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ABSTRACT 

 Isolating and identifying specific acoustic signals in an underwater acoustic 

environment is challenging due to the presence of noise and potentially interfering 

signals. We construct an optimization problem that includes a time-sparse interference 

term to account for the unique form of interfering signals and use this optimization 

problem to detect audio samples contaminated with interference. To enforce sparsity in 

our interference term, we use the Group Sorted L-One Penalized Estimation norm as a 

sparsity-inducing penalty. Applying this estimator to more than thirty cases of simulated 

and real-world acoustic data demonstrates its ability in more than 90% of those cases to 

detect interference in acoustic data. A standard runtime of about one second for a 

ten-second data sample allows our contributions to be used for interference detection in 

real time. 
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Executive Summary

Underwater acoustic detection is a critical capability for the U.S. Navy’s ability to detect
potential undersea threats. Interference, either from a natural or intentionally malicious
source, hinders the capacity to identify underwater acoustic signals and estimate their
Direction of Arrival (DOA). Our goal is to construct a method capable of detecting and
removing contaminated samples, which leads to more accurate DOA estimation of the target
signal using the remaining data. In this paper, we construct and test an extension of signal
subspace methods that employs the Group Sorted L-One Penalized Estimation (Group
SLOPE) method as a way of detecting acoustic data contaminated with interference. The
method needs to demonstrate accuracy in its detection effort as well as run quickly enough
that we can process data in real time, meaning the runtime does not exceed the duration of
the data we input.

A key assumption for a generic DOA estimation is that noise present in the data is Gaussian.
For this problem, we instead introduce an interference term separate from noise that is
sparse in time. This interference term captures the signals present in the sample that are
not the target signal and do not fall under the Gaussian noise assumption. In regression,
a computationally tractable method for sparsity enforcement uses a penalty norm in the
objective function. For this penalty norm, we use the recently developed Group SLOPE
norm applied to the interference term.

Since the optimization problem minimizes over both the interference term, Δ, and a term
representing the interaction of the target signal with the sensor array, 𝐴, we employ alter-
nating minimization as the solution algorithm. The minimization in 𝐴 uses a proven closed
form solution while the minimization in Δ involves Group SLOPE. With a number of useful
reductions, the Group SLOPE problem becomes significantly simpler than standard Group
SLOPE and we solve using a calculation of the proximal operator. We implement this
alternating minimization solution in a Python and Cython package.

To test the estimator we apply it to both simulated and real world data. In the simulated data,
we construct three types of interference and test the estimator’s performance at detecting
each. We vary the parameters of the simulated data and generate twenty-nine instances
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of simulated data to determine the breadth of the estimator’s capabilities. Even though
these cases are designed to stretch the estimator’s capabilities, we see moderate to perfect
detection in twenty-six of these cases and the estimator produces meaningless results in
only three. In all cases where we achieve meaningful results, DOA estimation improves
after removing the samples labeled as contaminated as compared to DOA estimation with
the full dataset. In addition, the runtime for a ten second sample typically remains below a
second with a maximum of seven seconds in the twenty-nine instances of simulated data.
The runtime is short enough that employment in real time is entirely feasible. Testing on
real data supplied by the NPS Physics Department from an acoustic array off the coast of
Iceland also demonstrates successful interference detection and removal.
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CHAPTER 1:
Introduction

A critical component of the U.S. Navy’s mission across the world is sea control, which
is the Navy’s ability to exert dominance over certain regions (Chief of Naval Operations
2022). To exert sea control, the capability for threat detection must exist throughout the
designated region. Conflict analysis frequently points to the value of first detection in
contested environments. A force that detects a hostile force first has a clear advantage in any
ensuing conflict. Early threat detection gives the U.S. Navy the ability to make decisions
about potential threats, which leads to sea control due to the advantage gained. As a result,
our Navy platforms are outfitted with complex and varied technologies built specifically for
the purposes of threat detection.

The submarine is the maritime platform most equipped for stealth operations. The very
nature of a subsurface threat immediately reduces the potential methods to employ for threat
detection. A critical method for submarine detection, as well as detection of other maritime
vessels, is the use of underwater acoustic signals. As a means of detection, underwater
acoustic sensors are capable of receiving sound waves and determining the direction of
arrival of the acoustic signal. The goal of this technology is to detect and pinpoint specific
signals regardless of the presence of other signals and noise in the surroundings. However,
in the busy acoustic environment of the ocean, identifying the target signal’s direction is
not a trivial task. The heart of our problem is to determine the direction of a target from a
number of samples from an audio clip.

In this thesis, we construct an optimization problem that identifies sparse interference in
acoustic data. We create an alternating minimization algorithm and remove the samples
identified as contaminated, allowing us to conduct more accurate Direction of Arrival
(DOA) estimation for a specific target signal.

1.1 Technical Development
The data format we examine is a multichannel audio clip in complex In-phase and Quadra-
ture (I/Q) representation with one channel per hydrophone in the sensor array. A standard
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approach to DOA estimation for data of this nature uses signal subspace methods to deter-
mine the target’s bearing and signal strength. The probability model for a DOA estimation
signal subspace method is

𝑥(𝑡) = 𝐴 𝑠(𝑡) + 𝜖 (𝑡). (1.1)

In this probability model, the 𝑥(𝑡) ∈ C𝑚 is a vector of received signals at a specific time,
𝜖 (𝑡) ∈ C𝑚 is a vector of random noise terms that are assumed to be Gaussian, 𝐴 ∈ C𝑚×𝑑 is a
time-invariant matrix based on the target signal’s incidence angle and the sensor geometry,
and 𝑠(𝑡) ∈ C𝑚 is a vector representing the target signal. Using the probability model in
Equation (1.1) it is possible to create an estimator that enables estimation of the direction
and strength of a specific target signal. This estimator performs well when the Gaussian
noise assumption holds, but, as previously stated, interference is a significant issue in the
underwater acoustic environment that is not addressed by the probability model represented
in (1.1).

1.2 Contributions and Outline
We choose to construct our own probability model partially based on the model described
in Equation (1.1). To do this we introduce a term 𝛿(𝑡) ∈ C𝑚 that is a vector representing the
interference at a specific time. This change gives the probability model

𝑥(𝑡) = 𝐴 𝑠(𝑡) + 𝛿(𝑡) + 𝜖 (𝑡). (1.2)

To distinguish 𝛿(𝑡) from our noise, 𝜖 (𝑡), we assume that the interference in the acoustic data
is sparse in time. This means that when we form the rows of a matrix Δ from the vectors
𝛿(𝑡) across some time span, the matrix should have some rows of all zeros and some rows
with non-zero values representing interference. A tractable method for inducing sparsity of
this nature in an optimization problem is including a penalty norm in the objective function.
We choose to employ the Group Sorted L-One Penalized Estimation norm on Δ in the
optimization problem we use to solve the probability model in Equation (1.2).

The resulting optimization problem minimizes over both the 𝐴matrix as well as theΔmatrix.
To solve this optimization problem we create an alternating minimization algorithm that
quickly computes its minimizers. While Group SLOPE typically requires a computationally
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expensive solution algorithm, the structure of this specific optimization problem allows us
to reduce the Group SLOPE minimization to a more computationally simple problem. The
final result of our work towards this alternating minimization algorithm is a Cython/Python
package that quickly and effectively solves the optimization problem.

In the remainder of this thesis we describe the background of this problem, our own efforts,
and the results we generate in greater detail. In Chapter 2, we conduct a literature review
that covers both other methods used for interference detection and the foundational methods
for the work we do. In Chapter 3, we describe the evolution of the probability model in
Equation (1.2) to an optimization problem and then detail the creation and implementation
of the alternating minimization solution algorithm. In Chapter 4, we detail the results of
testing the estimator using both simulated and real acoustic data. Finally in Chapter 5, we
reiterate the critical pieces of this work and discuss potential areas for future research.

1.3 Notation
Before proceeding, we introduce the notation we use throughout this thesis. We denote
matrices with capital letters and vectors with lowercase letters. For a specific vector 𝑥,
we use 𝑥𝑖 to denote its 𝑖th element, but use 𝑥(𝑖) to denote its 𝑖th largest element so that
(𝑥(1) , ..., 𝑥(𝑛)) arranges the elements of 𝑥 in non-increasing order. We denote the Frobenius
norm of a vector 𝑥 as ∥𝑥∥𝐹 , the L1 norm as ∥𝑥∥1, and the L2 norm as ∥𝑥∥2. The transpose
of a vector 𝑥 is 𝑥𝑇 and the conjugate transpose is 𝑥∗. Finally, ∥𝑥∥♯,𝜆 is used to denote the
Group SLOPE norm with penalty vector 𝜆. This notation enables us to communicate the
method we develop to determine the direction of a target from a number of samples of an
audio waveform.
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CHAPTER 2:
Literature Review

In this chapter we discuss other methods for interference detection as well as the foundations
for our own contributions. We examine the flaws in assuming Gaussian noise and estima-
tors which do not require that assumption. We then explore Random Sample Consensus
(RANSAC), which trims outliers in a dataset, as a potential method for removing the influ-
ence of contaminated data. Following this, we shift focus to the foundations of the work in
this paper and discuss signal subspace methods as a way of estimating DOA of an acoustic
signal. Finally, we introduce the Group SLOPE norm as a sparsity-inducing regularizer.

2.1 Robust Estimation in Signal Processing
Noise is a critical concept in nearly all methods for signal processing. Noise captures the
idea that the space in which we send and receive signals is never completely empty. Whether
studying electromagnetic, acoustic, or any other type of signal, noise will be present and
can limit capability for signal detection (Zoubir et al. 2012). When estimating a signal, we
include noise terms to account for a potentially chaotic signal space.

The standard assumption is that noise terms of this nature have a Gaussian distribution.
This Gaussian assumption is frequently valid due to the central limit theorem and is helpful
in simplifying problems and improving solutions. On the other hand, it is often used even
when the noise may not be Gaussian (Zoubir et al. 2012). Impulse noise is an example of
a type of noise that is clearly not Gaussian. Instead, impulse noise has heavier tails than a
Gaussian distribution and is frequently found in electromagnetic signals (Zoubir et al. 2012).
In this case, received signals have some potentially malicious contamination or interference
present. This does not match the Gaussian assumption associated with noise. In fact, due
to our assumed lack of knowledge about the nature of the interference, we want to be able
handle interference with potentially unknown distribution or signal type, which leads to
the construction of a specific interference term that relies on the sparsity assumption to
distinguish itself from the noise term.

