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ABSTRACT 

 This research performs trade-off analysis on attacker-defender swarm 

engagements to compare the relative efficiency of factors governing swarm behavior, 

namely targeting algorithms and individual drone parameters. In particular, we examined 

algorithms developed for the Service Academies Swarm Challenge (SASC), a live-fly 

drone swarm exercise of swarm-on-swarm engagements. We performed this analysis 

with dynamic swarm simulations that permitted variations in swarm composition and 

behavior. This allowed us to confirm the qualitative results of swarm performance from 

the SASC. In addition, we used scaling analysis methods to perform quantitative trade-off 

analysis and developed functional forms to assess defender swarm fitness. Our results 

provide a framework for studying more complex swarm behaviors in follow-on research. 
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CHAPTER 1:
Introduction To Drone Swarms

Drone swarms are groups of autonomous vehicles which coordinate and communicate to
achieve goals [1]. The size of a drone swarm can be scaled arbitrarily according to swarm
capability and the ability of an actor to logistically support the swarm. Militarily, large
swarms present high risk to a High Value Unit (HVU), such as an aircraft carrier, due to the
swarm’s ability to overwhelm existing HVU point defenses [2].

1.1 Risks From Drone Swarms
The ability to field a drone swarm has historically been limited by computer processing,
drone-to-drone communication, and energy storage density [3]. Developments in these fields
have, however, led to increased swarm development and feasibility. This has caused the risk
from drone swarms to increase dramatically. Large swarms have become increasingly pos-
sible, with China testing swarms of over 1000 drones as early as 2017 [3]. The technological
improvements which have made drone swarms more practical are expected to continue.

The largest drone risk to HVUs are aerial drones executing a suicide mission while utilizing
an on-board explosive charge. The goal of the swarm is, through sheer numbers, to saturate
HVU defenses and either destroy or disable the HVU. Current HVU defenses, such as
missiles or close-in weapon systems, are insufficient and uneconomical to counter large
drone swarms [2]. These defenses, designed to counter aircraft and missiles, are unequipped
to deal with drones and their drastically different threat profile. A swarm’s low-cost and
large size risks the HVU expending the entirety of its limited defensive ordnance while only
destroying a fraction of the swarm [2]. The HVU, in this case, would then be vulnerable to
either the swarm remnants or attacks from other units exploiting its exhausted defenses.

The strategic utility and financial value of the HVU can also lead to an adversary benefiting
from the HVU’s destruction at the cost of an entire drone swarm. Capable drones can be
fielded for as little as $500,000 per unit [2]. This estimate includes the cost of the drone,
launcher, and logistical support. Therefore, a 600 drone swarm, capable of attriting existing
HVU defenses, would cost a total of $300 million [2]. This compares favorably with the
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$12 billion cost of an aircraft carrier [4]. This disparity allows swarms to be used as force
multipliers to minimize the advantages the U.S. currently gains from expensive HVUs [5].

1.2 Counter Swarming Techniques
Proposed methods of countering drone swarms include laser and electromagnetic weapons
and drone counter-swarming. Laser and electromagnetic weapons are technically better
suited to countering a drone swarm than existing point defenses due to their ability to
expend a nearly limitless number of shots. However, neither weapon system is currently
widely fielded. In fact, both laser and electromagnetic weapons have faced substantial
technical difficulties and would require considerable technological advancement to credibly
provide counter-drone defense [6].

Drone counter-swarming consists of using a defensive drone swarm to combat the offensive,
adversarial drone swarm. This swarm countermeasure has a relative dearth of research
compared to offensive drone swarms. However, defensive drone swarms have the advantage,
over other countermeasures, of leveraging the same technological advances that have spurred
the development of offensive drone swarms. As offensive drone swarms become more
capable, so too do defensive drone swarms. In fact, defensive drone swarming is likely
easier to implement than offensive swarming due to defensive swarms operating among
friendly forces in controlled airspace [7]. Counter-swarming also allows a defender to
undermine the most significant advantage of an offensive drone swarm, its size. A defensive
drone swarm can have sufficiently large size to mitigate an offensive swarm’s ability to
saturate defenses.

Previous work from researchers at the Naval Postgraduate School has focused on examining
counter-swarming as an optimal control problem [8]–[12]. This previous work utilized
potential-based models, long-range weapons, and defender herding strategies. This thesis
builds on these previous works by implementing different swarm cooperation rules and
applying new analysis techniques. For example, prior studies focused on long-range weapons
where the attacking swarm was engaged as a whole. This thesis focuses on simulations using
short-range weapons, where defenders engage individual attackers. Additionally, this thesis
examines trade-off analysis instead of optimization, but the tools described here could be
combined with optimization in future work.
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The development of a defensive drone swarm requires answering a series of questions. First, 
what are the best tactics for a defending swarm to best counter the attacking swarm? Second, 
what platform specifications, such as speed or weapon range, would be most effective? Third, 
what costs or technological limitations associated with these platform specifications might 
affect the feasibility of fielding the optimal swarm? These three categorical questions include 
many other questions. For example, what is the benefit of adding more drones, given an 
algorithm and a set of platform specifications? Is there a point at which adding more drones 
is no longer beneficial? How does an improvement in platform specifications compare 
with adding more drones; e.g., is it more advantageous to double speed or the number of 
drones?

