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Abstract: This framework focuses on the importance of the consideration of the downstream inter-
mediate and long-term health outcomes when a change to a screening program is introduced. The
authors present a methodology for utilising the relationship between screen-detected and interval
cancer rates to infer the benefits and harms associated with a change to the program. A review of the
previous use of these measures in the literature is presented. The framework presents other aspects
to consider when utilizing this methodology, and builds upon an existing framework that helps
researchers, clinicians, and policy makers to consider the impacts of changes to screening programs
on health outcomes. It is hoped that this research will inform future evaluative studies to assess the
benefits and harms of changes to screening programs.

Keywords: cancer; cohort; ductal carcinoma in situ; mammography; recall; breast mammography;
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1. Introduction

Cancer screening programs aim to reduce morbidity and mortality through the early
detection and treatment of cancers that would have otherwise have gone on to present at
a later stage [1]. When a change is introduced to a screening program, such as a change in
technology, it is important to evaluate whether this change results in an overall net benefit.
The potential benefits from the change should not look only at the initial impact on improved
sensitivity, but also evaluate whether this improved sensitivity addresses clinically important
cancers where early detection is, providing outcomes which are likely to translate into longer-
term benefits [2]. While it is important to estimate the increases in screen-detected cancers, we
need to know the extent to which the additional cancers detected are those that would have
otherwise progressed to present later, representing potential beneficial early detection—versus
indolent lesions that would not have progressed at all, or would only have grown very
slowly—representing potential harm from over-detection.

2. Role of Interval Cancers

The prompt assessment of the effects of new technology or screening protocols requires
methods using short-term outcomes [3]. Once a screening program is underway, interval
cancers can be used as a proxy measure for cancers not currently being detected by the
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existing screening program [4,5]. Interval cancers are cancers diagnosed after a negative
screening result and before a subsequent scheduled screening. Interval cancers may not
be detected during screening either because they: did not yet exist, were not detectable
with the modality used or were missed by the person reading the screens. Most interval
cancers are symptomatic and are therefore by definition clinically important. They have
been found to have similar prognostic features to other cancers clinically diagnosed outside
of screening [6]. Interval cancers tend to be more biologically aggressive tumours with
a faster growth rate and more unfavourable tumour characteristics than screen-detected
cancers [7–9]. Therefore, interval cancers represent the cancers where early detection would
be beneficial.

For a change to a screening program to increase its effectiveness, it should result
in an increase in the diagnosis of clinically important early stage cancers, a decrease in
interval cancers diagnosed between scheduled screenings, and ultimately a decline in the
incidence of cancers diagnosed at late stage. However, if such changes are not seen, any
additional cancers diagnosed via a change to the program may represent overdiagnosed
cancers that would not have otherwise presented, or more slowly growing cancers that
would have been detected in the old screening program without detriment [3,10]. The
emphasis in screening should not be on finding more cancers, but on finding more cancers
that are clinically important [11]. The tension between maximising benefit through the
detection of clinically important cancers and minimising harm through the detection of
clinically unimportant lesions, means that screening programs ought to undergo regular
re-evaluation, particularly when changes are introduced [12,13]. It is important to ensure
that any changes in the implementation of screening optimize the balance between benefit
and harm, including minimising the risk of overdiagnosis [14].

3. Relationship between Screen-Detected and Interval Cancers

A reduction in interval cancers is sometimes used as a surrogate measure of a change
in screening effectiveness [5]. Previously, screen-detected cancer rates and interval cancer
rates have been used to measure the benefit from a new intervention. However, it is also
important to consider the reverse implication of an increase in detection rate without
a meaningful decrease in interval cancer rates. Our framework takes the relationship
between interval cancers and screen-detected cancers a step further, to consider how this
relationship might be used as both an indicator of benefit, and of harm, from changes made
to the program.

Figure 1 shows the possible scenarios concomitant upon a change in technology. If a
change to a new technology increases sensitivity for clinically important cancers we expect
to see:

(1) an increase in screen-detected cancers with tumour markers indicating aggressive
disease; and

(2) a decrease in the interval cancer rate between screenings, indicating that at least some
of the additional detection is occurring in clinically important and rapidly progress-
ing cancers.