There have been other attempts to approach problems where the Gaussian noise assumption
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is assumed to be invalid, otherwise known as robust estimation. These attempts use statistical
methods to construct different estimators built to handle outliers in the provided data (Zoubir
et al. 2012). These estimators use the concept of the breakdown point (BP) which represents
the percentage of contaminated samples to indicate the presence of outliers in data (Zoubir
et al. 2012). Identifying outliers and removing them from the data before conducting analysis
matches the approach we will take of removing contaminated samples and using Direction of
Arrival estimation. When approaching multichannel data, using estimators such as the MM-
estimator, Minimum Volume Ellipsoid Estimator, or Minimum Covariance Determinant
Estimator should remove the need for the Gaussian noise assumption, robustifying the
signal detection process (Zoubir et al. 2012). Our efforts build on previously existing signal
subspace methods to construct an estimator that can handle interfering signals contaminating
a bounded proportion of samples in an audio signal.

2.2 RANSAC
RANSAC is another method applied in situations that require processing data with some
amount of contaminated samples (Fischler and Bolles 1981). Robust estimation methods
tackle this problem by adjusting the noise term. On the other hand, RANSAC’s general
idea is a bit more simple. RANSAC looks for data with significant errors in it and attempts
to eliminate the problematic data through a random selection process. Even simple least
squares regression models can quickly demonstrate the major detriment caused by a single
extreme data point. RANSAC counteracts this by identifying these problematic outliers
prior to analysis (Fischler and Bolles 1981).

RANSAC is a three step algorithm that hinges primarily on the concept that the non-
contaminated data should have some common features among itself (Fischler and Bolles
1981). First, we select a random subset of the data and fit the model to that data. Using
the model output, we determine which input data are within a designated error tolerance of
the model output and keep these points as a new consensus set. This consensus set should
ideally include only uncontaminated data points. If this consensus set is larger than some
predetermined value, then we solve the model with this consensus set and use the given
output. This process can continue to iterate with different initial subset selection if the first
run does not yield the desired results (Fischler and Bolles 1981).
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While RANSAC does effectively trim outliers from datasets, it also throws away or does
not make use of a significant amount of data which is not always a feasible option. In
addition, this methodology eliminates any data points that have significant differences from
the consensus within the data (Fischler and Bolles 1981). While this is the intent of this
method, it also is dangerous as there is potential that it removes samples that do have
value from consideration. Despite this, a model of this nature would likely have some
functionality for the problem as RANSAC could detect data with significant interference
present. However, in situations with a moderate to high amount of contamination, RANSAC
has difficulty identifying a subset of data that does not have any contaminated data and loses
its effectiveness. In the model, we are able to handle datasets with moderate to high amounts
of contaminated data without completely sacrificing performance.

2.3 Subspace Methods
In this thesis, we use signal subspace methods for the DOA Estimation. These methods are
linear probability models built to identify certain designated characteristics of signals while
accounting for the noise within the space (Paulraj et al. 1993). The most simple and generic
signal subspace probability model takes the form

𝑥(𝑡) = 𝐴 𝑠(𝑡) + 𝜖 (𝑡), (2.1)

where 𝑥(𝑡) ∈ C𝑚 represents the received signal at time 𝑡, 𝑠(𝑡) ∈ C𝑑 is the actual signal we
want to identify, 𝐴 ∈ C𝑚×𝑑 is a matrix of parameters based on sensor geometry applied to
that signal, and 𝜖 (𝑡) ∈ C𝑚 is the noise term (Paulraj et al. 1993). The signals in this subspace
method are complex-valued since they are in the In-phase and Quadrature (I/Q) format.

A standard method for solving the probability model in Equation (2.1) is using a Maxi-
mum Likelihood Estimator (MLE) (Paulraj et al. 1993). If we assume 𝜖 is Gaussian and
independently and identically distributed than the MLE is the optimization problem

min
𝐴,𝑆

∥𝑋 − 𝐴𝑆∥2
2. (2.2)

Since this reduces to a least squares regression, optimization problem (2.2) has a closed-form
solution which yields a DOA estimate for the target signal.
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Beamforming is another method that attempts to handle a wide variety of noise in the signal
space (Paulraj et al. 1993). At it core, beamforming identifies a specific azimuth angle
and measures the signal power in that direction. Beamforming first discretizes the possible
azimuth angles into a number of directions. The beamforming model then creates a steering
vector for each direction and selects the steering vector with the maximum signal power. The
azimuth angle used to construct this steering vector is the direction selected as an estimate
of DOA and signals from other directions are ignored (Paulraj et al. 1993). Beamforming is
a key signal processing method used frequently in problems with an interfering signal that
should be ignored. It is highly effective at identifying and strengthening signals with some
degree of difference in the DOA. However, this method struggles with overlapping signals,
does not scale to multiple target signals as signal subspace methods does, and has potential
to miss narrow peaks in signal power through its discretization process.

2.4 Group SLOPE
To induce sparsity in the interference estimate, we employ Group SLOPE. Although the
overall problem has unique structure that changes how we apply Group SLOPE, in this
section we will provide a foundation for the generic Group SLOPE method. Group SLOPE
is a generalization of a simpler method SLOPE which, in turn, is a generalization of the
more common LASSO regression method. LASSO regression takes the standard regression
optimization problem and adds a penalty term on the coefficients using the L1 norm (Brzyski
et al. 2019). Minimization of the L1 norm of some matrix Δ forces many Δ values towards
zero, inducing sparsity in Δ. In the specific problem we solve, we will instead enforce
sparsity on a designated interference term.

We employ a generalization of LASSO developed in 2013 known as the Sorted L-One
Penalized Estimation (SLOPE) method (Bogdan et al. 2013). For a vector 𝛽, SLOPE uses
a norm

∑𝑚
𝑖=1 𝜆𝑖 |𝛽 | (𝑖) where the 𝜆 and 𝛽 values are sorted in descending order such that

𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑚 ≥ 0 and |𝛽 | (1) ≥ |𝛽 | (2) ≥ ... ≥ |𝛽 | (𝑚) (Bogdan et al. 2015). The sorted
vector 𝜆 means that larger 𝛽 norm values are penalized more than smaller values. In Bogdan
et al. (2015), SLOPE problems are solved using proximal gradient descent with the least
squares piece as the smooth and convex piece and the penalty norm as the non-smooth, but
still convex, piece.
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In the specific problem we handle in this thesis, the data and the penalty term Δ are 𝑚 × 𝑛

matrices where 𝑚 is the number of channels in the sensor array and 𝑛 is the number of data
readings we have in time. We must then enforce sparsity uniformly across different channels
for each time-step. To accomplish this, we group the data by each time 𝑡. We enforce sparsity
across channels so that interference detected in one channel at time 𝑡 ensures detection in
other channels at that same time. This method is a generalization of SLOPE known as Group
SLOPE.

For Group SLOPE, we apply the L1 norm to each group of data points and sort accordingly.
This means that ∥Δ∥ (1) ≥ ∥Δ∥ (2) ≥ ... ≥ ∥Δ∥ (𝑛) where ∥Δ∥ (𝑛) is the L1 norm on the Δ

values in the 𝑛th timestep. We denote the resulting Group SLOPE norm of a matrix Δ as
∥Δ∥♯,𝜆 where ♯ indicates use of the Group SLOPE norm and 𝜆 indicates the use of sorted
parameters that influence penalty severity. (In cite, they use pox grad descent) Implementing
this norm into a regression problem requires use of a proximal gradient descent algorithm
to solve (Brzyski et al. 2019). For this specific problem, we are able to reduce the problem
so we will only require the proximal operator and not the entire algorithm to solve.

False Discovery Rate (FDR) is a critical piece of why the Group SLOPE method is powerful
(Brzyski et al. 2019). Group FDR is a ratio of the number of groups falsely detected as
nonzero to the total number of groups identified as nonzero. In Group SLOPE, FDR can
be controlled by different 𝜆 selection methods due to the inherent flexibility surrounding
those parameters. In addition, that flexibility means that this method is a generalization of
LASSO, enabling us to use Group SLOPE for situations for which LASSO can be used
while taking advantage of attractive FDR guarantees.

While the Group SLOPE estimator does have a significant amount of flexibility, the problem
we tackle in this thesis does require some additional functionality beyond what previously
existed and is described here. With the introduction of an interference term to penalize
in the subspace model, we already have a slightly different type of penalized regression.
In addition, acoustic waveform data is complex-valued when in In-phase and Quadrature
(I/Q) format and, as such, some of the linear algebra behind the implementation of Group
SLOPE needed to be examined. Finally, with no existing Python functionality, we decided to
construct the algorithm in Python based on the previous work done in R with the grpSLOPE
package.
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CHAPTER 3:
Method Development and Implementation

To construct a method for interference detection, we develop a probability model based on
signal subspace methods with an additional term for interference. We then formulate a min-
imization optimization problem that we solve using an alternating minimization algorithm
and the Group SLOPE method. Finally, we implement this algorithm in Python and use it
to generate results.

3.1 Optimization Problem
A typical signal subspace methods DOA estimation equation in matrix form is

𝑋 = 𝐴𝑆 + 𝜖, (3.1)

where 𝑋 ∈ C𝑚×𝑛 represents the received signal found in the data, 𝑆 ∈ C𝑑×𝑛 is the actual
signal we want to identify, 𝐴 ∈ C𝑚×𝑑 is a matrix of parameters based on sensor geometry
applied to that signal, and 𝜖 ∈ C𝑚 is the Gaussian noise term. For this problem, we require
the acoustic data in the I/Q representation of a complex waveform. I/Q representation is a
method of depicting a wave in two pieces: a real number known as the In-phase part and an
imaginary number known as the Quadrature part. The resulting complex number represents
a specific point in the wave. This datatype allows us to adequately represent a wave in a
manner that supports its analysis for DOA estimation.

