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ABSTRACT 

 The importance of identifying qualified candidates and properly forecasting future 

manpower strength will always be critical to military recruiting and organization. The 

ability to assess the cross-section of covariates of a cohort of enlistees and forecast 

manpower strength would allow for improved planning and allocation decisions. We 

leverage an innovative method of survival analysis—random survival forests (RSF) with 

time-varying covariates (T-VC)—to predict Army first-term post-Initial Entry Training 

attrition rates. Using random survival forests with time-varying covariates (TV-RSF) is an 

emerging method of survival analysis that has not been used in a military manpower 

setting. Using a Brier Score we compare TV-RSF with three other methods. We illustrate 

that using a single tree rather than the computationally intensive TV-RSF may suffice for 

predicting future year attrition. We also illustrate that TV-RSFs outperform traditional 

classification methods (logistic regression, random forests) that only account for yearly 

changes in T-VCs. 
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EXECUTIVE SUMMARY 

In 2019, only 45,000 U.S. Army enlistees were recruited of the 62,000 goal, a goal 

that has been considerably reduced from over 80,000 recruits in previous years (South 

2019). Of the soldiers the Army are able to recruit, an average of 29.7% attrite before their 

first-term service obligation (Marrone 2020). According to Marrone (2020), in a RAND 

Corporation research study, first-term attrition costs the Army an annual amount ranging 

from $580 million to $652 million fiscal year (FY) 2022. We address the first-term 

retention problem facing the Army and compare more traditional analysis methods with an 

innovative method of survival analysis (Yao, Frydman, Larocque, Simonoff 2022a)—

random survival forests with time-varying covariates (TV-RSF)—as a tool for manpower 

estimation and forecasting.  

We study the performance of inclusion of time-varying covariates (T-VC) into 

manpower modeling, using random forests adapted to survival analysis over the use of 

traditional manpower attrition modeling. Yao et al. (2022a) formally propose a method of 

TV-RSF in their research along with an R package LTRCforests (Yao, Frydman, Larocque, 

Simonoff 2022b) to support the model fits in our research. We utilize the previous work of 

Speten (2018) who lays the groundwork for other research with his scoping of the problem, 

definition of attrition, cohort selection to only include records of soldiers who have 

completed Initial Entry Training, and extensive code extracting administrative and 

demographic data being utilized. The models we compare are conditional inference TV-

RSF, left-truncated, right-censored (LTRC) survival trees, and the traditional manpower 

classifiers: random forests and logistic regression. The survival analysis methods that 

accommodate T-VCs use pseudo-records to capture changes in T-VCs and the LTRC 

methodology while random forests and logistic regression utilize Cammack’s (2020) 

method of accounting for year changes in T-VCs. For these two traditional manpower 

methods, three separate models are tuned and trained with snapshots of the surviving 

subject’s data at times two, three and four years. We measure these models’ estimation 

power through the use of a modified Brier Score (BS) analytic (Brier 1950). 
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xvi 

This research leverages the data and resources from the Person-Event Data 

Environment (PDE): “a consolidated data repository that contains unclassified but sensitive 

manpower, training, financial, health, and medical records covering U.S. Army 

personnel…” (Vie, Griffith, Scheier, Lester, Seligman 2013) Numerous analytical and 

statistical resources are available within the PDE’s virtual environment. The only statistical 

resources utilized for our work are the PDE desktop’s R software environment (R Core 

Team 2017) and the PDE’s RStudio server (RStudio Team 2020). One of the major 

limitations in this research are the computational restrictions of the PDE’s RStudio server 

where the computationally intensive TV-RSF model fits takes over 320 hours and over 

90% of the available 128GB of RAM.  

With our computational limitations, a smaller cohort of only a training set of 

FY2010 enlistees and test set of FY2011 enlistees, with only four-year terms of first-term 

military obligation, are used in our analysis. The variables selected for this research are 

determined through consideration of past research and decreasing computational run-time 

for our model fits. We use Lazzarevich’s (2022) research to select our variables because 

the goal of his work is to identify variables—including T-VCs—important in predicting 

attrition. We reconstruct or collapse variables to more accurately capture their effect on 

attrition or to better fit our modeling methods.  

We find our survival analysis models (TV-RSF and LTRC survival trees) 

outperform the traditional manpower methods at predicting first-term post-Initial Entry 

Training attrition. This is due to the more effective capture of T-VCs in our survival 

analysis models than the method used by Cammack (2020) which only incorporates annual 

T-VC values for traditional classification models. The survival analysis methods also 

produce more useful results than the classification models with the estimated cohort 

survival functions giving senior leaders insights on which groups of soldiers they can 

expect to attrite. The ability to forecast manpower strength is compatible  with that of 

survival analysis methods, not of the traditional classification methods. 

For new-year data, the TV-RSF only marginally outperforms the LTRC survival 

tree. With first-term attrition costing the Army $652 million annually, the small increase 

in prediction power with the TV-RSF may very well be worth the additional computational 
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time (Marrone 2020). We speculate that differences in policy, or economic conditions may 

have decreased the effectiveness of the TV-RSF in predicting first-term post-IET attrition 

in FY2011 data when trained with FY2010 data. This is indicated by how well the TV-

RSF fits to the FY2010 data with a comparatively low training error to LTRC survival trees 

and the fact that cohort year is an important variable when included in previous models 

(Devig 2019). With the inclusion of these underlying policy or economic variables, the 

difference between new-year prediction accuracy could be greater between our two 

survival analysis methods. 
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1 

I. INTRODUCTION 

According to Army Secretary Christine Wormuth, fiscal year (FY) 2022 is the 

“Army’s most challenging recruiting year since the start of the all-volunteer force, [which] 

will only achieve 75% of [its proposed goal]” (Harrison 2022). In 2019, only 45,000 

enlistees were recruited of the 62,000 goal, a goal that has been considerably reduced from 

over 80,000 recruits in previous years (South 2019). Of the soldiers the Army are able to 

recruit, an average of 29.7% attrite before their first-term service obligation—the highest 

of all the military services by a margin of 6.1% (Navy) to 11.1% (Marine Corps) (Marrone 

2020). According to Marrone (2020), in a RAND Corporation research study, first-term 

attrition costs the Army an annual rate ranging from $580 million to $652 million FY2022. 

Confronted with the fiscally limited environment of recent years, the Army must work to 

retain new recruits to reconcile prevailing and planned manpower and force goals; the 

ability to assess cross-sections of recruits to predict or forecast manpower strength will 

allow for improved planning and allocation decisions.  

A. PURPOSE OF RESEARCH 

The purpose of this research is multi-faceted, addressing both the first-term 

retention problem facing the Army and assessing an innovative method of survival analysis 

(Yao, Frydman, Larocque, Simonoff 2022a)—random survival forests with time-varying 

covariates (TV-RSF)—as a tool for manpower estimation and forecasting. With manpower 

problems often relying on data collected over time, time-varying covariates (T-VC) are 

often present; T-VCs are variables (also referred to as “covariates”) that have values that 

change over time like the variable number of dependents increasing each time a soldier’s 

child is born. Potentially being important predictors, changes in T-VCs are not usually or 

easily captured by traditional manpower modeling methods, leading to decreased 

prediction power in models that omit them. Further, traditional manpower analysis utilizes 

classification models to estimate, for example, attrition rates at the end of a fixed time 

period. In contrast, survival analysis—typically used in biomedical research—applies 

survival (retention) functions to manpower analysis; these functions allow analysts to 
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2 

easily estimate cohort attrition rates across time. In addition, using T-VCs with survival 

analysis gives analysts a way to estimate future attrition rates among a cohort using the 

latest information about the individuals in that cohort. The TV-RSF is an emerging method 

never before used to estimate and forecast with manpower data; we compare this method 

to previously used, more traditional methods applied to the problem of assessing Army 

attrition. We illustrate how to use TV-RSF and when it is a superior method.  

B. RELATED WORK 

This research continues the work of Speten (2018), Gobea (2019), Devig (2019), 

Cammack (2020), and Lazzarevich (2022). Their focus is addressing first-term Army 

attrition of soldiers who have completed Initial Entry Training (IET). Their work is based 

on Army manpower and medical data spanning FY2005 through FY2017. We use a subset 

of this data; all soldiers with a four-year term of obligation who enlist in FY2010 and in 

FY2011. We rely heavily, with some modifications, on their data pre-processing, variable 

construction, and lessons learned. In this section we highlight pertinent features of their 

work. We also introduce the work of Yao et al. (2022a) who generalizes random survival 

forests (RSF) to incorporate T-VCs. 

1. Traditional Manpower Attrition Modeling 

The first iterations of research on this problem come from Speten (2018) and Gobea 

(2019) who utilize logistic regression models to estimate first-term attrition rates without 

accounting for T-VCs. Gobea (2019) uses the first value for each T-VC which is then 

treated as a time-constant covariate (T-CC). For example, only marital status, number of 

dependents, etc., recorded at enlistment are used. Speten (2018) lays the groundwork for 

other research with his scoping of the problem, definition of attrition, cohort selection to 

only include records of soldiers who have completed IET, and extensive code extracting 

administrative and demographic data being utilized; refer to Speten’s (2018) work for an 

understanding of his efforts. The most important variables for predicting attrition by 

Speten’s (2018) models are (1) deployment history (in part, due to an error in how 

deployment history is captured as T-CCs), (2) initial contract length, and (3) marital status. 

With the inclusion of the two medical datasets pre-processed by Devig (2019) and Speten’s 
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(2018) six administrative and demographic datasets, Gobea’s (2019) most important 

variables are (1) PULHES (physical capacity/stamina (P), upper extremities (U), lower 

extremities (L), hearing and ears (H), eyes (E), and psychiatric (S)) non-deployable profile/

codes, (2) dental-class, and (3) initial contract length). While traditional manpower 

modeling most commonly utilizes logistic regression, other classification methods like 

classification trees and random forests are also used. 