However, if the change only increases the detection of clinically unimportant cancers,
we expect to see:

(3) an increase in the detection of screen-detected cancers with tumour markers indicating
low risk disease; and

(4) no or minimal changes in the interval cancer rate between screenings, indicating that
the additional detection is of overdiagnosed or slow progressing cancers.
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Figure 1. Potential scenarios following the introduction of a new technology to a screening program.

The relationship between screen-detected and interval cancers can be further identified
by plotting the risk difference in screen-detected and interval cancer rates before and after
the change. Rates are typically presented per 1000 screens.

In Figure 2 each quadrant represents a different signature:

(1) The top left quadrant shows a decrease in screen detection and an increase in interval
rates. This observation indicates that there is decreased rate of detection, including
clinically important cancers, and therefore suggests an increase in underdiagnosis

(2) The bottom left quadrant shows a decrease in screen detection and a decrease in
interval rates. This result indicates that there is decreased detection overall, but an
increased detection of clinically important cancers, and therefore suggests a decrease
in overdiagnosis. Theoretically this could occur with risk-stratified screening [15].

(3) The top right quadrant shows an increase in screen detection and no change, or possibly
even an increase, in interval rates. Assuming no change in the background rates of
cancer, this observation would indicate that the increased detection represents an
increase in overdiagnosis.

(4) The bottom right quadrant shows an increase in screen detection and a decreased
interval rate. This finding indicates that the increased detection does include clinically
important and progressing cancers, and therefore suggests a decrease in underdiagno-
sis. The second and fourth quadrants show the improved effectiveness sought with a
change to the screening program.

It is important to look not only at the relationship between screen-detected and interval
cancer rates, but also at the tumour characteristics of the cancers detected. Differences
between technologies in both screen-detected cancers and interval cancers for tumour
characteristics such as size, histological type, grade, node status, and stage, allow for
further assessment of the prognostic changes in the cancers detected [16].
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Figure 2. Indications from the relationship between screen-detected and interval cancer rates subse-
quent to a change in a screening program.

4. Previous Uses of Interval Cancers as an Indicator of Benefits and Harms

We conducted a targeted review (R.F. & I.B.) of the literature to examine the way in
which interval cancer rates have been used to assess the harms and benefits of changes to
screening programs, to identify if similar applied methodologies used interval cancers, as
described above. (For search strategy see Figure 3, and for selection of studies see Figure 4)
We identified studies that reported on an asymptomatic population at normal risk of the
relevant cancer, which reported on either a change to a screening program/technology
or to a direct comparison between two or more screening programs/technologies, and
assessed both interval cancer rates and screen-detected cancer rates. A summary of the
scoping review is presented in Table 1.

Figure 3. Cont.
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Figure 3. Medline Search Strategy. asterisk (*) represents a truncation search.

Figure 4. Selection of included studies.
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Table 1. Summary of selected studies from scoping review.

Reference Study Design Country Study Time Points Change/Comparison Screen-Detected
Cancer Rate

Interval Cancer Rate Harms and/or Benefits

Armaroli (2022) [17] Randomised
control trial

Italy 2014–2020 Digital mammogra-
phy (DM) versus
digital breast to-

mosynthesis (DBT)

Significantly higher
with DBT

Did not differ
significantly between

the two arms

Compatible either with greater lead
time gain with DBT screening in
comparison with DM screening

and/or with an excess of detection
of indolent cancers (overdiagnosis)

in the DBT arm.

Bretagne (2021) [18] Cohort France 2010–2017 Faecal immuno-
chemical testing

(FIT) versus guaiac
faecal occult blood
testing (gFOBT).

Higher screen-detected
ancer rate with FIT

Lower interval
cancer rate with FIT

Dramatic decrease in the cumulative
incidence rates of interval cancers
after switching from gFOBT to FIT.
These data provide an additional
incentive for countries still using

gFOBT to switch to FIT.

Hofvind (2021) [19] Randomised
Control Trial

Norway 2016–2020 DBT versus DM No significant
difference in

screen-detected breast
cancer among women

screened with DBT
versus DM

No difference in
interval cancer rate

with DBT

DBT benefits were not at the cost of
worse subsequent round

screening outcomes.