The solution technique for signal subspace methods are discussed in Chapter 2 and shown in
Equation (2.2). However, the probability model in Equation (3.1) does not directly address
an interfering signal. As such, we choose to introduce Δ ∈ C𝑚×𝑛 as a term to represent this
potential interference and this leads to

𝑋 = 𝐴𝑆 + 𝜖 + Δ. (3.2)
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With the inclusion of Δ as an interference term we have the optimization problem

min
𝐴,𝑆,Δ

∥𝑋 − 𝐴 𝑆 − Δ∥2
𝐹 . (3.3)

This optimization problem misses the fact that we must assume sparsity for Δ to indicate
that only some of the data is contaminated and distinguish Δ from 𝜖 . Including a Group
SLOPE sparsity penalty, denoted as ∥Δ∥♯,𝜆, gives

min
𝐴,𝑆,Δ

∥𝑋 − 𝐴 𝑆 − Δ∥2
𝐹 + ∥Δ∥♯,𝜆. (3.4)

Our minimization in problem (3.4) is not in a format that we can easily use the Group
SLOPE functionality since ∥𝑋 − 𝐴 𝑆 − Δ∥2

𝐹 has a different form than a standard penalized
regression problem. We now require some reformulation or simplification. We first can split
the minimization into each of its pieces and write an inner minimization over 𝑆 as

min
𝐴,Δ

min
𝑆

∥𝑋 − 𝐴 𝑆 − Δ∥2
𝐹 + ∥Δ∥♯,𝜆. (3.5)

Using the optimality condition in 𝑆 as defined in Section 1.D of Royset and Wets (2021)
gives

𝐴∗(𝑋 − 𝐴𝑆 − Δ) = 0 ⇒ 𝑆 = (𝐴∗𝐴)−1𝐴∗(𝑋 − Δ),

so that problem (3.4) becomes

min
𝐴,Δ

∥𝑋 − 𝑃𝐴 (𝑋 − Δ) − Δ∥2
𝐹 + ∥Δ∥♯,𝜆, (3.6)

where 𝑃𝐴 = 𝐴(𝐴∗𝐴)−1𝐴∗ is the orthogonal projection onto the column space of 𝐴. We can
rewrite problem (3.6) as

min
𝐴,Δ

∥(𝐼 − 𝑃𝐴) (𝑋 − Δ)∥2
𝐹 + ∥Δ∥♯,𝜆. (3.7)

This form of the optimization problem as presented in problem (3.7) is the version we
examine throughout the remainder of this work. The objective function of optimization
problem (3.7) is non-convex due to the Group SLOPE term we use to enforce sparsity which
increases the difficulty in selecting a suitable algorithm to solve optimization problem (3.7).
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Having two separate pieces to minimize over, suggests that an alternating minimization
algorithm could be a tractable approach.

3.2 Alternating Minimization
Alternating minimization first solves optimization problem (3.7) in one variable, 𝐴, while
holding the other variable, Δ, constant. We then hold 𝐴 constant as the minimizer of
the first step and solve optimization problem (3.7) with Δ as the variable. This process
continues until some tolerance is reached between steps. For a more in-depth introduction
to alternating minimization see chapter 14 of Beck (2017) or sections 1.J and 10.A in
Royset and Wets (2021). While this technique does not guarantee an optimal solution for
non-convex problems, we can prove convergence to a critical point as defined in Grippo
and Sciandrone (2000). This initially seems improbable since the objective function of
optimization problem (3.7) is not continuously differentiable so critical points do not exist.
However, we are able to reformulate this minimization so it is continuously differentiable,
demonstrate equivalence of the reformulation to optimization problem (3.7) and apply the
theorem in Grippo and Sciandrone (2000) to prove convergence to a critical point of the
reformulation. The theorem for this alternating minimization convergence is displayed in
Theorem 1.

Theorem 1 Problem (3.7) can be reformulated as

min
𝑃𝐴∈C𝑐×𝑐
𝑃2
𝐴=𝑃𝐴

𝑃∗
𝐴=𝑃𝐴

min
𝑐∈R

Δ∈C𝑐×𝑇
∥Δ∥♯,𝜆≤𝑐

∥(Δ − 𝑋)∥2
𝐹 − Tr [𝑃𝐴 (Δ − 𝑋) (Δ − 𝑋)∗] + 𝑐,

which is a minimization of a continuously differentiable function over closed, nonempty,
and convex sets, and therefore optimization problem (3.7) converges to a critical point of
that reformulation.

The proof for Theorem 1 is in Appendix A.1.
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3.2.1 Minimizing in 𝐴
The first step in the alternating minimization procedure is minimizing problem (3.8) over
𝐴 with some initialized Δ value which gives

min
𝐴

∥(𝐼 − 𝑃𝐴) (𝑋 − Δ)∥2
𝐹 + ∥Δ∥♯,𝜆. (3.8)

Because the penalty does not include any 𝐴 term, it suffices to minimize the optimization
problem

min
𝐴

∥(𝐼 − 𝑃𝐴)(𝑋 − Δ)∥2
𝐹 . (3.9)

For this minimization, we have proven a closed-form solution that we use for this step of
the alternating minimization. To derive this closed-form solution we prove Theorem 2.

Theorem 2 The closed-form solution to the minimization over the projection matrix of 𝐴
is

argmin
𝑃𝐴

∥(𝐼 − 𝑃𝐴) (𝑋 − Δ)∥2
𝐹 =

𝑑∑
𝑖=1

𝑢𝑖𝑢
∗
𝑖 ,

where 𝑢𝑖 is the 𝑖-th left singular vector of 𝑋 − Δ. Singular vectors are sorted in descending
order according to their singular values.

The proof for Theorem 2 is in Appendix A.2. This demonstrates that the closed-form
solution of optimization problem (3.9) is to take 𝑃𝐴 =

∑𝑑
𝑖=1 𝑢𝑖𝑢

∗
𝑖 , where 𝑢𝑖 is the 𝑖-th left

singular vector of 𝑋 −Δ assuming singular vectors are sorted in descending order according
to their corresponding singular values. With a closed-form solution to the minimization in
𝐴, we can move on to the minimization in Δ.

3.2.2 Minimizing in Δ
The next step in alternating minimization is to solve optimization problem (3.7) in Δ with
fixed 𝐴. Optimization problem (3.7) becomes

min
Δ

∥(𝐼 − 𝑃𝐴) (𝑋 − Δ)∥2
𝐹 + ∥Δ∥♯,𝜆. (3.10)
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Our optimization problem now requires use of Group SLOPE. However, optimization prob-
lem (3.10) is not clearly in the format designed for Group SLOPE in Brzyski et al. (2019).
While we could apply Proximal Gradient Descent to optimization problem (3.10), further
reformulation actually gives a more efficient solution. This reformulation is demonstrated
in Theorem 3.

Theorem 3 Optimization problem (3.10) reduces to

min
𝑐

𝑛∑
𝑖=1

(𝑐𝑖 − ∥(𝐼 − 𝑃𝐴)𝑌𝑖∥)2 +
𝑛∑
𝑖=1

𝜆𝑖𝑐(𝑖) ,

where
Δ𝑖 = (𝐼 − 𝑃𝐴)Δ𝑖 =

𝑐𝑖
∥(𝐼 − 𝑃𝐴)𝑋𝑖∥2

(𝐼 − 𝑃𝐴)𝑋𝑖

defines the relationship between Δ𝑖 and 𝑐𝑖.

The proof of Theorem 3 is demonstrated in Appendix A.3. With this formulation, we can
determine the optimal 𝑐𝑖 values with one evaluation of the proximal operator. We use these
values in tandem with the relationship between 𝑐𝑖 and Δ𝑖 to return the optimal Δ𝑖 values.
After minimizing in Δ, we continue to iterate through alternating minimization as necessary
to reach optimality. Upon completion of alternating minimization, we then have a Δ that
indicates which data samples we identify as containing interference.

3.3 Implementation in Python
Although our work building Group SLOPE capability in Python and Cython is motivated by
the existing grpSLOPE R package Brzyski et al. (2019), in the end much of the optimization
problem formulation and solution technique results from taking advantage of the unique
structure of optimization problem (3.7). We first expand Group SLOPE functionality to
include complex valued problems. In addition, we greatly simplify the required code for
optimization as compared to the grpSLOPE R package, due to the structure of optimization
problem (3.7) and the reductions we are able to make. One of the key reductions is demon-
strated in Appendix A.3. This reduction makes Proximal Gradient Descent unnecessary as
a solution algorithm and allows us to solve the minimization problem with a single calcula-
tion of the proximal operator. For greater detail on Proximal Gradient Descent and proximal

15

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



operators see chapters 6 and 10 in Beck (2017). It should be noted that the SLOPE_prox
function we construct specifically relies on pre-existing code found in the original SLOPE R
package (Bogdan et al. 2015). The code that solves optimization problem (3.7) is displayed
below:

import numpy as np

import scipy

cimport numpy as np

cimport cython

@cython.cdivision(True) #divide w/ c not python

@cython.boundscheck(False) # Deactivate bounds checking

@cython.wraparound(False) # Deactivate negative indexing.

cdef np.ndarray[np.float64_t, ndim=1] SLOPE_prox(np.ndarray[np.float64_t, ndim=1] y,

np.ndarray[np.float64_t, ndim=1] lams):

'''
Returns 1D SLOPE prox.

'''

#declare variables

cdef:

unsigned long i,j,k,n

double d

np.ndarray[np.float64_t, ndim=1] s, w, x, sign_y

np.ndarray[np.uint_t, ndim=1] idx_i, idx_j

np.ndarray[np.int64_t, ndim=1] argsrt

#this is the prox_sorted_L1 function from grpSLOPE

n = y.shape[0]

sign_y = np.sign(y)

y = np.abs(y)

argsrt = np.argsort(-y) #argsort sorts in increasing order, so we negate

y = y[argsrt]

#allocate memory as necessary

x = np.zeros(n, np.float64)

s = np.zeros(n, np.float64)

w = np.zeros(n, np.float64)

idx_i = np.zeros(n, np.uint)
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idx_j = np.zeros(n, np.uint)

k = 0

for i in range(n):

idx_i[k] = i

idx_j[k] = i

s[k] = y[i] - lams[i]

w[k] = s[k]

while k > 0 and (w[k-1] <= w[k]):

k -= 1

idx_j[k] = i

s[k] += s[k+1]

w[k] = s[k] / (i - idx_i[k] + 1)

k += 1

for j in range(k):

d = w[j]

if d < 0:

d = 0

for i in range(idx_i[j], idx_j[j] + 1):

x[i] = d

np.put(x, argsrt, x)

x *= sign_y

return x

@cython.cdivision(True) #divide w/ c not python

@cython.boundscheck(False) # Deactivate bounds checking

@cython.wraparound(False) # Deactivate negative indexing.

cpdef alternating_min(np.ndarray[np.cdouble_t, ndim=2] X, float alpha,

np.ndarray[np.float64_t, ndim=1] lams, int max_itr=50,

float stop_tol=1e-6):

cdef:

np.ndarray[np.cdouble_t, ndim=2] \\

Delta = np.zeros((X.shape[0], X.shape[1]), complex)

np.ndarray[np.cdouble_t, ndim=2] P_A = np.eye(X.shape[0], dtype=complex)

np.ndarray[np.cdouble_t, ndim=2] \\

I_minus_P_A = np.eye(X.shape[0], dtype=complex)

np.ndarray[np.cdouble_t, ndim=2] I_minus_PA_times_X

float I_minus_P_A_step = 1.0
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float c_step = 1.0

np.ndarray[np.float64_t, ndim=1] c = np.zeros(X.shape[1])

np.ndarray[np.float64_t, ndim=1] new_c, I_minus_PA_times_X_norms

np.ndarray[np.float64_t, ndim=1] lam_vec = alpha*lams

np.ndarray[np.cdouble_t, ndim=2] u

int itr

itr = 0

for itr in range(max_itr):

