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In an earlier article, the statistical properties of mode propagation were studied at a frequency of
1 kHz in a shallow water environment with random sound-speed perturbations from linear internal
waves, using a hybrid transport theory and Monte Carlo numerical simulations. Here, the analysis
is extended to include the effects of random linear surface waves, in isolation and in combination
with internal waves. Mode coupling rates for both surface and internal waves are found to be signif-
icant, but strongly dependent on mode number. Mode phase randomization by surface waves is
found to be dominated by coupling effects, and therefore a full transport theory treatment of the
range evolution of the cross mode coherence matrix is needed. The second-moment of mode ampli-
tudes is calculated using transport theory, thereby providing the mean intensity while the fourth-
moment is calculated using Monte Carlo simulations, which provides the scintillation index. The
transport theory results for second-moment statistics are shown to closely reproduce Monte Carlo
simulations. Both surface waves and internal waves strongly influence the acoustic field fluctua-
tions. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4919358]

[TFD] Pages: 2950–2961

I. INTRODUCTION

Acoustic scattering by various oceanographic phenom-
ena leads to the statistical nature of sound propagation in
both shallow and deep water environments. In a prior paper
(Raghukumar and Colosi, 2014), we presented a statistical
analysis of high frequency, shallow-water acoustic propaga-
tion in the presence of random linear internal wave-induced
sound speed perturbations. In an environment similar to
summer conditions in the mid-Atlantic bight as measured
during the Shallow Water Experiment 2006 (SW06), mode
coupling rates were found to be significant for lower order
modes while mode coherences were adequately modeled by
transport theoretic expressions derived using the adiabatic
approximation that ignores mode coupling. Consequently,
the cross-mode coherence matrix was efficiently modeled
using a hybrid transport theory where the diagonal of the ma-
trix (mode intensities) was calculated using a coupled-mode
approach (Dozier, 1982; Creamer, 1996), while the off-
diagonal terms (mode coherences) were modeled using adia-
batic theory. New analytically tractable expressions were
proposed to calculate the scattering matrix for internal waves
modeled by the Garrett-Munk (GM) spectrum, and an effi-
cient treatment of the “edge” effect was proposed (Colosi
et al., 2012b), wherein an over-counting of range terms from
behind the source was corrected in the scattering matrix
computation. In this companion paper, we extend our trans-
port theory analysis for internal waves to include the effect
of random surface waves, as derived by Thorsos et al.
(2010).

While random linear internal waves are a dominant
cause of acoustic scattering at low frequencies, at higher

frequencies, particularly in shallow water, the presence of
surface- and bottom-interacting modes leads to additional
scattering by surface waves and an undulating seabed.
Early experimental work by Brown (1969) established the
relation between intensity fluctuations and surface rough-
ness. More recently, Dahl (1999) compared experimental
measurements of mean intensity with a model for bistatic
sea surface scattering in shallow water at a frequency of 30
kHz. While much theoretical work on surface scattering
has focused on modeling scattering strength and reverbera-
tion effects by rough surface scattering (Eckart, 1953;
Thorsos, 1990; McDaniel, 1993), there have also been
some efforts to understand mode coupling by surface
waves (Beilis and Tappert, 1979; Rouseff and Ewart, 1995)
and its effect on long range propagation. However, to the
extent of our knowledge, no effort has been made to exam-
ine the combined effect of both internal and surface waves
on the statistical moments of the acoustic field at long
ranges.

Transport theory is an approach that provides the range
evolution of various moments of a stochastic acoustic field.
Scattering theory for mode coupling and phase randomiza-
tion phenomena by random linear internal waves appears to
have gained solid theoretical ground in a series of recent
papers applied to deep and shallow water environments,
from 200 Hz to 1 kHz (Creamer, 1996; Colosi and Morozov,
2009; Colosi et al., 2012b; Raghukumar and Colosi, 2014).
A transport theory framework for mode coupling by surface
waves has also recently been demonstrated in shallow water
at 3 kHz by Thorsos et al. (2004) and Thorsos et al. (2010),
where second- and fourth-moment statistics of mode ampli-
tudes were compared against Monte Carlo simulations, with
a rough sea-surface modeled using a one-dimensional
Pierson-Moskowitz (PM) spectrum.a)Electronic mail: kraghuku@nps.edu
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Here, we combine the transport theory approach as pre-
sented by Raghukumar and Colosi (2014) with Thorsos’
treatment to look at the combined effects of shallow water
internal and surface waves on mode coupling at high fre-
quencies (1 kHz). Previously derived analytical expressions
for the internal-wave scattering matrix are modified to
include the effect of surface waves as modeled by the PM
spectrum (Pierson and Moskowitz, 1964). Unlike the case of
internal wave scattering, which preferentially couples lower-
order modes, we find that mode coupling by surface waves
primarily couples higher-order surface-interacting modes.
The importance of these higher modes depends on the rela-
tive rates of attenuation and mode coupling. The combined
effect of both internal and surface waves is a superposition
of the effects of each individual phenomenon, with mode
coupling and phase randomization occurring over all modes.
Additionally, surface wave-induced mode coherences are
found to be strongly influenced by mode coupling, with the
previously proposed internal wave hybrid transport theory
utilizing the adiabatic approximation no longer sufficient to
model the cross-mode coherence matrix. The importance of
surface wave-induced acoustic mode coupling is demon-
strated in the Monte Carlo calculations of the mode ampli-
tude fourth-moment, where the scintillation index (SI)
calculated using the adiabatic approximation is shown to be
vastly different than the full-field calculation that takes into
account mode coupling effects.

The organization of this paper is as follows. In Sec. II,
we provide an overview of transport theory, and present
expressions for mode coherences based on new expressions
for the scattering matrix in the presence of surface waves.
Also described are the new transport theory calculations,
necessary for handling surface waves. Section III describes
the modeled SW06 environment, along with computational
methods employed in the Monte Carlo simulations with sur-
face and internal waves. Section IV contains results compar-
ing the separate and joint effects of surface and internal
waves on acoustic mode coupling and phase randomization.
Finally, Sec. V concludes the paper and analyzes mode cou-
pling and coherence effects in a high frequency regime in
shallow water with rough sea surface and volume scattering.