Johnson (2021) [20] Cohort Sweden 2010–2015 one-view DBT and
two-view

DM versus
two-view DM

Sensitivity was higher
for DBT than for DM

one-view DBT and
two-view DM was

lower than DM

Effect of DBT on interval cancer rate
in population screening and that it

could translate into additional
screening benefit

Bernardi (2020) [21] Cohort Italy 2013–2016 DBT versus DM DBT significantly
improved early

detection measures

Did not significantly
reduce ICR (relative
to DM screening),

Not well powered for interval
cancers but suggesting that it could

add benefit as well as adding
over-detection in population

BC screening.
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Table 1. Cont.

Reference Study Design Country Study Time Points Change/Comparison Screen-Detected
Cancer Rate

Interval Cancer Rate Harms and/or Benefits

Hovda (2019) [22] Cohort Norway 2008–2016 DBT versus DM Higher for DBT No difference in rates Findings show that the excess
cancers diagnosed with DBT seem

to be less aggressive tumors,
indicating potential overdiagnosis;
cannot conclude about the clinical
implications as the study was not

designed to investigate
overdiagnosis; further studies are
needed; interval breast cancer rate

examination is essential when
evaluating screening effectiveness

Bahl (2018) [23] Cohort US 2009–2011 (DM);
2013–2015 (DBT)

DM versus DBT No difference in rates;
higher proportion of

screen-detected cancers
were invasive rather

than in situ when
compared with DM

No difference in
rates; MRI-detected

interval cancers were
more likely to be
minimal cancers,

compared to
symptomatic

interval cancers

Complete integration of DBT saw
higher rates of screen-detected

cancers which were invasive and
lower rates of screen-detected in

situ cancers; although no change in
interval cancer rate between

screening technologies, a higher
proportion of screen-detected
cancers are invasive with DBT.

Houssami (2018) [24] Cohort Italy 2011–2012 Tomosynthesis
3D-screening

versus standard 2D-
mammography alone

Screening sensitivity
higher for integrated

2D/3D mammography

Lower for
tomosynthesis

Much larger screening studies or
pooled analyses are necessary in
order to examine interval cancer

rates arising; small number of
interval cancers precludes analytic
evaluation and the study was not
planned for interval cancer rate

comparison, thus results must be
interpreted with caution;
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Table 1. Cont.

Reference Study Design Country Study Time Points Change/Comparison Screen-Detected
Cancer Rate

Interval Cancer Rate Harms and/or Benefits

Sankatsing
(2018) [25]

Cohort Netherlands 2004–2011 SFM to DM Increased
screen-detected cancer

rate for DM

No difference in rates There is warranted concern that
increase in detection of cancers with
DM is indicative of overdiagnosis,
however, it was demonstrated that

invasive cancers were more likely to
be detected

Skaane (2018) [26] Randomised
controlled trial

Norway 2010–2012 DM plus DBT
versus DM alone

Higher screen-detected
cancer rate for

DM+DBT

No difference in rates Beneficial to distinguish between
missed and true interval cancers,

which this study did not do; a study
with longer follow-up periods and
more screening rounds would be
required to estimate harms in the

form of overdiagnosis; it is
important to remember that

overdiagnosis does not diminish the
benefits of mammography in

reducing breast cancer mortality

de Munck (2016) [27] Cohort The Nether-
lands

2004–2010 Screen-film
mammography

(SFM) versus DM

No difference in rates No difference in rates DM can safely be used for screening;
DM facilitates easier image transfer

and may increase efficiency in
hospitals; no indicator of

overdiagnosis with shift to DM

McDonald (2016) [28] Cohort US 2010–2014 DM versus DBT Increased
screen-detected cancer

rate for DBT

Decreased interval
cancer rate for DBT

Digital breast tomosynthesis was
associated with increased cancer
detection and decrease interval

cancers; it is unlikely that
insignificant cancers were detected

at an earlier stage (potential
overdiagnosis) as the invasive
cancer detection rate remained

stable; the primary harm of
screening was reduced with

decreased
false-positive examinations
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Table 1. Cont.

