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ABSTRACT

Abstract

Recent years have witnessed the surging popularity among studies on directed

graphs (digraphs) and digraph neural networks. With the unique capability of

encoding directional relationships, digraphs have shown their superiority in mod-

elling many real-life applications, such as citation analysis and website hyperlinks.

Spectral Graph Convolutional Neural Networks (spectral GCNNs), a powerful tool

for processing and analyzing undirected graph data, have been recently introduced to

digraphs. Although spectral GCNNs typically apply frequency filtering via Fourier

transform to obtain representations with selective information, research shows that

model performance can be enhanced by framelet transform-based filtering. However,

the massive majority of such research only considers spectral GCNNs for undirected

graphs. In this thesis, we introduce Framelet-MagNet, a magnetic framelet-based

spectral GCNN for digraphs. The model adopts magnetic framelet transform which

decomposes the input digraph data to low-pass and high-pass frequency components

in the spectral domain, forming a more sophisticated digraph representation for

filtering. Digraph framelets are constructed with the complex-valued magnetic

Laplacian, simultaneously leading to signal processing in both real and complex

domains. To our best knowledge, this approach is the first attempt to conduct

framelet-based convolution on digraph data in both real and complex domains. We

empirically validate the predictive power of Framelet-MagNet via various tasks,

including node classification, link prediction, and denoising. Besides, we show

through experiment results that Framelet-MagNet can outperform the state-of-the-art

approaches across several benchmark datasets.

Word count including abstract, chapters, in-text citations, tables, figures, formulas, and references based on
Overleaf: 20,749
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Chapter 1

Introduction

Our research will focus on the extension of framelets to directed graph neural networks. More

specifically, we will design a magnetic framelet-based Graph Convolutional Neural Network

for directed graphs. In this Chapter, we will establish a background for our research while

identifying the research gap that motivates our study. In Section 1.1, we will have an introduction

to Graph Convolutional Neural Networks. Then, in Section 1.2, we will introduce directed

graphs, their applications, and relevant challenges. To highlight our motivation, we will explain

why we pay special attention to graph framelets in Section 1.3. Eventually, in Section 1.4, we

will present our research questions and have an overview of the thesis structure.

1.1 Graph Convolutional Neural Network

With the exclusive ability to capture relational information in real-world data, graphs become

one of the most popular research topics in the machine-learning community. In the early study of

graph algorithms, researchers faced two major challenges. Firstly, graphs do not have consistent

structures. Many variates can lead to inconsistency among graph instances, such as the number

of nodes and the type of edges. Secondly, unlike images whose pixels have a definitive position

in the grid, graph nodes do not have a specific order for analysis and processing. So, graph

algorithms should be node-order equivalent, namely, not depending on the order of nodes in

processing and analysis. Inspired by the fact that deep learning has illustrated its power in

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of some fundamental graph concepts. (a) An undirected graph with
6 nodes and corresponding graph signal, adjacency matrix, and degree matrix. (b) 𝑘-hop
neighborhoods of node 1.

numerous applications, researchers proposed Graph Neural Networks (GNNs) [2, 3]. It has been

validated that GNNs can process complicated graph topology with no dependence on the node

order [4]. The most important branch of GNNs is the Graph Convolutional Neural Networks

(GCNNs).

Before we introduce the basic concepts of GCNNs, we will define some graph notations

(visualized illustrations are shown in Figure 1.1). An undirected graph can be denoted as

G{V, E}, where V is a set of 𝑁 vertices, and E ⊆ V ×V is a set of edges. Conventionally,

vertices and edges are also known as nodes and links. For two nodes 𝑣𝑖, 𝑣 𝑗 ∈ V, we denote

(𝑣𝑖, 𝑣 𝑗 ) as an edge from 𝑣𝑖 to 𝑣 𝑗 , and (𝑣 𝑗 , 𝑣𝑖) as an edge of the other direction. If both (𝑣𝑖, 𝑣 𝑗 ) ∈ E

and (𝑣 𝑗 , 𝑣𝑖) ∈ E, we say there is an undirected edge between 𝑣𝑖 and 𝑣 𝑗 . An undirected graph is

defined as a graph whose edges are all undirected. The graph topological structure is stored in the

adjacency matrix A. It is an 𝑁 × 𝑁 square matrix, in which A(𝑖, 𝑗) = 1 indicates the existence

of an edge from vertex 𝑣𝑖 to vertex 𝑣 𝑗 , and A(𝑖, 𝑗) = 0 otherwise. For the sake of simplify, in

this thesis, we will not consider weighted graphs nor graphs with self-loop edges. Nevertheless,

unless otherwise stated, computation in the remainder of this work can be smoothly extended to

graphs with self-loops or non-negative weights.

3



CHAPTER 1. INTRODUCTION

A graph normally have a node attribute matrix X ∈ R𝑁×𝑑 whose columns 𝑥1, ..., 𝑥𝑑 are 𝑑 graph

signals. From a mathematical perspective, a graph signal can be regarded as a mapping from

verticesV to a set of numbers as 𝑥 : V → R.

The 𝑘-hop neighborhood of a node is composed of nodes that are connected to this node up to the

𝑘-hop distance. A node 𝑣 𝑗 is the 𝑘-hop neighbor of node 𝑣𝑖 if 𝑣𝑖 can reach 𝑣 𝑗 through 𝑘 edges.

We denote the 𝑘-hop neighborhood of 𝑣𝑖 as N(𝑣𝑖, 𝑘). The degree-matrix D is a diagonal matrix

whose diagonal entries record the number of 1-hop neighbors of each node. Mathematically, we

can derive D from the adjacency matrix A by D(𝑖, 𝑖) = ∑
𝑣 𝑗∈V A(𝑖, 𝑗).

Generally, machine learning models for graphs are designed by carefully taking account of the

graph structure and the irregularity of graph data. To integrate graph structure and graph signals,

GCNNs conduct the aggregation of neighboring node information in a manner analogous to

traditional convolutional networks for images [2, 3, 5]. This process is accomplished by the

graph convolution in each convolutional layer. In addition, graph convolution also tolerates

signal filtering via applying learnable and/or pre-designed filters. Hence, we can understand

graph convolution as a convolution between the input signals and a filter. Depending on how

graph convolution is defined, GCNNs can be categorized into two classes, spatial-based and

spectral-based. The major difference between spatial and spectral convolutions exists in the

design of their filtering system. For simplicity, the following discussions will be based on a

single graph signal 𝑥, which is an 𝑁-dimensional vector. We will let 𝑥(𝑖) denote the signal value

at node 𝑣𝑖.

Based on [2], spatial GCNNs use vertex filtering while spectral GCNNs use frequency filtering.

With vertex filtering, the graph signals are processed in the graph domain, where the output is a

linear combination of the signal values at each node and its associated neighborhood. The most

basic mathematical expression of spatial graph convolution with vertex filtering is denoted as

𝜔 ∗ 𝑥(𝑖) = 𝜔𝑖,𝑖𝑥(𝑖) +
∑︁

𝑣 𝑗∈N (𝑣𝑖 ,𝑘)
𝜔𝑖, 𝑗𝑥( 𝑗), (1.1)

where 𝜔 is a learnable filter that contains all the weights {𝜔𝑖, 𝑗 }, and ∗ is the convolution symbol.

4



CHAPTER 1. INTRODUCTION

Frequency filtering, on the other hand, processes graph signals in the spectral domain. Based on

the graph spectral theory, graph signals can be converted to their representations in the spectral

domain via the graph Fourier transform. This process is assisted by the eigendecomposition of

graph Laplacian. Since relevant literature usually adopts the normalized graph Laplacian, we

will follow this convention and define the graph Laplacian as

L = D−1/2(D − A)D−1/2 = I − D−1/2AD−1/2. (1.2)

It is well-known that the Laplacian of an undirected graph is symmetric and positive semi-definite.

So, applying eigendecomposition, we have L = U𝚲U⊺, where U is an 𝑁 × 𝑁 matrix whose

columns are eigenvectors 𝑢𝑘 , 𝑘 = 0, ..., 𝑁 − 1, and 𝚲 is a diagonal matrix whose diagonal

entries are eigenvalues 𝜆𝑘 , 𝑘 = 0, ..., 𝑁 − 1. Now, we can write the Fourier transform function

as 𝑥 = U⊺𝑥, where 𝑥 is the representation of 𝑥 in the spectral domain, known as the Fourier

coefficients of 𝑥. We can reconstruct 𝑥 from 𝑥 with the Fourier inversion function, given by

𝑥 = U𝑥. From the computation, we can see that the Fourier transform is intrinsically a projection

of the graph signal to the basis formed by orthonormal eigenvectors of the graph Laplacian.

With the Fourier transform, we can realize the frequency filtering of spectral coefficients in the

spectral domain.

The first notable spectral graph convolution with frequency filtering was proposed by Bruna et

al. [6], denoted as

𝑔𝜔 ∗ 𝑥 = U𝑔𝜔U⊺𝑥, (1.3)

where 𝑔𝜔 is an 𝑁 × 𝑁 diagonal matrix, diag(𝜔). 𝜔 ∈ R𝑁 is considered as a set of learnable

weights. However, the computational cost of this convolution is very expensive. This is mainly

due to the multiplication with U and the eigendecomposition of L. For fast computation,

Kipf and Welling [7] proposed ChebNet, which adopts Chebyshev polynomial-based spectral

convolution. We firstly assume that 𝑔𝜔 is a function of the eigenvalues of L (i.e., 𝑔𝜔 (Λ)), which

means the diagonal entries of the filter matrix now becomes 𝑔𝜔 (𝜆𝑘 ), for 𝑘 = 0, ..., 𝑁 − 1. Then,

we can approximate 𝑔𝜔 (Λ) with Chebyshev polynomials and define the convolution as

5



CHAPTER 1. INTRODUCTION

𝑔𝜔 ∗ 𝑥 =
𝐿∑︁
ℓ=0

𝜔ℓTℓ (L̃)𝑥, (1.4)

where L̃ = 2
𝜆𝑚𝑎𝑥
L − I with 𝜆𝑚𝑎𝑥 being the largest eigenvalue of L. The Chebyshev polynomials

are defined as Tℓ (L̃) = 2L̃Tℓ−1(L̃) + Tℓ−2(L̃) with T0(L̃) = I and T1(L̃) = L̃ for ℓ ≥ 2. To

further avoid overfitting, we can set ℓ = 1, 𝜆𝑚𝑎𝑥 = 2, and 𝜔 = 𝜔0 = −𝜔1, such that

𝑔𝜔 ∗ 𝑥 = 𝜔
(
I + D−1/2AD−1/2

)
𝑥. (1.5)

Furthermore, to avoid the exploding/vanishing gradient problem, spectral GCNNs often adopts

Ã = A + I and its corresponding degree matrix D̃. This produces the simplified convolution used

in GCN [7]:

𝑔𝜔 ∗ 𝑥 = 𝜔
(
D̃−1/2ÃD̃−1/2

)
𝑥. (1.6)

Now we can define the convolutional layers of spectral GCNNs and extend to multiple graph

signals stored in X ∈ R𝑁×𝑑 . Generally, the convolutional layers have two components: graph

convolution and non-linear activation function. For the basic graph convolution defined in

equation (1.3), we write the 𝑖𝑡ℎ layer of the network as

X𝑖 = 𝜎(𝑔𝜔𝑖
∗ X𝑖−1) = 𝜎(Udiag(𝜔𝑖)U⊺(X𝑖−1W𝑖)), (1.7)

where 𝜎 is a non-linear activation function, 𝑔𝜔𝑖
= diag(𝜔𝑖) is a learnable filter, X𝑖−1 is an

𝑁 × 𝑑𝑖−1 feature matrix with X0 being the original graph feature matrix X, and W𝑖 is a 𝑑𝑖−1 × 𝑑𝑖

learnable matrix, where 𝑑𝑖−1 and 𝑑𝑖 are dimensions of the input and output channels.

With the simplified convolution in equation (1.6), the convolutional layers of GCN let the

learnable matrix W absorb the weight 𝜔, generating a simpler mathematical expression as

X𝑖 = 𝜎(𝑔𝜔𝑖
∗ X𝑖−1) = 𝜎

((
D̃−1/2ÃD̃−1/2

)
X𝑖−1W𝑖

)
. (1.8)

6



CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of digraphs. (a) A digraph with 6 nodes and its corresponding graph
signal and adjacency matrix. (b) In-neighbors and out-neighbors of node 1. (c) In-degree and
out-degree matrices of the digraph in (a).

1.2 Directed Graphs

Directed graphs (digraphs) are network-like graphs with directed edges (see Figure 1.2 (a) as an

example). We denote a digraph as G𝑑 (V, E). For two nodes 𝑣𝑖, 𝑣 𝑗 ∈ V, if (𝑣𝑖, 𝑣 𝑗 ) ∈ E, then

there is a directed edge from 𝑣𝑖 to 𝑣 𝑗 . Recall that in undirected graphs, if (𝑣𝑖, 𝑣 𝑗 ) ∈ E, then

(𝑣 𝑗 , 𝑣𝑖) ∈ E as well. In a strict digraph (i.e., oriented graph), however, if (𝑣𝑖, 𝑣 𝑗 ) ∈ E, then

(𝑣 𝑗 , 𝑣𝑖) ∉ E. Since oriented graphs are not very common in real-life problems, when we say

digraphs, we usually refer to mixed graphs, in which both directed and undirected edges exist.

In some real-world problems, the relationship between two objects is directional, thus the data

are naturally represented as digraphs. Incorporating directional information in graph edges

backbones the exploration of more insightful aspects of the underlying data, thus potentially

providing more effective solutions. For example, in website hyperlink analysis [8, 9], if a

hyperlink in website A leads to website B, it can be naturally modelled as a directed edge from

node A to node B. With undirected graphs, however, we can only identify the existence of a

hyperlink, which is far less informative. As another example, digraphs are also very useful in

business decision-making, such as portfolio management [10]. To construct a good investment
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portfolio, financial analysts often conduct diversification by including securities from different

sectors. When a sector suffers from a severe downtrend, securities from other sectors will not be

negatively impacted, which mitigates the overall risk of the portfolio. So, accurate sectorization

is of significance. Usually, this is achieved by calculating correlations between assets, which only

indicates the existence of relevance. To produce a more comprehensive picture of the security

market, Abrams et al. [10] suggest that we can model this problem as a digraph with nodes being

securities. A directed edge exists from security A to security B if price changes of A will lead to

price variations of B. Now, we may investigate the direction of impact for better sectorization.

Other applications of digraphs include but not limited to citation analysis [11], financial crisis

detection [12], traffic condition prediction [13, 14], social network analysis [15], etc.

What can we do after modelling these problems as digraphs? Typically, we can conduct

node-level tasks, link-level tasks, and graph-level tasks [3]. Here we concentrate on node-level

and link-level tasks. The most common node-level task is node classification, in which we try

to categorize nodes into several prescribed classes. In the aforementioned portfolio example,

sectorization can be considered as a node-classification task. Link-level tasks usually involve

link existence prediction and link direction prediction. Link existence prediction aims to detect

whether an edge exists between two nodes, while link direction prediction targets at finding the

potential directional relationship between two nodes. For instance, in hyperlink analysis, we

may predict whether a directed edge exists between two websites. Suppose that two websites

are predicted to be connected. If there is actually no hyperlink between them, we may consider

adding one to improve the hyperlink structure. Such improvement may enhance the convenience

of websites and upgrade visitor experience. GCNNs have been proven to be a powerful tool for

conducting these tasks for undirected graphs[2, 3, 5]. Driven by this fact, much recent research

engages with introducing GCNNs to digraph applications.

By construction, spatial GCNNs such as GraphSAGE [16], GAT [17], APPNP [18], and GIN

[19] typically have natural applications on digraphs, because the input can be incorporated

in the spatial convolution very easily [5]. Recall that spatial-based networks directly perform

convolution in the graph domain by aggregating information from the k-hop neighborhoods.

To encode edge directions, we can categorize the neighboring nodes as “in-neighbors” and

8
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“out-neighbors” (see Figure 1.2 (b) for illustration). For two nodes 𝑣𝑖, 𝑣 𝑗 linked by a directed

edge, if the edge direction is from 𝑣𝑖 to 𝑣 𝑗 , then 𝑣 𝑗 is the out-neighbor of 𝑣𝑖. Otherwise,

𝑣 𝑗 is the in-neighbor of 𝑣𝑖. Hence, the model can capture information from two directions

simultaneously by aggregating in-neighbors and out-neighbors separately in the convolutional

layer. Mathematically, we can extend the graph convolution in equation (1.1) to digraphs as

𝜔 ∗ 𝑥(𝑖) = 𝜔𝑖,𝑖𝑥(𝑖) +
∑︁

𝑣 𝑗∈N𝑜𝑢𝑡 (𝑣𝑖 ,𝑘)
𝜔𝑖, 𝑗𝑥( 𝑗) +

∑︁
𝑣 𝑗∈N𝑖𝑛 (𝑣𝑖 ,𝑘)

𝜔 𝑗 ,𝑖𝑥( 𝑗),

where N𝑖𝑛 (𝑣𝑖, 𝑘) (N𝑜𝑢𝑡 (𝑣𝑖, 𝑘)) is the k-hop in(out)-neighborhood of 𝑣𝑖.

Despite the straightforward extension of spatial methods to digraph problems, criticisms have

been drawn in three aspects. Firstly, it is pointed out in [20] that convolution with two

neighborhoods usually adds significant computational costs compared with the original model.

Likewise, Li et al. [14] suggest that their spatial-based model works better with sparse graphs

due to computational consideration. In addition, Zhang et al. [21] suggest that spatial methods

generally perform better with symmetrized adjacency matrices. Such matrices are constructed

by replacing all the directed edges with undirected ones, leading to ignorance of directional

information. Furthermore, Ma et al. [22] argue that most spatial approaches suffer from a lack

of signal processing mechanisms, so their ability to extract useful information from graph data is

very limited compared with spectral methods. Due to the aforementioned limitations, how to

extend spectral GCNNs to digraph data becomes a popular research topic.

However, it is not easy to apply spectral GCNNs on digraphs. Recall that spectral convolution

is supported by the eigendecomposition of graph Laplacian, which requires the Laplacian to

be symmetric and positive semi-definite. But the digraph adjacency matrix is not symmetric.

Accordingly, the digraph Laplacian is not symmetric either. A naive solution to this problem is

to symmetrize the Laplacian by replacing directed edges with undirected ones, which effectively

creates an undirected graph. As we have discussed, this approach is not a good option, because

it discards all the directional information. Hence, researchers focus on designing symmetric

alternatives that can preserve directional information [1, 20, 21, 22]. Magnetic Laplacian [21, 23]

is one of the most successful instances. It is a complex-valued Hermitian matrix, whose real part

9



CHAPTER 1. INTRODUCTION

shows edge existence, and imaginary part indicates edge directions. Magnetic Laplacian-based

digraph networks exploit magnetic Laplacian in classic spectral GCNN architectures and have

demonstrated their power in various graph tasks [21].

1.3 Why Use Framelets?

The rationale behind magnetic Laplacian-based GCNNs is to incorporate magnetic Laplacian

in traditional spectral GCNN architectures, such as ChebNet [24] and GCN [7]. All these

architectures adopt frequency filtering, thus intrinsically assuming the role of graph Fourier

transform.

Basically, a transform involves two domains, the original domain (e.g., the graph domain) and

the new domain (e.g. the spectral domain)1. The purpose of transform is to develop transform

coefficients, a representation of the input data in the new domain, for analysis and processing.

