
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-12

ANALYSIS OF CLIENT-SIDE ATTACKS THROUGH
DRIVE-BY HONEYPOTS

Foley, Brian A.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/71460

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

ANALYSIS OF CLIENT-SIDE ATTACKS
THROUGH DRIVE-BY HONEYPOTS

by

Brian A. Foley

December 2022

Thesis Advisor: Neil C. Rowe
Co-Advisor: Thuy D. Nguyen

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2022 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
ANALYSIS OF CLIENT-SIDE ATTACKS
THROUGH DRIVE-BY HONEYPOTS

 5. FUNDING NUMBERS

 6. AUTHOR(S) Brian A. Foley

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Client-side cyberattacks on Web browsers are becoming more common relative to server-side
cyberattacks. This work tested the ability of the honeypot (decoy) client software Thug to detect malicious or
compromised servers that secretly download malicious files to clients, and to classify what it downloaded.
Prior to using Thug we did TCP/IP fingerprinting to assess Thug’s ability to impersonate different Web
browsers, and we created our own malicious Web server with some drive-by exploits to verify Thug’s
functions; Thug correctly identified 85 out of 86 exploits from this server. We then tested Thug’s analysis of
delivered exploits from two sets of real Web servers; one set was obtained from random Internet addresses of
Web servers, and the other came from a commercial blacklist. The rates of malicious activity on 37,415
random websites and 83,667 blacklisted websites were 5.6% and 1.15%, respectively. Thug’s interaction with
the blacklisted Web servers found 163 unique malware files. We demonstrated the usefulness and efficiency
of client-side honeypots in analyzing harmful data presented by malicious websites. These honeypots can help
government and industry defenders to proactively identify suspicious Web servers and protect users.

 14. SUBJECT TERMS
honeypot, honeyclient, client-side, drive-by, Thug, cyberattacks, malware 15. NUMBER OF

PAGES
 71
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Approved for public release. Distribution is unlimited.

ANALYSIS OF CLIENT-SIDE ATTACKS THROUGH DRIVE-BY HONEYPOTS

Brian A. Foley
Lieutenant, United States Navy

BA, Rutgers, State University of New Jersey, 2016

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 2022

Approved by: Neil C. Rowe
 Advisor

 Thuy D. Nguyen
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

iv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ABSTRACT

 Client-side cyberattacks on Web browsers are becoming more common relative to

server-side cyberattacks. This work tested the ability of the honeypot (decoy) client

software Thug to detect malicious or compromised servers that secretly download

malicious files to clients, and to classify what it downloaded. Prior to using Thug we did

TCP/IP fingerprinting to assess Thug’s ability to impersonate different Web browsers, and

we created our own malicious Web server with some drive-by exploits to verify Thug’s

functions; Thug correctly identified 85 out of 86 exploits from this server. We then tested

Thug’s analysis of delivered exploits from two sets of real Web servers; one set was

obtained from random Internet addresses of Web servers, and the other came from a

commercial blacklist. The rates of malicious activity on 37,415 random websites and

83,667 blacklisted websites were 5.6% and 1.15%, respectively. Thug’s interaction with

the blacklisted Web servers found 163 unique malware files. We demonstrated the

usefulness and efficiency of client-side honeypots in analyzing harmful data presented by

malicious websites. These honeypots can help government and industry defenders to

proactively identify suspicious Web servers and protect users.

v

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

vi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. PROBLEM STATEMENT .. 2
B. MOTIVATION AND BENEFITS OF STUDY 2
C. ORGANIZATION OF THE THESIS ... 2

II. BACKGROUND ... 3

A. OVERVIEW ON HONEYPOTS ... 3
B. WEB CRAWLERS ... 5
C. CLIENT-SIDE ATTACKS .. 5
D. MALWARE ... 6
E. PREVIOUS WORK .. 8

1. Detecting Malicious Web Servers with Honeypot Clients
Using Keyword Searches .. 8

2. Detecting Malicious Web Servers with Honeypot Clients
Using Web Search Seeding ... 9

3. Cloaking Malicious Web Servers to Avoid Honeypot
Client Detection ... 10

III. METHODOLOGY AND DESIGN ... 13

A. THUG ... 13
B. SUPPORTING TOOLS.. 15
C. FUNCTIONAL TESTING OF THUG ... 17
D. TEST ENVIRONMENT .. 18
E. EXPERIMENTATION PLAN .. 20

IV. IMPLEMENTATION .. 23

A. THUG PERSONALITY ASSESSMENT ... 23
B. EXPERIMENT 1: FUNCTIONAL ASSESSMENT 25
C. EXPERIMENTS 2 AND 3: REAL-WORLD ATTACKS 28

V. RESULTS AND DISCUSSION ... 31

A. THUG PERSONALITY ASSESSMENT RESULTS 31
B. EXPERIMENT 1 RESULTS ... 32
C. EXPERIMENT 2 RESULTS ... 35
D. EXPERIMENT 3 RESULTS ... 37
E. DISCUSSION .. 39

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

viii

VI. CONCLUSION AND FUTURE WORKS .. 43

A. SUMMARY OF FINDINGS .. 43
B. FUTURE WORK .. 43

APPENDIX A. EXPLOITS SELECTED FOR EXPERIMENT 1 45

APPENDIX B. SCRAPY AND MONGODB SCRIPTS ... 47

LIST OF REFERENCES ... 49

INITIAL DISTRIBUTION LIST .. 53

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ix

LIST OF FIGURES

Figure 1. Four-stage process of a drive-by download. Adapted from Le et al.
(2013). ... 6

Figure 2. Client honeypots and SiteAdvisor malicious identification results
from 20,000 analyzed websites. Source: Qassrawi and Zhang (2011). 8

Figure 3. Monkey-Spider Web crawling results. Source Ikinci et al. (2008). 9

Figure 4. Web server cloaking techniques detected by client honeypots.
Source: Pinoy et al. (2021).. 11

Figure 5. Thug operation diagram .. 13

Figure 6. Thug interaction with MongoDB. Adapted from Mongo.org (2022) 16

Figure 7. Web crawl flow chart .. 17

Figure 8. Test environment .. 19

Figure 9. Malware analysis workflow .. 21

Figure 10. Personality assessment configuration ... 24

Figure 11. Personality assessment control configuration ... 24

Figure 12. Screenshot of directory listing in the malicious test Web server 26

Figure 13. Metasploit redirect Web page ... 27

Figure 14. Thug functional test exploit identification workflow 28

Figure 15. Wireshark TCP stream of Thug’s HTTP GET request 31

Figure 16. Thug report of malicious behavior .. 35

Figure 17. Frequency of malware downloaded from random Web servers by
malware type ... 36

Figure 18. Proportion of malware downloaded from random Web servers by
type .. 37

Figure 19. Frequency of malware downloaded from blacklist Web servers by
type .. 38

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

x

Figure 20. Proportion of malware downloaded from blacklist Web servers by
type .. 39

Figure 21. Comparison of malware frequency between Experiments 2 and 3. 41

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xi

LIST OF TABLES

Table 1. Browser types emulated by Thug. Adapted from Dell’Aera (2022). 14

Table 2. MongoDB Thug collection schema. Adapted from Dell’Aera (2022). 15

Table 3. DigitalOcean Droplet virtual machine .. 19

Table 4. Thug virtual machine .. 20

Table 5. Thug personalities selected for assessment. Adapted from Dell’Aera
(2022) .. 23

Table 6. Thug personality assessment results ... 32

Table 7. Thug’s correct and partially correct results on Experiment 1 33

Table 8. Thug nonfunctional results ... 34

Table 9. Thug functional assessment results summary ... 35

Table 10. Results from Experiments 2 and 3 .. 39

Table 11. Exploits selected for Experiment 1 ... 45

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xii

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API applications programming interface

CPU central processing unit

CVE common vulnerabilities and exposures

DDoS distributed denial of service

DNS domain name system

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IDS intrusion-detection system

IP Internet Protocol

JSON JavaScript object notation

NoSQL non-SQL

SQL Structured Query Language

SSH secure shell

TCP Transport Control Protocol

TCP/IP Internet Protocol Suite

TTL time-to-live

URI uniform resource identifier

URL uniform resource locator

VM virtual machine

VNC virtual network computing

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisors, Dr. Neil Rowe and Professor

Thuy Nguyen. They provided me with guidance and direction from beginning to end. Their

efforts fueled my enthusiasm, challenged my critical thinking, and encouraged my

creativity. It was my great pleasure to be mentored by them and accomplish this work.

Next, I would like to thank my friends in the 212 CSO cohort at NPS. They kept

me motivated to continue working, assisted when it was needed, and shared in the struggles

of the bad times while celebrating the good ones. A special thank you to Kelly Rosnick.

You know what you did.

Lastly, I would like to thank my wonderful wife, Erin. She supported me throughout

my entire graduate school experience with her unconditional love and care.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1

I. INTRODUCTION

The Internet serves as essential global communication, used by individuals,

companies, governments, and other organizations. These communications serve essential

purposes, such as sharing news and information, allowing businesses to function, operating

critical infrastructure, and supporting the global economy. However, the

interconnectedness of the Internet exposes billions of users as targets to cyberattacks.

Competition between cybersecurity experts and malicious actors has occurred since the

Internet’s start. New software and technologies are constantly scrutinized by malicious

actors for vulnerabilities to exploit. New countermeasures developed to combat exploited

vulnerabilities are also subject to scrutiny by malicious actors to identify new

vulnerabilities and exploits, creating an endless cycle. A recent report by SonicWall shows

an 11% increase in malware attacks in 2022, totaling 2.8 billion attacks (Conner, 2022).

Recently, drive-by download attacks have increased, affecting thousands of users who were

unaware that malicious code was downloaded to their machines while they were browsing

the Web (Lake, 2019). These are attacks on visitors to Web sites.

In 2016, several high-profile Web publishers were affected through compromised

advertising servers, causing tens of thousands of users to be infected with backdoor trojans

and ransomware by malicious actors (Lake, 2019). The websites affected included The

New York Times, MSN, the BBC, the NFL, and Comcast’s Xfinity Web sites. All the sites

were using legitimate advertising servers that malicious actors compromised. In the attack,

hackers delivered malicious advertisements to unsuspecting users, which caused the

execution of “drive-by” downloads and installation of backdoor Bedep Trojan and

TeslaCrypt ransomware. In July 2019, security researchers discovered malicious actors

used drive-by downloads to deliver the Eris ransomware to unsuspecting users by

exploiting a browser Shockwave vulnerability (Lake, 2019). In this attack, malicious actors

compromised the PopCash advertisement network and redirected users to the RIG

exploitation kit on their malicious Web server. Their RIG kit exploited a browser

Shockwave vulnerability; if successful, the kit would download and install the Eris

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

2

ransomware, which encrypted the user’s files and demanded payment for the decryption

key.

These attacks are a few examples of many; therefore, developing new software and

technologies is essential to combat the rising cyber-attack threats. Honeypots (decoy

information systems) are an essential tool for cybersecurity experts to examine the

behaviors and methods used by malicious actors and develop new software, technology,

and methods to counter their efforts.

A. PROBLEM STATEMENT

The number of client-side attacks has increased recently, with malicious actors

targeting vulnerable clients rather than servers using drive-by downloads and other vectors

to compromise clients. We will test whether the client-side honeypot Thug can successfully

deceive malicious or compromised Web servers in collecting drive-by vectors and

identifying relevant or common threats.

