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ABSTRACT 

In the future, the DOD will more frequently incorporate AI into tasks with high 

consequences and, in turn, be scrutinized for mistakes. So far, much AI development has 

occurred in the private sector for which the consequences of error are lower than in 

defense. The DOD faces different incentives for the interpretability of AI and needs AI to 

aid decision-makers instead of replacing them. My thesis project implements techniques 

to improve trust in a speaker recognition task by focusing on meaningful and 

theoretically sound feature extraction and model simplicity. My main result is expected 

and elicits action from DOD. I find that a convolutional neural network (CNN) model 

performs substantially better than a multilayer perceptron and that logistic regression 

cannot discern speaker identity. Thus, the DOD needs to focus on research to develop 

interpretable models for complex tasks. The other result I find is surprising and motivates 

interpretability: When I construct features using mel frequency cepstral coefficients 

(MFCCs) on a human speech signal with an improperly long window, my CNN achieves 

an accuracy of 92%. Ill-defined MFCCs are theoretically meaningless; however, I 

find that they help predict speaker identity. Further confounding this result, I find that 

when I construct the MFCCs using the suggested 30 ms window, the model’s accuracy 

falls to 72%. Future research should explore disentangled CNN-based models and the 

concept of an MFCC as windowing time grows. 
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Executive Summary

Interpretability should be a primary focus of AI research for Department of Defense (DOD) 
tasks because DOD tasks are high-stakes, and mistakes are scrutinized. In this thesis, I 
implement two simple techniques to increase interpretability in artificial intelligence (AI): 
meaningful and sparse features and whether or not a simpler model can achieve acceptable 
performance. The AI application I focus on is speaker recognition. To begin, I review the 
state-of-the-art literature on interpretability. I also review the 70-year-long literature on mel 
frequency cepstral coefficients (MFCC), the premier feature extraction method for human 
speech. Next, using PyTorch’s Dataset class and Dataloader, along with several 
custom functions, I organize the massive VoxCeleb 2.0 dataset for speaker recognition. 
VoxCeleb 2.0 contains over a million utterances by celebrity speakers taken from YouTube. 
On average, each speaker has 150 utterances in VoxCeleb 2.0. My custom dataset creates 
random pairs of utterances from randomly selected speakers and creates a balanced 
dataset of 50,000 to 100,000 “same” speaker and “different” speaker pairs. Using a 
convolutional neural network (CNN), an multilayer perceptron (MLP), and logistic 
regression, I model speaker recognition using PyTorch’s neural network class. My results 
show that the performance of the CNN model using 12 well-defined MFCCs performs on 
par with a CNN model using 40 well-defined MFCCs. This result implies that the early 
literature on MFCCs is correct, and the first 12 MFCCs are the most important. 
While sparse models are not automatically more interpretable, fewer meaningful 
features allow users and practitioners to understand the inputs. My results also show that 
with 12 well-defined MFCCs, accuracy on the test set for the CNN is 72%, the MLP is 
61%, and the logistic regression is 50%. This result implies that a complex model like a 
CNN is necessary for sufficient prediction in a speaker recognition task. My final result is 
that when I use an ill-defined MFCC, one that is extracted using too large of a window to 
capture a quasi-stationary signal of human speech, my CNN achieves 92% accuracy. This 
result implies that the pursuit of accuracy without a theoretical basis can lead researchers 
away from interpretability.
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CHAPTER 1:
Introduction

Private sector interests have created an environment of awesome advancements in machine
learning and AI. However, the consequences of most automated decisions in the private
sector are trivial as compared with those made by governmental entities, particularly for
defense. In defense, for example, drone targeting of tanks for destruction requires precision.
If a house was incorrectly identified as a tank by AI and destroyed, an investigation would
follow. In contrast, predicting clicks on advertisement links is both inconsequential to
people’s lives; if a prediction is incorrect, the experts may simply try again. In this research,
I will address considerations for increasing trust in AI such as constructing meaningful and
sparse feature extraction and comparing simple models with complex ones; I apply these
techniques to a task in speaker recognition.

Audio data is central to our lives. In 2020, audio data accounts for over 11 percent of
the average American adult’s daily media time [1]. However, most importantly, audio data
analyses like speech recognition and voice verification have real-world applications. In
2021, the Department of Homeland Security Science and Technology Directorate partnered
with the Johns Hopkins University Applied Physics Laboratory and the company Think-
A-Move Ltd. to develop hands-free automatic speech recognition technology to make first
responders safer. The technology will share data and improve communication capabilities
in high-noise environments [2]. Automatic recognition of voice commands can mean life
or death for first responders.

In this research, I take the following steps: first, I closely review two kinds of literature,
one on interpretability in AI and one on feature extraction in human speech. Next, I create
an appropriate dataset for the speaker recognition task, which is the practical focus of my
research. Finally, I model a speaker recognition task defined in the literature as the binary
classification of two audio samples as to whether they recorded the voice of the same
speaker. I employ different feature extraction specifications of the mel frequency cepstral
coefficients (MFCC) and variations of convolutional neural networks (CNN), a multilayer
perceptron (MLP), and logistic regression to predict.
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Drawing on my review of the literature on interpretability in AI, I apply increasingly simple
models to the speaker recognition task such that CNN is the most complex and opaque
model and logistic regression is the simplest and most interpretable model. My choices in
feature extraction using MFCCs also align with the literature on interpretability in that I
aim to utilize fewer and more meaningful features in the speaker recognition task.

In Figure 1.1, I illustrate the broad concept underlying my thesis research. Initially, I
compare the performance of an ill-defined MFCC versus a well-defined MFCC. The ill-
defined MFCC uses many the of default settings for MFCC extraction from PyTorch’s
torchaudio package, while the well-defined MFCC implements specifications identified in
the literature. Then, using well-definedMFCCs, I reduce the complexity of the models from
CNN to MLP to logistic regression and create a sparser dataset.

Figure 1.1. Thesis research design to explore interpretable AI
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My results show three important findings about interpretability and accuracy in speaker
recognition. First, in my CNN model, I find that using the ill-defined MFCCs enables much
better performance than the well-defined MFCCs. In this task, ill-defined MFCCs use a
window size 3-4 times larger than that required to extract a quasi-stationary human speech
signal, which means that the MFCCs are not really MFCCs but something undefined in the
literature. For perspective, the CNN using the 40 ill-defined MFCCs achieves an accuracy
of 92%, while the CNN using 40 well-defined MFCCs achieves an accuracy of 72%.

The other two findings frommy research are that once theMFCCs arewell-defined, reducing
the number of MFCCs from 40 down to 12 does not reduce the accuracy achieved by the
CNN model. The literature on MFCCs for analyzing human speech from the early 2000s
often suggests using 12 MFCCs, because each subsequent coefficient added to the group
adds little new information about the speaker’s vocal system. I also found that modeling
with logistic regression is unable to learn to correctly predict whether a two samples are or
are not from the same speaker.

The results of my research illuminate two common problems in AI. First, the high accuracy
of the ill-defined MFCCs in my results shows that in the pursuit of high accuracy, modeling
tasks have the potential to stray too far from the domain knowledge. Therefore, it is important
to draw the parameters for feature extraction directly from expert knowledge. Second, some
modeling tasks like speaker recognition need to use complex “black box"models like CNNs.
Since the DOD will be increasingly reliant on complex automated tasks, investments in
developing “interpretable" models like disentangled CNNs should be a priority.
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CHAPTER 2:
Opportunities and Trade-offs for Trust in Artificial

Intelligence

In this section, I discuss interpretable AI in terms of state-of-the-art best practices for
maximizing trust and cite experts regarding what “trust" in AI means. Additionally, I
compare and contrast interpretability with explainability in AI.

2.1 Understanding Interpretable AI through a Critique of
Seminal Speaker Recognition Research

Rudin [3] explains that interpretability is crucial for trust in artificial intelligence models
and sets these guiding principles for interpretable machine learning:

1. An interpretable machine learning model obeys a domain-specific set
of constraints to allow it (or its predictions, or the data) to be more
easily understood by humans. These constraints can differ dramatically
depending on the domain (p. 3).

2. Despite common rhetoric, interpretable models do not necessarily create
or enable trust – they could also enable distrust. They simply allow users
to decide whether to trust them. In other words, they permit a decision of
trust, rather than trust itself (p. 5).

3. It is important not to assume that one needs to make a sacrifice in accuracy
in order to gain interpretability. In fact, interpretability often begets accu-
racy, and not the reverse. Interpretability versus accuracy is, in general, a
false dichotomy in machine learning (pp. 5-6).

4. As part of the full data science process, one should expect both the
performance metric and interpretability metric to be iteratively refined
(p. 8).

5. For high stakes decisions, interpretable models should be used if possible,
rather than “explained" black box models [3, p. 8].
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For this thesis, I consider data and model design choices that may improve interpretability
in a speaker recognition task using VoxCeleb 2.0 data. In the following section, I review the
design choices made in Nagrani [4], the principal research on VoxCeleb 2.0, and suggest
alternatives that I can employ for increased interpretability. In section 2.3, I concisely explain
the difference between interpretability and explainability.

In this section, I juxtapose recent quintessential guidelines for interpretability and trust [3]
with the seminal research on VoxCeleb 2.0 data [4], the data that I use to train my models,
to illuminate the difficulties of putting the guidelines laid out in Chapter 2 into practice and
the critical choices that I need to make in designing an interpretable speaker recognition
system.

Later on in this thesis, in section 4.1, I detail the VoxCeleb 2.0 data. But to provide a
brief overview at this point, VoxCeleb 2.0 contains over a million utterances drawn from
YouTube from thousands of celebrity speakers, with multiple utterances per speaker. The
speaker recognition task is centered on the question when two utterances are compared:
“Are these utterances from the same speaker?"

Research by Nagrani [4] on speaker recognition from VoxCeleb 2.0 is the seminal analysis
of the dataset. Important choices in the design of their analysis include:1

• Goal
– Our aim is to move from techniques that require traditional hand-
crafted features, to a CNN architecture that can train end-to-end for
the task of speaker recognition (p. 7)

– ...to achieve state-of-the-art performance on the VoxCeleb1 speaker
verification task, outperforming all other traditional methods and
recent deep learning methods (p. 2)

• Model
– Deep CNN-based neural speaker verification system, which they
name VGGVox (p. 2).

1Speaker recognition and speaker verification and the classification of two utterances from the same
speaker or different speakers are equivalent in [4]. In this thesis, I will use speaker recognition to refer to the
classification of two utterances from the same speaker or different speakers.

6

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



– VGGVox is trained tomap voice spectrograms to a smaller embedding
space. Specifically, “a deep neural network trunk architecture is used
to extract frame-level features, and the features are aggregated to
obtain utterance-level speaker embeddings (p. 7).

– Measure the similarity between speakers using the cosine distance
between vectors in the embedding space (p. 2).

• Data
– Themodel is trained on short-termmagnitude spectrograms extracted
directly from raw audio segments, with no other pre-processing [4, p.
7].