Transform coefficients are often obtained by projecting signals to a spectral basis (e.g., the

orthonormal eigenvector system). Normally, the processed coefficients will be converted back to

the original domain by an inversion function. When processing topologically complicated data

such as graphs, transform is of considerable significance, because many techniques are more

expressive or more powerful in other domains [25].

Recall that the graph Fourier transform is realized by taking the inner product between Laplacian

eigenvectors and graph signals. In the graph spectral theory, eigenvectors corresponding to

larger eigenvalues can measure higher signal frequency [4]. This means that the projection of

graph signals to these eigenvectors allows us to harvest high-frequency signal components. On

the contrary, eigenvectors associated with small eigenvalues help us to explore low-frequency

signal components. But, the major drawback of Fourier transform is that it only adopts a global

basis for transform, which means although we can detect signal frequency, we cannot identify

the position where it occurs.

To solve this problem, we need a more localized transform technique, that is, graph framelet
1Some literature may assign different names to the new domains after different transforms (e.g., Fourier domain

after Fourier transform), but, for the sake of convenience, we refer them collectively as the spectral domain.
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transform. Framelet transform is developed from wavelet transform. Wavelet transform uses

graph wavelets as the basis. Generally speaking, graph wavelets are constructed through dilation

and translation of a “mother wavelet”, which is a single function centered at a certain node.

Translation moves this function to other nodes in the graph, while dilation changes the scale

of this function such that it can reflect different frequencies. Framelet transform upgrades this

method by implementing multiple mother wavelets (also known as scaling functions in the

framelet terminology), which enriches the diversity of transform bases.

Applying framelet transform instead of Fourier transform has the following advantages. Firstly,

as we have mentioned, framelet transform not only enables the measurement of frequencies but

also supports the identification of positions, namely, the node where a frequency component

occurs. So, framelet coefficients are more sophisticated than Fourier coefficients, providing

more informative graph representations for prediction. Secondly, graph framelets are sparse

compared with Laplacian eigenvectors, which leads to a more efficient transform [26]. Lastly,

quasi-framelet transform [27] tolerates “double regulation” on graph signals, which supports

frequency filtering with both pre-designed and learnable filters.

There are several attempts to assemble GCNNs with the wavelet or framelet transform, however,

the majority of works are only applicable to undirected graphs [26, 27, 28]. Although SVD-

GCN [29] realizes digraph framelet transform via singular value decomposition (SVD) of the

asymmetric digraph Laplacian, its theoretical rationale is very vague, for example, how the

Laplacian singular values can be linked to the signal frequency in the SVD domain. In this thesis,

we aim to design a framelet-based spectral GCNN for digraphs without discarding the role of

Laplacian eigendecomposition. The framelet transform for digraphs will be accomplished with

the support of the magnetic Laplacian. So, we name our model as Framelet-MagNet.

1.4 Thesis Organization and Research Questions

The structure of this thesis is as follows. In Chapter 2, we will have a review of two topics,

spectral-based digraph GCNN and graph framelets. The review of graph framelets will include

11
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the development of both wavelet and framelet theories and framelet-based GCNNs. Then, in

Chapter 3, we will introduce our model, Framelet-MagNet, which is a magnetic framelet-based

GCNN for digraphs. In addition, we will elaborate on how to conduct node classification and

link prediction tasks with Framelet-MagNet. In Chapter 4, we will present the implementation

details of our experiments and use the experiment results to validate the power of our model over

a range of state-of-the-art models. Eventually, in Chapter 5, we will conclude the thesis, list

current limitations and future works, and discuss relevant ethical considerations.

Here we further clarify how our research questions guide our research works.

Research Question 1. How to construct a magnetic framelet-based GCNN for digraphs?

To answer this question, we will introduce Framelet-MagNet in Chapter 3. The most important

component in framelet-based spectral GCNNs is the framelet convolution, in which we firstly

apply framelet transform to convert graph signals to the spectral domain for filtering, then

reconstruct the processed data back to the graph domain with the framelet inversion function.

Intuitively, we desire no information loss during the whole process, which means we expect the

framelet transform to be “tight”. Accordingly, we will design the Magnetic Graph Framelet

Transform (MGFT), which is a tight framelet transform defined on digraphs. The fundamental

principle of MGFT is to incorporate magnetic Laplacian in the traditional undecimated tight

framelet transform on undirected graphs. For fast computation, we will propose Fast Magnetic

Framelet Transform (FMFT) assisted by Chebyshev polynomial approximation. Eventually, we

will assemble Framelet-MagNet with the magnetic framelet convolution supported by FMFT.

Research Question 2. Can Framelet-MagNet outperform the state-of-the-art approaches?

We will conduct experiments and present the results in Chapter 4. Our experiments consist of

three parts, node classification, link prediction, and denoising. In each part, we will compare

the performance of Framelet-MagNet with a range of state-of-the-art models across several

benchmark datasets. In addition, we will pay special attention to the comparison between

Framelet-MagNet and MagNet [21], which is a magnetic Laplacian-based GCNN with the

Fourier transform. This will directly show the superiority of the framelet transform over the
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Fourier transform in improving GCNN predictive performance. The metrics of our interest

are average prediction accuracy and accuracy standard deviation across ten subsets randomly

generated from each dataset, which are typical choices in GNN experiments.

13



Chapter 2

Literature Review

Our literature review will revolve around two topics, spectral GCNNs and the graph framelet

theory.

Theoretically, if we symmetrize the digraph adjacency matrix by substituting directed edges

with undirected edges, then most spectral GCNNs can be applied to digraph problems. However,

as we have discussed before, this will lead to a leakage of important directional information,

which may further lead to a deterioration in prediction accuracy. Therefore, our review in

Section 2.1 will focus on spectral GCNNs that are specifically designed for digraphs. To conduct

an informative review of digraph GCNNs, we will have a method-based discussion on the

state-of-the-art approaches proposed in recent years. This will contribute to our understanding

of how digraph spectral GCNNs work and demonstrate the difference between our method and

the existing techniques. Besides, it will also build a theoretical foundation for our experiments

since some of the networks mentioned will be adopted as baseline models.

Our review on the framelet transform in Section 2.2 will be around recent research on the

wavelet/framelet theory in graph machine learning. Particularly, we will focus on framelet-based

spectral GCNNs. Our review will indicate the power of framelet transform in the refinement of

spectral GCNNs. As little endeavors have been taken to investigate the effectiveness of framelet

transform in digraph neural networks, this review will highlight the importance of our research

question.
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2.1 Spectral-Based Digraph Convolutional Networks

The major challenge in designing spectral-based digraph GCNNs is how to conduct eigendecom-

position with digraph Laplacian. The digraph Laplacian is asymmetric, so, it cannot provide

real-valued eigenvalues and orthonormal eigenvectors required by the graph Fourier transform

[5, 20]. Consequently, the extension of spectral methods to digraphs needs us to design a

symmetric digraph adjacency/Laplacian. As we know, symmetrizing the digraph adjacency

matrix by replacing directed edges with undirected edges is not a good option, because all

directional information is discarded in this process. Therefore, a suitable alternative for digraph

adjacency/Laplacian is expected to be symmetric while simultaneously preserving the directional

information. In the rest of this subsection, we will elaborate on some popular solutions. We

will adopt the GCN architecture for all models because it is the most popular choice in related

literature.

Inspired by [30], MotifNet [1] constructs a symmetric motif adjacency matrix using digraph

motifs that represents meaningful graph connectivity patterns. This approach starts with defining

a collection of “graph motifs”, 𝑀1, ..., 𝑀𝑇 , denoting connected digraph patterns. We provide an

example of graph motifs in Figure 2.1.

For an edge (𝑣𝑖, 𝑣 𝑗 ) ∈ E, MotifNet counts the number of times that node 𝑣𝑖 and 𝑣 𝑗 presents

in motif 𝑀𝑡 . This count is denoted 𝑐𝑡,𝑖 𝑗 . Note that 𝑣𝑖 and 𝑣 𝑗 can participate in more than one

graph motif. So, for each graph motif 𝑀𝑡 , MotifNet will count for all the node pairs. Then, for

𝑡 = 1, ..., 𝑇 , the motif adjacency matrix is defined as

Ã𝑡 (𝑖, 𝑗) = 𝑐𝑡,𝑖 𝑗 (A(𝑖, 𝑗) + A( 𝑗 , 𝑖)).

Accordingly, the motif Laplacian is computed as

L̃𝑡 = I − D̃−1/2
𝑡 Ã𝑡D̃−1/2

𝑡 .

where the motif degree matrix D̃𝑡 is generated from the new motif adjacency matrix. Since
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Figure 2.1: Graph motifs used in the experiment of MotifNet[1]

the motif adjacency matrix is symmetric, and the motif degree matrix is diagonal, the motif

Laplacian is symmetric as well. With the motif Laplacian L̃1, ..., L̃𝑇 and a polynomial degree

𝑃, the motif graph convolution is defined as

𝑔𝜔 ∗ 𝑥 = P𝜔 (L̃1, ..., L̃𝑇 )𝑥,

where

P𝜔 (L̃1, ..., L̃𝑇 ) =
𝑃∑︁
𝑝=0

𝜔𝑝P𝑝,

P𝑝 (L̃1, ..., L̃𝑇 ) =
𝑇∑︁
𝑡=1

𝑤𝑡,𝑝L̃𝑡P𝑡−1, 𝑝 = 1, ..., 𝑃,

P0 = I,

and 𝜔 = (𝜔0, ..., 𝜔𝑃, 𝑤1, 1, ..., 𝑤𝑇,𝑃) with 0 ≤ 𝑤𝑡,𝑝 ≤ 1. Although MotifNet provides a good

example of incorporating directional information in a symmetric graph Laplacian, it fails to

account for the global topological graph structure [31]. For example, MotifNet’s experiment

is based on thirteen 3-vertex graph motifs, so, the motif Laplacian only encodes directional

information in very small directed subgraphs. If we try to investigate more complex patterns

with motifs containing more vertices, then possible motif patterns will increase dramatically,

resulting in computational inefficiency.
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Figure 2.2: Illustration of a 4-step random walk on a graph. This process starts from node 1 and
walks to one of the 1-hop out-neighbors of the current node at each step.

Then, inspired by [32], DGCN-Ma [22] uses the transition probability matrix and its Perron

vector to construct symmetric Laplacian (since we will introduce two different models that were

originally named as DGCN, we distinguish them by the name of the first authors). In graphs, a

random walk is a random process to define a path that can describe the transition among nodes

(see Figure 2.2 for visualized illustration). If we begin with the node 𝑣𝑖, then at the next random

walk step, we randomly move to one of the closest out-neighbors of 𝑣𝑖, such as 𝑣 𝑗 (assume that

(𝑣𝑖, 𝑣 𝑗 ) ∈ E). Next, to lengthen the path, we take another random walk step to move from 𝑣 𝑗 to

its random out-neighbor 𝑣𝑘 (assume that (𝑣 𝑗 , 𝑣𝑘 ) ∈ E). We repeat this process until the path is

sufficiently long. Mathematically, the random walk can be realized by a Markov process with a

transition probability matrix P:

P(𝑖, 𝑗) =


1

𝐷𝑜𝑢𝑡
𝑖

, if(𝑣𝑖, 𝑣 𝑗 ) ∈ E

0, otherwise
,

where 𝐷𝑜𝑢𝑡
𝑖

is the out-degree of node 𝑣𝑖. P(𝑖, 𝑗) is the probability of traveling from node 𝑣𝑖 to

node 𝑣 𝑗 . With the out-degree matrix and the adjacency matrix, P can be obtained by

P = D−1
𝑜𝑢𝑡A,
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where D𝑜𝑢𝑡 is a diagonal matrix given by

D𝑜𝑢𝑡 (𝑖, 𝑖) =
∑︁
𝑣 𝑗∈V

A(𝑖, 𝑗).

According to the Perron-Frobenius Theorem [33], an irreducible non-negative matrix has a

unique positive eigenvector, whose associated eigenvalue has the largest absolute value over all

other eigenvalues. Based on this theorem, Ma et al. [22] proves that P of strongly connected

digraphs has a unique left eigenvector (a row vector), 𝜇, whose entries are all positive. With this

eigenvector, the following equation holds:

𝜇P = 1𝜇.

Then, the normalized vector 𝜇𝑛𝑜𝑟𝑚 is called the Perron vector of P. LetM = diag(𝜇𝑛𝑜𝑟𝑚), where

the diagonal entries are the elements in 𝜇𝑛𝑜𝑟𝑚. With matrixM, the Perron Laplacian is defined

as

L̃𝑃 = I − 1
2

(
M1/2PM−1/2 +M−1/2P⊺M1/2

)
.

Eventually, DGCN-Ma uses the Perron digraph Laplacian for digraph convolution:

𝑔𝜔 ∗ 𝑥 = 𝜔
(
I + 1

2

(
M1/2PM−1/2 +M−1/2P⊺M1/2

))
𝑥.

To avoid the exploding or vanishing gradient problem, Ã = A + I is used to calculate P̃ and M̃

[7]. Consequently, the Perron-based graph convolution is denoted as

𝑔𝜔 ∗ 𝑥 =
𝜔

2

(
M̃1/2P̃M̃−1/2 + M̃−1/2P̃⊺M̃1/2

)
𝑥.

As the initial attempt of Perron vector-based methods, DGCN-Ma has opened up a new perspective

for researchers to extend spectral GCNNs to digraphs. Nonetheless, the adaptability of this
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method in large-size graphs is very weak due to the time-consuming matrix decomposition in

graph convolution [34]. In addition, DGCN-Ma is criticized for being only suitable for strongly

connected graphs [34]. Perron-Frobenius Theorem holds only for irreducible non-negative

matrices, which means the directed graph is required to be strongly connected. Otherwise, the

transition probability matrix P is simply non-negative, leading to weaker properties. According

to [35], a non-negative matrix has a non-negative eigenvector, and the corresponding eigenvalue

is only no less than the absolute value of other eigenvalues. So, the generalization capability of

DGCN-Ma in real-life applications is very limited.

As a refinement of DGCN-Ma, FDGCN [34] is a scalable spectral GCNN with fast localized

frequency filters. Since obtaining M̃ is time-consuming, FDGCN implements a special case of

the Perron vector 𝜇𝑛𝑜𝑟𝑚:

𝜇̃ =

(
1
𝑁
, ...,

1
𝑁

)
∈ R𝑁 ,

where 𝑁 is the number of nodes. It is proved in [34] that this special case is equal to the Perron

vector of strongly connected digraphs, and is also applicable to general digraphs. With this

newly defined Perron vector, the Perron-based graph convolution is rewritten as:

𝑔𝜔 ∗ 𝑥 =
𝜔

2

((
1
√
𝑁

I
)

P̃
(√
𝑁I

)
+

(√
𝑁I

)
P̃⊺

(
1
√
𝑁

I
))
𝑥

=
𝜔

2
(P̃ + P̃⊺)𝑥

=
𝜔

2

(
D̃−1
𝑜𝑢𝑡 (A + I) + (A + I)⊺D̃−1

𝑜𝑢𝑡

)
𝑥

=
𝜔

2

(
D̃−1/2
𝑜𝑢𝑡 (Ã + Ã⊺)D̃−1/2

𝑜𝑢𝑡

)
𝑥.

Now, the computationally expensive component M̃ is removed from the convolution. Thus,

FDGCN is much faster than DGCN, thus allowing the processing and analysis of large graphs.

Moreover, as 𝜇̃ is applicable to general digraphs, FDGCN successfully overcomes the limitation

in digraph connection and broadens the range of applications of Perron-based methods. However,

although FDGCN has demonstrated its power over many state-of-the-art models, the existing

experiment of FDGCN only involves the node classification task. So, the performance of FDGCN

in other tasks such as link prediction remains unknown.
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Another very popular approach is based on proximity matrices. This idea was first proposed

by DGCN-Tong [36]. In general, this method generates three symmetric Laplacian matrices

including one first-order proximity matrix and two second-order proximity matrices. The

first-order proximity indicates the local pairwise proximity between the nodes in a graph. For

two nodes 𝑣𝑖, 𝑣 𝑗 , and the edge (𝑣𝑖, 𝑣 𝑗 ), the first proximity adjacency matrix is defined as

A1(𝑖, 𝑗) = A𝑠 (𝑖, 𝑗),

where A𝑠 is the symmetrized digraph adjacency matrix. If there is no linkage between 𝑣𝑖 and

𝑣 𝑗 , then A1(𝑖, 𝑗) = A1( 𝑗 , 𝑖) = 0. It is not hard to see that A1 is symmetric. However, one may

notice that the first-order proximity matrix contains no directional information. To address this

problem, DGCN-Tong uses second-order proximity matrices to retain the missing information.

The design of second-order proximity matrices is under the assumption that two nodes with

similar neighborhoods share similar characteristics. Hence, second-order proximity matrices

aim to connect similar nodes. For a node pair 𝑣𝑖, 𝑣 𝑗 , the second-order in-degree and out-degree

proximity adjacency matrices are given by

A2𝑖𝑛 (𝑖, 𝑗) =
∑︁
𝑣𝑘∈V

A(𝑘, 𝑖)A(𝑘, 𝑗)∑
𝑣𝑝∈V A(𝑘, 𝑝) ,

A2𝑜𝑢𝑡 (𝑖, 𝑗) =
∑︁
𝑣𝑘∈V

A(𝑖, 𝑘)A( 𝑗 , 𝑘)∑
𝑣𝑝∈V A(𝑝, 𝑘) .

In the in-degree adjacency matrix A2𝑖𝑛 , a larger value of A2𝑖𝑛 (𝑖, 𝑗) alludes the higher similarity

between 𝑣𝑖 and 𝑣 𝑗 based on the second-order in-degree. Likewise, in the out-degree adjacency

matrix A2𝑜𝑢𝑡 , each entry measures the similarity between two nodes based on the second-order

out-degree, where larger values also indicate higher similarity. By construction, both matrices

are symmetric. The first-order proximity graph convolution is defined as

{𝑔𝜔 ∗ 𝑥}1 = 𝜔

(
D̃−1/2

1 Ã1D̃−1/2
1

)
𝑥,
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where Ã1 = A1 + I, and D̃1 is the corresponding degree matrix. In addition, the second-order

proximity graph convolutions are given by

{𝑔𝜔 ∗ 𝑥}2𝑖𝑛 = 𝜔
(
D̃−1/2

2𝑖𝑛 Ã2𝑖𝑛D̃−1/2
2𝑖𝑛

)
𝑥,

{𝑔𝜔 ∗ 𝑥}2𝑜𝑢𝑡 = 𝜔
(
D̃−1/2

2𝑜𝑢𝑡 Ã2𝑜𝑢𝑡 D̃
−1/2
2𝑜𝑢𝑡

)
𝑥,

where Ã2𝑖𝑛 = A2𝑖𝑛 + I and Ã2𝑜𝑢𝑡 = A2𝑜𝑢𝑡 + I with D̃2𝑖𝑛 and D̃2𝑜𝑢𝑡 being the corresponding degree

matrices. Lastly, DGCN-Tong adopts a fusion operation to combine three separate convolutions.