To answer these questions, mission planners and designers must perform a comprehensive 
trade-off analysis of drone swarm parameters to determine how to maximize swarm ca-
pabilities while minimizing swarm cost. A thorough distillation of factors such as swarm 
behavior, swarm size, and individual drone performance, to include its speed and weapon 
range, could allow a mission planner to field the drone swarm which most capably and 
economically counters adversarial swarms. Without this analysis, a mission planner risks 
making a swarm that is insufficient to defeat the offensive swarm which places the 
HVU at risk. Conversely, the mission planner could also create a drone swarm which 
soundly defeats the offensive swarm but is an inefficient allocation of resources. At 
present, there are few analysis tools that are suited for performing these planning tasks. 
The goal of this thesis is to begin to fill this knowledge gap.
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CHAPTER 2:
Case Study: Service Academy Swarm Challenge

Answering the analysis and planning questions at the end of the previous chapter requires
the selection of different tactics and platform specifications to compare against one another.
Since there are an essentially unlimited diversity of swarm tactics that could be chosen, the
literature was investigated to find simple, realizable algorithms that could demonstrate an
appropriate analysis framework.

A literature review revealed the Defense Advanced Research Projects Agency (DARPA)
Service Academies Swarm Challenge (SASC) as an excellent candidate. In this 2017 live-
fly swarm exercise, service academy student teams were provided with existing drones
and drone control programs by DARPA. These teams then fielded swarms, of up to 25
drones, against other service academy teams. They then attempted to accomplish objectives
including destroying opposing drones and controlling aerial territory [13].

2.1 Swarm Targeting Behaviors
During the SASC, DARPA provided teams with several drone targeting and control algo-
rithms of varying complexity and effectiveness. The teams also developed and implemented
targeting behaviors of their own design. Together, these included Greedy Shooter (Greedy),
Smart Shooter (Smart), and Reverse Shooter (Intercept). Throughout the competition, the
success of swarms with varying targeting behavior was compared to determine their relative
effectiveness [14].

2.1.1 Greedy
Greedy consisted of each defending drone determining the closest attacking drone and
flying a direct path toward the attacking drone. This behavior was relatively simple to
implement and required minimal communication or coordination among swarm members.
However, this behavior also led to sub-optimal drone pairings, with multiple defending
drones attacking a single attacking drone while other attacking drones were not targeted.
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Greedy, therefore, tended to be the lowest performing of the DARPA-provided targeting
algorithms [14].

2.1.2 Smart
Smart consisted of the swarm distributing targets so each defender targeted the closest
opposing drone that was not already targeted by a defender. After selecting a target, the
defending drone would fly a direct path to the attacking drone. Smart resulted in defenders
being allocated to attackers more efficiently than Greedy and avoided numerous defenders
attacking a single target. Therefore, Smart outperformed Greedy during the competition [14].
However, a weakness of Smart was its tendency to enter into tail-chases of opposing drones
due to flying directly at its target’s current position.

2.1.3 Intercept
Intercept, like Smart, consisted of each drone targeting the closest attacking drone that
was not already being targeted. However, each defending drone also calculated and flew
an intercept path with the attacking drone instead of flying directly toward the attacker.
This allowed earlier intercept of attacking drones and avoided defending drones entering
tail-chase situations. Intercept outperformed Greedy and slightly outperformed Smart [14].

2.1.4 Swarm Relative Effectiveness
The SASC determined that Greedy performed the poorest of these algorithms. In addi-
tion, the competition found that drone algorithm and swarm size were the largest factors
in predicting swarm success [14]. The SASC also demonstrated the binary dynamic of
swarm engagements, with one side winning an engagement and the other losing. Winning
the engagement allowed one’s swarm to operate unimpeded while, conversely, losing the
engagement allowed the adversary unimpeded operations [14]. However, unimpeded oper-
ations were achieved regardless of the scale of the victory. Therefore, a swarm would be
effective regardless of how convincingly they defeated the adversary as long as victory was
achieved.

6
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2.2 Algorithm Comparison and Trade-Off Analysis
Due to the binary nature of winning versus losing an engagement, trade-offs of swarm ca-
pabilities and performance must focus on the crossover point of swarm performance. That
is, the point at which a swarm transitions from being insufficient to counter an adversary to
the point at which it is sufficient. By quantitatively determining this point, drone parameter
performance and swarm performance can be identified. By determining the most important
swarm parameters, a mission planner can invest in those capabilities while limiting invest-
ment in less important parameters. Therefore, identification of swarm performance criteria
coupled with trade-off analysis can improve swarm fitness.