While I critique Nagrani [4] concerning the discord between design choices and inter-
pretability, I am not condemning the research. First, I examine the author’s goals. Regarding
interpretability, “while interpretable AI is an enhancement of human decision making,
black box AI is a replacement of it" [3, 5]. The creation of an end-to-end speaker recog-
nition technique that removes hand-crafted features epitomizes the replacement of human
decision-making and harms interpretability according to guideline #2 in Chapter 2. Like-
wise, Nagrani, et al.’s other goal of state-of-the-art performance beyond another other model
does not embody guideline #4 listed in Chapter 2.

Nagrani [4] designed their speaker recognition technique to alleviate the burden of speaker
recognition from humans and, likely, improve accuracy because, at a large scale, humans
would likely make errors. Therefore, is Nagrani, et al.’s method appropriate for some
domains? Yes. In low-consequence tasks, a fully automated speaker recognition technique
is necessary if we, the audience, want the information. For example, if Nagrani, et al.’s
technique can label billions of audio clips for perusal via YouTube, and without the advent
of this technique, those clips would be unlabeled and difficult to search through, then it was
helpful. Moreover, a labeling error during this task would not be harmful.

A key to interpretability, though, is figuring out when it is needed and what interpretability
means in that domain. For speaker recognition, biometric voice access could be a subset of
the domain where mistakes matter, either false positives or false negatives. Or, if a future
iteration of AI like Amazon’s Alexa voice ID, where:

7
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You can train Alexa to better recognize you by creating a Voice ID. After you
set up your ID, Alexa can call you by your name and deliver personalized
results based on your voice. Alexa can even distinguish your voice from those
of other people in the house. Adults, teenagers, and children can all create a
voice profile [5, paragraph 2].

becomes an integrated part of defense systems, then speaker recognition techniques will
need to be trusted.

Next, I will critique modeling choices from Nagrani [4]. The authors explain their choice
of a CNN as follows:

We use 2D CNNs as feature extractors and treat 2D spectrograms as single-
channel images. It is perhaps unnatural to treat spectrograms in this manner
where the same convolution is used at every point since, unlike in a visual
image where an object may appear at any location, a pattern can appear at any
point on the time axis but we would not expect patterns to also be frequency
independent. However, deep networks can potentially learn frequency-specific
filters if they are needed for solving a downstream task; for instance, some filters
can only fire on specific patterns existing in the low frequency region, whilst
fully connected layers can be position dependent. Therefore, even if a 2D CNN
uses shared filters on the spectrogram, the model has the capability to divide
the filters into low/high frequency groups [4, p. 7].

The CNN does a lot of work for feature extraction and embeddings, however, CNN is a
“black box" which is “difficult to troubleshoot" and “often predict[s] the right answer for
the wrong reason" [3, p. 2]. However, Rudin [3] also outline the draws of black box models
for designers. Black box models are easier than interpretable models because of:

1. the computational complexity of the optimization problem (4).
2. the data are problematic and require troubleshooting (4).
3. an unclear definition of interpretability in the domain [3, p. 4].
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A black box model violates guiding principle #1 from Chapter 2 because the CNN is not
easily understood by humans. For this domain inwhich raw inputs are endemic, disentangled
neural networks are suggested to increase interpretability [3].

The next step in [4]’s model is the creation of utterance-level speaker embeddings and
minimizing the cosine distance between the vectors. The speaker embeddings are similar in
concept to case-based reasoning, a technique to improve interpretability. Rudin [3, p. 22]
states that “Case-based reasoning is a paradigm that involves solving a new problem using
known solutions to similar past problems...[and] model that performs case-based reasoning
is appealing, because by emulating how humans reason, the model can explain its decision-
making process in an interpretable way" [3, p. 22]. Recent research is integrating case-based
reasoning into deep learning through prototype and prototype-parts-based classification.

Finally, Nagrani [4] utilize one of the most hands-off depictions of audio data, the spectro-
gram. The purposeful omission of human data wrangling goes together with the authors’
overall end-to-end design. However, a spectrogram of an audio file contains a lot of infor-
mation. The authors are expecting their model to pick out the important data for the speaker
recognition task.

Speaker recognition feature extraction has a long and large literature which I detail in
Chapter 3. Nagrani [4] design choice of raw inputs that do not draw on any voice expertise
violates guiding principle #5 since it is possible to make the model more interpretable
through point feature extraction.

Nagrani [4] do state why they want to use the spectrogram:

...not only does the performance of MFCCs [mel frequency coefficients] de-
grade rapidly in real-world noise...but by focusing only on the overall spectral
envelope of short frames, MFCCs may be lacking in speaker-discriminating
features (such as pitch information) [4, p. 2].

However, per guiding principle #4, “as part of the full data science process, one should expect
both the performance metric and interpretability metric to be iteratively refined" [3, p. 8],
the reality of Nagrani et al.’s claim should be explored further.
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2.2 Designing an Interpretable Machine Intelligence
Regarding the design of an interpretable speaker recognition technique, I will follow the
guidance from [6], “to begin mapping the landscape of methods for accountability of
artificial intelligence (AI) systems...mapping the categories of methods that one could help
us to assess whether an AI system is meeting its objectives" [6, p. 47]. The authors “define
accountability as being able to ascertain whether an AI system is behaving as promised,
which is necessary for determining blame-worthiness" [6, p. 47] and point out explicitly
that accountability is essential “as cases involving AI systems behaviors are adjudicated via
litigation and prescribed via regulation and legislation" [6, p. 48].

The categories of approaches are:

1. Transparency in the process and software [6 p. 48].
2. Interpretable models [6 pp. 48-49].
3. Post hoc inspection of model outputs [6 pp. 49-50].
4. Empirical performance [6 p. 50].
5. Properties guaranteed by design [6, pp. 50-51].␣

To increase transparency, standards regarding data and model description and should be
improved and unified throughout the literature. Additionally, open-access code and training
environments should be released for inspection and additional testing [3], [6], [7].

Interpretable models are diverse and include employing regularizers to reduce nonzero
parameters or using logic-based models like decision trees. Rudin [7] “encourage policy-
makers not to accept black box models without significant attempts at interpretable (rather
than explainable) models, that would be even better" [7, p. 15] and “since interpretability is
domain-specific, a large toolbox of possible techniques can come in handy" [7, p. 9].

Post hoc inspection uses visualization, classic statistical methods, and algorithmic methods
to identify properties of a black box or already developed AI system. Kim and Doshi-
Velez [6] recognizes the pitfalls of post hoc inspection, and [3] more clearly defines the fault
of this method. Rudin [3] states “Explanations for black boxes are often problematic and
misleading, potentially creating misplaced trust in black box models" [3, p. 8] and goes on
to discussing saliency maps. The authors explain:
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One particular type of posthoc explanation, called saliency maps (also called
attention maps) have become particularly popular in radiology and other com-
puter vision domains despite known problems...Saliency maps highlight the
pixels of an image that are used for a prediction, but they do not explain how
the pixels are used...Saliency maps also tend to be unreliable; researchers often
report that different saliency methods provide different results, making it un-
clear which one (if any) actually represents the network’s true attention [3, pp.
8-9].

Another particular post hoc technique that I would like to highlight for this thesis is SHAP
and LIME. Rudin [3] points out that

techniques such as SHAP and LIME are tools for explaining black box models,
are not needed for inherently interpretable models [and even] [i]nterpretable
supervised deep neural networks that use case-based reasoning...do not need
SHAP values because they explicitly reveal what part of the observation they
are paying attention to, and in addition, how that information is being used...
[t]hus, if one creates an interpretable model, one does not need LIME or SHAP
whatsoever [3, p. 9].

Next, Kim and Doshi-Velez [6] describe methods for accountability that do not require
humans to understand themodel at all, like empirical performance and properties guaranteed
by design. A good example of empirical performance is:

part of a pre-market safety process for a self-driving car may involve measuring
certain kinds of safety violations (such as near misses) in a variety of settings
over a series of test runs [6, p. 50].

Checks like the pre-market safety check described above can be executed by a regulatory
agency or company. Properties guaranteed by design are hard to obtain in real-life situations.
Credit scoring can provide a good example of this design. When using a monotone model,
“increasing a feature (although others are held constant) will always increase or decrease

11

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



the output (which may be a valuable guarantee such as in a credit scoring system, where we
may want to guarantee that increasing income will increase the score)" [8, p. 50].

2.3 Interpretability versus Explainability
According to Rudin [3], the concepts and research around explainability and interpretability
arose apart from one another, yet have been merged recently in the literature in a confusing
way. Explainability arose out of the function approximation literature (circa 2016), while
interpretability arose from expert systems and decision trees (circa 1950). The authors want
to make clear that interpretability is not explainability, nor is explainability helpful for trust.
Moreover, Rudin [3] drive home that

Explainability and interpretability techniques are not alternative choices for
many real problems, as the recent surveys often imply; one of them (XAI) can
be dangerous for high-stakes decisions to a degree that the other is not [3, p. 8].

Looking at the defense literature, however, the authors of [9] characterized the newmachine-
learning systems in the bottom panel of Figure 2.1 as able to (1) explain the rationale, (2)
characterize strengths and weaknesses, and (3) convey an understanding of future behavior.
Additionally, XAI should utilize a portfolio of methods with diverse design options and
have an interface for human users to translate models and provide evidence of explanations.
It is important to note that the explainable model in the bottom panel of the picture is not
clearly defined but can elicit an answer to the user’s questions posed in the top panel.

While the authors of [9] provide an encouraging overview of XAI, National Institute of
Standards and Technology (NIST) researcher Broniatowski [10], defines explainability in
more detail. Machine learning systems have explainability requirements that are distinct
from what is known as interpretability. Drawing on the experimental psychology literature,
Broniatowski [10] makes the following contrast:

• Explanation aids in improving algorithms because the system designer can accurately
describe the implementation that led to the algorithm’s output [10].

• Interpretation relates the system’s purpose to the goals and preferences of the end
user through a contextualized output [10].
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Simply put, in computer science, explanation lends itself to debugging or improving algo-
rithms [11]. Looking back at the DARPA motivational image in Figure 2.1, the users could
be either a designer or an end user per the questions he is asking. Broniatowski [10] points
out that the interests of the user dictate whether explainability or interpretability should
be sought in the development of new machine learning systems. However, to the general
public, the two concepts are relatively interchangeable [12, p. 52141].

Figure 2.1. Concept of XAI, Source: [9]

A simple yet illustrative example:

Consider a car with a “check engine" light that is illuminated. An explanation
might indicate that the check engine light turned on because the car’s internal
programming detected fuel flow irregularities. However, the interpretation for
the driver is that the car needs to be taken to a mechanic for further evaluation
[10, p. 4].

Negative attention towards AI use in predicting good renters. The algorithms have been
denounced as discriminatory. Additionally, there have been concerns about data privacy.
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Here, interpretability could help by creating transparency into why a decision is made.
Human users contextualize output (applicant in question represented by data point) given
their background knowledge. While ML used training data and algorithmic models. The
human assessor concludes an applicant as risky because of the absence of rental history.
Machine learning algorithms may associate the length of rental history with success. While
both interpretations point to the importance of rental history, the human interpretation is
flexible while the algorithmic one is “brittle." The interpreted output gives the applicant a
useful insight into “how" to be successful in the future which is to establish a rental history.
In the end, domain knowledge is key to interpretability [10].

