required to converge to a target accuracy. For this, we calculate the

ratio between the number of traces per class needed in the training set for a transfer

learned model and for a model trained from scratch to achieve 95% of target accuracy.

If the transfer learned model needs a lesser number of traces per class, we can conclude

that our observation is valid across all datasets. We present the results of this analysis

in Table 4.4 and detail out the findings below.

RQ1 - Under RQ1, our main observation was that traffic fingerprinting CNNs contain

only a negligible number of filters with all positive or all negative weights. According to

Table 4.4, we see that this observation holds across all datasets as none of the models

corresponding to any of the datasets has more than 5% of total filters that have all

positive or all negative weights. This strengthens our initial conclusion under RQ1, that

for website fingerprinting datasets represented as sequences of uploads and downloads,

the classifiers focus more on the transition between uploads and downloads instead of

on long sequences of packets in the same direction, while for other datasets represented

as sequences of positive integers the classifiers will focus on the fine sub-bursts within

bursts of a trace.

RQ2 and RQ3 - Under RQ2 and RQ3 we observed that traffic fingerprinting CNNs

give more weight to the initial part of a trace and that the initial portion of a trace

alone is sufficient to make an accurate prediction on a model trained on complete traces.

Similar to the experiment in Section 4.2.5, we keep increasingly masking the end of a

trace with zeros until the accuracy of the masked test set on the original model falls

below 5% of the accuracy of the un-masked test set.
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Table 4.4 shows that for all datasets except the SETA dataset, approximately 20% (in

some cases even 50%) from a trace can be masked from the end before the accuracy

on the original model drops by 5%, which implies the significance of the initial part of

a trace in the classifier’s decision. The reason for the deviation of the behavior of the

SETA dataset can be attributed to the fact that its traces have a very high inter-class

similarity. In Figure 4.23 we compare the mean trace and the mean±standard deviation

of traces of all classes of SETA and DC datasets. The mean trace for each dataset is

shown in dark blue while the area shaded in light blue corresponds to the mean±standard

deviation. When there is high similarity between classes, the model needs more infor-

mation to differentiate between classes, and as such, the latter parts of the trace matter

in the SETA dataset.
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Figure 4.23: Mean trace (of all classes) for SETA vs DC datasets

RQ4 - In Section 4.3 under RQ4, we observed that traffic fingerprinting CNNs possess

transfer learning capabilities that can reduce training data requirements. To check

the validity of this observation on other datasets, we split each dataset into two non-

overlapping groups such that the ratio between the number of classes in the two groups

is 3:2 and observe the training data requirement (in terms of traces per class) when

training a model from scratch for the smaller dataset, vs using a model on the larger

dataset to transfer learn on the smaller dataset (cf. Section 4.3).

According to Table 4.4, for all datasets, the transfer learned model requires much less

training data to reach 95% of the original model accuracy compared to training a new

model from scratch. Except for FRONT dataset, transfer learning reduces the training
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data requirement by half or more.

RQ5 - Finally, under RQ5 we used the AWF dataset to show that random shifts in

traces of the test set have much less effect on the accuracy of a CNN model compared

to an LSTM model and therefore suggested this as the cause for the better performance

of CNNs compared to RNNs on network traffic data. To check if this observation holds

for other datasets as well, we perform similar experiments as in Section 4.4 and report

the mean amount of shifting needed to drop the accuracy of the un-shifted test set. For

clarity, we report the results for a 40% drop for shifting right and 60% for shifting left.

Note that shifting left can’t handle large numbers because of the relative importance of

the initial parts of the trace. However, similar results hold for other percentage drop

values as well.

From Table 4.4 we observe that for website fingerprinting and voice command fingerprint-

ing datasets, the corresponding CNN models are significantly more resilient to random

shifts than LSTMs. For instance, for DF dataset, traces can be shifted right with a

mean of up to 220 before the original accuracy drop by 40%, while the LSTM can only

handle a shift with a mean of 10 before reaching the same threshold.

For the DC dataset, when shifted with random amounts with a mean up to 100, even

though the accuracy drops below 40% for both models, the dataset maintains a similar

trend as the majority, where the CNN is significantly more resilient to shifts compared

to the LSTM, except when shifted left from a random position where both models have

similar performances.

In contrast to the other datasets, we observe that for the SETA dataset, except for

when shifted left from a random position, both CNN and LSTM models have similar

performances until shifted with a mean up to 100, and for shifts higher than that, the

LSTM performs slightly better. When shifted left from a random position, we observe

that the LSTM for the SETA dataset performs significantly better compared to the

respective CNN, which contradicts our initial observations in Section 4.4. This again,

can be attributed to the high intra-class and inter-class similarity of the SETA dataset

compared to others (i.e does not include a significant amount of noisy data).
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Table 4.4: Applicability of RQs to other datasets - Summary of results

RQ Criteria DF AWF FRONT DC SETA VT
RQ1 Percentage of filters with all ‘+’ or ‘-’ weights 3.56% 3.50% 3.50% 0.00% 0.00% 4.87%
RQ2/RQ3 Length percentage to mask to drop accuracy by

5%
27.33% 46.67% 18.00% 27% 6% 50.53%

RQ4 Ratio between traces per class needed to reach
95% of original model accuracy (transfer learned:
trained from scratch)

2:11 1:3 4:5 1:2 1:2 1:2

RQ5 Ratio between mean amount of shifting needed to
drop original accuracy by 40% when shifted right
from start, CNN:LSTM

22:1 28:1 5:2 1:1 1:1 13:1

RQ5 Ratio between mean amount of shifting needed to
drop original accuracy by 40% when shifted right
from random position, CNN:LSTM

22:1 28:1 9:4 1:1 1:1 5:4

RQ5 Ratio between mean amount of shifting needed to
drop original accuracy by 60% when shifted left
from end, CNN:LSTM

11:8 6:1 1:1 2:1 1:1 11:1

RQ5 Ratio between mean amount of shifting needed to
drop original accuracy by 60% when shifted left
from a random position, CNN:LSTM

11:8 6:1 13:12 13:20 7:25 9:1

Finally, we also checked whether the above observations would change when they are

used in open world settings using an additional open set dataset provided by [14] and

training background class models. We report the results in Table 4.5. When compared

with Table 4.4, we can see the open set dataset also has a similar behavior showing how

CNN behavior is similar in both closed set and open set settings.

Table 4.5: Applicability of RQs to open set setting

RQ Criteria DF open

RQ1 Percentage of filters with all ‘+’ or ‘-’ weights 3.48%
RQ2/RQ3 Length percentage to mask to drop accuracy by 5% 48.67%
RQ4 Ratio between traces per class needed to reach 95% of original model

accuracy (transfer learned: trained from scratch)
2:5

RQ5 Ratio between the mean amount of shifting needed to drop original
accuracy by 40% when shifted right from start, CNN:LSTM

25:6

RQ5 Ratio between the mean amount of shifting needed to drop original ac-
curacy by 40% when shifted right from a random position, CNN:LSTM

25:23

RQ5 Ratio between the mean amount of shifting needed to drop original
accuracy by 60% when shifted left from the end, CNN:LSTM

7:3

RQ5 Ratio between the mean amount of shifting needed to drop original
accuracy by 60% when shifted left from a random position, CNN:LSTM

6:1

To summarize, we use three additional datasets to show that the observations we made

up to Section 4.4 using three datasets are generalizable over most encrypted traffic fin-

gerprinting datasets.

4.6 Discussion and Concluding Remarks

In this chapter, we systematically dissected three traffic fingerprinting CNNs that are

trained on three publicly available encrypted network traffic datasets to understand
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several key research questions associated with their operation and success over other

deep learning methods.

First, we showed that website fingerprinting CNNs focus on parts of a traffic trace with

transitions between uploads and downloads instead of sequences of continuous uploads

or downloads and give more weight to the initial part of a traffic trace which contains a

high concentration of transitions (due to multiple HTTP GET messages and replies) which

allows using only the first half of the trace to get over 50% accuracy. Similarly, we showed

that video fingerprinting CNNs focus on periodic sections of uploads and downloads in

traffic traces that correspond to periodic bursts in video streaming. Next, we showed

that traffic fingerprinting CNNs show the same transfer learning capabilities as image

classifying CNNs, and as such, scaling up traffic fingerprinting CNNs with respect to the

number of classes can be done with as less training data as ten traces per class. Then

we showed that the resilience of CNNs to random variations in traffic flows and bursts

that occur due to varying network conditions is the main contributing factor to their

better performance against LSTMs. For instance, we showed that a 10% right shift in

input data from the start caused only a 29% drop in accuracy in the CNN model while

causing 88% accuracy loss in the LSTM model 1,500. This observation provides insights

into how traffic fingerprinting RNN training process can be improved by augmenting the

data and also opens up ideas for better-suited architectures for traffic fingerprinting by

combining CNNs and LSTMs.

Finally, we investigated whether the observations and conclusions we made under several

research questions are generalizable over other encrypted traffic datasets by using three

additional datasets. According to the results from experiments on additional datasets,

we concluded that the observations and conclusions made are valid across the majority

of the datasets.

Traffic analysis and defenses have always been an arms race between attackers and de-

fenders, and it is likely to continue in the future with improved attacks defeating state-

of-the-art defenses. Nonetheless, our work provides a methodical approach to look into

future attacks and propose more efficient defenses. As the observations and conclusions

we reach are based on the current datasets used, we acknowledge that network traffic

with different behavior compared to the datasets we used may result in different obser-

vations and conclusions. But we believe that the framework we proposed can be used
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as fundamentals to devise more suitable methods specific to a given model and dataset.

Furthermore, as the field of explainable AI [114, 115] further evolves, methods that can

be used to analyze the inner working of traffic classifiers can be improved. As of now,

there are methods that can explain classifiers other than CNNs such as LSTMs [116],

MLPs [117], and AEs [118], and what kinds of insight they provide when it comes to

traffic fingerprinting is an interesting research direction to follow.





Chapter 5

Defenses against Traffic

Fingerprinting

Previous chapters discussed how traffic fingerprinting attacks are becoming increasingly

realistic due to recent advances in machine learning techniques and pose significant

threats to the privacy of internet users. Hence, it is of extreme importance to develop

efficient defenses against such attacks. It should be noted that while these defenses are

expected to reduce the risk of traffic fingerprinting attacks significantly, they should also

minimize the effect on the expected functionality of the original applications generat-

ing the traffic. More specifically, these defenses should ensure that they do not incur

significant bandwidth and timing overheads which would affect the functionality of the

applications and render the defenses impractical.

Multiple previous research has attempted to devise defenses against traffic fingerprinting

attacks. However, recent attacks have been proven resilient against most of them [14].

In this chapter, we leverage the insights we obtained earlier on the inner working of

traffic fingerprinting CNNs in Chapter 4 to propose two novel and efficient defenses,

FRONT-U against website fingerprinting and STOMA against video streaming traffic

fingerprinting that provide reasonable privacy at affordable data and timing costs under

more realistic assumptions.

We evaluate both our defenses in a realistic setting where the attacker can observe

defended traffic and is able to train new classifiers on the observed defended traffic.