Cammack (2020) also utilizes the traditional manpower modeling method of a 

logistic regression classification model but unlike Speten (2018) and Gobea (2019), 

attempts to include T-VCs. Applying the dataset constructed by Devig (2019) and used by 

Gobea (2019), Cammack (2020) fits a sequence of conditional logistic regression models 

trained with snapshots of surviving subjects’ covariates at the beginning of each year, and 

estimating the conditional attrition rate for the year among soldiers surviving the beginning 

of the year. Thus, each model in the sequence treats the T-VCs as time constant. Training 

a model for each year in a cohort’s contract term length allows for some of the changes in 

the T-VCs to be captured. Her method is superior to the method used by Speten (2018) and 

Gobea (2019) with its allowance for limited inclusion of T-VCs but unlike the survival 

analysis modeling methods used by this research it does not observe every change made 

by a T-VC. Cammack (2020) inspires the research of Lazzarevich (2022) who also fits a 

sequence of conditional models capturing the time-varying values of covariates at the 

beginning of each year. Like Cammack (2020), each model treats T-VCs as time constant. 

Unlike Cammack (2020), Lazzarevich (2022) fits RSFs which have more flexibility and 

tend to predict better than traditional logistic regression models.  

2. Survival Analysis in Manpower Attrition Modeling 

Unlike the traditional manpower modeling approach of logistic regression which 

classifies attrition or retention, survival analysis applied to manpower data estimates a 

survival function, S(t), the probability of surviving (or retention) beyond time t. See James, 

Witten, Hastie, and Tibshirani (2021) for an introduction to survival analysis in the context 

of other statistical learning methods including logistic regression, trees, and random 

forests. We adopt survival analysis terminology where “surviving” to time t means that the 
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soldier did not attrite prior to time t, where t is time in service (in years) measured from 

date of enlistment. For each subject’s survival function, the complement 1 – S(t) gives the 

probability of attrition at or before time t. Rarely used in a manpower setting, survival 

analysis is more commonly used in biomedical literature. As an example, Shen, Bouée, 

Aris, Corrine, and Ekkehard (2022) in their research on long-term mortality of Invasive 

Meningococcal Disease (IMD), estimate survival functions for those who survived IMD 

and the general healthy U.S. population as controls in Figure 1. The survival curves start 

and end with the same probabilities, but convey much more information between the start 

and end term; traditional manpower classification methods do not have the innate ability 

to capture these relationships.  

 
Figure 1. Extrapolated Lifetime Survival Curves and Life Expectancy by 

Age with IMD. Source: Shen et al. (2022). 

The survival analysis method used in most biomedical literature to incorporate T-

VCs is the Cox Proportional Hazards model (CPH). James et al. (2021) have an accessible 

introduction to CPH, in addition to T-VCs. This method presumes that hazards for different 

values of covariates are proportional which does not apply to the large military datasets 

used in this research. An alternative to CPH are algorithmic models like survival trees (Wei 

and Simonoff 2017) and tree ensembles (James et al. 2021) which partition the data using 
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the covariates and then produce survival functions from those subsets. These models 

capture T-VCs by treating each subject’s whole record as an amalgamation of many 

pseudo-records. These pseudo-records represent time intervals when the subjects’ T-VCs 

are constant. Individually a pseudo-record is treated as an incomplete observation, right 

censored and/or left truncated (see e.g., James et al. (2021) for definitions). A pseudo-

record is right censored if it is not the last pseudo-record for a subject or left truncated if it 

is not the first pseudo-record for a subject. Each time a subject’s T-VC changes, a pseudo-

record is right censored and another pseudo-record that had been left truncated carries on 

the subject’s covariates until the next potential change, attrition, or contract completion. 

Survival analysis methods that accommodate left-truncated and right-censured (LTRC) 

data can be adapted for use with T-VCs through the use of pseudo-records. For a review of 

survival analysis and survival modeling methods, as they apply to our problem, refer to the 

research of Devig (2019) and Lazzarevich (2022).  

Devig (2019) is the first to utilize survival analysis and fully account for T-VCs on 

this problem with his use of LTRC survival trees (Wei and Simonoff 2017). Devig (2019) 

expands Speten’s (2018) administrative and demographic datasets to include medical data, 

and refines the response variable of attrition through careful evaluation of service codes in 

the data to allow for more effective analysis. The most important variables found in Devig’s 

(2019) research were: (1) dental class, (2) vision class, and (3) PULHES codes. We see 

compared to Speten’s (2018) work that all of the important variables are both from medical 

datasets and T-VCs. We note that Devig (2019) did not use deployment history data due to 

concerns over data quality. 

The natural progression from trees is to use random forests, a method which almost 

always outperforms trees; Devig’s (2019) use of LTRC survival trees motivates 

Lazzarevich’s (2022) chosen modeling methodology of RSFs, but the software to fit TV-

RSF was not yet available to him. Lazzarevich (2022) trains his models to partially account 

for T-VCs with the approach used by Cammack (2020). His goal is to identify important 

variables in this problem. Gobea (2019) and Devig (2019) show that a class four dental 

class or vision class (these factor levels are defined in Table 7) is important for attrition, 

but Lazzarevich (2022) points out that these soldiers have already made the decision to 
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attrite. Thus, from the soldier’s perspective, the act of attriting is a predictor of a class four 

dental/vision class rather than the other way around. Lazzarevich (2022) treats the fours in 

these two variables as missing values (coded as NA) and imputes them from existing data. 

From a higher-level administrative perspective, we believe these class four levels are 

important predictors of attrition and do not look into the future. Because Lazzarevich 

(2022) computes a measure of variable importance for each model in his sequence of 

models, we see from his work how the importance of T-VCs change with time. Some 

covariates, for example prior service, tend to be important for predicting attrition early in 

the first term, whereas others such as back pain, tend to be more important later in the first-

term (see Table 7 for variable definitions). We use Lazzarevich (2022) variable importance 

results to aid variable selection of T-VCs for our model. Like Devig (2019), many of 

Lazzarevich’s (2022) most important variables include medical T-VC covariates. 

3. Random Survival Forests with Time-Varying Covariates 

The greatest impediment to the modeling approach taken by Lazzarevich (2022) is 

the inability to leverage LTRC pseudo-records to account for T-VCs in his RSFs. Yao et 

al. (2022a) formally propose this method of TV-RSF in their research along with an R 

package LTRCforests (Yao, Frydman, Larocque, Simonoff 2022b) to support the model 

fits. Their research compares the semi-parametric CPH model to multiple TV-RSF models, 

including the conditional inference TV-RSF we use in our research. In their simulation 

studies, when data is generated under the assumptions of the CPH model, CPH outperforms 

the RSF methods; however, when the assumptions are not met, the ensemble RSF methods 

outperform the CPH model with the conditional inference TV-RSF performing better than 

the other forests. We use the conditional inference TV-RSF in our research. While our 

research utilizes the approach of bootstrapping subjects for bagged trees—as opposed to 

bootstrapping individual pseudo-records—Yao et al. (2022a) find that the bootstrapping 

methods have no differences in levels of performance. Yao et al. (2022a) also identify the 

tuning parameters for their proposed model which include (1) mtry, (2) ntree, and (3) alpha. 

The parameter mtry represents the size of the sample of covariates to be evaluated at each 

node for conditional inference. The parameter ntree represents the number of bagged trees 

in the random forest ensemble. The parameter alpha represents the significance value of 
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splitting criteria in the conditional inference paradigm of trees, where a larger alpha value 

induces greater depth within each bagged tree. For an in-depth discussion of the proposed 

forests for T-VC data refer to Yao et al. (2022a).  

C. THESIS OUTLINE 

This thesis studies the performance of inclusion of T-VCs into manpower 

modeling, using random forests adapted to survival analysis over the use of traditional 

manpower attrition modeling. The models we compare are conditional inference TV-RSF, 

LTRC survival trees, and the traditional manpower classifiers: random forests and logistic 

regression. The survival analysis methods that accommodate T-VCs use pseudo-records to 

capture changes in T-VCs and the LTRC methodology while random forests and logistic 

regression utilize Cammack’s (2020) method of accounting for T-VCs—for these two 

traditional manpower methods, three separate models are tuned and trained with snapshots 

of the surviving subject’s data at times two, three and four years. We measure these models’ 

estimation power through the use of a modified Brier Score (BS) analytic explored in 

Chapter III (Brier 1950). This thesis follows a progression structure where previous 

research is discussed, variables are enumerated, models are tuned and fit with equivalent 

given information, and compared. This structure fills five chapters. Chapter II explores the 

data with sections describing the data environment, datasets used, cohort selection, and 

variables constructed. Chapter III examines our measure of comparison, modeling 

methodologies, model tuning, and final fits for our four models. Chapter IV discusses the 

final results of our models with the comparison of the accuracy estimations through BS. 

Chapter V summarizes our findings and outlines the considerations and our 

recommendations for future research on this topic.  

  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



8 

THIS PAGE INTENTIONALLY LEFT BLANK 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



9 

II. DATA 

This chapter discusses the data utilized in this research. First, we examine the 

environment where our datasets and analytic tools are housed. We then explain the datasets 

used from our environment and how they are extracted. Our chosen research cohort is 

accounted with a description of our rationale. We then discuss methodology where the 

unique survival analysis data format, traditional manpower attrition modeling data format, 

variable selection criteria, and variables used are explained.  