B. MOTIVATION AND BENEFITS OF STUDY

This research aimed to identify drive-by download exploits and other attack

methods against Web users. This study will inform cybersecurity experts in government

and industry of the current extent of client-side attack risk for users browsing the Internet.

This study will also benefit future use of client-side honeypot software by assessing its

effectiveness in recognizing exploits and their ability to deceive malicious or compromised

servers. Assessing effectiveness will also identify areas of improvement for client-side

honeypots.

C. ORGANIZATION OF THE THESIS

Chapter II summarizes honeypots, client-side attacks, and work related to our

research. Chapter III describes Thug, our client-side honeypot, and supporting software

used for our experiments. Chapter IV discusses our experiments and Chapter V shows the

analysis of our collected data. Chapter VI provides the conclusions from our work and

ideas for future research.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

3

II. BACKGROUND

Honeypots are cybersecurity measures that act as decoys for detecting and

analyzing intrusion behaviors. They help analyze behaviors of attackers, such as ingress

vectors and identify code used for compromising systems. Honeypots differ based on

varying levels of interaction and ways to configure and apply them. This chapter covers

honeypot software and techniques, other software used in this thesis project, and previous

work in this field.

A. OVERVIEW ON HONEYPOTS

A honeypot distracts or lures attackers through deception. Honeypots can monitor

actions such as keystrokes, authentication attempts, files accessed or modified, and

executed processes. The value of the honeypot is in how much it can be attacked, probed,

or compromised (Joshi & Sardana, 2011). Honeypots emulate different operating systems

and services to lure or entrap attackers. Attackers may believe they are compromising a

legitimate system, but they will not get very far, and the honeypot logs the methods the

attacker uses. Honeypots have advantages over traditional intrusion-detection systems

(IDS) and firewalls in that they collect richer data because any access to a honeypot besides

an administrative connection is an intrusion, and they can also identify new types of threats

and anomalies.

Honeypot implementations can be categorized by interaction level, environment in

which they operate, equipment deployment type, and the role the honeypot fulfills. Low-

interaction honeypots provide minimal interaction with fake services and are safer than

other types of honeypots (Rowe & Rrushi, 2016). Low-level honeypots can identify scans

and other automated attacks, deceive simple attacks, distract attackers from more essential

systems, and collect attack signatures and behaviors.

Medium-interaction honeypots are more sophisticated and require more knowledge

and expertise to configure and run. These honeypots help receive and emulate responses to

payloads from attackers. A medium-interaction honeypot behaves more like a legitimate

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

4

system to entice attackers to stay longer, enabling more intelligence collection on attack

attempts.

High-interaction honeypots typically offer genuine services to lure attackers, thus

carrying a higher risk to the attack target. They can provide complete system access and

collect full details on attacker behavior and exploits. These honeypots are challenging to

deploy due to the tools required to configure them and the necessary safeguards that must

be implemented to keep the system isolated from the legitimate network. However, they

can provide valuable information on new techniques and exploits not seen in traditionally

protected networks.

Honeypots can also be distinguished by their intended environment, usually either

for protection or research. Commercial companies use honeypots to protect their

organization and networks. Research honeypots alert cybersecurity experts of

vulnerabilities or methods attackers use to access their systems. Honeypots can also be

distinguished by their physical or virtual form. Physical honeypots are machines running a

real operating system connected to a network through a single IP address; they are suitable

for high interaction due to their legitimate operating system and hardware, but they have a

high cost and require an infrastructure to configure and maintain. Virtual honeypots only

simulate a machine, and are becoming more common as virtualization allows easier

deployment of multiple honeypots and enables honeypots to cover a bigger address space.

Lastly, honeypots can be distinguished based on their roles. Server-side honeypots

are passive, allowing attackers to connect to them, but do not start traffic unless

compromised (Joshi & Sardana, 2011). Client-side honeypots are active, starting

connections and collecting exploits targeted at client applications, often Web browsers, by

hostile servers (Qassrawi & Zhang, 2011). Thug, the product we studied in this thesis, is a

client-side honeypot that starts connections to identify exploits of vulnerabilities in

different browser implementations (Dell’Aera, 2022).

The Honeynet Project is an international nonprofit security research organization

investigating attacks and exploits and providing open-source tools to improve

cybersecurity (honeynet.org, 2022). Their website links include several kinds of honeypot

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

5

software, including server and client-side honeypots and tools for malware analysis. They

developed Thug.

B. WEB CRAWLERS

Web crawling is essential for client-side honeypots, which need to search websites

to find malicious Web links (URLs). Web crawlers search and index content found on the

Internet, and are widely used by commercial Web indexers like Bing and Google. Web

crawlers work by discovering new URLs, examining and categorizing their contents, and

finding hyperlinks to other Web pages to which to crawl next.

Usually, Web crawlers work from a list of Web links provided by commercial Web

indexers to analyze (Ikinci et al., 2008). However, this method means popular Web pages

are selected at higher rates, creating bias in the sampling. Other Web crawling methods

include keyword searches to select “seeds” for crawling or generating random IP addresses

(Invernizzi et al., 2012).

C. CLIENT-SIDE ATTACKS

Client-side Web attacks (“drive-by exploits”) occur when Web users visit a

webpage that delivers an HTML document containing malicious code. The malicious code

can exploit vulnerabilities in the Web browser, browser plugins, or operating system to

compromise the user’s Web browser. Then malicious actors can download and execute

additional malware, compromising the user’s system. This process can occur without the

user’s knowledge by simply visiting a Web page.

A drive-by exploit is a four-stage process shown in Figure 1 (Le et al., 2013).

Attackers first load malicious code into the HTML documents of a website. Attackers can

lure visitors in several ways: by sending spam email with links to their servers, abusing

search engines to report their pages through search engine optimization, using social media

to publish their links, or modifying legitimate Web servers. Users then visit the malicious

or compromised servers and unknowingly retrieve the attacker’s malware. Usually,

attackers target a specific browser or operating-system vulnerability for exploitation.

Therefore they often try to detect the user’s system, version, and installed software to

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

6

decide which version of the malicious content to deliver. Software often exploited includes

Adobe Acrobat, Adobe Flash Player, Apple QuickTime, Java, Microsoft ActiveX controls,

and Microsoft Silverlight.

Figure 1. Four-stage process of a drive-by download. Adapted from Le et al.

(2013).

D. MALWARE

Malware is code that has been added, removed, or changed by a malicious actor to

intentionally harm an information system or alter its intended function. Many variations

and types of malware occur, each with particular goals. Many of these goals are financially

oriented, from collecting information on unsuspecting users and selling that information to

advertisers, stealing banking information to permit fraud, or encrypting a user’s data and

holding it hostage for ransom. Other malicious actors create malware to cause havoc and

destruction without financial gain. One can broadly classify malware into several

categories (Caviglione et al., 2021; Namanya et al., 2018).

• A virus is a self-replicating malicious program that copies itself by spreading

to and infecting other systems. Viruses are passive and need action from the

user to replicate, such as through sharing infected media or email. Viruses can

produce a range of malicious actions, like collecting information from a user

for advertising purposes, harming the underlying system, or connecting the

infected computer to a botnet.

• Worms are like viruses but do not require human interaction to spread. Instead,

they scan open ports and software vulnerabilities to find exploits that allow

propagation.

Malicious content
loaded into Web

page

Web page contents
downloaded to
victim’s Web

browser

Browser, plugin, or
OS vulnerability is

exploited

Victim machine is
compromisedVictim visits

Web page
Web page
rendered

Payload
executed

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

7

• A Trojan is a program that appears as legitimate software to a user but has

malicious functions. They can install other malware, steal information, or allow

attackers to access the victim’s machine remotely, depending on the payload.

Like viruses, Trojans rely on interaction with the victim for activation and

spread.

• Spyware are malicious programs that abuse the infected operating system’s

functions to spy on the victim’s actions, by logging keystrokes, recording user

behavior, or logging the user’s Web activities. This information is sent to the

malicious actor, who can use the information to access bank accounts or serve

directed advertisements.

• Adware are programs that deliver advertisements to the user, usually pop-ups

or dialog boxes. While adware may not have malicious intentions, they can

annoy users.

• Rootkits are complex programs that hide in an infected computer’s privileged

processes, letting them take complete control of the infected computer. Because

of their privileges, they are very invasive and difficult to remove. Rootkits can

accomplish many malicious actions, notably controlling the victim system and

adding it to a botnet.

• Bots are programs configured to perform specific actions; however, they are

used by malicious actors to accomplish malevolent goals, such as forming

botnets. Malicious botnets are often used for distributed denial of service

(DDoS) attacks.

• Ransomware are malicious programs that hold the file system of an infected

computer hostage while demanding ransom for the release of the files. This is

usually done with strong encryption techniques, where the program encrypts

files, leaving the victim unable to access any of their critical data. These

programs are used by malicious actors for extortion, often in the form of

cryptocurrency.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

8

• A relatively new malware threat is cryptojacking, which uses unauthorized

access to the victim’s machine to mine cryptocurrencies and generate revenue

for the malicious actor. While the victim may be unaware of its presence, these

programs burden the host machine by increasing its power demands and causing

unnecessary wear.

All these malware types can be installed and executed through drive-by download

exploits.

E. PREVIOUS WORK

1. Detecting Malicious Web Servers with Honeypot Clients Using
Keyword Searches

A related project compared low-interaction and high-interaction honeypot clients

(Qassrawi and Xhang, 2011). It used HoneyC (Seifert, 2006) as its low-interaction

honeypot and Capture-HPC (Seifert & Steenson, 2006) as its high-interaction honeypot.

The researchers used the commercial tool SiteAdvisor to check their results by analyzing

the same selected Web sites. However, SiteAdvisor does not operate as a honeypot client,

but downloads portions of Web pages and scans them for signatures of known malicious

software. Ten keywords were used for URL selection for testing, identifying about 20,000

websites. These were separated into seven categories shown in Figure 2.

Category
Malicious URL Rate %

SiteAdvisor HoneyC Capture
Warez 9.3 3.9 4.3
Cracks 1.9 1.1 1.3
Screen Saver 7.3 3.1 3.9
Adult 0.7 0.2 0.3
Games 1.0 0.6 0.8
Celebrity 5.1 0.5 1.2
Wallpaper 6.67 3.5 3.8

Figure 2. Client honeypots and SiteAdvisor malicious identification results
from 20,000 analyzed websites. Source: Qassrawi and Zhang (2011).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

9

The results show a significant difference between malicious URLs identified by

SiteAdvisor compared to the two honeypots. However, SiteAdvisor uses additional

information beyond website visits to determine maliciousness: spam and phishing site

reports, request site analyses, and Domain Name System (DNS) information. The

researchers concluded that combining the technologies of high-interaction client-side

honeypots with low-interaction ones is necessary. They suggested using low-interaction

honeypots to quickly identify suspicious behavior to pass on to the high-interaction

honeypot for further analysis.