It is suggested in [36] that the most effective way is applying the concatenation fusion operator

“Concat(·)” to stack the convolutions, that is,

𝑔𝜔 ∗ 𝑥 = Concat({𝜔 ∗ 𝑥}1, 𝛼{𝜔 ∗ 𝑥}2𝑖𝑛 , 𝛽{𝜔 ∗ 𝑥}2𝑜𝑢𝑡 ),

where 𝛼 and 𝛽 are weights that control the contribution of each proximity convolution. However,

in the experiment of DGCN-Tong, 𝛼 and 𝛽 are set manually. So, the importance of different

proximity information is not determined by graph data. This raises our concern that selecting

the appropriate weights for different graphs may be impractical in real-life applications. This

process can be rather costly, and it cannot guarantee finding the optimal weights. Besides, as

stated by Tong et al. [20], the second-order proximity measures the similarity between nodes

only based on the 1-hop neighborhood, so it fails to capture the global graph structure. As we

can see in the definition of A2𝑖𝑛 and A2𝑜𝑢𝑡 , the similarity score (i.e., the value of each entry) is

measured based on all the shared 1-hop neighbors 𝑣𝑘 ∈ N (𝑣𝑖, 1) ∩ N (𝑣 𝑗 , 1). Therefore, they

fail to account for more distant neighbors that may also be compelling indicators for similarity,

especially in dense graphs. Another very popular approach is based on proximity matrices. This

idea was first proposed by DGCN-Tong [36]. In general, this method generates three symmetric

Laplacian matrices including one first-order proximity matrix and two second-order proximity

matrices. The first-order proximity indicates the local pairwise proximity between the nodes in a

graph. For two nodes 𝑣𝑖, 𝑣 𝑗 , and the edge (𝑣𝑖, 𝑣 𝑗 ), the first proximity adjacency matrix is defined

as
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A1(𝑖, 𝑗) = A𝑠 (𝑖, 𝑗),

where A𝑠 is the symmetrized digraph adjacency matrix. If there is no linkage between 𝑣𝑖 and

𝑣 𝑗 , then A1(𝑖, 𝑗) = A1( 𝑗 , 𝑖) = 0. It is not hard to see that A1 is symmetric. However, one may

notice that the first-order proximity matrix contains no directional information. To address this

problem, DGCN-Tong uses second-order proximity matrices to retain the missing information.

The design of second-order proximity matrices is under the assumption that two nodes with

similar neighborhoods share similar characteristics. Hence, second-order proximity matrices

aim to connect similar nodes. For a node pair 𝑣𝑖, 𝑣 𝑗 , the second-order in-degree and out-degree

proximity adjacency matrices are given by

A2𝑖𝑛 (𝑖, 𝑗) =
∑︁
𝑣𝑘∈V

A(𝑘, 𝑖)A(𝑘, 𝑗)∑
𝑣𝑝∈V A(𝑘, 𝑝) ,

A2𝑜𝑢𝑡 (𝑖, 𝑗) =
∑︁
𝑣𝑘∈V

A(𝑖, 𝑘)A( 𝑗 , 𝑘)∑
𝑣𝑝∈V A(𝑝, 𝑘) .

In the in-degree adjacency matrix A2𝑖𝑛 , a larger value of A2𝑖𝑛 (𝑖, 𝑗) alludes the higher similarity

between 𝑣𝑖 and 𝑣 𝑗 based on the second-order in-degree. Likewise, in the out-degree adjacency

matrix A2𝑜𝑢𝑡 , each entry measures the similarity between two nodes based on the second-order

out-degree, where larger values also indicate higher similarity. By construction, both matrices

are symmetric. The first-order proximity graph convolution is defined as

{𝑔𝜔 ∗ 𝑥}1 = 𝜔

(
D̃−1/2

1 Ã1D̃−1/2
1

)
𝑥,

where Ã1 = A1 + I, and D̃1 is the corresponding degree matrix. In addition, the second-order

proximity graph convolutions are given by

{𝑔𝜔 ∗ 𝑥}2𝑖𝑛 = 𝜔
(
D̃−1/2

2𝑖𝑛 Ã2𝑖𝑛D̃−1/2
2𝑖𝑛

)
𝑥,

{𝑔𝜔 ∗ 𝑥}2𝑜𝑢𝑡 = 𝜔
(
D̃−1/2

2𝑜𝑢𝑡 Ã2𝑜𝑢𝑡 D̃
−1/2
2𝑜𝑢𝑡

)
𝑥,
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where Ã2𝑖𝑛 = A2𝑖𝑛 + I and Ã2𝑜𝑢𝑡 = A2𝑜𝑢𝑡 + I with D̃2𝑖𝑛 and D̃2𝑜𝑢𝑡 being the corresponding degree

matrices. Lastly, DGCN-Tong adopts a fusion operation to combine three separate convolutions.

It is suggested in [36] that the most effective way is applying the concatenation fusion operator

“Concat(·)” to stack the convolutions, that is,

𝑔𝜔 ∗ 𝑥 = Concat({𝜔 ∗ 𝑥}1, 𝛼{𝜔 ∗ 𝑥}2𝑖𝑛 , 𝛽{𝜔 ∗ 𝑥}2𝑜𝑢𝑡 ),

where 𝛼 and 𝛽 are weights that control the contribution of each proximity convolution. However,

in the experiment of DGCN-Tong, 𝛼 and 𝛽 are set manually. So, the importance of different

proximity information is not determined by graph data. This raises our concern that selecting

the appropriate weights for different graphs may be impractical in real-life applications. This

process can be rather costly, and it cannot guarantee finding the optimal weights. Besides, as

stated by Tong et al. [20], the second-order proximity measures the similarity between nodes

only based on the 1-hop neighborhood, so it fails to capture the global graph structure. As we

can see in the definition of A2𝑖𝑛 and A2𝑜𝑢𝑡 , the similarity score (i.e., the value of each entry) is

measured based on all the shared 1-hop neighbors 𝑣𝑘 ∈ N (𝑣𝑖, 1) ∩ N (𝑣 𝑗 , 1). Therefore, they

fail to account for more distant neighbors that may also be compelling indicators for similarity,

especially in dense graphs.

[20] is a successful integration of DGCN-Ma [22] and DGCN-Tong [36]. This work begins with

defining a digraph Laplacian similar to DGCN-Ma, but with a PaperRank matrix instead of a

random walk matrix. This PaperRank matrix is proven to be non-negative and irreducible even

if a digraph is not strongly connected. So, the new digraph Laplacian is universally applicable to

any digraph. Then, a new model called Digraph is constructed using this Laplacian. However,

this method only allows us to extract information from the 1-hop neighborhood. To encode

more information, 𝑘 𝑡ℎ-order proximity, which is developed from the proximity approach in

DGCN-Tong, is implemented to construct a more flexible network structure. With the 𝑘 𝑡ℎ-order

proximity, the model can explore the information contained in the (𝑘 − 1)-hop neighborhood.

The model built upon the 𝑘 𝑡ℎ-order proximity architecture is known as DiGCN. Now we will

have a brief review of the mathematical principles underlying Digraph and DiGCN.
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Since the probability transition probability matrix P in DGCN-Ma is not irreducible when a

digraph is not strongly connected, Digraph introduces a PaperRank matrix R = (1 − 𝜂)P + 𝜂

𝑁
I,

where 𝜂 ∈ (0, 1) is the teleport probability [37], and 𝑁 is the number of nodes. R is an irreducible

non-negative matrix, so the Perron-Frobenius Theorem holds. Namely, following [22], the

Perron vector 𝜇𝑅 (normalized) can be found and used to construct the PaperRank-based Perron

Laplacian as

L𝑅 = I − 1
2

(
M1/2

𝑅
RM−1/2

𝑅
+M−1/2

𝑅
R⊺M1/2

𝑅

)
,

whereM𝑅 = diag(𝜇𝑅). However, the new Perron Laplacian is very dense due to the incorporation

of a teleport back to every node in the graph, which significantly increases the computational

overhead. To address this issue, the authors introduce an auxiliary node as the personalized

PaperRank teleport, and refine the PaperRank matrix as

R𝑝 =


(1 − 𝜂)P̃ 𝜂

𝜂

𝑁
0

 ∈ R
(𝑁+1)×(𝑁+1) ,

where P̃ is derived from Ã = A+ I. R𝑝 is also an irreducible non-negative matrix, and the Perron

vector of R𝑝 is used to approximate the Perron vector of P̃. Nevertheless, it is worth noting that

the Perron vector 𝜇𝑅𝑝
cannot be straightforwardly applied to build the Perron Laplacian, because

it has one element corresponding to the auxiliary node. Thus, the Perron vector is split to two

parts 𝜇𝑅𝑝
= (𝜇𝑅𝑝 ,𝑁 , 𝜇𝑅𝑝 ,𝐴), then 𝜇𝑅𝑝 ,𝐴 ∈ R is removed, and 𝜇𝑅𝑝 ,𝑁 ∈ R𝑁 is used to construct the

refined Perron Laplacian:

L𝑅𝑝
= I − 1

2

(
M1/2

𝑅𝑝
P̃M−1/2

𝑅𝑝
+M−1/2

𝑅𝑝
P̃⊺M1/2

𝑅𝑝

)
,

whereM𝑅𝑝
= diag(𝜇𝑅𝑝 ,𝑁 ). With L𝑅𝑝

, Digraph defines the graph convolution as

𝑔𝜔 ∗ 𝑥 =
𝜔

2

(
M̃1/2

𝑅𝑝
P̃M̃−1/2

𝑅𝑝
+ M̃−1/2

𝑅𝑝
P̃⊺M̃1/2

𝑅𝑝

)
𝑥.

Next, authors of [20] considered how to incorporate proximity in the Perron-based approaches,
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and designed DiGCN based on this idea. The aim of applying proximity is to obtain a scalable

receptive field such that the model can extract information from neighborhoods of different scales.

More specifically, defining the digraph Laplacian with 𝑘 𝑡ℎ-order proximity enables information

extraction in the (𝑘 − 1)-hop neighborhood, which means the model can explore node neighbors

of different distances via setting different 𝑘 values.

The 𝑘 𝑡ℎ-order proximity matrix is defined as

P𝑘 =


I, 𝑘 = 1

P̃, 𝑘 = 2

Intersect
(
P𝑘−2

2

(
P⊺

2

) 𝑘−2
,

(
P⊺

2

) 𝑘−2
P𝑘−2

2

)
/2, 𝑘 > 2

.

Here, Intersect(·) is the element-wise intersection of matrices. If both 𝑣𝑖 and 𝑣 𝑗 can reach node

𝑣𝑝 in 𝑘 steps, a 𝑘-step meeting path exists between 𝑣𝑖 and 𝑣 𝑗 . Alternatively, if 𝑣𝑝 can reach

both 𝑣𝑖 and 𝑣 𝑗 in 𝑘 steps, then a 𝑘-step diffusion path exists between 𝑣𝑖 and 𝑣 𝑗 . In P𝑘−2
2

(
P⊺

2

) 𝑘−2

and
(
P⊺

2

) 𝑘−2
P𝑘−2

2 , an element (𝑖, 𝑗) has two corresponding nodes 𝑣𝑖 and 𝑣 𝑗 . For 𝑘 > 2, if both

𝑘-step meeting and diffusion path exist between 𝑣𝑖 and 𝑣 𝑗 , the intersection operator performs

summation of P𝑘−2
2

(
P⊺

2

) 𝑘−2
(𝑖, 𝑗) and

(
P⊺

2

) 𝑘−2
P𝑘−2

2 (𝑖, 𝑗), otherwise, it is assigned to 0. Through

the rule of the intersection operator, it is not hard to see that P𝑘 for 𝑘 > 2 is symmetric.

Eventually, the graph convolution of DiGCN is given by

{𝑔𝜔 ∗ 𝑥}𝑘 =


𝜔1𝑥, 𝑘 = 1
1
2𝜔2

(
M̃1/2

2 P2M̃−1/2
2 + M̃−1/2

2 P⊺
2M̃

1/2
2

)
𝑥, 𝑘 = 2

𝜔𝑘

(
W−1/2

𝑘
P𝑘W−1/2

𝑘

)
𝑥, 𝑘 > 2

,

where W𝑘 is a diagonal weight matrix of P𝑘 . The connection between DiGCN and Digraph

is that when 𝑘 = 2, {𝑔𝜔 ∗ 𝑥}2 is identical with the graph convolution of Digraph. To combine

all the convolution outputs, DiGCN adopts the same way as DCGN-Tong in its experiment,

that is, the concatenation operator, Concat(·). The major drawback of Digraph and DiGCN is

their inability to be implemented for large digraphs because these two models require full batch

training to express their power [20].
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Later, a magnetic Laplacian-based neural network, MagNet [21], demonstrates its power in node

classification and link prediction tasks across various datasets. Unprecedentedly, MagNet adopts

a complex digraph Laplacian and allows graph signal processing in the complex domain. The

underlying rationale of MagNet is to incorporate the magnetic Laplacian, a classic concept that

has been studied at least from 1993 [38], in traditional spectral GCNN architectures. Detailed

mathematical illustrations of the magnetic Laplacian will be presented in Section 3.1 of Chapter

3.

To summarize, we have reviewed popular spectral digraph GCNs, including MotifNet, DGCN-Ma,

FDGCN, DGCN-Tong, Digraph, DiGCN, and MagNet. These spectral networks are different

from our model, Framelet-MagNet, in the following aspects. Firstly, models except for MagNet

use real-valued digraph Laplacian, while our model adopts the complex magnetic Laplacian to

explore a new perspective of digraph information. Next, experiments conducted for most models

only involve the node classification task, which means the predictive power of these methods in

other tasks is not validated. However, Framelet-MagNet shows its superior competence in not

only node classification, but also link prediction and denoising. Compared with DGCN-Ma, our

model does not require the input digraph to be strongly connected. Distinct from DGCN-Tong

and DiGCN, our method does not include a complicated construction of multiple digraph

Laplacian. Moreover, all the aforementioned models apply graph Fourier transform in signal

frequency filtering, failing to account for more sophisticated frequency decomposition. By

contrast, our model implements graph Framelet transform, allowing more meticulous extraction

of different frequency components.

2.2 Graph Wavelets, Graph Framelets, and Relevant Graph

Convolutional Networks

The word “framelet” is an abbreviation of “wavelet frame”. As a matter of fact, wavelets are

special cases of framelets. In the R𝑑 domain, wavelets and framelets have been studied for

a long time and have a collection of well-defined systems [39, 40, 41]. Then, how to build
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wavelet/framelet systems on manifolds gradually gained attention from the research community.

Various solutions have been proposed. For example, Coifman and Maggioni [42] constructed an

orthogonal diffusion wavelet system using diffusion operators for smooth manifolds. As another

example, Wang and Zhuang [43] designed a tight framelet system for compact and smooth

manifolds. For a more comprehensive review of wavelet/framelet systems on R𝑑 and manifolds,

we refer to [44]. Given the fact that graphs can be considered as discrete samples of manifolds,

in 2003, Crovella and Kolaczyk [45] first introduced wavelet theory to graphs. Henceforth, a

variety of studies on graph wavelet/framelet theory have taken place [25, 46, 47, 48, 49]. In

[47], the wavelet scattering system is designed as a GCNN-like machine learning algorithm

for graph analysis. However, this approach substitutes the whole GCNN architecture with the

wavelet scattering system. Our method in this paper, on the other hand, aims to conserve the

original GCNN architecture. The most related works of our method are UFG [28], QUFG [27],

and SVD-GCN [29]. All these works are built upon the “undecimated graph framelet system”

[44, 48], which is developed from the spectral graph wavelet system in [25]. In the rest of this

section, we will review these works and their underlying principles.

Wavelet transform employs a set of self-similar wavelets, developed from a “mother wavelet”

through translation and dilation, then obtains transform coefficients by taking the inner product

between signals and wavelets. Let 𝜂(𝑡) be a mother wavelet. With a translation parameter 𝜏 and

a dilation level 𝑠 > 0, wavelets are calculated as

𝜂𝜏,𝑠 (𝑡) =
1
𝑠
𝜂

( 𝑡 − 𝜏
𝑠

)
.

Then, wavelet coefficients for a given signal 𝑓 from a continuous domain R are given by

𝑊 𝑓 (𝜏, 𝑠) =
∫ ∞

−∞

1
𝑠
𝜂∗

( 𝑡 − 𝜏
𝑠

)
𝑓 (𝑡)𝑑𝑡,

where 𝜂∗ is the conjugate transpose of 𝜂.

However, defining translation and dilation on graph data in this way is difficult. For example,

while a normal signal 𝑓 is defined on the time domain, graph signals are defined on the graph
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domain which is usually a discrete set 𝑛 = 1, ..., 𝑁 (i.e. the node number). Dividing 𝑡 by dilation

level 𝑠 can be regarded as expanding or shrinking the time span. Yet, the meaning of dividing

the node number 𝑖 by 𝑠 is ambiguous. Therefore, Hammond et al. [25] proposed a brilliant

solution by defining scaling in the Fourier domain then expressing translation through a delta

impulse. This approach starts with defining a graph wavelet generating kernel 𝜉 that satisfies

𝜉 (0) = 0. Let the wavelet operator be a function of the graph Laplacian Ω𝜉 = 𝜉 (L) such that

Ω𝜉𝑥 generates the wavelet coefficients for graph signal 𝑥 at the unit scaling level (𝑠 = 1). The

scale level can be altered by applying a multiplier to L. More specifically, the wavelet operator

at a level 𝑠 > 0 is Ω𝑠
𝜉
= 𝜉 (𝑠L). Furthermore, to realize transition, this operator is localized

to an impulse. This process is fulfilled by a Dirac delta function, which is then replaced by

a position indicator, represented by the eigenvectors of graph Laplacian. Eventually, a graph

wavelet centered at node position 𝑛 (i.e., the node 𝑣𝑛) with dilation level 𝑠 is computed as

𝜂𝑛,𝑠 (𝑚) =
𝑁−1∑︁
𝑘=0

𝜉 (𝑠𝜆𝑘 )𝑢∗𝑘 (𝑛)𝑢𝑘 (𝑚), (2.1)

where 𝑚 = 1, ..., 𝑁 , and {𝑢𝑘 , 𝜆𝑘 }𝑁−1
𝑘=0 are eigenvector and eigenvalue pairs of the graph Laplacian

L. The spectral graph wavelet transform (SGWT) of a single graph signal 𝑥 is given by

𝑊𝑥 (𝑛, 𝑠) = ⟨𝜂𝑛,𝑠, 𝑥⟩ =
𝑁−1∑︁
𝑘=0

𝜉 (𝑠𝜆𝑘 )𝑢𝑘 (𝑛)𝑥(𝑘). (2.2)

Developed from SGWT, wavelet frame transform for graphs (WFTG) was proposed by Dong

[48]. This idea was also introduced as undecimated framelet transform (UFT) by Zheng et al.

[44] in Section 4.1. The undecimated framelet system is constructed through a filter bank. This

method is known as Multiresolution Analysis in relevant literature [50, 51, 52]. Rather than

using a single mother wavelet, the framelet system adopts a set of finite functions as mother

wavelets (also known as scaling functions in the framelet terminology), enriching the basis of

transformation.

The construction of graph framelets requires a set of scaling functions 𝐴 = {𝛼0, 𝛼1, ..., 𝛼𝑅}, and

a filter bank 𝑎 = {𝑎0, 𝑎1, ..., 𝑎𝑅}. Normally, 𝑎0 is considered as a low-pass filter, and 𝑎𝑟 for
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𝑟 = 1, ..., 𝑅 are considered as high-pass filters. With 𝛼0, 𝛼1, ..., 𝛼𝑅, graph framelets with dilation

level 𝑠 = 1, ..., 𝑆 centered at node position 𝑛 are defined as

𝜌𝑛,𝑠 (𝑚) =
𝑁−1∑︁
𝑘=0

𝑢𝑘 (𝑚)𝛼̂0 (2−𝑠𝜆𝑘 ) 𝑢∗𝑘 (𝑛),

𝜚𝑛,𝑠,𝑟 (𝑚) =
𝑁−1∑︁
𝑘=0

𝑢𝑘 (𝑚)𝛼̂𝑟 (2−𝑠𝜆𝑘 ) 𝑢∗𝑘 (𝑛), 𝑟 ≥ 1.