#min over A

_, u = scipy.linalg.eigh(np.matmul((X - Delta), (X - Delta).conj().T),

subset_by_index=(X.shape[0]-1, X.shape[0]-1),

check_finite=False,

overwrite_a=True)

P_A = np.outer(u[:,0], u[:,0].conj())

I_minus_P_A_step = np.linalg.norm(P_A + I_minus_P_A - \\

np.eye(u.shape[0], dtype=complex)) #the algebra works here

I_minus_P_A = np.eye(u.shape[0], dtype=complex) - P_A

#min over Delta

I_minus_PA_times_X = np.matmul(I_minus_P_A, X)

I_minus_PA_times_X_norms = np.linalg.norm(I_minus_PA_times_X, axis=0)

new_c = SLOPE_prox(I_minus_PA_times_X_norms, lam_vec)

c_step = np.linalg.norm(c - new_c)

c = new_c

Delta = np.multiply(I_minus_PA_times_X, \\

np.divide(c, I_minus_PA_times_X_norms))

if c_step < stop_tol and I_minus_P_A_step < stop_tol:

#Stopping tolerance reached

break

return Delta, P_A

The inputs for this function are 𝑋 as the data matrix, an alpha parameter that scales the
vector 𝜆, the vector 𝜆, the maximum number of iterations allowed, and a stopping tolerance.
Its primary result is an updated Δ. Beginning with the alternating_min function, we first
declare all variables we will use within this function in Cython for greater efficiency.
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The main portion comes within the for loop that represents the alternating minimization.
First we calculate the solution to the minimization in A with the given inputs. We then
determine the step-length between the previous 𝐼 − 𝑃𝐴 matrix and the current solution.
With this, we conduct the minimization in Δ. We calculate the necessary group norms and
then input these norms into the SLOPE_prox function. This gives us a 𝑐 vector which we
can then use to calculate both a step-length and Δ. Once both step-lengths have reached a
certain tolerance the loop ends and we return the optimal 𝑃𝐴 as well as the optimal Δ.

Within the SLOPE_prox function we declare and allocate memory for variables and sort
the norms to match the sorted vector 𝜆 (Bogdan et al. 2013). With the vector 𝜆 we calculate
the proximal operator, return the data to its original order and return the calculated 𝑐 values.
While this code, and the SLOPE_prox function in particular, have some foundation in the
R package grpSLOPE, we have greatly increased the efficiency of solving optimization
problem (3.7) with a number of changes and reductions (Brzyski et al. 2019). In addition,
this code represents new functionality in Python, since previous work in this area was
written in R.
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CHAPTER 4:
Method Performance Test Results

With a solution method developed, we need to demonstrate its functionality and test its
performance. In this thesis, we examine the functionality and performance of the method
on real-world and simulated data.

4.1 Simulated Data
Simulated data allows us to conduct a greater breadth of tests since we can easily alter
parameters in the simulation to generate varied data. This is far more efficient than the
necessary experimental load required for varying real-world data. In addition, simulated
data allows us to know the true nature of the data since we are its creator. For our work,
this means we have access to the true target signal as well as the exact samples that are
contaminated. This means we can more easily evaluate the actual performance of the method.
To ensure we can run the alternating minimization algorithm, we must simulate the data in
the I/Q format required for input into the algorithm.

4.1.1 Construction
To imitate data collected by an underwater acoustic array, we require a few components in
the simulated signal. First, we need the size of the array indicated by the number of sensors
in the array and the spacing between each sensor. Next, we need to define the target signal
we will see in the data with a wavelength, amplitude, Direction of Arrival, and frequency.
We then define the distribution of the noise in the desired sample and build an interfering
term. This interference can take the form of either additional noise or a specific directed
signal interfering. In both cases, we must define the specific distribution of this interference
and then determine the number of samples it will contaminate. After developing each of
these terms, we generate the randomness necessary for the noise and interference terms.
Finally, we piece together the signal by combining each piece for the desired number of data
points. An example of the python code used for this simulated data is shown below.

21

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



num_channels = 50

delta = 1 #array spacing

lam = 4 #signal wavelength

theta = np.pi/4 #DOA

a = np.exp(2j*np.arange(0,num_channels)*np.pi*delta*np.sin(theta)/lam)

t = np.linspace(0,10,100000) #time

f = 300 #frequency

s = 1

in_phase = np.sin(2*np.pi*f*t)

quadrature = np.cos(2*np.pi*f*t)

eps_sigma = .1

eps = np.random.normal(0, eps_sigma, size=(a.shape[0], len(t))) + \\

1j*np.random.normal(0, eps_sigma, size=(a.shape[0], len(t)))

prob_perturbed = .33

r_support = np.random.choice([True, False], size=len(t), \\

replace=True, p = [prob_perturbed, 1-prob_perturbed])

r_sigma = 1

r_vals = r_support*(np.random.normal(0, r_sigma, size=(a.shape[0], \\

len(t))) + 1j*np.random.normal(0, r_sigma, size=(a.shape[0], \\

len(t))))

x = a[:,np.newaxis]*s + r_vals + eps

In this code, 𝑎 represents the sensor geometry, 𝑠 is the target signal strength, 𝑒𝑝𝑠 is the
noise, and 𝑟_𝑣𝑎𝑙𝑠 is the interference term. There are a number of input parameters we use to
build each piece of the signal. The notation for these inputs are as follows: 𝑛 is the number
of channels in the data, 𝜎𝑒𝑝𝑠 is the standard deviation of the noise normal distribution, 𝜎𝑟 is
the standard deviation associated with the interference distribution, and 𝑝 is the probability
of perturbation. When we examine another type of interference, we also introduce 𝜃𝑟 as
the azimuth angle of the interfering signal and 𝑠𝑟 as the interfering signal strength. Finally,
𝛼 is a tuning parameter we use to scale the sparsity penalty and we use 𝑟𝑢𝑛_𝑡 to denote
algorithm runtime. After running the code above, we can immediately use the output 𝑥 as
input for the alternating minimization method as the data matrix.

In the example above, we choose a fifty sensor array with a sampling rate of 10000 Hertz
and generated ten seconds of data which comes out to 100000 data points. The interference
injected is additional random noise of greater strength than the standard noise term. A tenth
and hundredth of a second of this data is shown for two channels in Figure 4.1.
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Figure 4.1. 1000 Samples and 100 Samples of Simulated Data With
Random Interference: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = 1, 𝑝 = .33

Here we can see two clear waveforms that appear to have a dominant underlying signal.
The first plot demonstrates the jaggedness of the signal throughout a tenth of a second.
The second plot focuses on a specific section and more clearly shows the perturbation of
the signal. While we can visually see the underlying signal, with the influence of sparse
interference it is less simple for a machine to reproduce the target signal from this data. This
is why we apply the method developed in Chapter 3.

With the data in hand, the other necessary input for alternating minimization is the 𝜆 vector.
The Group SLOPE problem described in Chapter 2 has a method for calculating optimal
values of 𝜆 based on an input of desired False Discovery Rate (Brzyski et al. 2019). The
method used relies on having group selections of equal sizes resulting in identical weightings
across groups. The generation method for 𝜆 is constructed around the chi distribution and
the input FDR. While structure of optimization problem (3.7) does vary from standard
Group SLOPE, we choose to use the same method for 𝜆 generation in the algorithm.
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4.1.2 Results
We use a computer with an AMD Ryzen 7 5800X 8-Core processor running at 3.80 GHz,
32.0 GB RAM, and a Windows 11 operating system to generate the simulated data and run
the solution algorithm. Solving using the data constructed above takes only 1.8 seconds for
100000 data points while producing perfect results as shown Table 4.1.

Guessed No Interference Guessed Interference

No Interference 67052 0
Interference 0 32948

Table 4.1. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = 1, 𝑝 = .33, 𝛼 = .2, 𝑟𝑢𝑛_𝑡 = 1.73𝑠

After removing the contaminated samples, we conduct standard DOA estimation on the
remaining data and the estimated angle of arrival is .24999𝜋 compared to an input angle of
.25𝜋. These results appear too good to be true at first pass, but, while they do demonstrate
some of the power of the estimator, they more clearly indicate that this data is not a difficult
test for the estimator to handle. This could be the result of a number of factors that we will
examine and vary in order to conduct some analysis on influential input parameters and
the limits of the estimator. It must be noted that throughout the following tests, 𝛼 is a key
parameter that we hand tune to achieve the results. In the algorithm 𝛼 adjusts the severity
of the penalized estimation and so can encourage more or less sparsity in the results when
it is changed.

Since we use a normal distribution to generate the interference the first parameter we will
vary is the standard deviation, 𝜎𝑟 , of that normal distribution. A larger standard deviation
means that the interference will be more likely to take on larger values in the simulated data.
In the example above, the 𝜎𝑟 value that governs the distribution for the interference is one
and the𝜎𝑒𝑝𝑠 for generic noise is a tenth of that. This large gap makes those samples interfered
with far different than those with only generic noise present. Reducing the interference by
decreasing its standard deviation should make it more difficult for the estimator to identify
contaminated samples. Simulated data with a 𝜎𝑟 of .1 is shown in Figure 4.2.
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Figure 4.2. 1000 Samples and 100 Samples of Simulated Data With
Random Interference: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = .1, 𝑝 = .33

This plot once again only shows two of the fifty channels, but clearly demonstrates the
reduction in clear interference as compared to Figure 4.1. When we run the algorithm on
this data, we must adjust the 𝛼 value slightly to .14 to achieve the results in Table 4.2.

Guessed No Interference Guessed Interference

No Interference 66725 327
Interference 359 32589

Table 4.2. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = .1, 𝑝 = .33, 𝛼 = .14, 𝑟𝑢𝑛_𝑡 = .72𝑠

With a False Positive Rate (FPR) of .0099 and a False Negative Rate (FNR) of .0054 the
estimator is clearly still performing well even at detecting interference that may have little
effect. This is not unique to this one instance either. Across 100 iterations of data generation
and running the algorithm, we see an average FPR of .0115 and an average FNR of .0051.
In addition, if we continue to reduce the standard deviation of the interference and adjust
the 𝛼 accordingly, we see positive results even up until 𝜎 = .03 in Table 4.3.
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Guessed No Interference Guessed Interference

No Interference 52734 14352
Interference 18788 14126

Table 4.3. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = .03, 𝑝 = .33, 𝛼 = .124, 𝑟𝑢𝑛_𝑡 = .43𝑠

Across 100 iterations of this scenario we have an average FPR of .5181 and an average FNR
of .029. While this performance is worse than before, the interference is so small at this
point that it is reasonable that the estimator struggles to detect it well. A plot of this type of
data is shown in Figure 4.3.