A. PERSON-EVENT DATA ENVIRONMENT 

This research leverages the data and resources from the Person-Event Data 

Environment (PDE): “a consolidated data repository that contains unclassified but sensitive 

manpower, training, financial, health, and medical records covering U.S. Army 

personnel…” (Vie, Griffith, Scheier, Lester, Seligman 2013) This cloud-based resource—

created and maintained by the Army Analytics Group (AAG) and its Research-Facilitation 

Laboratory (RFL)—is accessible for research through the use of personal identification 

numbers (PID) to relate the many databases in its repository. This anonymized PID also 

allows for the removal of all personally identifiable information (PII) of the subjects such 

as personnel locations, unit information, and social security numbers. The PDE stores the 

schema/databases in a structured query language (SQL) server with access available 

through a Windows 10 virtual machine.  

Accessing the sensitive proprietary data within the PDE requires careful 

authorization. Approval for PDE account creation must be given by the AAG before the 

process for project admission (data access) is initiated; this process can take several months 

to complete. Upon admittance to a PDE project, only specific datasets are available within 

the scope of the project’s research. Requests for additional data access are granted at the 

discretion of the AAG. To protect sensitive information, the PDE’s closed system 

environment does not allow internet or local machine access for its users; requests to export 

analytical products—e.g., charts, plots, and code—are scrutinized for protected data. All 
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data analytics must be performed with the resources provided in the closed-virtual 

environment.  

Numerous analytical and statistical resources are available within the PDE’s virtual 

environment. The only statistical resources utilized for our work are the PDE desktop’s R 

software environment (R Core Team 2017) and the PDE’s RStudio server (RStudio Team 

2020). The PDE’s RStudio server has access to all the R packages maintained on the 

Comprehensive R Archive Network (CRAN) with additional packages installed at the 

discretion of the AAG. While the desktop R software is utilized at the beginning of this 

research, the RStudio server’s superior computational resources and access to R-packages 

on the CRAN make it our principal statistical tool. As critical as the PDE’s RStudio server 

is to our research, it was not without significant limitations. 

The PDE’s RStudio server has access to eight central processing units (CPU) with 

a combined 128GB of random-access memory (RAM). The multiple cores allow us to 

leverage parallelization when fitting our models. This method of parallelization decreases 

runtime by approximately eight-fold; our most computationally intensive model—TV-

RSF—takes over 40 hours to fit with a computational time of over 320 hours and over 90% 

of the available 128GB of RAM being utilized. With strained memory in a shared server, 

fitting larger models is infeasible on the PDE for this research. Due to the computational 

runtime of RSFs increasing at a rate of 𝑛𝑛 × log (𝑛𝑛) with n being the number of observations 

(pseudo-records), the most significant limitation to this research is the bounded size of our 

subject cohort. 

B. DATASETS USED 

This research works with some, but not all of the same databases utilized by prior 

work on this topic. Of the six administrative and demographic datasets used by Devig 

(2019) and Lazzarevich (2022) only four are used in this research. The two medical datasets 

used by their work are still included in this research. These datasets stored on the PDE’s 

SQL server are accessed through Oracle Database Connectivity (for R) (RODBC) (Ripley 

and Lapsley 2021)—an application programming interface (API)/R package—that allows 

for querying and execution of SQL commands from R scripts. Tools for Oracle Application 
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Development (TOAD) are also leveraged to browse schemas and visualize tables. While 

the data used in this research are already transferred from the SQL server into R data frames 

by Speten (2018) and Devig (2019), we replicate these efforts for fundamental 

understanding of the data format. 

Datasets are constructed using two collection methods: (1) snapshot, and (2) subject 

development. The snapshot datasets give a snapshot and date of all subject’s covariates at 

certain times (e.g., upon entry, the last day of every month, etc.). The subject development 

datasets are transactional and include new observations of all a subject’s covariates at each 

time a covariate changes (with the date of the change). Each covariate in the six datasets 

outlined in Table 1 are connected by a subject’s unique PID with a timestamp associated 

to each change in a subject’s covariates. 

Table 1. Description of Administrative, Demographic, Medical Datasets.  

 

Dataset Description 
Active Duty Military 

Personnel Master  
(ACT-MAST) 

Soldier administrative data: marital status, career 
management field (CMF), rank, terms of service, and service 

dates.  
Collected Quarterly. 

Active Duty Military 
Personnel Transaction 

(ACT-TRAN) 

Soldier administrative data: determines “attrition status” via 
reenlistment/separation codes.  

Subject Development Collection. 
Military Entrance 

Processing Command 
(MEPCOM) 

Soldier demographic data: dependent, home or record (HOR) 
race, ethnicity, and Armed Forces Qualification Test (AFQT) 

information. 
Collected Upon Entry. 

Army Waiver 
Database (AWD) 

Soldier administrative data: administrative and conduct 
waivers.  

Collected Upon Entry 
Physical Health 

Assessment (PHA) 
Soldier medical data: recorded physical/mental conditions.  

Collected Annually 
Medical Protection 

System (MEDPROS) 
Soldier medical data: medical/deployment readiness (includes 

PULHES).  
Subject Development Collection. 
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C. COHORT DESCRIPTION 

Lazzarevich (2022) reduces the cohort created by Devig (2019) by utilizing only 

subjects starting their service in FY2010 as the training set and subjects starting their 

service in FY2011 as the test set. These years are chosen for their minimal missing values 

compared to previous years. As discussed in Section A of this Chapter, our biggest 

limitation in this research is the computational demand needed to fit a TV-RSF with 

restricted computational supply in the PDE’s RStudio server environment. To further 

reduce the size of the cohort used by Lazzarevich (2022) only subjects with four-year term 

contracts are evaluated. Even though out of the four available contract terms (3 – 6 years) 

three-year contracts are more frequent in the data as seen in Table 2, four-year term contract 

subjects are selected to enable an additional year of assessment. In choosing only four-year 

term subjects for our research we reduce the number of subjects in our initial cohort from 

124,052 to 34,231.  

Table 2. Distribution of Subjects in Data with Differing Year Term 
Commitments by Service Start Data.  

 3-Year 
Term 

4-Year 
Term 

5-Year 
Term 

6-Year 
Term 

Total 
Subjects 

Service Start 2010 53.6% 29.3% 8.1% 9.0% 66,113 
Service Start 2011 55.0% 25.7% 9.4% 9.9% 57,939 

Service Start 2010/11 54.3% 27.6% 8.7% 9.4% 124,052 
Total Subjects 67,336 34,231 10,773 11,712  

 

Of the 34,231 subjects in our cohort 4.3% are missing at least one covariate value. 

Most of the missing values are in medical covariates. With IET not being the final training 

in the Army training pipeline, we rationalize that many of the missing medical data values 

are due to no collections being made before finishing all training which often lasts up to 

52 weeks. To minimize missing data, we remove subjects who survived IET, but attrite in 

the first year; 2,957 subjects attrited in the first year post-IET and are thus removed from 

our final cohort. After truncating this year, only 226 subjects have incomplete records; 

these are also removed. A further 522 subjects are removed for being incompatible with 
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the TV-RSF method with some of their pseudo-records having negligible time differences 

between truncation and censoring. The final cohort for our research contains 30,526 

subjects with an attrition rate of 22.2%. 80,709 records are in the 2010 (training set) cohort 

and 52,480 records are in the 2011 (test set) cohort with 21.6% and 22.9% attrition rates 

respectfully.  

D. METHODOLOGY 

This section discusses the methodologies and rationale behind data formatting and 

variable selection, and defines our covariates. The differences between the unique survival 

analysis and traditional manpower method data formats are explained. The variable 

selection process is depicted utilizing the variable importance findings from Lazzarevich 

(2022). The construction methodologies, definitions, and time-varying attribute for each 

covariate are described. 

1. Unique Survival Analysis Data Format 

When our data is initially transferred from the PDE’s SQL database to R, each 

subject has one record or row with each of their covariates, changes of covariates, times of 

changes in covariates, and status of attrition; we call this format the “wide format.” To 

produce the LTRC pseudo-records needed to evaluate T-VCs in survival analysis, the data 

frame must be transformed into the “long format”; where the single row for each subject 

in the wide format is expanded to many rows, one for each time a covariate changes values. 

Each pseudo-record has three additional variables indicating times (in years): tstart, tstop, 

and status. The tstart variable indicates the time when a variable in the record is changed 

to a new value, the tstop variable indicates the time when a variable in the record is about 

to change values, and the variable status indicates 1 if the subject attrites at tstop or 0 if the 

subject attrites past tstop. A more in-depth discussion and example of the “long format” of 

survival data can be found in Devig (2019). This “long format” forces the number of 

observations fed into training a model to be much larger than the number of subjects, which 

in turn dramatically increases the run-time for our TV-RSF model compared to other 

models.  
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2. Traditional Manpower Attrition Modeling Data Format 

Random forests and logistic regression are not able to inherently handle T-VCs like 

our survival methods of TV-RSF and LTRC survival trees; to utilize the method leveraged 

by Cammack (2020) and Lazzarevich (2022) further data preparation is conducted to treat 

the T-VCs like T-CCs. This is done by taking three annual snapshots of each subjects 

covariates at the beginning of years one, two and three. While more snapshots can be 

produced to refine the accuracy of the overall model, it would be impractical to tune and 

fit more than three models for each classification method. The fact that the TV-RSF and 

LTRC survival trees are able to handle T-VCs lend to their appeal in survival analysis, 

especially with data with many or important T-VCs.  

3. Variable Selection 

The variables selected for this research are determined through consideration of 

past research and decreasing computational run-time for our model fits. The most similar 

model to our primary model—TV-RSF—from previous research was utilized by 

Lazzarevich (2022). We use Lazzarevich’s (2022) research to select our variables because 

the goal of his work is to identify variables—including T-VCs—important in predicting 

attrition. The variable importance for each of Lazzarevich’s (2022) annual snapshots is 

computed as seen in Table 3 which reports the rankings of variable importance for each 

year’s model. While Lazzarevich (2022) documents the importance for each of his 

variables across all four term lengths (3 – 6 years) we only examine the four-year term 

contract variable importances for the models that predict attrition in the second, third, and 

fourth year. 