(2.3)

By definition, 𝜌𝑛,𝑠 and 𝜚𝑛,𝑠,𝑟 are used to investigate low-frequency and high-frequency components

of graph signals, respectively [28, 48]. 2−𝑠 in both framlet formulas are adaptable to any other

similar expressions 𝛿−𝑠 where 𝛿 > 1. Then, similar to the aforementioned operations, framelet

coefficients are generated by inner products ⟨𝜌𝑛,𝑠, 𝑥⟩ and ⟨𝜚𝑛,𝑠,𝑟 , 𝑥⟩.

For each pair of scaling functions and filters, the following equation should hold for any 𝛿 ∈ R:

𝛼̂𝑟 (2𝛿) = 𝛼̂0(𝛿)𝑎̂𝑟 (𝛿). (2.4)

So, graph framelets can be simply defined with an appropriate filter bank, which means finding

the exact scaling functions is not necessary. Intuitively, it is expected that no loss will occur

during the transform and inversion process between the spectral and graph domain. The framelet

system that satisfies this expectation is called a “tight” frame. To meet this objective, the filter

bank should satisfy:

𝑅∑︁
𝑟=0

𝑎̂2
𝑟 (𝛿) ≡ 1, (2.5)

for any 𝛿 ∈ [0, 𝜋].

Recall that the eigendecomposition of a graph Laplacian is L = U𝚲U⊺. According to [48], the

matrix-vector form of framelet transform can be expressed with a set of framelet operators, F𝑟,𝑠,

as following:
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F𝑟,𝑠𝑥 =


U𝑎̂𝑟 (2−𝛾𝚲)U⊺𝑥, 𝑠 = 1

U𝑎̂𝑟 (2−𝛾−𝑠+1𝚲)𝑎̂0(2−𝛾−𝑠+2𝚲) · · · 𝑎̂0(2−𝛾𝚲)U⊺𝑥, 2 ≤ 𝑠 ≤ 𝑆,
(2.6)

where (𝑟, 𝑠) ∈ {(1, 1), ..., (1, 𝑆), ..., (𝑟, 1), ..., (𝑟, 𝑆), ..., (𝑅, 1), ..., (𝑅, 𝑆)} ∪ {(0, 𝑆)}. 𝛾 is the

smallest real number such that 𝜆max ≤ 2𝛾𝜋. 𝑎̂𝑟 (·) denotes a diagonal matrix whose diagonal

elements are corresponding to each eigenvalue. For example,

𝑎̂𝑟 (2−𝛾𝚲) = diag(𝑎̂𝑟 (2−𝛾𝜆0), ..., 𝑎̂𝑟 (2−𝛾𝜆N−1)).

Equation (2.6) shows that framelet transform can be achieved by a recursive process with the

Fourier transformed filters 𝑎̂0 and 𝑎̂𝑟 . Finally, low-pass and high-pass graph framelet coefficients

are denoted as

𝐹𝑥 (0, 𝑆) = ⟨𝜌𝑛,𝑆, 𝑥⟩ = F0,𝑆𝑥,

𝐹𝑥 (𝑟, 𝑠) = ⟨𝜚𝑛,𝑠,𝑟 , 𝑥⟩ = F𝑟,𝑠𝑥, 1 ≤ 𝑟 ≤ 𝑅, 1 ≤ 𝑠 ≤ 𝑆.
(2.7)

Accordingly, the reconstruction of these coefficients back to the graph domain is computed as

𝑥 = F ⊺
0,𝑆𝐹𝑥 (0, 𝑆) +

𝑆∑︁
𝑠=1

𝑅∑︁
𝑟=1
F ⊺
𝑟,𝑠𝐹𝑥 (𝑟, 𝑠). (2.8)

This framelet system is directly extended to spectral GCNs by [28]. Let 𝑥 be a single graph

signal. With the framelet transform matrix, F =
[
F0,𝑆;F1,1; ...;F1,𝑆; ...;F𝑅,𝑆

]
, and a learnable

filter 𝑔𝜔 = diag(𝜔), the UFG graph convolution is defined as

𝑔𝜔 ∗ 𝑥 = F ⊺ (𝑔𝜔 (F 𝑥)) . (2.9)

Although UFG encodes both low and high frequency components of graph signals via framelet

transform, we are uncertain about whether to retain or remove a component of a certain frequency

[27]. As a result, we leave this task completely to the learnable filter 𝑔𝜔. Hence, if one wishes to

specifically cut off certain spectral information, UFG will not achieve this goal. The solution
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proposed by Yang et al. [27] constructs a quasi-filter bank 𝑏 = {𝑏0, 𝑏1, ..., 𝑏𝑅} straightforwardly

in the spectral domain, which satisfies the following condition for any 𝛿 ∈ [0, 𝜋]:

𝑅∑︁
𝑟=0

𝑏𝑟 (𝛿)2 ≡ 1, (2.10)

such that the value of 𝑏0 decreases from 1 to 0, and the value of 𝑏𝑅 gradually increases from 0 to

1 across the spectral domain. In graph spectral theory, larger Laplacian eigenvalues imply higher

frequency. So, 𝑏0 and 𝑏𝑅 will attenuate high and low frequency components, respectively. In

addition, other filters 𝑏1, ..., 𝑏𝑅−1 will regulate the frequency components in between. Graph

framelets based on 𝑏 = {𝑏0, 𝑏1, ..., 𝑏𝑅} are know as quasi-framelets. Quasi-framelet transform

can be expressed with the quasi-framelet operator, ¤F𝑟,𝑠, as

¤F𝑟,𝑠𝑥 =


U𝑏𝑟 (2−𝛾𝚲)U⊺𝑥, 𝑠 = 1

U𝑏𝑟 (2−𝛾−𝑠+1𝚲)𝑏0(2−𝛾−𝑠+2𝚲) · · · 𝑏0(2−𝛾𝚲)U⊺𝑥, 2 ≤ 𝑠 ≤ 𝑆,
(2.11)

where 𝑏𝑟 (·) is also a diagonal matrix analogous to 𝑎̂𝑟 (·). Ultimately, QUFG [27] im-

plements the quasi-framelet convolution with the quasi-framelet transform matrix ¤F =[ ¤F0,𝑆; ¤F1,1; ...; ¤F1,𝑆; ...; ¤F𝑅,𝑆
]

as

𝑔𝜔 ∗ 𝑥 = ¤F ⊺
(
𝑔𝜔

(
¤F 𝑥

))
. (2.12)

Both UFG and QUFG show their superiority over Fourier-based spectral GCNs through empirical

results. However, up to this point, our discussion is only for undirected graphs. Since both methods

require the eigendecomposition of the graph Laplacian, they cannot be applied to digraphs. As

we have discussed in Chapter 1, digraph Laplacian does not support the eigendecomposition

required by spectral-based networks, which hinders the extension of spectral GCNs to digraphs.

Similarly, framelet and quasi-framelet transform are not adaptable to digraphs either. Motivated

by this limitation, Zou et al. [29] proposed SVD-GCN that replaces eigendecomposition with

singular value decomposition (SVD), thus enabling the incorporation of framelets in digraph

neural networks. Although SVD-GCN provides an unprecedented approach to assembling
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framelet-based digraph GCNNs, the theoretical rationale of applying SVD is very vague, for

example, how the Laplacian singular values can be linked to the signal frequency in the SVD

domain.

To summarize, we have reviewed the development of wavelet/framelet theory, then we focus on

some most relevant works and their mathematical foundations. Especially, we have discussed

three framelet-based digraph GCNs, including UFG, QUFG, and SVD-GCN. Compared with

these models, our model, Framelet-MagNet, is distinctive due to the following reasons. Firstly,

UFG and QUFG are only limited to undirected graphs, while Framelet-MagNet can be applied

to digraphs. In addition, different from SVD-GCN, our model incorporates framelets in digraph

GCNs without discarding the role of eigendecomposition of the digraph Laplacian. Furthermore,

our approach uniquely employs signal processing in the complex domain. By contrast, although

relevant works have proven the validity of using complex eigenvectors in constructing graph

framelets [44, 48], none of them implement signal processing in the complex domain in their

experiments.
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Framelet-MagNet

In this Chapter, we will introduce our model, Framelet-MagNet, and explain how to apply

it to digraph tasks. We will firstly introduce the magnetic Laplacian in Section 3.1. Then,

in Section 3.2, we will develop the Magnetic Graph Framelet System (MGFS) based on the

magnetic Laplacian. We will show how Magnetic Graph Framelet Transform (MGFT) works

in Section 3.3. Moreover, in Section 3.4, we will propose Fast Magnetic Framelet Transform

(FMFT), which adopts Chebyshev polynomials for fast computation. FMFT will be exploited in

the construction of Framelet-MagNet. The network architecture of Framelet-MagNet will be

presented in Section 3.5. Ultimately, in Section 3.6 and Section 3.7, we will show the application

of Framelet-MagNet in node classification and link prediction tasks.

3.1 Magnetic Laplacian

Normally, spectral GCNNs define graph convolution in the spectral domain with the support

of graph Laplacian eigendecomposition. So, the asymmetric nature of the digraph Laplacian

impedes the extension of classic spectral GCNNs to digraphs. To solve this problem, most

digraph GCNNs manage to build a symmetric and positive semi-definite digraph Laplacian.

Such Laplacian is expected to encode directional information in a symmetric structure. Magnetic

Laplacian [21, 23, 53], a symmetric Hermitian matrix, is one of the most successful instances.
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Magnetic Laplacian is a representation of digraph whose real part indicates edge existence and

imaginary part shows edge directions. From a perspective of physics, it can be interpreted as a

discrete quantum mechanical Hamiltonian of a charged particle under the influence of a magnetic

flux [54, 55].

By construction, magnetic Laplacian is a complex Hermitian matrix that is equal to its conjugate

transpose. Suppose we have an 𝑁 × 𝑁 Hermitian matrix H, then H(𝑖, 𝑗) = H∗( 𝑗 , 𝑖) for

𝑖, 𝑗 = 1, ..., 𝑁 . As a basic property, any 𝑁 × 𝑁 Hermitian matrix can be eigen-decomposed

into 𝑁 real eigenvalues and 𝑁 orthonormal eigenvectors. Therefore, magnetic Laplacian can be

smoothly adapted into spectral GCNNs.

Now, we will elaborate on how to construct a magnetic Laplacian. Similar to the classic

Laplacian, the construction of magnetic Laplacian involves an adjacency matrix based on the

graph topological structure and its corresponding degree matrix. For a digraph G𝑑{V, E}, we

decompose the original adjacency matrix A into a symmetric matrix A𝑠𝑦𝑚 and a skew-symmetric

matrix A𝑠𝑘𝑒𝑤, where

A𝑠𝑦𝑚 (𝑖, 𝑗) =
1
2
(A(𝑖, 𝑗) + A( 𝑗 , 𝑖)), 1 ≤ 𝑖, 𝑗 ≤ 𝑁, (3.1)

A𝑠𝑘𝑒𝑤 (𝑖, 𝑗) = A(𝑖, 𝑗) − A( 𝑗 , 𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁. (3.2)

A𝑠𝑦𝑚 is the undirected counterpart of the original digraph, and A𝑠𝑘𝑒𝑤 preserves the directional

information lost by the former. In the symmetric matrix, if A𝑠𝑦𝑚 = 0, then no edge exists between

node 𝑣𝑖 and 𝑣 𝑗 , otherwise, 𝑣𝑖 and 𝑣 𝑗 are linked. Then, the edge directions are indicated by the

skew-symmetric matrix. Suppose we have a digraph with unweighted edges, then A𝑠𝑘𝑒𝑤 (𝑖, 𝑗) = 1

represents an edge from node 𝑣𝑖 to node 𝑣 𝑗 , and −1 gives the other direction. If A𝑠𝑘𝑒𝑤 (𝑖, 𝑗) = 0,

then it may indicate either an undirected edge or no edge, which means we cannot distinguish

these two circumstances with A𝑠𝑘𝑒𝑤 . However, by combining the information in A𝑠𝑦𝑚, whether

an edge is undirected or absent can be easily identified. To be more specific, when there is an

undirected edge between 𝑣𝑖 and 𝑣 𝑗 , we will have A𝑠𝑘𝑒𝑤 (𝑖, 𝑗) = 0 and A𝑠𝑦𝑚 = 1. If 𝑣𝑖 and 𝑣 𝑗 are

not related, we will have A𝑠𝑘𝑒𝑤 (𝑖, 𝑗) = 0 and A𝑠𝑦𝑚 = 0. It is worth noting that the argument here

does not hold for weighted mixed graphs. We will discuss this issue later in Chapter 5.
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Next, for each element in A𝑠𝑘𝑒𝑤, we compute

𝚿(𝑞) (𝑖, 𝑗) = exp (2𝜋i𝑞A𝑠𝑘𝑒𝑤 (𝑖, 𝑗)), 1 ≤ 𝑖, 𝑗 ≤ 𝑁, (3.3)

where i is the imaginary unit, and 𝑞 is a non-negative electric charge parameter. It has been

demonstrated that we can highlight different directional graph patterns (i.e., reciprocity and

directed circles) by altering the value of 𝑞 [23, 53], so the selection of 𝑞 is crucial.

Generally, we have two methods to select 𝑞. In the first method, 𝑞 = 1
𝑚

if an 𝑚-cycle exists in

the graph [23]. The specific value of 𝑚 is determined by Johnson’s algorithm [56, 57]. Another

method, in [21], treats 𝑞 as a hyperparameter to be tuned in the learning process. We prefer

the second approach because it is more computationally efficient, and the optimal value of 𝑞

will be an informative measurement of the significance of directional information in the model.

As 𝑞 = 0 means no directional information is incorporated, and 𝑞 = 1
4 maximizes the utility of

the imaginary part, we assume 0 ≤ 𝑞 ≤ 1
4 such that larger 𝑞 allows the model to encode more

directional information [21, 23, 53].

Now, we can define the magnetic adjacency matrix and its associated degree matrix as

A(𝑞) = 𝚿(𝑞) ⊙ A𝑠𝑦𝑚,

D𝑠𝑦𝑚 (𝑖, 𝑖) =
∑︁
𝑣 𝑗∈V

A𝑠𝑦𝑚 (𝑖, 𝑗), 1 ≤ 𝑖 ≤ 𝑁,
(3.4)

where ⊙ is the sign of component-wise matrix multiplication. Finally, the normalized magnetic

Laplacian can be defined as

L (𝑞) = I −𝚿(𝑞) ⊙
(
D−

1
2

𝑠𝑦𝑚A𝑠𝑦𝑚D−
1
2

𝑠𝑦𝑚

)
. (3.5)

By construction, 𝚿(𝑞) is Hermitian, and A𝑠𝑦𝑚,D𝑠𝑦𝑚 are symmetric. Therefore, L (𝑞) is a

Hermitian matrix. According to the proof in [21], Appendix E,L (𝑞) enjoys the desirable property

of being positive semi-definite, which means it can be eigen-decomposed as L (𝑞) = U𝚲U∗.

Here we use the conjugate transpose because the eigenvectors of L (𝑞) are complex-valued.
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Let {𝑢𝑘 , 𝜆𝑘 }𝑁−1
𝑘=0 be the eigenvector and eigenvalue pairs of L (𝑞) . According to [21], we have

𝜆𝑘 ∈ [0, 2] for 𝑘 = 0, ..., 𝑁 − 1.

3.2 Magnetic Graph Framelet System

The most important component in framelet-based spectral GCNNs is the framelet convolution.

We firstly transform graph signals to the framelet frequency domain for filtering, then convert the

processed data back to the spatial domain with the framelet reconstruction function. Intuitively,

we desire no information loss during the whole process, which means we expect the framelet

transform to be “tight”. Accordingly, we design the Magnetic Graph Framelet System (MGFS),

which is a tight framelet system defined on digraphs, as the basis of transform. The fundamental

principle of MGFS is to incorporate magnetic Laplacian in the traditional undecimated tight

framelet system on undirected graphs. For a review of the traditional approaches and their

theoretical background, we refer to Chapter 2, Section 2.2.

The construction of MGFS is based on a set of scaling functions 𝑍 = {𝜁0, ..., 𝜁𝑅}. With the

transition position 𝑛 and the dilation level 𝑠 = 1, ..., 𝑆, we define the low-pass and high-pass

magnetic graph framelets 𝜌(𝑞)𝑛,𝑠 and 𝜚(𝑞)𝑛,𝑠,𝑟 as

𝜌
(𝑞)
𝑛,𝑠 (𝑚) =

𝑁−1∑︁
𝑘=0

𝑢𝑘 (𝑚)𝜁0 (2−𝑠𝜆𝑘 ) 𝑢∗𝑘 (𝑛),

𝜚
(𝑞)
𝑛,𝑠,𝑟 (𝑚) =

𝑁−1∑︁
𝑘=0

𝑢𝑘 (𝑚)𝜁𝑟 (2−𝑠𝜆𝑘 ) 𝑢∗𝑘 (𝑛), 1 ≤ 𝑟 ≤ 𝑅.
(3.6)

The low-pass framelet can detect low frequency components in graph signals, while the high-pass

framelets are measurements of high frequency signal components. Then we define the transform

basis MGFS as

𝑀𝐺𝐹𝑆(𝑍, 𝑧;G𝑑) B {𝜌(𝑞)𝑛,𝑆 : 𝑣𝑛 ∈ V} ∪ {𝜚(𝑞)𝑛,𝑠,𝑟 : 𝑣𝑛 ∈ V, 𝑠 = 𝑆1, ..., 𝑆}𝑅𝑟=1. (3.7)

Now, the problem is how to find the scaling functions in 𝑍 = {𝜁0, ..., 𝜁𝑅}. According to [48],
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we can find the appropriate set of scaling functions via Multiresolution Analysis. Basically,

we derive scaling functions from a filter bank 𝑎 = {𝑎0, ..., 𝑎𝑅} defined in the spatial domain

with the following relationship 𝜁𝑟 (2𝛿) = 𝑎̂𝑟 (𝛿)𝜁0(𝛿), for 𝑟 = 1, ..., 𝑅 and any 𝛿 ∈ IR. For

tight transform, the filter bank 𝑎 should satisfy
∑𝑅
𝑟=0 𝑎̂𝑟 (𝛿)2 ≡ 1 for any 𝛿 ∈ [0, 𝜋]. Then,

“quasi-framelet” proposed by Yang et al. [27] relaxes the requirement of Multiresolution Analysis

by straightforwardly constructing a quasi-filter bank 𝑏 = {𝑏0, ..., 𝑏𝑅} in the Fourier domain.

By definition, 𝑏 should satisfy the identity condition
∑𝑅
𝑟=0 𝑏𝑟 (𝛿)2 ≡ 1 for any 𝛿 ∈ [0, 𝜋], such

that the value of 𝑏0 decreases from 1 to 0 while the value of 𝑏𝑅 increases from 0 to 1 over

the Fourier domain [0, 𝜋]. This will allow framelet convolution to impose “double regulation”

on the graph signals. More specifically, graph signals are regulated by not only the learnable

filter in traditional convolutions, but also the modulation functions 𝑏0, ..., 𝑏𝑅, where 𝑏0 and

𝑏𝑅 attenuate high and low frequency components, and the rest regulates frequency in between.