II. TRANSPORT THEORY

We begin with well-documented background material on
transport equations for the range evolution of the cross-mode
coherence matrix (Colosi and Morozov, 2009). This back-
ground material is necessary to make this manuscript relatively
self-contained. Both surface- and internal-wave effects are con-
sidered, and we draw heavily from the transport theory results
of Thorsos et al. (2010) and Raghukumar and Colosi (2014).

Using a two-dimensional (2D) normal mode-based
approach, the acoustic pressure field, p(r, z) can be expressed as

p r; zð Þ ¼
XN

n¼1

an rð Þ/n zð Þffiffiffiffiffiffiffi
knr
p ; (1)

where, following the perturbational approach of Jensen et al.
(1994), /nðzÞ is the unperturbed real mode shape, calculated

by neglecting any attenuation effects, and ln ¼ kn þ ian is
the complex eigen-wavenumber where an is computed from
perturbation theory. All variability is contained in the range-
dependent mode amplitude, anðrÞ.

Dozier (1982) and Creamer (1996) expressed the evolu-
tion of mode amplitudes in shallow water as

dan

dr
% ilnan ¼ %i

XN

m¼1

Cmn rð Þam rð Þ; (2)

where CmnðrÞ is the symmetric coupling matrix which in our
case accounts for internal and surface waves. If the energy
transfer between internal and surface waves is small [between
10%6 and 10%4 W/m2 according to Olbers and Herterich (1979)
and Watson (1994)], one can safely assume that internal and
surface wave effects on acoustic mode coupling are separable.
The combined symmetric mode coupling matrix can then be
simply written as CmnðrÞ ¼ CIW

mnðrÞ þ CSW
mn ðrÞ. In the presence

of small surface wave-induced sea surface height perturbations,
and ignoring important 2D surface scattering effects, the mode
coupling matrix CSW

mn ðrÞ is given by [Thorsos et al. (2010),
complete derivation pending publication]

CSW
mn rð Þ ¼ %

h rð Þ
2q0 0ð Þ

1ffiffiffiffiffiffiffiffiffi
knkm
p d/n

dz

d/m

dz
; (3)

where h(r) is the surface displacement, and the depth-
derivatives are evaluated at the surface, z¼ 0. In comparison,
the symmetric mode coupling matrix with internal wave-
induced sound-speed perturbations is given by (Dozier and
Tappert, 1978a; Colosi and Morozov, 2009)

CIW
mn rð Þ ¼

k2
0ffiffiffiffiffiffiffiffiffi

knkm
p

ðD

0

/n zð Þ/m zð Þ
q0 zð Þ

dc r; zð Þ
c0

dz; (4)

where dcðr; zÞ is the sound-speed perturbation, c0 is a repre-
sentative sound speed, D is the water depth, q0ðzÞ is the den-
sity profile, and k0 ¼ x=c0 is a representative wavenumber.

Transport theory provides expressions for the range evo-
lution of various moments of intensity such as the first
moment, hIi ¼ hjpj2i, and second-moment hI2i ¼ hjpj4i. The
mean intensity is given by

hI r; zð Þi ¼ hjp r; zð Þj2i ¼
XN

n¼1

XN

p¼1

hana&pi rð Þ
r

/n zð Þ/p zð Þ
ffiffiffiffiffiffiffiffiffi
knkp

p ;

(5)

where hana&piðrÞ can be recognized as the cross-mode coher-
ence matrix.

Using transport theory (Creamer, 1996; Colosi and
Morozov, 2009) the range evolution of the cross-mode co-
herence matrix can be expressed as

dhana&pi
dr

þ i l&p % ln
# $

hana&pi

¼
XN

m¼1

XN

q¼1

hama&qiI
&
mn;qp þ haqa&miImp;qn

% hana&qiI
&
mp;qm % haqa&piImn;qm; (6)

where Imn;qp, known as the scattering matrix is given by
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Imn;qp ¼
ð1

0

dnDmn;qpðnÞe%ikqpn: (7)

Here Dmn;qpðnÞ ¼ hCmnðrÞCqpðr þ nÞi is the correlation func-
tion of the symmetric mode coupling matrix [Eq. (4)], for
range separation n. The acoustic mode wavenumber differ-
ence is kqp ¼ kp % kq. Given that internal and surface waves
are uncorrelated phenomena, Dmn;qpðnÞ can be expressed as a
sum of the correlations of symmetric mode coupling matri-
ces for internal and surface waves,

Dmn;qpðnÞ ¼ hCSW
mn ðrÞC

SW
qp ðrþ nÞiþ hCIW

mnðrÞC
IW
qp ðrþ nÞi: (8)

Thus, the scattering matrix, Eq. (7), can be composed by
contributions from both surface and internal waves.

A. Internal wave scattering matrix

The correlation operation needed to calculate Dmn;qpðnÞ
can be recast as an inverse Fourier transform of an isotropic
wavenumber spectrum of either sound speed-, or sea sur-
face height-perturbations. This operation allowed Colosi
et al. (2012b) to write the scattering matrix for internal
waves as

Imn;qp ¼
XJ

j¼1

Gmn jð ÞGqp jð Þ
ð1

0

dk Sj kð Þ

'

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % k2

pq

q ; 0 ( jkpqj < k;

isgn kpqð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pq % k2
q ; 0 ( k < jkpqj:

8
>>>>>><

>>>>>>:

(9)

Here, J is the maximum internal wave mode number and
GmnðjÞ is given by

Gmn jð Þ ¼ k2
0

ffiffiffiffiffiffiffiffiffi
2

knkm

r ðD

0

dzhl2 zð Þi1=2

' sin pjẑ zð Þ½ *
/n zð Þ/m zð Þ

q0 zð Þ
; (10)

with ẑðzÞ being the Wentzel-Kramers-Brillouin (WKB)
stretched vertical coordinate. The fractional sound speed var-
iance, hl2ðzÞi is given by

hl2 zð Þi ¼
f2

0

c2
0

N0

N zð Þ
dc

dz

% &2

p
; (11)

where f0 is a reference displacement, N0 is a reference buoy-
ancy frequency, N(z) is the Br€unt-Vaisala buoyancy fre-
quency, and ðdc=dzÞp is the potential sound-speed gradient.
The validity of WKB scaling in shallow water was examined
by Colosi et al. (2012a), who compared WKB mode func-
tions to those derived from the linear internal wave mode
equations. With the exception of mode 1 [see Fig. 2, Colosi
et al. (2012a)], which is to be expected for WKB analysis, a
good approximation to the dynamic modes was seen
between the inertial frequency and +2 cph. That being said,
shallow water has a larger fraction of mode 1 energy than
deep water.