Explanation in the context of the rental applicant’s rejection goes about understanding
the situation from a different perspective - How did the decision to reject come to be? If
the model was logistic, and when the data point for the applicant is plugged in, then the
probability of success is below the threshold. With access to the equation and expertise, the
human assessor can observe the largestmarginal contribution to the algorithm’s decision and
again arrive at the importance of rental history in the decision-making process. However,
with modern models, the outputs are not easily assessed by humans. Human-made causal
explanations are subject to systemic bias [10].
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CHAPTER 3:
Feature Extraction for Audio Analysis using Mel

Frequency Cepstral Coefficients

The fundamental task in audio analysis is tomake computers sense the acoustic environment.
Many simple sound waves make up complex sound waves [13]. Machine hearing is complex
because acoustic surroundings are diverse with many sounds existing at a point in time, the
presence of background noise, the physical distance of the sound source, and the nature of
the sound as artificial or natural [14]. To improve accuracy in machine hearing tasks, experts
suggest that analysts focus on a subdivision of sound as outlined in the sound classification
Figure 3.1 [15], [16].

Characteristics of different sounds vary. For example, human speech and music exhibit
repeated stationary patterns, while environmental noises can have theoretically infinite
structures or none all. Therefore, it is important in audio analysis to choose the feature
extraction methodology that highlights the targeted signal characteristics most accurately
[17]. Experts have developed techniques to highlight components of sounds specific to
human senses known as perceptual. In Figure 3.1, the differentiation between perceptual
and physical techniques is presented succinctly.
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Figure 3.1. Taxonomy of audio feature extraction techniques Source: [15,
figure 5]
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Speaker recognition is a subset of analyses of the human voice as shown in figure 3.2. In
speaker recognition, a machine learning algorithm draws on voice characteristics to identify
the speaker. Human speech and the human voice have been at the center of scientific
discovery in audio for decades [18]. In this research, I will draw on the mel frequency
cepstral coefficients (MFCC) which stand out as the most important feature extraction
methods for capturing qualities of the human voice speech recognition [18].
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Figure 3.2. Prominent feature extraction methods by audio analysis applica-
tions. Source: [17, figure 21]
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In contemporary speaker and speech research, the use of the MFCC is mixed. For example,
in the task of detecting spoofed audio in the automatic speaker verification competition
of 2017, MFCC is listed as an important front-end feature extraction method [19]. While
Nagrani et al. [4] use deep learning for speaker recognition, the MFCC is characterized as
less useful.

3.1 Mel Frequency Scale
While the cepstrum is the principal concept in the MFCC, I will start with the simpler
concept for this section on feature extraction, the mel. The mel scale characterizes the
psychological magnitude of pitch. Stevens [20] assigned the frequency 1000 Hz a new unit
of measurement for perceived pitch (frequency), such that 1000 Hz was equivalent to 1000
mels. From 125 to 12,000 Hz, the mel scale quantifies the pitch of sinusoidal tone based on
half-pitch estimates for frequencies.

Warren [21] reviews the early literature that established the mel scale and points out the role
of the octave. An octave is a half-frequency which is also half-pitch. Therefore, the octave
is the physical correlate of the mel scale within the musical scale with an upper bound at
4,500 Hz. Pitch above the limit of the musical scale is meaningless [22].

Mel-scaling emphasizes the mid-frequency bands. In seminal research on MFCC’s, Davis
and Mermelstein [23] succinctly describe the usefulness of the mel in the cepstral feature
extraction as suppressing “insignificant spectral variation in higher frequency bands" [23, p.
364]. The authors find that using the mel-frequency is advantageous relative to a linear-
frequency.

For speech recognition, the relationship between the real frequency in Hz (𝐹𝐻𝑧) and per-
ceived frequency in mels (𝐹𝑚𝑒𝑙) is approximated by Fant [24] as:2

𝐹𝑚𝑒𝑙 (𝐹𝐻𝑧) =
1000
𝑙𝑜𝑔 2

(
1 + 𝐹𝐻𝑧

1000

)
(3.1)

which Koenig [26] maps as more or less linear below 1000 Hz and above as logarithmic [27,

2A single formula for the mel scale does not exist [25]
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p. 380]

Listener-dependent bias has been established in the mel scale [28]. Researchers have sug-
gested improvements by focusing on equal energy [29], [30]. In Greenwood’s own response,
he states:

...the mel scale’s popularity has had little justification. There have been good
reasons for not using the mel scale for many years. A major one was that it
(the 1940 mel scale) was not replicated by [31] nor checked by anyone else
(so far as I know) until 1956 (at Steven’s behest [32]). The full results of
that 1956 check (not actually intended to be a check of the mel scale itself -
though the results turned out that way) were published in Hearing Research in
97 [28] [29, paragraph 5]

Therefore, it seems that while the mel scale is flawed the concept is working in practice.
Improving upon the mel-scaled cepstrum may be a fruitful area of research [30].

3.2 Cepstral Analysis
Before moving on to the cepstral coefficients, let us understand the concept of cepstral
analysis. In Chapter 6, “Cepstral Analysis," Deller [27] draws an enlightening analogy
between the use of the spectrum in “frequency domain" and the cepstrum in the “spectral
domain."

Engineers are well-versed in decomposing added components in a complex sequence.
Drawing from Deller [27, pp. 352-355], if we have a magnitude spectrum of 𝑥(𝑛) and 𝑛 is
a discrete value of time:

𝑥(𝑛) = 𝑥1(𝑛) + 𝜔(𝑛) (3.2)

where 𝑥1(𝑛) is a low-frequency signal and 𝜔(𝑛) is high-frequency noise, then the Fourier
transform will allow us to examine these components of 𝑥(𝑛) individually. We can assess
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the “separation" of the 𝑥1(𝑛) and 𝑤(𝑛) and derive information about the parts when the
signal is represented with the spectrum. Moore [33] states,

By applying the Fourier transform to the waveform of a sound, we can mathe-
matically determine just which amounts of which frequencies are responsible
for that particular waveshape. [33, p. 43]

A linear separation of a signal is useful in practice in order to remove noise from a signal.
For example, from equation 3.2, we can obtain 𝑥1(𝑛) by applying a lowpass filter, 𭟋, to
remove the high-frequency component 𝑤(𝑛). From [27, p. 353],

𭟋{𝑥(𝑛)} = 𭟋{𝑥1(𝑛) + 𝜔(𝑛)} = 𭟋{𝑥1(𝑛)} + 𭟋{𝑤(𝑛)} ≈ 𝑥1(𝑛) (3.3)

Therefore, applying the filter, 𭟋 on 𝑥(𝑛) we get 𝑥1(𝑛) and transform the results back to the
time domain.

Speech is not additive, but “is composed of an excitation sequence convolved with the
impulse response of the vocal system model" [27, p. 352].

𝑠(𝑛) = 𝑒(𝑛) ∗ \ (𝑛) (3.4)

The cepstrum was developed specifically to represent a transformation on the speech signal
and is a special case of homomorphic signal processing [34], [35]. The transformation has
two properties:

1. The representatives of the component signals will be separated in the
cepstrum.

2. The representatives of the component signals will be linearly combined
in the cepstrum [27, p. 353].

Following, Deller [27, p. 354], we notate for signal 𝑠(𝑛) the real cepstrum is 𝑐𝑠 (𝑛) and the
short-term real cepstrum frame ending at 𝑚 is 𝑐𝑠 (𝑛;𝑚). While the short-term real cepstrum
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is used in practice, Deller [27] uses the real cepstrum to describe the concepts. The real
cepstrum is defined as:

𝑐𝑠 (𝑛) = ℱ
−1{𝑙𝑜𝑔 |ℱ{𝑠(𝑛)}|} (3.5)

Where ℱ is the Discrete-time Fourier transform. In practice, the component of equation
3.5, 𝑙𝑜𝑔 |ℱ{𝑠(𝑛)}| is real and even which in turn makes the application of ℱ−1 ≡ ℱ ≡
Discrete Cosine Transformation.

Figure 3.3 depicts the operations leading from 𝑠(𝑛) to 𝑐𝑠 (𝑛). The steps are:

1. The operations DFTF≡ ℱ and 𝑙𝑜𝑔 | · | transform 𝑠(𝑛) into a "linear" domain. Con-
ceptually, the operator is unraveling the convolution.

2. Then apply Fourier analysis to the new “signal" to view the “frequency domain"
properties.

3. Interpret the real cepstrum as the Fourier series “line spectrum" of the “signal."

Figure 3.3. How to compute the real cepstrum. Source: [27, p. 356] figure 
6.1

However, all the terms in quotations in the operation are special as the “signal" being
transformed into the frequency domain is already in the frequency domain. What we
understand as the role of spectrum in the frequency domain, here is the role of “cepstrum"
in the “quefrency" domain. With real cepstrum analysis, we can resolve the dilemma in
equation 3.4 as

𝑐𝑠 (𝑛) = 𝑐𝑒 (𝑛) + 𝑐\ (𝑛) (3.6)
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The convolution theorem underlies the decomposition shown in equation 3.6. Deller [27, p.
361] illustrates the steps laid out in figure 3.3 in figures 3.4-3.6. The speech signal spectrum
𝑆(𝜔) = 𝐸 (𝜔)Θ(𝜔). First, in figure 3.4, |𝑆(𝜔) | is shown to be composed of spectral variation
|𝐸 (𝜔) | convolved with the vocal system |Θ(𝜔) |.

Figure 3.4. Convolved speech spectrum. Source: [27, p. 361] figure 6.3 (a)

Next, in figure 3.5, the logarithm of the spectral magnitudes the additive correlates for𝐶𝑠 (𝑛)
are revealed.

Figure 3.5. Linearly separable speech spectrum. Source: [27, p. 361] figure 
6.3 (b)

Finally, in Figure 3.6, the IDTFTan approximation provides the quefrency domain properties
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𝑃, 2𝑃, 3𝑃, . . . of the components of 𝑐𝑠 (𝑛) from equation (3.6). “The low-quefrency part
of the cepstrum therefore represents an approximation to the cepstrum of the vocal system
impulse response, 𝑐\ (𝑛). The high-quefrency part corresponds to the cepstrum of the
excitation, 𝑐𝑒 (𝑛)" [27, p. 361].

Figure 3.6. Cepstral analysis of linearly separable spectrum. Source: [27, p. 
361] figure 6.3 (c)

3.3 Mel Frequency Cepstral Coefficients
To summarize the seminal results of Davis and Mermelstein [23] concerning their task of
differentiating between two speakers, they find that sixMFCCs capturedmost of the relevant
information. The authors also conclude that a trade-off exists between the number of cepstral
coefficients and the frame size, adding that computationally it is more advantageous to have
a coarser resolution and more coefficients. Fast-forward 40 years and the MFCC extraction
algorithm is virtually unchanged and 2 to 13 coefficients are suggested by experts.