In the following discussions, we denote 𝑎̂ = {𝑎̂0, ..., 𝑎̂𝑅} and 𝑏 = {𝑏0, ..., 𝑏𝑅} collectively as

𝑧 = {𝑧0, ..., 𝑧𝑅} for simplicity.

The tightness of the magnetic framelet system is closely relevant with the choice of the filter

bank 𝑧 = {𝑧0, ..., 𝑧𝑅}. Existing examples of appropriate filter banks include Haar [48], Linear

[48], Quadratic [48], Sigmoid [27], and Entropy [27]:

i) Haar

𝑧0(𝛿) = cos
(
𝛿

2

)
, 𝑧1(𝛿) = sin

(
𝛿

2

)
;

ii) Linear

𝑧0(𝛿) = cos2
(
𝛿

2

)
, 𝑧1(𝛿) =

1
√

2
sin(𝛿), 𝑧2(𝛿) = sin2

(
𝛿

2

)
;

iii) Quadratic

𝑧0(𝛿) = cos3
(
𝛿

2

)
, 𝑧1(𝛿) =

√
3sin

(
𝛿

2

)
cos2

(
𝛿

2

)
,
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𝑧2(𝛿) =
√

3sin2
(
𝛿

2

)
cos

(
𝛿

2

)
, 𝑧3(𝛿) = sin3

(
𝛿

2

)
.

iv) Sigmoid

𝑧0(𝛿) =
√︃

1 − (1 + exp (−𝛼(𝛿/𝜋 − 0.5)))−1

𝑧1(𝛿) =
√︃
(1 + exp (−𝛼(𝛿/𝜋 − 0.5)))−1,

where 𝛼 > 0. For Sigmoid, the default value of 𝛼 is 20, which promises the power of

modulation on both high and low frequency components [27].

v) Entropy

𝑧0(𝛿) =


√︃
1 − 𝑎2

1(𝛿), 𝛿 ≤ 𝜋/2

0, otherwise

𝑧1(𝛿) =
√︁

4𝛼𝛿/𝜋 − 4𝛼(𝛿/𝜋)2

𝑧2(𝛿) =


√︃
1 − 𝑎2

1(𝛿), 𝛿 > 𝜋/2

0, otherwise
,

where 0 < 𝛼 ≤ 1. For Entropy, the default value of 𝛼 is 0.5 [27].

3.3 Magnetic Graph Framelet Transform

In this section, we will discuss how to conduct graph signal decomposition with the MGFS

defined in Section 3.2. This process is known as Magnetic Graph Framelet Transform (MGFT).

We will also introduce how to reconstruct the original graph signals from the spectral domain

with the magnetic framelet inversion function.

With the MGFS defined in Section 3.2, we define MGFT as the inner product between graph

signals and magnetic framelets 𝜌(𝑞)
𝑛,𝑆

and 𝜚
(𝑞)
𝑛,𝑠,𝑟 . With a single graph signal 𝑥, MGFT can be
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expressed as {
⟨𝑥, 𝜌(𝑞)

𝑛,𝑆
⟩
}
𝑣𝑛∈V

= F (𝑞)0,𝑆 𝑥,{
⟨𝑥, 𝜚(𝑞)𝑛,𝑠,𝑟⟩

}
𝑣𝑛∈V

= F (𝑞)𝑟,𝑠 𝑥, 1 ≤ 𝑟 ≤ 𝑅, 1 ≤ 𝑠 ≤ 𝑆,
(3.8)

where F (𝑞)𝑟,𝑠 is the magnetic framelet transform operator, given by

F (𝑞)𝑟,𝑠 𝑥 =


U𝑧𝑟 (2−𝛾𝚲)U∗𝑥, 𝑠 = 1

U𝑧𝑟 (2−𝛾−𝑠+1𝚲)𝑧0(2−𝛾−𝑠+2𝚲) · · · 𝑧0(2−𝛾𝚲)U∗𝑥, 2 ≤ 𝑠 ≤ 𝑆,
(3.9)

where (𝑟, 𝑠) ∈ {(1, 1), ..., (1, 𝑆), ..., (𝑟, 1), ..., (𝑟, 𝑆), ..., (𝑅, 1), ..., (𝑅, 𝑆)} ∪ {(0, 𝑆)}. 𝛾 is the

minimum value such that 𝜆𝑚𝑎𝑥 ≤ 2𝛾𝜋. For any 𝛿 ≥ 0 and 𝑟 = 0, .., 𝑅, the expression 𝑧𝑟 (2−𝛾−𝛿𝚲))

can be expanded as

𝑧𝑟 (2−𝛾−𝛿𝚲)) = diag
[
𝑧𝑟 (2−𝛾−𝛿𝜆0), ..., 𝑧𝑟 (2−𝛾−𝛿𝜆𝑁−1)

]
.

Now we rewrite the computation of transform coefficients as

𝐹
(𝑞)
𝑥 (0, 𝑆) =

{
⟨𝑥, 𝜌(𝑞)

𝑛,𝑆
⟩
}
𝑣𝑛∈V

= F (𝑞)0,𝑆 𝑥,

𝐹
(𝑞)
𝑥 (𝑟, 𝑠) =

{
⟨𝑥, 𝜚(𝑞)𝑛,𝑠,𝑟⟩

}
𝑣𝑛∈V

= F (𝑞)𝑟,𝑠 𝑥, 1 ≤ 𝑟 ≤ 𝑅, 1 ≤ 𝑠 ≤ 𝑆,
(3.10)

Finally, the reconstruction is realized by the magnetic framelet inversion function as following:

𝑥 = F (𝑞)∗0,𝑆 𝐹
(𝑞)
𝑥 (0, 𝑆) +

𝑅∑︁
𝑟=1

𝑆∑︁
𝑠=1
F (𝑞)∗𝑟,𝑠 𝐹

(𝑞)
𝑥 (𝑟, 𝑠). (3.11)

To have a more concise expression, we may use a vertically stacked transform matrix

F (𝑞) =
[
F (𝑞)0,𝑆 ;F (𝑞)1,1 ; ...;F (𝑞)1,𝑆 ; ...;F (𝑞)

𝑅,𝑆

]
, (3.12)

to write the transform and inversion functions as
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𝐹
(𝑞)
𝑥 = F (𝑞)𝑥, (3.13)

𝑥 = F (𝑞)∗𝐹 (𝑞)𝑥 , (3.14)

where the inversion matrix is the conjugate transpose of the transform matrix F (𝑞) . Recall that

we design MGFT as a tight transform, which means 𝑥 = 𝑥. We can prove this as follows.

Theorem 3.3.1 (Tightness of Magnetic Graph Framelet Transform). Let F (𝑞) be the magnetic

framelet transform matrix defined in equation (3.12). Let the corresponding inversion matrix be

F (𝑞)∗ . Then for a single digraph signal 𝑥 ∈ R𝑁 , we have

𝑥 = F (𝑞)∗F (𝑞)𝑥. (3.15)

Proof. We assume 𝑆 > 3 in this proof for a clear illustration. But the proof for any 𝑆 ≥ 1 is

analogous. According to equation (3.12), we have

F (𝑞)∗F (𝑞) = F (𝑞)∗0,𝑆 F
(𝑞)

0,𝑆 +
𝑅∑︁
𝑟=1

𝑆∑︁
𝑠=1
F (𝑞)∗𝑟,𝑠 F (𝑞)𝑟,𝑠

= F (𝑞)∗0,𝑆 F
(𝑞)

0,𝑆 +
𝑅∑︁
𝑟=1
F (𝑞)∗
𝑟,𝑆
F (𝑞)
𝑟,𝑆
+

𝑅∑︁
𝑟=1

𝑆−1∑︁
𝑠=1
F (𝑞)∗𝑟,𝑠 F (𝑞)𝑟,𝑠 .

Let

𝑌 = F (𝑞)∗0,𝑆 F
(𝑞)

0,𝑆 +
𝑅∑︁
𝑟=1
F (𝑞)∗
𝑟,𝑆
F (𝑞)
𝑟,𝑆
.

Then, with the definition in equation (3.9), we can write

𝑌 = U𝑧2
0(2
−𝛾−𝑠+1𝚲)𝑧2

0(2
−𝛾−𝑠+2𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗

+
𝑅∑︁
𝑟=1

U𝑧2
𝑟 (2−𝛾−𝑠+1𝚲)𝑧2

0(2
−𝛾−𝑠+2𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗

= U

(
𝑅∑︁
𝑟=0

𝑧2
𝑟 (2−𝛾−𝑠+1𝚲)

)
𝑧2

0(2
−𝛾−𝑠+2𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗.
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Recall that no matter 𝑧 = {𝑧0, ..., 𝑧𝑅} = {𝑎̂0, ..., 𝑎̂𝑅} or 𝑧 = {𝑧0, ..., 𝑧𝑅} = {𝑏0, ..., 𝑏𝑅}, we all

have
𝑅∑︁
𝑟=0

𝑧𝑟 (𝛿) = 1, ∀𝛿 ∈ [0, 𝜋] . (3.16)

Since 𝛾 is the smallest number such that 𝜆𝑚𝑎𝑥 ≤ 2𝛾𝜋, we have 2−𝛾𝜆𝑚𝑎𝑥 ≤ 𝜋. So, for any

eigenvalue 𝜆𝑘 ≤ 𝜆𝑚𝑎𝑥 and any 𝑠 ∈ [1, 𝑆], we have 2−𝛾−𝑠+𝑖𝜆𝑘 ≤ 𝜋, where 𝑖 ≤ 𝑠. In addition,

since 𝜆𝑘 ∈ [0, 2] for 𝑘 = 0, ..., 𝑁 − 1, we have 2−𝛾−𝑠+𝑖𝜆𝑘 ≥ 0. Therefore,

𝑌 = UI𝑧2
0(2
−𝛾−𝑠+2𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗,

= U𝑧2
0(2
−𝛾−𝑠+2𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗.

Now, with the condition in equation (3.16), we can conduct an iterative calculation as follows.

The last step is based on the fact that eigenvectors of L (𝑞) are orthonormal.

F (𝑞)∗F (𝑞) = 𝑌 +
𝑅∑︁
𝑟=1

𝑆−1∑︁
𝑠=1
F (𝑞)∗𝑟,𝑠 F (𝑞)𝑟,𝑠

= U𝑧2
0(2
−𝛾−𝑠+2𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗ +

𝑅∑︁
𝑟=1

𝑆−1∑︁
𝑠=1
F (𝑞)∗𝑟,𝑠 F (𝑞)𝑟,𝑠

= U𝑧2
0(2
−𝛾−𝑠+2𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗

+
𝑅∑︁
𝑟=1

U𝑧2
𝑟 (2−𝛾−𝑠+2𝚲)𝑧2

0(2
−𝛾−𝑠+3𝚲) · · · 𝑧2

0(2
−𝛾𝚲)U∗ +

𝑅∑︁
𝑟=1

𝑆−2∑︁
𝑠=1
F (𝑞)∗𝑟,𝑠 F (𝑞)𝑟,𝑠

...

= U𝑧2
0(2
−𝛾𝚲)U∗ +

𝑅∑︁
𝑟=1
F (𝑞)∗
𝑟,1 F

(𝑞)
𝑟,1

= U𝑧2
0(2
−𝛾𝚲)U∗ +

𝑅∑︁
𝑟=1

U𝑧2
𝑟 (2−𝛾𝚲)U∗

= U

(
𝑅∑︁
𝑟=0

𝑧2
𝑟 (2−𝛾𝚲)

)
U∗

= UU∗

= I
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Therefore, F (𝑞)∗F (𝑞)𝑥 = I𝑥 = 𝑥.

This completes the proof. □

3.4 Fast Magnetic Framelet Transform

The fundamental idea of magnetic framelet convolution is to replace the Fourier operator (i.e.,

the eigenvector matrix X) with the MGFT operator F (𝑞) . As we can see in equation (3.9),

MGFT relies on the eigendecomposition of magnetic graph Laplacian. Nonetheless, this is very

computationally expensive, especially for large graphs.

Chebyshev polynomial approximation is widely used in traditional graph neural networks for

fast computation [7, 24, 25, 28, 48]. Hammond et al. [25] applied Chebyshev polynomials to

approximate graph wavelets. Inspired by this, Dong [48] exploited Chebyshev polynomials

in approximating graph framelets. Nonetheless, while Hammond et al. [25] attempted to

approximate the wavelet functions directly, Dong [48] only focused on the approximation of the

filter bank. The latter is comparably faster than the former because it only requires low-degree

Chebyshev polynomials. By contrast, the first methods need high-degree Chebyshev polynomials

for better accuracy.

For fast computation, we propose the Fast Magnetic Framelet Transform (FMFT). We use

Chebyshev approximation to approximate the filter bank 𝑧 = {𝑧0, ..., 𝑧𝑅} following [48]. As

suggested by Yang et al. [27], normally 𝑘 = 3 is a sufficient choice for attaining a highly precise

approximation. Let T𝑟 (·), 𝑟 = 0, ..., 𝑅 denotes the Chebyshev polynomial approximation of filters

𝑧0, ..., 𝑧𝑅. Then, we can write FMFT as

F (𝑞)𝑟,𝑠 𝑥 ≈ F̃ (𝑞)𝑟,𝑠 𝑥 B


UT𝑟 (2−𝛾𝚲)U∗𝑥, 𝑠 = 1

UT𝑟 (2−𝛾−𝑠+1𝚲)T0(2−𝛾−𝑠+2𝚲) · · · T0(2−𝛾𝚲)U∗𝑥, 2 ≤ 𝑠 ≤ 𝑆,
(3.17)

with (𝑟, 𝑠) ∈ {(1, 1), ..., (1, 𝑆), ..., (𝑅, 1), ..., (𝑅, 𝑆)} ∪ {(0, 𝑆)}. Recall that L (𝑞) = U𝚲U∗.

Therefore, equation (3.17) is equivalent with
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F̃ (𝑞)𝑟,𝑠 𝑥 B


T𝑟 (2−𝛾L (𝑞))𝑥, 𝑠 = 1

T𝑟 (2−𝛾−𝑠+1L (𝑞))T0(2−𝛾−𝑠+2L (𝑞)) · · · T0(2−𝛾L (𝑞))𝑥, 2 ≤ 𝑠 ≤ 𝑆.
(3.18)

We define the transform operator for FMFT as

F̃ (𝑞) =
[
F̃ (𝑞)0,𝑆 ; F̃ (𝑞)1,1 ; ...; F̃ (𝑞)1,𝑆 ; ...; F̃ (𝑞)

𝑅,𝑆

]
.

Finally, the fast computations of magnetic framelet signal decomposition and reconstruction are

denoted as

𝐹
(𝑞)
𝑥 ≈ F̃ (𝑞)𝑥

𝑥 ≈ F̃ (𝑞)∗𝐹 (𝑞)𝑥 .

(3.19)

3.5 Framelet-MagNet Network Architecture

Framelet-MagNet is composed of one or multiple magnetic framelet-based convolutional layer(s),

an unwind operator and a fully connected linear layer as the output layer. In the output layer,

we will apply the Softmax activation function for classification tasks. We will present more

details relevant to different tasks in the following Sections. Here we will focus on the magnetic

framelet-based convolutional layer and the unwind operator.

Let 𝑥 be a single digraph signal. The graph convolution defined with MGFT is denoted as

𝑔𝜔 ∗ 𝑥 = F (𝑞)
∗
(
𝑔𝜔

(
F (𝑞)𝑥

))
, (3.20)

where 𝑔𝜔 = diag(𝜔) is a learnable filter. Figure 3.1 is a demonstration of MGFT-based graph

convolution. Then, applying the method for fast computation in Section 3.4, we have

𝑔𝜔 ∗ 𝑥 ≈ F̃ (𝑞)
∗
(
𝑔𝜔

(
F̃ (𝑞)𝑥

))
. (3.21)

43



CHAPTER 3. FRAMELET-MAGNET

Figure 3.1: An example of Framelet-MagNet graph convolution. The input graph signal is
transformed to the spectral domain by a left multiplication with the magnetic framelet transform
matrix, which consists of 1 low-pass transform matrix F (𝑞)0,2 and 2 high-pass transform matrices
F (𝑞)1,1 , F

(𝑞)
1,2 . Then, the spectral representation is filtered by a learnable filter. Lastly, it is converted

back to the graph domain by the inversion matrix. After applying the non-linear activation. we
will obtain a new representation of the original graph data.

Now, we construct convolutional layers for Framelet-MagNet while extending to multiple graph

signals. Let X ∈ R𝑁×𝑑 be a matrix of 𝑑 digraph signals. Then, the 𝑖𝑡ℎ magnetic framelet-based

convolutional layer is defined as

𝜎(𝑔𝜔𝑖
∗ 𝑋𝑖−1) = 𝜎

(
F̃ (𝑞)∗

(
diag(𝜔𝑖)

(
F̃ (𝑞) (X𝑖−1W𝑖)

)))
, (3.22)

where 𝜎 is a non-linear activation function, 𝑔𝜔𝑖
= diag(𝜔𝑖) is a learnable filter, X𝑖−1 is an

𝑁 × 𝐷𝑖−1 feature matrix with X0 being the original graph feature matrix, and W𝑖 is a 𝐷𝑖−1 × 𝐷𝑖

matrix, where 𝐷𝑖−1 and 𝐷𝑖 are dimensions of the input and output channels.

Since the magnetic Laplacian is a complex-valued matrix, the new digraph representation

produced by the convolutional layer in equation (3.22) is also complex-valued. For the final

prediction, we need to unwind the complex representation to a real representation. Suppose we

have𝐶 convolutional layers, then we will obtain an 𝑁 ×𝐷𝐶 complex-valued graph representation.

The purpose of the unwind operator is to unwind this representation to an 𝑁 × 2𝐷𝐶 real-valued
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Figure 3.2: The unwind operation. Suppose we have a 6 × 3 complex representation generated
from the convolutional layer(s). The unwind operator will first separate the real and imaginary
parts, then concatenate them horizontally to obtain a 6 × 6 real representation.

representation before using it for prediction (see Figure 3.2 as an example).

3.6 Framelet-MagNet Node Classification

The objective of graph node classification is to categorize nodes into several classes. For example,

the node classification task based on dataset CORA ML [58] aims to classify published papers

into 7 classes, where each class represents a research topic (see more details in Chapter 4, Section

4.1). According to [2], the cross-entropy loss is a typical choice of the loss function for node

classification tasks. Let G𝑑{V, E} be a digraph. Suppose that 𝑦𝑖 is the true class that node 𝑣𝑖

belongs to, and 𝑦̂𝑖 is the predicted outcome. Then, the cross-entropy loss is given by

Loss(𝑦𝑖, 𝑦̂𝑖) = −
𝐶∑︁
𝑐=1

𝑦𝑣𝑖 ,𝑐 log(𝑝𝑣𝑖 ,𝑐),

where 𝐶 is the number of classes, 𝑦𝑣𝑖 ,𝑐 is a binary indicator if 𝑣𝑖 belongs to class 𝑐, and 𝑝𝑣𝑖 ,𝑐 is

the predicted probability that 𝑣𝑖 is in class 𝑐.

Because we will use the semi-supervised setting for our node-level experiment, the loss function

is only computed over labelled nodes in 𝐿𝑎𝑏𝑒𝑙 (V) as follows:
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Figure 3.3: An example of Framelet-MagNet node classification (3 classes). We use the graph
convolution in Figure 3.1 and three learnable filters. The input signal becomes a 6 × 3 complex
representation after the convolutional layer. Then, we unwind the complex representation and
use the real representation directly for node classification. Each row is corresponding to a node.
For example, for node 6. we use the last row of the matrix to predict. Finally, we apply the fully
connected layer and softmax to generate the probability of each class.