0 20 40 60 80 100
Sample Index

1.0

0.5

0.0

0.5

1.0

Am
pl

itu
de

Channel 1
Channel 2
Interference

Figure 4.3. 100 Samples of Simulated Data With Random Interference
Indicator: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = .03, 𝑝 = .33

In this specific plot, 34 out of 100 datapoints are interfered with as shown by the green plot.
While some of the interference may appear visually clear, much of it is not easily apparent
to the eye.

Changing the standard deviation of the noise term accomplishes something similar to
changing the interference term in that greater noise will hide the interference more. However,
increased noise also cloaks the target signal to a greater degree. If we change the 𝜎𝑒𝑝𝑠 to
three, which is triple that of the interference we see the data in Figure 4.4.
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Figure 4.4. 1000 Samples and 100 Samples of Simulated Data With
Random Interference: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .3, 𝜎𝑟 = 1, 𝑝 = .33

This data has so much noise present that not only is it difficult to determine where the
interference is, the target signal is also difficult to identify. Adjusting the 𝛼 appropriately
and running the algorithm gives the results in Table 4.4.

Guessed No Interference Guessed Interference

No Interference 47098 19906
Interference 14047 18949

Table 4.4. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = 3, 𝜎𝑟 = 1, 𝑝 = .33, 𝛼 = 3.7, 𝑟𝑢𝑛_𝑡 = .73𝑠

In this case 100 iterations gives a FPR of .511 and a FNR of .229. Once again these results
are far from perfect, but do well for how heavily the noise dominates this data. With the
removal of interference, when we estimate the direction of arrival for this case we estimate
it as .254𝜋 which is not far from the true DOA of .25𝜋.

The final parameter we will vary before changing the nature of the interference is the number
of samples that we perturb. In order to examine this effect in an adequately challenging
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environment, we set the 𝜎 values to .5 for both noise and interference. Using this setup, we
see that the estimator performs well under varying perturbation probabilities for this type
of interference. At a .01 probability of perturbation and an 𝛼 of .66 we see the results in
Table 4.5.

Guessed No Interference Guessed Interference

No Interference 98978 36
Interference 42 944

Table 4.5. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .5, 𝜎𝑟 = .5, 𝑝 = .01, 𝛼 = .66, 𝑟𝑢𝑛_𝑡 = .86𝑠

With a .1 probability of perturbation and the same 𝛼 we obtain Table 4.6.

Guessed No Interference Guessed Interference

No Interference 88671 1213
Interference 62 10054

Table 4.6. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .5, 𝜎𝑟 = .5, 𝑝 = .1, 𝛼 = .66, 𝑟𝑢𝑛_𝑡 = .75𝑠

Both of these are highly accurate results, but in the second confusion matrix it is apparent
that there is a slightly higher priority on detecting all of the contaminated samples than
ensuring there are no false positives. If we adjust 𝛼 to .685 we see results more similar to
the first confusion matrix Table 4.5, illustrated in Table 4.7.

Guessed No Interference Guessed Interference

No Interference 89681 203
Interference 224 9892

Table 4.7. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .5, 𝜎𝑟 = .5, 𝑝 = .1, 𝛼 = .685, 𝑟𝑢𝑛_𝑡 = .56𝑠

If we test perturbation probabilities of .5, .9 and .99 and adjust 𝛼 accordingly to .708, .708,
and .685 then we see the results in Tables 4.8, 4.9, and 4.10.
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Guessed No Interference Guessed Interference

No Interference 49654 393
Interference 412 49541

Table 4.8. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .5, 𝜎𝑟 = .5, 𝑝 = .5, 𝛼 = .708, 𝑟𝑢𝑛_𝑡 = .88𝑠

Guessed No Interference Guessed Interference

No Interference 9773 237
Interference 252 89738

Table 4.9. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .5, 𝜎𝑟 = .5, 𝑝 = .9, 𝛼 = .708, 𝑟𝑢𝑛_𝑡 = 1.13𝑠

Guessed No Interference Guessed Interference

No Interference 949 73
Interference 75 98903

Table 4.10. Confusion Matrix For 100000 Samples With Random
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .5, 𝜎𝑟 = .5, 𝑝 = .99, 𝛼 = .685, 𝑟𝑢𝑛_𝑡 = 1.16𝑠

If we base the results purely on the number of incorrect guesses, we see that a .5 probability
of perturbation is actually the most difficult for the estimator to handle. Normally, FPR and
FNR would be metrics used to assess the estimator’s performance. However, we heavily
influence those metrics with the selection of the 𝛼 parameter. Regardless, it is apparent
that the confusion matrices above all display similar levels of performance demonstrating
that, for this type of noise, the estimator can handle most perturbation probabilities. We
construct the entire problem around the assumption of sparse interference, but here we
handle interference levels that are certainly not sparse and do well.

Added noise is not the only type of interference we include in the tests. The next interference
we examine is a separate sparse signal whose strength is determined by a normal distribution.
In the initial example we use an azimuth angle, 𝜃𝑟 , of 𝜋

2 and the normal distribution for
signal strength is centered at zero with a standard deviation, 𝜎𝑟 , of 1. This results in the data
shown in Figure 4.5.
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Figure 4.5. 1000 Samples and 100 Samples of Simulated Data With
Random Directed Interference: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 𝜋

2

We see a similar waveform here as in previous examples, but the interference appears
quite egregious in certain data samples. However, even though some samples are clearly
contaminated, it does not seem that all 33% of the interfered samples are readily apparent.
Using an 𝛼 of .135 we have the results displayed in 4.11.

Guessed No Interference Guessed Interference

No Interference 65406 1682
Interference 1947 31001

Table 4.11. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = 2.45𝑠

With the indicated samples removed, we estimate a DOA of .2496𝜋, whereas with those
samples present the estimation was .285𝜋 due to the pull from the interfering signal. Once
again the estimator is performing well. This scenario is quite similar to the first scenario
where we achieved perfect results. However, in this case, the results are imperfect because the
interference is subject to a normally distributed scaling factor. The undetected interference
in the confusion matrix above should be those samples which have minimal interference.
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With some initial results in hand, we will test the boundaries of the estimator’s performance
by varying a few of the parameters used to generate the data.

First, we examine, once again, the standard deviation associated with the distribution of the
interference. If we change 𝜎𝑟 for the normal distribution generating the signal than we will
change the strength of that signal in the data. Reducing 𝜎𝑟 to .1 with an 𝛼 of .126 gives the
results in Table 4.12.

Guessed No Interference Guessed Interference

No Interference 55558 11366
Interference 12009 21066

Table 4.12. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = .1, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .126, 𝑟𝑢𝑛_𝑡 = 1.03𝑠

With a FPR of .35 and a FNR of .178 the estimator runs worse than with the larger
interference. This is the expected result since the smaller contamination should be harder
to detect. Ideally this would mean that as we increase the 𝜎𝑟 value of the interference the
estimator would perform better. This does hold true somewhat and we can achieve results
for 𝜎𝑟 = 2 with 𝛼 = .185 such as those shown in Table 4.13.

Guessed No Interference Guessed Interference

No Interference 67049 0
Interference 2245 30706

Table 4.13. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 2, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .185, 𝑟𝑢𝑛_𝑡 = 7.27𝑠

However, at this stage the 𝛼 selection process has become quite unforgiving and volatile so
small changes in the 𝛼 value cause the algorithm to yield meaningless results where either
all samples or no samples are identified as contaminated. In addition, as we increase the
standard deviation of the interference further to just 𝜎 = 3 the best results we could achieve
with a hand tuned 𝛼 of .85645 are illustrated in Table 4.14.
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Guessed No Interference Guessed Interference

No Interference 264 66780
Interference 5093 27863

Table 4.14. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 3, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .85645, 𝑟𝑢𝑛_𝑡 = .73𝑠

which are incredibly poor. In these examples, it appears that the interfering signal, though
only present in a third of the data, does begin to overpower the target signal and, for this
specific case of interference, the estimator can only handle an interference term with 𝜎𝑟

about double the target signal strength of 1.

The next parameter we vary is the perturbation probability. When we do this with the
probabilities of .01, .1, .5, .9, and .99 with 𝛼 of .135 throughout we see the results in Tables
4.15, 4.16, 4.17, 4.18, and 4.19.

Guessed No Interference Guessed Interference

No Interference 98908 11
Interference 97 984

Table 4.15. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .01, 𝜃𝑟 = 𝜋

2 , 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = .75𝑠

Guessed No Interference Guessed Interference

No Interference 89649 353
Interference 723 9278

Table 4.16. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .1, 𝜃𝑟 = 𝜋

2 , 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = 1.16𝑠
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Guessed No Interference Guessed Interference

No Interference 47933 2284
Interference 2650 47133

Table 4.17. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .5, 𝜃𝑟 = 𝜋

2 , 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = 3.74𝑠

Guessed No Interference Guessed Interference

No Interference 7630 2168
Interference 3624 86578

Table 4.18. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .9, 𝜃𝑟 = 𝜋

2 , 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = 7.23𝑠

Guessed No Interference Guessed Interference

No Interference 0 962
Interference 3187 95851

Table 4.19. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .99, 𝜃𝑟 = 𝜋

2 , 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = 7.26𝑠

The estimator does quite well throughout, but there is a noticeable decline in performance as
the interference grows less sparse. When perturbation probability equals .9, the results are
still decent, but at .99 the results are meaningless. This indicates that between perturbation
probabilities of .9 and .99 performance rapidly decreases, eventually making the estimator
useless. However, overall this demonstrates that the estimator is able to handle a good range
of sparsity. Taking the .9 perturbation probability case in particular is interesting. In this case
we have a target signal in all of the samples and a interference signal in 90% of samples. The
interference can be both louder and quieter than the target signal depending on the normal
distribution, but even though it is so prevalent in the data, the estimator can still identify
with some accuracy most of the samples that have been interfered with while retaining a
good number of clean data points. As a result, the DOA estimation goes from .277𝜋 with
all samples kept to .249𝜋 with contaminated samples removed.

Our final parameter to examine is the azimuth angle of the interfering signal. We will

33

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



examine 𝜃𝑟 values of 3𝜋
4 , 𝜋, and 5𝜋

4 with the understanding that the other angles around the
full circle would operate similarly based on their difference from the target signal’s angle
of approach. An azimuth angle of 3𝜋

4 yields a fascinating result. First, the confusion matrix
with an 𝛼 of .12 appears in Rable 4.20.

Guessed No Interference Guessed Interference

No Interference 32832 34252
Interference 16152 16764

Table 4.20. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 3𝜋

4 , 𝛼 = .12, 𝑟𝑢𝑛_𝑡 = .57𝑠

Our estimator seems incapable of detecting the presence of an interferer in this dataset.
While this would appear worrisome, when we conduct DOA estimation using the full
dataset we receive an estimated DOA of .25007𝜋 coming from data shown in 4.6.
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Figure 4.6. 1000 Samples and 100 Samples of Simulated Data With
Random Directed Interference: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 3𝜋

4

Visually, interference seems to be present in this data, but standard DOA estimation is able
to treat it as standard Gaussian noise, even though it is only present in 33% of samples, and
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give an excellent estimation. This is not surprising as the interference subspace is orthogonal
to the target signal subspace in this specific case.