2. Detecting Malicious Web Servers with Honeypot Clients Using Web
Search Seeding

A honeypot client Monkey-Spider analyzed crawled webpages through search-

engine seeding (Ikinci et al., 2008). Monkey-Spider is a low-interaction honeypot client

that separates Web crawling from webpage analysis for malicious code using ClamAV

(Ikinci, 2008). For starting sites for crawling, they used the Web Services API (applications

programming interface) for Google, Yahoo, and MSN search and collected the first 1,000

site results from five search keywords as well as URLs from commercial blacklists (lists

of known malicious sites). These sites were their initial Web crawler visits (“seeds”). The

researchers used 20,457 seeds downloaded from 20,005,756 URLs during the Web

crawling. The fractions of malware they found out of the total files retrieved from websites

are given in Figure 3.

Figure 3. Monkey-Spider Web crawling results. Source Ikinci et al. (2008).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

10

These results show fewer malicious websites compared to a 2007 report from

SiteAdvisor, which identified 4.1 percent of websites as malicious (Keats et al., 2007). This

discrepancy could be due to the Web crawler focusing on extracting URLs over

downloading their content, which meant fewer malicious files downloaded. Another issue

they saw was duplicate visits to popular websites like YouTube and Amazon. Since these

sites are popular, they less often have malware. The malware collected from their

experiment consisted mainly of Trojans and adware, the severity of which they did not

report. These researchers concluded that their methods could identify malicious websites

faster than high-interaction honeypot clients.

3. Cloaking Malicious Web Servers to Avoid Honeypot Client Detection

Another project studied the effectiveness of client-side honeypots in identifying

malicious webservers that used fingerprinting and bot-detection techniques (Pinoy et al.,

2021). They used two honeypot clients and two kinds of analysis software. One client was

the low-interaction client Thug, and the other was the high-interaction honeypot client

Cuckoo Sandbox (Stichting Cuckoo Foundation, 2019). The tools used were Lookyloo,

which captures webpages and redirection data (Lookyloo.eu, 2022), and VirusTotal, a

common cybersecurity tool for identifying malicious code (VirusTotal.com, 2022). The

project created a custom Web server with the Django Python Web framework using 21

cloaking methods to prevent analysis by clients. All four tools had difficulty pulling

malicious content from the Web server due to its cloaking techniques, as shown in

Figure 4. Also, most tools did not support newer technologies, applications programming

interfaces, and browser versions. This suggests modern websites can effectively cloak their

malicious-download techniques from honeypot clients and other analysis tools.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

11

Figure 4. Web server cloaking techniques detected by client honeypots.

Source: Pinoy et al. (2021)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

12

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

13

III. METHODOLOGY AND DESIGN

This chapter discusses honeypot software and technologies relevant to our research

and methods for analyzing Web servers for drive-by download exploits.

A. THUG

Thug is a Python-based low-interaction honeypot client that does static and

dynamic analyses to inspect suspicious malware (Dell’Aera, 2022). Thug uses the Google

V8 JavaScript engine (Google.com, 2022) wrapped through STPyV8 (Dell’Aera & Syme,

2019/2022) to analyze malicious JavaScript code, and uses Libemu (Dell’Aera et al., 2022)

wrapped through Pylibemu (Dell’Aera et al., 2022) to detect and emulate shell codes. Thug

currently emulates 42 different browser types and provides 90 vulnerability plugins for

analysis, as in Table 1. Browser type is passed by a command-line argument to Thug when

running, with additional vulnerability plugins and the target URL for analysis. After

analyzing the specified URLs and collecting data from the Web site, Thug stores its results

in a NoSQL MongoDB database (Mongo.org, 2022) running on either the host machine or

a separate system. Thug’s operation is summarized in Figure 5. We chose this client-side

honeypot based on its capabilities, open-source license, and active maintenance and

support.

Figure 5. Thug operation diagram

Internet

Mongo
Database

Web Crawler
or

User Sourced
URLs

Thug

Crawl Internet
for URLs

Provide URLs
to Thug

Analyze
provided URLs

Store analysis
results in
MongoDB

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

14

Table 1. Browser types emulated by Thug. Adapted from Dell’Aera (2022).

Web Browser Operating System Broswer Version
Internet Explorer 6.0
Internet Explorer 6.1
Internet Explorer 7.0
Internet Explorer 8.0
Internet Explorer 6.0
Internet Explorer 8.0
Internet Explorer 8.0
Internet Explorer 9.0
Internet Explorer 10.0

Windows XP Chrome 20.0.1132.47
Chrome 20.0.1132.47
Chrome 40.0.3987.116
Chrome 45.0.2454.85
Chrome 49.0.2623.87

MacOS X 10.7.4 Chrome 19.0.1084.54
MacOS X 10.15.3 Chrome 80.0.3977.116
MaxOS X 10.17.7 Chrome 97.0.4692.99

Chrome 26.0.1410.19
Chrome 30.0.1599.15
Chrome 44.0.2403.89
Chrome 54.0.2840.100
Chrome 98.0.4758.102
Chrome 18.0.1025.166
Chrome 25.0.1364.123

Samsung Galaxy S II, Android 4.1.2 Chrome 29.0.1547.59
Google Nexus, Android 4.0.4 Chrome 18.0.1025.133

iPad, iOS 7.1 Chrome 33.0.1750.21
iPad, iOS 7.1.1 Chrome 35.0.1916.41
iPad, iOS 7.1.2 Chrome 37.0.2062.52
iPad, iOS 8.0.2 Chrome 38.0.2125.59
iPad, iOS 8.1.1 Chrome 39.0.2171.45
iPad, iOS 8.4.1 Chrome 45.0.2454.68
iPad, iOS 9.0.2 Chrome 46.0.2490.73
iPad, iOS 9.1 Chrome 47.0.2526.70
Windows XP Firefox 12.0
Windows 7 Firefox 3.6.13

Firefox 19.0
Firefox 40.0

Windows XP
Windows 7

MacOS X 10.7.2 Safari 5.1.1
MacOS X 11.2.3 Safari 14.0.3
iPad, iOS 7.0.4 Safari 7.0
iPad, iOS 8.0.2 Safari 8.0
iPad, iOS 9.1 Safari 9.0

Firefox
Linux

Safari

Safari 5.1.7

Internet Explorer

Windows XP

Windows 2000

Windows 7

Chrome

Windows 7

Linux

Samsung Galaxy S II, Android 4.0.3

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

15

B. SUPPORTING TOOLS

MongoDB is an open-source document-oriented NoSQL database. It records data

with field-name and value pairs similar to JSON objects, and a document can include other

documents, arrays, or arrays of documents. Thug uses MongoDB to store data from its

interactions with websites. It records URLs analyzed, analysis type, connections made,

behaviors observed, codes identified, cookies downloaded, connection graphs, locations,

and certificates. The collection schema is shown in Table 2.

Table 2. MongoDB Thug collection schema. Adapted from Dell’Aera
(2022).

MongoDB
collection

Data type stored

Analyses Logs data about the analysis type, including Thug version, personality,
and plugins enabled

Behaviors Logs behavior of the Web page

Certificates Logs certificates collected

Codes Logs extracted code from the analysis

Connections Logs redirections during analysis

Cookies Logs cookies collected

Exploits Logs identified exploits

Graphs Logs the analysis JSON exploit graph

Locations Logs the content stored at each URL

URLs Logs URLs analyzed

fs.files Stores metadata of collected file samples

fs.chunks Stores file chunks of collected file samples

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

16

Thug stores collected file samples as GridFS chunks in MongoDB, in Figure 6. The

top diagram shows how Thug uses MongoDB to store data from its URL analysis. The

bottom diagram shows how Thug stores collected file samples with MongoDB’s GridFS

collection schema.

Figure 6. Thug interaction with MongoDB. Adapted from Mongo.org (2022)

Scrapy is an open-source Web-crawling and Web-scraping framework supporting

data mining, monitoring, and automated testing (Scrapy.org, 2022). Scrapy is based on

Twisted, a popular Python networking framework (Twisted Matrix Labs, 2022).

Commercial Web crawlers like Googlebot (Google.com, 2022) collect information besides

crawling IP addresses. However, we only need the secondary data sent by Web pages, not

Thug URL Analysis Logging
Interaction with MongoDB

Thug Sample File Collection
Interaction with MongoDB

URL analysis results
JSON Object

collection 1

collection 2

collection 3

collection ...

MongoDB

MongoDB
Collection Schema

Collected file
sample

MongoDB

File sample chunks

File sample
metadata

fs.files
collection

fs.chunks
collection

GridFS Collection
Schema

Thug

Thug

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

17

the pages themselves, and Scrapy sufficed. We also chose Scrapy due to its speed. We used

Scrapy to crawl random IP addresses and record responses from Web servers for further

analysis with Thug. The random IPv4 addresses were generated using the Python package

Faker. The Web crawl flow chart is in Figure 7.

Faker generates
random IP address

Scrapy sends HTTP
GET request to IP

address
Received response?

Provide Thug IP
address or domain

name

Yes

No

Figure 7. Web crawl flow chart

ClamAV is an open-source antivirus toolkit developed by Cisco Systems (Cisco

Systems, 2022). ClamAV is quick and lightweight, and provides an easy-to-use interface

from the command line. We used ClamAV to scan sample files downloaded from Thug’s

analysis to determine if they were malicious.

Additional URLs and IP addresses used for analysis included a sample of sites

obtained from commercial threat intelligence vendors by our school. These sites had been

“blacklisted” by various sources for sending data with known malicious signatures or

otherwise showing suspicious behavior. However, they had not necessarily been observed

to send drive-by downloads, and some may have been blacklisted for just hosting malicious

users. Nonetheless, they were a richer source of malicious client activity than the random

IP addresses we tested first.

C. FUNCTIONAL TESTING OF THUG

We tested the functions of Thug using public exploits and exploit tools. The

Metasploit Framework is an open-source penetration-testing tool to find, exploit, and

validate vulnerabilities (Metasploit.org, 2022). Metasploit provides modules for exploiting

different operating systems, applications, and platforms. For this research, we used

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

18

Metasploit’s browser-exploit modules to test Thug and assess its ability to identify browser

and browser-plugin exploits used for drive-by downloads. We also tested some exploits

not in Metasploit by coding the vulnerability as an HTML Web page on the testing server.

The Exploit Database collects publicly available exploits and its corresponding

vulnerable software for vulnerability researchers and penetration testers (Offensive

Security.org, 2022). It allows searching for exploits by title, CVE number, type, platform,

and other parameters. It also provides exploits that were unavailable in Metasploit for the

functional testing of Thug. We used the source code of these exploits to implement

malicious HTML Web pages on our test server.

We tested Thug’s ability to emulate different Web browser personalities using

TCP/IP fingerprint analysis by NetworkMiner (Hjelmvik, 2022). NetworkMiner is an

open-source network analysis tool that can conduct passive network-traffic analysis or

analyze collected packets (Hjelmvik, 2022). NetworkMiner’s analysis include extracting

files or certificates from network traffic, decapsulation, and operating-system

fingerprinting using the Satori and p0f databases (Hjelmvik, 2022). We used

NetworkMiner to analyze packet-capture data from Thug’s interaction with Web servers

for Thug’s personality assessment.

