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ABSTRACT

The Marine Corps’ Expeditionary Advanced Base Operations (EABO) concept
places small, distributed forces within a contested environment to achieve strategic
effects. However, current sustainment platforms and infrastructure lack the ability to
provide required support in the context of EABO. As such, the Marine Corps must
develop a novel resilient and robust distribution network capable of providing responsive
sustainment to forces conducting EABO. To solve this problem, we develop a two-stage
stochastic mixed integer linear program that seeks to minimize the cost of instantiating
and operating a sustainment network across a range of possible in-context scenarios.
Among the network’s constraints are demand, cost, capacity, risk, and supply
considerations. Of these constraints, demand introduces the most uncertainty.
Fluctuations in demand come from a variety of factors to include intensity of conflict,
attrition, and other combat dynamics. Through the explicit and judicious modeling of
such uncertainty, our model provides solutions that are robust to a wide range of demand
scenarios. By implementing our model in a notional operational scenario in the South
China Sea, we provide results and insights that ultimately assist the Marine Corps by
providing an analytical basis for determining an optimal network comprised of locations,
capacities, and prepositioning quantities for sustaining forces conducting EABO in the

western Pacific.
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Executive Summary

The United States Marine Corps’ operational concept, termed Expeditionary Advanced Base
Operations (EABO), was developed in response to increased enemy anti-access/area denial
capabilities in the western Pacific. EABO place friendly sensing, shooting, and sustaining
forces within an adversary’s targeting range in a smaller, more distributed fashion when
compared to conventional practices. Through a network of expeditionary advanced bases
(EABs), friendly forces achieve greater situational awareness, lethality, and impose a greater

cost upon the adversary while decreasing their own signature as targets.

Sustaining EABO, however, is difficult for two primary reasons. One shortcoming in the
Marine Corps’ ability to support EABO is that current resupply platforms, locations, and
routes are not capable of persisting in a contested environment. The assumption of all-
domain superiority that the United States has enjoyed in recent conflicts is eroded by its
adversaries’ advances in long-range precision fires. Moreover, the need to define a sustain-
ment network in the near-term, capable of supporting future EABO, is also complicated
by the fact that the demand across expeditionary advanced bases is unknown and variable.
Without knowledge of exact demand quantities, or even an underlying demand distribu-
tion, developing an optimal sustainment network is not easy. However, by considering a
range of possible conflict scenarios, logistics planners can better address the uncertainty of
the future. Furthermore, by exploring a host of potential prepositioning sites and network

architectures, planners can gain a better understanding of the optimal sustainment network.

Given the requirement to identify network locations and prepositioning quantities to satisfy
demand, we first model the problem as a basic minimum cost flow problem. From this
baseline model, we add extensions to incorporate various aspects of reality until we arrive
at the final two-stage stochastic mixed-integer linear program. Since planners will likely be
constrained by available resources when defining a sustainment network, the first extension
we consider is the ability to include or exclude certain nodes from the network. Another
aspect of reality that we consider is the fact that the future operating environment is unknown.
Major drivers in the uncertainty of future demand in EABO are geopolitical events, conflict
intensity, attrition and other combat dynamics. With the notion of uncertainty in mind,

we develop possible demand scenarios, each with a probability of being realized in the

XV
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future, to represent a variety of demand signals across EABs. Defining a sustainment
network capable of satisfying demand for every possible scenario is likely to be extremely
expensive, wasteful, or even infeasible. That said, the next extension we introduce is related
to logistical responsiveness and is termed Q% satisfaction. The aim of this extension is
to provide decision makers with a wide range of candidate networks that achieve varying
degrees of demand satisfaction based on the subset of scenarios for which each network is
optimized. In this extension, we first generate a power set of the possible demand scenarios
where each power set element is a different set of scenarios which we define to be active
scenarios. Then, for each element of the power set, our model produce a network solution
capable of satisfying demand for each of the current active scenarios. The sum of the current
active scenarios’ realization probabilities is that particular network’s QY% satisfaction, or
responsiveness. Those scenarios not in the current set of active scenarios are termed inactive
scenarios, and one of those scenarios will occur 1-Q% of the time in the future. At this
point in our modeling, we only optimize each network for the active scenarios, and as such,
we have no idea how well each network satisfies demand in the inactive scenarios. We refer
to the final extension as hedging which, through defined gap values, ensures a certain level
of demand satisfaction for the inactive scenarios. Allowing a decision maker to declare
their acceptable gap value guarantees complete demand satisfaction for the active scenarios

while also ensuring their desired demand satisfaction in the inactive scenarios.