When we move on to an azimuth angle of 𝜋 with an 𝛼 of .135 we see more standard results
in Table 4.21.

Guessed No Interference Guessed Interference

No Interference 65633 1607
Interference 1898 30862

Table 4.21. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 𝜋, 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = 2.19𝑠

These results are quite similar to those in the initial tests. On the other hand, the DOA
estimation using the entire dataset is .249𝜋 which indicates that interference from 𝜋 of this
type and magnitude has little impact on a target signal coming from 𝜋

4 .

Our final azimuth angle to examine is 5𝜋
4 which is directly opposite of the target signal

DOA. The results, with an 𝛼 of .135, again are similar to previous angles as seen in Table
4.22.

Guessed No Interference Guessed Interference

No Interference 65782 1550
Interference 1896 30772

Table 4.22. Confusion Matrix For 100000 Samples With Random Directed
Interference: 𝑛 = 50, 𝜎𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 5𝜋

4 , 𝛼 = .135, 𝑟𝑢𝑛_𝑡 = 2.36𝑠

Although promising, the DOA estimation only improves from .245𝜋 to .250𝜋 when discard-
ing samples we identify as containing interference. Greater strength or higher perturbation
probability may be necessary before this signal impacts DOA estimation.

There is more nuance to this interference type than random noise. The first indication of this
is that the above results were more sensitive to 𝛼 than those with simply noise interference.
In addition, the parameters changed had larger impact and interacted with other changes in
parameter values. For example, while the estimator was not able to handle large interfering
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signals when we changed perturbation probability and azimuth angle, the estimator performs
well when the interference strength increased.

The final type of interference we examine is a simple interfering signal with constant
strength. This is similar to the previous interference, but instead of a normal distribution to
scale the signal we set a constant value. This means that the construction of the interference
is similar to the target signal except for the number of samples it is present in. In the first test
we use a interfering signal of the same strength as the target signal in 33% of the samples
shown in Figure 4.7.
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Figure 4.7. 1000 Samples and 100 Samples of Simulated Data With
Directed Interference: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .1, 𝜎𝑟 = 1, 𝑝 = .33

We can see in this plot that the interference is mostly obvious and is much more uniform
than in any of the other examples. With an 𝛼 of .3 we achieve the results in Table 4.23.
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Guessed No Interference Guessed Interference

No Interference 66884 0
Interference 0 33116

Table 4.23. Confusion Matrix For 100000 Samples With Directed
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .1, 𝑠𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .3,
𝑟𝑢𝑛_𝑡 = 4.39𝑠

This shifts the DOA estimation from .291𝜋 to .25𝜋 and, more impressively, perfectly detects
all interference. This means, once again, that we must stretch the estimator to see how it
handles different challenges in the data.

When we vary the azimuth angle of the interference, we see the same results as with
the random strength interference. For the azimuth angle adjustment, the estimator still
struggles to identify interference when the interference is perpendicular to the target signal.
When we change the probability of perturbation we consistently see perfect results across all
perturbation probabilities. However, it should be noted that once the perturbation probability
reaches .5 we see the results in Table 4.24.

Guessed No Interference Guessed Interference

No Interference 0 49990
Interference 50010 0

Table 4.24. Confusion Matrix For 100000 Samples With Directed
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .1, 𝑠𝑟 = 1, 𝑝 = .5, 𝜃𝑟 = 𝜋

2 , 𝛼 = .3,
𝑟𝑢𝑛_𝑡 = 2.63𝑠

Here we see that we are perfectly guessing incorrectly as the estimator is now identifying
the contaminated data as uncontaminated and vice-versa. The next parameter we examine
is the strength of the interfering signal.

With perfect detection when the signal strength is the same as the target, it is no surprise
that when we increase the interference strength we continue to see perfect results. On the
other hand, when we reduce the size of the interference, it does become slightly challenging.
With an interference signal strength of .2, which is 20% of the target signal strength, and
using an 𝛼 of .147 we achieve the results in Table 4.25.
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Guessed No Interference Guessed Interference

No Interference 65398 1548
Interference 1643 31411

Table 4.25. Confusion Matrix For 100000 Samples With Directed
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .1, 𝑠𝑟 = .2, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = 1472,
𝑟𝑢𝑛_𝑡 = 1.65𝑠

These results are still excellent, but eventually reducing interference strength does signif-
icantly hinder estimator results. An interference signal strength of .05 with an 𝛼 of .123
gives the results in Table 4.26.

Guessed No Interference Guessed Interference

No Interference 44029 23052
Interference 17797 15122

Table 4.26. Confusion Matrix For 100000 Samples With Directed
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = .1, 𝑠𝑟 = .05, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .123,
𝑟𝑢𝑛_𝑡 = .57𝑠

Here we see poor performance, but the estimator does offer slightly promising results even
with such a small interfering signal. Increasing the noise present in the data by adjusting
the standard deviation of the noise distribution yields similar results as decreasing the
interfering signal’s strength. As we increase noise, it covers the interference in the data and
increases the challenge of detecting contaminated samples. With a standard deviation of 1
for noise and an 𝛼 of 1.28, we have the results in 4.27.

Guessed No Interference Guessed Interference

No Interference 51071 15947
Interference 18835 14147

Table 4.27. Confusion Matrix For 100000 Samples With Directed
Interference: 𝑛 = 50, 𝜎𝑒𝑝𝑠 = 1, 𝑠𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = 1.28,
𝑟𝑢𝑛_𝑡 = .87𝑠

38

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



Here, with greater noise present, the estimator struggles once again. The final parameter we
examine the effect of is the size of the sensor array. The base case throughout this analysis
has assumed that we have data from fifty sensors in a single array. In the current experiment,
when we reduce this value to ten, we still see perfect results. However, with only five sensors
and an 𝛼 of .072, we see the reduced performance in Table 4.28.

Guessed No Interference Guessed Interference

No Interference 51188 15979
Interference 13064 19769

Table 4.28. Confusion Matrix For 100000 Samples With Directed
Interference: 𝑛 = 5, 𝜎𝑒𝑝𝑠 = .1, 𝑠𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .072,
𝑟𝑢𝑛_𝑡 = .30𝑠

An array with only two sensors using an 𝛼 of .024 gives even worse results shown in Table
4.29.

Guessed No Interference Guessed Interference

No Interference 48380 18768
Interference 23334 9518

Table 4.29. Confusion Matrix For 100000 Samples With Directed
Interference: 𝑛 = 2, 𝜎𝑒𝑝𝑠 = .1, 𝑠𝑟 = 1, 𝑝 = .33, 𝜃𝑟 = 𝜋

2 , 𝛼 = .024,
𝑟𝑢𝑛_𝑡 = .12𝑠

When we reduce the number of channels in the data, we see this quick reduction in the
performance. Some of the issue here could be the reduction in the size of the dataset.
However, with fifty sensors and only 100 data samples, we still see perfect results, meaning
reducing the dataset size has greater impact in the channel dimension than in the time
dimension. Finally, when we change the number of sensors for the previous two types of
interference, there is reduction in performance, however, it is a much smaller reduction than
what is displayed above. Detection of a constant interfering signal seems to particularly be
affected by this reduction of sensor array size.

As a final note in the simulated data results section, we must discuss two key pieces of the
algorithm runs throughout this analysis. Runtime is incredibly important and a significant
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goal of both ourselves and the sponsor. In order to eventually implement this estimator and
algorithm in the real world and real time constraints of an autonomous system, the algorithm
needs to be able to run as data is collected. Prior to some of work to reduce optimization
problem (3.7), the runtime increased rapidly as the dataset size increased. This meant that an
eighth of a second of data from two sensors took around an eighth of a second to run, but a
full second of data from a fifty sensor array took over two minutes. These issues represented
a block to future implementation and encouraged us to examine how to reduce optimization
problem (3.7) for more efficient solution techniques. As shown above, we run the algorithm
on a sample of ten seconds. Although the runtime is variable throughout each of the runs,
its highest value is around seven seconds and frequently is less than a single second as a
result of our efforts toward reduction. This brief runtime means that implementation in an
autonomous system is not out of reach using the methods presented in this thesis.

The final piece to discuss is 𝛼. Across the tests above we see great changes in the 𝛼 parameter
to generate the results. This parameter influences how large of a penalty is applied in the
Group SLOPE problem. This means that adjusting too far in either direction consistently
would result in identifying all or no samples as contaminated. Careful selection of 𝛼 allows
us to see results where the estimator does have to discern between what is and is not
contaminated. Each instance of simulated data above requires different granularity for 𝛼 to
achieve results. In some instances, there is a wide range of values that achieves meaningful
results with varying false positive and false negative rates. However, for some more brittle
instances of simulated data, a precisely tuned 𝛼 is necessary to achieve any sort of results.
Currently, this 𝛼 selection is both a positive and negative aspect of the algorithm. On the
one hand, this selection allows us to tune the results to encourage higher false positives or
higher false negatives and gives the user an input to make that decision with. On the other
hand, this 𝛼 selection means the process is not entirely automated and for truly optimal 𝛼
selection some pre-existing knowledge of the data is likely necessary. Further examination
of the full effects of this parameter on the estimator could be an area for further research.

4.2 Icelandic Data
Our real world data, supplied by Professor Kay Gemba of the NPS Physics Department,
comes from an acoustic sensor array placed off the coast of Iceland. The sensors on the array
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have a .125 meter horizontal spacing between themselves and are placed at approximately
150 meter depth. With hundreds of sensors on the array and numerous days of data, we
have an incredible amount of acoustic data from this one array. Some of the data represents
a time where specific testing of the sensor occurred which enabled us, at times, to identify
target signals within the acoustic samples. In addition, through both listening to the data as
well as examining spectrograms, we were able to single out specific pieces of the provided
data which seem to have a prevailing signal throughout the sample while another signal
appears sparse in time. This scenario matches the proposed use-case for the methods in this
thesis and so we apply these methods using data from three sensors on the array.

4.2.1 Data Processing
The data’s original form is in .sio files and, as such, required significant transformation before
we could work with it. We wrote a short script that enables us to pull a specific minute of
data from the cache of files. When we visualize a minute of the data in a spectrogram we
see Figure 4.8.