It should be noted that we simulate defenses by modifying pre-captured traffic (from

101
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previous work) according to the corresponding defense algorithm. Accordingly, we use

the accuracy of a model trained on defended traffic as a measure of the privacy provided

by the defense. If the test set (defended) accuracy of a model trained on defended traffic

is much lower than the accuracy of non-defended traffic on a model trained on non-

defended traffic, we consider that the defense provides adequate privacy. We also define

data overhead as the percentage of dummy data added compared to the amount of real

data of a trace and use the data overhead of a defense as a measure of the cost incurred

by the defense. A higher data overhead would imply that the defense needs to transmit

more dummy data, thereby increasing the cost of the defense.

5.1 State-of-the-art defenses against traffic fingerprinting

We first present FRONT [24], the current state-of-the-art defense against website finger-

printing attacks, and then we introduce two differential privacy-based defenses against

video traffic fingerprinting attacks which are the current state-of-the-art in video stream

fingerprinting. We explain these methods in detail because the proposed defenses im-

prove upon these existing methods and use them as baseline defenses to compare with

the performance of the proposed methods.

5.1.1 FRONT: Defense against website fingerprinting

Gong et al. [24] observed that some prior website fingerprinting attacks [9, 10] explicitly

used trace fronts for the classification task and hence decided to allocate the majority of

the padding budget to defend the trace front. We note that this observation corroborates

our findings in Chapter 4.2.4. Accordingly, FRONT requires both the server and the

client to independently add dummy packets to the outgoing stream of packets, adding

more padding to trace fronts to obfuscate actual traffic patterns. At the beginning of each

website visit, the client and the server each pick a random number of dummy packets they

would add to the channel and then use a Rayleigh distribution to choose the timestamps

to insert those packets. The Rayleigh distribution (as given in Equation (5.1)) is selected

to ensure that more padding is added to the trace fronts than the rest of the trace.

According to Equation (5.1), for a given w value, the probability density function first

increases quickly, peaks at w, and then gradually decreases, resulting in a burst of
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dummy packets at the beginning of a trace. As a result, FRONT outperformed the then

best-performing defense WTF-PAD [23] with approximately the same amount of data

overhead.

f(t;w) =


t
w2 e

−t2

2w2 t ≥ 0

0 t < 0

(5.1)

Additionally, to further randomize the padding for each website visit, FRONT requires

both client and server to pick the number of dummy packets to add and the specific

Rayleigh distribution to choose time stamps from (by picking a random textitw value)

before every communication session.

5.1.2 Differential privacy for defense against video stream fingerprint-

ing

With the aim of seeking a principled solution to counter video stream fingerprinting

attacks, Zhang et al. [25] explored the feasibility of using differential privacy to design a

defense. More specifically, the authors aimed to develop ϵ-deferentially private defenses

for streaming traffic, which by adding random noise dictated by the parameter ϵ and

threshold t, can render two video streams within distance t to be statistically indistin-

guishable from each other. The authors used two different methods FPAk and d∗-privacy

to enforce differential privacy on video streaming traffic.

5.1.2.1 Fourier Perturbation Algorithm

Given a non-defended streaming traffic trace Q = {qi}i∈(0,n) which is a sequence of n

integers where each element qi in the sequence corresponds to the total number of bytes

transmitted in a given direction during ith window/bin, FPA methods transforms the

entire traffic trace into the frequency domain using Discrete Fourier Transform (DFT)

before adding dummy data to each Fourier component and then returning the inverse

DFT as the defended trace. It should be noted that this requires the entire traffic trace

to be known before the defense can begin. Given that Lap(λ) is a random variable

drawn from the Laplace distribution with scale λ and location µ = 0, ∆2(Q) denotes
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the L2 sensitivity of a set of Qs, PADn(Q) denotes padding the sequence Q with zeros

up to length n, DFT (X) denotes the Discrete Fourier Transform of X and IDFT (X)

denotes the Inverse DFT of X, the FPA method of adding dummy data to streaming

traffic is given in Algorithm 3. Here, ϵ is a measure of the amount of dummy data added

to an element where lower ϵ would add more dummy data increasing the data overhead

and privacy of the defended trace.

Algorithm 3: FPA on streaming traffic [25]

Require: Undefended trace Q of length n, k ∈ Z+ and ϵ

Let: λ =
√
k∆2(Q)/ϵ

1 Calculate (DFT (Q)) and keep the first k Fourier coefficients F [1], ..., F [k].

2 for ( i = 0; i < k ) {

3 F [i] = F [i] + Lap(λ)

4 Q̃ = IDFT (PADn(F [1], ..., F [k]))

5 return Q̃

5.1.2.2 d∗-private method

Given a non-defended streaming traffic trace Q = {qi}i∈(0,n) which is a sequence of n

integers where each element qi in the sequence corresponds to the total number of bytes

transmitted in a given direction during ith window/bin, d* privacy mechanism adds

dummy data to each packet in real-time according to a predefined procedure. Given

that D(i) ∈ N denotes the largest power of two that divides i, the d* privacy mechanism

for adding dummy data to a streaming traffic trace is given in Algorithm 4. Here, ϵ is

a measure of the amount of dummy data added to an element where lower ϵ would add

more dummy data increasing the data overhead and privacy of the defended trace.

5.2 FRONT-U - Defending Web Traffic

Next, we consider defending against website fingerprinting CNNs. In Chapter 4.2, we

highlighted that website fingerprinting CNNs focus more on the initial part of a trace

compared to the rest of the trace and on the transitions between uploads and downloads

instead of continuous periods of uploads or downloads. At the same time, we discussed

in Chapter 5.1.1 about FRONT [24], a defense against website fingerprinting, which
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Algorithm 4: d* private mechanism for defending streaming traffic [25]

Require: Undefended trace Q of length n and ϵ

Let: G(i) =


0 i = 1

i/2 i = D(i) ≥ 2

i−D(i) i < D(i)

Let: ri ∼


Lap(1ϵ ) i = D(i)

Lap( ⌊log2(i)⌋ϵ ) otherwise

1 Q[0] = Q̃[0] = 0
2 for ( i = 1; i < n ) {
3 Q̃ = Q̃[G(i)] + (Q[i] −Q[G(i)] + ri)

4 return Q̃

is based on the same idea that the initial part of a trace is more important for the

classification.

Although FRONT already leverages our first observation (i.e., trace fronts are more

important), it does not leverage our second observation (i.e., website fingerprinting CNNs

focus more on the transitions between uploads and downloads). We leverage the second

observation to extend FRONT to have less overhead while also removing the constraint

that both the server and the client need to participate in the defense.

Accordingly, we propose FRONT-U (U for upload), in which only the client is involved

in padding. The main reason behind having only one party doing the padding is that

since the attacker is focusing on transitions between uploads and downloads, changing

the patterns of only one direction would reduce the ability of the fingerprinting CNN

to identify the trace. Since it is common to have fewer uploads compared to downloads

when loading a webpage, we decided to pad from the client side only in order to minimize

the total amount of padding used. Thus, FRONT-U follows the procedure of FRONT,

but with only the client side participating in the defense. Before each website visit, the

client would decide on the number of dummy packets to add and then use a Rayleigh

distribution to choose the timestamps for those dummy packets, which will be sent out

during the website load.

In Figure 5.1, we illustrate a random sample from the FRONT dataset when not de-

fended, when defended with FRONT and when defended with FRONT-U. According

to the figure, we see that both FRONT (Figure 5.1b) and FRONT-U (Figure 5.1c)
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Figure 5.1: Defense comparison: Website fingerprinting

have dummy padding added with a higher concentration towards the trace front. Ad-

ditionally, FRONT-U (Figure 5.1c) adds padding from the client side only resulting in

significantly less total data overheads compared to FRONT (Figure 5.1b).

To evaluate the performance of FRONT-U, we simulate the defenses using the same

dataset with 101 classes provided by the authors of FRONT in their code repository.

This dataset consists of 100 closed set classes and one class representing the open set.

The attack models on which we evaluate the defended traces are trained according to

the background class method and therefore, we note that our results correspond to the

more challenging open set scenario. We note that the implementation of FRONT and

FRONT-U requires the time stamps of the original Tor packets so that dummy packets

can be inserted at the correct positions. Publicly available versions of both AWF and DF

datasets contain only packet sizes and direction, and as a result, those two datasets could

not be defended using FRONT and FRONT-U methods. We compare the performance

of DF models [14] trained on un-defended, defended using FRONT, and defended using

FRONT-U data. We show the results in Table 5.1.

Table 5.1: FRONT vs FRONT-U

Method Accuracy Data Overhead

Non-defended 95.42% N/A
FRONT 72.38% 43.15%
FRONT-U 76.74% 19.8%

In Table 5.1, we see that FRONT-U reduces the data overhead by approximately half

while achieving similar protection as the original FRONT. Furthermore, in Table 5.2,

we show the performance of FRONT-U against LSTM and AdaBoost classifiers which
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demonstrates that even though designed based on the behavior of traffic fingerprinting

CNNs, FRONT-U is still effective against other classifiers as well.

Table 5.2: FRONT vs FRONT-U against LSTM and AdaBoost

Accuracy against Classifier

Method CNN LSTM AdaBoost

Non-defended 95.42% 91.33% 66.33%
FRONT 72.38% 47.06% 48.83%
FRONT-U 76.74% 64.83% 52.61%

5.3 STOMA - Defending Video Streaming Traffic

Next, we consider defenses against video fingerprinting CNNs. In Chapter 4.2, we high-

lighted that video fingerprinting CNNs focus on the finer sub-bursts associated with a

major burst instead of on the envelope of the burst signal. We leverage this insight to

devise a defense against such attacks by replacing small windows of a trace with the

mean number of bytes in that direction within that window to obfuscate the finer sub-

bursts within a major burst. Based on this approach, we introduce Streaming Traffic

Obfuscation with Moving Average (STOMA) that uses Algorithm 5 to defend streaming

traffic.

Given an un-defended trace x(t) of length n with t = 1, 2, ....n, the defended trace x̃

will be calculated as given in Algorithm 5. Here, k refers to the window of the trace

being averaged at a given time, and s refers to the stride length used to move the

averaging window. Note that to calculate the ith element of the defended trace x̃[i],

we only need to observe the next k elements of the non-defended trace, x[i : i + k].

Accordingly, increasing the upper bound of the uniform distribution where k is picked

from will increase the window length being averaged, which helps obfuscate the bursts

better. However, it will in turn, increase the number of elements of the non-defended

trace that needs to be known in advance before defending.

In Figure 5.2, we demonstrate the threat model related to the proposed defense. As

shown in the figure, both the client side and the server side independently participate

in padding their outgoing traffic according to Algorithm 5.

We evaluate STOMA by simulating the defenses on the DC dataset for the feature

Combination Number of Bytes (data). We use this feature instead of the number of



Defenses against Traffic Fingerprinting 108

Algorithm 5: Streaming Traffic Obfuscation with Moving Average (STOMA) Al-
gorithm

Require: Undefended trace x(t) where t = 1, 2, ....n
1 Given U(a, b) is the uniform distribution between a and b,
2 Pick k from U(32, 64) and s from U(2, k)
3 for ( i = 0; i < (n− k) + 1; i = i + s ) {
4 x̃[i : i + k] = ceil(average(x[i : i + k]));

5 if i + s < n then
6 x̃[i + k :] = ceil(average(x[i + k :]))

7 return x̃

End-to-end 
encrypted channel

Deep learning 
models

Streaming server
E.g. YouTube

User A is 
streaming 

video X Passive 
eavesdropping

Attacker

Internet

Infers –

“User A is streaming 
video Y”

STOMA
+

d*

Original 
traffic 

Defended 
traffic STOMA

+
d*

Original 
traffic 

Defended 
traffic 

Figure 5.2: STOMA threat model

packets in the uplink as used in previous chapters, as it is more practical to alter the

number of bytes in both directions than the number of packets in the uplink only.