LossV =

∑
𝑣𝑖∈𝐿𝑎𝑏𝑒𝑙 (V) Loss(𝑦𝑖, 𝑦̂𝑖)
|𝐿𝑎𝑏𝑒𝑙 (V)| ,

where |𝐿𝑎𝑏𝑒𝑙 (V)| is the number of nodes in 𝐿𝑎𝑏𝑒𝑙 (V).

For node classification tasks, we will use the real representation after the unwind operation

directly for prediction. In Figure 3.3, we illustrate the whole node classification process with a

6-node digraph as an example.

3.7 Framelet-MagNet Link Prediction

Inspired by [21], we design four link-level tasks for Framelet-MagNet. Here are the descriptions

of each task.

i) Two-class link existence prediction

This task is to predict whether a directed edge exists between two specified nodes where
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Figure 3.4: An example of Framelet-MagNet link prediction (3-class based task). We use the
graph convolution in Figure 3.1 and set the output dimension of the convolutional layer to be 4.
The input signal becomes a 6 × 4 complex representation after the convolutional layer. Then, we
unwind the complex representation. Each row is corresponding to a node. To obtain the edge
feature, we concatenate the rows associated with each node pair. For example, for node pair
2,5, we concatenate the second and fifth rows. Finally, we apply the fully connected layer and
softmax to generate the probability of each label.

the edge direction is pre-specified.

Given a digraph G𝑑{V, E}, we consider any two ordered nodes 𝑣𝑖, 𝑣 𝑗 ∈ V. If (𝑣𝑖, 𝑣 𝑗 ) ∈ E,

then we label this edge as 0, otherwise we label it as 1. Therefore, when we refer to the

adjacency matrix, if A(𝑖, 𝑗) = 1, edge (𝑣𝑖, 𝑣 𝑗 ) is labelled as 0, otherwise it is labelled as 1.

Then, we try to predict the edge label of two given nodes.

In this task, the order of nodes matters. For example, if we predict that the label of

(𝑣𝑖, 𝑣 𝑗 ) = 1, we can only conclude that the edge of this specific direction does not exist.

We cannot conclude that there is no linkage between node 𝑣𝑖 and node 𝑣 𝑗 , since it is

possible that (𝑣 𝑗 , 𝑣𝑖) ∈ E.

ii) Three-class link existence prediction

Similar to two-class link existence prediction, our target in this task is to predict whether

an edge exists between two given nodes. However, rather than having one single category

for both “non-existence” and “existence of an edge in another direction”, we have two

separate categories instead.

Consider a digraph G𝑑{V, E} and any ordered node pair 𝑣𝑖, 𝑣 𝑗 ∈ V. The edge can fall
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into three potential categories. Firstly, if (𝑣𝑖, 𝑣 𝑗 ) ∈ E, we label the edge as 0. Next, if

(𝑣 𝑗 , 𝑣𝑖) ∈ E instead, we label it as 1. Moreover, if there is no edge between 𝑣𝑖 and 𝑣 𝑗 , we

label the edge as 2, implying non-existence. Although we can distinguish non-existence

and specific directions based on the labels defined in this task, the order of nodes still

matters. Because we shall identify the direction of predicted edges through node order

(i.e., distinguish the meanings of label 0 and label 1).

iii) Two-class link direction prediction

This task is to predict the direction of an edge conditional on its existence. For train,

validation, and test sets, we only use linked node pairs.

Given a graph G𝑑{V, E}, we consider any two ordered nodes 𝑣𝑖, 𝑣 𝑗 ∈ V. The selection

of node pairs is conditional on either (𝑣𝑖, 𝑣 𝑗 ) ∈ E or (𝑣 𝑗 , 𝑣𝑖) ∈ E. If (𝑣𝑖, 𝑣 𝑗 ) ∈ E, we label

it as 0. Or, if (𝑣 𝑗 , 𝑣𝑖) ∈ E, we label it as 1. Then, our objective is to predict the label of

each edge.

iv) three-class link direction prediction

Akin to the two-class link direction prediction, we are still interested in the direction of an

edge. Nevertheless, we abandon the requirement for strict edge existence in constructing

train, validation, and test sets. Here we duplicate the label setting in the three-class link

existence prediction, where we have a unique class for edge non-existence. Therefore,

different from the two-class setting, we do not specially choose linked node pairs. Besides,

this task is different from three-class link existence prediction because we evaluate the

model performance with only linked node pairs.

One may notice that undirected edges are not clearly labelled in our task settings. So, as suggested

by [21], we can discard all the undirected edges such that the digraphs are “noiseless”. This is an

expedient way to preclude the perturbation caused by undirected edges. Most digraphs only have

a small proportion of undirected edges, for example, CORA ML [58] only have 7% edges being

undirected. So, removing undirected edges will not change the graph structure significantly.

Link prediction tasks are also classification tasks. So, we still use cross-entropy loss as the loss
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function. In this case, classes are edge labels. Rather than calculating the cross-entropy loss for

all graph nodes, we shall calculate based on node pairs for link tasks. If a task requires linked

node pairs, then the loss is calculated based on only linked node pairs. Otherwise, it is based on

all ordered node pairs.

Moreover, we shall pay attention to the unwind operation. Rather than feeding the unwound

matrix directly into the final layers, we should concatenate the rows according to the node pairs.

An example is shown in Figure 3.4. In this example, we apply Framelet-MagNet to a digraph

with two node features to show the application on multiple graph signals.
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Experiments

To validate the power of our model, Framelet-MagNet, we will conduct three experiments,

including node classification, link prediction, and denoising. Link prediction consists of four

separate tasks: two-class link existence prediction, three-class link existence prediction, two-

class link direction prediction, and three-class link direction prediction. Besides, denoising is

designed based on the node classification experiment. In each experiment, we will compare

Framelet-MagNet with 10 baseline models across several benchmark datasets. Particularly, we

are interested in the comparison between Framelet-MagNet and MagNet [21]. Since MagNet

adopts magnetic Laplacian-based Fourier transform in its convolutional layer, this comparison

will clearly show the advantage of MGFT over the Fourier transform in enhancing network

performance.

In Section 4.1, we will describe the characteristics of datasets used for our experiments. Then, in

Section 4.2, we will have a brief introduction to the baseline models. In Section 4.3, Section 4.4,

and Section 4.5, we will present the implementation details and results 1 of each experiment.
1Although our experimental settings are similar to the experiments in [21], our experiment results are not

necessarily similar. Based on a conversation with the author of [21], this is mainly due to the update of datasets.
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4.1 Benchmark Datasets

We will use five, seven, and two publicly available datasets for node classification, link prediction,

and denoising experiments, respectively. The datasets for the node classification experiment

are CORA ML, CITESEER, CORNELL, TEXAS and WISCONSIN. These five datasets will

also be used in the link prediction experiment. Besides, we include two Wikipedia datasets,

CHAMELEON and SQUIRREL in link prediction tasks. It is worth noting that they are not

included in the node classification experiment because their nodes do not have classes. For

denoising, we will use CORA ML and TEXAS. Now we will briefly describe the characteristics

of each dataset.

i) Citation Datasets — CORA ML and CITESEER

CORA is a widely-used citation graph in GNN experiments introduced by [59]. Nodes

in Cora are published papers. Node attributes are binary-valued vectors indicating the

existence or absence of a specific word in a pre-specified dictionary. CORA ML is a

relatively smaller subset sampled from CORA by [58]. There are 2,995 nodes, 8,416

edges and 2,879 node attributes in CORA ML. Different from CORA, node features in

CORA ML are normalized. The nodes are classified into 7 classes based on their paper

topics. The existence of an edge is determined by whether a paper cites another paper. To

illustrate, if paper A cites another paper B, then we will have an edge starting from A and

pointing at B. Among all the edges, 93.9% are directed, so this graph is nearly oriented.

CITESEER is also a citation graph whose nodes are published papers, and edges denote

citation relationships constructed following the same rule as CORA ML. These papers are

classified into 6 classes according to the scientific subareas they belong to. The version of

the CITESEER dataset in our experiment is also from [58]. In this version, we have 3,312

nodes, 4,715 edges, and 3,703 node features. The proportion of directed edges is also very

high in CITESEER, which is 95%.

ii) WebKB — CORNELL, TEXAS, and WISCONSIN

51



CHAPTER 4. EXPERIMENTS

The WebKB datasets are a collection of webpage graphs introduced by Carnegie Mellon

University [60]. Each dataset contains information from the computer science department

of a University. The nodes represent websites while the edges are hyperlinks between them.

In addition, the node attributes are bag-of-words (binary) extracted from each website. All

the nodes are manually classified into five categories: student, project, course, staff, and

faculty. In webpage datasets, if webpage B is the destination of a hyperlink in webpage

A, then we have a directed edge from node A to node B. Usually, webpage graphs are

directed because most hyperlinks are uni-directional.

Three WebKB datasets, CORNELL, TEXAS, and WISCONSIN, were selected by [60]

for GNN experiments. For our experiments, we will use the same version as in [60]. In

CORNELL, we have 183 nodes, 295 edges, and 1,703 features, where 86.9% edges are

directed. In TEXAS, we have 183 nodes, 309 edges, and 1,703 features, where 76.6%

edges are directed. Lastly, in WISCONSIN, we have 251 nodes, 499 edges, and 1,703

features, where 77.9% edges are directed. One may notice that the number of node features

in them is identical. This is because of their use of the same bag-of-words representation.

iii) WikipediaNetwork — CHAMELEON and SQUIRREL

WikipediaNetwork datasets [61] are page-to-page graphs, including CHAMELEON,

CROCODILE, and SQUIRREL. Each node refers to articles related to the dataset name.

For example, in SQUIRREL, the nodes are articles talking about squirrels. These articles

were collected from English Wikipedia in December 2018. Then edges were constructed

reflecting the hyperlinks between articles, akin to webpage graphs. Moreover, the node

features were designed to denote the presence of specific nouns and the mean monthly page

views of each article between October 2017 and November 2018. The original purpose of

WikipediaNetwork datasets was for a node regression task, in which the response variable is

mean monthly page views. Consequently, the nodes were not clearly classified. Therefore,

we only use them for link prediction experiments. Furthermore, since CROCODILE is a

large graph with 11,631 nodes, we will not use it due to a consideration of time budget.

In our link prediction experiments, we will use the same version of datasets as in [61]. We
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have 2,277 nodes with 36,101 edges in CHAMELEON and 5,201 nodes with 217,073

edges in SQUIRREL. Besides, 73.9% edges in CHAMELEON are directed, and 82.8%

edges in SQUIRREL are directed. Although we have 2,325 and 2,089 node features in

CHAMELEON and SQUIRREL, respectively, we will not use them for link prediction.

Alternatively, we will use node in-degrees and node out-degrees following the practice in

[21]. More details will be discussed in Section 4.4.

Our choice of datasets is driven by three reasons. Firstly, all of these datasets were adopted in the

MagNet experiments. We would like to follow most of the original experimental settings such

that the results are more illustrative. Next, due to the limitation of magnetic Laplacian-based

neural networks (i.e., not applicable to weighted mixed graphs), we require the datasets to be

unweighted. This is satisfied by all seven datasets. Lastly, these datasets have been well-studied

in the relevant literature, and they are structured and clean. So, we can skip data pre-processing

before our experiments.

4.2 Baseline Models

Baseline models in our experiments are used as a comparison to evaluate the performance of

Framelet-MagNet. We have two classic spectral GCNNs: ChebNet [24] and GCN [7]. We

also have four typical spatial GCNNs: APPNP [18], GraphSAGE [16], GIN [19] and GAT [17].

Furthermore, to investigate the state-of-the-art digraph networks, we also compare with DGCN

[36], Digraph [20], DiGCN [20], and MagNet [21]. Note that the DGCN in our experiments is

identical to the DGCN-Tong in Chapter 2.

In link prediction tasks, we adopt a GCN architecture that is slightly different from the one in

Section 1.1 of Chapter 1. This architecture can accept the asymmetric digraph Laplacian as

input. Basically, we replace D−1/2AD−1/2 with D−1A. For more details, we refer to [62].

We use all 10 baseline models in node classification and link prediction. Besides, we only use

MagNet and GCN as baseline models in denoising.
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4.3 Node Classification

4.3.1 Implementation Details

The node classification experiment will be carried out over 5 publicly available datasets. We will

use the original values of node features as the model input. Moreover, the node classification

experiment is based on a semi-supervised task (i.e., test data are included in training with their

labels being removed).

To alleviate the effect of randomness and measure the robustness of each neural network, we

randomly generate 10 subsets from each dataset following the experiments in [21]. Then the

models are trained, validated, and tested with these 10 subsets. For WebKB datasets, following

the rule in [21], we use 60%, 20%, and 20% data for training, validation, and testing, respectively.

For citation datasets, CORA ML and CITESEER, following the experiments in [7], we use 20

labels from each class for training, 500 labels for validation, and the rest for testing.

We will obtain a classification test accuracy of each model on each subset. The results of our

interests are the average test accuracy across 10 subsets and the associated standard deviation.

Both of them will be expressed in the form of a percentage (%). In addition, for magnetic

Laplacian-based approaches, MagNet and Framelet-MagNet, we will also report the optimal

value of hyperparameter 𝑞. Moreover, we will provide the framelet type that contributes to the

best performance of Framelet-MagNet.

The models for testing are selected based on their validation accuracy. We train all the models

with 200 epochs since the increase of validation accuracy terminates before 200 epochs based on

our observation. At each epoch, models are kept if the current validation accuracy is higher than

the best recorded accuracy in previous epochs. Finally, after 200 epochs, the latest kept model

will be used for testing.

Here are the basic settings of hyperparameters shared by all models. According to [21], the

number of filters in the convolutional layer and the learning rate are essential for the model

performance. So, we tune the number of filters in (16, 32, 64) ((6, 11, 21) for DiGCN) and
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the learning rate in (0.001, 0.005, 0.01). We choose Adam as the optimizer for all the models.

We include weight decay with 𝜆 = 5𝑒−4. In general, we set two convolutional layers for every

graph neural network except for Framelet-MagNet. As we will see later in the results, one

convolutional layer is sufficient for Framelet-MagNet to achieve outstanding performance in

the node classification task. So, we implement only one layer to mitigate the computational

overhead. Then, we include a dropout layer with 50% dropout probability before the final output

layer. The output layer for the node classification task is based on the softmax function.

Now, we will concisely introduce some model-specific hyperparameters and settings. Most

baseline models are introduced in Chapter 1 or Chapter 2, but spatial methods are less relevant

and have no detailed descriptions. So, for spatial methods, we refer the definition of their

hyperparameters to the original papers [16, 17, 18, 19].

For MagNet and Framelet-MagNet, we will use the normalized magnetic Laplacian. The charge

parameter 𝑞 will be tuned in a searching space of 4 values, (0.00, 0.05, 0.15, 0.25). If the

optimal value of 𝑞 is 0.00, then no directional information is encoded by the trained model.

On the contrary, the larger the value of 𝑞, the more directed information is encoded. As we

have discussed before, MagNet is constructed based on a traditional GCNN architecture. In our

experiment, we choose the ChebNet architecture with 𝑘 = 1, since experiments in [21] have

shown the effectiveness of adopting this particular architecture. For Framelet-MagNet, available

framelet types include Haar, Linear, Quadratic, Sigmoid, and Entropy. We set 𝛼 = 20

for Sigmoid and 𝛼 = 0.5 for Entropy. The dilation level 𝑠 = 2. To enable fast computation, we

set Chebyshev polynomial degree to either 2 or 4. From the perspective of graph spectral theory,

a degree of 2 emphasizes the significance of the closest neighbor of each node, while a degree

of 4 highlights the importance of the 3-hop neighborhood (i.e., neighbors that can be reached

within 3 steps).

For classic spectral approaches, GCN and ChebNet (𝑘 = 1), we use symmetrized adjacency

matrices as suggested by [7] and [24]. To symmetrize adjacency matrices, we replace all directed

edges straightforwardly with undirected edges. For spatial methods, APPNP, GraphSAGE, GIN,

and GAT, we will try both symmetric and asymmetric adjacency matrices and record the better
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results. For APPNP, we set the number of power iteration steps 𝐾 = 10 as suggested by [18].

Since APPNP is a Paper-Rank based model, we tune the teleport probability 𝜂 in the searching

space (0.05, 0.10, 0.15, 0.20). For GIN, we use the simplified architecture by setting 𝜖 = 0 [19].

In addition, for GAT, we tune the number of heads among three values (2, 4, 8). As for Digraph

and DiGCN, we also need to tune the teleport probability in (0.05, 0.10, 0.15, 0.20). Moreover,

we tune the number of filters in the DiGCN convolutional layer in [6, 11, 21] because this model

constructs a three-channel Laplacian tensor, which means the number of filters is tripled.

To summarize, there are two types of hyperparameters to be tuned in the model training process.

Some are mutually shared across all models, such as the number of filters and the learning rate.

Others are model-specific, such as the Paper-Rank teleport probability. Since neural networks

are heavily parameterized, we only tune the hyperparameters that have influential impacts on the

classification performance. The hyperparameter tuning process will be guided by grid search as

common practice.

4.3.2 Experiment Results

The experiment results of the node classification task are exhibited in Table 4.1 2. Overall,

our model, Framelet-MagNet, presents a good performance across all five digraph datasets.

In four out of five datasets, Framelet-MagNet achieves the best prediction accuracy. For

WISCONSIN, both ChebNet and Framelet-MagNet achieve the highest classification accuracy

of 85.1%. However, our model is only the second best in the node classification task for TEXAS,

while MagNet performs the best with an accuracy of 82.4%. In WebKB datasets, magnetic

Laplacian-based models show an absolute advantage over most baseline models. A potential

explanation is that these baseline models need more training data to express their power, but

WebKB datasets are quite small (see details in Section 4.1).

Noticeably, Framelet-MagNet outperforms MagNet on four datasets, CORA ML, CITESEER,

CORNELL, and WISCONSIN, by 5.1%, 3.2%, 2.4%, and 1.8%, respectively. This demonstrates

the power of framelet transform in digraph node classification tasks. Nevertheless, we also
2For all the tables in this thesis, we present the results in the from of 𝐴 ± 𝐵, where 𝐴 is the average accuracy,

and 𝐵 is the standard deviation of accuracy. The results in bold are the best results among all models.
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Table 4.1: Experiment Results: Node Classification Accuracy (%)
Models CORA ML CITESEER CORNELL TEXAS WISCONSIN

ChebNet 60.8 ± 3.3 53.3 ± 2.6 74.1 ± 2.8 78.4 ± 5.8 85.1 ± 3.8
GCN 69.7 ± 2.0 60.1 ± 2.6 42.4 ± 5.7 58.4 ± 3.9 51.0 ± 6.3

APPNP 79.4 ± 2.7 66.7 ± 2.0 42.7 ± 5.5 58.9 ± 4.3 53.1 ± 6.9
GraphSAGE 78.7 ± 1.1 66.4 ± 1.3 69.2 ± 3.5 79.7 ± 6.1 76.5 ± 5.6

GIN 78.7 ± 1.8 63.9 ± 2.2 48.1 ± 5.0 62.7 ± 7.2 57.1 ± 7.5
GAT 81.2 ± 2.0 66.2 ± 1.7 45.4 ± 10.4 58.1 ± 5.0 57.6 ± 5.5

DGCN 79.8 ± 1.5 65.9 ± 1.4 65.1 ± 6.1 71.8 ± 7.0 66.3 ± 6.8
Digraph 76.7 ± 1.9 62.9 ± 1.8 54.6 ± 6.8 63.2 ± 6.1 58.8 ± 3.6
DiGCN 76.5 ± 1.6 61.6 ± 1.9 54.3 ± 7.5 60.3 ± 5.3 62.4 ± 5.8
MagNet 78.7 ± 2.2 64.6 ± 2.2 74.6 ± 4.4 82.4 ± 6.1 83.3 ± 3.3

𝑞 0.00 0.05 0.15 0.05 0.15
Framelet-MagNet 83.8 ±1.4 67.8 ±1.5 77.0 ± 3.5 81.9 ± 3.8 85.1 ± 5.2

𝑞 0.00 0.05 0.25 0.25 0.25
Framelet type Sigmoid Sigmoid Quadratic Quadratic Quadratic

notice that Framelet-MagNet fails to outperform MagNet for TEXAS. Our model generates

an accuracy of 81.9%, which is 0.5% lower than MagNet. Although the average accuracy of

MagNet is slightly higher, its standard deviation of accuracy across ten subsets is 6.1%, implying

that the 0.5% superiority may not be robust. Namely, if we try another ten randomly selected

subsets, it is possible that MagNet cannot sustainably outperform Framelet-MagNet.