Through decisions made in two stages, the model seeks to find the minimum expected cost
of instantiating and subsequently flowing supplies through the network to satisfy demand
across a range of possible scenarios. In the first stage, we make long-term decisions such
as which nodes to include or exclude from the network, as well as prepositioning quantities
at the nodes. These decisions, like determining where to construct a new facility, cannot
easily be undone once they are made. Furthermore, these decisions are made prior to the
demand being realized. Once a demand scenario is realized, the model makes second stage
decisions which are the optimal amounts of supplies to flow from node to node for the

demand scenario that has been realized.

We begin analysis by implementing the model in a toy scenario to showcase the model’s
functionality before introducing a notional operational scenario for which we conduct exper-
iments and what-if analysis. The model’s results provide decision makers with numerous

candidate networks, each optimized under certain conditions, and allow them to decide
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which network they deem best given their risk tolerance and desired level of responsive-
ness. We find that our model allows planners to consider a variety of possible demand
scenarios, locations, and routes for analysis, ultimately enabling decision makers to derive
actionable insights for developing a sustainment network in support of EABO. We also find
that when multiple demand scenarios are considered, risk-pooling takes effect. Specifically,
by holding back supplies at intermediate nodes, risk-pooling enables the network to pro-
vide more responsive support while simultaneously reducing waste. Furthermore, while our
model guarantees complete demand satisfaction in active scenarios, hedging in the inactive
scenarios affords decision makers the ability to guarantee a desired level of satisfaction in

those scenarios as well.

The success of the Marine Corps in the future operating environment is dependent upon
its ability to make the right decisions today to sustain its forces tomorrow. By utilizing the
proposed model, planners can determine prepositioning locations, quantities, and resupply
routes to best support the force conducting EABO across the competition continuum, with

minimum expected cost.

Xvii
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CHAPTER 1

Introduction

The future military operating environment of the western Pacific is characterized by enemy
long-range precision fires capable of denying regional access to the U.S. military and its
allies. Traditional forces and platforms that rely on their physical presence to ensure freedom
of navigation and power projection are placed at risk when in range of long-range precision
fires. In order to meet enduring strategic objectives despite new threats, the United States
Marine Corps (USMC) developed an operational strategy called Expeditionary Advanced
Base Operations (EABO). EABO place friendly sensing, shooting, and sustaining forces
within an adversary’s targeting range in a smaller, more distributed fashion when compared
to conventional practices. Through a network of expeditionary advanced bases, friendly
forces achieve greater situational awareness, lethality, and impose a greater cost upon the

adversary while decreasing their own signature as targets.

Sustaining EABO is challenging for several reasons. The distributed nature of Expeditionary
Advanced Bases (EABs) means that resupply platforms must disperse and traverse great
distances in and around contested environments. Being within an enemy’s Weapon Engage-
ment Zone (WEZ) places resupply platforms at extreme risk as they travel on air, land, or
sea to support forward units. Furthermore, uncertainty places a greater strain on supply
chain operations and requires a novel logistics network. Sources of uncertainty include:
demand uncertainty, personnel and equipment attrition, non-stationary demand locations,
and other combat dynamics. The aim of this thesis is to develop models and demonstrate
their implementations to ultimately assist Marine Corps planners in constructing a logis-
tics network capable of sustaining forces conducting EABO in the western Pacific, with

minimum expected cost.