Unlike Tor website visits we considered earlier, which have a fixed packet length, video

streaming packets can be padded with dummy bytes.

We compare STOMA’s performance with state-of-the-art defenses, d* private, and FPA

(Fourier Perturbation Algorithm) methods introduced in [25]. As explained in Chap-

ter 5.1.2.2, the d* private method adds dummy data to each packet in real-time according

to Algorithm 4, while FPA method discussed in Chapter 5.1.2.1 assumes the entire trace

is known in advance and converts the entire trace to the frequency domain before adding

dummy packets as explained in Algorithm 3. Both these methods require a variable ϵ

which defines the amount of dummy data to be added. A lower ϵ would imply a larger

amount of dummy data and hence more data overhead.

It should be noted that in contrast to assuming that the complete trace is known by

the defender in advance as in the FPA method, we make the assumption that only the

next t seconds window (n bins × bin width in seconds) data is known by the defender in
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advance. In this particular case, the window size is 24 seconds (64 bins x 0.36s). When

it comes to streaming data assuming the prior knowledge of data for only a particular

window is more realistic than assuming the prior knowledge of the whole data stream,

which can change over time. We show our results in Table 5.3.

Table 5.3: Performance of STOMA and other methods

Method OH
up-link

OH down-
link

Accuracy

Non-defended 0.00% 0.00% 96.46%
STOMA 0.07% 0.01% 90.75%
d* privacy 763.71% 145.09% 93.63%
STOMA + d* privacy 678.70% 103.62% 52.50%
FPA 21.47% 99.80% 18.31%

According to Table 5.3, we see that even though the d* privacy method and STOMA

do not provide reasonable privacy by themselves, the combination of the two methods

provides adequate privacy (reduction in classifier accuracy). It should be noted that

when the ϵ value in d* private mechanism is increased, the overhead added is increased,

resulting in better privacy. Similarly, for STOMA, if the window size (k) used is in-

creased, the privacy provided by the method increases. However, when using these

methods in combination, the defense provides sufficient privacy with relatively low over-

heads. Furthermore, in Table 5.4, we show the performance of STOMA against LSTM

and AdaBoost classifiers which demonstrate that even though designed based on the

behavior of traffic fingerprinting CNNs, STOMA is still effective against other classifiers

as well.

Table 5.4: STOMA and other methods against LSTM and AdaBoost classifiers

Accuracy against Classifier

Method CNN LSTM AdaBoost

Non-defended 96.46% 94.84% 94.04%
STOMA 90.75% 91.09% 92.63%
d* privacy 93.63% 89.69% 90.91%
STOMA + d* privacy 52.50% 57.66% 65.20%
FPA 18.31% 35.16% 27.59%

In Figure 5.3, we have illustrated the mean class trace for class 0 under four scenarios,

non-defended, d* defended, STOMA defended and Combined defended. Accordingly, if

we compare the non-defended trace (Figure 5.3a) and d*-private defended trace (Fig-

ure 6.4b), we see that even though the d* method (with ϵ = 0.0005) increases the

amount of variance between traces of the same class, it fails to hide the burst pattern of
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Figure 5.3: Mean class trace for class 0 for varying defenses

the class. On the other hand, when comparing the non-defended trace (Figure 5.3a) and

STOMA defended trace (Figure 5.3c), we see a complete transformation in the burst

pattern, but with less variance among traces of the same class. With similar graphs

on all other classes, we also observe that even though STOMA is able to change the

original burst pattern of the class, the resulting pattern is still unique for each class,

which causes higher attack accuracy when trained on defended data. In Figure 5.3d,

we see that when the two methods are combined, the original burst pattern of the class

is changed, and more variance is seen among traces of the same class, which results in

better privacy.

In Figure 5.4, we have shown the mean class trace for class 0 and 5, defended with

FPA method (which provides good privacy according to the results in Table 5.3) vs

non-defended. According to the figures, we see that the FPA method completely alters

the burst pattern of the trace, resulting in an almost flat line. It suggests that if the

FPA method is used as a defense, the packet transmission is required to happen at a

constant rate using large buffers, which would affect the implementation of the method
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Figure 5.4: Mean class trace of non-defended vs FPA defended traffic

over DASH. Compared to this, the combination of moving average and d* methods still

preserves the bursty nature of the trace, making it relatively easier to be implemented

over DASH. Moreover, unlike FPA, STOMA and d* privacy combination does not require

the prior knowledge of the full trace but only the traffic pattern of a single window, which

is more suitable and realistic for streaming applications.

5.4 Practical Applicability of Proposed Defenses

Finally, we discuss the practical applicability of our proposed defenses compared to

state-of-the-art methods.

5.4.1 FRONT-U

As described in Chapter 5.2 in FRONT, both the server and the client decide the number

of dummy packets to add and the exact time stamp to add them to the actual trace,
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whereas in FRONT-U, this is decided by the client. This happens before the actual

communication, and hence padding is done in real-time incurring zero timing overheads

(i.e., actual packets are sent out without a delay).

Adding zero delay to the actual packets while significantly reducing the attack accuracy

makes both defenses very practical solutions against website fingerprinting. To provide

the same level of privacy, FRONT-U requires only almost half of the overhead of FRONT,

and as such, more suitable for bandwidth-conscious real-world applications.

Finally, FRONT-U requires padding only from the client side. This provides flexibility

to the user to decide whether or not to use the defense and how much padding to be

added (which is proportional to the privacy provided) without needing the participation

of the server. Overall, these features make FRONT-U a more realistic defense that

provides flexibility to the users.

5.4.2 STOMA

In Chapter 5.3 we showed that the combination of STOMA and d* privacy could signifi-

cantly reduce the attack accuracy as opposed to using either of the methods individually.

Although FPA method provides better privacy with a lower data overhead compared

to the combination of STOMA and d* privacy method, the FPA method requires the

behavior of the entire traffic trace to be known in advance, which is not realistic.

In contrast, our proposed method requires the knowledge of only the next 24 seconds

(this is configurable) of the trace, which can be achieved by adding a delay to the

actual packets and is more realistic compared to assuming knowledge of the full trace

in advances as in FPA. Furthermore, in Figure 5.4 in Chapter 5.3, we showed how FPA

requires packet transmission to happen at a constant rate using buffers which affects the

implementation of the defense over DASH. Comparatively, our method still preserves

the bursty nature of the video streaming transmission, which allows the DASH player to

still be able to potentially detect network changes. Indeed, video streaming over DASH

makes use of this variable bit rate traffic to optimize the quality of experience for the

user by reacting to potential network changes.
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To summarize, we leverage the observations from Chapter 4.2 to propose two new de-

fenses against traffic fingerprinting CNNs. We introduce FRONT-U: a defense against

website fingerprinting that provides similar privacy as the state-of-the-art defense with

half the data overhead, and STOMA: a defense against video fingerprinting that provides

reasonable privacy under more realistic assumptions compared to previous work.

5.5 Discussion and Concluding Remarks

In this chapter, we leveraged observations and insights we obtained in Chapter 4, to

design efficient defenses against traffic fingerprinting attacks that provide reasonable

privacy at affordable costs and compare them with state-of-the-art defenses.

Based on the results from Chapter 4, we proposed FRONT-U, a defense against website

fingerprinting CNNs that provides similar privacy as the state-of-the-art with approxi-

mately half the data overheads by focusing more on obfuscating initial parts of a trace

and transitions between uploads and downloads, and STOMA a defense against video

fingerprinting CNNs that provides adequate privacy under more realistic assumptions

compared to previous work by obfuscating sub-burst shapes within bursts of streaming

traffic. Though we derived the insights that formed the basis of our defenses by dissect-

ing traffic fingerprinting CNNs, we also showed that the defenses we proposed are also

capable of mitigating threats posed by other classifiers such as AdaBoost and LSTM.

Traffic analysis and defenses have always been an arms race between attackers and

defenders, and it is likely to continue in the future with improved attacks defeating state-

of-the-art defenses. Also, future work should look into further reducing the overheads

incurred by defenses in order to make them more feasible to be used in real-world

applications. In designing novel defenses, another possible avenue to explore is the

idea of universal perturbations. Work in computer vision has shown the existence of a

universal (image-agnostic) and small perturbation vectors, that cause natural images to

be misclassified with high probability across different deep neural networks [119]. If such

an input agnostic perturbation that can cause a network trace to be misclassified by an

attacking deep neural network exists, it can be used to defend network traffic against

fingerprinting attacks in real-time. That is because a pre-calculated perturbation can be

used to add dummy packets to the network trace without causing timing delays. This
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idea has been explored by a very recent work [82] to defend against website fingerprinting

attacks over Tor. Future work can compare its performance, overheads, and effectiveness

against multiple deep learning and traditional machine learning-based attack models

with other recent defenses like FRONT to identify a more practically applicable defense.

Furthermore, future work can also explore whether a similar approach can be used to

defend against other types of traffic fingerprinting attacks, such as video fingerprinting

attacks.



Chapter 6

Open set Classification for

Encrypted Network Traffic

Deep Learning models perform exceptionally well with high accuracies across multiple

domains such as image processing and natural language processing. However, they are

mostly developed under the closed set assumption where all classes that the model may

encounter at inference are represented in the training data. However, when deployed

in real-world applications, the closed set assumption becomes invalid because it is not

possible to predict all classes the model might encounter in advance and it cannot be

guaranteed that training data is available for all known classes. Therefore, using deep

learning-based models in practice requires addressing the open set problem. That is these

models should be able to correctly handle known classes while effectively identifying

unknown classes as well.

Traffic fingerprinting models based on deep learning models also face the closed set

limitation. However, when deployed in real-world applications, traffic fingerprinting

models must be able to adapt to the open set setting where they can separate the traffic

flows it can classify (known-knowns) from all other traffic flows (unknown-unknowns).

A majority of existing work in encrypted traffic fingerprinting either,

(i) focused only on the closed set problem [16, 113]

(ii) addressed the problem by adding a background class or a binary classifier to sep-

arate knowns from unknowns [14, 18, 68]

115
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(iii) used thresholding on classifier confidence to filter unknowns [15].

Nonetheless, these methods have their own limitations as discussed in Chapter 2.2. For

example, using a background class or binary pre-classification requires samples from

background traffic (known-unknowns) during training time. There is no guarantee that

such available samples at training time will cover all unknown-unknowns the classifier

may come across in the future. We explain this further in Figure 6.1.