In terms of the variation in classification accuracy, Framelet-MagNet has a lower standard

deviation compared to MagNet in four out of five datasets, including CORA ML, CITESEER,

CORNELL, and TEXAS. Meanwhile, compared with other benchmark models, Framelet-MagNet

also enjoys a comparably lower standard deviation in its results, showing strong robustness in its

node classification performance. Accordingly, the performance of Framelet-MagNet will be

more stable in future node classification tasks. This is desirable in the context of graph-based

tasks, because graphs are frequently updated in dynamic real-life practices.

For citation datasets, Framelet-MagNet selects 𝑞 = 0.00 for CORA ML and 𝑞 = 0.05 for

CITESEER. Likewise, MagNet also chooses the same 𝑞 values for these two datasets. According

to [21], this means directional information is not useful for these models to achieve the best

performance, implying that symmetrizing adjacency matrices are more suitable in the node

classification tasks for citation graphs. Intuitively, in citation analysis, if a paper cites or is cited

by another paper, it suggests that these two papers are based on similar topics. So, whether the

paper cites or is cited is not important in deciding the category it belongs to. For example, in
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CITESEER where all nodes are scientific publications, if a paper cites a machine learning paper,

then it is likely that this paper is related to machine learning as well. Similarly, if this paper is

cited by another machine learning paper, we may also conclude that it is relevant to machine

learning. So, the directional information does not impact our judgement. This explains our

observation.

On the contrary, Framelet-MagNet adopts 𝑞 = 0.25 for three WebKB graphs while MagNet also

use high 𝑞 values for CORNELL and WISCONSIN. Moreover, we also observe that Framelet-

MagNet always picks higher 𝑞 values than MagNet for WebKB graphs. While MagNet chooses

𝑞 = 0.15, 𝑞 = 0.05, and 𝑞 = 0.15 for CORNELL, TEXAS, and WISCONSIN, Framelet-Magnet

adopts 𝑞 = 0.25 for all these datasets. This means Framelet-MagNet can encode more directional

information than MagNet in its training process. Especially for CORNELL and WISCONSIN,

our model compares favourably to MagNet by incorporating more directional information for

classification. Since the edges of WebKB datasets represent hyperlinks between webpages, the

direction of edges matters. For instance, we may find a hyperlink on a faculty page leading to its

teaching staff, but we may not find a way back to the faculty page on the staff page. So, leveraging

the directional information helps to enhance the performance of magnetic Laplacian-based

neural networks. However, this is not the case in the node classification task for TEXAS. Since

MagNet with 𝑞 = 0.05 performs better than Framelet-MagNet with 𝑞 = 0.25, we conclude that

directional information may be less important for TEXAS node classification.

4.4 Link Prediction

4.4.1 Implementation Details

According to Section 3.7 of Chapter 3, we have four different link prediction tasks, including

two-class link existence prediction, three-class link existence prediction, two-class link direction

prediction, and three-class link direction prediction.

Akin to the node classification experiment, we also use 10 subsets for link prediction. Following

[21], we remove 5% edges for validation, 15% edges for testing, and we keep the rest of edges for
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training. Thus, the number of nodes in each graph remains constant after the train/validation/test

split. Although our method does not require the digraphs to be strongly connected, we maintain

the connectivity of the training sets to preserve more graph structural information. This is

accomplished by calculating the minimum spanning tree. This spanning tree contains all the

vertices in the graph and the minimum number of edges that maintain the connectivity between

nodes. Therefore, we can avoid destroying the graph connectivity by removing edges outside of

the tree for validation and test sets. The edges to be removed are selected randomly.

Different from the node classification experiment, we will not use the original node features in

the link prediction experiment. Alternatively, we conduct each task with node in-degree and

node out-degree as features such that the model can learn directly from the graph structure via

the adjacency matrix [21]. Our choice is based on the assumption that structural information is

more useful than node attributes in link prediction tasks, because linkage implies the underlying

relationship between nodes, and the relationship is encoded in the graph structure.

For an ordered node pair, the response variable is the edge label while the features are the

in-degrees and out-degrees of these two nodes. More specifically, the in-degree is the number of

edges pointed into a node, and the out-degree is the number of edges pointing out of a node.

Mathematically, with the adjacency matrix A, the in-degree of node 𝑣𝑖 is calculated as

𝑣
(𝑖𝑛)
𝑖

=
∑︁
𝑣 𝑗∈V

A( 𝑗 , 𝑖),

and the out-degree of this node is calculated as

𝑣
(𝑜𝑢𝑡)
𝑖

=
∑︁
𝑣 𝑗∈V

A(𝑖, 𝑗).

Finally, other implementation details such as hyperparameters are almost identical to the node

classification experiment. The only difference is that we set a learning rate of 0.001 for all the

models, because the number of available samples for link prediction tasks is much larger than for

node classification.
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4.4.2 Experiment Results of Link Existence Prediction

In this section, we will discuss the results from link existence tasks (see Table 4.2 and Table 4.3).

The metric of our primary interest is prediction accuracy, measured by the proportion of correctly

categorized edges in the test set. Besides, we will analyze model robustness, the optimal 𝑞 values

for magnetic Laplacian-based models, and the best framelet type for Framelet-MagNet.

Table 4.2: Experiment Results: Two-Class Link Existence Prediction Accuracy (%)
Models CORA ML CITESEER CORNELL TEXAS WISCONSIN CHAMELEON SQUIRREL

ChebNet 50.1 ± 0.1 70.9 ± 15.7 49.7 ± 1.4 50.6 ± 1.2 50.0 ± 0.0 50.1 ± 0.0 50.2 ± 0.0
GCN 73.1 ± 5.3 76.1 ± 0.0 51.1 ± 3.7 51.5 ± 4.0 53.4 ± 6.0 89.8 ± 0.5 90.3 ± 1.5

APPNP 69.5 ± 3.9 76.2 ± 0.2 61.4 ± 8.0 69.5 ± 9.8 65.2 ± 3.9 87.1 ± 4.9 88.8 ± 0.4
GraphSAGE 67.2 ± 3.7 76.1 ± 0.1 63.5 ± 9.4 72.3 ± 4.2 70.6 ± 4.4 86.0 ± 0.5 83.6 ± 14.3

GIN 75.0 ± 3.4 76.1 ± 0.0 65.5 ± 8.5 69.4 ± 5.9 69.5 ± 5.2 83.9 ± 7.1 84.0 ± 5.9
GAT 50.0 ± 0.2 76.1 ± 0.1 51.4 ± 3.5 50.3 ± 1.6 51.5 ± 1.6 50.4 ± 1.0 61.9 ± 14.6

DGCN 60.6 ± 7.6 76.1 ± 0.1 60.8 ± 10.1 65.3 ± 7.5 61.3 ± 6.8 86.3 ± 1.4 76.1 ± 8.5
Digraph 76.7 ± 1.9 62.9 ± 1.8 54.6 ± 6.8 63.2 ± 6.1 58.8 ± 3.6 83.9 ± 11.4 85.3 ± 12.0
DiGCN 72.8 ± 7.7 76.1 ± 0.0 65.6 ± 12.1 74.0 ± 14.2 69.0 ± 10.4 88.9 ± 0.6 89.7 ± 0.3
MagNet 77.1 ± 1.4 75.5 ± 1.4 68.2 ± 7.0 77.7 ± 9.2 76.0 ± 7.7 89.8 ± 0.5 90.3 ± 0.3

𝑞 0.15 0.25 0.15 0.15 0.25 0.15 0.15
Framelet-MagNet 78.1 ± 1.2 77.0 ± 1.4 73.8 ± 6.0 83.0 ± 7.2 79.0 ± 4.6 89.7 ± 0.4 90.7 ± 0.1

𝑞 0.15 0.15 0.25 0.25 0.25 0.25 0.25
Framelet type Haar Quadratic Haar Haar Sigmoid Linear Sigmoid

Table 4.3: Experiment Results: Three-Class Link Existence Prediction Accuracy (%)
Models CORA ML CITESEER CORNELL TEXAS WISCONSIN CHAMELEON SQUIRREL

ChebNet 47.1 ± 10.3 48.0 ± 10.5 48.3 ± 10.1 50.7 ± 11.1 54.1 ± 1.9 52.5 ± 0.2 51.6 ± 0.1
GCN 50.6 ± 0.1 44.6 ± 13.9 52.0 ± 1.6 49.7 ± 13.1 50.5 ± 9.9 53.9 ± 3.2 63.8 ± 4.1

APPNP 51.5 ± 1.5 51.5 ± 0.4 52.3 ± 1.2 54.1 ± 3.1 50.0 ± 11.1 65.1 ± 0.4 65.4 ± 0.2
GraphSAGE 50.6 ± 0.1 51.5 ± 0.4 52.3 ± 1.2 54.1 ± 3.1 54.1 ± 1.9 54.4 ± 4.1 53.5 ± 4.1

GIN 58.4 ± 0.6 52.5 ± 1.5 53.1 ± 2.2 55.1 ± 4.7 55.1 ± 2.8 65.1 ± 0.4 65.5 ± 0.2
GAT 50.6 ± 0.0 51.5 ± 0.4 52.0 ± 1.6 54.1 ± 3.1 54.1 ± 1.9 52.5 ± 0.0 51.6 ± 0.1

DGCN 50.6 ± 0.1 51.5 ± 0.4 52.3 ± 1.2 53.8 ± 3.4 54.1 ± 1.9 52.5 ± 0.2 51.6 ± 0.1
Digraph 50.6 ± 0.1 47.9 ± 10.8 52.5 ± 2.0 50.3 ± 11.8 53.8 ± 2.4 52.5 ± 0.2 51.6 ± 0.1
DiGCN 50.7 ± 0.3 51.5 ± 0.4 52.0 ± 1.4 53.8 ± 3.4 53.9 ± 2.0 60.0 ± 5.6 62.5 ± 5.5
MagNet 50.6 ± 0.2 51.5 ± 0.4 52.5 ± 0.9 56.4 ± 4.9 54.7 ± 1.8 52.8 ± 0.5 52.0 ± 1.0

𝑞 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Framelet-MagNet 58.5 ± 3.5 53.1 ± 2.4 53.4 ± 1.5 56.7 ± 4.9 55.2 ± 0.3 64.3 ± 1.8 57.2 ± 6.9

𝑞 0.15 0.25 0.15 0.25 0.25 0.25 0.25
Framelet type Haar Linear Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid

In two-class link existence prediction, Framelet-MagNet achieves the best accuracy for all datasets

except for CHAMELEON. The models that perform the best on CHAMELEON are MagNet

and GCN. Yet, the accuracy of Framelet-MagNet is only 0.1% lower than MagNet and GCN,

which is not very significant. For other datasets, Framelet-MagNet improves state-of-the-art

performance by 0.4% ∼ 5.6%. In general, magnetic Laplacian-based methods perform better
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than other models for CORA ML, CORNELL, TEXAS, and WISCONSIN. For CITESEER,

most models achieve very similar results, while Framelet-MagNet obtains the highest accuracy,

77.0%. In addition, for CHAMELEON and SQUIRREL, all models perform quite well except

for ChebNet and GAT. Since ChebNet cannot process with the asymmetric adjacency matrix, we

train it with symmetrized adjacency matrix, which means no directional information is included

in ChebNet training. So, it is doomed that ChebNet will not perform well for all link related

tasks.

In three-class link existence prediction, the prediction accuracy is comparably low across all

models. For citation and WebKb datasets, no model can achieve prediction accuracy of more than

60%. For CHAMELEON and SQUIRREL, the results are slightly better, but they are still very

undesirable compared with the two-class results. This may be due to the difficulty in identifying

edges of different directions. Later, we will observe the same performance deterioration in

three-class link direction prediction.

In two-class existence predictions, Framelet-MagNet has standard deviations that are 0.1% ∼

3.1% lower than MagNet, showing its superiority in robustness over the Fourier-based model.

Compared with the other nine models, Framelet-MagNet presents good stability in CORA ML,

CORNELL, CHAMELEON, and SQUIRREL.

Compared with the node classification results, MagNet and Framelet-MagNet tend to choose

larger 𝑞 values for link predictions, even with the citation datasets. This highlights the importance

of directional information in edge existence prediction.

Framelet-MagNet tends to choose quasi-framelet, Sigmoid, for three-class tasks. As we have

discussed before, Sigmoid allows the algorithm to conduct double regulation on graph signals,

enabling more sophisticated frequency filtering. Since the complexity of three-class link

existence prediction is higher, we suggest that we should implement more sophisticated tools for

complicated tasks. By contrast, there is no obvious preference for framelet type in two-class

tasks. So, in two-class tasks, the choice of framelet type is more data-driven, mainly depending

on the characteristics of each dataset.
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4.4.3 Experiment Results of Link Direction Prediction

Results of the link direction prediction experiment is exhibited in Table 4.4 and Table 4.5. To

interpret the results, we will mainly focus on prediction accuracy. In addition, we will also pay

attention to the optimal 𝑞 values for magnetic Laplacian-based models, and any other intriguing

findings.

Table 4.4: Experiment Results: Two-Class Link Direction Prediction Accuracy (%)
Models CORA ML CITESEER CORNELL TEXAS WISCONSIN CHAMELEON SQUIRREL

ChebNet 50.1 ± 0.2 50.0 ± 0.1 49.6 ± 10.3 50.3 ± 1.3 50.3 ± 0.5 50.0 ± 0.0 50.0 ± 0.0
GCN 79.1 ± 1.5 56.9 ± 8.7 52.0 ± 2.8 53.7 ± 8.9 55.6 ± 7.1 96.8 ± 0.6 97.2 ± 0.1

APPNP 81.9 ± 0.9 72.3 ± 2.1 70.3 ± 10.9 81.0 ± 4.7 73.7 ± 5.3 97.4 ± 0.2 97.5 ± 0.1
GraphSAGE 69.1 ± 0.5 70.6 ± 2.0 69.0 ± 7.4 77.0 ± 5.7 73.9 ± 4.4 94.2 ± 0.3 92.2 ± 0.1

GIN 84.2 ± 0.9 70.6 ± 2.0 77.0 ± 7.1 85.0 ± 4.0 79.0 ± 4.6 97.6 ± 0.2 97.8 ± 0.2
GAT 50.0 ± 0.6 50.1 ± 0.3 50.7 ± 3.1 50.9 ± 1.9 52.8 ± 1.9 51.6 ± 2.2 59.0 ± 13.8

DGCN 70.9 ± 1.4 65.7 ± 4.8 58.7 ± 5.1 65.9 ± 7.1 68.0 ± 6.1 93.7 ± 6.4 94.9 ± 0.5
Digraph 73.2 ± 11.7 66.1 ± 16.1 49.1 ± 2.7 50.8 ± 2.1 61.1 ± 12.8 92.2 ± 14.1 92.2 ± 14.1
DiGCN 83.4 ± 1.5 84.3 ± 1.7 73.3 ± 15.3 82.7 ± 13.9 80.4 ± 11.1 97.4 ± 0.2 97.1 ± 0.1
MagNet 87.0 ± 0.6 86.8 ± 1.3 78.6 ± 10.6 84.3 ± 9.1 83.9 ± 5.0 97.7 ± 0.2 97.8 ± 0.1

𝑞 0.15 0.05 0.25 0.25 0.25 0.25 0.25
Framelet-MagNet 88.5 ± 1.0 90.4 ± 1.0 86.7 ± 5.7 93.1 ± 5.5 89.4 ± 3.8 97.8 ± 0.2 97.9 ± 0.1

𝑞 0.15 0.15 0.25 0.25 0.25 0.25 0.25
Framelet type Haar Linear Linear Sigmoid Sigmoid Sigmoid Haar

Table 4.5: Experiment Results: Three-Class Link Direction Prediction Accuracy (%)
Models CORA ML CITESEER CORNELL TEXAS WISCONSIN CHAMELEON SQUIRREL

ChebNet 43.0 ± 12.0 43.7 ± 13.0 43.5 ± 13.8 46.9 ± 15.5 45.0 ± 14.4 44.9 ± 14.3 43.9 ± 13.2
GCN 43.1 ± 12.1 43.8 ± 12.8 43.9 ± 13.2 47.1 ± 15.3 45.1 ± 14.3 70.2 ± 9.7 80.6 ± 11.7

APPNP 61.8 ± 2.2 52.2 ± 0.2 66.7 ± 7.4 56.7 ± 1.3 54.4 ± 1.1 80.2 ± 0.6 82.1 ± 2.0
GraphSAGE 50.8 ± 0.1 52.2 ± 0.2 52.7 ± 0.8 56.7 ± 1.3 54.4 ± 1.1 55.0 ± 2.4 53.3 ± 2.2

GIN 57.8 ± 7.8 56.2 ± 2.2 52.8 ± 0.6 56.9 ± 1.4 55.3 ± 2.1 69.0 ± 13.1 71.9 ± 9.4
GAT 50.8 ± 0.1 52.2 ± 0.2 52.8 ± 0.6 56.7 ± 1.3 54.4 ± 1.1 54.2 ± 0.1 52.5 ± 0.0

DGCN 50.8 ± 0.1 52.2 ± 0.2 52.8 ± 0.6 56.7 ± 1.3 54.1 ± 0.7 54.2 ± 0.1 53.7 ± 3.5
Digraph 48.2 ± 7.9 49.4 ± 8.5 53.3 ± 10.7 49.8 ± 8.7 50.8 ± 9.7 51.1 ± 9.4 49.6 ± 8.6
DiGCN 54.1 ± 3.6 52.2 ± 0.2 52.7 ± 0.9 56.7 ± 1.3 54.3 ± 1.2 65.4 ± 10.4 75.5 ± 12.9
MagNet 52.5 ± 2.3 53.0 ± 1.6 57.5 ± 4.3 63.1 ± 7.4 60.2 ± 6.8 56.8 ± 3.3 54.4 ± 4.0

𝑞 0.25 0.25 0.25 0.25 0.25 0.25 0.15
Framelet-MagNet 64.2 ± 0.9 64.6 ± 0.8 61.0 ± 1.6 70.5 ± 2.8 69.7 ± 2.5 70.7 ± 1.2 82.3 ± 0.4

𝑞 0.15 0.15 0.25 0.25 0.25 0.25 0.25
Framelet type Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid

Overall, Framelet-MagNet achieves the highest accuracy across all seven datasets. Especially,

the results for WikipediaNetwork datasets, CHAMELEON and SQUIRREL, are extremely high

(97.8% and 97.9% respectively). For other datasets, our model also obtains very impressive

results, ranging from 86.7% to 93.1%. Compared with MagNet, the accuracy improvements

vary from 0.1% to 8.8%. Except for magnetic Laplacian-based networks, DiGCN also shows its
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strength in this task, which shows the power of complicated Laplacian design in link direction

prediction. Nevertheless, the other two digraph neural networks, Digraph and DGCN, fail to

perform well for most datasets. On the contrary, spatial methods, APPNP, GraphSAGE, and GIN,

generally produce satisfying results. Although their performance is not as good as magnetic

Laplacian-based models, it shows the practical value of these models considering their natural

extension to digraphs.