Reference Study Design Country Study Time Points Change/Comparison Screen-Detected
Cancer Rate

Interval Cancer Rate Harms and/or Benefits

Prummel (2016) [29] Cohort Toronto 2008–2009 Digital computed
radiography (CR)

versus direct
radiography (DR),

versus SFM for
breast cancer

Lowest screen-detected
cancer rate for CR;

screen-detected cancer
rates for DR and SFM

were similar

Highest interval
cancer rate for CR;

similar interval
cancer rates for DR

and SFM

Significantly lower cancer detection
for CR mammography suggests that

CR screening is missing a large
number of breast cancers, in

comparison with DR and DFM;
programs need to monitor the

performance of CR separately and
assess its continued use over time

Sverzellati (2016) [30] Randomised
controlled trial

Italy 2000–2011 Comparison of two
different strategies

of lung cancer
screening by

low-dose
computed

tomography
(LDCT), namely,
annual (LDCT1)

or biennial
(LDCT2) screen.

No difference in rates No difference in rates Biennial screening may be at least as
efficient as annual screening in

terms of screen detection rates and
other outcomes (i.e., sensitivity,

specificity); reducing the number of
LDCT screens is less harmful to
patients and more cost-effective

Klompenhouwer
(2015) [10]

Cohort The Nether-
lands

2009–2011 Blinded double
reading versus

non-blinded
double reading in

a biennial
mammography

screening
population

Higher for blinded
double reading

Lower for blinded
double reading

Tumour characteristics were
examined and were comparable

between screening strategies; data
suggest that potential overdiagnosis
does not differ between blinded and

non-blinded double reading;
cost-effectiveness harms and

benefits still required to evaluate
screening holistically; cancer

mortality is the best measure of
screening effectiveness, but requires

long-term follow up
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Table 1. Cont.

Reference Study Design Country Study Time Points Change/Comparison Screen-Detected
Cancer Rate

Interval Cancer Rate Harms and/or Benefits

Lehman (2015) [31] Cohort US 2003–2009 Digital screening
mammography

with and without
computer-aided
detection (CAD)

No difference in rates No difference in rates No increased benefit of CAD to
women; suggestion that insurers

pay more for CAD for no clinically
beneficial reason

Sala (2015) [32] Cohort Spain 1995–2012 SFM to DM Increased
screen-detected cancer

rate for DM

No difference in rates Increased detection rate with the
introduction of DM is in part due to

earlier diagnosis, however,
examination of cancers showed that

invasive cancers were more
commonly detected DM; the use of

digital technology should not be
assumed a threat which increases

overdiagnosis in screening

Chiang (2014) [33] Cohort Taiwan 2004–2009 Two different FITs
for colorectal

cancer screening:
OC-Sensor versus

HM-Jack

Lower screen-detected
cancer rate for

HM-Jack

Higher interval
cancer rate for

HM-Jack

Efforts to improve the effectiveness
of FITs can be measured using the

occurrence of interval cancers; other
indicators of performance are

needed which assess both
short-term and long-term outcomes

Dibden (2014) [34] Cohort UK 2003–2005 One-view versus
two-view

mammography

Higher for two-view
mammography

Lower for two-view
mammograpy

A reduction in interval cancer rates
was associated with two-view
mammography; the increase in

screen-detected cancer associated
with two-view mammography is

not likely to be due to overdiagnosis
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Table 1. Cont.

Reference Study Design Country Study Time Points Change/Comparison Screen-Detected
Cancer Rate

Interval Cancer Rate Harms and/or Benefits

Hofvind (2014) [35] Cohort Norway 1996–2010 SFM versus DM No difference in rates No difference in rates After initial transitional phase, DM
saw lower recall and biopsy rates
and thus was associated with less
harm; relatively small number of
cases means studies generally do

not including interval cancer rates;
larger population-based studies

with sufficient follow-up periods are
necessary for screening evaluations;

Choi (2012) [36] Cross-sectional Korea 2002–2005 Upper-
gastrointestinal

series (UGIS)
versus endoscopy

screening for
gastric cancer

Higher screen-detected
cancer rate

for endoscopy

No difference in
interval cancer rate

Endoscopy performed better than
UGIS with indicators that it may
have a larger impact on gastric

cancer mortality, however this was
not certain; could not distinguish
between false-negative and true

interval cancers

Hoff (2012) [37] Retrospective
cohort

Norway 2002–2008 SFM versus DM No difference in rates No difference in rates The transition to DM did not reduce
the challenge of missed cancers;
characteristics differed between

cancers missed at SFM and DM; it is
necessary to perform analyses

which report on the mammographic
features in all missed cancers; study

differentiated between true and
missed cancers

Seigneurin
(2009) [38]

Cohort France 1994–2004 Two-view versus
single-view
screening

mammography

Higher screen-detected
cancer rate for

two-view
mammography

Lower interval cancer
rate for two-view
mammography

Findings reveal benefits of
performing two-view

mammography; decrease in interval
cancer rate paralleled by increase in

the cancer detection rate;
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Table 1. Cont.