In addition to the cepstral coefficients, their “derivatives" are used in speech recognition
and identification systems to measure the vocal system spectrum and dynamics [27]. The
“derivatives" can be computed as follows:

Δ𝑐𝑠 (𝑛;𝑚) ≡ 𝑐𝑠 (𝑛;𝑚 + 𝛿𝑄) − 𝑐𝑠 (𝑛;𝑚 − 𝛿𝑄) (3.7)

where Δ𝑐𝑠 (𝑛;𝑚) is the mel-cepstrum for the frames of the signal 𝑠(𝑛) ending at time𝑚+𝛿𝑄
differenced with the cepstrum at frame 𝑚 − 𝛿𝑄 for all 𝑛. In equation (3.7), 𝑄 is the number
of samples by which the window is shifted for each frame and 𝛿 smooths the estimate.
Δ𝑐𝑠 (𝑛;𝑚) captures spectral changes since the previous frame, but lack their own meaning.
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Figure 3.7. Signal analysis using the cepstral coefficients. Source: [36, figure 
1, p. 27]
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Following figure 3.7, Molau [36] lays out the steps of computing cepstral coefficients.
Specifically, these steps create an acoustic vector of dimension 25 to 50 for every 10 ms of
sound:

1. The speech waveform, sampled at 8 or 16 kHz, is first differentiated
(preemphasis) (p. 73).3

2. The waveform is cut into a number of overlapping segments (windowing),
each 25 ms long and shifted by 10 ms. (p. 73)

3. A Hamming window is multiplied and the Fourier transform (FFT) is
computed for each frame (p. 73).

4. The power spectrum is warped according to the Mel-scale in order to
adapt the frequency resolution to the properties of the human ear (p. 73).

5. The spectrum is segmented into a number of critical bands by means of
a filterbank. The filterbank typically consists of overlapping triangular
filters (p. 73).

6. A discrete cosine transformation (DCT) applied to the logarithm of the
filterbank outputs results in the raw MFCC vector. The highest cepstral
coefficients are omitted to smooth the cepstra and minimize the influence
of the pitch which is irrelevant for the speech recognition process (p. 73).4

7. The mean of each cepstral component is subtracted, and the variance of
each component may also be normalized (p. 73).

8. The MFCC vector is augmented with time derivatives (p. 73).
9. (Optional) transformations like linear discriminant analysis (LDA) may

further increase the temporal context and the discriminance of the acoustic
vector [36, p. 73].

Sigurdsson [39] details the steps. Starting with step 3 from the above enumerated list, the
DFT × each time window for the discrete time signal is computed using the equation:

𝑋 (𝑘) =
𝑁−1∑︁
𝑛=0

𝜔(𝑛)𝑥(𝑛) exp
(
− 𝑗2𝜋𝑘𝑛

𝑁

)
𝑘 = 0, 1, . . . , 𝑁 − 1 (3.8)

3The first differentiation is a type of filter and aims to make the audio signal stationary [37].
4The highest cepstral coefficients are omitted through a “liftering" using a lowpass window [38].
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where 𝑥(𝑛) is the discrete-time signal and 𝑁 is the length of 𝑥(𝑛). The variable 𝑘 corresponds
to the frequency, 𝑓 (𝑘) = 𝑘 𝑓𝑠

𝑁
where 𝑓𝑠 is the sampling frequency (hz). TheHammingwindow

is often used in speech analysis to compute 𝑤(𝑛), where:

𝑤(𝑛) − 0.54 − 0.46 cos
(𝜋𝑛
𝑁

)
(3.9)

Next, Sigurdsson [39] combine steps 4 and 5 from the above enumerated list using the
equation:

𝑋′(𝑚) = ln

(
𝑁−1∑︁
𝑘=0

|𝑋 (𝑘) | · 𝐻 (𝑘, 𝑚)
)

𝑚 = 1, 2, . . . , 𝑀 (3.10)

where 𝑋′(𝑚) is the natural log of the magnitude (power) spectrum |𝑋 (𝑘) | is logarithmically
scaled in frequency by the Mel filter bank 𝐻 (𝑘, 𝑚). The number of filter banks is given by
𝑀 such that 𝑀 << 𝑁 . Computations with 𝐻 (𝑘, 𝑚), scale not only the frequency of |𝑋 (𝑘) |,
but also its magnitude [39].

Finally, the raw acoustic vector of MFCC described in step 6 shown in the enumerated list
above is obtained with the discrete-cosine transform of 𝑋′(𝑚) as follows:

𝑐(𝑙) =
𝑀∑︁
𝑚=1

𝑋′(𝑚) cos
(
𝑙
𝜋

𝑀

(
𝑚 − 1

2

))
𝑙 = 1, 2, . . . , 𝑀 (3.11)

where 𝑐(𝑙) is the lth coefficient.

Transitioning through the equations 3.8 to 3.11, we can follow the unit of observation from
time, 𝑛 = 1, 2, . . . , 𝑁 , in 𝑥(𝑛) and 𝑤(𝑛) as inputs to equation 3.8 which results in a frequency
unit, 𝑘 = 1, 2, . . . , 𝑁 − 1, for the spectrum 𝑋 (𝑘). Then the spectrum, 𝑋 (𝑘), is transformed
from frequency, 𝑘 , to mel-scaled frequency, 𝑚 = 1, 2, . . . , 𝑀 . Finally, in equation (3.11) all
the mel-scaled frequencies, 𝑚, used to calculate each MFCC, 𝑙 where number of possible
MFCCs is limited by the number of mel filters chosen in equation (3.10).

Paliwal [40] bases his research into filterbank energies on a critique of MFCCs. The authors
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state that:

Though MFCCs have been very successful in speech recognition, they have
the following two problems: 1) They do not have any physical interpretation,
and 2) Liftering of cepstral coefficients, found to be highly useful in the ear-
lier dynamic warping-based speech recognition systems, has no effect in the
recognition process when used with continuous observation Gaussian density
hidden Markov models [40, p. 1].

Part of this thesis will examine the loss in accuracy that may occur due to using fewMFCCs
instead of the more typical features like the spectrogram, over a high number of MFCCs.

3.4 Visualizing the Cepstrum and Mel Cepstral Coeffi-
cients

This thesis aims to be more familiar with the feature input to increase interpretability.
While the training dataset is built on Vox Celeb 2.0 (see section 4.1), those utterances are
heterogeneous [4]. To visualize theMFCCs, instead, I will use the utterances assembled into
a dataset in [41]. One portion of the [41] dataset, compiles utterances from 150 speakers
all of which speak the phrase, “Machine learning 1, 2, 3, 4, 5, 6, 7, 8, 9, 10" in a noisy
environment.

In the following two figures, Figure 3.8 and Figure 3.9, I graph the first, second, and third
MFCC for one male and one female speaker who are both 21 years old. For perspective on
the default implementation of MFCC in torchaudio from PyTorch, the default number of
MFCCs returned is 40, which is far above the number suggested in the early literature.
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Figure 3.8. Mel frequency cepstral coefficients for the speech from 21-year-
old male speaker saying “Machine learning 1, 2, 3, 4, 5, 6, 7, 8, 9, 10"
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Figure 3.9. Mel frequency cepstral coefficients for the speech from 21-year-
old female speaker saying “Machine learning 1, 2, 3, 4, 5, 6, 7, 8, 9, 10"
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To be transparent about the parameters that I used to create these coefficients, I detail the
code in listing 3.1.

Listing 3.1: Creating a visual of the first three MFCCs

import ma t p l o t l i b . p y p l o t a s p l t
import numpy as np
import a r g p a r s e
import os
import t o r ch , t o r c h a u d i o

f i l e n ame = os . p a t h . j o i n ( a r g s . a l s a i f y _ d i r e c t o r y , s ame_speake r )
da t a , f s = t o r c h a u d i o . l o ad ( f i l e n ame )

# sample r a t e i s 48 ,000 f o r A l s a i f y da ta
s amp l e _ r a t e = f s
n _ f f t = i n t ( s amp l e _ r a t e ∗0 . 0 3 ) #30 ms window
n_mels = 20
n_mfcc = 3

t r a n s f o rm = t o r c h a u d i o . t r a n s f o rm s .MFCC(
s amp l e _ r a t e = s amp l e_ r a t e ,
n_mfcc=n_mfcc ,
melkwargs ={

" n _ f f t " : n _ f f t ,
" n_mels " : n_mels ,
" me l _ s c a l e " : " h t k " ,
" window_fn " : t o r c h . hamming_window

} ,
)

mfcc = t r a n s f o rm ( d a t a )
mfcc = t o r c h . squeeze ( mfcc )
mfcc_np = t o r c h . Tensor . numpy ( mfcc )
m f c c _ f i r s t = mfcc_np [ 0 , : ]
t o t a l _ t i m e = mfcc_np . shape [ 1 ]
t ime = l i s t ( range ( t o t a l _ t i m e ) )

I have explored the window size that I needed to find a relatively stationary wave for the
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speech from the female speaker. I found that around 30 milliseconds during a speaking
segment were stationary. Lei, et al. Lei, et al., use “[t]he 0th through 12th coefficients of
either the MFCCs, LFCCs, or a-MFCCs (with 25 ms windows and 10 ms intervals) with
deltas and double deltas are used" [42, p. 2].

The number of mels (filterbanks) used in the default transform function is 128, which is
much larger than that used in the earlier literature. Paliwal [40] identifies the use of 20 to
60 filterbanks as typical in the literature.
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CHAPTER 4:
Data

Building the dataset for modeling speaker recognition was a major task in this research
project. I downloaded the audio files as a massive dataset and converted over a million files
into the .wav format. Next, I organized the file paths such that I could script a function to
make random combinations of speakers and files. I also calibrated the feature extraction
method and applied it to the raw audio data to make a multidimensional audio file into a
numerical matrix that a computer can analyze.

4.1 VoxCeleb 2.0 Dataset
I train the machine learning model using the VoxCeleb dataset of humans to determine
speaker recognition [4]. The dataset contains over 1 million utterances that were captured
from YouTube videos of celebrity interviews, news shows, talk shows, and debates. In
addition to the utterances of focus, the tracks also contain background chatter, laughter, and
overlapping speech. The tracks are curated and each segment is 3 seconds long.

VoxCeleb includes a heterogeneous set of more than 7000 speakers. Each track is labeled
with the identity of the celebrity speaker. Speakers’ genders are about 1:2 female to male
and 1:2 American to non-American speakers [43].

4.2 Creating Same and Different Speaker Combinations
Datasets with multiple speakers often keep audio samples of the same speaker in a folder
together. For this research, I need to draw an equal quantity of randomly paired audio files
from the same speakers and different speakers. I undertook this task in a series of steps.

First, I populated a list with the full file paths of every .wav file in the train, validation, and
test datasets together using a custom recursive function presented in Listing 4.1.