While the SASC provided a benchmark for assessing and predicting swarm performance,
the results were largely qualitative. Therefore, it has limited quantitative or predictive
capability. While a quantitative model is required for proper mission planner use, the SASC
was valuable in providing a live-fly exercise which can be compared to future quantitative
trade-off work.

The algorithms in the SASC also provided a good test case to compare qualitative differences
in algorithm choice as well as changes to platform specifications. The computer simulations
discussed in the following chapters will allow a comprehensive comparison and trade-off
analysis of all algorithms and platform specifications.
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CHAPTER 3:
Swarm Modeling Methodology

Determining drone swarm trade-off analysis requires modeling an engagement between
an offensive and defensive drone swarm. The ultimate objective of this analysis is to
develop and demonstrate an analysis framework that can be used to determine which swarm
tactics and platform specification parameters most efficiently contribute to overall swarm
fitness. Simulations are run with varying drone defensive behaviors and parameters, such
as acceleration, velocity, weapon range, and swarm size. Across the range of parameters,
the time for the defending swarm to completely destroy the attacking swarm is measured.

3.1 Modeling Dynamic Behavior
An offensive and defensive swarm are initially generated a fixed distance from each other.
The attacking drone swarm is modeled to spread and evade the defenders at the start of
each simulation and is assumed to consist of drones designed to strike HVUs and unable
to attack defender drones. The defender goal is to destroy attackers. The standard initial
conditions for a simulation is shown in Figure 3.1 with defenders in blue, attackers in red,
and the HVU in green. For actual simulations, the defenders and attackers are plotted while
the HVU is not explicitly plotted and is instead assumed to be behind the defender initial
positions.

9
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Figure 3.1. Standard Simulation. The initial positions of a standard swarm
engagement simulation.

Individual drone dynamics are modeled using an Euler-based dynamic agent model where
each defender drone’s acceleration is determined by

𝑚𝑖¥r𝑖 = 𝐾
Rtarg
𝑖

− r𝑖
|Rtarg
𝑖

− r𝑖 |
− 𝐵 ¤r𝑖 (3.1)

where the individual defender drone acceleration ¥r𝑖 is a function of the drone mass 𝑚𝑖, an
acceleration coefficient 𝐾 , the effective target position Rtarg

𝑖
, the current defender position

r𝑖, the defender drag coefficient 𝐵, and the current defender velocity ¤r𝑖. Therefore, the
defender accelerates in the direction of the effective target position, which varies based on
the specific targeting algorithm.

10
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The terms of Equation (3.1) can be expressed as

𝑣 = 𝐾/𝐵 (3.2)

𝑡𝑎 = 𝑚/𝐵 (3.3)

where a defender maximum velocity 𝑣 is function of the acceleration coefficient 𝐾 and the
defender drag coefficient 𝐵. The defender acceleration time constant 𝑡𝑎 is a function of the
defender mass 𝑚 and the defender drag coefficient 𝐵. The defender maximum velocity and
the acceleration time constant will be varied for the analysis in follow-on chapters.

3.2 Targeting Methods
The behavior of the defender drones is determined by the Greedy, Smart, and Intercept
algorithms. These algorithms are simply different ways to set Rtarg

𝑖
, as described below.

3.2.1 Greedy
The Greedy algorithmic process is shown in Figure 3.2 which is consistent with Equation
(3.1). Since drones using Greedy accelerate directly toward the attacking drone, the effective
target position is located at the current target position. Therefore, drones using Greedy tend
to place themselves in tail-chases of the attacking drone.

11
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Figure 3.2. Greedy Diagram. Greedy causes defenders to accelerate directly
toward the target drone.

Greedy targeting is also shown in Figure 3.3. Each defender targets the closest attacker,
shown with a blue line. Attacker velocities, shown with a red line, are also plotted. Due to
each defender attacking the closest attacker, multiple defenders can target the same attacker.

12
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Figure 3.3. Greedy Targeting. Defenders target the closest attacker and ac-
celerate directly toward the current attacker position.

3.2.2 Smart
The Smart algorithmic process is similar to Greedy except drones allocate targets so that
targets are distributed among defender drones. Every simulation time step, the distance
between each defender and attacker is assessed. The shortest defender-attacker combination
is then assigned to the respective defender and both that attacker and defender are removed
from the targeting queue. This is performed iteratively until every defender is assigned an
attacker. For cases with more defenders than attackers, this process is performed until every
attacker has an assigned defender. At this point, every remaining defender is assigned to
the closest attacker. Upon selecting a target, Smart performs mechanically identically to
Greedy. Therefore, Smart drones also tend to be in tail-chases with attacking drones.

13
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Smart targeting is shown in Figure 3.4. By distributing defenders, each defender targets a
different attacker. Therefore, Smart, unlike Greedy, does not cause defenders to congregate
on a single attacker. The defenders, however, accelerate directly toward the current position
of their respective attacker every time step.

Figure 3.4. Smart Targeting. Defenders queue and distribute targets then
accelerate directly toward the current attacker position.