1.1 Background
In 2019, General Berger, the 38th Commandant of the USMC, released the strategic direction
of the Marine Corps in his Commandant’s Planning Guidance. In the publication, General

Berger identifies the evolving environment of future conflicts and the necessary adjustments
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required of the Navy-Marine Corps team to remain competitive. In light of long-range
precision fires and ambitious territorial claims by the People’s Republic of China (PRC),
maintaining a forward presence in the western Pacific emerges as the chief concern and
requirement (United States Marine Corps [USMC] 2019).

The PRC’s long-range precision weapon systems, designed to deny regional access to
competitors and maintain sea control, threaten the U.S. military’s ability to protect its
interests and those of its allies. The stand-off distance generated by the PRC’s long-range
munitions affords them the ability to influence a region without physically being present.
Moreover, by employing land and sea-based fires such as anti-ship ballistic missiles, the
PRC is capable of targeting U.S. naval platforms and infrastructure thousands of miles from
their shores. The combination of their long-range sensing and shooting capabilities creates
an Anti-access/Area Denial (A2AD) environment. Traditional methods of power projection
and maneuver place U.S. forces tasked with pursuing strategic aims at extreme risk. Figure
1.1 depicts various operational missiles in the PRC’s arsenal that help create the A2AD
dilemma. The vast quantity of short-range ballistic missiles, capable of targeting forces
within the First Island Chain (FIC), poses a credible threat to friendly forces in a period
of conflict. As such, the Commandant calls for smaller and more “risk-worthy” surface
platforms to operate within the contested environment as to impose a greater asymmetric
cost upon the PRC for choosing to launch their missiles (USMC 2019).
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Figure 1.1. PRC missile threats and ranges. Source: CSIS (2021).

In addition to improving its strike capability, the PRC continues to assert territorial claims
that contradict those of other nations in and around the South China Sea (SCS). The
boundary of the PRC’s claimed territorial waters is shown in Figure 1.2. A quick glance
reveals the fact that PRC assertions overlap numerous countries’ boundaries declared by
the United Nations Convention on the Law of the Sea. PRC claims challenge the exclusive
economic zones and sovereignty of other nations and leave access to the global commons
at risk. Furthermore, traditional freedom of navigation operations, which place high-value
platforms within disputed waters, become increasingly precarious. Without the ability to

project power and influence in the FIC, many of the adversary’s claims go uncontested.
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Figure 1.2. Disputed territorial claims in the South China Sea. Source: Singh
(2019).

The Marine Corps’ response to remain competitive in the changing operating environment
is to persist forward as Stand-in Forces (SIF). SIF are defined as “low signature, mobile,
relatively simple to maintain and sustain forces designed to operate across the competition
continuum within a contested area as the leading edge of a maritime defense-in-depth in
order to intentionally disrupt the plans of a potential or actual adversary” (USMC 2021,
p.- 4). Instead of operating outside of the enemy’s weapon engagement zone, SIF conduct
operations well within the targeting range of enemy weapon systems. Emplacing low-
signature forces that are optimally task-organized to operate within an A2AD environment
disrupts the adversary’s strategy of “counter-intervention” directed against the U.S. and
allies. Since SIF are required to operate in a distributed manner to maintain their low
signature, the Commandant identified EABs as a means to support SIF. Support in this
context means that EABs will “host, secure, sustain, and maintain warriors and their weapons

systems on a more amorphous and difficult to target forward-basing infrastructure” (USMC

4
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2018, p. 27).

Operations that take place in and around EABs and in conjunction with SIF are EABO.
Through EABO, the Marine Corps ‘“creates a more resilient forward force posture that
circumvents the efforts and obviates the investments of aspiring peer competitors employing
long-range precision fires directed at dislodging U.S. forces dependent upon legacy bases,
fixed infrastructure, and large targetable platforms” (USMC 2018, p. 5). EABO bring three
primary capabilities to bear against adversaries: sensing, shooting, and sustainment. Sensing
conducted by SIF on the inside provides greater situational awareness, of the enemy and
environment, to outside forces with strategic assets. SIF on the EABs possess shooting
capabilities and utilize a host of weapons to employ against land, air, and seaborne threats
in the area of operations. Lastly, EABO sustainment includes support required beyond what
the host nation can provide. While foraging, water purification, and the use of host nation
vessels are an integral part of sustaining the force, weapons and vehicle parts, ordnance,
and other equipment that is not readily available in host nations needs to be planned for and
prepositioned in close proximity to SIF (USMC 2018).