Figure 4.8. 60 Seconds of Raw Acoustic Data in Frequency Range of 0 Hz
to 1000 Hz

This visualization does not immediately give a clear application to the problem. However,
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it does help us to realize that most of the potentially intriguing pieces of this sound sample
occur between frequencies of 200 and 400 Hertz. With this data now in complex waveform
we required some final adjustments before inputting into the algorithm. After focusing
the signal on specific frequencies and applying a second-order sections filter, we used the
Hilbert transform, a linear operator that uses the Fourier transform to create an analytic
signal in I/Q format from a real-valued input. Generating the vector 𝜆 using the same
method described in Subsection 4.1.1 allowed us to then input the data into the alternating
minimization algorithm.

4.2.2 Results
When we filter and focus the data the new spectrogram is Figure 4.9.

Figure 4.9. 60 Seconds of Filtered Acoustic Data in Frequency Range of
200 Hz to 400 Hz

This gives a much clearer image of the detail present in this specific minute of data. Here
we see a signal that appears fairly constant with a frequency just above 350 Hertz. We
also see a periodic signal that appears eleven times throughout the minute for a second
or two. While this signal does not always directly cover the constant signal at 350 Hertz,
the periodic interference does have some interaction with it. In addition, it does add to the
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acoustic environment in a way that can not be represented by generic noise that fills the
remaining space in the spectrogram. When we apply the estimator to a dataset of this nature,
we want it to identify those datapoints with that periodic interference and eliminate them
from the data. In this specific example we see the results shown in Figure 4.10.

Figure 4.10. 60 Seconds of Filtered Acoustic Data With Detected
Contaminated Samples Removed

In this spectrogram we have whited out the data samples that the estimator removes due
to contamination. The immediate reaction may be that the white-space seems somewhat
random. However, when compared to Figure 4.9, it is clear that a majority of the samples
with the periodic interference are now gone. In addition, there are only a few samples that
seem to have been removed without that interference present. The significant outlier is the
interference that appears in the first few seconds. This likely is a result of the frequency
difference between the target signal and this first instance of interference since each of the
other interference comes closer to the target signal’s frequency.

In general, these results indicate that this method is capable of detecting certain types of
interference in real world data. In the work demonstrated above, we successfully automate a
process that currently can prove difficult for machines. Due to the accurate results and mini-
mal runtime, we have certainly accomplished that goal. In addition, the results on simulated
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data demonstrate the potential breadth of application and robustness of the estimator.
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CHAPTER 5:
Conclusions and Future Work

5.1 Conclusions
In this project we create a method for detecting interference in acoustic signals in order to
automate the process of identifying corrupted data points. In this effort we examine a number
of sub-problems. First, we construct and solve our chosen method for interference detection.
Then, we choose to implement a Group SLOPE penalized regression based heavily on
existing signal subspace estimation methods shown in Equation (3.2). Transforming and
reducing the optimization problem associated with this regression gives us a form of a Group
SLOPE problem to solve shown in optimization problem (3.7). To solve this optimization
problem we employ alternating minimization for the two variables 𝐴 and Δ, relying on some
existing functionality while also providing some of our own solution techniques.

With an estimator and solution technique, we examine the performance of the estimator.
Although we were able to prove the optimality of the solutions to optimization problem
(3.7), we need to apply this estimator to data in order to examine results. The first way of
doing this is to simulate data to test the estimator, which has numerous advantages for this
work. Simulation enables us to generate a wide breadth of types of data for which we know
the true underlying signals, allowing us to compare the results with that truth. With this
simulated data we demonstrate that the estimator has a wide range of potential applications
and successfully identifies the interference in the data. This successful identification and
removal from the dataset consistently improves the DOA estimation, demonstrating the
usefulness of the estimator. However, we also are able to test some of the limitations and
boundaries of the estimator to determine where its results break down and how that might
translate to the real world.

In hopes of an even clearer image of the estimator’s ability to handle real-world scenarios
we apply it to a dataset of acoustic signals from the Icelandic coast. Using spectrograms
we give a visual depiction of the data that shows the presence of a constant target signal as
well as periodic interference that is sparse in time. Applying the estimator to numerous data

45

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



selections of this type all give positive results where the estimator correctly identifies many
of the contaminated data samples while ignoring the samples without interference.

The final issue that we consider throughout the entire process is the runtime of the algorithm.
An algorithm built for an autonomous vehicle gathering data needs to be able keep up with
data collection in real time. The initial solution methods could handle small data matrices in
the required time frame, but quickly diverged as the matrix size increased either from greater
sampling rate, larger sensor array, or increased complication of another parameter. After
a number of attempts at improving the solution algorithm, we eventually develop enough
efficiency in the methodology to handle much larger problems in the time necessary. For
example, when running the algorithm on a simulated dataset with fifty sensors and 100000
data points representing ten seconds of data we rarely exceed a runtime of a second.

With this reduced runtime we can confidently say that the initial goal is met. We selected
a probability model for interference detection, worked to simplify and solve it, tested it
on both simulated and real data to demonstrate its use, and improved its runtime issues to
encourage future deployment with autonomous vehicles.

5.2 Future Work
The main effort existing for exploration in future work is actual employment of this method
in real time with some sort of autonomous vehicle. While there likely is additional tuning
and development required for this goal, those issues will become more apparent when
working towards implementation in the real world. Since our sponsor for this work is the
Office of Naval Research, Science of Autonomy Program, we expect that this work will
continue to be pursued and implemented in the real world.

Another improvement that could be worked towards in hopes of improving the estimator
for real world application is more robust and engineered real world testing. Currently the
estimator works well for the acoustic samples we selected in the Iceland dataset that appear
to have a target signal and interference present. However, that is isolated to specific minutes
in a specific dataset. Further testing using various datasets would be beneficial. Even more
than this, constructing data in the real world with a known target signal and a known
interferer would allow true testing of the estimator’s performance in reality.
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Finally, our work focuses on underwater acoustics as that is the initial problem that is of
interest to both ourselves and the United States Navy. However, we represent the data input
for the algorithm as a complex waveform which is not a unique medium for underwater
acoustic data. Interference exists in acoustic regions outside of the subsurface region as
well as in electromagnetic signals. Further research examining the use of the methodology
presented in this paper for other problems such as these could prove valuable.
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APPENDIX: Proofs

For completeness, we include necessary proofs from Bassett (2022).

A.1 Proof of Theorem 1
We estimate the matrix 𝐴, the columns of which define the signal subspace, from

�̂� ∈ argmin
𝐴∈C𝑐×𝑑

min
𝑆∈C𝑑×𝑇
Δ∈C𝑐×𝑇

∥𝐴𝑆 + Δ − 𝑋 ∥2
𝐹 + ∥Δ∥♯,𝜆. (A.1)

In the inner minimization problem, 𝑆 can be computed in closed form as (𝐴∗𝐴)−1𝐴∗(𝑋−Δ),
where superscript ∗ denotes conjugate transpose. A minimizer (A.2) becomes

�̂� ∈ argmin
𝐴∈C𝑐×𝑑

min
Δ∈C𝑐×𝑇

∥(𝐼 − 𝑃𝐴) (Δ − 𝑋)∥2
𝐹 + ∥Δ∥♯,𝜆, (A.2)

where 𝑃𝐴 = 𝐴(𝐴∗𝐴)−1𝐴∗ is the orthogonal projection onto the column space of 𝐴.

We proceed to solve Equation (A.2) via alternating minimization over 𝐴 and Δ because
the problem has structure that is amenable to this approach. The matrix group SLOPE
regularizer can be shown to be a supremum of convex functions, and hence convex, so for
fixed 𝐴 minimizing over Δ is a convex problem. For fixed Δ, the minimizer in 𝑃𝐴 is to take
the columns of 𝑃𝐴 as the 𝑑 largest singular vectors of Δ − 𝑋 . Moreover, we can show that
any limit point of the sequence produced by alternating minimization is a critical point of
Equation (A.2). Indeed, by Grippo and Sciandrone (2000), if we can cast the problem as the
minimization of a continuously differentiable function over closed, nonempty, and convex
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sets, the result follows. Consider the relaxation of Equation (A.2)

min
𝑃𝐴∈C𝑐×𝑐
𝑃2
𝐴=𝑃𝐴

𝑃∗
𝐴=𝑃𝐴

min
𝑐∈R

Δ∈C𝑐×𝑇
∥Δ∥♯,𝜆≤𝑐

∥(𝐼 − 𝑃𝐴)(Δ − 𝑋)∥2
𝐹 + 𝑐 (A.3)

= min
𝑃𝐴∈C𝑐×𝑐
𝑃2
𝐴=𝑃𝐴

𝑃∗
𝐴=𝑃𝐴

min
𝑐∈R

Δ∈C𝑐×𝑇
∥Δ∥♯,𝜆≤𝑐

∥(Δ − 𝑋)∥2
𝐹 − Tr [𝑃𝐴 (Δ − 𝑋)(Δ − 𝑋)∗] + 𝑐 (A.4)

≥ min
𝑃𝐴∈C𝑐×𝑐
0⪯𝑃𝐴⪯𝐼
Tr(𝑃𝐴)=𝑑

min
𝑐∈R

Δ∈C𝑐×𝑇
∥Δ∥♯,𝜆≤𝑐

∥(Δ − 𝑋)∥2
𝐹 − Tr [𝑃𝐴 (Δ − 𝑋)(Δ − 𝑋)∗] + 𝑐. (A.5)

The first equality above is directly from the definition of the Frobenius inner product,
and the inequality follows because we have induced a relaxation on the set of projection
matrices. Note that the relaxation has convex feasible sets, since 𝑃𝐴 is restricted to the
positive semidefinite cone and ∥ · ∥𝜆,♯ is a convex function. Additionally, we can show that
both problem (A.4) and (A.5) attain the same lower bound given by the von Neumann trace
inequality, which implies that this last inequality between problems is actually an equality
(Mirsky 1975). Since we have cast the problem as minimizing a continuously differentiable
function over closed, convex, and nonempty sets, we conclude that limit points obtained via
alternating minimization are critical points as defined in Grippo and Sciandrone (2000).

A.2 Proof of Theorem 2
Recall the following facts

1. Properties of Singular Value Decomposition: For any matrix 𝑀 ∈ C𝑚×𝑛 there exists
matrices 𝑈 ∈ C𝑚×𝑚, 𝑉 ∈ C𝑛×𝑛 and Σ ∈ R𝑚×𝑛 such that 𝑀 = 𝑈Σ𝑉 , where the
columns of both 𝑈 and 𝑉 are orthonormal, and Σ is a rectangular diagonal matrix
with nonnegative real numbers on its diagonal. The SVD has a dyadic form 𝑀 =∑min{𝑚,𝑛}

𝑖=1 𝑢𝑖𝜎𝑖𝑣
∗
𝑖 , where {𝑢1, ..., 𝑢𝑚} and {𝑣1, ..., 𝑣𝑛} are the columns of 𝑈 and 𝑉 ,

respectively.
2. Properties of Eigendecomposition: A normal matrix 𝑀 ∈ C𝑛×𝑛 has eigendecomposi-

tion 𝑀 =
∑𝑛

𝑖=1 𝜆𝑖𝑤𝑖𝑤
∗
𝑖 , where 𝑤1, ...𝑤𝑛 form an orthognormal basis of C𝑛.