Reference Study Design Country Study Time Points Change/Comparison Screen-Detected
Cancer Rate

Interval Cancer Rate Harms and/or Benefits

Roobol (2007) [39] Randomised
controlled trials

The Nether-
lands and
Sweden

1993–1995
(Rotterdam study);

1999–2005
(Gothenburg study)

2-year versus
4-year screening

intervals for
prostate cancer

Higher for 2-year
screening interval

No difference in rates There is potential overdiagnosis for
2-year prostate cancer screening,
due to seeing no difference in the

interval cancer rate between interval
lengths; the appropriateness of
length of screening intervals in

cancer screening programs can be
assessed using interval cancer rates

Skaane (2007) [40] Randomised
controlled trial

Norway 2000–2001 SFM versus DM Higher screen-detected
cancer rate for DM

Lower interval
cancer rate for DM

DM has several potential benefits in
mammographic screening, not

limited to clinical outcomes;
reducing interval cancer rates is

crucial in breast cancer screening as
it represents the benefits of early

detection; further studies are
needed to make conclusions about

harms and benefits

Wai (2005) [41] Cohort British
Columbia

Prior to 1997 and
after 1997 (exact

years not reported)

1-year and 2-year
screening intervals

for women
undergoing
screening

mammography

Higher screen-detected
cancer rate for annual

mammography
screening

No difference in rates Other measures needed to assess
improvement (i.e., prognostic

models showing survival rates)

Hunt (1999) [42] Retrospective
cohort

US 1985–1997 Annual versus
biennial screening

mammography

Lower for
annual screening

Lower for
annual screening

Low numbers meant that trends did
not reach statistical significance;

further research needed to examine
harms and benefits

Warren (1997) [43] Cohort UK 1989–1991 A comparison of
the effectiveness of
28 kV (grid) versus

25 kV (no grid)
mammographic
techniques for

breast screening

Higher screen-detected
cancer rate for

28 kV grid

Higher interval
cancer rate for 28 kV

grid

Non-significant difference in cancer
detection rate was offset by an
increase in interval cancer rate
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Most of the included studies in this review reported on changes to breast screening
programs and technologies [10,17,19–29,31,32,34,35,37,38,40–43]. Other cancer screening
programs examined included gastric cancer [36], colorectal cancer [18,33], and prostate
cancer [39]. While most studies compared two types of screening technology approaches
(e.g., film versus digital mammography), some studies utilised screen-detected and interval
cancer rates to determine optimal screening interval time-frames (e.g., annual versus
two-yearly screening intervals) [39,41].

Studies that reflected on the relationship between screen-detected and interval cancers
have often used this relationship as an indicator of benefit, but few have considered it as
an indicator of harm [4,5,44]. Of the included studies, 11 consider overdiagnosis, however
all but four conclude the results reflect it is not of concern [17,21,22,39]. Some studies
utilised the relationship between screen-detected and interval cancers as a measure of
effectiveness. For example, McDonald et al. found an increase in screen-detected cancer
rates and a subsequent decrease in interval cancer rates for digital breast tomosynthesis
compared to digital mammography, and noted this as a surrogate outcome for screening
benefit [28]. Other studies found the lack of change in screen-detected or interval cancer
rates as an indicator of no additional benefit. Lehman et al. utilised the comparison between
screen-detected cancer and interval cancer rates to assess the addition of computer-aided
detection (CAD) in digital screening mammography. Considering the increased financial
burden on women who opt for mammographic screening with CAD, the authors were able
to conclude that CAD offers no increase in clinical benefit [31].

The limitations of sole reliance on interval cancers were noted with the importance
of complementing the comparison of interval and screen-detected cancers with tumour
characteristics, to ensure increases in detection rate are reflecting clinically important
cancers [7,37]. In most studies comparing interval cancers with screen-detected cancers,
there are consistent findings indicating that interval cancers have worse prognostic features,
such as larger tumour size, higher frequency of node metastases, higher histologic grade,
and more advanced disease than screen-detected cancers [6].