3.2.3 Intercept
The Intercept algorithmic process is shown in Figure 3.2. The effective target position
is the calculated intercept point. Every time step, defender-attacker pairs are allocated
based on current distances between drones, similar to Smart. The intercept point is then
calculated for each pair. The intercept point is calculated every time step by solving a
second-order dynamics equation where the attacker and defender current positions and
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velocities are known and the final positions are unknown. Defenders then accelerate toward
the calculated intercept point. Intercept drones efficiently fly to attacking drones and do not
place themselves into tail-chases.

A version of Intercept where the intercept point for every defender-attacker pair is calculated
and the closest intercept points is assigned to each defender was also evaluated. This process
was, however, computationally intensive and yielded similar results to the final Intercept
algorithm.

Figure 3.5. Intercept Diagram. Intercept causes defenders to accelerate to-
ward a calculated intercept point with the target drone.

Intercept targeting is shown in Figure 3.6. Intercept distributes defenders similarly to Smart,
however Intercept also calculates and accelerates toward an intercept point with each re-
spective attacker.
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Figure 3.6. Intercept Targeting. Defenders queue and distribute targets then
calculate and fly to intercept points.

3.3 Parameter Variation
In each simulation the two swarms are generated with preset parameters. The attacking
drones are given a specified swarm size and maximum velocity, which dictates the distance
they can move per time step. The defending drones are given a specific swarm size, weapon
range, maximum velocity, and characteristic acceleration time. For each simulation, these
parameters are varied across a range of values and each set of parameters is run a total
of 120 times. In each of these 120 simulations, a random seed is used to vary the initial
positions of the attackers and defenders. This allows slightly different variations of each
parameter set to be simulated.
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Attackers are marked as destroyed if their distance from a defender is within the defender
weapon range. Destruction of the attacker causes the respective attacker drone to be removed
from the simulation. Attackers are not able to destroy defenders and defenders do not
experience attrition.

3.4 Recorded Data
The number of time increments to destroy all attackers is recorded for each individual run
and averaged across the 120 cases per simulation. The amount of time to destroy each
attacker is then compared to the variation in each respective parameter. The relative weight
and effect of each parameter change then allows the development of a swarm effectiveness
function and a quantified expression for determining whether the defender swarm would
succeed or fail.
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CHAPTER 4:
Results: Swarm Modeling

Determining drone swarm trade-off analysis requires modeling an engagement between an
offensive and defensive drone swarm. The ultimate objective of this analysis is to determine
which swarm parameters most efficiently contribute to overall swarm fitness.

4.1 Algorithm Performance

4.1.1 Greedy
The performance of Greedy is evaluated in four successive snapshots in Figure 4.1. The
initial positions of the defenders, in blue, and the attackers, in red, are shown in Figure
4.1.(a). At this point, each defender determines the closest attacker and flies a direct course
toward that attacker.

By Figure 4.1.(b), the defenders have reached the attacking swarm. Due to multiple defenders
targeting the same attacker, the defenders are closely spaced and in poor position for follow-
on pursuit of the remaining attackers. In Figure 4.1.(c), the defenders continue pursuit
however they have already been bypassed by some of the attackers. In Figure 4.1.(d), the
defenders are in a tail-chase pursuit of the attackers, which have completely bypassed the
defenders and now threaten the HVU.
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(a) (b)

(c) (d)

Figure 4.1. Greedy Demonstration. Attackers bypass defenders due to de-
fender bunching.

The performance of Greedy demonstrates its inherent weaknesses as a targeting algorithm.
By directly pursuing the closest attacker, the defender swarm is ineffective in efficiently
destroying the attacking swarm. Instead, the defenders bunch together and allow a sufficiently
distributed attacking swarm to bypass the congregated defender swarm. Therefore, targeting
behavior which distributes and coordinates group behaviors is needed.

4.1.2 Global Targeting
Global Targeting, which includes the Smart and Intercept algorithms, can distribute targeting
between swarm members as shown in Figure 4.2. Each defender targets the closest attacking
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drone that is not already targeted by another defender. This, therefore, avoids the defender
bunching caused by Greedy.

In Figure 4.2.(a), the attackers and defenders are generated and each defender determines its
target based on proximity to each attacker. In Figure 4.2.(b), the two swarms first encounter
each other. By Figure 4.2.(c), the defenders have largely surrounded the attackers and
destroyed most of the swarm. In Figure 4.2.(d), the attacker swarm is nearly completely
destroyed with only a few remaining attackers that pose minimal risk to the HVU. This
highlights the advantages of Global Targeting. The defensive drone swarm is more efficient
at targeting the attacking swarm and avoids the defenders bunching.

(a) (b)

(c) (d)

Figure 4.2. Global Targeting Demonstration. Defenders distribute targets,
which allows for more efficient targeting.
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4.2 Swarm Performance
Swarm performance can be determined by the ability of the defensive swarm to expedi-
tiously destroy the attacking swarm. Quickly destroying the attacking swarm minimizes the
possibility of attackers evading defenders, closing distance with the HVU, and ultimately
placing the HVU at risk. Swarm performance can be characterized as a strong defender
win, weak defender win, and an attacker win. Due to the aforementioned success of Global
Targeting algorithms, this analysis is performed with the Intercept algorithm.