While Colosi et al. (2012b) evaluated the wavenumber
integral in Eq. (9) numerically, Raghukumar and Colosi
(2014) derived new closed-form expressions when SjðkÞ is
parametrized by a GM spectrum,

Sj kð Þ ¼ H jð Þ
4

p
k2kj

k2 þ k2
j

' (2
: (12)

Here kj ¼ pfj=N0B, f is the Coriolis frequency, N0B
¼
ÐD

0 NðzÞdz is the internal wave energy parameter, and
HðjÞ ¼ Nj=ðj2 þ j2

&Þ is the GM vertical mode spectrum with
Nj being the normalization factor, and j& the modal band
width parameter. While the GM spectrum was originally
proposed as a canonical deep-water internal wave spectrum
(Garrett and Munk, 1979), a calculation of the diffuse inter-
nal wave frequency and mode spectrum from SW06 meas-
urements by Colosi et al. (2012b) was found to be quite
close to the GM model when j& ¼ 1.

The final form for the internal wave scattering matrix
was given by

Imn;qp¼
XJ

j¼1

Gmn jð ÞGqp jð ÞH jð Þ
4a

pjkqpj
coshmin

a2þ1ð Þ a2þ2%a2 cos2hminð Þþ
atanh

ffiffiffiffiffiffiffiffiffiffiffiffi
a2

a2þ1

r
coshmin

 !

2a a2þ1ð Þ3=2
þ i

psgn kpqð Þ
4a a2þ1ð Þ3=2

2

664

3

775;
(13)

where a ¼ kj=jkqpj; sin hmin ¼ jkqpjf=ðkjNmaxÞ, with Nmax the maximum buoyancy frequency.1 For the special case of kqp¼ 0,
the terms following H(j) in Eq. (13) simplify to ð2=pÞð1=kjÞðk2

max=k2
max þ k2

j Þ where kmax is a maximum wavenumber chosen
to ignore the inaccurate high-wavenumber roll-off characteristics of the WKB internal wave dispersion relation (Colosi et al.,
2013).

B. Surface wave scattering matrix

Similar to Eq. (9) for internal waves, the scattering matrix for surface waves can be written as
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Imn;qp ¼
1

4q2 0ð Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmknkpkq

p d/m

dz

d/n

dz

d/q

dz

d/p

dz

'
ð1

0

dk Sh kð Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % k2

pq

q ; 0 ( jkpqj < k;

i sgn kpqð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pq % k2
q ; 0 ( k < jkpqj;

8
>>>>>><

>>>>>>:

(14)

where once again, the depth-derivatives are evaluated at
z¼ 0, and ShðkÞ is an arbitrary isotropic horizontal wave-
number spectrum for surface waves. Similar to Thorsos et al.
(2010), we use the isotropic PM spectrum for ShðkÞ, given
by

Sh kð Þ ¼ a
2k3

exp % k2
L

k2

* +
; (15)

where a¼8:1'10%3; k2
L¼bg2=U4; b¼0:74; g¼9:8m=s2;

and U is the wind speed in m/s. For this model hh2i
¼aU4=4bg2.

Substitution of Eq. (15) into Eq. (14) results in the fol-
lowing expression for the wavenumber integral:

ð1

0

Sh kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % k2

qp

q dk ¼ a

2jkqpj3

ð1

0

e%a2x2 x2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% x2
p dx; (16)

where x ¼ jkqpj=k and a2 ¼ k2
L=k2

qp. While Eq. (16) can be
solved numerically, greater numerical tractability can be
obtained by making a trigonometric substitution that results
in an integral given by

ð1

0

Sh kð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % k2

qp

q dk ¼ a

2jkqpj3

ðp=2

0

e%a2 sin2h sin2 hdh

"

þ i sgn kpqð Þ
ðp=2

0

e%a2= sin2 h dh
sin3 h

#

:

(17)

The scattering matrix for surface waves can therefore be
easily numerically evaluated by substitution of Eq. (17) into
Eq. (14).

III. NUMERICAL COMPUTATIONS FOR THE SW06
ENVIRONMENT

This section describes the modeled acoustic propagation
scenario, specifically pertaining to surface waves. The acous-
tical waveguide with internal waves is identical to that
described in the companion paper, Raghukumar and Colosi
(2014), and is only briefly described here. Also described
here are the Monte Carlo simulations, and the numerical
implementation of the surface wave transport equations for
mode coherence.

The propagation environment is similar to that meas-
ured during the SW06 experiment, conducted off the New

Jersey continental shelf. Further details of the experiment
and the acoustic fluctuations observed may be found in the
papers by Lynch and Tang (2008) and Colosi et al. (2012a).
The acoustic frequency is chosen to be 1000 Hz, with a
constant water depth of 86 m over a 50 km range. The
source depth is 25 m for this study corresponding to the
sound speed minimum. Bottom attenuation is fixed at
ak ¼ 0:2 dB=k, and water column attenuation is also
included (Munk et al., 1995). The density of the water col-
umn and sea bottom are fixed at 1000 and 1500 kg/m3,
respectively. The reference sound speed in the water column
is 1500 m/s, and bottom sound speed is 1700 m/s. All fea-
tures of the acoustical waveguide such as density parame-
ters, sub-bottom sound speed, sub-bottom and water column
attenuation parameters are identical to that studied in
Raghukumar and Colosi (2014). Thus, insights into the sta-
tistics of sound propagation in the presence of surface
waves can be seamlessly compared to the previously studied
acoustical statistics in the presence of random linear internal
waves.