3. Properties of Orthogonal Projection Matrices: 𝑃2
𝐴 = 𝑃𝐴 = 𝑃∗

𝐴, and the eigenvalues
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of 𝑃 are either 0 or 1. The number of nonzero eigenvalues equals the rank of col(𝐴).
4. Properties of Trace and Frobenious Norm: ∥𝐴∥2

𝐹 = Tr(𝐴∗𝐴) = Tr(𝐴𝐴∗).

Using Property 4,

min
𝑃𝐴

∥(𝐼 − 𝑃𝐴) (𝑋 − Δ)∥2
𝐹 (A.6)

= min
𝑃𝐴

Tr [(𝑋 − Δ)(𝐼 − 𝑃𝐴)(𝐼 − 𝑃𝐴)∗(𝑋 − Δ)∗] (A.7)

= min
𝑃𝐴

Tr [(𝑋 − Δ) (𝐼 − 𝑃𝐴)(𝑋 − Δ)∗] (A.8)

= min
𝑃𝐴

Tr [(𝑋 − Δ) (𝑋 − Δ)∗] − Tr [(𝑋 − Δ)𝑃𝐴 (𝑋 − Δ)∗] . (A.9)

Therefore it suffices to maximize Tr [(𝑋 − Δ)𝑃𝐴 (𝑋 − Δ)∗]. Let 𝑟 = max{𝑚, 𝑛} and∑𝑟
𝑖=1 𝜎𝑖𝑢𝑖𝑣

∗
𝑖 be the SVD of 𝑋 − Δ. Similarly, let

∑𝑘
𝑖=1 𝑤𝑖𝑤

∗
𝑖 be the eigendecomposition

of 𝑃𝐴. We then have

max
𝑤1,...𝑤𝑘

Tr

[(
𝑟∑
𝑖=1

𝜎𝑖𝑣𝑖𝑢
∗
𝑖

) (
𝑘∑
𝑖=1

𝑤𝑖𝑤
∗
𝑖

) (
𝑟∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
∗
𝑖

)]
(A.10)

= max
𝑤1,...𝑤𝑘

Tr


𝑘∑
𝑗=1

(
𝑟∑
𝑖=1

𝜎𝑖𝑣𝑖𝑢
∗
𝑖

)
𝑤 𝑗𝑤

∗
𝑗

(
𝑟∑
𝑖=1

𝜎𝑖𝑢𝑖𝑣
∗
𝑖

) (A.11)

= max
𝑤1,...𝑤𝑘

Tr


𝑘∑
𝑗=1

(
𝑟∑
𝑖=1

𝜎𝑖𝑣𝑖𝑢
∗
𝑖 𝑤 𝑗

) (
𝑟∑
𝑖=1

𝜎𝑖𝑤
∗
𝑗𝑢𝑖𝑣

∗
𝑖

) . (A.12)

Applying the cyclic property of trace gives

max
𝑤1,...𝑤𝑘

𝑘∑
𝑗=1

(
𝑟∑
𝑖=1

𝜎𝑖𝑤
∗
𝑗𝑢𝑖𝑣

∗
𝑖

) (
𝑟∑
𝑖=1

𝜎𝑖𝑣𝑖𝑢
∗
𝑖 𝑤 𝑗

)
. (A.13)

Since 𝑣𝑖 ⊥ 𝑣 𝑗 for 𝑖 ≠ 𝑗 and 𝑣∗𝑖 𝑣𝑖 = 1, we get

max
𝑤1,...𝑤𝑘

𝑘∑
𝑗=1

𝑟∑
𝑖=1

𝜎2
𝑖

���𝑤∗
𝑗𝑢𝑖

���2 . (A.14)

Now we need to show that the optimal choice of orthonormal 𝑤 𝑗 vectors are those which
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have the same span as {𝑢1, ..., 𝑢𝑘 } (i.e. the 𝑢𝑖 with 𝑘 largest 𝜎2
𝑖 ). This is fairly intuitive

but can be demonstrated as follows. By the Pythagorean Theorem (recall the 𝑢 vectors are
orthonormal),

𝑘 =
𝑘∑
𝑗=1

∥𝑤 𝑗 ∥2
2 ≥

𝑘∑
𝑗=1

𝑟∑
𝑖=1

|𝑤∗
𝑗𝑢𝑖 |2.

Moreover, each |𝑤∗
𝑗𝑢𝑖 |2 ≤ 1 by the Cauchy-Schwartz inequality. We can thus form a relax-

ation of Equation (A.14) as follows by letting 𝛼𝑖 =
∑𝑘

𝑗=1 |𝑤∗
𝑗𝑢𝑖 |2.

max
𝑤1,...𝑤𝑘

𝑟∑
𝑖=1

𝑘∑
𝑗=1

𝜎2
𝑖

���𝑤∗
𝑗𝑢𝑖

���2 (A.15)

≤ max
𝛼1,...,𝛼𝑟

𝑟∑
𝑖=1

𝜎2
𝑖 𝛼𝑖 (A.16)

s.t.
𝑟∑
𝑖=1

𝛼𝑖 ≤ 𝑘 (A.17)

0 ≤ 𝛼 𝑗 ≤ 1, 𝑖 ∈ {1, ..., 𝑘}. (A.18)

This relaxation is a linear program, and it clearly obtains its maximum of
∑𝑘

𝑖=1 𝜎
2
𝑖 (recall that

𝜎𝑖 are nonnegative and sorted in decreasing order). Note that the unrelaxed problem (A.14)
also obtains the value

∑𝑘
𝑖=1 𝜎

2
𝑖 by setting 𝑤𝑖 = 𝑢𝑖 for 𝑖 ∈ {1, ..., 𝑘}. Since the maximum value

of the relaxed problem is obtained by the original problem, it must also be the maximum
value of the original problem. Therefore setting 𝑤𝑖 = 𝑢𝑖 (for 𝑖 ∈ {1, ..., 𝑘}) is a maximizer.
Recalling that

∑𝑘
𝑖=1 𝑤𝑖𝑤

∗
𝑖 is the eigendecomposition of 𝑃𝐴, this proves the result. □

A.3 Proof of Theorem 3
We conduct this proof to simplify the objective function in the minimization in Δ for easier
computation. Consider the objective function when minimizing over Δ for fixed 𝐴,

𝑛∑
𝑖=1

∥(𝐼 − 𝑃𝐴) (𝑋𝑖 − Δ𝑖)∥2
2 + ∥(Δ1, ...,Δ𝑛)∥𝜆,♯
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=
𝑛∑
𝑖=1

∥(𝐼 − 𝑃𝐴) (𝑋𝑖 − Δ𝑖)∥2
2 +

𝑛∑
𝑖=1

𝜆𝑖∥Δ(𝑖) ∥2

=
𝑛∑
𝑖=1

∥(𝐼 − 𝑃𝐴)(𝑋𝑖 − Δ𝑖)∥2
2 +

𝑛∑
𝑖=1

𝜆𝑖

√
∥(𝐼 − 𝑃𝐴)Δ(𝑖) ∥2

2 + ∥𝑃𝐴Δ(𝑖) ∥2
2.

A sufficient condition for minimizer is 𝑃𝐴Δ(𝑖) = 0 for all 𝑖. This implies that the previous
expression is

=
𝑛∑
𝑖=1

∥(𝐼 − 𝑃𝐴) (𝑋𝑖 − Δ𝑖)∥2
2 +

𝑛∑
𝑖=1

𝜆𝑖∥(𝐼 − 𝑃𝐴)Δ(𝑖) ∥2,

so the original minimization problem becomes

min
Δ

𝑛∑
𝑖=1

∥(𝐼 − 𝑃𝐴)(𝑋𝑖 − Δ𝑖)∥2
2 +

𝑛∑
𝑖=1

𝜆𝑖∥(𝐼 − 𝑃𝐴)Δ(𝑖) ∥2.

Introducing auxillary variable 𝑐𝑖 = ∥(𝐼 − 𝑃𝐴)Δ𝑖∥2, the minimization problem becomes

min
𝑐,Δ

𝑛∑
𝑖=1

∥(𝐼 − 𝑃𝐴)(𝑋𝑖 − Δ𝑖)∥2
2 +

𝑛∑
𝑖=1

𝜆𝑖∥(𝐼 − 𝑃𝐴)Δ(𝑖) ∥2

s.t. 𝑐2
𝑖 = ∥(𝐼 − 𝑃𝐴)Δ𝑖∥2

2 ∀𝑖.

Expanding the quadratic and neglecting constant terms, we have

min
𝑐,Δ

𝑛∑
𝑖=1

𝑐2
𝑖 − 2ℜ

[
((𝐼 − 𝑃𝐴)𝑋𝑖)∗ ((𝐼 − 𝑃𝐴)Δ𝑖)

]
+

𝑛∑
𝑖=1

𝜆𝑖𝑐(𝑖)

s.t. 𝑐2
𝑖 = ∥(𝐼 − 𝑃𝐴)Δ𝑖∥2

2 ∀𝑖.

For fixed 𝑐, minimizing over Δ gives

Δ𝑖 =︸︷︷︸
𝑃𝐴Δ𝑖=0

(𝐼 − 𝑃𝐴)Δ𝑖 =
𝑐𝑖

∥(𝐼 − 𝑃𝐴)𝑋𝑖∥2
(𝐼 − 𝑃𝐴)𝑋𝑖 .
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Substituting this value in gives

min
𝑐

𝑛∑
𝑖=1

𝑐2
𝑖 − 2𝑐𝑖∥(𝐼 − 𝑃𝐴)𝑋𝑖∥ +

𝑛∑
𝑖=1

𝜆𝑖𝑐(𝑖) .

Finally, completing the square by adding a constant gives

min
𝑐

𝑛∑
𝑖=1

(𝑐𝑖 − ∥(𝐼 − 𝑃𝐴)𝑋𝑖∥)2 +
𝑛∑
𝑖=1

𝜆𝑖𝑐(𝑖) .

We have eliminated the channel dimension from the optimization problem. This minimizer
is the proximal operator of ∥ · ∥𝜆,♯ evaluated at

(∥(𝐼 − 𝑃𝐴)𝑌1∥2, ...., ∥(𝐼 − 𝑃𝐴)𝑌𝑛∥2).

In summary, one evaluation of grpSLOPE prox gives the optimal 𝑐 values andΔ is recovered
via

(𝐼 − 𝑃𝐴)Δ𝑖 =
𝑐𝑖

∥(𝐼 − 𝑃𝐴)𝑋𝑖∥2
(𝐼 − 𝑃𝐴)𝑋𝑖 .
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