D. TEST ENVIRONMENT

We ran the Thug 4.0 client on a DigitalOcean cloud platform outside our campus

network. DigitalOcean offers cloud computing services and virtualized resources. They

call their Linux virtualized platform a “droplet.” Our DigitalOcean machine ran the Oracle

VirtualBox hypervisor to host a Linux virtual machine on which Thug and the supporting

tools ran. The Thug virtual machine (VM) contained Thug, Scrapy, MongoDB, ClamAV,

the malicious test server, and Metasploit, as in Figure 8. (The objects in red indicate a

malicious Web server under our control for Thug’s functional tests.) We connected to our

servers through SSH and established SSH tunnels and virtual network computing (VNC)

services for remote configuration and control. DigitalOcean does not implement firewall

or intrusion-detection rules that could stop or impede HTTP responses to Thug. We also

did not change the firewall configuration on our virtual machines and used the default

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

19

settings. The default firewall rules block all unsolicited incoming traffic, allow unrestricted

outgoing traffic, and only allow incoming traffic associated with outgoing

communications.

Figure 8. Test environment

We configured both machines with Ubuntu Server 20.04 LTS. Table 3 shows the

DigitalOcean virtual machine hardware specifications, and Table 4 shows the hardware

specifications for the Thug virtual machine.

Table 3. DigitalOcean Droplet virtual machine

Operating System Ubuntu Server 20.04 LTS 64-bit
Memory 16 GB
Processor 4 vCPU (dedicated)
Disk 100GB SSD
Storage Volume 200 GB

Malicious Test Server Metasploit

DigitalOcean Droplet VM

Thug VM

Thug MongoDB

ClamAVScrapy

Redirect

Internet

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

20

Table 4. Thug virtual machine

Operating System Ubuntu Server 20.04 LTS 64-bit
Memory 12 GB
Processor 4 vCPU
Disk 190GB vdi

E. EXPERIMENTATION PLAN

We ran three experiments with Thug’s default configuration, emulating Windows

XP running Internet Explorer 6.0 with Adobe Acrobat Reader 9.1.0, JavaPlugin 1.6.0.32,

and Shockwave 10.0.64.0 plugins enabled. Experiment 1 was a functional test of Thug’s

ability to identify and classify drive-by exploits. This experiment analyzed a test Web

server under our control. The server either ran the Metasploit modules by HTTP redirects

or served HTML Web pages with malicious code from the Exploit Database. The Eicar

antimalware test file served as the malicious payload for all the exploits (Eicar.org, 2022).

Cybersecurity vendors use its signature to trigger test alerts with antivirus tools without the

dangers of using actual malware. We selected the exploits based on the vulnerability

identification modules in Thug’s source code and several other exploits without

corresponding modules. We assessed Thug’s ability to identify which exploit was used in

the drive-by download and successfully retrieved the anti-malware test file.

Our assessment criteria of Thug’s performance were based on the amount of

information Thug provided for each exploit.

• A correct result meant that Thug correctly identified the exploit by name or

provided an associated CVE number.

• A partially correct result meant Thug did not identify the vulnerability by

name but noted evidence of malicious activity by identifying the suspicious

behavior or retrieving the exploit’s malicious shell code. We used these

clues to identify the exploit based on its signatures.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

21

• A nonfunctional result meant we could not configure the exploit to work

correctly, either through misconfiguration of the Metasploit software, the

HTML code of the exploit, or an incompatible environment.

• An incorrect result meant that Thug could not identify the exploit or find

an indicator of malicious activity.

Experiments 2 and 3 were a four-step process using Thug to analyze IP addresses.

The first step found IP addresses or URLs with running Web servers. Experiment 2 used

addresses identified using the Scrapy Web crawler to scan random IP addresses and check

if a Web server was running on that machine; Experiment 3 used addresses obtained from

a commercial blacklist. Experiments 2 and 3 both then fed the received URLs and IP

addresses to Thug for its analysis. Then the data stored on MongoDB was reviewed for

malicious activities and Thug’s analysis. The final step extracted the collected sample files

and scanned them for malware with the ClamAV antimalware tool, as in Figure 9. The

obtained malware was then categorized based on the analysis by ClamAV.

Figure 9. Malware analysis workflow

We prevented malware from infecting our machines through Thug’s emulation and

the inherent security measures in Unix-based operating systems, specifically Unix file

permissions. Because Thug only emulates vulnerabilities, malicious servers cannot exploit

the vulnerabilities with malicious shell code that could result in installing or executing the

ClamAV

PyMongo
Python ScriptMongoDB

Retrieve file
samples

Write files
as read only

Conduct AV scan

Scan results

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

22

payload malware. The malicious servers do believe they are exploiting a vulnerability by

sending a payload to execute. However, malicious shell code does not run; Thug collects

the payload and stores it in MongoDB. The malware is inert because GridFS separates the

files into metadata and chunks. Once the malware files are ready for analysis, a Python

script using the PyMongo package retrieves the malware and stores them in a quarantined

folder with read-only privileges. Writing files in read-only mode ensures that malicious

binaries cannot execute.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

23

IV. IMPLEMENTATION

A. THUG PERSONALITY ASSESSMENT

To assess Thug’s ability to emulate different Web browsers and operating systems,

we did TCP/IP fingerprint analysis during Thug’s interaction with a Web server. This

looked at specific TCP and IP header fields of the source traffic and matched them to a

specific operating system. Since different operating systems use different default values

for TCP fields such as time-to-live or window size, their values can identify the operating

system. We selected five Thug “personalities” of operating systems and Web browsers for

our TCP/IP fingerprint analysis, shown in Table 5. Personalities are specific operating

systems combined with specific Web browsers. Thug claims personalities by setting user-

agent fields in the HTTP GET request header when connecting to a Web server.

Table 5. Thug personalities selected for assessment.
Adapted from Dell’Aera (2022)

winxpie60 Windows XP, Internet Explorer 6.0
win10ie110 Windows 10, Internet Explorer 11.0
osx11safari14 MacOS X 11.2.3, Safari 14.0.3
linuxchrome98 Linux, Chrome 98.0.4758.102
ipadchrome47 iPad iOS 9.1, Chrome 47.0.2526.70

We wanted to see if this emulation method would suffice to deceive a Web server

using more sophisticated methods to identify connecting clients, such as TCP/IP

fingerprinting. For this, we configured the DigitalOcean Droplet virtual machine to run

Tcpdump to capture packet data between Thug and the Web server during their interaction,

shown in Figure 10.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

24

Figure 10. Personality assessment configuration

Tcpdump collected packets only on network traffic that made connections on port

80 or 443. We used Thug to analyze Google’s Web-search homepage, due to its small

HTTP footprint, to facilitate quick analysis by Thug. We this page for analysis because we

did not anticipate seeing malicious behavior; rather, we were interested in observing the

interaction between Thug and Google’s Web server. We also did a control test using a

Windows 11 laptop running the latest Chrome Web browser and used Wireshark to collect

the network traffic data between the control browser and Google’s Web server, as shown

in Figure 11. We conducted the TCP/IP fingerprint analysis on the packet captures with

NetworkMiner.

Figure 11. Personality assessment control configuration

tcpdump

Thug VM

DigitalOcean Droplet VM

www.google.com

Wireshark

Web
Browser

Control Laptop

www.google.com

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

25

B. EXPERIMENT 1: FUNCTIONAL ASSESSMENT

We assessed Thug’s functions by configuring our malicious Web server to test its

ability to identify and classify drive-by download exploits. We created a simple Web server

using Python’s built-in server, which can be started using the command python3 -m

http.server; the command line argument -m http.server tells Python to run the

script named http.server, which is our Web server. This Web server used “localhost”

as the IP address and used port 8000 for HTTP access.

Python’s Web server takes files from the directory in which the server was started

and creates hyperlinks to all the documents in the directory to display on a webpage, shown

in Figure 12. We accessed our Web server through the DigitalOcean Droplet virtual

machine by forwarding port 8000 to the Thug virtual machine through VirtualBox’s

settings page. Web pages were manually created by saving files in the directory as HTML

using Vim, a command-line text editor. We examined 107 vulnerability identification

modules in Thug’s source code and selected exploits we could find on Metasploit or The

Exploit Database for testing. Also, we selected seven exploits without corresponding

identification modules for testing to observe how Thug would classify exploits it was not

explicitly programed to identify. Overall, we chose 99 exploits for testing (Appendix A).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

26

Figure 12. Screenshot of directory listing in the malicious test Web server

For simplicity and ease of deployment, we used Metasploit’s browser exploit

modules when possible. We installed Metasploit in its default configuration on the Thug

virtual machine shown in Figure 8. After installation, we set the global payload option to

windows/download_exec with the Eicar anti-malware test file as the payload. This

payload option represents a malicious drive-by download, and the Eicar anti-malware test

file represents malware. We wrote a startup script for Metasploit that loaded the 99 browser

exploit modules we selected, and configured them with unique URI paths and port

numbers. For each exploit module, we created a malicious HTML document in which the

http-equiv parameter of the HTML “<meta>” tag was set to “Refresh” and the

content parameter was set to the URL of a Metasploit module by 0;

URL=http://10.0.2.15:40XX/XX (Figure 13). These two commands force the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

27

client to do an HTML redirect, causing the visiting Web browser to refresh its page and

load the page of the exploit on the Metasploit server.

Figure 13. Metasploit redirect Web page

If a selected exploit was unavailable in Metasploit, we searched the Exploit

Database for the HTML code of the exploit. We then coded the exploit into our Web server

as its own Web page. If the webpage redirected to the Metasploit server, we included

“msrd” at the end of the file name to indicate “Metasploit redirect.” If a file does not have

this suffix, then the HTML document was coded using the exploit source code from The

Exploit Database. In total, 56 Web pages were coded to redirect to Metasploit, and 43 were

manually coded with malicious source code from The Exploit Database.

Once our malicious Web server was configured with exploits, we wrote a Python

script to iterate through the HTML links on our Web server and invoke Thug analysis with

a ten-second wait time between each link’s analysis to ensure Metasploit could keep up

with the pace of Thug. After the analysis completed, we reviewed the results logged in

MongoDB and assessed Thug’s ability to identify the exploit. We first checked the

“exploits” collection in MongoDB (Table 2) to see if Thug had identified the exploit used

by name or CVE number. If the exploit was not named outright, we reviewed the logs of

the “behaviors” and “codes” collections for clues to identify the exploit. If the shell code

of the exploit was logged in the “codes” collection, we conducted a reverse search of the

shell code and identified the exploit. If the shell code was unavailable, we reviewed the

“behaviors” collection and identified the exploit based on its observed behavior. Our

assessment process is shown in Figure 14.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

28

Figure 14. Thug functional test exploit identification workflow

During this experiment, Thug crashed while analyzing our HTML document

containing the GlobalLink 2.7.0.8 ConnectAndEnterRoom ActiveX control stack buffer

overflow exploit. Line 467 in Thug’s source code

“thug/thug/Logging/modules/MongoDB.py” returned a TypeError: a byte-like

object is required, not ‘str’ error message during its analysis. Our

debugging indicated that the error occurred when a string was returned to Thug’s

MongoDB logging function, which could be corrected by encoding the returned string into

bytes. We reported the bug to Thug’s author with our suggested fix, who promptly

responded to our report and issued Fix #335 (Dell’Aera & Foley, 2022). We did not see

any other discrepancies with Thug’s operation.

C. EXPERIMENTS 2 AND 3: REAL-WORLD ATTACKS

Experiments 2 and 3 used Thug to analyze real-world Web servers for client-side

attacks. In Experiment 2, source sites were collected by randomly crawling IP addresses

and looking for Web servers running on those machines. We wrote a Python program that

used the Python package Faker to generate 6,000,000 random valid IPv4 addresses,

Start
Review
Exploits

Collection

Exploit identified by
name or CVE?