We use the split 5 of the DC dataset and the corresponding background class model

trained in Section 6.3, to get the output vector from the Softmax layer for the corre-

sponding test set. Next, we plot the 2-dimensional t-SNE graph [120] for the output

values as shown in Figure 6.1. We note that in this specific split, the classes [0, 1, 3, 5]

make up the closed set while classes [6, 7, 8, 9] make up the open set. Classes 2 and 4

are used as the known unknowns.
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Figure 6.1: DC: t-SNE plot for background class method

As can be seen from Figure 6.1, the samples from closed set classes (brownish shades)

form four distinct clusters while the samples from the two classes used as known un-

knowns (greenish shades) are also clustered close together. However, the samples from

the open set classes (blueish shades) which ideally should be clustered closer to known-

unknowns (i.e, greenish clusters), can be seen clustered either with a specific closed set

class (i.e, class 9 clustered close to class 3) or as a separate cluster further away from the

known-unknown classes. Notice how none of the open set classes cluster close to the two

known-unknown classes (greenish). This confirms how for some datasets, open set sam-

ples would have more similarities with closed set classes as opposed to known-unknowns.

In such a scenario, the background class method fails.
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Another naive approach to open set classification is thresholding on the classifier’s confi-

dence, which is based on the idea that the classifier must have high confidence for known

classes. However, current deep learning models are known to have high confidence even

if they are making a mistake [33]. In Figure 6.2, we demonstrate an example scenario

where softmax thresholding does not perform well. Here, we used the second split of the

SETA dataset and feed both closed and open set test sets to the corresponding closed

set classifier trained in Section 6.3. Then we extract the softmax score for the predicted

class for each sample. In Figure 6.2 we show the histogram of these softmax scores

drawn to a log scale. Note that the sub-figure shows the histogram for the entire range

of softmax scores ([0.0-1.0) while the main figure shows the zoomed-in version to clearly

emphasize the section of the figure corresponding to the score in the range [0.995-1.0].

The figure shows how almost all closed set samples have softmax scores greater than

0.999 as expected. However, over 50% of open set samples also have softmax scores

in the same range. This makes rejecting open set samples by thresholding on softmax

ineffective, especially when sacrificing closed set accuracy is not acceptable.

Figure 6.2: SETA: Histogram for Softmax scores

As such, encrypted traffic fingerprinting models must be able to handle the open set

classification more realistically, where the model can correctly identify samples from

known classes (i.e., known traffic flows) while effectively rejecting any samples from

classes not seen during model training (i.e., background traffic flows).

Another key issue in deploying traffic fingerprinting models in real-world applications is
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their high memory and computational power requirements. In practice, these fingerprint-

ing models need to be deployed on in-network computing devices such as programmable

switches, which have limited memory and computational power [121, 122].

To this end, in this chapter, we propose a novel framework for robust open set classi-

fication of encrypted network traffic based on three key ideas. First, we show that a

well-regularized underlying closed set classifier improves the performance of an open set

classifier. Next, we show that traffic fingerprinting models can be quantized without a

significant drop in accuracy. Finally, we propose a novel open set classification method

based on k-logit neighbor distances with three variants that perform reliably across all

datasets considered, with > 85% closed set accuracy and > 65% open set accuracy.

6.1 Background

In this chapter, we first detail a typical encrypted traffic fingerprinting scenario and

explain the importance of open set classification. Next, we provide a brief overview of

the existing open set classification methods that are most commonly used in encrypted

traffic fingerprinting. Finally, we introduce five publicly available datasets and their

corresponding deep CNN classifier architectures that we use in our experiments.

6.1.1 Open set traffic classification scenario

In Figure 6.3, we illustrate a typical traffic classification use-case where it is essential

to have an open set classification component. Assume the law enforcement is trying

to identify illegal activities happening over Tor and has the ability to passively observe

encrypted Tor traffic in transit (e.g., at a vantage point of an ISP). They have identified

a list of websites that are used for illegal activities (i.e., the target list), and they want

either to identify users who are browsing those websites or simply to terminate those

connections. Other than that, law enforcement does not have any interest in all the

other website visits (i.e., websites that are not in the target list) happening over Tor.

To achieve this, first, the law enforcement can collect a dataset of traffic flows by visiting

websites in the target set themselves (i.e., the known classes or known knowns) and train

a classification model. However, this naive closed set model will have the limitation of



Open set Classification for Encrypted Network Traffic 119

predicting any traffic flow given to it as the input as one of the websites in the target

list. To avoid this, the law enforcement can collect samples of other website visits that

are not in the target set (i.e., known-unknowns) and add all of these samples as a single

class during the training process (i.e, the background class). However, this method

may not perform well when unknown unknowns (i.e., websites that were not shown to

the classifier during training) are fed as inputs. Alternatively, the law enforcement can

reject samples with very low softmax scores (below a threshold) for their predicted classes

assuming that the model will have low confidence for unknown samples (i.e., softmax

thresholding). However, this method also may not always work well as the classifier was

not explicitly trained to output lower softmax scores for unknown samples.
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Figure 6.3: Traffic classification scenario

6.1.2 Open set classification methods

In Chapter 2.2, we introduced two naive methods; background class and softmax thresh-

olding, OpenMax [33], which is one of the first open set classification methods proposed

over deep learning methods and ensemble learning method. As Chapter 2.2 already

explains these methods in detail, here, we briefly summarize them.

• Background class: Treat the open set as another class and train an n + 1 class

classifier (n is the number of known classes) using a subset of the open set

• Softmax thresholding: Use a predefined threshold on the softmax score of the

predicted class to reject samples with low confidence value as open set (threshold

can be decided using the validation set to maintain a preferred closed set accuracy)

• OpenMax: Use EVT modeling on the distance between a sample and the class

mean of the predicted class to refine class scores.
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• Ensemble learning: Combine the output from multiple simple learner models

and use softmax thresholding on the combined output

6.1.3 Datasets

We use five publicly available datasets corresponding to three types of encrypted network

traffic as described below.

1. Website fingerprinting over Tor: Automated website fingerprinting (AWF) [15]

and Deep fingerprinting (DF) [14] datasets contain network traffic traces for vis-

iting homepages of top-200, and top-95 Alexa websites over Tor, respectively. In

these datasets, each site visit is represented by the first 5,000 (DF)/3000 (AWF)

Tor packets in either direction. That is, in these datasets, a data sample is a

sequence of +1s (uploads) and -1s (downloads). If a particular homepage visit did

not generate a total of the respective number of packets in either direction, the

remainder of the sequence was padded with zeros.

2. Video fingerprinting: Deep content dataset (DC) [16] contains traffic traces for

streaming the first three minutes of selected YouTube videos, while SETA [113]

dataset contains the same for selected Netflix videos. In both datasets, the three-

minute interval is binned into 500 time slots (0.36s each), and each time slot is

represented by summary statistics of the packets observed during that time. While

the original datasets comprised 24 features per trace, the authors of DC observed

that the number of uplink packets of video streaming produced the most accurate

model, and hence we only use that feature in our work. Therefore, these datasets

represent a traffic trace as a sequence of 500 integers.

3. Voice command fingerprinting: The IoT [18] dataset contains the traffic traces

generated by Google Home devices for 98 specific voice commands. It represents

a trace by the first 475 packets in either direction and for each packet, a -1 would

denote a download and a +1 would denote an upload. If a particular voice com-

mand did not generate a total of 475 packets in either direction, the remainder of

the sequence was padded with zeros.

We provide a summary of our datasets in Table 6.1. We split DC, SETA and IoT

datasets to create open sets, as discussed below.
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Table 6.1: Summary of datasets

Dataset Type Details Open set
AWF [15] Website 200 websites (2,500 traces/class) 400,000 classes
DF [14] Website 95 websites (1,000 traces/class) 40,716 classes
DC [16] Video 10 YouTube videos (320 traces/class) N/A*
SETA [113] Video 20 Netflix videos (100 traces/class) N/A*
IoT [18] Voice 98 Google Home comms. (1,500 traces/class) N/A*

*We split the classes so that 40% of classes are in the closed set.

Data preparation: The original works of AWF and DF considered the open set sce-

nario and hence already has a separate open set. Therefore we did not have to manually

split the dataset. In contrast, the original versions of DC, SETA, and IoT datasets did

not have open set samples. Therefore, to use these in our open set experiments, we split

the original datasets into two parts so that 40% of the original number of classes is used

as the closed set while the rest is considered as the open set. To negate any effect on

results from specific splits, we use multiple random splits for each dataset and report

the average performance. The number of splits depends on the datasets. For DC and

SETA datasets which have a smaller number of classes, we created five splits, and for the

IoT dataset, we created 10 splits. Later, when we report the results for these datasets,

we report the average and standard deviation values of each metric across all splits of a

given dataset.

Unless otherwise specified, for all the methods, the training, testing and validation splits

from the closed set contain 200, 200, and 100 traces per class, respectively. While more

data samples were available in the datasets, the original work as well as subsequent

work [15] and Chapter 4 showed that 200 training samples per class are sufficient to

train a model with high test accuracy.

For the background class method, which is the only method that requires open set sam-

ples during training (i.e., known-unknowns), we separate out 20% of classes as known-

unknowns and use 200 and 100 traces from each known-unknown class in the training

and validation sets, respectively. We ensured there is no overlap between the classes

used for open set during training and testing procedures. The test set comprised all the

known and unknown class samples from the original test set.
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Figure 6.4: Deep learning model architectures

6.1.4 Deep learning models

All of the open set methods we use require an underlying deep neural network. For each

dataset except AWF and SETA, the original work proposed the most suitable model

architectures and hyperparameters and hence we use those models as it is in our work.

For AWF dataset, we use the model proposed for DF [14] since Sirinam et al. [14] showed

that DF model is more effective for website fingerprinting. The original work for SETA

did not use deep learning models, and hence we use a deep CNN similar to that of DC.

The DF model used for AWF and DF datasets were given in Figure 6.3-(a) while the

DC model was shown in Figure 6.3-(b). The model architecture used for SETA dataset

is shown in Figure 6.4a while that for IoT dataset is shown in Figure 6.4 (refer [18] for

parameter values).

Next, we present the model architectures used for ensemble learning method (cf. Chap-

ter 2.2), corresponding to all five datasets. For the AWF dataset, we use the model

proposed in [69], which is illustrated in Figure 6.5a. Since the DF dataset is also a

website fingerprinting dataset much similar to AWF we used the same architecture with

some hyperparameter changes. For DC, SETA and IoT, the complexity of the model

is reduced by reducing the number of repetitive blocks. Figure 6.5b shows the ensem-

ble model architecture for the DC dataset, and SETA uses a similar model with few

hyperparameter changes. The ensemble models IoT is shown in Figure 6.5c.



Open set Classification for Encrypted Network Traffic 123

(a) AWF ensemble model

(b) DC ensemble model (c) IoT ensemble model

Figure 6.5: Ensemble model architectures

6.2 Framework for Robust Open Set Traffic Fingerprinting

Our proposed framework for robust open set classification targeted towards encrypted

traffic fingerprinting in resource-restricted network devices is based on three key ideas.

1. Regularized models

2. Model Quantization

3. k-Logit Neighbor Distance for open set classification
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6.2.1 Regularized model

All open set classification methods we explore in our work use underlying closed set

classifiers (a deep learning model). We hypothesize that the performance of an open

set classifier depends on how well the underlying deep learning model can identify class

boundaries for the known classes. For instance, if the underlying closed set classifier

identifies a sub-optimal class boundary or is overfitted to a given dataset causing class

boundaries to even accommodate for noise and irregularities, it would cause the sub-

sequent open set classifier to identify even open set samples as samples from a known

class. We illustrate such a scenario in Figure 6.6.