We use the same set of data and variables to compare our four attrition models. Our 

primary goal is to examine the effectiveness of TV-RSFs compared to the other three 

methods. We are incentivized to include more T-VCs to amplify the TV-RSFs ability to 

predict from T-VCs, but to maintain a balance of T-VCs and T-CCs. In an effort to reduce 

the computational run-time of fitting our models, we omit variables identified as 

unimportant by Lazzarevich (2022), or incompatible with our method. Some of the 

variables selected are reconstructed from Lazzarevich’s (2022) variables to more 
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accurately capture their effect on attrition or collapsed to better fit our methods; these 

reconstructions/collapses will be discussed in detail in the following section. 

Table 3. Variable Selection from Variable Importance Rankings of Four-
Year Term Contract Subjects. Adapted from Lazzarevich (2022).  

Term Length 4 Included 
in 

Research 

Variable 
Reconstructed/

Collapsed 

Time-
Varying 

Covariate 
Year of Term 1 2 3 

 Variable      
AFQT Category 7 11 11 Yes Yes* No 

Age at Enlistment 6 14 26 Yes No No 
Anemia 38 26 36 No - Yes 
Asthma 32 31 24 No - Yes 

Back Pain 13 7 5 Yes No Yes 
BMI at Enlistment 16 9 12 Yes No No 

Chronic Pain 31 2 1 Yes No Yes 
CMF Code after 

IET 
10 17 17 Yes No Yes 

CMF Code at 
Enlistment 

14 19 19 Yes No No 

Dental Readiness 1 6 20 Yes Yes* Yes 
Deployment 45+ 35 27 No - Yes 

Diabetes 45+ 45+ 45+ No - Yes 
Educational Tier 

Code at Enlistment 
17 15 42 Yes No No 

Epilepsy 43 45+ 45+ No - Yes 
Gender 2 1 13 Yes No No 

Headaches 9 3 3 Yes No Yes 
Hearing Readiness 

Class 
35 38 30 Yes Yes* Yes 

Heart Murmur 28 44 43 No - Yes 
Heart Trouble 27 22 28 No - Yes 

Hispanic 20 20 33 Yes No No 
HOR State 12 18 18 Yes Yes* No 

Hostile Injury 45+ 42 35 No - Yes 
Hypertension 36 28 31 No - Yes 

Joint Pain 21 10 6 Yes No Yes 
Liver Disease 45+ 45+ 45+ No - Yes 

Marital Status Code 5 8 14 No - Yes 
Mental Health 

Concern 
4 4 8 Yes No Yes 

Non-Hostile Injury 45+ 41 38 No - Yes 
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Term Length 4 Included 
in 

Research 

Variable 
Reconstructed/

Collapsed 

Time-
Varying 

Covariate 
Year of Term 1 2 3 

 Variable      
Number of 

Dependents at 
Enlistment 

26 27 39 Yes No No 

P – PULHES after 
IET 

8 25 9 Yes No Yes 

U – PULHES after 
IET 

42 21 7 Yes Yes* Yes 

L – PULHES after 
IET 

33 16 4 Yes Yes* Yes 

H – PULHES after 
IET 

37 40 16 Yes No Yes 

E – PULHES after 
IET 

11 23 15 Yes No Yes 

S – PULHES after 
IET 

34 45+ 2 Yes Yes* Yes 

P – PULHES at 
Enlistment 

25 36 34 Yes No No 

U – PULHES at 
Enlistment 

44 45+ 32 Yes No No 

L – PULHES at 
Enlistment 

39 43 44 Yes No No 

H – PULHES at 
Enlistment 

40 39 45+ Yes No No 

E – PULHES at 
Enlistment 

22 24 22 Yes No No 

S – PULHES at 
Enlistment 

41 37 45+ Yes Yes* No 

Pregnancy 18 5 10 No - Yes 
Prior Service 3 12 28 Yes No No 
Race Code 15 13 23 Yes No No 
US Citizen. 
Origination 

29 32 41 No - No 

US Citizen. Status 45+ 45+ 45+ No - No 
Vision Readiness 19 30 21 No - Yes 

Waiver Admin 30 33 40 Yes No No 
Waiver Conduct 23 29 25 Yes No No 

   *Variables reconstructed/collapsed are discussed in Chapter 2, Section D, Subsection 2 – 
Variables Used. 
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4. Variables Used 

Out of the variables selected in Table 3, this research utilizes two distinct types of 

variables: (1) T-CCs, and (2) T-VCs. The T-CCs have fixed values over time; T-CCs 

include many of the administrative, all of the demographic, and some of the medical data 

collected at the date of enlistment. The T-VCs change throughout the term of an enlistee’s 

contract with most of the medical data and some of the administrative data adjusting to the 

subject’s experience one-year post-IET. Both T-CCs and T-VCs have categorical data but 

only the T-CCs have numerical data. Each of the three numerical covariates are discrete 

and the 30 categorical covariates have range of 2 to 29 levels. There is a combination of 

130 factor levels among the categorical variables.  

We see in Table 3 there are a total of 19 T-CCs and 14 T-VCs with additional 

columns identifying the variables as either “Constructed” or “Collapsed.” The constructed 

variables are created out of other covariates, while collapsed variables are factors 

(categorical variables) in which the number of levels is reduced by combining unimportant 

or sparse levels with neighboring levels. Some factors are first collapsed in the research 

conducted by Devig (2019) and/or further collapsed by Lazzarevich’s  (2022) work. Their 

rationale is to lower the total number of levels in each factor and combine factors with 

similar definitions (Devig 2019). Our research also calls to further collapse factor levels 

but for a reason specific to our modeling methods. The function used to fit our TV-RSFs—

ltrccif from the LTRCforests R package (Yao et al. 2022b)—is unable to properly handle 

sparse levels when there is a chance that a random sample used for tuning validation does 

not include some level. The function incorrectly deletes the level from the factor which 

then produces an “unknown variable error” when predicting with data containing the 

deleted level. To mitigate the occurrence of this error, factors in our test and training sets 

with levels with fewer than 50 pseudo-records are collapsed into neighboring levels. The 

methods of variable construction, reasons for which factors are collapsed, and descriptions 

of the variables are outlined later in this section. 
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Table 4. Summary of Variables. Adapted from Lazzarevich (2022).  

Variable Type Constructed Collapsed Factor 
Levels 

Time-
Varying 

AFQT Category Code Categorical No Yes 5 No 
Age at Enlistment Numeric Yes No - No 

Back Pain Binary No No 2 Yes 
BMI at Enlistment Numeric Yes No - No 

Chronic Pain Binary No No 2 Yes 
CMF Code after IET Categorical No Yes 18 Yes 

CMF Code at 
Enlistment 

Categorical No Yes 18 No 

Dental Class Categorical Yes No 5 Yes 
Dependents (Number 

at Enlistment) 
Numeric No No - No 

Educational Tier 
Code at Enlistment 

Categorical No No 3 No 

Gender Binary No No 2 No 
Headaches Binary No No 2 Yes 

Hearing Readiness 
Class 

Categorical Yes No 5 Yes 

Hispanic Binary Yes No 2 No 
HOR State/Territory Categorical No Yes 29 No 

Joint Pain Binary No No 2 Yes 
Mental Health 

Concern 
Binary No No 2 Yes 

Prior Service Binary No No 2 No 
PULHES after IET* Categorical No Yes/No** 2-3** Yes 

PULHES at 
Enlistment* 

Categorical No Yes/No** 2-4** No 

Race Code Categorical No No 4 No 
Waiver 

(Administrative) 
Binary No No 2 No 

Waiver (Conduct) Binary No No 2 No 
* PULHES includes six variables: Physical, Upper, Lower, Hearing, Eyesight, and Psychiatric. 
** Some of the PULHES variables have been collapsed for sparse levels causing errors in the 
modeling. 

 

a. Time-Constant Covariates 

Out of our 16 categorical T-CCs, six are collapsed factors and only one is a 

constructed variable. The Armed Forces Qualification Test (AFQT) category code variable 
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is initially collapsed by Devig (2019) to six levels is further collapsed to five levels in this 

research to mitigate errors in model fitting. Career management field (CMF) code at 

enlistment is also initially collapsed by Devig (2019) but further collapsed by Lazzarevich 

(2022) for reasons discussed in their research. Home of record (HOR) state/territory, and 

the U/L/S – PULHES at enlistment variables are all collapsed to mitigate errors in model 

fitting. The hispanic binary variable is constructed by Lazzarevich (2022) using ethic codes 

from the Military Entrance Processing Command (MEPCOM) dataset. Two of our three 

numerical T-CCs are constructed by prior researchers. Devig (2019) constructs age at 

enlistment utilizing enlistment dates and Lazzarevich (2022) constructs body mass index 

(BMI) at enlistment utilizing a Center for Disease Control (CDC) formula (CDC 2021). 

Table 5. Time-Constant Categorical Covariates. Adapted from Lazzarevich 
(2022).  

Variable Description Levels Level Description 
AFQT Category 

Code 
Categories based on 

percentiles between 1 
and 99. 

I 93-99% 
II 65-92% 

IIIA 50-64% 
IIIB 31-49% 
IVA 1-30% 

CMF Code at 
Enlistment 

Assigned 
occupational code. 

Multiple 
(18 levels) 

See Appendix A 

Educational 
Tier Code at 
Enlistment 

Indicates high school 
completion or 

equivalent. 