Log exploit identified
correctly

Review Codes
Collection Shell code extracted?

Exploit identified
with shell code reverse

search?

Review
Behaviors
Collection

Behaviors identified?
Exploit identified

with behavior reverse
search?

Log exploit identified
partially correct

Log exploit incorrectly
identified

yes

yes yes

yes

yes

no

no

no

no

no

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

29

addresses are not in the private or reserved IP address space. A script then crawled the

addresses with Scrapy and recorded whether the IP addresses responded to an HTTP GET

request. Any response meant the host machine was running a Web server. For this

collection, we configured Scrapy’s settings to support 5,000 concurrent requests and set

the thread pool max size to 5,000, with a download timeout of 15 seconds and a depth

priority of one. These settings provided excellent crawling performance.

If a response from a Web server was received, its domain name or IP address was

recorded and added to a list. Out of the 6,000,000 generated IP addresses, our crawler

identified 37,415 as running Web servers. We wrote a Python script to iterate through the

IP addresses and domain names and invoke Thug to analyze each entry. We used Thug’s

default personality, Windows XP with Internet Explorer 8.0, with no other options passed

to the command line. Experiment 3 was conducted similarly except that the source sites

were obtained from a commercial blacklist containing 83,667 IP addresses and URLs.

After Thug’s analysis was complete, we reviewed the log data in MongoDB and

recorded the number of exploits identified. We used MongoDB’s Mongosh interface to

access the database for our review, with particular attention to the “exploits,” “codes,”

“behaviors,” and “locations” collections (Table 2). Next, we extracted the collected file

samples stored in the MongoDB with GridFS using a Python program with PyMongo. The

program iterates through MongoDB’s fs.files collection, and then uses the GridFS package

to reassemble the files and export them to a directory. The MongoDB engineering team

aided us during this process. Once the file extraction was complete, we ran ClamAV with

options to identify malware infected files and potentially unwanted applications (PUA).

Any file identified as PUA or infected with malware were quarantined to a separate folder.

The remaining files were deleted.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

30

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

31

V. RESULTS AND DISCUSSION

A. THUG PERSONALITY ASSESSMENT RESULTS

The personality assessment showed that TCP/IP fingerprint analysis with

NetworkMiner could identify Thug’s underlying operating system with 50% confidence.

When we examined the packet capture from the assessment, we observed that the HTTP

user-agent fields are consistent with the chosen personalities from Table 5. Figure 15 shows

the TCP stream for the HTTP GET request with the appropriate user-agent field for

Windows XP running Internet Explorer 8.0.

Figure 15. Wireshark TCP stream of Thug’s HTTP GET request

However, in the packet captures for all five tests, we observed that the default TTL

(time to live) values and TCP window sizes were inconsistent with the target emulated

operating systems. For example when emulating Windows XP, Thug uses a TTL value of

64 and a TCP window size of 64240, while Windows XP’s default values are 128 and

65535 respectively (Hjelmvik, 2011). Thug used the same values of these two parameters

for all five tested personalities we selected (Table 5) during the analysis. Using these

fingerprints and the Satori OS fingerprint database, NetworkMiner identified Thug with a

50% confidence level as running on a Linux-based operating system, with Windows 10 as

the other possibility. For a control test using the Windows 11 laptop with the latest Chrome

browser, NetworkMiner identified the laptop as a Windows-based system with 100%

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

32

confidence using the P0f database, and as a Windows 10 system with 85.71% confidence

using the Satori database. We consider NetworkMiner’s identification as close to correct

for the control test, as Windows 11 is primarily based on Windows 10 (Stewart et al., 2022).

The summary of our assessment results is shown in Table 6.

Table 6. Thug personality assessment results

Personality NetworkMiner identification
winxpie60 Linux 5.4 (50%) Windows 10 (50%)
win10ie110 Linux 5.4 (50%) Windows 10 (50%)
osx11safari14 Linux 5.4 (50%) Windows 10 (50%)
linuxchrome98 Linux 5.4 (50%) Windows 10 (50%)
ipadchrome47 Linux 5.4 (50%) Windows 10 (50%)
Windows 11 control Windows (100%): Windows 10 (85.71%)

B. EXPERIMENT 1 RESULTS

Experiment 1 showed that Thug could identify the malicious artifacts of our Web

server. Overall, Thug recognized 85 malicious exploits of 99. Thug correctly identified 45

by name or provided a CVE number. It also identified another 40 as malicious from general

behavior observations such as ActiveX control abuse, malicious pixel iframes, or malicious

shell code of the exploit. A summary of Thug’s analysis on 84 substantially correct cases

is shown in Table 7. “AA?” indicates that additional analysis was needed to identify the

exploit based on signatures from extracted shell code or from malicious behavior, marked

as “SC” and “MB,” respectively.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

33

Table 7. Thug’s correct and partially correct results on Experiment 1

Exploit AA? Exploit AA? Exploit AA? Exploit AA?

AIM goaway
CVE: 2004-0636 MB AOL Radio AmpX

CVE: N/A
Adobe Flash
copyPixels
CVE: 2014-0556

MB
IBM Lotus Notes
Client
CVE: 2012-2174

SC

Adobe
‘Collab.getIcon()’
CVE: 2009-0927

MB
Adobe
‘Doc.media.newPlayer’
CVE: 2009-4324

MB Java 7 Applet
CVE: 2012-4681 MB ADODB.Recordset

CVE: 2006-3354

Adobe Flash Player
‘newfunction’
CVE: 2010-1297

MB Adobe ‘util.printf()’
CVE: 2008-2992 MB AnswerWorks

CVE: 2007-6387 Baidu Search Bar
CVE: 2007-4105 SC

Creative Software
AutoUpdate Engine
CVE: 2008-0955

SC
MS DirectShow
‘msvidctl.dll’
CVE: 2008-0015

SC
BitDefender Online
Scanner
CVE: 2007-6189

ChinaGames
‘CGAgent.dll’
CVE: 2009-1800

IBM Lotus Domino
DWA Upload Module
CVE: 2007-4474

 IBM Lotus ‘inotes6.dll’
CVE: 2007-4474 SC GlobalLink 2.7.0.8

CVE: 2007-5722 SC DivX Player 6.6.0
CVE: 2008-0090 SC

EnjoySAP SAP GUI
CVE: 2008-4830

Facebook Photo
Uploader
CVE: 2008-5711

D-Link Audio
Control
CVE: 2008-4771

Xunlei Web
Thunder
CVE: 2007-5064

SC

Gateway WebLaunch
CVE: 2008-0220 SC GOM Player

CVE: 2007-5779 Lycos FileUploader
CVE: 2008-0443 SC

Ourgame
‘GLIEDown2.dll’
CVE: N/A

ICQ Toolbar
CVE: 2008-7136 MS14-064

CVE: 2014-6342 MB
HP Compaq
Notebooks
CVE: 2007-6333

 Clever Internet
CVE: 2007-4067 SC

MSXML Memory
Corruption
CVE 2012-1889

SC
Macrovision
Installshield
CVE: 2007-5660

Java Deployment
Toolkit
CVE: 2010-0886

 jetAudio 7.x
CVE: 2007-4983

Macrovision FlexNet
CVE: 2008-4586 MS IE XML

CVE: 2006-5745 Move Networks
CVE: 2008-1044 MS Rich Textbox

CVE: 2008-0237 SC

NCTAudioFile2
CVE: 2007-0018

RealPlayer
‘ierpplug.dll’
CVE:2007-5601

SC MySpace Uploader
CVE: 2008-0659 Sejoong Namo

CVE: 2008-0634

Apple QuickTime
CVE: 2007-6166 SC Shockwave rcsL

CVE: 2010-3653 SC NeoTracePro 3.25
CVE: 2006-6707 SC Nessus Delete File

CVE: 2007-4031

MS Silverlight
CVE: 2013-3896 MB Microsoft Access

CVE: 2008-2463
Nessus Command
Execution
CVE: 2007-4062

 Office Viewer OCX
CVE: 2007-2588 SC

SonicWALL
NetExtender
CVE: 2007-5603

 MS OWC Spreadsheet
CVE: 2009-1534 SC Xunlei XPPlayer

CVE: N/A SC
Cisco Linksys PTZ
Cam
CVE: 2012-0284

SC

BaoFeng Storm
CVE: 2009-1612 Symantec AppStream

CVE: 2008-4388
Quantum
Streaming Player
CVE: 2008-1044

 Qvod Player 2.1.5
CVE: 2008-4664 SC

Symantec BackupExec
CVE: 2007-6016 MS Visual Studio

CVE: 2008-3704 SC
Rediff Bol
Downloader
CVE: 2006-6838

SC Rising Scanner
CVE: N/A SC

MS Media Encoder
CVE: 2008-3008

MS Internet Explorer
Unsafe Scripting
CVE: N/A

 Sina DLoader Class
CVE: 2008-6442

StreamAudio
Chaincast
CVE: 2008-0248

MS IE
WebViewFolderIcon
CVE: 2006-3730

 WinZip FileView
CVE: 2006-5198

Toshiba
Surveillance
CVE: 2008-0399

 UUSee ‘Update’
CVE: 2008-7168 SC

Winamp Playlist UNC
Path
CVE: 2006-0476

SC HP LoadRunner
CVE: 2007-6530

VLC Remote Bad
Pointer
CVE: 2007-6262

 Firefox ‘WMP’
CVE: 2010-2745 SC

Yahoo! Messenger
CVE: 2007-4515

Zenturi
ProgramChecker
CVE: 2007-2987

MS IE Remote
Wscript
CVE: 2004-0549

 Yahoo! JukeBox
CVE: 2008-0625

Adobe CoolType
CVE: 2010-2883 MB Adobe Flash Player

CVE: 2011-2110 MB Yahoo! Messenger
CVE: 2007-5017 SC

Yahoo! Messenger
‘YVerinfo.dll’
CVE: 2007-4515

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

34

In 13 other cases, the exploit failed to deposit malicious files on our victim machine

due to either misconfiguration of the exploit or an incompatible environment. These cases

are summarized in Table 8. Most were caused by an incompatible Metasploit module or

incompatible environment, though we could not identify the cause of failure to execute the

exploit in four cases. Thug did not identify the malicious nature of an exploit at all in one

case, Ourgame GL World 2.x with CVE number 2008-0647. Thug’s analysis of this

particular exploit did not log an exploit name or CVE number in the “exploits” collection,

did not extract and identify shell code in the “codes” collection, or identify any malicious

behaviors in the “behavior” collection. It appears that Thug keeps up to date with

obfuscations and other deception associated with drive-by downloads. Statistics of

Experiment 1 are shown in Table 9.