Assume two closed set classifiers trained on two classes with Feature 1 and Feature 2

referring to the features learned by the classifier (logit layer). Figure 6.6 shows the

distribution of Class A in this logit space. Although both Classifier 1 and 2 each have

learned a boundary that encompasses all samples from Class A and would give 100%

accuracy for Class A in the closed set setting, we see that Classifier 1 has learned a

sub-optimal boundary that covers a region that includes only noise samples and no

actual samples from Class A. Hence, when used for open set classification, Classifier

1 will label the open set samples that are within the sub-optimal boundary but away

from the actual Class A samples as Class A. In contrast, Classifier 2 has learned an

optimal boundary that covers only the correct samples from Class A and when used for

open set classification can correctly reject all open set samples outside the boundary

of Class A. Due to the simplicity of network traffic data that allows a simple model

to be easily trained to achieve high accuracies, if proper hyperparameter tuning is not

done, there is a likelihood that the resulting model simply learns sub-optimal class

boundaries good enough to improve accuracy. For instance, in [16], the authors directly

use the CNN model architecture proposed in [17] for traffic captured at the network

level, on their traffic captured at data-link layer (WiFi) and still achieve high training

and testing accuracies. As we show later, although the DC model performs well, it does

not identify optimal class boundaries and therefore tuning the model further improves

open set results.

Another possible source of such over-fitting is the number of closed set classes. Out of

the five datasets we explore, DC, SETA and IoT did not have a separate open set and

therefore we had to split the original dataset to create an open set. By doing so, we
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reduce the total number of classes (closed set) the original model architecture was tuned

for, and using the exact same model architecture as in the original work on the smaller

dataset would result in overfitting.

Accordingly, we hypothesize that if a more robust model (i.e more generalized model

that identifies optimal class boundaries without overfitting) is used as the underlying

classifier, it will improve the results of any open set classification method. To ensure

that the underlying closed set classifier has learned better class boundaries and is not

overfitted to a particular dataset, we propose to properly regularize a closed set classifier

before using them for open set classification. We use DC, SETA, and IoT datasets to test

our hypothesis and regularized the baseline models (models from corresponding original

work as described in Chapter 6.1.4) by increasing the dropout rates. Then, we compare

the open set classification results for using the baseline model vs the regularized model.

We note that the original models used with AWF and DF datasets have undergone thor-

ough hyperparameter tuning to ensure optimal performance and the original datasets

are used without splitting in our work as they already contain open sets. Therefore, we

do not use those datasets in this experiment.

Figure 6.7 illustrates the regularized models for DC, SETA and IoT datasets where we

have denoted the dropout rates to the right of each dropout layer, with the value in red

referring to the baseline model parameter and the value in green referring to the value

in the regularized model.

6.2.2 Quantization

The second key component in our framework is model quantization. Quantization in

general refers to mapping continuous values to a smaller set of discrete finite values.
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(a) DC model (b) SETA model (c) IoT model

Figure 6.7: Model architectures

Usual neural network weights are real values (continuous infinite and represented as

32-bit or 64-bit floating point numbers) and quantization of neural networks maps these

model parameters to 8-bit integer values within the range (-128 to 127). As a result,

the model footprint in terms of storage and memory is decreased, and the inference

becomes faster due to integer computations, making such models ideal to be deployed

in in-network computing devices.

Since there is some information loss when the real-valued neural network weights are

converted to integers, model quantization can cause a drop in performance. In our ap-

plication, in addition to the drop in closed set performance, we also need to consider

the effect of open set performance and ensure that the performance drop due to quan-

tization is not significant. While there are many options for model quantization (e.g.,

quantization-aware training, post-training dynamic range quantization), here we used

post-training integer quantization techniques provided by Tensorflow1 to map all values

from floating point numbers to int8 format reducing the model size and perform open

set classification using the quantized model as the underlying classification method.

6.2.3 k-Logit Neighbor Distance-based Open Set Classification

The third element of our framework is a novel distance-based open set classification

method named k-Logit Neighbor Distance (k-LND) Method with three variants. It

is built on the intuition that the output of the logit layer (the layer before softmax

1https://www.tensorflow.org/lite/performance/post_training_integer_quant

https://www.tensorflow.org/lite/performance/post_training_integer_quant
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activation) of a deep neural network represents how classes are related to each other as

opposed to being independent per-class score estimates.

More specifically, if N is the number of closed set classes, the output of the logit layer

is a vector of length N that represents an N dimensional space where samples from the

same class would be clustered together around its class center. Here, the class center

is the average over the logit layer outputs of correctly classified training samples from

the corresponding class, referred to as the Mean Activation Vector (MAV). Hence, if

a sample is from the closed set, we expect it to be close to the MAV of its predicted

class while being far away from the MAVs of k neighbor classes of the predicted class.

In contrast, if a sample is from the open set, we expect it to be distant from the MAV

of its predicted class and be relatively closer to the MAVs of k neighbor classes of the

predicted class. Based on this intuition, k-LND methods use the distance between a

new sample and the MAVs of known classes to identify open set samples.

We further explain this idea using an example in Figure 6.8. Consider a two-class closed

set classifier. The output from the logit layer of the closed set classifier would be a vector

of length two, with logit 1 and logit 2. Figure 6.8 demonstrates the space spanned by

logit 1 and logit 2 where the reddish dotted line shows the decision boundary learned

by the classifier and C1 and C2 represent the MAVs of Class 1 and Class 2 respectively.

The circle around each MAV represents the cluster around it where a majority of samples

(> 90%) from its class fall into. If we define ri as the radius of the cluster around Ci,

k-LND1 (the first k-LND variant) assumes that if a sample is predicted as class i by

the closed set classifier and the distance between that sample and Ci is greater than ri,

that sample is from the open set. For instance, consider that point P and point A in

Figure 6.8 are both classified as class C1 by the classifier. If dXCi defines the distance

between a point X and Ci, we see that dPC1 is less than r1 while dAC1 is greater than

r1. Hence, k-LND1 will label sample P as Class 1 and sample A as an open set sample.

Similarly if both samples Q and B are classified by the closed set classifier as Class 2,

k-LND1 will label sample Q as Class 2 since dQC2 is less than r2 and reject sample B

as dBC2 is greater than r2.

k-LND1 only considers the distance to the MAV of the predicted class to identify open

set samples. k-LND2 and k-LND3 improve on the intuition of k-LND1 such that they

additionally assume that a sample from a known class would be distant from the MAVs
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Figure 6.8: k-LND method

of the neighbors of its class, in addition to being closer to its own MAV. Accordingly,

the three variants of k-LND differ in the way they calculate the distance between a

sample and MAVs of closed set classes. In Equations 6.1, 6.2, and 6.3 we show how

distances are calculated in k-LND1, k-LND2, and k-LND3 respectively. Here, dA denotes

the Euclidean distance between the sample and the MAV of class A, p denotes the class

predicted for the sample by the closed set classifier and k denotes the number of neighbor

closed set classes considered. The only difference between k-LND2 and k-LND3 is that

they use different methods to incorporate the distances to neighboring MAVs into the

final distance metric so that to get a lower distance value, a sample needs to be closer

to its own MAV and far away from the MAVs of its neighboring classes.

It should be noted that for datasets where the number of closed set classes is small,

k is equal to the number of closed set classes and otherwise k will be less than the

total number of closed set classes and would be considered as a hyperparameter of the

method. The reason for this decision is that if the logit layer output is of longer length,

euclidean length calculations become less effective [123] and the computation times also

increase.

D1 = dp (6.1)

D2 =

k∑
i=1

( di − dp) ; i ̸= p (6.2)

D3 =
dp∑k
i=1 di

; i ̸= p (6.3)
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In Algorithm 6, we describe the common procedure to follow for all three methods prior

to inference to calculate the Mean Class Vectors and corresponding threshold for each

closed set class.

Algorithm 6: Before Inference for k-LND

Require: Closed set classifier without Softmax: θ, Number of closed set samples N
Input: Set [XsetA

i , Y setA
i ], with setA as subset A of dataset

Define: XsetA
ci : the set of correctly classified samples of class ci from set A by

closed set classifier
Define: n(X) : no. of samples in X
Define: sort(ListA) : ListA sorted in ascending order

1 for ci = 1.....N do
2 Calculate MAVci = Mean(θ(Xtrain

ci ))
3 distanceci=[]

4 for j = 1.....n(Xval
ci ) do

5 distanceci .append(DK(Xval
cij ))

6 thresholdci = 90thpercentile(distanceci)

7 return MAV ci and thresholdci

At inference time, a sample will first be fed to the closed set classifier to get its predicted

class and logit layer output. Next, depending on which method is used, the distance

values (D1 or D2 or D3) are calculated using its predicted class and MAVs calculated

in Algorithm 6. Finally, the calculated distance will be compared with the threshold

value of the predicted class from thresholdci , and if the value is less than the threshold

value, the predicted label will be accepted and otherwise, it will be rejected as an open

set sample.

6.3 Results

Next, we explore the efficiency of the proposed framework. First, we introduce the eval-

uation metrics used and then analyze the open set performance of the framework when

each one of its three key components is added. First, we show how a well-regularized

model gives better open set accuracy and then use the regularized method to evaluate

the performance of four existing open set methods against the three variants of the novel

open set method proposed. Finally, we evaluate the performance of all seven open set

methods with a quantized classifier to show how the proposed framework that combines

a well-regularized model with its model weights quantized, with the proposed k-LND

method, gives the best open set performance.
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6.3.1 Evaluation metrics

For performance evaluation, we use closed set accuracy which represents the percentage

of closed set samples correctly classified into relevant classes, and open set accuracy

which denotes the percentage open set samples correctly identified. Since we need a

single metric that can be used to identify the better-performing model, we also calculate

the F1 Score. Since the open set is larger compared to a closed set class which makes the

dataset imbalanced, we use the Micro F1 score which is more suited to handling class

imbalance. When calculating Micro F1, we consider only the correctly classified closed

set samples as True Positives (TP) since the classifier is trained only on closed set data.

For True Negatives (TN) and False Positives (FP), open set is considered as another class

because samples misclassified from or to the open set class reflect the performance of the

classifier. Accordingly, Micro F1 score is calculated as the given in Equation 6.6 using

precision and recall calculated according to Equation 6.4 and Equation 6.5 respectively,

where N is the number of known classes. From here onward, Micro F1 score is referred

to as F Score. and when comparing two open est classifiers, we consider the classifier

with the highest F Score as the better classifier.

PrecisionMicro =

∑N
n=1 TPi∑N

n=1 TPi + FPi

(6.4) RecallMicro =

∑N
n=1 TPi∑N

n=1 TPi + FNi

(6.5)

F ScoreMicro = 2 × PrecisionMicro ×RecallMicro

PrecisionMicro + RecallMicro
(6.6)

6.3.2 Regularized Models

In Chapter 6.2.1 we explained that for a better open set classification the closed set

classifier needs to be well regularized. This is majorly required if the closed set classifier

is trained with a subset of the dataset used by the initial work to propose the original

model. In such settings, the original model requires to be regularized. To show the

effect of regularization, we trained a baseline model (taken from the original work) and

a regularized model with high dropout rates for each dataset. Here, note that since

AWF and DF datasets have separate open sets, we don’t have to consider data splits,

and hence the models proposed in the original work are considered the optimized models.
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First, we compare the performance of each closed set classifier where we do not consider

the open set and report the results in Table 6.2. According to Table 6.2, we see that for

any of the three datasets, the performance of the two models is almost the same in the

closed set setting.