1 High school diploma 
2 GED or equivalent 
3 No high school diploma, 

GED, or equivalent 
Gender Gender of enlisted. M Male 

F Female 
Hispanic Whether enlisted is 

Hispanic or not. 
N Not Hispanic 
Y Ethnic code of AK, AL, 

AM, AN, or AO (is 
Hispanic) 

HOR State/
Territory 

Home or record state 
code. 

Multiple 
(29 levels) 

See Appendix B 

Prior Service Whether enlisted has 
prior serve or not. 

0 Has no prior service 
1 Has prior service 
1 High level of fitness 
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Variable Description Levels Level Description 
P – PULHES at 

Enlistment 
A qualifier of an 

enlistee’s physical 
profile and stamina 

observed at 
enlistment. 

2 Possess a medical condition 
that limits some activities 

3 Possess a medical condition 
that requires significant 

limitations 
U – PULHES at 

Enlistment 
A qualifier of an 
enlistee’s upper 

extremities observed 
at enlistment. 

1 High level of fitness 

2+ Possess a medical condition 
that limits some activities or 

requires significant 
limitations 

L – PULHES at 
Enlistment 

A qualifier of an 
enlistee’s lower 

extremities observed 
at enlistment. 

1 High level of fitness 
2+ Possess a medical condition 

that limits some activities 

H – PULHES at 
Enlistment 

A qualifier of an 
enlistee’s hearing 

observed at 
enlistment. 

1 High level of fitness 
2 Possess a medical condition 

that limits some activities 
3 Possess a medical condition 

that requires significant 
limitations 

E – PULHES at 
Enlistment 

A qualifier of an 
enlistee’s eyesight 

observed at 
enlistment. 

1 High level of fitness 
2 Possess a medical condition 

that limits some activities 
3 Possess a medical condition 

that requires significant 
limitations 

S – PULHES at 
Enlistment 

A qualifier of an 
enlistee’s psychiatric 
and emotional profile 

observed at 
enlistment. 

1 High level of fitness 

2+ Possess a medical condition 
that limits some activities or 

requires significant 
limitations 

Race Code Code indicating race 
of enlistee 

1 Other (American Indian / 
Alaska Native / Native 

Hawaiian / Pacific Islander 
2 Asian 
3 Black / African American 
4 White 
N Did not receive a waiver 
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Variable Description Levels Level Description 
Waiver 

(Administrative) 
If enlistee received 
an administrative 

waiver for 
enlistment. 

Y Received a waiver 

Waiver 
(Conduct) 

If enlistee received a 
conduct waiver for 

enlistment. 

N Did not receive a waiver 

Y Received a waiver 

Table 6. Time-Constant Numerical Covariates. Adapted from Lazzarevich 
(2022).  

Variable Description 
Age at 

Enlistment 
Recruit’s age at time of enlistment. Constructed using birth data 

and date of enlistment. 
BMI at 

Enlistment 
BMI as defined by the CDC (2021). 

Dependents 
(Number at 
Enlistment) 

Number of dependents at the time of enlistment. 

 

b. Time-Varying Covariates 

From our 14 T-VCs two are constructed and two are collapsed. The factors dental 

class and hearing readiness class are given an extra level “0” that represents subjects that 

have not yet been evaluated for dental or hearing readiness class. CMF code after IET is 

collapsed for the same reason as CMF code at enlistment. S – PULHES after IET is 

collapsed to mitigate errors in model fitting with not enough observations in a level.  

Table 7. Time-Varying Covariates. Adapted from Lazzarevich (2022).  

Variable Description Levels Level Description 
Back Pain Medical condition as 

recorded in the enlisted 
PHA. 

N Has not been diagnosed with 
the condition 

Y Has been diagnosed with the 
condition 

Chronic Pain N Has not been diagnosed with 
the condition 
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Variable Description Levels Level Description 
Medical condition as 

recorded in the enlisted 
PHA. 

Y Has been diagnosed with the 
condition 

CMF Code 
after IET 

Assigned occupational 
code that may change. 

Multiple See Appendix A 

Dental Class Dental Readiness 
determined by level of 

treatment needed. 

0 First dental evaluation post-
IET has not occurred yet 

1 No treatment needed 
2 Require non-urgent dental 

treatment or reevaluation 
3 Require urgent dental 

treatment 
4 No dental exam in last 13 

months; require immediate 
dental exam 

Headaches Medical condition as 
recorded in the enlisted 

PHA. 

N Has not been diagnosed with 
the condition 

Y Has been diagnosed with the 
condition 

Hearing 
Readiness 

Class 

Hearing readiness 
determined by level of 

treatment needed. 

0 First hearing test post-IET has 
not occurred yet 

1 Hearing test current; no 
hearing issues 

2 Hearing test: minor issues 
3 Minor hearing issues; need 

evaluation by audiologist 
4 No hearing test within past 13 

months; requires immediate 
hearing test 

Joint Pain Medical condition as 
recorded in the enlisted 

PHA. 

N Has not been diagnosed with 
the condition 

Y Has been diagnosed with the 
condition 

Mental Health 
Concern 

Medical condition as 
recorded in the enlisted 

PHA. 

N Has not been diagnosed with 
the condition 

Y Has been diagnosed with the 
condition 

P – PULHES 
after IET 

A qualifier of an 
enlistee’s physical profile 
and stamina following the 

completion of IET. 

1 High level of fitness 

2 Possess a medical condition 
that limits some activities 

3 Possess a medical condition 
that requires significant 
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Variable Description Levels Level Description 
limitations, or military duty 
must be drastically limited 

U – PULHES 
after IET 

A qualifier of an 
enlistee’s upper 

extremities following the 
completion of IET. 

1 High level of fitness 

2 Possess a medical condition 
that limits some activities 

3 Possess a medical condition 
that requires significant 

limitations, or military duty 
must be drastically limited 

L – PULHES 
after IET 

A qualifier of an 
enlistee’s lower 

extremities following the 
completion of IET. 

1 High level of fitness 

2 Possess a medical condition 
that limits some activities 

3 Possess a medical condition 
that requires significant 

limitations, or military duty 
must be drastically limited 

H – PULHES 
after IET 

A qualifier of an 
enlistee’s hearing 

following the completion 
of IET. 

1 High level of fitness 
2 Possess a medical condition 

that limits some activities 
3 Possess a medical condition 

that requires significant 
limitations, or military duty 
must be drastically limited 

E – PULHES 
after IET 

A qualifier of an 
enlistee’s eyesight 

following the completion 
of IET. 

1 High level of fitness 
2 Possess a medical condition 

that limits some activities 
3 Possess a medical condition 

that requires significant 
limitations, or military duty 
must be drastically limited 

S – PULHES 
after IET 

A qualifier of an 
enlistee’s psychiatric and 

emotional profile 
following the completion 

of IET. 

1 High level of fitness 

2+ Possess a medical condition 
that limits some activities, 

requires significant 
limitations, or military duty 
must be drastically limited 
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III. MODELING 

This chapter discusses the measurement of comparison, issues encountered while 

fitting the TV-RSF model, and how we selected tuning parameters for all models. We take 

extra care in our discussion of fitting a TV-RSF model, to impact lessons learned to future 

military manpower analysts who might want to use this method. After tuning parameters 

are identified for each model, final models are fit. Comparisons are made in Chapter IV.  

A. BRIER SCORE 

The measures of effectiveness used both in model tuning and comparison between 

models are based on the BS. It quantifies, with respect to time, how well subjects’ estimated 

survival functions at time t predict their survival at time t. Specifically let N be the number 

of subjects, Ss(t) be the estimated probability that subject s survives past time t given the 

value of the subject’s covariates at time t, and let Os(t) be the indicator function taking 

value 1 if subject s is observed to survive past t, and 0 if the subject s attrites in the time 

interval (1, t] for s = 1, … , N (recall, we only use records of soldiers surviving year one 

of their first term). Then as a function of t ∈ (1, 4]:  

 2
1

1( ) ( ( ) ( ))N
s ss

BS t S t O t
N =

= −∑  (1) 

1. Survival Analysis (Integrated) Brier Score 

With survival analysis methods estimating survival functions for each subject, the 

BS(t) for subjects can be easily calculated for time t from one-year post-IET to the end of 

their contract. To compare and tune our TV-RSF and survival analysis methods, we 

compute an integrated brier score (IBS) across time. This IBS gives a single number to 

compare models. For a four-year enlistment term where t is time in service measured in 

years, IBS is:  

 IBS = ∫ 𝐵𝐵𝐵𝐵(𝑡𝑡)𝑑𝑑𝑡𝑡4
1  (2) 
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2. Modified Brier Score for Classification Methods 

Unlike survival analysis methods, classification attrition models estimate a single 

probability of attrition for the entire study period. Using Cammack’s (2020) method of 

accounting for T-VCs we fit our logistic regressions and random forests as a sequence of 

three conditional models. Each model estimates the conditional probability of attrition in a 

single year given a subject’s covariate values at the start of the year and given that the 

subject has not attrited in previous years. To make this more concrete, let Y be a random 

variable representing a subject’s time of attrition or end of term—whichever occurs first. 

Further let H(t) represent that subject’s covariate values at time t (we have dropped the 

subscript s, denoting subject s, for convenience). Then the three models give estimates of 

the conditional probabilities: 

 ( 1| , ( ))P Y y Y y H y> + >  for y = 1, 2, 3 (3) 

From equations (1) and (3) we see that we can only compute BS(t) for t = 2, 3, 4 

from the sequence of logistic regression and random forest fits. The first of these sequential 

models (y = 1) estimates probabilities of surviving past y = 2 which can be substituted 

directed into equation (1) to compute BS(2). Computing BS(3), and BS(4) requires 

estimates of probabilities of surviving past years three and four respectively given only 

survival past year one. These are derived by multiplication since:  

 ( 3 | 1) ( 3 | 2) ( 2 | 1)P Y Y P Y Y P Y Y> > = > > > > ,  

and 

 ( 4 | 3) ( 4 | 3) ( 3 | 2) ( 2 | 1)P Y Y P Y Y P Y Y P Y Y> > = > > > > > > . 