Table 8. Thug nonfunctional results

Exploit Failure reason
Adobe flatedecode predictor 01
CVE: 2009-3459

Unknown

Adode flatedecode predictor 02
CVE: 2009-3459

Incompatible exploit module

CA BrightStor Discovery Service
CVE: 2005-2535

Incompatible exploit module

Comodo credential gatherer
CVE: N/A

Incompatible environment

MS DirectX DirectShow
CVE: 2007-3901

Incompatible exploit module

Microsoft Works 7
CVE: 2008-1898

Incompatible exploit module

MS IE XMLDOM filename disclosure
CVE: 2013-7331

Incompatible environment

Microsoft IIS RDS DataStub
CVE: 2002-1142

Incompatible exploit module

Kaseya Virtual System Administrator
CVE: 2015-6922

Incompatible exploit module

HP Easy Printer Care
CVE: 2011-4786

Unknown

Honeywell HSC Remote Deployer
CVE: 2013-0108

Unknown

iMesh 7 ‘IMWebControl’
CVE: 2007-6493

Unknown

KingSoft ‘UpdateOcs2.dll’
CVE: 2008-1307

Compilation error

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

35

Table 9. Thug functional assessment results summary

Result Type Frequency
Correct 45
Partially correct 40
Incorrect 1
Non-functional 13

C. EXPERIMENT 2 RESULTS

Experiment 2 directed Thug to test random IP addresses. As expected, most results

were uninteresting since malicious sites are statistically rare. Minor anomalies of these sites

were flagged on occasion. Overall, Experiment 2 analyzed 37,415 Web sites. Thug

identified 2,054 Web servers with suspicious behavior, all being abuse of ActiveX control

GET and POST methods. An example of Thug’s analysis results is shown in Figure 16. In

this example, an ActiveX GET method is used to pull content from a secondary site.

Figure 16. Thug report of malicious behavior

For this analysis, 146,768 file samples were downloaded, of which ClamAV

identified 18 as infected with malware and 230 as potentially unwanted applications

(PUA). For Experiments 2, we classified the malware into 12 categories based on

ClamAV’s signature names, as shown in Figure 17. ClamAV’s signature names follow the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

36

format “{platform}.{category}.{name}-{signature id}-{revision},” where platform

denotes the operating system of the malware, category describes the malware type, and

then the name, signature identification and revision number follow (Cisco Systems Inc.,

2022). Most malware fell into eight distinct categories based on the platform and category

description, the bottom eight in Figure 17. Malware listed in the “Other” category included

malware targeted at specific applications such as Microsoft Office document macros,

HTML, and Java applications. Figure 18 shows the percentage totals of the malware by

type.

Figure 17. Frequency of malware downloaded from random Web servers by
malware type

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

37

Figure 18. Proportion of malware downloaded from random Web servers by
type

The PUAs identified were trojans, adware, and trackers. An example that ClamAV

identified was the “PUA.Html.Trojan.Agent-37074”; a VirusTotal scan showed that 24 of

61 antivirus tools flagged this file as malicious. Microsoft and Trend Micro security blogs

identified the PUA as Exploit:HTML/Phominer.A and Trojan.HTML.IFRAME.FASGU

respectively (Microsoft, 2017; Fuentebella, 2022). Their reports indicate this PUA is

dropped onto victim computers when visiting malicious Web sites. It can steal information

from the victim’s computer, and can embed malicious Iframes to redirect users to other

malicious sites.

D. EXPERIMENT 3 RESULTS

Experiment 3 used Thug to analyze and collect data from a commercial blacklist of

IP addresses and domain names. We obtained this list from the Information Technology

department at our School; the list included sites that were malicious for many reasons, not

necessarily for drive-by downloads. As in Experiment 2, we also used the same 12

ClamAV malware categories. The results of this experiment were more interesting than

those of Experiment 2, with fewer observed malicious behaviors in website interaction

(e.g., content delivery by ActiveX) but more kinds of malware. We analyzed 83,667 Web

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

38

servers, of which Thug identified 953 with malicious activity. As with Experiment 2, all

malicious behaviors observed used ActiveX control abuse with GET and POST methods.

During the analysis, Thug collected 602,731 file samples, of which ClamAV identified

2,043 as malware and an additional 869 as PUAs; statistics are shown in Figure 19 and

Figure 20.

Figure 19. Frequency of malware downloaded from blacklist Web servers by
type

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

39

Figure 20. Proportion of malware downloaded from blacklist Web servers by
type

The fewer observed malicious behavior may indicate that the blacklist only contains

Web servers with malicious payloads, not those with exploits used to start the drive-by

download. Table 10 shows the results of Experiments 2 and 3. None of the random Web

servers scanned in Experiment 2 were in the blacklist for Experiment 3.

Table 10. Results from Experiments 2 and 3

Sites

Malicious
Behavior Malware PUA

Blacklist 83,667 953 (1.14%) 2,043 (2.44%) 869 (1.03%)
Random Web 37,415 2,045 (5.47% 18 (0.04%) 230 (0.61%)

E. DISCUSSION

Thug’s personality assessment shows a sufficient ability to deceive malicious Web

servers, but it can be improved. While the TCP/IP fingerprint may be adequate to deceive

a Web server into thinking a system is a Windows or Linux-based operating system, it may

not suffice for emulating MacOS, Android, or iOS-based operating systems. Improvements

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

40

to Thug should be made by altering the default values of the TTL and TCP/IP window

fields to those consistent with the known values of the emulated operating systems.

Although Thug performed well in categorizing and identifying different drive-by

exploits on our malware server in Experiment 1, we did not observe as many exploits from

the blacklist as from random IP addresses. Our results also indicated that drive-by

downloads using methods besides ActiveX controls are rare.

The malware we collected did vary considerably. Experiment 2 provided 13 unique

malware files, while Experiment 3 provided 163 unique malware files. In Experiment 2,

5.4% of random Web servers showed signs of malicious activity, which is similar to

previous experiments (Ikinci et al., 2008; Keats et al., 2007; Qassrawi & Zhang, 2011).

However, not all of the 2,054 malicious interactions downloaded and executed malware.

This observed behavior suggests that many malicious activities find it more profitable to

collect reconnaissance for future use. Our suspicion is further supported by the fact that the

random Web servers delivered more PUAs than malware files, as PUAs often are spyware,

adware, or trackers.

Experiment 3 showed interesting results In the significant difference between

malicious behaviors observed and malware downloaded, likely due to the types of servers

included in the blacklist, which typically host the malware payload instead of pulling

contents from other malicious servers. Legitimate Web servers may be compromised by

malicious advertisements (malvertising) or attackers embedding malicious redirects. The

goal of the blacklist is to prevent the malware from reaching the unsuspecting user without

limiting access to legitimate websites. The comparatively fewer PUAs may indicate that

blacklisted Web servers have more ambitious malicious intentions than most Web servers.

Comparisons of the malware (Figure 21) collected between Experiments 2 and 3

show interesting results. The only ransomware seen was from the random Web servers

used in Experiment 2. Ransomware is particularly damaging to victims, and our random

Web server sample collected most PUAs with few instances of serious ransomware.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

41

Figure 21. Comparison of malware frequency between Experiments 2 and 3.

Another interesting observation was the differences in the targeted operating

system between the two experiments. Experiment 2 showed collected malware almost

entirely targeted Windows operating systems, but most malware collected in

Experiment 3 targeted Unix and Linux systems. Our test environment used a Linux-based

operating system to host Thug, but we configured Thug to emulate a Windows XP system.

The large occurrence of Unix-targeted malware suggests that the blacklisted web servers

may be using more sophisticated techniques to identify host operating systems, while the

malicious web servers from the random sample do not. This also argues for improvements

to Thug’s personality emulation.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

42

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

43

VI. CONCLUSION AND FUTURE WORKS

A. SUMMARY OF FINDINGS

Our personality assessment of Thug’s emulation abilities showed TCP/IP

fingerprint analysis can identify Thug’s underlying operating system with a medium level

of confidence. While Thug may fool some malicious Web servers, it might not fool more

sophisticated Web servers using less-known methods to identify clients.

Experiment 1 demonstrated Thug’s ability to identify and log a substantial number

of known drive-by exploits. Although some of Thug’s results required additional analysis

to identify the exploit, Thug performed well overall during its functional testing,

demonstrating its usefulness as a cybersecurity tool. Experiment 2 used Thug to analyze

real-world Web servers from randomly generated IP addresses. We did not observe any

interesting drive-by exploits, but we did collect a significant amount of malware. While

most of the collected malware was classified as potentially unwanted applications such as

spyware, adware, or trackers, the rest were generic with minor occurrences of ransomware.

Experiment 3 used Thug to analyze real-world Web servers using addresses obtained from

a commercial blacklist. Although we did not find any interesting drive-by exploits, we

observed less malicious behavior with a much larger variation in the types of collected

malware.

We demonstrated methods for finding and collecting malware for analysis using

client-side honeypots such as Thug. We tested Thug’s functionality, and our experiments

confirmed its usefulness in collecting empirical data in a real-world scenario. Its benefit

can only be best seen for the relatively rare malicious sites since it finds many uninteresting

anomalies on randomly chosen sites. We conclude that client-side honeypots can provide

added value to standard anti-malware tools.

B. FUTURE WORK

We recommend changing the TCP time-to-live and TCP window size values to

those consistent with the target emulated operating system and repeating Experiment 3 on

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

44

the blacklist Web servers to observe if a difference occurs in the amount of collected

malware targeting Linux-based operating systems. Repeating the experiment with these

changes could identify what methods malicious Web servers use to identify connecting

clients. Additionally, for Thug’s personality tests, we only used Windows XP and Internet

Explorer 6.0. Repeating Experiments 2 and 3 using the same source list of IP addresses but

with other personalities and comparing the differences in malicious behavior or delivered

malware could reveal interesting insights into the operation of malicious Web servers.

Experiments 2 and 3 yielded much log data. Further analysis of it could provide

insight to trends in the types of malware collected or the interactions between the client

and Web server that led to the download of the malware. Such discoveries could be

accomplished by extracting features from our dataset and using machine-learning

algorithms to identify correlations.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

45

APPENDIX A. EXPLOITS SELECTED FOR EXPERIMENT 1

This appendix lists the exploits we selected for testing in Experiment 1. The exploit

column contains the name and applicable Mitre CVE number. “Imp.” represents

implementation method, “HTML” for manually coding the exploit or “MS” for Metasploit.