Listing 4.1: Custom function to record the full file path of audio files within
the complex VoxCeleb 2.0 dataset file structure

import p a t h l i b
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def f i n d _ a l l _ f i l e s ( d i r e c t o r y ) :
a l l _ f i l e s = l i s t ( p a t h l i b . Pa th ( d i r e c t o r y ) . r g l o b ( " ∗ . [mw] [ 4 a ] [ av ] " ) )

p u r e _ p a t h s = [ ]

f o r l i n e in a l l _ f i l e s :
p u r e _ p a t h s . append ( l i n e . a s _ po s i x ( ) )

re turn pu r e _ p a t h s

Next, I split the file path to identify the speaker and the dataset type and instantiated a
dictionary for each dataset type to store the speaker identifiers as the keys and the list of
associated full file paths to the audio clips for the respective speaker at the values.

Using these dictionaries, I utilized a nested set of custom functions to create a balanced
sample of pairs of audio. The function that pairs randomly selected audio clips from two
different randomly selected speakers first identifies two random keys in the dictionary
(speakers) and then randomly selects a value from the list associated with each key. More
simply, the function that pairs randomly selected audio from one randomly selected speaker,
just randomly selected a key from the dictionary and then randomly selects two items from
the list of values.

Finally, the broader custom function unites the two lists, “same" speaker and “different"
speaker, is presented in the following code snippet, Listing 4.2.

Listing 4.2: Four functions to randomly find and record pairs of audio clips
from the same speaker and different speakers

import random
import os
import p i c k l e

def i n c l u d e _ k e y s ( d i c t i o n a r y , keys ) :
" " " F i l t e r s a d i c t by on l y i n c l u d i n g c e r t a i n k e y s . " " "
k ey_ s e t = s e t ( keys ) & s e t ( d i c t i o n a r y . keys ( ) )
re turn { key : d i c t i o n a r y [ key ] f o r key in k ey_ s e t }
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def r a n d om_d i f f e r e n t ( d i c t i o n a r y , s i z e , d i f f e r e n t _ l i s t = [ ] ) :
" " " Crea t e l i s t o f random p a i r s from d i f f e r e n t s p e a k e r s " " "
f o r _ in range ( 0 , i n t ( s i z e ) ) :

# randomly s e l e c t two i d ' s
keys = [ random . c ho i c e ( l i s t ( d i c t i o n a r y ) ) f o r i in range ( 2 ) ]
i f keys [ 0 ] ! = keys [ 1 ] :

p a i r = [ ]
f o r key in keys :

f i l e s = d i c t i o n a r y . g e t ( key )
r a n dom_ f i l e = random . cho i c e ( l i s t ( f i l e s ) )
p a i r . append ( r a ndom_ f i l e )

p a i r . append ( F a l s e )
d i f f e r e n t _ l i s t . append ( p a i r )

e l s e :
cont inue

return d i f f e r e n t _ l i s t

def random_same ( d i c t i o n a r y , s i z e , s am e _ l i s t = [ ] ) :
" " " Crea t e l i s t o f random p a i r s from d i f f e r e n t s p e a k e r s " " "
f o r _ in range ( 0 , i n t ( s i z e ) ) :

# randomly s e l e c t two i d ' s
key = random . cho i c e ( l i s t ( d i c t i o n a r y ) )
f i l e s = d i c t i o n a r y . g e t ( key )
r a n d om_ f i l e s = [ random . cho i c e ( l i s t ( f i l e s ) ) f o r i in range ( 2 ) ]
r a n d om_ f i l e s . append ( True )
s am e _ l i s t . append ( r a n d om_ f i l e s )

re turn s am e _ l i s t

def c r e a t e _ s amp l e ( i d_ t ype , id_ type_name , type , t o t a l _ s i z e , sample = [ ] ) :
" " " Crea t e l i s t o f random p a i r s from same and d i f f e r e n t s p e a k e r s " " "

# b r i ng i n d i c t i o n a r y _ p i c k l e − dev or t e s t
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a n n o t a t i o n _ d i c t i o n a r y = " / a n n o t a t i o n _ d i c t _ " + type + " . p i c k l e "
f i l e p a t h = os . p a t h . j o i n ( a r g s . a n n o t a t i o n _ d i r e c t o r y + a n n o t a t i o n _ d i c t i o n a r y )
wi th open ( f i l e p a t h , " rb " ) a s f :

my_dic t = p i c k l e . l o ad ( f )

# r e f i n e d i c t i o n a r y t o s p l i t t y p e e
new_d ic t = i n c l u d e _ k e y s ( my_dict , i d _ t y p e )
pr in t ( " Old␣ d i c t i o n a r y ␣ l e n g t h : ␣ " , l en ( my_dic t ) )
pr in t ( "New␣ d i c t i o n a r y ␣ l e n g t h : ␣ " , l en ( new_d ic t ) )

s am e _ l i s t = random_same ( new_dic t , t o t a l _ s i z e / 2 )
pr in t ( "Same␣ l i s t ␣ l e n g t h : ␣ " , l en ( s am e _ l i s t ) )

d i f f _ l i s t = r a n d om_d i f f e r e n t ( new_dic t , t o t a l _ s i z e / 2 )
pr in t ( " D i f f ␣ l i s t ␣ l e n g t h : ␣ " , l en ( d i f f _ l i s t ) )

sample = l i s t ( i s l i c e ( rever sed ( s am e _ l i s t ) , 0 , i n t ( t o t a l _ s i z e / 2 ) ) )
+ l i s t ( i s l i c e ( rever sed ( d i f f _ l i s t ) , 0 , i n t ( t o t a l _ s i z e / 2 ) ) )

sample . r e v e r s e ( )
pr in t ( l en ( sample ) )
s amp l e _ f i l e = ' / sample_ ' + id_ type_name + ' . p i c k l e '
s a v e p a t h = os . p a t h . j o i n ( a r g s . a n n o t a t i o n _ d i r e c t o r y + s amp l e _ f i l e )
w i th open ( s avepa th , 'wb ' ) a s g :

p i c k l e . dump ( sample , g )

I make a persistent list of audio clip combinations for each needed dataset type ready for
the custom PyTorch Dataset classes detailed in section 4.3.

4.3 Pytorch Dataset Class and Data Loader
I created a custom dataset for VoxCeleb 2.0. Pytorch custom dataset is an abstract class
that inherits the Dataset class. A custom Dataset override the __init__ and __getitem__
methods. In my custom __init__, I call on the persistent list of audio combinations created
using the combination generator functions described in section 4.2. I leave the extraction
of the audio data to __getitem__ to only read the files as required and not store the entire
dataset in memory.
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For each audio clip in the paired clips, __getitem__ uses PyTorch audio method to extract
the audio contents. Within __getitem__, apply a series of private methods to process the
audio content for analysis.

Listing 4.3: Custom VoxDataset

c l a s s VoxDatase t ( d a t a . D a t a s e t ) :
" " "
A s t anda rd PyTorch d e f i n i t i o n o f Da t a s e t which d e f i n e s t h e f u n c t i o n s
__ len__ and __ge t i t em__ .
" " "

def _ _ i n i t _ _ ( s e l f , p ick le_name , f r o n t e n d ) :
# d e f _ _ i n i t _ _ ( s e l f , d a t a_d i r , t r a n s f o r m ) :
" " "
S t o r e t h e f i l e n a m e s o f t h e wav t o use . S p e c i f i e s t r a n s f o r m s t o
app l y on f i l e s .
Args :

p i c k l e ( s t r i n g ) : Path t o t h e p i c k l e f i l e w i t h a n n o t a t i o n s
r o o t _ d i r ( s t r i n g ) : D i r e c t o r y w i t h a l l t h e . wav f i l e s
f e a t u r e _ e x t r a c t i o n _ m e t h o d ( t o r c h v i s i o n . t r a n s f o r m s ) : Trans form
t o be a p p l i e d t o sample

" " "
f i l e p a t h = os . p a t h . j o i n ( a r g s . p i c k l e _ d i r e c t o r y + ' / '

+ p ick l e_name + ' . p i c k l e ' )
w i th open ( f i l e p a t h , " rb " ) a s f :

l i s t _ o f _ l i s t = p i c k l e . l o ad ( f )
s e l f . vox = pd . DataFrame ( l i s t _ o f _ l i s t )

s e l f . f r o n t e n d = g e t _ f e a t u r e _ e x t r a c t o r ( f r o n t e n d )

def __ len__ ( s e l f ) :
# r e t u r n s i z e o f d a t a s e t
re turn l en ( s e l f . vox )

def __ge t i t em__ ( s e l f , i dx ) :
" " "
Fe tch i nd e x i d x aud io and l a b e l s from d a t a s e t . T rans fo rms aud io .
Args :
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i d x : ( i n t ) i n d e x i n [0 , 1 , . . . , n u m b e r _ o f _ f i l e s −1]
Re t u rn s :

waveform , sample r a t e : ( Tensor ) aud io
l a b e l : ( i n t ) c o r r e s p on d i ng l a b e l o f aud io

" " "
i f t o r c h . i s _ t e n s o r ( i dx ) :

i dx = idx . t o l i s t ( )

w a v e f i l e s = s e l f . _ g e t _ a ud i o _ s amp l e _p a t h s ( i dx )
l a b e l = s e l f . _ g e t _ a u d i o _ s amp l e _ l a b e l ( i dx )

t1 , t 2 = [ s e l f . _ p r o c e s s _ f i l e ( f i l e ) f o r f i l e in wav e f i l e s ]

a s s e r t t 1 [ 1 ] == t 2 [ 1 ] , " The␣ p a i r s ␣ o f ␣ t e n s o r s ␣ d i f f e r ␣ i n ␣ shape "

re turn t 1 [ 0 ] , t 2 [ 0 ] , l a b e l

# p r i v a t e f u n c t i o n s
def _g e t _ a ud i o _ s amp l e _p a t h s ( s e l f , i dx ) :

w a v e f i l e s = s e l f . vox . i l o c [ idx , 0 : 2 ]
re turn wav e f i l e s

def _g e t _ a u d i o _ s amp l e _ l a b e l ( s e l f , i dx ) :
l a b e l _ b o o l e a n = s e l f . vox . i l o c [ idx , 2 ]
re turn l a b e l _ b o o l e a n . a s t y p e ( f l o a t )

def _ c u t _ i f _ n e c e s s a r y ( s e l f , s i g n a l ) :
i f s i g n a l . shape [ 1 ] > 48000 :

o f f s e t = 8000
s i g n a l = s i g n a l [ : , o f f s e t : ( o f f s e t +48000) ]

re turn s i g n a l

def _ p r o c e s s _ f i l e ( s e l f , f i l e p a t h ) :
s i g n a l , s r = t o r c h a u d i o . l o ad ( f i l e p a t h )
s i g n a l = s e l f . _ c u t _ i f _ n e c e s s a r y ( s i g n a l )
s i g n a l = s e l f . f r o n t e n d ( s i g n a l )
s i g n a l = t o r c h . squeeze ( s i g n a l )
s i g n a l = s e l f . _ s t a n d a r d i z e ( s i g n a l )
s i g n a l = t o r c h . t r a n s p o s e ( s i g n a l , 0 , 1 )
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dim = s i g n a l . s i z e ( )
re turn s i g n a l , dim

def _ s t a n d a r d i z e ( s e l f , s i g n a l ) :
# Shape : D x Tmax
s i g n a l −= s i g n a l . mean ( a x i s =0)
s i g n a l /= s i g n a l . s t d ( a x i s =0)
re turn s i g n a l

PyTorch’s dataloader allows a user to pass samples in “minibatches" from the VoxCeleb
2.0 to my model. At every epoch, the dataloader reshuffles the data and the dataloader
also easily allows multiprocessing in data retrieval. The dataloader is an iterable object and
returns training set features and labels. My implementation of the dataloader function is
presented in Listing 4.4.