1.2 Motivation

The motivation behind this thesis is the Marine Corps’ need to define an optimal (i.e. with
minimum expected cost) sustainment network capable of providing responsive logistics
to forces conducting EABO in light of the adversary’s increased capabilities. Traditional
methods of sustainment rely on large, vulnerable surface platforms, and infrastructure that

are required to operate outside the enemy’s weapon engagement zone for their own safety.

Currently, expeditionary operations are enabled by the Marine Corps Prepositioning pro-
gram, which “consists of afloat and ashore programs that provide Combatant Commanders
the equipment, supplies, and sustainment to support scalable, tailorable, Marine Air Ground
Task Force (MAGTF) to address crises and contingencies ranging from major combat to
steady state operations” (USMC 2013, ch. 1, p. 3). The two programs included in the over-
all Marine Corps Prepositioning program are the Maritime Prepositioning Force (MPF)
and the Marine Corps Prepositioning Program-Norway (MCPP-N). The MPF is organized
into two Maritime Prepositioning Ship Squadrons (MPSRONSs), as shown in Figure 1.3.
MPSRON 2 is located Diego Garcia and consists of one BOB HOPE Class T-AKR, United
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States Naval Ship (USNS) SEAY; one WATSON Class T-AKR, USNS SISLER; two BOBO
Class T-AKs, USNS BUTTON and USNS LOPEZ; one modified SHUGHART Class T-
AK, USNS STOCKHAM,; and one Expeditionary Transfer Dock (ESD) Class ship, USNS
MONTFORD POINT. (Prepos handbook). MPSRON 3 is located in Guam and consists of
one BOB HOPE Class T-AKR, USNS PILILAAU; one WATSON Class T-AKR, USNS
DAHL; three BOBO Class T-AKs, USNS BOBO, USNS WILLIAMS, and USNS LUM-
MUS; one LEWIS & CLARK Class T-AKE, USNS SACAGAWEA, and one ESD, USNS
JOHN GLENN (USMC 2015). While the combined effects of each squadron’s ships are
capable of providing a wide range of support to deployed MAGTTFs, their lack of defensive
capabilities and large signature relegate them to operating far beyond the point of demand

for their supplies in a contested environment.

MPSRON 3|GUAM
DAHL PILILAAU

LUMMUS WILLIAMS

il

BOBO SACAGAWEA

GLENN

O

0O

MPSRON 2 |DIEGO GARCIA

SISLER STOCKHAM ~ LOPEZ ~ MONTFORD
B POINT

SEAY LEWIS & CLARK BUTTON

Figure 1.3. Location and composition of two active MPSRONs. Source:
(USMC 2015).

The other piece of the Marine Corps’ overall prepositioning effort is MCPP-N, which is
a program responsible for the storage, maintenance, and prepositioning of equipment and
supplies for a MAGTF in caves and other storage facilities in Norway (USMC 2015). The
stockpiling of large quantities of commodities and materiel at such places is commonly

referred to as an “iron mountain.” While there are some advantages to theater-level supply
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methods, their targetability, rigid nature, and poor responsiveness make them obsolete for
EABO in an A2AD environment. The EABO Handbook states that “moving commodities
from distribution hubs, be they afloat or ashore, across contested seas directly to EABs
supporting distributed naval forces, is the crux of the new logistics challenge” (USMC
2018, p. 62). Furthermore, the Marine Corps’ Force Design 2030 calls for planning teams to
conduct research to “develop, resource and implement a service-directed Global Positioning
Network as an integrated afloat/ashore capability enabling day-to-day campaigning, rapid
response to crisis and contingency, and deterrence” (USMC 2020). As opposed to the high
value target that is the iron mountain ashore, a more robust and distributed logistics network
that leverages multiple prepositioning sites, or “iron hills,” and greater flexibility avoids
single point of failure facilities (USMC 2018). The Marine Corps’ lack of low-signature
afloat and ashore prepositioning assets in the western Pacific capable of providing responsive

support to EABO in a contested environment necessitates a change in logistics operations.