Table 6.2: Closed set classifier performance

Model DC SETA IoT

Baseline 99.08±0.88 98.17±1.70 97.49±0.48
Regularized 99.82±0.85 98.87±1.77 97.33±0.51

Next, we evaluate the performance of the two models in the open set setting. Figure 6.9

shows the percentage increase in F score due to regularized model and in Table 6.3 we

report the closed set and open set accuracy values for open set classification when using

the two models. Observing Figure 6.9, we see that across all three datasets and four open

set methods, the regularized model achieves a higher F score compared to the baseline

model. For the DC dataset, the highest increase in F score of 20.69% is observed for the

ensemble method while the lowest increase of 2.99% is seen for the OpenMax method.

Similarly, for the SETA dataset, the highest increase in F score of 35.48% corresponds

to the ensemble method while the lowest increase of 15.38% is observed with OpenMax.

For the IoT dataset, the maximum improvement of F score of 8.33% is observed for

OpenMax while the lowest increase of 3.23% is for the ensemble learning.

According to Table 6.3, in most cases, the regularized model increases the open set

accuracy with a less than 1% decrease in the closed set accuracy. For DC dataset,

increasing the dropout rates improved the open set accuracy by a maximum of 21.24%

(background class) and a minimum of 4.65% (ensemble). However, OpenMax for DC

dataset deviates from the above trend where the closed set increases by 5.19% while

the open set decreases by 1.14% for the regularized model. Even then, the F1 score

of OpenMax for the regularized model is still higher. With SETA dataset, the open

set accuracy increases by a minimum of 4.02% (OpenMax) and a maximum of 38.36%

(background class) with less than a 1% drop in the closed set when the underlying

model is regularized. Similarly for IoT dataset, for a less than 1% drop in the closed

set, the open set increases by a maximum of 32.7% (background) and a minimum of

4.63% (ensemble) for the regularized model compared to the baseline model. Based

on the results across all datasets and methods, we conclude that our hypothesis that
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Table 6.3: Effect of regularized model

Softmax Thresh. Background class OpenMax Ensemble Learning

DatasetModel Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

DC Base. 90.85±1.9 87.7±3.8 98.70±1.0 36.87±15.9 89.22±2.7 92.16±2.7 84.80±4.0 63.88±22.2
Reg. 89.41±2.1 89.4±4.1 98.69±0.8 44.7±11.0 93.85±2.1 91.11±5.5 84.25±4.1 66.85±13.3

SETA Base. 86.25±4.6 71.59±7.2 96.45±2.4 33.71±11.4 83.75±5.4 79.51±6.1 79.51±1.6 69.16±17.5
Reg. 85.41±3.6 79.21±9.3 95.62±2.7 46.64±13.0 83.33±4.0 82.71±9.8 78.8±2.4 77.05±19.9

IOT Base. 87.55±0.7 59.23±2.8 96.91±0.4 26.21±8.3 87.28±0.7 55.22±6.8 84.78±2.9 68.95±7.3
Reg. 87.04±0.6 62.35±4.6 96.21±0.5 34.78±8.6 86.86±0.5 58.92±8.3 84.16±1.5 72.14±9.6

Note that ‘Base.’ and ‘Reg.’ refer to the baseline and regularized models respectively.

suggests regularizing the underlying deep learning model improves the results of open

set classification is accurate.
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Figure 6.9: Effect of regularized model

6.3.3 k-Logit Neighbor Distance Method

We next present the results of evaluating the performance of the three novel open set

methods (k-LND1, k-LND2, k-LND3) we propose in Chapter 6.2.3 against four existing

methods and report the results in Tables 6.4 and 6.5. Here, DC, SETA and IoT datasets

use the regularized method trained before. Figure 6.10 summarizes the F score values

of all seven methods across all five datasets. According to F score values in Figure 6.10,

we see that k-LND3 outperforms all other methods for AWF, SETA, and IoT datasets

while background class and OpenMax give the best results for DF and DC datasets

respectively.

Furthermore, we observe that k-LND1, k-LND2, and k-LND3 methods shows consis-

tent results across all the datasets. k-LND1 and k-LND2 maintains > 85% closed set

and > 65% open set accuracy while k-LND3 performs the best and maintains > 90%

closed set and > 70% open set accuracy regardless of the dataset. In contrast, the perfor-

mance of other methods fluctuates between datasets. For example, softmax thresholding
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Table 6.4: Open set method performance - Existing methods

Softmax Thresh. Background class OpenMax Enseble Learning

Dataset Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

AWF 87.35 88.16 81.60 25.11 87.32 87.93 83.30 85.90
DF 90.69 84.66 95.20 97.40 88.56 83.99 87.80 69.90
DC 89.41±2.1 89.40±4.1 98.69±0.8 44.70±11.0 92.15±2.5 90.87±5.6 84.25±4.1 66.85±13.3
SETA 85.41±3.6 79.21±9.3 95.62±2.7 46.64±13.0 83.33±4.0 82.71±9.8 78.80±2.4 77.05±19.9
IOT 87.04±0.6 62.35±4.6 96.21±0.5 34.78±8.1 86.86±0.5 58.92±8.3 84.16±1.5 72.14±9.6

Table 6.5: Open set method performance - kLND methods

k-LND1 k-LND2 k-LND3

Dataset Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open Acc

AWF 89.37 85.43 89.88 88.12 97.98 89.23
DF 88.45 83.99 88.29 88.04 97.84 87.21
DC 91.63±1.7 87.78±6.9 94.24±1.4 86.26±7.1 94.51±1.8 86.92±7.3
SETA 85.41±1.6 84.69±9.8 85.21±1.1 85.16±6.7 95.42±1.7 87.84±9.1
IOT 85.62±0.6 65.92±5.1 85.49±0.9 76.19±2.4 97.33±0.5 74.47±3.5
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Figure 6.10: Default model F scores

and OpenMax both have relatively lower open set accuracy for IoT compared to other

datasets. While the background class method performs very well on DF dataset with

> 95% in both closed and open sets, it performs very poorly in the open set of all other

datasets.

In k-LND2 and k-LND3 we calculate the single parameter considering distances to all the

class centers (MAV) which embeds the complete information about the output vector

placement in the logit space. In other words, they calculate a comparative value from the

penultimate layer output and use a threshold to do open set classification. We attribute
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the consistently better behavior of novel methods to the fact that in novel methods,

the open set samples are identified by being compared with all closed set classes in the

logit space as opposed to just using a threshold for a single element (maximum value)

or comparing with just the predicted class in the logit space.

To summarize, all three variants of k-LND method perform consistently across all

datasets with > 85% closed set and > 65% open set accuracy. Moreover, as we show

later in Chapter 6.3.4, k-LND methods outperform all other existing methods when

model weights are quantized. Additionally, it should be noted that all three variants of

k-LND are lightweight compared to the background class that require open set samples

for training and OpenMax which needs additional EVT modeling. Hence we highlight

that k-LND performs well consistently across all datasets while consuming the least

resources.

6.3.4 Quantization

Next, we investigate the effect of quantizing the underlying deep learning model on open

set classification. In Table 6.6 and 6.7, we present the results of using quantized model

(quantize weights of models used in Chapter 6.3.3)for open set classification. Figure 6.11

summarizes the F score values of all seven methods across all five datasets which shows

that when using a quantized model, the three k-LND methods outperform all other

methods across all datasets.

When using the quantized models for AWF dataset, only softmax thresholding and the

k-LND methods achieve > 85% in both closed and open set accuracies. Out of those

four methods, k-LND1 method records the best performance with 97.98% and 84.02%

as closed and open set accuracy respectively. With the DF dataset, only the novel

three methods obtain > 85% in both closed set and open set accuracy with k-LND3

method achieving the best performance with closed and open set accuracies of 97.9%

and 87.2% respectively, when using the quantized models. For DC dataset when using

the quantized models, softmax thresholding and all three novel methods obtain > 85%

in both closed set and open set accuracy. Softmax thresholding performs the best with

an F score of 0.75 closely followed by k-LND3. After quantizing the models for SETA

dataset, k-LND3 performs the best with 89.6% closed set and 70.7% open set accuracy

while none of the other methods achieve > 85% closed set accuracy with > 70% open
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Table 6.6: Quantized model performance - Existing methods

Softmax Thresh. Background class OpenMax Enseble Learning

Dataset Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

AWF 89.10 86.90 80.20 73.50 81.90 73.60 85.2 31.8
DF 94.40 78.22 92.50 67.45 94.88 61.75 90.20 58.90
DC 93.72±1.9 90.89±5.0 96.20±2.1 44.10±15.3 89.80±4.7 89.84±6.4 77.22±8.8 59.54±9.4
SETA 81.54±11.7 52.17±20.2 78.75±8.9 34.88±12.2 51.55±14.7 77.62±16.3 69.30±14.26 68.48±21.19
IOT 89.18±5.6 46.70±11.2 91.31±3.4 42.50±8.9 78.09±6.2 18.87±9.8 72.53±5.9 21.30±10.1

Table 6.7: Quantized model performance - kLND methods

k-LND1 k-LND2 k-LND3

Dataset Closed
Acc

Open
Acc

Closed
Acc

Open
Acc

Closed
Acc

Open Acc

AWF 89.08 86.89 89.88 88.22 97.98 84.02
DF 87.72 84.20 87.92 87.80 97.98 87.22
DC 87.94±3.9 93.71±2.4 93.18±0.9 88.22±5.9 94.21±1.2 87.92±7.3
SETA 70.62±9.1 68.29±14.4 73.33±8.0 73.77±9.1 89.58±7.1 70.74±11.5
IOT 83.59±1.2 68.86±6.9 83.56±0.9 77.22±1.9 95.98±0.5 76.17±4.8

set accuracy. Similarly for IoT dataset, k-LND3 performs the best with 95.9% closed set

and 76.2% open set accuracy while none of the other methods achieve > 85% closed set

accuracy with > 70% open set accuracy. If we consider the overall result, we observe

that k-LND methods perform best on quantized models achieving the highest F score

for all datasets. More specifically, k-LND2 performs best for DC while for all other

datasets, k-LND3 performs the best.
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Figure 6.11: Quantized model F scores

Next, we report the model sizes before and after quantization in Table 6.8 where we

observe that the quantization of model weights reduces the storage requirement of a
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model by a minimum of 60% (SETA) and a maximum of 75.01% (IoT), which shows

how quantization helps reduce the model footprint in terms of storage. Additionally,

we also compare the model accuracies between the original model before quantization

and the quantized model in the closed set setting in Table 6.8. Accordingly, we see that

in the closed set setting, quantizing the model has no noticeable effect on the model’s

accuracy.