Listing 4.4: Custom VoxDataset PyTorch DataLoader

def f e t c h _ d a t a l o a d e r ( p ick le_name , f e a t u r e _ e x t r a c t i o n _me t h o d ,
b a t c h _ s i z e , params ) :

d l = d a t a . Da taLoader ( VoxDatase t ( p ick le_name , f e a t u r e _ e x t r a c t i o n _m e t h o d ) ,
b a t c h _ s i z e ,
s h u f f l e =True ,
num_workers=params . num_workers ,
pin_memory=True )

re turn d l

4.4 Extracting Mel Frequency Cepstral Coefficients
Usingwell-knownMFCCs is a fundamental choice for interpretability inmy thesismodeling
task for speaker recognition. Below I provide an example of my methods for extracting
MFCC using the PyTorch torchaudio function that creates a tensor. The sample rate of
16,000 is specific to the VoxCeleb 2.0 dataset. I choose to use the default 128 mel filters
and extract the first three MFCCs. According to Rudin [3], humans are only able to be
familiar with 7 +/− 2 features, which is why I want to start with very few powerful features.
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Davis and Mermelstein [23] suggest that a vast majority of useful information about the
speaker is contained in the first few coefficients. In Listing 4.5, I present my custom function
for defining MFCCs. I use this function as the 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑒𝑡ℎ𝑜𝑑 input for the
dataloader function presented in Listing 4.4.

Listing 4.5: Extracting a Tensor of MFCCs

def g e t _ f e a t u r e _ e x t r a c t o r ( method , s r ) :
" " "
Args :

method : ( s t r ) aud io f e a t u r e e x t r a c t i o n
Re t u rn s :

t r a n s f o r m method
" " "
s amp l e _ r a t e = s r
n _ f f t = i n t ( s amp l e _ r a t e ∗0 . 0 3 ) #30 ms window
n_mels = 128

i f method == ' mfcc3 ' :
n_mfcc = 3

t r a n s f o rm = t o r c h a u d i o . t r a n s f o rm s .MFCC(
s amp l e _ r a t e = s amp l e_ r a t e ,
n_mfcc=n_mfcc ,
melkwargs ={

" n _ f f t " : n _ f f t ,
" n_mels " : n_mels ,
" me l _ s c a l e " : " h t k " ,
" window_fn " : t o r c h . hamming_window

} ,
)

i f method == ' mfcc12 ' :
n_mfcc = 12

t r a n s f o rm = t o r c h a u d i o . t r a n s f o rm s .MFCC(
s amp l e _ r a t e = s amp l e_ r a t e ,
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n_mfcc=n_mfcc ,
melkwargs ={

" n _ f f t " : n _ f f t ,
" n_mels " : n_mels ,
" me l _ s c a l e " : " h t k " ,
" window_fn " : t o r c h . hamming_window

} ,
)

i f method == ' mfcc40 ' :
n_mfcc = 40

t r a n s f o rm = t o r c h a u d i o . t r a n s f o rm s .MFCC(
s amp l e _ r a t e = s amp l e_ r a t e ,
n_mfcc=n_mfcc ,
melkwargs ={

" n _ f f t " : n _ f f t ,
" n_mels " : n_mels ,
" me l _ s c a l e " : " h t k " ,
" window_fn " : t o r c h . hamming_window

} ,
)

re turn t r a n s f o rm
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CHAPTER 5:
Results

In this chapter, I present comparisons between models and feature extraction methods. In
Section 5.1, I compare the performance of two CNNs using 40 MFCCs but with different
window sizes used during the feature extraction. Interestingly, I find that the feature extrac-
tion method that uses a window size at odds with the literature on human speech performs
extremely well, while the one using a suggested window size to extract a quasi-stationary
speech signal performs moderately well. Next, in Section 5.2, using the suggested window
size, I compare the performance of two CNNs using 40 MFCCs and 12 MFCCs. Using 13
or fewer MFCCs was common practice before the last decade. I find that the performance
is not depleted by using fewer MFCCs. In Section 5.3, using 12 MFCCs and the suggested
window size, I compare the performance of using a CNNmodel versus anMLPmodel. I find
that the MLP does not perform as well. Finally, in Section 5.4, I use a Logistic Regression to
model the speaker recognition task with 12 MFCCs and the suggested window size during
feature extraction. I find that the model cannot learn any patterns and labels all speaker pairs
as the “same" speaker.

5.1 Identifying a Conundrum with CNN modeling of hu-
man speaker recognition task using MFCCs

In this section, I compare two attempts at modeling the speaker recognition task using 40
MFCCs with window sizes: 128 ms and 30 ms, where 30 ms aligns with the literature on
human speech windowing and 128 ms is the default window size from PyTorch Audio.

In the first iteration, before I learned the specifics of modeling human speech, I modeled
the VoxCeleb 2.0 speaker recognition task using 40 MFCCs constructed using the default
specifications from the PyTorch torchaudio package, which sets the default number of
FFTs equal to 2048. The number of FFTs translates into a window size and hop length by
construction. Therefore, when the number of FFT is equal to 2048, then the window size
is 128 ms, and the hop length of 64 ms. Below, in Listing 1 in the Appendix, I include
the PyTorch class for the CNN using 40 MFCCs and a 128 ms window which I refer to

43

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



henceforth as CNN 1.

In CNN 1, I include four convolutional layers and four fully connected layers. The hyperpa-
rameters I tuned were the learning rate, dropout, batch size, optimizer (SGD or Adam), and
epoch number. The best results I achieved were when I set the SGD momentum scheduler
at steps 8, 16, and 24 epochs. Looking at the curves in figure 5.1, the steep loss curve shows
that the CNN learned quickly, arriving near its minimum in the test data just after 10 epochs.
The training and test curves look similar until then as well. However, this specification still
exhibits overfitting fitting characteristics, since the training loss goes to zero. A positive
note about the test loss, though, is that it does not have a rising trend across the last 20
epochs.
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Loss

Training epochs

Loss

Test epochs

Figure 5.1. CNN 1 with SGD Optimizer, learning rate = 0.3, scheduler set at
8, 16, 24 epoch for momentum = 0.9. The dark line is the smoothed (factor
= 1.0) loss curve and the light line is the non-smoothed (factor = 0.0) loss
curve.
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The detailed information on the evaluation metrics for the model responsible for the training
and test curve presented in Figure 5.1 are presented in the bottom rows of the column entitled
CNN1 in Table 5.1. Using a large window size of 128ms, my CNNmodel can achieve a test
accuracy of 0.928 and F1 Score = 0.928. The false negatives and false positives are both
small, but the false positives are almost three times as likely as the false negatives. Together
with the relatively smaller true negative label, it seems like this model over-predicts the
“same" speaker.
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CNN 1 CNN 2

MFCCs
Number of FFT 2048 480
Number of seconds of audio 3 3
Window length (ms) 128 30
Hop length (ms) 64 15
Number of MFCCs 40 40
Number of Mel filters 40 128

CNN
Training size 100,000 50,000
Test size 20,000 10,000
Number of epochs 30 100
Architecture see Listing 1 see Listing 2

Convolutional layers 4 3
Linear layers 4 5
Dropout No Yes, 0.3
Pooling Yes Yes
Non-linearity function ReLu ReLu

Learning rate 0.3 0.03
Scheduled step, (𝛾 = 0.1) 8, 16, 24 35, 40, 45

Test performance, batch = 64
True positive (# in batch) 30.2 29.6
True negative (# in batch) 29.2 15.6
False positive (# in batch) 2.8 16.5
False negative (# in batch) 1.8 2.4
Accuracy 0.93 0.71
F1 score 0.93 0.76
Loss 0.47 0.53
Loss graphic see Figure 5.1 see Figure 5.2

Table 5.1. Feature extraction, modeling, and performance details for two
CNNs using 40 MFCCs, CNN 1 and CNN 2
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However, a 128mswindow is inappropriate for human speech,which is only quasi-stationary
from 25-30 ms. When I use the appropriate window length for human speech, window (ms)
∈ [20, 30], then accuracy on the test set maxes out at a little above 70 percent as shown in
the column entitled CNN2 in Table 5.1.

In the code shown in Listing 2 in the Appendix, which I call CNN 2. In CNN 2, I increase
the number of fully connected layers to five to ensure the model can learn the patterns and
include a dropout of 30 percent to help avoid overfitting, otherwise, CNN 1 and CNN 2 are
fairly similar in terms of their architecture. The training specifications I chose for CNN 1
and CNN 2 differ regarding the number of training and test observations. Additionally, I
use 128 mel filters with the 30 ms window and 40 mel filters with the 128 ms window. I did
not explore the implications of the number of filters. For CNN 1, when the window is 128
ms and there are 40 mel filters, I chose to mimic the PyTorch torchaudio example which
sets the number of mel filters equal to the number of MFCCs. However, for CNN2, when
the window is 40 ms and there are 128 mel filters, I chose to use the PyTorch torchaudio
default number of mel filters.

I found trainingCNN2 to bemuchmore difficult than training CNN1. CNN2 quickly overfit
the training data. It took around 40 attempts over four days to arrive at the model detailed in
Listing 2 in the Appendix and column CNN2 in Table 5.1. In the two panels of Figure 5.2, I
present the loss curves for the training and test data for CNN 2. The model described learned
slowly, shown by the gradual slope of the loss curve. However, the specification does not
severely overfit the training data with these parameters, which was a common characteristic
of models for this data with a window size of 30 ms.
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Loss

Training epochs

Loss

Test epochs

Figure 5.2. CNN 2 with SGD Optimizer, learning rate = 0.03, scheduler set
at 35, 40, 45 epochs for momentum = 0.9. The dark line is the smoothed
(factor = 1.0) loss curve and the light line is the non-smoothed (factor =
0.0) loss curve.
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In the last few rows of column CNN 2 of Table 5.1, I present the details of a confusion
matrix for the model from Listing 2 in the Appendix and in the second panel of Figure 5.2.
I find that the model is systematically over-predicting the “same" speaker.

In this section, I have detailed two variations of modeling a CNN for a human speaker
recognition task using VoxCeleb 2.0. The principal difference between the two modeling
attempts is that the model, CNN 1, uses MFCCs extracted from 128 ms windows, and the
model, CNN 2, uses MFCCs extracted from 30 ms windows. I find that the CNN using the
data extracted at a 128 ms window is easier to train while avoiding overfitting and achieves
greater than 90% accuracy.