A. Environmental characteristics

The SW06 experiment was a multi-disciplinary, multi-
institutional effort with particular emphasis on the acoustical
effects of non-linear internal waves. The Mid-Atlantic Bight
experimental layout was in a T-shaped pattern (Tang et al.,
2007), with a cluster of acoustic and oceanographic instru-
mentation at the center of the “T,” that included surface
wave measurements by a TRIAXYS directional wave buoy
(AXYS Technologies Inc., British Columbia, Canada) and
an Air-Sea Interaction Spar buoy deployed by the University
of Miami. These systems recorded wind speeds of 6 m/s
(61 m/s) over a 6.5 h period on August 10, 2006 (Dahl,
2010), with a root-mean-square wave height of 0.16 m
(610%) over the measurement period. These wind speeds
indicate a Beaufort sea state 4, with a moderate breeze and
fairly frequent whitecaps, including small waves with breaking
crests. While these sea surface conditions are not reflective of
fully developed seas, we nevertheless use a non-directional
PM spectrum to model surface waves, as was done by Thorsos
et al. (2010) for the SW06 environment. In this paper we use a
wind speed of 5.5 m/s for the majority of transport theory anal-
ysis, and occasionally include results at 10 m/s for illustrative
purposes. A more complete analysis of surface wave condi-
tions during the entire month of August of SW06, including
directional aspects and a comparison to other canonical spectra
such as the JONSWAP spectrum is beyond the scope of this
paper, but will certainly be necessary when transport theory
predictions are compared against acoustic data.

B. Monte Carlo simulations

Repeated realizations of both internal and surface waves
are employed in this paper in order to compare transport
theory results with Monte Carlo simulations.

Random linear internal wave-induced sound-speed fluc-
tuations were simulated using the technique of Colosi and
Brown (1998) for a shallow water version of the Garett-
Munk (GM) spectrum. During the SW06 experiment,
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packets of nonlinear internal waves were likely present on
the acoustic transmission path. The GM spectrum does not
model these nonlinear internal waves, which do not follow
Gaussian statistics. Further, variability introduced by the in-
ternal tide is also absent in the GM model. That being said,
Colosi et al. (2012a) found that nonlinear internal waves
have little impact on the moments of the acoustic field when
random linear internal waves are also present, due to the
prior decorrelation and phase randomization by linear inter-
nal waves. Various parameters for the GM linear internal
wave model include f0 ¼ 2 m; N0 ¼ 3 cph; j& ¼ 1, and lati-
tude 39,N. The maximum number of internal wave modes
was 15, and internal wave horizontal scales ranged from
20 m to 100 km.

Realizations of sea surface height perturbations with
Gaussian statistics that follow the PM spectrum are obtained
using the spectral method of Thorsos (1988). In order to gen-
erate sea surface height realizations that obey the PM spec-
trum for Monte Carlo simulations, the isotropic form of the
spectrum, Eq. (15), is written in the Cartesian kx spectral
form,

Sh kxð Þ ¼
a

2p
1

jkxj3

ðp=2

0

exp % k2
L cos2h

k2
x

 !

' cos2 hdh for jkxj > 0;

¼ a
8k3

L

ffiffiffi
p
p for kx ¼ 0; (18)

where the integral is numerically evaluated. The cutoff
wavenumbers (kL) for wind speeds of 5.5 and 10 m/s are
0.23 and 0.08 m%1, respectively. For a wind speed of 5.5 m/s,
the PM spectrum excites higher wavenumbers that occupy
the roll-off region of the GM-spectrum. This has implica-
tions for the resonant conditions in transport theory where
mode coupling between acoustic modes is greatest when the
acoustic beat wavenumber is equal to the wavenumber of an
inhomogeneity, either in the form of surface or internal
waves. The broadening of the wavenumber spectrum from
random processes therefore increases the potential for acous-
tic mode coupling by allowing for coupling across a broader
range of acoustic beat wavenumbers.

For each sea surface and/or sound speed perturbation
field, acoustic mode amplitudes are computed using Eq. (2),
where the first-order differential equation is numerically
solved using an eigenvector technique (Dozier and Tappert,
1978b), with a range step of 5 m. Mean mode energies, coher-
ences, and intensities are then calculated over 256 realizations
of surface and internal waves. A limitation of Eq. (3) for sur-
face waves is the approximation that the range evolution of
mode amplitudes is linear in h, the sea surface height pertur-
bation. For the environment considered, this small perturba-
tion approximation was found to be valid for wind speeds up
to about 6 m/s above which unreasonably large mode coupling
is predicted by the Monte Carlo simulations. However, trans-
port theory calculations appeared relatively robust up to wind
speeds of 10 m/s, with no unreasonable numerical artifacts
observed. Thorsos et al. (2010) found good agreement with
Monte Carlo simulations for a wind speed of 7.7 m/s. While a
higher-order approximation has been recently proposed by
Henyey and Thorsos (2013), a transport theoretic framework
for the acoustic moments using this higher-order approxima-
tion is currently absent. Consequently, to preserve consistency
with the transport theory analysis, Monte Carlo simulations
are conducted using the linear in h approximation for the
mode coupling matrix. This is clearly a first step forward.

Figure 1 shows an example of acoustic propagation of a
1000 Hz signal, over a range of 50 km, with a source located
at a depth of 25 m. Shown are the unperturbed intensity and
perturbed intensities for a single realization of the surface
wave field, and surface and internal wave field in combina-
tion. The intensities are normalized by the maximum unper-
turbed intensity, and cylindrical spreading is omitted in the
intensity calculation. The inset shows the intensities over a
5 km region between 30 and 35 km. The unperturbed inten-
sity plot shows the effect of higher order mode stripping by
interaction with the sea bottom, thus giving rise to an inter-
ference pattern dominated by lower order modes at longer
ranges. This interference pattern is noticeably affected by
the presence of surface and internal waves. Mode coupling
by surface waves leads to increased insonification close to
the surface, while mode coupling by internal waves leads to
enhanced insonification close to the bottom.