B. LEFT-TRUNCATED, RIGHT-CENSURED CONDITIONAL INFERENCE 
RANDOM SURVIVAL FORESTS WITH TIME-VARYING COVARIATES 

1. Fitting the Model 

Utilizing the ltrccif function from the LTRCforests package (Yao et al. 2022b) on 

R we tune and fit our TV-RSF model using IBS as our measure of effectiveness. The inputs 

to the ltrccif function include the parameters and certain objects like the survival formula 
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and data. The data to fit the ltrccif object has to be in the “long format” which we discuss 

in detail in Chapter II. The inputs and methods for the model are defined below. 

• ntree—this value determines the number of trees to grow for the forest. In 

an ensemble method like random forests, the number of trees is limited by 

computational time. When tuning this parameter, increasing the number of 

trees will never decrease expected model proficiency but may severely 

increase the runtime to fit the model which we encounter as a major issue. 

The default value for this parameter is 100 (Yao et al. 2022b) but in our 

tuning this value varies from 1 to 400.  

• mtry—this parameter is the size of the random sample of covariates to be 

considered at each node to be selected as the splitting variable in a tree. 

The default for this value is a tuning function within the LTRCforests 

package (Yao et al. 2022b) which we did not use as it is not supported 

within the PDE. Our tuning for this parameter ranges from 4 to 16.  

• bootstrap—this parameter allows from a selection of four bootstrapping 

protocols: (1) by.sub, (2) by.root, (3) by.user, and (4) none. The default 

value which we use to fit our TV-RSFs is “by.sub” which bootstraps each 

tree by random subjects. The protocols “by.root” bootstraps trees by 

pseudo-records, “by.user” bootstraps by a defined array created by the 

user, and “none” does not use bootstrapping at all but rather uses each 

subject in the dataset once to build a tree.  

• samptype—this selection determines the type of bootstrapping that takes 

place. The two choices are: (1) “swor” which stands for sampling without 

replacement, and (2) “swr” which stands for sampling with replacement. 

The default is to sample without replacement but our models each sample 

with replacement in, that is, using traditional bootstrapping.  

• alpha—in conditional inference forests, the stopping criterion for splitting 

nodes is indicated by a nonparametric test’s p-value (the parameter – 
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alpha) which has the null hypothesis that each split from the node have the 

same survival function; the node becomes terminal when the probability 

that the two branches off the node are the same is less than alpha. 

Increasing the model’s parameter alpha decreases the threshold for 

splitting nodes (rejecting the null by being less than alpha) and thus 

increases the depth of the tree. Increasing and decreasing alpha, overfit 

and underfit the model respectively. The alphas considered in our tuning 

range from 0.05 to 0.2. The default value of alpha is 0.05. 

2. Computational Issues and Parallelization 

There are significant issues with fitting these ltrccif models on the PDE. The first 

issue identified is the considerable amount of time it takes to fit a ltrccif object; our final 

model takes over 350 computational hours to fit while our tuning models take an average 

of five hours to fit depending on the parameters. A major progression in transcending this 

problem is the use of parallelization. Leveraging the entirety of computational resources in 

the PDE’s RStudio server, the eight physical cores in parallel drastically reduce the model 

fitting time. The bagged trees in the ensemble forest are distributed among the eight cores 

enabling the model to be fit at nearly eight times the speed. With the PDE’s RStudio server 

being a shared resource with other researchers, another issue arises when fitting larger 

ltrccif models engages the majority of the server’s memory. Future iterations of this 

research should request additional, appropriated resources in the RStudio server to avoid 

afflicting other researchers on the PDE’s RStudio server.  

3. Tuning the Model Parameters 

To reduce computational time and limit memory usage on the RStudio server we 

use a small subset of our training data to tune our TV-RSF model. From our training data 

(2010 cohort) of 17,289 unique subjects we partition half of the pseudo-records (8,570 

subjects) into a tuning training set and the other half of the pseudo-records (8,719 subjects) 

into a tuning test set; we call these datasets our “full-tuning training/validation datasets.” 

We further reduce the size of our data for tuning by randomly sampling 1,000 subjects 

from each dataset of our full-tuning datasets; we call these datasets our “reduced-tuning 
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training/validation datasets.” These two sets of tuning datasets are used for tuning all of 

our models.  

After sub-setting our data to create training and validation datasets, we tune our 

parameters to minimize validation IBS. Included in the LTRCforests package (Yao et al. 

2022b) we also utilize functions: (1) predictProb, and (2) sbrier_ltrc. The predictProb 

function constructs the estimated survival function curve for each subject in a selected 

dataset with our selected ltrccif model. The sbrier_ltrc function returns either a list of BSs 

evaluated at requested times or the IBS for a prediction. The necessary inputs for the 

sbrier_ltrc function are the predictProb object and a survival object of the LTRC pseudo-

subject observations. 

The process for tuning the TV-RSF model includes five series of tuning single 

parameters to narrow down the most effective combination taking into consideration 

dependencies among results of parameter settings between parameters. Due to the long 

run-time and memory restrictions on the PDE’s RStudio server, the first four tuning series 

utilize the reduced-tuning datasets to train and validate the models. The last tuning series 

utilizes the full-tuning datasets for reasons discussed below.  

a. First Tuning Series: ntree 

With a larger than necessary ntree not decrementing the accuracy of the model, our 

goal in this initial tuning series is to find the minimum number of trees without reducing 

the effectiveness of the model. The number of trees in this ensemble method is linearly 

related to the run-time of the model fit; reducing the effective number of trees to utilize for 

future tuning models significantly decreases the overall time and computational resources 

to discover the final parameters for this model. We utilize the default value of alpha of 0.05 

and set mtry to six which is the closest integer to the square root of the number of 

covariates.  

We see in Figure 2 the training and validation IBS for these tuning models. 

Validation IBS has marginal decreasing reductions from 1 tree to 150 trees before a slight 

increase at 250 and 500 trees. Moving forward from the first tuning series we select ntree 
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to be 100. Even though the plot suggests that 50 trees could be enough, our memory and 

time limitations can afford up to 100 trees.  

 
Figure 2. TV-RSF Integrated Brier Score vs. ntree (alpha = 0.05, mtry = 6). 

b. Second Tuning Series: alpha 

After determining the minimum number of trees needed for effective tuning, we 

compare different values of alpha—the depth of trees in the forest. As seen in Figure 3, we 

identify the IBS for alpha values of 0.05, 0.1, 0.15, and 0.2. We see that the validation IBS 

remains similar across the values while the training IBS decreases significantly from 0.05 

to 0.2. This training and validation IBS discrepancy indicates potential for model 

overtraining. The lowest validation IBS out of these models was an alpha of 0.15 so we 

continued our tuning process with 0.15 as our alpha.  
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Figure 3. TV-RSF Integrated Brier Score vs. alpha (ntree = 100, mtry = 6). 

c. Third Tuning Series: mtry 

With the number of trees set to 100 and an alpha at 0.15 we next need to discover 

the best value for mtry—the size of the sample of covariates to be available to use at each 

node in the trees. Figure 4 shows our training and validation IBS for the seven values of 

mtry tested: 4, 6, 8, 10, 12, 14, and 16. We see than both training and validation IBS have 

decreasing marginal reductions with increases in mtry. While training IBS continues to 

decrease with each subsequent value through mtry = 16, the validation IBS begins to 

decrease from mtry values 12 to 14. This indicates that mtry values beyond 12 were over-

trained to the test dataset which created too much variance in the model thus increasing the 

validation IBS. The lowest level of validation IBS was at an mtry of 12, therefore we 

continued our tuning with an mtry of 12.  
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Figure 4. TV-RSF Integrated Brier Score vs. mtry (ntree = 100, alpha = 

0.15). 

d. Fourth Tuning Series: alpha With Updated mtry 

With a new value for mtry, we re-tune our alpha parameter to ensure that we still 

had an effective value for our model; we wanted to ensure there was not a substantial 

change in the validation IBS values due to any potential interaction between alpha and 

mtry. Seen in Figure 5, the validation IBS does not significantly change between alpha 

values so we feel comfortable maintaining this value through to our final model parameters.  
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Figure 5. TV-RSF Integrated Brier Score vs. alpha (ntree = 100, mtry = 12). 

e. Fifth Tuning Series: Validate alpha with Varying ntree 

Our final tuning series is conducted out of concern for the number of trees limiting 

the effectiveness of a larger alpha value; if our trees are deeper/overfitting with a larger 

alpha we may be able to mitigate the variability in the model results by increasing the size 

of the ensemble (increase the number of trees). We fit four models, with all combinations 

of alpha = 0.05/0.2 and ntree = 100/400. If our concern is founded, there will be a 

significant decrease in validation IBS from model: ntree = 100, alpha = 0.05 to model ntree 

= 400, alpha = 0.2. For this tuning series we use the full-tuning datasets to train and validate 

the models to ensure that the bias from a smaller dataset is not the reason for any differences 

between the IBSs. Using the full-tuning training dataset increases the fitting time for 4–5 

hours in the previous tuning models to over 35 hours for each of the four models fit. Table 

8 demonstrates that our alpha value is not influenced by the number of trees in the forest 

and that our previous tuning parameters are correct. This tuning series leads us to confirm 

our final model parameters.  
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Table 8. Integrated Brier Scores for Interactions of alpha and ntree. 