However, there is an overall deterioration in prediction accuracy in the three-class task. We

can see that the performance of MagNet is much worse compared to its results in the two-class

task. The results of all datasets drop by 31.2% on average. Likewise, the performance of

Framelet-MagNet also deteriorates in the three-class task, with its prediction accuracy decreasing

by 23.0% on average. Moreover, we can see a pervasive downturn in the accuracy of other

models as well. Therefore, we suggest that the state-of-the-art approaches are not sufficiently

competent for the design of three-class direction prediction.

Here, we propose two possible solutions to obtain better results. On the one hand, collecting

more training data allows graph neural networks to encode more useful information and make

better decisions. For citation and WebKB datasets, most models can only achieve less than

60% prediction accuracy. However, the results are comparably better for WikipediaNetwork

datasets, CHAMELEON and SQUIRREL. This is mainly due to the larger sample size of

WikipediaNetwork datasets, implying that the design of three-class direction prediction requires

more training data than the two-class task to obtain a good outcome. On the other hand,

sophisticated methods are more suitable for complicated tasks. In general, Framelet-MagNet

successfully outperforms other models for most datasets. Compared with MagNet, Framelet-

MagNet improves its performance by 3.5% to 27.9%. Equipped with more a sophisticated signal

processing system, Framelet-MagNet manages to stay competitive when the task complexity

increases (from two classes to three classes). Therefore, we suggest that it is better to conduct

the three-class task with more sophisticated methods.

In both tasks, Framelet-MagNet and MagNet select the same optimal 𝑞 for CORNELL, TEXAS,

WISCONSIN, and CHAMELEON, which is 0.25. This indicates full leverage of directional
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information. For citation datasets, CORA ML and CITESEER, Framelet-MagNet adopts

𝑞 = 0.15 in all the cases while MagNet chooses lower 𝑞 values for two classes prediction and

higher 𝑞 values for three classes prediction. By intuition, higher 𝑞 allows the algorithm to encode

more directional information, providing a more solid basis for direction prediction. However,

Framelet-MagNet adopts a lower 𝑞 to obtain a better prediction accuracy in the three-class task.

It may suggest that when we preclude partial directional information, the model will be more

accurate at predicting link non-existence (i.e., label 2). Since label 2 is most frequently observed

in the citation datasets, this allows the model to improve the overall performance across three

labels. In the two-class task, however, encoding more directional information enables the model

to distinguish edges in a certain direction from all other possibilities (i.e., distinguish label 0

from label 1).

We notice that quasi-framelet, Sigmoid, is most helpful in link direction prediction tasks,

especially for three-class tasks. This observation again proves the power of double regulation.

Besides, in two-class tasks, Framelet-MagNet also prefer simpler graph framelets, Haar and

Linear, for some datasets. The difference between simple and complex graph framelets is that

simpler graph framelets are based on fewer scaling functions. Since the node attributes for

link prediction tasks are just node in-degrees and node out-degrees, they are less complicated

than those for node classification tasks. Accordingly, we may not need a complicated framelet

transform to process graph signals in link tasks. Therefore, the optimal framelet types tend to be

simpler ones.

4.5 Denoising

When we construct real-life data as graphs, each observation is modelled as a node, and its

corresponding attributes are modelled as graph signals. While the underlying rationale of graph

neural networks is to utilize the information contained in graph signals to make predictions,

it is inevitable that some information is less useful or even harmful for the prediction. Such

information is considered as “noises”. For example, graph neural networks are sometimes

vulnerable to adversarial examples, which can be regarded as “attackers intentionally designed
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to cause the model to make mistakes” [63]. It is shown in [64] that even only a few perturbations

in graph signals can cause a significant drop in the node classification accuracy of some

state-of-the-art models. Intuitively, removing noises from graph signals or their representations

will help models to make more accurate decisions. This procedure is known as “denoising”.

In GCNNs, denoising is achieved by filtering the graph signals with learnable filters in the

training process. In classic spectral GCNNs, the graph signals are converted to their spectral

representations through Fourier transform before filtering. By contrast, in Framelet-MagNet,

we obtain more sophisticated representations through Framelet transform. Theoretically, these

representations will allow the model to better distinguish different frequency components of

graph signals, enabling more effective denoising. In this experiment, we explore the denoising

capability of Framelet-MagNet and two other baseline models over two benchmark datasets. We

will manually include noises in the original graph signals and then test the performance of each

model over the data with perturbation. The design of this experiment is based on [28] and [29].

4.5.1 Implementation Details

This experiment is based on the node classification task, but the same methods can be applied to

other tasks. We will use two datasets for this experiment, including CORA ML and TEXAS. For

CORA ML, magnetic Laplacian-based models tend to choose 𝑞 = 0.00, implying no usage of

directional information in prediction. On the contrary, magnetic Laplacian-based models prefer

larger 𝑞 values for TEXAS, incorporating more directional information for better classification

outcomes. Thus, we choose these two datasets to investigate two circumstances: (1) directional

information is regarded as useless; (2) directional information is important for predictions.

Different from other experiments, we will not split each dataset into 10 subsamples. Alternatively,

we use the whole dataset and repeat the training, validation, and testing process 10 times. This

will allow us to have more data for training, validation, and testing. Considering that we will

introduce noises in graph signals, more training data will generate more promising results.

Meanwhile, we can still evaluate the mean and standard deviation of 10 results from the 10 trials

to offset the randomness inherent in neural networks. For CORA ML, 20 random nodes per
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class are used as training data with 500 nodes for validation and the rest for testing. For TEXAS,

10 random nodes per class are used as training data with 50 nodes for validation and the rest for

testing.

We adopt two different methods to inject noises into the original graph signals. Generally, our

choice of methods depends on the data type of input graph signals. CORA ML has normalized

input feature values, while TEXAS has binary input feature values. For normalized data, we add

Gaussian distributed values with mean 0 and standard deviation 𝜎 to the original graph signals as

noises. We will gradually raise the noise level by increasing the standard deviation𝜎. Specifically,

we will implement𝜎 = 0.00, 0.01, 0.05, 0.10, 0.50, 1.00, 5.00, 10.00. With a larger𝜎, the noises

will fluctuate more dramatically, so the denoising task will be more challenging. For binary data,

on the other hand, we add Bernoulli distributed noises. Namely, we randomly change feature

values from 0/1 to its opposite 1/0. The noise level 𝑟 in this case indicates the signal-to-noise

ratio, implying the proportion of perturbed data. We set this ratio between 0.00 and 0.20, which

means the proportion of altered data will be between 0% and 20% in the experiment. More

specifically, we will have 𝑟 = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20.

We will compare our model, Framelet-MagNet, with two baseline models, MagNet and GCN. We

choose GCN because it is a typical spectral GCNN, which means we can treat it as a benchmark.

Framelet-MagNet is composed of one convolutional layer followed by a fully connected linear

layer. MagNet and GCN, however, need two convolutional layers to express their power. We

include a dropout layer after the convolutional layers with a dropout rate of 0.5 to prevent

overfitting. The output layer is a softmax layer for classification. For all three models, we

implement the ReLU activation function, number of filters 64, and weight decay with 𝜆 = 5𝑒−4.

Besides, we use the Adam optimizer with a learning rate of 0.01 and train each model with a

maximum of 200 epochs. In each epoch, the model is kept if the validation accuracy increases.

In terms of the adjacency matrix, we use the original matrix for magnetic Laplacian-based

models and the symmetrized adjacency matrix for GCN.

For MagNet and GCN, we set 𝐾 = 1. For MagNet and Framelet-MagNet, We tune the 𝑞

value in the searching space [0.00, 0.05, 0.15, 0.25]. Finally, here are some Framelet-MagNet
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Figure 4.1: Denoising experiment results. For the denoising tasks on CORA ML (left) and
TEXAS (right), Framelet-MagNet achieves better classification accuracy than MagNet and GCN
at almost all noise levels.

specific hyperparameter settings. The selection of framelet type is based on the choices in the

node classification experiment in Table 4.1. For CORA ML, we use Sigmoid quasi-framelet

transform, with 𝛼 = 20.0 and a Chebyshev degree of 2. Then, for TEXAS, we adopt Quadratic

framelet transform with the Chebyshev degree selected among 2, 3, and 4. The dilation level

𝑠 = 2.

4.5.2 Experiment Results

We present the experiment results of the denoising tasks on CORA ML and TEXAS respectively

in Table 4.6 and Table 4.7. We will focus on the average accuracy over 10 trials for evaluation.

The model with a strong denoising capacity will achieve better accuracy than others at each

noise level. In addition, we also plot the results in Figure 4.1 to show the changes in prediction

accuracy at different noise levels more clearly.

Table 4.6: Denoising Results of Framelet-MagNet and Baseline Models on CORA ML
Noise Level Framelet-MagNet MagNet GCN
𝜎 = 0.00 82.6 ± 0.5 77.9 ± 0.9 80.5 ± 0.3
𝜎 = 0.01 82.2 ± 0.3 77.2 ± 0.6 80.6 ± 0.4
𝜎 = 0.05 70.9 ± 0.9 55.5 ± 4.1 68.8 ± 0.7
𝜎 = 0.10 59.5 ± 0.9 38.6 ± 3.5 56.1 ± 0.6
𝜎 = 0.50 50.8 ± 1.9 30.2 ± 1.4 50.7 ± 0.8
𝜎 = 1.00 50.4 ± 3.4 29.0 ± 1.6 49.8 ± 1.2
𝜎 = 5.00 58.5 ± 1.5 31.2 ± 1.8 47.2 ± 1.8
𝜎 = 10.00 55.4 ± 1.2 27.7 ± 2.8 47.4 ± 1.9
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Table 4.7: Denoising Results of Framelet-MagNet and Baseline Models on TEXAS
Noise Level Framelet-MagNet MagNet GCN
𝑟 = 0.00 86.8 ± 2.6 82.2 ± 2.3 47.0 ± 2.9
𝑟 = 0.02 83.8 ± 2.5 79.6 ± 2.7 43.3 ± 2.9
𝑟 = 0.04 77.2 ± 5.4 78.4 ± 3.0 39.2 ± 3.7
𝑟 = 0.06 75.4 ± 4.5 71.8 ± 7.0 41.4 ± 4.3
𝑟 = 0.08 78.0 ± 4.5 68.9 ± 3.3 41.5 ± 2.9
𝑟 = 0.10 75.5 ± 4.6 68.9 ± 4.6 42.2 ± 4.1
𝑟 = 0.12 72.2 ± 3.1 66.3 ± 3.8 39.9 ± 2.8
𝑟 = 0.14 72.5 ± 4.3 66.8 ± 3.7 41.0 ± 2.6
𝑟 = 0.16 70.4 ± 3.0 65.4 ± 3.5 43.3 ± 6.6
𝑟 = 0.18 67.6 ± 5.0 63.6 ± 6.0 44.5 ± 5.5
𝑟 = 0.20 70.0 ± 2.1 64.6 ± 4.4 44.6 ± 5.3

Table 4.6 shows the denoising capability of Framelet-MagNet, MagNet, and GCN on CORA ML.

With the original graph signals (i.e., 𝜎 = 0.00), the average accuracy given by Framelet-MagNet,

MagNet and GCN are 82.6%, 77.9%, and 80.5%. At this stage, the difference in the results is

not very significant. Nonetheless, we notice that their performances vary more distinctively

when we raise the noise level. When 𝜎 = 10.00, the accuracy of Framelet-MagNet is 8% and

27.7% higher than the accuracy of GCN and MagNet, respectively. Notably, the accuracy of

Framelet-MagNet is even twice as much as MagNet. This indicates that Framelet-MagNet is

good at handling severely distorted data, showing a strong denoising capability.

Table 4.7 shows the denoising capability of Framelet-MagNet, MagNet, and GCN over TEXAS.

Generally, Framelet-MagNet achieves better accuracy than the other two models at nearly all noise

levels, demonstrating its superior skill in denoising. Compared with MagNet, Framelet-MagNet’s

accuracy is 4.6% higher when no noise is introduced. This difference increases to 6.6% when

𝑟 = 0.10, and 5.4% when 𝑟 = 0.20. The accuracy of Framelet-MagNet is only lower than MagNet

when 𝑟 = 0.04, but with a small difference, 1.2%. Therefore, the incorporation of framelet

transform enhances the overall denoising capability of MagNet. Unlike Framelet-MagNet and

MagNet, GCN does not show a successive decrease in prediction accuracy (see Figure 4.1).

Nevertheless, its accuracy is under 50% at all noise levels, showing a very poor classification

ability. Since magnetic Laplacian-based models typically choose 𝑞 > 0 for TEXAS, directional

information is regarded as valuable in this classification task. However, GCN adopts symmetrized

adjacency matrix, which means directional information is discarded.
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Conclusion

In this Chapter, we will summarize this thesis and highlight the contributions of our research

to the discipline and organizational practices. In addition, we will list current limitations and

potential future works. Moreover, we will provide a statement of ethical consideration at the end

of this Chapter.

5.1 Summary and Contributions

In this thesis, we propose Framelet-MagNet, a magnetic framelet-based spectral GCNN for

digraphs, and demonstrate its power over state-of-the-art methods via empirical results. Our

work is motivated by the fact that although framelet-based spectral GCNNs have demonstrated

their power in undirected graph applications, there is hardly any such GCNN for digraphs. So, we

extend the method to digraphs with the assistance of the magnetic Laplacian. We realize magnetic

Laplacian-based tight framelet transform on digraphs. In addition, we use Chebyshev polynomial

approximation to design a fast computation for magnetic framelet transform and reconstruction.

Besides, we use FMFT, the fast magnetic framelet transform, to define a magnetic framelet-based

convolutional layer, in which we process digraph signals in a complex frequency domain to

achieve effective filtering. Finally, we assemble Framelet-MagNet with the newly defined

convolutional layer. Based on the comparison between Framelet-MagNet and 10 baseline models

in three experiments, we conclude that Framelet-MagNet successfully improves the state-of-the-
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art performance of spectral GCNN for digraphs. More specifically, Framelet-MagNet shows

its superiority over various advanced baseline models in node classification, link prediction,

and denoising tasks on several benchmark datasets. Compared with MagNet, a magnetic

Laplacian-based spectral GCNN whose convolutional layer is assisted by the Fourier transform,

Framelet-MagNet has higher prediction accuracy, better robustness, and more excellent denoising

capability. This demonstrates the power of the framelet transform over the traditional Fourier

transform in the signal processing of digraph GCNNs.

The contributions of our research to the discipline and organizational practices are threefold.

Firstly, to our best knowledge, this research is the first attempt to construct a framelet-based

digraph GCNN without discarding the role of Laplacian eigendecomposition. So, it is an

inspiration for framelet-based digraph neural networks in relevant studies. Next, our work

realizes graph framelet transform with a complex-valued Laplacian, which means we can process

graph signals in both real and complex domains simultaneously. This opens up a new perspective

for framelet-based signal processing in GCNNs. Furthermore, our approach is an effective

solution to enhance the prediction accuracy and stability of digraph GCNNs. This strengthens

the practical value of neural networks in real-world digraph applications.

5.2 Limitations and Future Works

5.2.1 Limitations in Link Prediction Tasks and Future Works

The design link prediction tasks impose some constraints on link type and graph data, resulting

in restricted real-world application values. When assigning labels to graph edges, we did not

clearly define undirected edges and self-loops. This is not a huge concern since the majority

of edges in our benchmark datasets are directed edges. Nevertheless, given the fact that these

two types of edges are frequently observed in real-world datasets, future research shall consider

how to include them in prediction. In addition, we used node in-degrees and out-degrees as

node features to train our model. Although this allows the model to exploit graph topological

information for prediction, it fails to explore the value of original node attributes, which may
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also be useful information when determining edge types.

Including self-loops in prediction is not difficult. Recall that we use ordered node pairs to identify

edges in digraphs. To apply this methodology to identify self-loops, we may add node pairs with

the same node when defining edge labels. For instance, suppose that 𝑣𝑖 ∈ V, then we can use a

node pair 𝑣𝑖, 𝑣𝑖 to detect whether self-loop (𝑣𝑖, 𝑣𝑖) ∈ E. However, there is no good strategy for

defining undirected edges currently. Although the ordered node pairs 𝑣𝑖, 𝑣 𝑗 and 𝑣 𝑗 , 𝑣𝑖 can define

an undirected edge between node 𝑣𝑖 and 𝑣 𝑗 collaboratively, the ideal design should be a unique

label for undirected edges, which shall be explored in future works.

In terms of node attributes, we may conduct more link-level experiments with original features.

Besides, stacking node degree features with the original features may also be a workable solution

for more accurate predictions.

5.2.2 Limitations in Framelet-MagNet and Future Works

Although we apply Chebyshev polynomials to accelerate computation, Framelet-MagNet is still

slow with large graphs. It is suggested by [21] that we may consider incorporating attention

mechanisms for large graphs.

Another concern is relevant to mixed graphs. In Chapter 3, we constructed the magnetic Laplacian

with a symmetric adjacency matrix and a skew-symmetric adjacency matrix. According to

[65, 66, 67], this skew-symmetric matrix is designed for digraphs with only directed edges (i.e.,

oriented graphs). So, to identify an undirected edge, we have to combine the information in the

symmetric adjacency matrix. What if we prefer to construct a complex-valued Laplacian that

represents mixed graphs more straightforwardly?

To address this problem, we propose Hermitian Laplacian-based digraph GCNNs. For a mixed

digraph G(V, E), let node 𝑣𝑖, 𝑣 𝑗 ∈ V. Then, the Hermitian adjacency matrix [68, 69] is defined

as
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A𝐻 (𝑖, 𝑗) =



1, if 𝑣𝑖 ↔ 𝑣 𝑗

i, if 𝑣𝑖 → 𝑣 𝑗

−i, if 𝑣𝑖 ← 𝑣 𝑗

0, otherwise

. (5.1)

Based on this Hermitian adjacency matrix, [70] constructed Hermitian Laplacian. Let A be

the original adjacency matrix. We start with symmetrizing A by replacing directed edges with

undirected edges to obtain A𝑠. Then, the degree matrix D𝑠 is computed based on A𝑠. Finally,

the Hermitian Laplacian is defined as

L𝐻 = D−1/2
𝑠 (D𝑠 − A𝐻)D−1/2

𝑠 = I − D−1/2
𝑠 A𝐻D−1/2

𝑠 (5.2)

It has been proved that Hermitian Laplacian is symmetric and positive semi-definite [70], which

means it can be applied to GCNN architectures in a manner analogous to the magnetic Laplacian.

In addition, since Hermitian Laplacian and magnetic Laplacian share many properties, we

suggest that it is possible to extend framelets to Hermitian Laplacian-based neural networks.

5.3 Ethical Considerations

Almost no ethical issues are anticipated from our research. In our experiments, we only use

publicly available datasets from secondary sources, and data authority is not relevant. All

datasets contain no personally identifiable or harmful information. Moreover, our research

methods are commonly used in machine learning research. They have neither more, nor less

social influence compared with other machine learning research methods.
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