FIG. 1. An example showing the nor-
malized acoustic intensity (dB re
1 lPa): (a) with no perturbations, (b)
with a perturbed sea surface, and (c)
with a perturbed sound speed field and
a perturbed sea surface. The insets
show the respective intensities between
30 km and 35 km.
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C. Transport theory computations

Transport theory calculations for the range evolution of
the mode coherence matrix are made by solving the full-
coherence equation, Eq. (6), using a variable order Adams-
Bashforth-Moulton method. The scattering matrix for inter-
nal waves is given by the analytical expression, Eq. (13),
and the surface wave scattering matrix is calculated by
numerically evaluating Eq. (14).

IV. RESULTS

Various aspects of transport theory are presented that
provide insight into the mode-number dependence of mode
coupling phenomena in the presence of surface waves. Since
the transport theory computations were numerically robust
up to wind speeds of 10 m/s (though unsubstantiated by
Monte Carlo simulations at this higher wind speed), trans-
port theory results in Secs. IV A and IV B are presented at
wind speeds of 5.5 and 10 m/s, primarily to illustrate the
effect of a higher sea state on various mode coupling
metrics.

Monte Carlo simulations of acoustic propagation
through perturbed fields are then employed to validate trans-
port theory observables such as mode energies, cross-mode
coherences and mean intensity at 1000 Hz, for a wind speed
of 5.5 m/s. Finally, the effect of surface and internal waves
on the SI is demonstrated using Monte Carlo simulations.

A. Mode coupling range versus attenuation range

The relative rates (in range) of mode coupling and
attenuation are studied in this section in order to understand
which modes have an opportunity to interact and randomize
the phases of other modes before attenuation effectively
removes these modes from the water column. The competing
effects of coupling and attenuation are demonstrated for sur-
face waves in the absence and presence of internal waves.

In the absence of attenuation, the mode energy equation
(Dozier and Tappert, 1978a), can be written as

da

dr
¼ Fa; (19)

where a is a vector of mode energies, and F is derived
from the scattering matrix, with the individual elements of F
given by

Fmn ¼ 2ReðImn;mnÞ for m 6¼ n;

Fnn ¼ %
XN

m¼1;m 6¼n

2ReðImn;mnÞ: (20)

The solution to Eq. (19) can be written in terms of the eigen-
values and eigenvectors of F. The eigenvalues of F represent
the exponential decay rate of the corresponding eigenvec-
tors, and the inverse of the second eigenvalue gives the equi-
partition range (Dozier and Tappert, 1978a). If each
eigenvector is dominated by a single mode, as they were
found to be for the current propagation scenario, then the
index of the dominating mode in the eigenvector

approximately identifies the eigenvalue that now represents
energy decay rate for the dominating mode. The inverse of
the eigenvalues, Rn ¼ 1=kn, therefore represents the e-
folding range over which the relevant mode is coupled, and
is defined as the mode coupling range. Similarly, the mode
attenuation range, defined as Pn ¼ ½2an*%1, is the e-folding
range over which a mode undergoes sub-bottom and water
column attenuation. In the presence of internal waves alone,
low modes with turning point depths in the thermocline
region have a shorter mode coupling range than the attenua-
tion range, allowing for mode coupling to take precedence
over mode attenuation (Raghukumar and Colosi, 2014).
Conversely, higher modes, with turning point depths outside
the thermocline can be stripped out of the water column by
attenuation well before the occurrence of mode coupling.

Figure 2 shows the attenuation range (solid line) over-
laid with the mode coupling range at 1000 Hz for three
fluctuation scenarios: (1) surface waves, with a wind speed
of 5.5 m/s (circles), (2) surface waves, with a wind speed
of 10 m/s (squares), and (3) internal and surface waves,
with a wind speed of 5.5 m/s (crosses). At the lower wind
speed, only modes above mode 30 have a shorter coupling
range than the attenuation range, and can undergo coupling
before being attenuated. Further, modes above mode 35
have attenuation ranges less than 10 km, suggesting that
mode coupling phenomena for these modes are only
observed at short ranges, on the order of a few kilometers,
after which they are stripped out of the water column.
Increasing the wind speed to 10 m/s results in a significant
lowering of the mode coupling range for modes above
mode 22, allowing for the observation of mode coupling
effects over longer distances. Finally, the combined effect
of internal and surface waves is that mode coupling effects
can now be observed over the entire mode spectrum, at a
wide range of e-folding scales, that in general, decrease
with mode number.

FIG. 2. Mode coupling (Rn) and attenuation (Pn, solid line) ranges in kilo-
meters, in the presence of surface waves alone (circle, square) or internal
and surface waves (cross), at 1000 Hz for wind speeds of 5.5 and 10 m/s.
Note that the attenuation is constant for low modes that are only subject to
water column attenuation and no bottom interaction/attenuation.
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B. Strength of mode coupling

The mode energy equation, Eq. (19), was further ana-
lyzed by Raghukumar and Colosi (2014), based on a pro-
posed metric that measures the strength of mode coupling.

The assumption of small angle scattering leads to the
strongest mode coupling by nearest-neighbor mode pairs,
and the matrix F [Eq. (20)] was verified to be strongly
peaked along the diagonal. The near neighbor elements of
2 ReðImn;mnÞ represent a measure of energy transfer between
neighboring modes. Raghukumar and Colosi (2014) pro-
ceeded to show that in the presence of internal waves, the
strongest coupling occurs in low modes with turning point
depths close to the thermocline, where internal wave activity
is the strongest.

Figure 3 plots the mode coupling strength versus mode
number for the three perturbation scenarios described in Sec.
IV A. In the presence of surface waves (solid and dashed
lines), modes greater than mode 22 have significantly stron-
ger mode coupling than lower modes. It is pointed out that
mode 22 represents a transition in mode turning depths,
above which the upper turning depth is at the surface [see
Raghukumar and Colosi (2014), Fig. 5]. The effect of
increasing wind speed is an increase in the strength of cou-
pling by approximately an order of magnitude. Finally, the
introduction of internal waves (dotted lines) into the pertur-
bation scenario results in low modes having a significant
strength of mode coupling, in addition to high mode cou-
pling by surface waves.