Test Integrated Brier Score alpha = 0.05 alpha = 0.2 
ntree = 100 0.0635 0.0579 
ntree = 400 0.0633 0.0580 

Validation Integrated Brier Score alpha = 0.05 alpha = 0.2 
ntree = 100 0.0702 0.0699 
ntree = 400 0.0701 0.0697 

 

4. Final Model 

For our final model we find our parameters to be: mtry = 12, alpha = 0.15, and ntree 

= 250. The number of trees is a function of maximizing the amount of memory used without 

overflowing the system; fitting our final model takes over 350 computational hours, and 

nearly 45 hours of run-time. Previous attempts at fitting the model with greater numbers of 

trees crashes the system with the PDE’s RStudio server’s memory reaching its limit. Even 

after the model fit, additional errors arise when trying to predict with our final model; the 

predictProb function is extremely computationally demanding and the 2011-test data has 

to be partitioned into nine subsets in order to predict attrition in bite-sized chunks. After 

partitioned test-set predictions are used to calculate nine sets of BSs and IBSs, they are 

averaged with respect to the weights of the initial partitioned test sets. This average value 

of IBS and averaged BS values represent the final test and training IBS and BS values for 

this model; these values are seen in Figure 6.  
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The test IBS for this final model was 0.0934 and the training IBS was 0.05715. The training 
set is the FY2010 cohort, and the test set is the FY2011 cohort.  

Figure 6. Final TV-RSF Brier Scores. 

In Figure 6 we can see the large difference between the test and training BSs. This 

difference, greater than the difference between our tuning training and validation IBSs, 

indicates possible overfitting of the TV-RSF model to the 2010 data; with the test data 

being from a different year, some of the differences from the training set are not captured. 

We also see that there is a steady increase in BS as time approaches the end of the subjects’ 

contract term of four years. This shows that with subjects attriting and leaving the cohort 

we become less accurate in our ability to estimate the remaining subjects’ survival 

functions. With our tuning models’ validation IBS nearing 0.065, we gain insight on the 

test set with a significantly higher IBS of 0.093; the 2011 cohort – test set – is not perfectly 

represented by the 2010 cohort – training set. 
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C. LEFT-TRUNCATED, RIGHT CENSURED SURVIVAL TREE WITH 
TIME-VARYING COVARIATES 

1. Fitting the Model 

In fitting the LTRC survival tree model, we utilize the same function ltrccif from 

the LTRCforests package (Yao et al. 2022b) but with some modifications. While there is a 

package specifically designed for LTRC survival trees, LTRCtrees (Fu, Simonoff, Wenbo 

2021), the PDE does not support some of the necessary dependencies for use of the 

package. Using the same function as fitting the TV-RSF model also allows for use of the 

predictProb and sbrier_ltrc functions. Different from an RSF, an LTRC survival tree only 

has one tree and does not rely on bootstrapping—every subject is used in fitting a single 

tree. This results in the LTRC survival tree only using a single parameter: alpha—depth of 

the tree. Each other parameter in the function ltrccif is set to a constant value in order to 

modify the RSF into an LTRC survival tree. 

• ntree—with the model no longer being a forest or an ensemble method, 

this parameter is set to one to only fit a single LTRC survival tree. 

• mtry—with only one tree being fit, each of the covariates are available to 

split on at each node. This parameter is set to 33—the number of 

covariates in formula.  

• bootstrap—this value is set to “none”; no bootstrapping takes place in an 

LTRC survival tree.  

• samptype—we did not bootstrap samples to create this tree, this is set to 

“swor” or sampling without replacement. The entire training dataset is 

used to fit the single tree. 

• sampfrac—this parameter is used when the samptype is set to “swor” and 

represents the proportion of subjects to be used for each tree. The default 

is 0.632 but we set this value to one to ensure each subject is drawn for the 

model fitting.  
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• alpha—the depth of the tree is the only parameter tuned for this LTRC 

survival tree model. The default value is 0.05. 

2. Tuning the Model Parameters 

With computational time no longer being a factor in the tuning process for this 

model, we use the full-tuning datasets; each tuning model needs less than one hour to fit. 

With only one parameter to tune, many models are fit to pinpoint the best value for alpha. 

We fit 10 models from alpha values 0.025 to 0.25 with a step of 0.025 between models’ 

alpha parameters. Figure 7 shows the training and validation IBSs for these tuning models. 

The trends in Figure 7 are surprising in that an alpha value near 0.05 led to lower IBS; 

values of alpha greater than 0.05 demonstrated overfitting evident with the decrease in 

training IBS and increase in validation IBS. This variance caused by overfitting is 

attributed to the greater depth of the tree with unnecessary splits. We decide to select an 

alpha of 0.05 for our final model.  

 
Figure 7. LTRC Survival Tree Integrated Brier Score vs. alpha. 
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3. Final Model 

The final LTRC survival tree model has an alpha of 0.05. With the magnitude of 

the test set overloading the PDE’s RStudio server when attempting to predict, we again 

utilize the method of creating nine subsets to predict with our final LTRC survival tree 

model. From these predictions—in predictProb object format—we calculate our BSs and 

IBSs for both our training and test sets. Figure 8 depicts the BSs as a function of time for 

both the training and test sets.  

 
The test IBS for this final model was 0.0969 and the training IBS was 0.6877. 

Figure 8. Final LTRC Survival Tree Brier Scores. 

As with the TV-RSF, the magnitude between the training and test BSs is notable 

but the difference between the training and test IBS is not as large. We also see that as time 

increases, we are less accurate in estimating with our survival functions from the model.  

D. RANDOM FORESTS 

1. Fitting the Model 

We fit our random forests models using the ranger function from the ranger package 

(Wright and Ziegler 2017). We tune three models fit with: (1) snapshot data of covariates 
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at year one, (2) snapshot data of covariates at year two with only subjects surviving past 

year two, and (3) snapshot data of covariates at year three with only subjects surviving past 

year three. The parameters for this random forest method which we tune with the ranger 

function (Wright and Ziegler 2017) are as follows: 

• ntree—similar to TV-RSF, the number of trees is a parameter that will not 

decrease effectiveness of the model with being larger. We set our ntree 

value to 1,000 for tuning model fits and 10,000 for final model fits; these 

values are confirmed in the tuning process to be well within the magnitude 

to maximize accuracy. 

• mtry—same parameter seen in both TV-RSF and LTRC survival tree 

tuning. We evaluate all 33 possible values of mtry for each of our three 

random forest models. 

• important—this parameter in the ranger function determines the variable 

importance metric. We set this value to ‘impurity’ which utilizes Gini 

index for classification.  

• probability—we set this value to ‘true’ which turns the model into 

probability forest as in Malley, Kruppa, Dasgupta, Malley, and Ziegler 

(2012). These forests produce probabilities for classification which we 

extract for our brier scores and cohort estimations.  

• Exclusion of Unimportant Variables—after finding our best mtry 

parameter value utilizing each of the 33 covariates in our formula, the ten 

most important are selected to fit another model with the same mtry value 

for comparison.  

2. Tuning the Model Parameters 

All three models are tuned by first testing each of the 33 mtry values at a ntree value 

of 1,000. After the optimal mtry is found, 10,000 trees are used to fit the same model to 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



40 

compare to 1,000 to ensure there is not a significant difference. The top-ten variables in 

terms of Gini index are then identified to rerun the model with only those variables.  

a. Random Forest Model Tuning: Years One to Two 

As seen in Figure 9, all 33 mtry values are tested and compared with BS. We see 

that the mtry which minimizes validation BS is mtry = 4. The difference between the best 

BS and worst BS for these models is very small compared to the tuning in previous 

modeling methods. We do not see evidence of overfitting with the training BS also 

increasing with the validation BS. After the models are tuned with 1,000 trees the mtry = 

4 model is refit with 10,000 trees; no significant difference is noted in either validation or 

training BS, showing that 1,000 trees reasonable. We then find the top-ten most important 

variables using the Gini index and refit the model with an mtry of 4. This limited covariate 

model has a higher validation BS of 0.055 than the model including all of the variables 

with a validation BS of 0.054. 

 
Figure 9. Years One to Two Random Forest mtry Tuning Brier Scores 

b. Random Forest Model Tuning: Years Two to Three 

We see in Figure 10 that the mtry which minimizes validation BS is mtry = 3. Like 

the years one to two model, the difference between the best BS and worst BS for these 
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models is very small compared to the tuning in previous modeling methods. We also do 

not see evidence of overfitting with any of the models. After the models are tuned with 

1,000 trees the mtry = 3 model is refit with 10,000 trees; no significant difference is noted 

in either validation or training BS. The limited covariate model found with the top-ten most 

important variables from the mtry = 3 model has a worse validation BS of 0.077 compared 

to the model including all of the variables with a validation BS of 0.074. 

 
Figure 10. Years Two to Three Random Forest mtry Tuning Brier Scores 

c. Random Forest Model Tuning: Years Three to Four 

Figure 11 demonstrates that the mtry which minimizes validation BS is mtry = 4. 

We also do not see evidence of overfitting with any of the models. No significant difference 

is noted in either validation or training BS when comparing the 10,000-tree model to the 

1,000-tree model. The limited covariate model found with the top-ten most important 

variables from the mtry = 4 model has a worse validation BS of 0.033 compared to the 

model including all of the variables with a validation BS of 0.031. 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



42 

 
Figure 11. Years Three to Four Random Forest mtry Tuning Brier Scores 

E. LOGISTIC REGRESSION 

We fit our logistic regression model utilizing the glm function found in base R (R 

Core Team 2017). We create three models fit with: (1) snapshot data of covariates at year 

one, (2) snapshot data of covariates at year two with only subjects surviving past year two, 

and (3) snapshot data of covariates at year three with only subjects surviving past year 

three. With no tunable parameters, the logistic regression model is not tuned. The final 

model is trained with all of the 33 covariates and BS are calculated utilizing the same 

method as random forests.  
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IV. RESULTS 

Figure 12 demonstrates our final model comparisons of BS at the three selected 

evaluation times of attriting by year two, three and four. We include BS evaluated on the 

FY2010 training set used to train the four models and on the FY2011 test set. We see that 

our TV-RSF model performs the best with a lower test BS for each of the three evaluation 

times. Following closely behind TV-RSF, the LTRC survival tree model performs 

marginally worse, with a difference of test BS of less than 0.03 for each selected evaluation 

time. We also see that the training BS for TV-RSF is markedly lower than the training BS 

for the LTRC survival tree. This is as expected since an ensemble (a random forest) 

typically outperforms a single model fit (a tree).  