Table 6.8: Quantized models comparison

Model size closed set accuracy

Dataset Original
model

Quantized
model

Original
model

Quantized
model

AWF 8.51 Mb 2.14 Mb 98.09 97.32
DF 8.30 Mb 2.08 Mb 97.86 97.02
DC 755 Kb 189 Kb 99.82 ± 0.9 98.69 ± 0.6
SETA 3.41 Mb 1.36 Mb 98.87 ± 1.8 98.12 ± 1.2
IoT 1.02 Mb 261 Kb 97.33 ± 0.5 96.87 ± 0.5

6.3.5 Result Analysis

In Chapter 6.3.4, we showed how the k-LND methods work best when quantizing the

underlying deep learning model and we next explore possible reasons for this observation.

As discussed in Chapter 2.2, the background class method treats open set as just another

class and uses a subset of open set samples as a single class during training. Because

of this, when quantizing the background class, the samples from the open set are also

considered in the discrete mapping process. Since the training set from open set con-

sists of a relatively larger number of samples coming from a large number of different

classes, the range of continuous values for elements of input samples increases making

the discrete mapping process harder for the quantizer as it now has to map a larger

range of continuous values to a fixed smaller range. (This mapping procedure is further

discussed in [124] and [125].). We attribute the degradation of the performance of the

background class method with quantizing, to the large error caused by the mapping

function as discussed above.

When comparing softmax thresholding, OpenMax and the three novel methods, the

error they encounter at the start from the model output at the logit layer is the same.

Softmax thresholding uses this output and performs softmax activation which maps the

output vector to another space where the initial error can further propagate. Similarly,
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the OpenMax method maps the penultimate layer output to another space first using

a Weibull distribution before generating the final probability vector which would cause

the error to increase further. Ensemble learning methods that aggregate the result from

multiple models in a method similar to softmax thresholding can be expected to face

the drawback as softmax thresholding. In contrast, in all three k-LND methods, a single

variable is calculated based on euclidean distances between penultimate layer outputs.

Additionally, k-LND2 and k-LND3 methods consider the relative distance between a

sample and its predicted class center vs. centers of multiple other classes, which can

have a negation effect on the initial error resulting in a lower effect on the final results.

We further demonstrate this concept with SETA dataset by calculating percentage be-

tween error before and error after as calculated by Equation 6.7 and Equation 6.7 re-

spectively, for each method.

error before = d(ΘQP (X),ΘOP (X)) (6.7)

error after = d(ΘQP (X),ΘOP (X)) (6.8)

Here assume a sample X, deep learning model ΘO and quantized version of the model

ΘQ, and d is euclidean distance. Also, P and P refer to the prenultimate layer output

of the final probability vector from the open set classifier respectively. The results are

illustrated in Figure 6.12.

OpenMax
Softmax

Ensemble kLND1
kLND2

kLND3

75

50

25

0

25

50

75

100

Pe
rc

en
ta

ge
 E

rro
r C

ha
ng

e

Figure 6.12: Percentage of change in error

According to Figure 6.12, the change of error in OpenMax is 105% which shows that the

initial error has increased by 105.89% due to Weibull conversion resulting in the high

F1 score drop in Table 6.4 for SETA after quantization. Similarly, softmax thresholding
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also has a positive change of error of 52.6% which can be seen as the reason for the

relatively high F1 score drop after model quantization.

In contrast, the change of error for k-LND1, k-LND2 and k-LND3 are less than zero

which shows that it reduces the error in the mapping which results in lesser Micro F1

drops. Accordingly, we can conclude that the three novel open set classification methods

we propose are more compatible with model quantization than other existing methods.

6.4 Discussion and Concluding Remarks

In this chapter, we first hypothesized that using a well-regularized classifier as the un-

derlying deep learning model improves the performance of open set classifiers. We used

three publicly available datasets with model architectures proposed in the original work

and showed that when the original model has not undergone a thorough hyperparameter

search or the number of classes in the dataset used for training the original model is

changed, regularizing the model architecture improves the performance of open set clas-

sifiers that use such models. Next, we showed that quantizing the model weights does

not result in a significant drop in the closed set accuracy. Then, we proposed a novel

k-logit neighbor distance based open set method with three variants and compared their

performance with four existing methods using five publicly available encrypted traffic fin-

gerprinting datasets. We also showed how the two most commonly used open set traffic

fingerprinting methods; background class and softmax thresholding as well as OpenMax

and ensemble learning do not work well across all the datasets. While they performed

really well in some datasets they also performed really poorly in other datasets. In

contrast, our proposed methods consistently performed well across all datasets with

> 85% closed set accuracy and > 65% open set accuracy. Finally, we showed when

using a quantized model as the underlying closed set classifier for open set classification,

our proposed method outperformed all other methods across all datasets maintaining

> 70% closed set accuracy and > 68% open set accuracy. Overall, our results showed

that the framework we proposed supports quantization and the combined contribution

from all three key components outperforms all other methods, across all datasets for

open set classification proving how the framework is well suited for traffic fingerprinting

tasks that need to be carried out in resource-constrained in-network devices such as P4

switches, smart NICs or FPGAs.
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Next, we discuss limitations and possible extensions to our work.

Recent open set methods: Open set classification in general is currently a popular

research area that is still in its early stages with researchers across multiple domains

exploring and proposing novel methods. While we have explored the applicability of a

few existing open set classification methods to encrypted network traffic, more recently

proposed methods such as Class Anchor Clustering [34], Joint Confidence Method [74]

and Conditional Gaussian Distribution Learning for Open Set [126] need further inves-

tigation with respect to their applicability to network traffic.

Synthesized open set: The performance of most open set classification methods still

has room for improvement. It can be assumed that exposing a model to a good enough

representation of open set could in turn improve its ability to efficiently identify open set

samples. In our work, the only method that uses open set samples is the background class

method which could suffer from lack of training data that comprehensively represents the

open set. As a solution, future work can investigate data synthesis with recent generative

methods such as Diffusion models [127] to generate samples that better represent the

open set that can be used during training.

Other quantization methods: In this work, we only used post-training integer quan-

tization as it has very low overheads. However, post-training quantization is considered

to have the highest impact on accuracy compared to other quantization modes and hence

it would be interesting to see how other quantization modes such as quantization-aware

training, and post-training dynamic range quantization work with traffic fingerprinting

models such that where resources are not limited these quantization methods can be

utilized.





Chapter 7

Conclusion and Future Work

The primary focus of this thesis was to study the privacy implications of end-to-end en-

crypted traffic. E2EE is widely considered the gold standard of secure communications,

and hence the world is moving fast towards encrypting all Internet communications

with the objective of guaranteeing the confidentiality of data in transit and user privacy.

As discussed in Chapter 1, side-channel information leaks of encrypted traffic flows al-

low a passive eavesdropper to infer valuable information about their encrypted content

without decryption. While such attacks can be helpful to network administrators and

government intelligence services, in the hands of a malicious party, such attacks present

a significant threat to the privacy of Internet users. In this work, thesis we first propose

new traffic analysis attacks and improve their practical applicability, and then propose

defenses against such attacks that are more practical and efficient compared to previous

work.

First, we explored the feasibility of performing traffic analysis attacks on encrypted traffic

and proposed and evaluated an inline traffic analysis attack as described in Chapter 3.

Then we dissect deep learning models used for traffic analysis attacks with the objective

of understanding their behavior and the decision-making process, which can be leveraged

to design better attacks as well as more efficient defenses as described in Chapter 4.

Next, we use the insights we obtain from understanding the behavior of traffic analysis

models to propose two efficient defenses against traffic analysis attacks named FRONT-

U and STOMA as discussed in Chapter 5. Finally, we explore the open set scenario for

encrypted traffic classification, which is critical when using such attacks in real-world

141
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applications. As described in Chapter 6, we proposed a robust framework for open set

classification targeting encrypted traffic, which requires relatively fewer resources and is

more suited for resource-constrained in-network computing devices.

7.1 Summary and Conclusion

7.1.1 Traffic analysis attacks on DNS-over-HTTPS traffic

In Chapter 3, we observed that DoH traffic flows for websites have low entropies, leaving

them vulnerable to traffic analysis attacks. First, we proposed an inline traffic analy-

sis attack to identify websites using DoH traffic by leveraging a variable-length LSTM

model. Our proposed method achieved over 96% accuracy by observing only the first 10

packets of a DoH flow. As the next step, we extended the attack to the open set setting

with a novel open set classification method JSI, which achieves 75%-80% accuracy on

both closed set and open set. Next, we explored a more challenging attack scenario

where the attacker does not have the knowledge of the exact starting point of a specific

DoH flow. We showed that even when a traffic trace is captured at an arbitrary starting

point, a classifier can still identify them with over 70% accuracy. This suggests that even

if the attacker is not aware of when exactly a victim starts loading a website and starts

capturing traffic at some point during the DNS resolving process, the website visited by

the victim can still be recognized with 70% accuracy.

Due to the vulnerability of DoH traffic to traffic analysis attacks, Internet Engineering

Task Force introduced RFC8467 [53], which recommends specifications to pad DoH

traffic as a defense. We evaluated our proposed attack against multiple padding scenarios

and showed that the recommended defense is not adequate as the attack can still achieve

∼70% accuracy regardless of the defense.

7.1.2 Dissecting traffic fingerprinting CNNs

We observed that across multiple previous works, CNNs were shown to be the most

effective deep-learning model for traffic analysis attacks. To further understand the

inner workings of CNN-based traffic analysis attacks, we designed several experiments

in Chapter 4. We used activation maps and selective occlusion to show that website
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fingerprinting CNNs focus more on sections of a traffic trace that corresponds to transi-

tions between uploads and downloads and give more weight to the initial part of a trace

that contains a high concentration of HTTP GET messages and replies. Similarly for

video fingerprinting CNNs, we used gradient ascent in addition to activation maps and

selective occlusion to show that video fingerprinting CNNs focus more on the periodic

sections of uploads and downloads of a trace that overlaps with periodic bursts in video

streaming. These observations can serve as a foundation to build defenses against these

attacks.

Next, we showed that similar to image classification CNNs, traffic fingerprinting CNNs

also have transfer learning capabilities that allow such models to be easily fine-tuned to

accommodate more classes.

Finally, we observed that CNNs are more resilient to random variations in traffic flows

and bursts that occur due to varying network conditions, and show that this capability

allows CNNs to outperform other deep learning models such as LSTMs in traffic analysis

attacks. While this result explains the continuous success of CNNs over other model

architectures for traffic analysis, it also suggests that just adding delays and padding

randomly does not significantly affect a CNN-based classifier’s ability to fingerprint a

website, which is important to note when designing defenses.

7.1.3 Defenses against traffic fingerprinting

Based on the observations from Chapter 4, in Chapter 5 we propose defenses against

traffic analysis attacks that can provide adequate privacy at reasonable data and timing

costs, and compare their performance against state-of-the-art defenses.

We first proposed FRONT-U, a defense against website fingerprinting attacks where

the main aim was to focus more on obfuscating the trace fronts. In Chapter 4, we

observed that WF CNNs focus on transitions between uploads and downloads and we

leverage this insight to propose that only the client side participates in the defense to

reduce data overheads. We show that our defense can reduce the data overhead incurred

by 50% and still provide similar privacy as the state-of-the-art defense.