C. Mode energies

The preferential coupling of modal subsets by surface
and internal waves can most easily be observed in the range
evolution of mode energies. In addition, the validity of the
surface and internal wave transport theory in predicting the
evolution of mode energies is demonstrated by comparison
to Monte Carlo simulations.

In order to focus on mode coupling effects, attenuation
is ignored, and mode energies are calculated using Eq. (19).
Figure 4 shows the range evolution over 50 km of mean
mode energies for modes 1–3, 18–20, and 51–53, for the
case with surface waves alone, for a wind speed of 5.5 m/s.
Figure 5 shows mode energies when both surface and inter-
nal waves are present. In both Figs. 4 and 5, dashed lines
show transport theory, and the solid lines show Monte Carlo
simulations. All curves are seen to have a good agreement
with Monte Carlo simulations.

As indicated by Fig. 3, surface waves preferentially cou-
ple high modes that have their upper turning depths at the

FIG. 3. Strength of nearest neighbor mode coupling (m%1) at 1000 Hz in the
presence of surface waves alone (solid line, dashed line), or internal and sur-
face waves (dotted line), for wind speeds of 5.5 and 10 m/s.

FIG. 4. Mode energies for the case
with surface waves alone, scaled to
remove attenuation effects in order to
focus on coupling effects. Shown are
mode energies for modes: (a) 1–3
(blue, green, and red, respectively), (b)
18–20 (blue, green, and red, respec-
tively), and (c) 51–53 (blue, green, and
red, respectively). Monte Carlo simula-
tion is the solid line and transport
theory is the dashed line.
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surface, while the lower modes propagate adiabatically, i.e.,
without any transfer of energy to higher or lower modes. The
strong coupling of high modes results in a rapid drive
towards equipartition within 5 km of propagation, a result
roughly consistent with the predicted e-folding range for
mode coupling in Fig. 2.

In the presence of both surface and internal waves (Fig. 5),
mode coupling now occurs over the entire mode spectrum,

with lower modes coupled in an identical manner to results
presented in Raghukumar and Colosi (2014), while higher
modes remain exclusively coupled by surface waves. The
increasing decay rate across the mode spectrum was studied by
Dozier and Tappert (1978a), and found to be the consequence
of increasing magnitude of eigenvectors of the symmetric scat-
tering matrix, 2 ReðImn;mnÞ, whose eigenvalues are ordered
such that k1 ¼ 0 - k2 - . . . - kN .

FIG. 6. Normalized mode coherences
for the case with surface waves alone.
Shown are coherences for mode pairs:
(a) 1 with 2 (blue), 2 with 3 (green),
and 3 with 4 (red), (b) 19 with 20
(blue), 21 with 22 (green), and 23 with
24 (red), and (c) 48 with 49 (blue), 50
with 51 (green), and 52 with 53 (red).
Monte Carlo simulations are shown as
the solid line, and transport theory the
dashed line.

FIG. 5. Mode energies for the case
with surface and internal waves, scaled
to remove attenuation effects in order
to focus on coupling effects. Shown
are mode energies for modes: (a) 1–3
(blue, green, and red, respectively), (b)
18–20 (blue, green, and red, respec-
tively), and (c) 51–53 (blue, green, and
red, respectively). Monte Carlo simula-
tion is the solid line and transport
theory is the dashed line.
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D. Mode coherences

The effect of surface waves in the absence and presence
of internal waves on the cross-mode coherence is now pre-
sented and compared to Monte Carlo simulations.

Figure 6 shows the range evolution of normalized mode

coherences [i.e., jhana&pijðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjanj2iðrÞhjapj2iðrÞ

q
] for three

sets of low (mode 1 with 2, 2 with 3, 3 with 4), medium
(mode 19 with 20, 21 with 22, 23 with 24), and high modes
(mode 48 with 49, 50 with 51, 52 with 53), for the case with
surface waves alone, for a wind speed of 5.5 m/s. Figure 7
shows mode coherences when both surface and internal
waves are present. Transport theory results shown by the
dashed line and Monte Carlo simulations are shown by the
solid line.

The cross-mode coherence for surface waves is calcu-
lated using the full-coherence equation, Eq. (6), for a wind
speed of 5.5 m/s. The range evolution of mode coherences
computed using Monte Carlo simulations are shown to be in
good agreement with transport theory results. In Fig. 6,
uncoupled lower modes are seen to be perfectly coherent,
and the rate of coherence loss increases with mode number,
consistent with the increasing strength of mode coupling.
Thus, unlike the case with internal waves (Colosi et al.,
2012a; Raghukumar and Colosi, 2014) where the loss of co-
herence was well-modeled by adiabatic transport theory, sur-
face wave-induced loss of coherence is an effect of mode
coupling. The inclusion of internal waves in the perturbation
scenario (Fig. 7) results in numerical artifacts in the coher-
ence calculation, which partly motivated the hybrid transport
theory approach proposed by Raghukumar and Colosi

(2014). In this hybrid approach, the cross-mode coherence
was given as

hana&piðrÞ ¼ hjanj2i1=2ðrÞhjapj2i1=2ðrÞeiðhnð0Þþhpð0ÞÞ

' eiðkn%kpÞre%ðInn;nn%2Inn;ppþIpp;ppÞr; (21)

where hn is the initial phase of the mode n (for a point source,
hn is either 0 or p), and Imn;qp is the internal wave scattering
matrix [Eq. (13)] in the adiabatic approximation (kqp¼ 0).
Here, hjanj2i1=2ðrÞ are the range dependent mode amplitudes
caused by mode coupling. While this approach models low in-
ternal wave-coupled mode coherences adequately, the adiabatic
approximation is clearly incorrect for the higher surface wave-
coupled modes. However, we argue that this approach serves
to clearly demonstrate the importance of including acoustic
mode coupling by surface waves in coherence calculations.