One example is a study that used interval rates to consider both benefits and harms, as
does our framework, comparing tomosynthesis to digital mammography [21]. This study
found that a substantial increase in screen-detected cancers did not lead to a commensurate
reduction in interval cancers. The authors noted this finding raises the possibility of
overdiagnosis, but commented that their study was not sufficiently powered to measure
an effect on interval cancer. Nevertheless, they concluded it seemed reasonable to suspect
that some of the increased detection from tomosynthesis is contributing to overdiagnosis in
population breast cancer screening [21]. Another study proposed that the lack of translation
from detection rate to interval cancer rate may be due to a delay in lead time and/or to
overdiagnosis [17].

5. Other Considerations

It is important to consider underlying cancer rates in the population, as they can
affect the screen-detected and interval cancer rates. Comparisons of interval cancer should
be limited to monitoring within screening services or programs, because comparisons
between screening programs and countries is limited by heterogeneity [6]. Changes in
screening programs often involve a before/after comparison within a single population,
rather than a comparison with a control group, and are thus at higher risk of bias. When
comparing interval cancer rates to screen-detected cancer rates to measure a change in a
screening program, it is important to consider other factors that may have affected these
rates, beyond the change of interest. One way to adjust for these temporal changes that may
be confounding the relationship is to not only compare overall rates using methodology
such as interrupted time series to limit the attribution to the change of interest. Using an
interrupted time series limits the selection bias and confounding due to between-group
differences [45–47]. However, there may still be challenges to the comparison, even after
accounting for background changes over time. One challenge is how best to account for
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cancers in people who do not comply with rescreening recommendations. Some people
who attended at least one screening have a cancer diagnosed beyond the recommended
rescreening time. These cancers, which are neither screen detected nor interval, are not
included in the Framework’s comparison. Care is needed to ensure that omission of these
cancers from analysis does not cause a biased estimate of the difference in interval rates.

6. Learning Curves

The changes in screening programs have been associated with an initial increase in
false positive rates [48,49]. This change is probably due to adjustment periods, with aspects
like new technologies, additional views, or changes in the number of readers [50]. While
the increase may be short lived, the impact on those people who were sent down the
clinical pathway of being recalled for further investigation has been shown to be associated
with significantly adverse psychological effects in both the short and long term [48,51].
Depending on how drastic the change is, even if an increase in false positives is relatively
brief, recall rates may take time to stabilise, and this factor must be considered in relation
to the frequency at which a new technology is introduced.

7. Other Benefits and Harms

In addition to the impact of changes in screening programs on health outcomes, it is
important to consider the workflow, economic, and environmental cost-effectiveness of
such changes. An example of this cost-effect analysis is when a change in technology has
significantly shortened the acquisition time but has significantly increased the interpretation
time [52]. The initial and ongoing cost impact of a change may be in opposite directions.
When this is the case, it is important to determine the duration; the change needs to be
sustained to outweigh the upfront costs [53]. These considerations should include both
the initial impact of the change, for example the environmental cost of a new screening
technology, and the ongoing cost reduction in the digitalisation of screens [54,55].

8. Future Changes

The design and implementation of screening programs around the world will continue
to change. It is human nature to think that new technology is better, but the translation
to improved health outcomes needs to be evaluated [56]. The measurement of interval
cancer rates needs to be prioritised in studies evaluating changes in technology, as they
are often a recognised evidence gap [21]. The measurement of interval cancers can be
used in screening evaluation, linked to data from cancer registries or obtained through
academic trials [57]. Emerging areas in screening, such as artificial intelligence, could also
benefit from the application of this framework [58]. Often changes are first introduced
in symptomatic clinics; while this information is important in evaluating a change, the
probability of disease in a symptomatic person may differ substantially from that of an
asymptomatic person [59]. Interval cancers should be considered not only in planned
changes to cancer screening, but also in unplanned changes, such as when the COVID-19
pandemic forced a move to telehealth models of healthcare [60]. As new evidence emerges,
it is important that decision aids are updated with information relevant to the condition of
that screening program [61].

9. Conclusions

This framework puts forward a methodology of utlising intermediate outcomes of
screen-detected and interval cancers rates to contextualise and weigh the indicators of
benefits and harms of changes to a screening program. This approach is important for the
consideration of changes in cancer screening practice and policy accounting for both short-
and intermediate-term health outcomes.
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