Table 11. Exploits selected for Experiment 1

Exploit Imp. Exploit Imp.
AIM goaway CVE: 2004-0636 MS Ourgame GL World 2.x with CVE

number 2008-0647
HTML

Adobe ‘Collab.getIcon()’ CVE: 2009-0927 MS Java Deployment Toolkit CVE:
2010-0886

HTML

Adobe Flash Player ‘newfunction’ CVE:
2010-1297

MS Move Networks CVE: 2008-1044 HTML

Creative Software AutoUpdate Engine CVE:
2008-0955

MS MySpace Uploader CVE: 2008-0659 HTML

IBM Lotus Domino DWA Upload Module
CVE: 2007-4474

MS NeoTracePro 3.25 CVE: 2006-6707 HTML

EnjoySAP SAP GUI CVE: 2008-4830 MS Nessus Command Execution CVE:
2007-4062

HTML

Gateway WebLaunch CVE: 2008-0220 MS Xunlei XPPlayer CVE: N/A HTML
ICQ Toolbar CVE: 2008-7136 MS Quantum Streaming Player CVE:

2008-1044
HTML

MSXML Memory Corruption CVE 2012-
1889

MS Rediff Bol Downloader CVE: 2006-
6838

HTML

Macrovision FlexNet CVE: 2008-4586 MS Sina DLoader Class CVE: 2008-
6442

HTML

NCTAudioFile2 CVE: 2007-0018 MS Toshiba Surveillance CVE: 2008-
0399

HTML

Apple QuickTime CVE: 2007-6166 MS VLC Remote Bad Pointer CVE:
2007-6262

HTML

MS Silverlight CVE: 2013-3896 MS MS IE Remote Wscript CVE: 2004-
0549

HTML

SonicWALL NetExtender CVE: 2007-5603 MS Yahoo! Messenger CVE: 2007-5017 HTML
BaoFeng Storm CVE: 2009-1612 MS IBM Lotus Notes Client CVE: 2012-

2174
HTML

Symantec BackupExec CVE: 2007-6016 MS ADODB.Recordset CVE: 2006-
3354

HTML

MS Media Encoder CVE: 2008-3008 MS Baidu Search Bar CVE: 2007-4105 HTML
MS IE WebViewFolderIcon CVE: 2006-
3730

MS ChinaGames ‘CGAgent.dll’ CVE:
2009-1800

HTML

Winamp Playlist UNC Path CVE: 2006-0476 MS DivX Player 6.6.0 CVE: 2008-0090 HTML
Yahoo! Messenger CVE: 2007-4515 MS Xunlei Web Thunder CVE: 2007-

5064
HTML

Adobe CoolType CVE: 2010-2883 MS Ourgame ‘GLIEDown2.dll’ CVE:
N/A

HTML

AOL Radio AmpX CVE: N/A MS Clever Internet CVE: 2007-4067 HTML

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

46

Exploit Imp. Exploit Imp.
Adobe ‘Doc.media.newPlayer’ CVE: 2009-
4324

MS jetAudio 7.x CVE: 2007-4983 HTML

Adobe ‘util.printf()’ CVE: 2008-2992 MS MS Rich Textbox CVE: 2008-0237 HTML
MS DirectShow ‘msvidctl.dll’ CVE: 2008-
0015

MS Sejoong Namo CVE: 2008-0634 HTML

IBM Lotus ‘inotes6.dll’ CVE: 2007-4474 MS Nessus Delete File CVE: 2007-4031 HTML
Facebook Photo Uploader CVE: 2008-5711 MS Office Viewer OCX CVE: 2007-

2588
HTML

GOM Player CVE: 2007-5779 MS Cisco Linksys PTZ Cam CVE:
2012-0284

HTML

MS14-064 CVE: 2014-6342 MS Qvod Player 2.1.5 CVE: 2008-4664 HTML
Macrovision Installshield CVE: 2007-5660 MS Rising Scanner CVE: N/A HTML
MS IE XML CVE: 2006-5745 MS StreamAudio Chaincast CVE: 2008-

0248
HTML

RealPlayer ‘ierpplug.dll’ CVE:2007-5601 MS UUSee ‘Update’ CVE: 2008-7168 HTML
Shockwave RCSL CVE: 2010-3653 MS Firefox ‘WMP’ CVE: 2010-2745 HTML
Microsoft Access CVE: 2008-2463 MS Yahoo! JukeBox CVE: 2008-0625 HTML
MS OWC Spreadsheet CVE: 2009-1534 MS Yahoo! Messenger ‘YVerinfo.dll’

CVE: 2007-4515
MS

Symantec AppStream CVE: 2008-4388 MS Adobe flatedecode predictor 01
CVE: 2009-3459

MS

MS Visual Studio CVE: 2008-3704 MS Adode flatedecode predictor 02
CVE: 2009-3459

MS

MS Internet Explorer Unsafe Scripting CVE:
N/A

MS CA BrightStor Discovery Service
CVE: 2005-2535

MS

WinZip FileView CVE: 2006-5198 MS Comodo credential gatherer CVE:
N/A

MS

HP LoadRunner CVE: 2007-6530 MS MS DirectX DirectShow CVE:
2007-3901

MS

Zenturi ProgramChecker CVE: 2007-2987 MS Microsoft Works 7 CVE: 2008-1898 MS
Adobe Flash Player CVE: 2011-2110 MS MS IE XMLDOM filename

disclosure CVE: 2013-7331
MS

Adobe Flash copyPixels CVE: 2014-0556 MS Microsoft IIS RDS DataStub CVE:
2002-1142

MS

Java 7 Applet CVE: 2012-4681 MS Kaseya Virtual System
Administrator CVE: 2015-6922

MS

AnswerWorks CVE: 2007-6387 HTML HP Easy Printer Care CVE: 2011-
4786

MS

BitDefender Online Scanner CVE: 2007-
6189

HTML Honeywell HSC Remote Deployer
CVE: 2013-0108

MS

GlobalLink 2.7.0.8 CVE: 2007-5722 HTML iMesh 7 ‘IMWebControl’ CVE:
2007-6493

HTML

D-Link Audio Control CVE: 2008-4771 HTML KingSoft ‘UpdateOcs2.dll’ CVE:
2008-1307

HTML

Lycos FileUploader CVE: 2008-0443 HTML HP Compaq Notebooks CVE: 2007-
6333

HTML

Control Webpage HTML

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

47

APPENDIX B. SCRAPY AND MONGODB SCRIPTS

This appendix contains Python 3 code we wrote for configuring the Scrapy Web

crawler, and Python 3 code for interfacing with MongoDB and extracting collected file

samples. Scrapy installation and environment configuration documentation can be found

at (Scrapy.org, 2022). The settings.py program includes the changes made to the

WebsiteSpider class used in our environment.

web_spider.py
import scrapy
from faker import Faker
from tqdm import tqdm
from datetime import datetime
faker = Faker()

def ts():
 return "{:%Y-%m-%d %H:%M:%S}".format(datetime.now())
class WebsiteSpider(scrapy.Spider):
 name = "websites"

 def start_requests(self):
 global found_urls
 print("Generating random URLs")
 urls = ["NULL"] * 6000000
 for index, url in (enumerate(tqdm(urls))):
 urls[index] = ("http://" + faker.ipv4())
 print("URL generation complete\n")
 textfile = open("./logs/generated_ip_" + ts() +".txt","w")
 for element in urls:
 textfile.write(element + "\n")
 textfile.close()
 found_urls = []
 tf = open("./logs/found_urls_" + ts() + ".txt", "w")
 print("Begining web crawl")
 for url in tqdm(urls):
 try:
 yield scrapy.Request(url=url, callback=self.parse)
 except:
 continue
 i = 0
 for element in found_urls:
 tf.write(element + "\n")
 i += 1
 tf.close
 print("Web crawl complete")

 def parse(self, response):

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

48

 global found_urls
 found_urls.append(response.request.url)

settings.py

ROBOTSTXT_OBEY = True

SCHEDULER_PRIORITY_QUEUE =
'scrapy.pqueues.DownloaderAwarePriorityQueue'
CONCURRENT_REQUESTS = 5000
REACTOR_THREADPOOL_MAXSIZE = 5000
LOG_LEVEL = 'INFO'
COOKIES_ENABLED = False
RETRY_ENABLED = False
DOWNLOAD_TIMEOUT = 15
REDIRECT_ENABLED = True
AJAXCRAWL_ENABLED = True
DEPTH_PRIORITY = 1
SCHEDULER_DISK_QUEUE = 'scrapy.squeues.PickleFifoDiskQueue'
SCHEDULER_MEMORY_QUEUE = 'scrapy.squeues.FifoMemoryQueue'
COOKIES_ENABLED = False

To interface with MongoDB and extract the collected file samples, we used the

Python package PyMongo. Installation and configuration instructions can be found at

(Mongo.org, 2022).

mongofiles.py
from pymongo import MongoClient
import gridfs
import os
from tqdm import tqdm

client = MongoClient(host='localhost', port=27017)
db = client["thug.fs"]
counter = 1
fs = gridfs.GridFS(db)
print("connected to mongodb")

for document in tqdm(db.fs.files.find()):
 my_id = document['_id']
 outputdata = fs.get(my_id).read()
 if os.path.isfile("/home/<user>/<folder>/" + str(my_id)):
 break
 else:
 download_location = "/home/<user>/<folder>/" + str(my_id)
 output = open(download_location, "wb")
 output.write(outputdata)
 output.close()

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

49

LIST OF REFERENCES

Caviglione, L., Choraś, M., Corona, I., Janicki, A., Mazurczyk, W., Pawlicki, M., &
Wasielewska, K. (2021). Tight arms race: Overview of current malware threats
and trends in their detection. IEEE Access, 9, 5371–5396. https://doi.org/10.1109/
access.2020.3048319

Cisco Systems, Inc. (2022). ClamAV documentation. Signatures – ClamAV
documentation. Retrieved November 21, 2022, from https://docs.clamav.net/
manual/Signatures.html

Cisco Systems. (2022). ClamAV. http://www.clamav.net/

Conner, B. (2022). Mid-Year Update: 2022 SonicWall cyber threat report.
https://www.sonicwall.com/medialibrary/en/infographic/mid-year-update-2022-
sonicwall-cyber-threat-report.pdf

Dell’Aera, A. (2022). Thug documentation. https://buffer.github.io/thug/doc/

Dell’Aera, A., Guida, G., & Skovoroda, A. (2022). Libemu [C]. https://github.com/
buffer/libemu (Original work published 2015).

Dell’Aera, A., Schloesser, M., & Piccinno, F. (2022). PyLibemu [Python].
https://github.com/buffer/pylibemu (Original work published 2011).

Dell’Aera, A., & Syme, P. (2022). STPyV8 [C++]. Cloudflare. https://github.com/
cloudflare/stpyv8 (Original work published 2019).

Eicar.org. (2022). EICAR standard anti-virus test file. https://www.eicar.org/download-
anti-malware-testfile/

Fuentebella, C. (2022, November 11). Trojan.HTML.IFRAME.FASGU – Threat
Encyclopedia. Threat Encyclopedia. https://www.trendmicro.com/vinfo/us/threat-
encyclopedia/malware/trojan.html.iframe.fasgu/

Google.com. (2022). GoogleBot. https://developers.google.com/search/docs/crawling-
indexing/googlebot

Google.com. (2022). V8 JavaScript engine [C++]. https://v8.dev/

Hjelmvik, E. (2011). Passive OS fingerprinting. Netresec.
https://www.netresec.com/?page=Blog&month=2011-11&post=Passive-OS-
Fingerprinting

Hjelmvik, E. (2022). NetworkMiner (2.7.3) [C#]. NETRESEC.
https://www.netresec.com/?page=NetworkMiner

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

https://developers.google.com/search/docs/crawling-indexing/googlebot
https://developers.google.com/search/docs/crawling-indexing/googlebot
https://www.netresec.com/?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting
https://www.netresec.com/?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting

50

Hjelmvik, E. (2022). NetworkMiner—The NSM and network forensics analysis tool.
Netresec. https://www.netresec.com/?page=NetworkMiner

Honeynet.org. (2022). The Honeynet project. https://www.honeynet.org/about/

Ikinci, A. (2008). The Monkey-Spider project. https://monkeyspider.sourceforge.net/
documentation.html

Ikinci, A., Holz, T., & Freiling, F. (2008). Monkey-spider: Detecting malicious websites
with low-interaction honeyclients. https://madoc.bib.uni-mannheim.de/27368/

Invernizzi, L., Comparetti, P. M., Benvenuti, S., Kruegel, C., Cova, M., & Vigna, G.
(2012). EvilSeed: A guided approach to finding malicious web pages. 2012 IEEE
Symposium on Security and Privacy, 428–442. https://doi.org/10.1109/SP.2012.33

Joshi, R. C., & Sardana, A. (2011). Honeypot: A new paradigm to information security.
CRC Press.