It can be reasonably concluded that in the presence of
both internal and surface waves, loss of coherence occurs by
two mechanisms: (1) the random advance and delay of lower
order modes with turning depths in the thermocline, where
sound speed perturbations by internal waves are the largest,
and (2) mode coupling of higher order modes, with turning
depths at or near the surface.

E. Mean intensity

Having examined individual components of the cross-
mode coherence matrix, such as mode energies and mode
coherence, under two perturbation scenarios with a focus on
mode coupling in the absence of attenuation, the acoustic
observable of mean intensity is now presented, in the

FIG. 7. Normalized mode coherences
for the case with surface and internal
waves. Shown are coherences for
mode pairs: (a) 1 with 2 (blue), 2 with
3 (green), and 3 with 4 (red), (b) 19
with 20 (blue), 21 with 22 (green), and
23 with 24 (red), and (c) 48 with 49
(blue), 50 with 51 (green), and 52 with
53 (red). Monte Carlo simulations are
shown as the solid line, and hybrid
transport theory the dashed line. Also
of note are that mode coherences as
predicted by the hybrid transport
theory in (c) are equal to 1.
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presence of mode attenuation. Figure 8 shows the mean in-
tensity in decibels, calculated using Eq. (5), for a receiver
located at a depth of 50 m, in the presence of surface waves
(upper panel), and surface and internal waves (lower panel).
Shown are the unperturbed intensity (blue line), Monte
Carlo simulation (red line), and transport theory (black line).

Mean intensities for surface waves alone, Fig. 8(a), are
calculated using the full coherence approach with the cross-
mode coherence matrix given by Eq. (6). The transport
theory results show excellent agreement Monte Carlo simu-
lations. The preferential coupling and phase randomization
of rapidly attenuating high modes by surface waves is seen
to result in the mean intensity increasingly resembling the
unperturbed intensity due to the eventual dominance of
uncoupled low modes on the mean intensity.

Mean intensities when both internal and surface waves
are present, Fig. 8(b), are calculated using the hybrid approach
for mode coherences, as presented in Raghukumar and Colosi
(2014). Interestingly, despite the limitations of that approach
in modeling high mode coherences, the mean intensity as cal-
culated still shows excellent agreement with Monte Carlo sim-
ulations. This is easily explained by the fact that high modes,
whose coherences are incorrectly calculated using the hybrid
approach, experience rapid attenuation, and contribute signifi-
cantly less to the mean intensity than the correctly modeled
low mode coherences. As a result, the mean intensity in the
presence of both internal and surface waves, under the studied
perturbation scenario, closely resembles that with internal
waves alone (Raghukumar and Colosi, 2014). This is, how-
ever, not necessarily the case at higher wind speeds, where
there is the potential for additional contribution to the mean
intensity from a larger number of medium to high modes.

F. Scintillation Index (SI)

The SI is a useful measure of the intensity variance, and
can be expressed in terms of the intensity, I, as

SI ¼ hI2i=hIi2 % 1: (22)

Figure 9 shows Monte Carlo simulations of the range evolu-
tion of the SI for two receivers at 5 and 25 m depths, for the
cases with surface waves, and surface and internal waves.
Also shown are the adiabatic Monte Carlo simulations that
ignore mode coupling and the off-diagonal terms of the
cross-mode coherence matrix. A moving average filter over
500 m is applied to all curves for clarity. Transport theory
calculations for the SI (not shown), using the hybrid and adi-
abatic transport theories, were seen to be similar to the adia-
batic Monte Carlo simulations.

For the case with surface waves alone, the importance
of mode coupling phenomena in acoustic propagation is reit-
erated in the SI. This is particularly evident for the shallow
receiver where only surface wave-coupled high modes domi-
nate the coupling regime. The SI asymptotes close to 0.8
(red curve), and the absence of any SI excursions above 1
indicates a diffractive acoustic scattering regime that is in
between an unsaturated field and a fully saturated field
(Colosi and Baggeroer, 2004). The adiabatic calculation
(green curve) that ignores mode coupling is significantly
lower. The discrepancy with adiabatic theory persists at
smaller ranges at the deeper depth, but at a considerably
smaller SI. This is largely due to the contribution to intensity
fluctuations from high modes which oscillate throughout the
water column unlike the low modes which are evanescent
away from the thermocline, and do not contribute to inten-
sity fluctuations from surface waves. At a depth of 25 m, the
SI asymptotes close to zero, indicating an unsaturated acous-
tic field at depth.

The addition of internal waves to the scattering scenario,
and the resulting phase randomization of all modes across
the mode spectrum drives the SI to saturation at the shallow
receiver (black curve). The contribution to the SI calculated
using the adiabatic approximation, from internal wave scat-
tered modes is significant (blue curve), even at this shallow

FIG. 9. Range evolution of the SI for a receiver at (a) 5 m and (b) 25 m.
Shown are the Monte Carlo and adiabatic Monte Carlo simulations for the
case with surface waves alone (red and green lines, respectively), and sur-
face and internal waves (black and blue lines, respectively).

FIG. 8. Mean intensity (dB) for a receiver at a depth of 50 m, for the unper-
turbed environment (blue line), transport theory (black line), and Monte
Carlo simulation (red line). Shown are mean intensities with (a) surface
waves alone and (b) surface and internal waves.
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receiver. This contribution is largely from modes 18–21 that
have turning depths above 10 m [see Fig. 5, Raghukumar
and Colosi (2014)], but continue to experience internal wave
effects (Fig. 3). Moving the receiver closer to the surface
(not shown) has the effect of reducing contributions from in-
ternal waves to the adiabatic SI (lowering of the blue curve),
and further saturating the SI due to even greater surface
wave contributions (rising of the red curve). At depth, the
dominance of phase randomization by sound speed perturba-
tions from internal waves results in a close agreement of the
adiabatic simulation with the full-field calculation, in addi-
tion to a significantly higher SI that asymptotes close to 0.3.