4.2.1 Strong Defender Win
The strong defender win case is shown in Figure 4.3. First, the attackers and defenders
are generated and defenders determine their targets, as shown in Figure 4.3.(a). By Figure
4.3.(b), the swarms first encounter each other. By Figure 4.3.(c), the defenders have destroyed
much of the attacking swarm. The defender swarm is sufficiently large and capable to avoid
being overwhelmed by attackers. In Figure 4.3.(d), the defenders have nearly completely
destroyed the attackers, which are unable to evade the defenders or place the HVU at risk.
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(a) (b)

(c) (d)

Figure 4.3. Strong Defender Win. Defenders overwhelm and easily destroy
attackers before attackers are able to sufficiently close range to HVU.

In this case, the defender swarm is quickly able to destroy the incoming attacker swarm.
Therefore, the attackers are unable to bypass the defenders and the HVU incurs minimal
risk. The likelihood of an engagement ending in a strong defender win is a combination
of the relative sizes of the swarms and the individual capabilities of each swarm member.
Large defender swarms, small attacker swarms, and highly effective individual defenders
combine to increase the probability of a strong defender win.
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4.2.2 Weak Defender Win
The weak defender win case is shown in Figure 4.4. After being generated in Figure
4.4.(a), the swarms start the engagement in Figure 4.4.(b). By Figure 4.4.(c), the attackers
have started to bypass a portion of the defending swarm. However, by Figure 4.4.(d) the
defenders have recovered and successfully contain the attackers, minimizing the risk to the
HVU.

(a) (b)

(c) (d)

Figure 4.4. Weak Defender Win. Defenders destroy attackers and some at-
tackers temporarily bypass the defenders. The defenders ultimately prevail
despite the HVU being in some risk.

In this case, the attackers are able to place the HVU in more risk than in the strong defender
win. However, the defenders are ultimately able to contain and destroy the attackers. This
win case features a defending swarm which is large and capable enough to ultimately
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provide sufficient defense but neither large nor capable enough to completely overwhelm
the attackers.

4.2.3 Attacker Win
The attacker win case is shown in Figure 4.5. After being generated in Figure 4.5.(a), the
swarms start the engagement in Figure 4.5.(b). Despite being spread out, the defenders are
overwhelmed by Figure 4.5.(c). At this time, attackers advance through the significant gaps
in the defense. By Figure 4.5.(d), the attackers have pushed the defenders back to the depth
of their starting position.

(a) (b)

(c) (d)

Figure 4.5. Attacker Win. Attackers overwhelm and bypass defenders and
place the HVU at significant risk.
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The attackers are able to quickly overwhelm and bypass the defender swarm. Though the
defender swarm is able to somewhat attrit the attacker swarm, the majority of the attackers
are able to advance despite the defenders. The defenders are ultimately pushed back to their
initial location and the HVU is at significant risk. This condition occurs due to the relative
size disparity between the attacking and defending swarm as well as defenders not being
individually capable enough to offset this size difference.

4.2.4 Algorithm Comparison
The time for each targeting algorithm to destroy the attacking swarm as a function of number
of attackers is shown in Figure 4.6 for the Greedy, Smart, and Intercept cases. For Intercept,
this data is plotted for defender drones having both a high and low turn rate. This confirms
the analysis from SASC, notably that Greedy is the lowest performing of the algorithms
with a significant performance increase for Smart and Intercept, which both feature Global
Targeting. For this reason, the Intercept algorithm is selected as the defender algorithm for
all future analysis and results. The performance differences between high and low turn rate
defenders also demonstrates that defender parameters have an influence on defender swarm
performance.
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Figure 4.6. Algorithm Performance Comparison. Global targeting algo-
rithms significantly outperform Greedy however Intercept slightly outper-
forms Smart. Intercept with fast turning also slightly outperforms Intercept
with slow turning.
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4.3 Effect of Varying Parameters
The time to destroy the attacking swarm as a function of number of attackers is shown in
Figure 4.7 for defending swarms with varying parameters. The defender parameters that
can be varied are the number of defenders 𝑁𝑑 , the weapon range 𝑅, the characteristic
acceleration time 𝑡𝑎, and the velocity 𝑣. In this case, all parameters except the characteristic
acceleration time are varied.

As the parameters of the defenders change, the time to destroy the attackers also changes.
Despite these changes, the overall shape of the curves stays largely the same. This suggests
that the overall behavior of the swarm remains constant despite changes in defender or at-
tacker performance. While the time to destroy an attacking swarm changes with parameters,
these parameters do not affect the overall swarm behavior. Therefore, the time to destroy
the attackers can be determined as a function of the selected defender parameters.
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Figure 4.7. Behavior Consistency. The overall swarm behavior does not
change despite differences in swarm composition and parameter choice.
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CHAPTER 5:
Results: Scaling Analysis

Due to the similarities in swarm behavior across varying swarm composition, the effective-
ness of the swarm can be scaled to predict performance given a specific swarm make-up.
This analysis, however, requires creating dimensionless swarm parameters.