Why should the reader care that a 128 ms window is used? Because an MFCC created on
a 128 ms window of human speech is nonsense. The literature on human speech declares
that speech signals are quasi-stationary for windows between 20 and 35 ms. Therefore,
using MFCCs for a 128 ms window is at odds with the literature. Why then I am achieving
substantially higher accuracy for speaker recognition using an “invalid" MFCC? What is
the MFCC at a 128 ms window capturing? It cannot be the vocal system of the speaker as
defined in my thesis section on the cepstrum detailed in Section 3 because that vocal system
is convolved with the excitation signal for a quasi-stationary piece of the speech signal. This
is a question for future research.

5.2 Modeling Speaker Recognition using a CNN with 12
MFCCs

In this section, I reduce the number of MFCCs to 12 coefficients used in feature extraction
from the same utterance segment size of 3 seconds. Using 12 coefficients was common until
computing capabilities improved over the last decade. From this point forward, I use the 30
ms window to extract the MFCCs, so my CNN with 12 coefficients is a similar manner to
CNN 2 presented in the last section except for the number of outputs from the convolutional
layers. In CNN 2, the first fully connected layer accepted 9600 outputs, and in this CNN,
which I call CNN 3, the first fully connected layer accepts 3200 outputs (1

3 × 9600). In the
code below, Listing 3, I present the CNN class with 12 MFCCs which I refer to as CNN 3.

Manually tuning the hyperparameters, e.g., learning rate, dropout, and batch size, for CNN 3
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was not as difficult as CNN 2. I quickly found hyperparameters for the CNNwhich achieved
performance equivalent to CNN 3 with 40 MFCCs. In Figure 5.3, I present the training and
validation loss curves for the highest-performing version of CNN 3.
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Loss

Training epochs

Loss

Test epochs

Figure 5.3. CNN 3 with SGD Optimizer, learning rate = 0.3, scheduler set at
6, 8, 10, 12, 14 epochs for momentum = 0.9. The dark line is the smoothed
(factor = 1.0) loss curve and the light line is the non-smoothed (factor =
0.0) loss curve.
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In Table 5.2, I outline the hyperparameters for CNN 2 and CNN 3 for comparison. For CNN
3, I was able to start with a larger learning rate of 0.3 without causing major fluctuations in
the validation loss. I quickly applied momentum (𝛾 = 0.1) every two epochs after epoch 6
to control overfitting.

As displayed in Figure 5.3, I limited the number of epochs over which training occurred for
CNN 3 because the loss curve on the validation data came close to its minimum after only
13 epochs. For reference, in CNN2 shown in Figure 5.2, the validation loss curve continued
to fall until the 60th epoch.
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CNN 2 CNN 3

MFCCs
Number of FFT 480 480
Number of seconds of audio 3 3
Window length (ms) 30 30
Hop length (ms) 15 15
Number of MFCCs 40 12
Number of Mel filters 128 128

CNN
Training size 50,000 50,000
Test size 10,000 10,000
Number of epochs 70 54
Architecture see Listing 2 see Listing 3

Convolutional layers 4 3
Linear layers 5 4
Dropout Yes, 0.3 Yes, 0.15
Pooling Yes Yes
Non-linearity function ReLu ReLu

Learning rate 0.03 0.3
Scheduled step, (𝛾 = 0.1) 35, 40, 45 6, 8, 10, 12, 14

Test performance, batch = 64
True positive (# in batch) 29.6 29.2
True negative (# in batch) 15.6 15.3
False positive (# in batch) 16.5 15.8
False negative (# in batch) 2.4 2.8
Accuracy 0.71 0.70
F1 score 0.76 0.75
Loss 0.53 0.55
Loss graphic see Figure 5.2 see Figure 5.3

Table 5.2. Feature extraction, modeling, and performance details for two
CNNs using 40 MFCCs or 12 MFCCs
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In the bottom rows of Table 5.2, the performance measures are presented for CNN 2 (40
MFCCs) and CNN 3 (12 MFCCs). The performances of the two CNNs are very similar.
CNN3mislabeled positives at a lower rate than CNN2, however, when eachCNNmislabels,
it is much more likely to assign a speaker pair as “same" when the true label for the speaker
pair was “different." The resulting performance for CNN 3 is evidence that coefficients 13 to
40 contained little helpful information as compared with coefficients 1 to 12. Additionally,
hyperparameters for the model with 12 coefficients (CNN 3) was easier than the model with
40 coefficients (CNN 2).

5.3 Modeling Speaker Recognition using an MLP
Following, the guidance provided by Rudin [3] and described in detail in Chapter 2, in this
section, I replace the CNNwith a simpler model, theMLP, to examine relative performance.
Like the early sections in this chapter, I present the MLP class code first in Listing 4 in
the Appendix. The MLP I designed is three fully connected layers with a ReLU activation
function between each one. With three layers, the MLP was able to correctly make some
predictions. With fewer layers, the MLP was not making any correct predictions. The initial
inputs total 4824 = 12 MFCC × (201 frames + 201 frames).

In Figure 5.4, I present the loss curves for the training and validation sets using the MLP.
The details of the model, hyperparameters, and training decisions are presented in Table
5.3 for CNN 3 and the MLP. The loss curve from the validation set in Figure 5.4 shows that
the useful learning taking place during training was inconsistent for correct predictions on
the validation set.
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Loss

Test epochs

Figure 5.4. MLP with SGD Optimizer, learning rate = 0.003, scheduler set
at 10, 20, 20 epochs for momentum = 0.9. The dark line is the smoothed
(factor = 1.0) loss curve and the light line is the non-smoothed (factor =
0.0) loss curve.
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Training the MLP was difficult in that the model quickly overfit the training data. To achieve
a performance accuracy of 0.61, I had to enact a small learning rate of 0.003 which I reduced
at regular intervals during the 50 epochs of training. Like CNN 1, 2, and 3, presented earlier
in this chapter, the MLP also labels false positives at a greater rate than false negatives.
However, the incremental change in mislabeling between CNN 3 and MLP more or less
equally affected the false positive and false negative rates.
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CNN 3 MLP

MFCCs
Number of FFT 480 480
Number of seconds of audio 3 3
Window length (ms) 30 30
Hop length (ms) 15 15
Number of MFCCs 12 12
Number of Mel filters 128 128

CNN
Training size 50,000 50,000
Test size 10,000 10,000
Number of epochs 54 50
Architecture see Listing 2 see Listing 4

Convolutional layers 3 0
Linear layers 5 4
Dropout Yes, 0.3 NA
Pooling Yes NA
Non-linearity function ReLu ReLu

Learning rate 0.03 0.003
Scheduled step, (𝛾 = 0.1) 6, 8, 10, 12, 14 10, 20, 30

Test performance, batch = 64
True positive (# in batch) 29.2 25.7
True negative (# in batch) 15.3 13.3
False positive (# in batch) 15.8 18.8
False negative (# in batch) 2.8 6.3
Accuracy 0.70 0.61
F1 score 0.75 0.67
Loss 0.55 0.69
Loss graphic see Figure 5.3 see Figure 5.4

Table 5.3. Feature extraction, modeling, and performance details for CNNs
and MLP using 12 MFCCs
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5.4 Applying a Logistic Regression to the VoxCeleb Speaker
Recognition Task

I use PyTorch’s implementation of the logistic regression. By using PyTorch for logistic
regression, I can train the model on batches from the 50,000 training and 10,000 validation
observations like the other models I use. In Listing 5 in the Appendix, I present the PyTorch
custom class for logistic regression I wrote for this speaker recognition task. Like the MLP
class presented in Listing 4 in the Appendix, the inputs total 4824.

To try to optimize performance, I manipulated the hyperparameters: learning rate and the
number of inputs for the second fully connected layer. I found that a high learning rate
(> 0.05) resulted in an exploding loss for the training set. Therefore, I constrained the
learning rate to 0.05 to enable the model to continue running. In Figure 5.5, the loss curves
are flat (blue curves) and show that the logistic regression is unable to learn the patterns
necessary for the speaker recognition task. I include the MLP curve from Figure 5.4 in pink
for reference. The test set accuracy using this logistic regression model is 0.50, f-score of
0.66, with almost all observations being labeled as the “same" speaker.
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Figure 5.5. LR in Blue with SGD Optimizer, learning rate = 0.05, Pink curves
are from the MLP model details in Section 5.3. The dark line is the smoothed
(factor = 1.0) loss curve and the light line is the non-smoothed (factor =
0.0) loss curve.

60

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



CHAPTER 6:
Conclusion

In this chapter, I provide an overview of the implications for DOD and concluding remarks.
An overview of the results was presented earlier in the preface to Chapter 5.

6.1 Implications for Defense
This thesis focuses on a speaker recognition task in audio analysis, but the implication of
interpretability uncovered in this research is important for applications of AI more broadly.
For DOD, speaker recognition may become more important as technology continues to
advance, for example, speaker-identified transcription is an important task.

Future approaches to AI in DOD need to be trustworthy which means that interpretability
needs to be developed. Since DOD applications of AI are of high consequence and likewise
scrutinized, DOD cannot rely on private sector AI development to meet DOD needs for
interpretability [3], [6]. While high-consequence tasks do exist in private sector AI devel-
opment, like self-driving cars, much of the private sector efforts in AI development focus
on performance and not on interpretability [9].

My research explored the use of simpler models and fewer important features in predic-
tion. My results show that only the most complex model performed well. The CNN model
achieved an acceptable level of performance in speaker recognition tasks. Speaker recogni-
tion like other “hard tasks" will encompass a large portion of AI development going forward.
DOD needs to be ready to make use of promising yet complex AI applications. Regarding
feature extraction, fewer MFCCs (12 coefficients) performed as well as many MFCCs (40
coefficients.)

During this research, I discovered that interpretable CNNs and other complex modeling
practices are at the frontier of AI research. Methods like disentangled CNN-models, among
a few others, allow a practitioner and user to understand what features a CNN uses in its
decision-making framework, which is only just being developed. DOD should consider
spearheading interpretable AI development for the public good.
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6.2 Concluding Remarks
People think that AI is new but quality AI relies on decades of research. In this thesis, I
drew on papers about human speech recognition from the 1950s and cutting-edge research
on interpretability from this year, and I tried to unite them. It was difficult. As an economist,
I come from a field where measurement is essential. Measurement of features and keeping
track of the features’ use in the modeling task is important for interpretability. In speaker
recognition, I found little care for the conceptual integrity of human speech and did find the
common criticism of AI which is a sole focus on accuracy.

In my own small research project on speaker recognition for this thesis, I experienced
first-hand the inverse relationship between accuracy and feature integrity. When modeling
a CNN, a misspecified MFCC yielded impressive accuracy. But how? I would like to know
what exactly 40 MFCCs are capturing about a human speaker over a 128 ms window. From
the theoretical literature on the cepstrum and MFCC, the answer should be “nothing." But
the impressive accuracy means that “something" meaningful about a speaker’s identity was
captured. It’s a conundrum - and onewithout an explanation sinceCNNdefies interpretation.