V. DISCUSSION AND CONCLUSION

An efficient reduced-physics transport theory for surface
wave scattering, previously proposed by Thorsos et al.
(2010), was merged with that for random linear internal
wave scattering in shallow water (Colosi et al., 2012b),
extended to a high-frequency regime by Raghukumar and
Colosi (2014). As before, the propagation environment was
chosen to mimic conditions encountered during the SW06
experiment off the New Jersey coast. Modeled surface and
internal wave parameters such as the wind speed and internal
wave energy spectra were realistically chosen based on
known measurements during the SW06 (Colosi et al., 2012a;
Dahl, 2010). A numerically tractable form for the surface
wave scattering matrix was proposed when the sea surface is
modeled by the PM isotropic spectrum. Transport theory
results were then validated against Monte Carlo simulations,
and important insights into mode coupling phenomena were
presented.

Surface waves were shown to preferentially couple high
modes with turning depths at the surface, a contrast to inter-
nal waves that preferentially couple low modes with turning
depths in the thermocline, the region of strongest internal
wave activity. Using this rather intuitive result, it was then
shown that the presence of both surface and internal waves
causes mode coupling across the entire mode spectrum, with
important consequences to acoustic observables such as the
mean and variance of intensity. Previously proposed metrics
such as the competition between the mode coupling range
versus the attenuation range were applied to acoustic propa-
gation with surface waves. Unlike internal wave scattering,
where low modes had coupling ranges shorter than attenua-
tion ranges, surface wave scattering causes high modes to
have coupling ranges shorter than attenuation ranges. This
allows the high modes to couple and exchange mode ener-
gies before they are attenuated by the water column and sea-
bottom. While increased wind speeds result in the shortening
of mode coupling ranges, they do not necessarily imply that
a larger number of high modes are coupled. The presence of
a mode cutoff determined by the mode turning depth pre-
vents mode numbers below this cutoff from being coupled
by surface waves, regardless of wind speed. Similarly, it was
shown that while the strength of mode coupling increases
with increasing wind speed, the mode-number cutoff, below
which lower modes can be coupled by surface waves, is rela-
tively unaffected.

The preferential coupling of high modes by surface
waves was reiterated in the range evolution of mean mode
energies, which were shown to be in good agreement with
Monte Carlo simulations. The presence of both internal and
surface waves was then shown to result in the approach to
equipartition of all modes across the mode spectrum.
Surface waves also caused the preferential loss of cross
mode coherences for the high modes. In the presence of both
internal and surface waves, while numerical artifacts pre-
vented an accurate transport-theoretic evaluation of the
cross-mode coherence matrix, the hybrid approach proposed
by Raghukumar and Colosi (2014) was shown to sufficiently
reproduce the acoustic observable of mean intensity. The
hybrid approach, which ignores mode coupling effects on
mode coherences in the presence of internal waves (adiabatic
approximation), incorrectly models high mode coherences of
surface wave-coupled modes. Despite this deficiency, the
attenuation of high modes with increasing range minimizes
their contribution to mean intensity, resulting in the accurate
modeling of mean intensity by the hybrid approach. The
Monte Carlo simulations of mode coherence clearly illus-
trate the loss of mode coherence across the entire mode spec-
trum, resulting in an observed mean intensity pattern that is
devoid of any interference pattern.

Finally, second-moment statistics of intensity were dem-
onstrated via Monte Carlo simulations of the SI for a re-
ceiver at two different depths. For a receiver close to the
surface, the dominance of mode coupling effects by surface
waves resulted in a SI much higher than that modeled using
the adiabatic approximation. The addition of internal waves
to the propagation scenario results in a SI that is dominated
by roughly four medium-order modes with shallow turning
depths. Consequently the SI is now somewhat better mod-
eled using the adiabatic approximation. The inclusion of sur-
face and internal wave mode coupling phase terms to the
calculation results in a SI indicative of a fully-saturated
acoustic field, consistent with the loss of coherence across
the entire mode spectrum. At depth, it was then shown that
the adiabatic approximation sufficiently models the SI when
internal waves are the dominant perturbation phenomenon.

These results point to an interesting phenomena where
in the presence of both internal and surface waves, there are
two co-existing mode coupling regimes, the first being the
low mode coupling by internal waves and the loss of coher-
ence across roughly the first half of the mode spectrum,
well-modeled by the adiabatic transport theory. The second
regime is the mode coupling of high modes, and the loss of
mode coherence by mode coupling for the second half of the
mode spectrum, which requires the use of a full-coupled
transport theory. The separation of these two regimes occurs
at mode numbers where the upper turning depth leaves the
thermocline and encounters the surface.

Some limitations of the current study include the
assumption of range-independence and anisotropy of surface
and internal wave spectra. One might reasonably expect the
spectra to vary over a 50 km range, particularly in a shallow
water environment. However, it should be pointed out that
there is no theoretical requirement of range-independence in
the transport theory presented, and range-dependence is
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simply a matter of implementation of a range-dependent
scattering matrix. This is easily accomplished by the inclu-
sion of a range-dependent energy parameter for internal
waves, and a range-dependent wind speed for surface waves.
Regarding anisotropy, a preliminary analysis of SW06 moor-
ing data indicates that stochastic internal waves have a
cross-shore energy that is almost twice the alongshore
energy. The surface wave spectrum is also modeled as being
isotropic, an approximation that from the point of view of
acoustic mode transport, only applies to weak scattering
measured isotropically. The treatment of anisotropy to han-
dle stronger acoustic scattering is beyond the scope of the
transport theory in its current form. One might also question
the applicability of a PM spectrum for fully-developed seas
in this study where transport theory calculations were made
for a low wind speed of 5.5 m/s. We argue that this low wind
speed was chosen based on wind measurements during
SW06, and the limitation on wind speeds in the surface
wave transport theory (Thorsos et al., 2010) that allows the
surface wave mode coupling matrix to only vary linearly
with sea surface height perturbations. Further, while this pa-
per utilized the PM spectrum for surface waves, any spectral
form will suffice for the transport theory.
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