 

Figure 12. Final Model Training and Test Brier Score Comparisons 

We suspect that the advantage TV-RSF has over an LTRC survival tree does not 

carry over to the FY2011 test set because the FY2011 policies, economic conditions, and 

recruits are fundamentally different for the FY2010 cohort. This is consistent with 
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observations of Speten (2018) and Devig (2019) who fit models with cohort year as a 

predictor and identify cohort year as one of the most important variables in predicting 

attrition. In a sense the more complex/flexible TV-RSF model is over-fitting the FY2010 

data. It predicts FY2010 attrition so well that is does not generalize as well to a new year’s 

cohort. This result suggests that using the much less computationally intensive LTRC 

survival tree might be nearly as good as using a TV-RSF when analysts expect non-

stationarity in the next year. However, in the case that the next year is similar to the training 

year, a TV-RSF may be worth the extra computational burden. It also suggests that in the 

current environment where underlying policies, economic conditions, and recruites are 

changing dramatically that these attrition models must be updated regularly, perhaps even 

more frequently than annually.  

Random forest outperforms both the LTRC survival tree and logistic regression 

models by a small amount in terms of test BS at time two, but cohort attrition estimation 

degrades at time three and four compared to survival forests with a significant spike in test 

BS at time four. In estimating cohort attrition, logistic regression performs the poorest at 

all three of the selected evaluation times. Similarly, the training BSs for years two and three 

are about the same for logistic regression, random forests, and the LTRC survival tree, but 

the training BS of year four is lowest for the LTRC survival tree followed by random forests 

and logistic regression. It seems that keeping close track of how T-VCs change with time 

(more frequently than annual changes) using survival analysis is more important in the later 

years of the first term than in early years.  

Finally, we note that survival analysis with T-VC models (the LTRC survival tree 

or TV-RSF) provide the analyst with greater flexibility than trying to shoe-horn T-VCs into 

T-CC models like Cammack (2020) and Lazzarevich (2022). For example, say we have a 

group of first-term soldiers who are at the two-year mark in their contract. We know the 

values of their covariates at year two. Both the LTRC survival tree and TV-RSF models 

easily estimate their probabilities of surviving t for t > 2 given their covariate values at 

year two. Using the Cammack (2020) approach, to estimate the probability of surviving 

four years given survival to year two with covariate values at year two requires fitting a 

new classification attrition model to the training set. The new classification model would 
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be based on a snapshot of training records at year two with the response variable of attrition 

or retention at year four. Further, the survival analysis methods can be applied to estimate 

probabilities of surviving the next year for a group of soldiers, say in a particular unit, 

whose time in service so far differs and is measured in fractions of years rather than in one-

year increments. 
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V. SUMMARY AND CONCLUSIONS 

This chapter provides a summary of our work, conclusions and recommendations 

for future research. 

A. SUMMMARY 

We compare the performance of four methods for estimating attrition rates for a 

subset of Army post-IET first-term soldiers. Two methods, the LTRC survival tree and 

TV-RSF, accommodate T-VCs and estimate the entire survival function rather than an 

attrition rate for a single fixed time window. To our knowledge, our work is the first use of 

TV-RSF with military manpower data. Thus, to aid future military analysis, for TV-RSFs, 

we also give details concerning training, tuning parameter selection, and T-VC variable 

selection. The other two methods train a sequence of classification models (logistic 

regression and random forests) estimating a year’s attrition rate given values of soldiers’ 

covariates at the beginning of the year. These methods, particularly logistic regression, are 

the ones most often seen in military manpower analysis. We use BS computed on the 

FY2010 training cohort and on the FY2011 test cohort to compare the four methods. 

B. CONCLUSIONS 

Survival Analysis has benefits over traditional manpower methods. We find our 

survival analysis models (TV-RSF and LTRC survival trees) outperform the traditional 

manpower methods at predicting first-term post-IET attrition. This is due to the more 

effective capture of T-VCs in our survival analysis models than the method used by 

Cammack (2020) to only incorporate annual T-VC values for traditional classification 

models. The survival analysis methods also produce more useful results than the 

classification models with the estimated survival functions giving senior leaders insights 

on which groups of soldiers they can expect to attrite and attrition rates over the entire first 

term conditioned on what has been observed for a solder or group of soldiers so far. 

For new-year data, the TV-RSF only marginally outperforms the LTRC survival 

tree. With first-term attrition costing the Army up to $652 million annually, the small 
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increase in prediction power with the TV-RSF may very well be worth the additional 

computational time (Marrone 2020). We see that differences in policy or economic 

conditions may have decreased the effectiveness of the TV-RSF in predicting first-term 

post-IET attrition in FY2011 data when trained with FY2010 data. This is indicated by how 

well the TV-RSF fits to the FY2010 data with a comparatively low training error to LTRC 

survival trees and the fact that cohort year is an important variable when included in 

previous models (Devig 2019). With the inclusion of these underlying policy or economic 

variables, the difference between new-year prediction accuracy could be greater between 

our two survival analysis methods.  

We also note that the computational time required to train a survival model with T-

VCs increases with the number of pseudo-records. Datasets with only T-CCs have one 

record per subject. The number of pseudo-records per subject increases, however, with the 

number of T-VCs, even when the number of subjects remains the same. Because training 

TV-RSFs is computationally expensive, pre-screening of T-VCs is important for training 

these models. As we illustrate, variables that include T-VCs many be pre-screened by 

training a sequence of traditional classification models. These can be trained rapidly. We 

use the sequence of random forests trained by Lazzaravich (2022) because random forest 

packages almost always provide measures of variable importance. 

Finally, although we focus on Army first-term attrition, these methods are general. 

They may be used for attrition studies of civilians and for other services and other 

manpower applications such as estimating promotion, retention, or continuation rates. 

C. FUTURE RESEARCH 

Because survival analysis with T-VCs are rarely used in military manpower studies, 

there are many directions for future research; we list three. 

Follow-on work for first-term post-IET attrition should incorporate variables like 

policy changes in the Army, and economic changes that influence the attrition rates of 

soldiers year over year. With the inclusion of these variables and a larger training set for 

TV-RSF to span multiple years to incorporate the effect of these variables, the effectiveness 

of the model in estimating cohort attrition rates for future years could improve.  
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Due to computational restraints in the PDE’s RStudio server, only a subset of the 

available variables is used, the number of trees in the TV-RSF is reduced, and a smaller 

cohort with only one training year is selected. In future research, analysts should seek much 

larger computational resources to facilitate the demand of the TV-RSF model fitting with 

the inclusion of additional variables, larger cohort and number of trees in the ensemble. 

This research could produce improved insights for the Army’s first-term attrition problem.  

Finally, we use a “goodness of fit” statistic, BS, as a measure of performance based 

on full cohorts, and we have only alluded to how TV-RSF might be used in a military 

manpower setting. Future work should examine tangible military benefits of various 

applications of survival functions estimated from TV-RSFs. For example, how much 

improvement in end-strength forecasts do we get using the better fitting TV-RSF models? 

Is there a benefit to such forecasting at the unit level or for a particular MOS? How much 

added benefit is there to updating these forecasts in time as the T-VCs for a group of 

soldiers is updated? And, if we were to design a software application capitalizing on the 

strengths of TV-RSF, what should it look like? 
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APPENDIX A.  CAREER MANAGEMENT FIELDS 

CMF Codes Description 
11 Infantry 
12 Engineer 
13 Field Artillery 
14 Air Defense Artillery 
15 Aviation 
19 Armor 
25 Signal 
31 Military Police 
35 Military Intelligence 
42 Human Resources 
68 Health Services 
74 Chemical 
88 Transportation 
89 Ammunition/Explosive Ordnance 
91 Ordnance/Vehicle Mechanics 
92 Quartermaster 
94 Electronic/Missile Maintenance 
LD Multiple 
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APPENDIX B.  HOME OF RECORD STATES/TERRITORIES 

Levels Level Description 
AK Alaska 

AR+MS+AL+LA Arkansas / Mississippi / Alabama / Louisiana 
AZ+NM Arizona / New Mexico 

CA California 
CO Colorado 

CT+RI Connecticut / Rhode Island 
FL Florida 

GA+SC Georgia / South Carolina 
GU+PR+VI+AS Guam / Puerto Rico / U.S. Virgin Islands / American Samoa 

HI Hawaii 
IL Illinois 

IN+OH Indiana / Ohio 
MA Massachusetts 

MD+DC+DE Maryland / District of Columbia / Delaware 
ME Maine 
MI Michigan 

MN+WI Minnesota / Wisconsin 
NE+KS+IA+MO Nebraska / Kansas / Iowa / Missouri 

NH+VT New Hampshire / Vermont 
NJ New Jersey 
NY New York 

OR+WA Oregon / Washington 
PA Pennsylvania 

SD+ND South Dakota / North Dakota 
TN+KY+WV Tennessee / Kentucky / West Virginia 

TX+OK Texas / Oklahoma 
UT+NV Utah / Nevada 
VA+NC Virginia / North Carolina 

WY+ID+MT Wyoming / Idaho / Montana 
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