5.1 Buckingham 𝜋
The Buckingham 𝜋 theorem states that any physical system can be fully characterized by 𝑝
dimensionless parameters 𝜋𝑖 (where 𝑖 runs from 1 to 𝑝), where

𝑝 = 𝑛 − 𝑘. (5.1)

here, 𝑛 is the number of system variables, and 𝑘 the number of dimensions (usually three:
mass, length, and time). There then exists a constraint function that determines any 𝜋𝑖 in
terms of all the others. For example,

𝜋1 = 𝑓 (𝜋2, 𝜋3, ..., 𝜋𝑝). (5.2)

5.1.1 Reynolds Number
An example of practical use of Buckingham 𝜋 is in the dependence of the drag force on
Reynolds Number (Re) in fluid mechanics [15]. If a sphere is moving through a viscous fluid
at a specific velocity, there are 𝑛 = 5 system variables: the diameter 𝐷, a velocity 𝑣, fluid
density 𝜌, fluid viscosity a, and a drag force 𝐹𝐷 . These variables include mass, length, and
time dimensions, so 𝑘 = 3. Therefore, Equation (5.1) states that the system can be described
by two dimensionless parameters,

𝜋1 =
𝐹𝐷

𝜌𝑣2𝐷2 (5.3)

𝜋2 =
𝜌𝑣𝐷

a
= Re (5.4)
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thus, the drag force can be expressed as 𝐹𝐷 = 𝜌𝑣2𝐷2 𝑓 (𝑅𝑒). This function 𝑓 is equal to the
drag coefficient (up to a geometrical prefactor), which only depends on Re.

5.1.2 Drone Swarm
The parameters in the drone swarm simulation include the time to destroy the attackers 𝑡𝑘 ,
number of attackers 𝑁𝑎, number of defenders 𝑁𝑑 , attacker velocity 𝑣𝑎, defender velocity 𝑣𝑑 ,
defender characteristic acceleration time 𝑡𝑎, defender weapon range 𝑅, and the characteristic
system length 𝑑 for a total of 𝑛 = 8. The system dimensions include length and time which
can be described by

𝐿∗ = 𝑑, (5.5)

𝑇∗ =
𝑑

𝑣
, (5.6)

where the length dimension 𝐿∗ and the time dimension 𝑇∗ can be expressed using the
characteristic system length 𝑑 (the typical spacing between attackers) and the defender
velocity 𝑣.

From Equation 5.1, the drone swarm system can be described using six dimensionless forms

𝜋1 = 𝑁𝑎 (5.7)

𝜋2 = 𝑁𝑑 (5.8)

𝜋3 =
𝑡𝑘𝑣𝑑

𝑑
(5.9)

𝜋4 =
𝑣𝑎

𝑣𝑑
(5.10)

𝜋5 =
𝑡𝑑𝑣𝑑

𝑑
(5.11)

𝜋6 =
𝑅

𝑑
(5.12)

These non-dimensional forms demonstrate the parameter combinations that can be used to
determine a final functional form.
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5.2 Swarm Effectiveness Functional Form
To begin the development of a functional form, and the interpretation of the swarm data,
the results of Figure 4.7 are taken and the time to destroy the attacking swarm normalized
by the number of attackers with this result is plotted in Figure 5.1.

Figure 5.1. Attacker Normalized Data. Defender performance can be broken
into two regimes, one with an algorithmic data and one without.

These results show that swarm success consists of two separate behavioral regimes. In the
first, the time to destroy each attacker normalized by the number of attackers drops. In
the second, this quantity plateaus. The first regime represents the cases where algorithmic
advantages are present. In the second, performance increases diminish and the algorithmic
advantage is significantly reduced. These two regimes fundamentally represent the cases in
which the defending swarm succeeds and fails, respectively. This crossover point depends on

33

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



defender and attacker swarm parameters, though every defender swarm eventually reaches
this point of diminishing returns. By determining the crossover point, one can determine
the effectiveness of a swarm based on given swarm parameters. A key question that mission
planners should answer for this particular algorithm is how to stay in the first regime, where
the defending force has an advantage.

5.2.1 Examining Swarm Data
The swarm parameters of the number of defenders, the weapon range, the characteristic
acceleration time, and the velocity were varied to create over 1 million defender swarm
simulations. The normalized time to destroy the attacking swarm is plotted as a function of
number of attackers in Figure 5.2. These results again show that while the exact behavior
of the defender swarm varies based on parameters, the overall curve shape stays relatively
the same between different cases.

This justifies the previous assumption that changes in parameter values improve swarm
fitness in the same way as increasing numbers of agents, but with different sensitivities.
This motivates the definition of an effective number of defenders, 𝑁𝑑,eff , where a defender
swarm is effective when 𝑁𝑑,eff > 𝑁𝑎 and ineffective when 𝑁𝑑,eff < 𝑁𝑎.