Keats, S., Nunes, D., & Greve, P. (2007). Mapping the mal web. McAfee SiteAdvisor, 25.

Lake, J. (2019, December 13). What is a Drive-by Download and how can it infect your
computer? Comparitech. https://www.comparitech.com/blog/information-
security/drive-by-download/

Le, V. L., Welch, I., Gao, X., & Komisarczuk, P. (2013). Anatomy of drive-by download
attack. Proceedings of the Eleventh Australasian Information Security
Conference, 138, 49–58.

Lookyloo.eu. (2022). Looklyloo. https://www.lookyloo.eu/docs/main/index.html

Microsoft. (2017). Exploit:HTML/Phominer.A. https://www.microsoft.com/en-us/wdsi/
threats/malware-encyclopedia-description?Name=Exploit%
3AHTML%2FPhominer.A

Metasploit.org. (2022). Rapid 7. https://github.com/rapid7/metasploit-framework

Mongo.org. (2022). MongoDB database 6.1.0. https://github.com/mongodb/mongo

Mongo.org. (2022). PyMongo 4.3.3 documentation. https://pymongo.readthedocs.io/en/
stable/ [Documentation].

Namanya, A. P., Cullen, A., Awan, I. U., & Disso, J. P. (2018). The world of malware:
An overview. 2018 IEEE 6th International Conference on Future Internet of
Things and Cloud (FiCloud), 420–427. https://doi.org/10.1109/
FiCloud.2018.00067

Offensive Security.org. (2022). Exploit database archive. https://www.exploit-db.com/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

51

Pinoy, J., Van Den Broek, F., & Jonker, H. (2021). Nothing to see here! [Open University
of the Netherlands]. https://research.ou.nl/

Qassrawi, M. T., & Zhang, H. (2011). Detecting malicious web servers with
honeyclients. Journal of Networks, 6(1), 145–152. https://doi.org/10.4304/
jnw.6.1.145-152.

Rowe, N. C., & Rrushi, J. (2016). Introduction to cyberdeception. Springer International
Publishing. https://doi.org/10.1007/978-3-319-41187-3

Scrapy.org (2022). [Python]. Scrapy project. https://github.com/scrapy/scrapy (Original
work published 2010).

Seifert, C. (2006). HoneyC (1.3.0). The Honeynet Project. https://www.honeynet.org/
projects/old/honeyc/

Seifert, C., & Steenson, R. (2006). Capture-HPC. The Honeynet Project.
https://www.honeynet.org/projects/old/capture-hpc/

Stewart, M., Ohlinger, M., Czechowski, A., & Greg, L. (2022). Windows 11 overview.
https://learn.microsoft.com/en-us/windows/whats-new/windows-11-overview

Stichting Cuckoo Foundation. (2019). Cuckoo sandbox—Automated malware analysis.
https://cuckoosandbox.org/

Twisted Matrix Labs. (2022). [Python]. Twisted. https://github.com/twisted/twisted
(Original work published 2011).

VirusTotal.org. (2022). [Go]. VirusTotal CLI. https://github.com/VirusTotal/vt-cli
(Original work published 2018).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

52

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

53

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

WWW . N P S . E D U

W H E R E S C I E N C E M E E T S T H E A R T O F W A R F A R E

	I. INTRODUCTION
	A. PROBLEM STATEMENT
	B. MOTIVATION AND BENEFITS OF STUDY
	C. ORGANIZATION OF THE THESIS

	II. BACKGROUND
	A. OVERVIEW ON HONEYPOTS
	B. WEB CRAWLERS
	C. CLIENT-SIDE ATTACKS
	D. MALWARE
	E. PREVIOUS WORK
	1. Detecting Malicious Web Servers with Honeypot Clients Using Keyword Searches
	2. Detecting Malicious Web Servers with Honeypot Clients Using Web Search Seeding
	3. Cloaking Malicious Web Servers to Avoid Honeypot Client Detection

	III. METHODOLOGY AND DESIGN
	A. THUG
	B. SUPPORTING TOOLS
	C. FUNCTIONAL TESTING OF THUG
	D. TEST ENVIRONMENT
	E. EXPERIMENTATION PLAN

	IV. IMPLEMENTATION
	A. THUG PERSONALITY ASSESSMENT
	B. EXPERIMENT 1: FUNCTIONAL ASSESSMENT
	C. EXPERIMENTS 2 AND 3: REAL-WORLD ATTACKS

	V. RESULTS AND DISCUSSION
	A. THUG PERSONALITY ASSESSMENT RESULTS
	B. EXPERIMENT 1 RESULTS
	C. EXPERIMENT 2 RESULTS
	D. EXPERIMENT 3 RESULTS
	E. DISCUSSION

	VI. CONCLUSION AND FUTURE WORKS
	A. SUMMARY OF FINDINGS
	B. FUTURE WORK

	APPENDIX A. EXPLOITS SELECTED FOR EXPERIMENT 1
	APPENDIX B. SCRAPY AND MONGODB SCRIPTS
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST
	BACK COVER.pdf
	22Sep_Mitchell_Justin_First8
	22Sep_Mitchell_Justin
	22Jun_Mitchell_Justin
	Introduction
	Problem Statement
	Background
	Equipment and Network Setup
	Overview of Results
	Conclusions and Contributions

	Background
	Origin of Research Network
	Open-Source Network Implementation
	Open Source SMSC Options

	Equipment and Network Setup
	Open Stack Network
	Open Stack Network Configuration
	SMS Integration into the OAI Open Stack
	Testbed UE Configuration

	Results
	Devices that Could not Connect to Network
	Testbed Network Speed Tests
	Network Link Budget Analysis

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	USRP B200 Datasheet
	KERNEL AND SOFTWARE CONFIGURATION
	RAN Kernel Configuration
	CN Kernel Configuration
	Software Configuration
	Prerequisites and Initial Docker Set-up
	Build Images
	Create and Configure Containers
	Start Network Functions
	Stopping Network Functions

	EC20 NETWORK OPERATORS LIST
	List of References
	Initial Distribution List

	2 Footer JRL no border.pdf
	22Sep_Ong_Eunice Xing Fang_First8
	22Sep_Ong_Eunice Xing Fang
	I. introduction
	A. Background
	B. Military Communication Network
	C. Problem Statement
	D. Thesis objectives

	II. Literature Review
	A. Wireless ad hoc Networks
	1. Mobile Ad-hoc Networks
	2. Wireless Mesh Networks

	B. network connected UAVs
	1. Ad-hoc Routing Protocol
	2. ISM Bands Regulation
	3. Free Space Path Lost
	4. Antenna Type and Antenna Gain

	III. Exploratory Research
	A. Current Operations COMMUNICATION planning
	B. Need Statement
	C. value Hierarchy
	D. requirements analysis
	E. identification of possible unmanned Aerial Systems
	1. Tactical Drones
	a. DJI Matrice 300 RTK
	b. DeltaQuad Pro VTOL UAV
	c. JTI F160 Inspection and Fighting Drone

	2. Aerostats
	a. SKYSTAR 180
	b. SKYSTAR 300
	c. Desert Star Helikite

	F. Functional Mapping

	IV. Conceptual design
	A. Conceptual Design
	B. Operational Scenario and assumptions
	1. Phase 1: Advancement of Troops along Pre-planned Route
	2. Phase 2: Conduct of Battle and Securing Key Area of Interest
	3. Phase 3: Conduct Battle Damage Assessment
	4. Data Exchange and Average Bit Rate

	V. Feasibility Analysis
	1. Maximum Communication Range
	B. Effective Application throughput
	1. Received Signal Strength as a Function of Distance
	2. Analysis of IEEE 802.11ax Standard
	a. Comparing the Performance between 2.4 GHz and 5.0 GHz

	3. Analysis of IEEE 802.11n Standard

	C. Proposed number of assets required
	1. Simulation of Operational Environment
	2. Communication Coverage
	3. Number of Assets Required

	D. Summary

	VI. Conclusion
	1. Thesis Contributions and Achievements
	2. Future Work

	appendix. Simulation Model
	A. Model layout between two WLAN Nodes
	B. Model layout within a WLAn Node

	List of References
	initial distribution list

	THESIS template-2022.pdf
	Blank Page

	BACK COVER.pdf
	22Sep_Mitchell_Justin_First8
	22Sep_Mitchell_Justin
	22Jun_Mitchell_Justin
	Introduction
	Problem Statement
	Background
	Equipment and Network Setup
	Overview of Results
	Conclusions and Contributions

	Background
	Origin of Research Network
	Open-Source Network Implementation
	Open Source SMSC Options

	Equipment and Network Setup
	Open Stack Network
	Open Stack Network Configuration
	SMS Integration into the OAI Open Stack
	Testbed UE Configuration

	Results
	Devices that Could not Connect to Network
	Testbed Network Speed Tests
	Network Link Budget Analysis

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	USRP B200 Datasheet
	KERNEL AND SOFTWARE CONFIGURATION
	RAN Kernel Configuration
	CN Kernel Configuration
	Software Configuration
	Prerequisites and Initial Docker Set-up
	Build Images
	Create and Configure Containers
	Start Network Functions
	Stopping Network Functions

	EC20 NETWORK OPERATORS LIST
	List of References
	Initial Distribution List

	2 Footer JRL no border.pdf
	22Sep_Ong_Eunice Xing Fang_First8
	22Sep_Ong_Eunice Xing Fang
	I. introduction
	A. Background
	B. Military Communication Network
	C. Problem Statement
	D. Thesis objectives

	II. Literature Review
	A. Wireless ad hoc Networks
	1. Mobile Ad-hoc Networks
	2. Wireless Mesh Networks

	B. network connected UAVs
	1. Ad-hoc Routing Protocol
	2. ISM Bands Regulation
	3. Free Space Path Lost
	4. Antenna Type and Antenna Gain

	III. Exploratory Research
	A. Current Operations COMMUNICATION planning
	B. Need Statement
	C. value Hierarchy
	D. requirements analysis
	E. identification of possible unmanned Aerial Systems
	1. Tactical Drones
	a. DJI Matrice 300 RTK
	b. DeltaQuad Pro VTOL UAV
	c. JTI F160 Inspection and Fighting Drone

	2. Aerostats
	a. SKYSTAR 180
	b. SKYSTAR 300
	c. Desert Star Helikite

	F. Functional Mapping

	IV. Conceptual design
	A. Conceptual Design
	B. Operational Scenario and assumptions
	1. Phase 1: Advancement of Troops along Pre-planned Route
	2. Phase 2: Conduct of Battle and Securing Key Area of Interest
	3. Phase 3: Conduct Battle Damage Assessment
	4. Data Exchange and Average Bit Rate

	V. Feasibility Analysis
	1. Maximum Communication Range
	B. Effective Application throughput
	1. Received Signal Strength as a Function of Distance
	2. Analysis of IEEE 802.11ax Standard
	a. Comparing the Performance between 2.4 GHz and 5.0 GHz

	3. Analysis of IEEE 802.11n Standard

	C. Proposed number of assets required
	1. Simulation of Operational Environment
	2. Communication Coverage
	3. Number of Assets Required

	D. Summary

	VI. Conclusion
	1. Thesis Contributions and Achievements
	2. Future Work

	appendix. Simulation Model
	A. Model layout between two WLAN Nodes
	B. Model layout within a WLAn Node

	List of References
	initial distribution list

	THESIS template-2022.pdf
	Blank Page