My conclusion about speaker recognition tasks is that feature extraction is fundamental.
More specifically, uniting feature extraction with the 70-year-long literature on human
speech is the most important. Human speech is the most studied form of audio because it is
the most important to us! Then once the features have a theoretically sound basis then tune
the model for performance.
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APPENDIX: PyTorch Neural Network Code

Listing 1: CNN 1 with 40 MFCC and 93 frames using 128 ms window

c l a s s CNN( t o r c h . nn . Module ) :

def _ _ i n i t _ _ ( s e l f ) :
super (CNN, s e l f ) . _ _ i n i t _ _ ( )

s e l f . l a y e r 1 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 1 , 32 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
)

s e l f . l a y e r 2 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d (32 , 64 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
)

s e l f . l a y e r 3 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d (64 , 128 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
)

s e l f . l a y e r 4 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d (128 , 256 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
)

# L4 FC 12 x3x256 i n p u t s −> 9216 o u t p u t s
s e l f . h idden1 = nn . L i n e a r (256∗12∗3 , 2000)
ka iming_un i fo rm_ ( s e l f . h idden1 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 1 = nn . ReLU ( )
# Second h idden l a y e r
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s e l f . h idden2 = nn . L i n e a r (2000 , 500)
ka iming_un i fo rm_ ( s e l f . h idden2 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 2 = nn . ReLU ( )
# Second h idden l a y e r
s e l f . h idden3 = nn . L i n e a r ( 500 , 75)
ka iming_un i fo rm_ ( s e l f . h idden3 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 3 = nn . ReLU ( )
# Th i rd h idden l a y e r
s e l f . h idden4 = nn . L i n e a r ( 7 5 , 1 )

def f o rwa rd ( s e l f , t1 , t 2 ) :
X = t o r c h . c a t ( ( t1 , t 2 ) , dim=1)
X = X[None , : ]
X = X. permute ( 1 , 0 , 2 , 3 ) # r ea r range t e n s o r
ou t = s e l f . l a y e r 1 (X)
ou t = s e l f . l a y e r 2 ( ou t )
ou t = s e l f . l a y e r 3 ( ou t )
ou t = s e l f . l a y e r 4 ( ou t )
ou t = ou t . view ( ou t . s i z e ( 0 ) , −1) # F l a t t e n f o r FC
# I n p u t t o t h e f i r s t h idden l a y e r
X = s e l f . h idden1 ( ou t )
X = s e l f . a c t 1 (X)
# Second h idden l a y e r
X = s e l f . h idden2 (X)
X = s e l f . a c t 2 (X)
# Th i rd h idden l a y e r
X = s e l f . h idden3 (X)
X = s e l f . a c t 3 (X)
# Four th h idden l a y e r
X = s e l f . h idden4 (X)
re turn X

Listing 2: CNN 2 with 40 MFCC and 480 frames using 30 ms window

c l a s s CNN( t o r c h . nn . Module ) :

def _ _ i n i t _ _ ( s e l f ) :
super (CNN, s e l f ) . _ _ i n i t _ _ ( )

64

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



s e l f . l a y e r 1 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 1 , 32 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
t o r c h . nn . Dropout ( 0 . 3 )
)

s e l f . l a y e r 2 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d (32 , 64 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
t o r c h . nn . Dropout ( 0 . 3 )
)

s e l f . l a y e r 3 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d (64 , 128 , k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
t o r c h . nn . Dropout ( 0 . 3 )
)

# L4 FC 25 x3x128 i n p u t s −> 9600 o u t p u t s
s e l f . h idden1 = nn . L i n e a r (25∗3∗128 , 5000)
ka iming_un i fo rm_ ( s e l f . h idden1 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 1 = nn . ReLU ( )
# Second h idden l a y e r
s e l f . h idden2 = nn . L i n e a r (5000 , 1000)
ka iming_un i fo rm_ ( s e l f . h idden2 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 2 = nn . ReLU ( )
# Second h idden l a y e r
s e l f . h idden3 = nn . L i n e a r (1000 , 250)
ka iming_un i fo rm_ ( s e l f . h idden3 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 3 = nn . ReLU ( )
# Th i rd h idden l a y e r
s e l f . h idden4 = nn . L i n e a r ( 250 , 75)
ka iming_un i fo rm_ ( s e l f . h idden4 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 4 = nn . ReLU ( )
s e l f . h idden5 = nn . L i n e a r ( 7 5 , 1 )
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def f o rwa rd ( s e l f , t1 , t 2 ) :
X = t o r c h . c a t ( ( t1 , t 2 ) , dim=1)
X = X[None , : ]
X = X. permute ( 1 , 0 , 2 , 3 ) # r ea r range t e n s o r
ou t = s e l f . l a y e r 1 (X)
ou t = s e l f . l a y e r 2 ( ou t )
ou t = s e l f . l a y e r 3 ( ou t )
ou t = ou t . view ( ou t . s i z e ( 0 ) , −1) # F l a t t e n f o r FC
# I n p u t t o t h e f i r s t h idden l a y e r
X = s e l f . h idden1 ( ou t )
X = s e l f . a c t 1 (X)
# Second h idden l a y e r
X = s e l f . h idden2 (X)
X = s e l f . a c t 2 (X)
# Th i rd h idden l a y e r
X = s e l f . h idden3 (X)
X = s e l f . a c t 3 (X)
# Four th h idden l a y e r
X = s e l f . h idden4 (X)
X = s e l f . a c t 4 (X)
# Four th h idden l a y e r
X = s e l f . h idden5 (X)
re turn X

Listing 3: CNN 3 with 12 MFCC and 480 frames using 30 ms window

c l a s s CNN( t o r c h . nn . Module ) :

c l a s s CNN12( t o r c h . nn . Module ) :

def _ _ i n i t _ _ ( s e l f ) :
super (CNN12 , s e l f ) . _ _ i n i t _ _ ( )

s e l f . l a y e r 1 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d ( 1 , 32 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
# t o r c h . nn . Dropout ( 0 . 1 5 )
)
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s e l f . l a y e r 2 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d (32 , 64 , k e r n e l _ s i z e =2 , s t r i d e =1 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
# t o r c h . nn . Dropout ( 0 . 1 5 )
)

s e l f . l a y e r 3 = t o r c h . nn . S e q u e n t i a l (
t o r c h . nn . Conv2d (64 , 128 , k e r n e l _ s i z e =2 , s t r i d e =2 , padd ing =1) ,
t o r c h . nn . ReLU ( ) ,
t o r c h . nn . MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 ) ,
# t o r c h . nn . Dropout ( 0 . 1 5 )
)

# L4 FC 25 x1x128 i n p u t s −> 3200 o u t p u t s
s e l f . h idden1 = nn . L i n e a r (25∗1∗128 , 1000)
ka iming_un i fo rm_ ( s e l f . h idden1 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 1 = nn . ReLU ( )
# Second h idden l a y e r
s e l f . h idden2 = nn . L i n e a r (1000 , 250)
ka iming_un i fo rm_ ( s e l f . h idden2 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 2 = nn . ReLU ( )
# Th i rd h idden l a y e r
s e l f . h idden3 = nn . L i n e a r ( 250 , 75)
ka iming_un i fo rm_ ( s e l f . h idden3 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 3 = nn . ReLU ( )
s e l f . h idden4 = nn . L i n e a r ( 7 5 , 1 )

def f o rwa rd ( s e l f , t1 , t 2 ) :
X = t o r c h . c a t ( ( t1 , t 2 ) , dim=1)
X = X[None , : ]
X = X. permute ( 1 , 0 , 2 , 3 ) # ( ba t ch s i z e = 64 , i n p u t _ c h a n n e l s =1 , s i g n a l _ l e n g t h =5)
ou t = s e l f . l a y e r 1 (X)
ou t = s e l f . l a y e r 2 ( ou t )
ou t = s e l f . l a y e r 3 ( ou t )
ou t = ou t . view ( ou t . s i z e ( 0 ) , −1) # F l a t t e n them f o r FC
# I n p u t t o t h e f i r s t h idden l a y e r
X = s e l f . h idden1 ( ou t )
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X = s e l f . a c t 1 (X)
# Second h idden l a y e r
X = s e l f . h idden2 (X)
X = s e l f . a c t 2 (X)
# Th i rd h idden l a y e r
X = s e l f . h idden3 (X)
X = s e l f . a c t 3 (X)
# Four th h idden l a y e r
X = s e l f . h idden4 (X)
re turn X

Listing 4: MLP with 12 MFCC and 480 frames using 30 ms window

c l a s s MLP( nn . Module ) :

def _ _ i n i t _ _ ( s e l f ) :
super (MLP, s e l f ) . _ _ i n i t _ _ ( )
s e l f . h idden1 = nn . L i n e a r (4824 , 1000)
ka iming_un i fo rm_ ( s e l f . h idden1 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 1 = nn . ReLU ( )
# Second h idden l a y e r
s e l f . h idden2 = nn . L i n e a r (1000 , 250)
ka iming_un i fo rm_ ( s e l f . h idden2 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 2 = nn . ReLU ( )
# Second h idden l a y e r
s e l f . h idden3 = nn . L i n e a r ( 250 , 75)
ka iming_un i fo rm_ ( s e l f . h idden3 . weight , n o n l i n e a r i t y = ' r e l u ' )
s e l f . a c t 3 = nn . ReLU ( )
# Th i rd h idden l a y e r
s e l f . h idden4 = nn . L i n e a r ( 7 5 , 1 )

def f o rwa rd ( s e l f , t1 , t 2 ) :
X = t o r c h . c a t ( ( t1 , t 2 ) , dim=1)
X = t o r c h . r e s h a p e (X, ( t 1 . shape [ 0 ] , 2∗ t 1 . shape [ 1 ]∗ t 1 . shape [ 2 ] ) )
# I n p u t t o t h e f i r s t h idden l a y e r
X = s e l f . h idden1 (X)
X = s e l f . a c t 1 (X)
# Second h idden l a y e r
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X = s e l f . h idden2 (X)
X = s e l f . a c t 2 (X)
# Th i rd h idden l a y e r
X = s e l f . h idden3 (X)
X = s e l f . a c t 3 (X)
# Four th h idden l a y e r
X = s e l f . h idden4 (X)
re turn X

Listing 5: Logistic Regression with 12 MFCC and 480 frames using 30 ms
window

c l a s s LR( nn . Module ) :

def _ _ i n i t _ _ ( s e l f ) :
super (LR , s e l f ) . _ _ i n i t _ _ ( )
s e l f . l a y e r 1 =nn . L i n e a r ( 4824 , 100 )
s e l f . l a y e r 2 =nn . L i n e a r ( 1 00 , 1 )

def f o rwa rd ( s e l f , t1 , t 2 ) :
X = t o r c h . c a t ( ( t1 , t 2 ) , dim=1)
X = t o r c h . r e s h a p e (X, ( t 1 . shape [ 0 ] , 2∗ t 1 . shape [ 1 ]∗ t 1 . shape [ 2 ] ) )
X= s e l f . l a y e r 1 (X)
X= s e l f . l a y e r 2 (X)
re turn X
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