Plotting the data in this way should cause all curves to have crossovers from downward slop-
ing to flat at the same value on the horizontal axis. Similarly, another scaled variable could
be defined for the kill time per attacker, with a physical interpretation to be determined. Note
that Buckingham 𝜋 demands that there be a constraint function among all six dimensionless
parameters. The similarity of the scaling functions suggests that a very simple form may
be possible, where the behavior does not depend on each parameter independently but on a
fixed combination which could collapse the data shown in Figure 5.2 into a single curve.
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Figure 5.2. Swarm Parameter Variation. Defender swarm parameters are var-
ied and the overall curve shape remains the same over the range of cases.

To determine whether the curve shapes would properly collapse, the position of the transition
from the first to second regime was determined from each specific line shape by performing
linear fits to the two branches in MATLAB and finding the intersection between the two lines.
Using these calculated points, each individual curve is normalized and plotted in Figure
5.3. These results demonstrate that the swarm data can collapse on one curve. However,
manually calculating the transition point yields no quantitative understanding of the data
and merely serves to demonstrate the consistent line shape.
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Figure 5.3. Manually Collapsed Curves. Curve points are manually calculated
and each curve individually adjusted to allow collapse. This confirms the
consistent curve shape over the range of cases.

5.2.2 Deriving the Functional Form
To determine functional forms, parameters were varied one at a time to determine the
overall effect each parameter had on the overall swarm fitness. By iteratively changing each
variable, scaling was used to satisfactorily collapse the data. This yields the functions

𝑌 =
𝑑

𝑣
(5.13)

𝑋 =
𝑁𝑎 𝑓 (𝑣, 𝑡𝑎)
𝑅𝑁𝑑

3
2

(5.14)
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where 𝑌 is the scaled kill time and 𝑋 is the scaled number of attackers 𝑁𝑎. The dependence
on velocity and characteristic acceleration time can be approximately captured by

𝑋 =
𝑁𝑎𝑒

−4𝑣
5 𝑒

𝑡𝑎
8

𝑅𝑁𝑑
3
2

(5.15)

The swarm is in regime one if 𝑋 < 1 and the second regime when 𝑋 > 1.

𝑋 can also be expressed as

𝑋 =
𝑁𝑎

𝑁𝑑,eff
(5.16)

which is the ratio of the attackers to the effective number of defenders 𝑁𝑑,eff = 𝑅𝑁𝑑
3
2 𝑒

4𝑣
5 𝑒

−𝑡𝑎
8 .

This result means that the defender swarm is effective when the number of defenders, scaled
with defender parameters, exceeds the number of attackers.

The defender swarm effectiveness decreases linearly with the number of attackers, in-
creases linearly with weapon range, increases non-linearly with number of defenders, and
increases exponentially with higher acceleration and velocity. This relatively simple yet
unintuitive result, containing different weighting factors and functional forms of each pa-
rameter, demonstrates the value of this method. Specifically, this form for 𝑁𝑑,eff gives an
explicit way to evaluate how improvements to the drone parameters correspond to changes
in 𝑁𝑑 (e.g., doubling 𝑁𝑑 is better than doubling 𝑅, since 𝑁𝑑 is raised to the power of 3/2).

These functional forms are then used to scale the results of Figure 5.2 as shown on Figure
5.4. This indicates a clear collapse of swarm behavior despite variation of drone parameters.
Therefore, this result can be used to assess swarm success based on swarm composition and
drone parameters.

37

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



Figure 5.4. Functional Form Curve Collapse. The curve is collapsed using the
generated functional forms.

5.3 Functional Form Evaluation
The creation of functional forms allows an assessment of swarm behavior given certain
swarm characteristics and drone parameters.

5.3.1 Strong Defender Win Assessment
Swarm parameters are selected so 𝑋 < 1, therefore it is expected this would fall in regime
one and would result in a defender win. The results are shown on Figure 5.5. After being
generated in Figure 5.5.(a), and the swarms colliding in Figure 5.5.(b), the defenders begin to
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overwhelm the attackers in Figure 5.5.(c). By Figure 5.5.(d) the defenders have completely
overwhelmed and nearly destroyed the attacking swarm. Therefore, this predicted case
matches the expectation of a strong defender win and supports the function validity in
strong defender win cases.

(a) (b)

(c) (d)

Figure 5.5. Predicted Strong Defender Win. Defenders overwhelm attackers
and the HVU is not at risk.

5.3.2 Weak Defender Win Assessment
Swarm parameters are selected so 𝑋 = 1 and results are shown on Figure 5.6. It is expected
this would result in a weak defender win. After being generated in Figure 5.6.(a), and
the swarms colliding in Figure 5.6.(b), the attackers have limited success evading the
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defenders in Figure 5.5.(c) with some attackers temporarily slipping past defenders. By
Figure 5.5.(d), the defenders have surrounded and destroyed most of the attacking swarm.
Despite the temporary setbacks, the defender swarm is ultimately successful and the HVU
faces minimal risk. This result is consistent with the expectation of a weak defender win.