We next proposed STOMA, a defense against video stream fingerprinting CNNs. Based

on the observations from Chapter 4 that these attacks focus more on the periodic sections
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of uploads and downloads of a trace, STOMA targets to obfuscate specific periodic burst

patterns by averaging the traffic flow over a small window of time. We show that when

combined with d∗-privacy method, our defense reduces attack accuracy by 44.40% more

at lower data overheads compared to using the d∗-privacy method by itself. We also

show that compared to other state-of-the-art defenses like FPA method, our defense

requires minimal changes to the underlying DASH protocol for video streaming.

7.1.4 Open set classification for encrypted network traffic

Next, in Chapter 6, we proposed a framework for robust open set classification for en-

crypted traffic fingerprinting, which is more suitable for resource-constrained in-network

computing devices compared to existing methods. The framework comprised three com-

ponents, the first of which was using a well-regularized model as the underlying closed

set classifier. Using three publicly available datasets, we showed that having a well-

regularized underlying closed set classifier improves open set results irrespective of the

specific open set classification method used, with a minimum increase of F Score value of

3.23%. The second key component of our framework is model quantization. We showed

that traffic fingerprinting models could be quantized without a significant drop in ac-

curacy while reducing the memory footprint of classifiers by at least 60%. As the third

key component, we proposed ‘k-LND’; a novel open set classification method with three

variants. Using five publicly available datasets, we showed that k-LND methods perform

consistently across all datasets, always maintaining > 85% closed set and > 65% open

set accuracy. Moreover, when used with quantized models, the k-LND methods always

outperformed all other methods, always maintaining > 85% closed set and > 65% open

set accuracy. Overall, our results showed that our framework supports quantization and

the combined contribution from all three key components outperforms all other meth-

ods across all datasets for open set classification, proving how the framework is well

suited for traffic fingerprinting tasks that need to be carried out in resource-constrained

in-network devices such as P4 switches, smart NICs or FPGAs.



Conclusion and Future Work 145

7.2 Future Work

The work presented in this thesis contributes to the development of multiple new re-

search directions, and there are possible extensions for some of the presented works. We

next discuss these research directions and the possible extensions for each of the main

focus areas of the thesis.

7.2.1 Traffic analysis attacks and defenses

Traffic analysis and defenses have always been an arms race between attackers and

defenders which would continue into the future. As such, designing novel defenses to

counter novel attacks and vice versa needs to be a continuous process.

Traffic analysis attacks:

A key direction future work can focus on is to improve the practical applicability of traf-

fic analysis attacks by relaxing the assumptions previous attacks were developed under.

For instance, most current attacks make assumptions such as correctly labeled training

data is available, the victim’s system specifications are known in advance, traffic pat-

terns of websites have not changed over time, and the devices running the attacks have

adequate computing resources.

i)Victim environment-agnostic attacks: Most current attacks assume the attacker

knows the specific browser/operating system combination of the victim. However, this

may not reflect the real-world situation, and the traffic signatures for the same activity

by the same user can be expected to change with the browser/operating system com-

bination [57]. A naive approach that could be investigated further is to explore the

effect of adding traffic captures for the same activity under different browser/operating

system combinations to the training set. Moreover, user-specific configurations such

as the use of ad-blockers or user-targeted advertising can also make the attack more

challenging and require further investigation. ii) Handling concept drift: Website

traffic patterns will change with time due to changes in content, layout, and in-page

advertisement on a website, and this phenomenon is referred to as concept drift [15].

Hence, concept drift can make it difficult for a model to correctly identify a website visit

captured at a much later point in time than when the dataset the model was trained
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on was collected. Handling such concept drifts and changes to target classes over time

is another challenge faced by traffic analysis attacks. Though some attacks proposed in

this work and prior work were shown to be resilient against changes in traffic patterns

over the period of a few weeks, over longer spans, such changes would have a significant

impact on the performance of attack models. Future work can explore ideas of transfer

learning [101] or online learning [102] to address concept drift. For instance, transfer

learning can be used to extend/change the set of target websites by just fine-tuning the

final fully connected layers with a few samples from each class in the new target list,

which significantly reduces the training time required for re-training. Similarly, online

learning could be leveraged to update a model with novel classes by training the model

for a few more epochs with new classes or classes affected by concept drift only while

preventing catastrophic forgetting (of previous classes).

iii) Handling lack of/ inaccurate labeled data: Another limitation of current traf-

fic analysis models is that most of them assume traffic captures with accurate labeling

are always available and mostly depend on supervised learning approaches. However,

in practice, it is possible to encounter situations where labels for captured traffic are

not available, or the accuracy of available labels can not be trusted. Therefore, future

work needs to explore what semi-supervised or unsupervised learning methods are more

suitable for encrypted traffic and leverage them to propose novel attack models.

iv) Deployability on resource-constrained devices: In practice, traffic analysis

attacks need to be deployed on networking middle-boxes where computational resources

and storage are restricted [121, 122]. Furthermore, the demand for such implementations

is expected to grow with the increasing popularity of SDN and programmable switches

such as P4 [128]. Future work needs to investigate the feasibility of transferring traffic

analysis models to such devices and develop prototypes. For instance, concepts such as

model weight quantization could be leveraged to minimize memory requirements in stor-

ing trained models on network devices. Moreover, further research is required on how to

deploy such attacks and isolate target traffic in real time on commercial networks that

handle very large amounts of data. At the same time, it would not be feasible to make

predictions for every single traffic flow in a commercial network that handles traffic at

Gbps scale and therefore, traffic flow sampling plays an important role in such scenarios.

It would be an interesting research area to explore how traffic flow sampling algorithms

such as flow skampling [129] can be used for real-time traffic analysis in commercial

networks.
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v) Active side-channel attacks: The main focus of this work was on passive traf-

fic analysis attacks where the attacker simply observes the side-channel information

without making any changes to the original traffic. However, recent research has discov-

ered the possibility of active side-channel attacks against encrypted traffic, where the

attacker takes active measures such as watermarking the encrypted traffic flows. For

example, [130] demonstrated how a mobile subscriber can be identified and localized

by sending unsolicited WhatsApp messages, and [131] showed that the Twitch stream

watched by a victim could be identified by sending chat messages into a predefined set of

Twitch streams. However, active side-channel attacks are still very nascent, and further

studies are required to get a better understanding of which online services are vulnerable

to such attacks and what types of information can be leaked through such attacks.

Defenses against traffic analysis:

With respect to defenses against traffic analysis, it should be noted that most defenses

that have been proposed so far have not been implemented by real-world applications,

and the main reason for this is their high overheads that affect the basic functional-

ity and user experience. A key challenge in implementing defenses is that they need

to be integrated at the protocol level with minimum changes to the existing Internet

infrastructure. For instance, most video streaming applications are built on the DASH

protocol, which requires maintaining the bursty nature of video streaming and any de-

fense against video stream fingerprinting should ensure that they do not make significant

changes to the bursty nature of video traffic.

Future work could explore other approaches to defenses, such as the use of universal

perturbations. Previous work in computer vision has shown the existence of universal

(image-agnostic) and small perturbation vectors that cause natural images to be mis-

classified with high probability across different deep neural networks [119]. If such input-

agnostic perturbations exist for a traffic fingerprinting model, it can be pre-computed

and used to defend network traffic against fingerprinting attacks in real time with fewer

data overheads. A recent work [82] explored this idea to defend against website fin-

gerprinting attacks over Tor. Future work can compare its performance, overheads

and effectiveness against multiple deep learning and traditional machine learning-based

attack models with other recent defenses like FRONT, to identify a more practically

applicable defense. Another possible approach is to build a defense based on the idea of

one pixel attacks [132] where a perturbation in a single pixel can force a misclassification
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from an image classification model with minimal cost. Moreover, the above approaches

can also be used to defend against other types of encrypted traffic as well.

7.2.2 Open set traffic analysis:

Open set classification in general, is a research area that is still in its early stages

and researchers across multiple domains are showing a growing interest in it. While

we have explored the applicability of a few existing open set classification methods to

encrypted network traffic, more recently proposed methods such as [34, 74, 126] need

further investigations.

Furthermore, the performance of most open set classification methods can still be im-

proved. Previously, we discussed how methods that require open set samples for training

would not always work because it is difficult to get a training set for the open set which

represents the open set comprehensively. Future work can investigate data synthesis

approaches to generate samples that represent the open set comprehensively so that the

model can be exposed to a better representation of the open set during training. For

example, in [133] we used Conditional GANs (CGAN) to generate samples similar to a

pre-defined class to be used as a reference to altering a traffic trace. Future work could

use the same idea and use CGANs to generate open set samples similar to closed set

classes, which can be used to train a classifier to identify open set samples better. Ad-

ditionally, future work could also leverage recent generative methods such as Diffusion

models [127] for the same purpose.

Finally, open world recognition [104] is an improvement over open set classification where

an attack model is expected to identify novel classes among samples rejected by open

set classification, and updating the target class lists to incorporate such novel classes.

More specifically, open world recognition can be seen as the combination of three key

components, 1) Open set classification which correctly classifies known classes while

identifying samples from unknown classes, 2) Automated labeling which identifies novel

classes in unknown samples rejected by 1), and 3) Online learning which can update

the original classifier about the novel classes detected without affecting its performance

on original known classes. While few prior works [134, 135] in other domains attempted

open world recognition, it has not been explored with network traffic data even though
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this setting can be beneficial for encrypted traffic classification to accommodate Internet

traffic which is a fast-evolving eco-system. We have already discussed a few approaches

that have the potential to improve the first component (open set classification). The

next challenge for open world recognition lies with the second component (automated

labeling), which has to discover novel classes from rejected open set samples without

prior knowledge of the number of classes present. One possible approach would be using

Hierarchical Dirichlet Processes [136], which has been used for similar purposes such as

topic discovery in text data [137, 138]. In order to tackle the third component, future

work can explore simple approaches like transfer learning as well as other methods such

as [139] which used a novel loss function that combined traditional cross-entropy loss

with distillation loss [140] and [141] which used a dual memory system inspired by

mammalian brains.
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https://commons.wikimedia.org/wiki/File:Blue_Jay_%28185317371%29.jpeg

https://commons.wikimedia.org/wiki/File:Cyanocitta_cristata_blue_jay.jpg

https://pxhere.com/en/photo/1550809

https://commons.wikimedia.org/wiki/File:Australian_Magpie_%28Gymnorhina_tibicen%29.jpg

https://www.rawpixel.com/search/magpie%20bird?page=1&sort=curated

https://www.flickr.com/photos/yeliseev/230788934

https://www.flickr.com/photos/mikeprince/21442498251

https://www.publicdomainpictures.net/en/view-image.php?image=35440&picture=dog-sitting

https://www.flickr.com/photos/stanbury/3930071960

https://www.flickr.com/photos/horiavarlan/4272009397

https://www.pexels.com/photo/white-cloud-in-blue-sky-on-sunny-day-4570006/

https://pxhere.com/en/photo/1150893

https://www.flickr.com/photos/iansand/31686643558

https://www.rawpixel.com/search/tree?page=1&sort=curated

https://www.publicdomainpictures.net/en/view-image.php?image=173260&picture=tree

Figure 2.2 https://www.flickr.com/photos/28656738@N02/5311930838

Figure 1.4a https://www.rawpixel.com/image/5940985/free-public-domain-cc0-photo

Table A.1: Image sources
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