(a) (b)

(c) (d)

Figure 5.6. Predicted Weak Defender Win. Defenders ultimately destroy at-
tackers with some attackers temporarily evading defenses. The HVU faces
some risk.

5.3.3 Attacker Win Assessment
Swarm parameters are selected so 𝑋 > 1 with results shown on Figure 5.5. It is expected
this would result in a regime two attacker win. After being generated in Figure 5.5.(a), and
the swarms colliding in Figure 5.5.(b), the attackers begin to overwhelm the defenders in
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Figure 5.5.(c). Attackers quickly bypass defenders en-route to the HVU. By Figure 5.5.(d),
the defenders have completely overwhelmed defenders and the HVU is at significant risk.

(a) (b)

(c) (d)

Figure 5.7. Predicted Attacker Win. Attackers overwhelm and bypass de-
fenders which places the HVU at significant risk.

5.4 Use For Mission Planners
The swarm effectiveness function allows a mission planner to assess and certify that a
potential swarm defense is sufficient and capable of defeating an adversarial drone swarm.
Crucially, this analysis also allows mission planners, likely facing resource and material
constraints, to ensure that a fielded drone swarm is not unnecessarily capable. Rather
than relying on trial-and-error or expensive live-fly exercises, this method allows mission

41

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



planners to expeditiously measure the relative effectiveness of various swarm compositions.
Unintuitive relationships between the various weights and costs of changing parameters and
swarm composition are also illuminated by this method.
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CHAPTER 6:
Conclusion and Outlook

6.1 Conclusion
This thesis evaluated existing swarm algorithms to determine the effect of algorithm and
parameter changes on swarm fitness. For changes in algorithm, the overall swarm behav-
ior could change, such as between Greedy and Global Targeting, or the algorithm could
cause incremental performance increases, such as between Smart and Intercept. Within an
algorithm, the overall behavior remained largely the same and parameter changes strongly
affected the fitness of the defending swarm. Therefore, functional forms were developed
which combine swarm and individual swarm parameters to determine defender swarm
success.

The swarm functional form is, therefore, a powerful tool which can be utilized by mission
planners to assess and ensure the capability of defensive drone swarms. By quantifying drone
swarm fitness, a mission planner is better able to ensure swarm performance is achieved.
The functional form method can also be extended beyond the simple cases presented here
to include drone swarms with an arbitrary number of parameters and with increasing levels
of complexity. Fundamentally, any rule-based physical system can be reduced to a non-
dimensional form which can be modeled using a similar methodology.

6.2 Outlook
Improvements of this method include increasing the number of drone parameters, the
complexity of the simulation, and the sophistication of swarm behaviors. Adding an extra
spatial dimension to model behaviors in three spatial dimensions could allow the creation
of more advanced swarm behaviors though preliminary analysis of higher-order spatial
simulations have not yielded significant differences in overall behavior.

More sophisticated defender behaviors can also be studied. For example, defenders attacking
in waves may reduce the ability of attackers to get behind the defending force, helping to
prevent inefficient tail-chases. Preliminary results from such a situation are shown in Figure
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6.1. In these simulations, the first half of the defending force is released at the beginning
of the simulation, and the second half is released when the first half begins engaging the
attackers. The two-wave tactics are outperformed by simple intercept with low numbers
of attackers, but a two-wave strategy outperforms intercept in high attacker cases. This
supports that the second defender wave prevents the overall swarm from being bypassed
and entering into tail-chases. The scaling behavior of crossover points could in principle be
described using Buckingham 𝜋 and scaling analysis.

Figure 6.1. Defender Wave Tactic. The wave tactic outperforms intercept for
high numbers of attackers, likely due to the defenders avoiding tail-chases.

Additional attacker behaviors might include attackers which actively or intelligently evade
defenders (rather than simply scattering) or attack defenders. Snapshots from a preliminary
simulation with intelligent attacker evasion behavior is shown in Figure 6.2. Here, the
attackers pursue a virtual HVU located behind the defender swarm. The attackers also
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maintain both a minimum and maximum distance to fellow attackers to remain in a coherent
swarm. When an attacker senses a defender in a preset range, the attacker changes behavior
and begins to accelerate away from the incoming defenders. This situation is similar to the
primary case study for this thesis (attacker scattering), but changes in the algorithm might
yield small or large changes to the scaling functions.

In Figure 6.2.(a), the swarms are generated and they reach each other by Figure 6.2.(b).
By Figure 6.2.(c), the defenders have flown into the attackers however the attackers begin
to actively evade and fly around the defenders. In Figure 6.2.(d), two discrete groups of
attackers have evaded the defenders and regrouped into a swarm which could imperil the
HVU.

The ability of attackers to evade defenders and regroup into a swarm represents complex
behavior which would affect defender effectiveness and the respective functional form.
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(a) (b)

(c) (d)

Figure 6.2. Attacker Evasion. Attackers bypass defenders and regroup after
the initial encounter.
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