1.3 Mathematical Approach

We represent the logistics supply chain as a network composed of nodes and arcs. Nodes are
comprised of supply, demand, and transshipment locations within the theater of operations.
Supply nodes can be thought of as major military installations and other sources of supply far
beyond a contested environment. Demand nodes are the forward deployed units at EAB that
lie within the contested environment. Transshipment nodes are the intermediate locations
between the supply and demand nodes. These locations typically lie just beyond the enemy’s
WEZ or contested environment. The arcs, or edges, of the network represent resupply lanes
between two nodes. Our goal is to find the minimum expected cost of instantiating and
subsequently flowing supplies through the network to satisfy demand across a range of

possible scenarios.

Given the uncertainty of demand location and quantity, we model the problem as a two-
stage stochastic Mixed Integer Linear Program (MILP). In the first stage, we make long-
term decisions such as facility location and prepositioning quantities. These decisions,
like determining where to construct a new facility, cannot easily be undone once they are
made. Furthermore, these decisions are made prior to the demand being realized. Once

the demand is realized, the second stage decisions are the optimal amounts of supplies to
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flow from node to node. We start the analysis by formulating a two-stage stochastic MILP
as a standard minimum-cost flow model and defining it as the base model. From there,
we iteratively extend the base model to incorporate more realistic factors and account for
a range of possible scenarios in an A2AD environment. Among the network’s constraints
are demand, cost, risk, capacity, and supply considerations. Of these constraints, demand
is the most uncertain. The unpredictability in demand comes from a variety of factors
including intensity of conflict, attrition, and other combat dynamics. Through the explicit
and judicious modeling of such uncertainty, we aim to provide solutions that are robust to

a wide range of demand scenarios.

1.4 Organization

Chapter II of this thesis is a literature review that covers logistics concepts as well as
previous work related to our research. In Chapter 111, the basic minimum-cost flow model is
introduced before various extensions to the model are discussed. Chapter IV introduces both
a toy scenario, as well as a notional operational scenario, which both provide the necessary
inputs for subsequent analysis and experimentation. Finally, Chapter V addresses findings,

recommendations, and suggestions for future studies on this topic.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU



CHAPTER 2:

| iterature Review

This chapter is organized into two sections: logistics operations and related work. Section
2.1 covers logistics concepts and practices from both military and business contexts that we
incorporate in our model. Section 2.2 is a review of previous work related to our research.

We draw commonalities as well as distinctions between our work and that of others.

2.1 Logistics Operations
The following subsections provide background information for logistics concepts and prac-

tices that are implemented in our model.

2.1.1 Responsiveness

Marine Corps Warfighting Publication (MCWP) 4-1 details seven principles of logistics
operations: responsiveness, simplicity, flexibility, economy, attainability, sustainability, and
survivability. These principles serve as guidelines during planning to ensure operational
success. MCWP 4-1 highlights the importance of the principle of responsiveness in stating
that “among the logistics principles, responsiveness is the keystone. All other principles
become irrelevant if logistics support does not support the commander’s concept of oper-
ations” (USMC 1999, Ch 1., p. 6). Providing responsive support ensures that operations
are not hindered by a lack of support, and instead are enhanced by the support provided.
Logistics units can provide more responsive support to consumers in several ways: preposi-
tion supplies in caches on land or afloat, geographically place themselves closer to forward
forces, utilize a “push” replenishment method, or employ different transportation platforms.
Ideally, supplies are prepositioned at the demand locations for immediate distribution as
needed, but for a variety of reasons including storage security, capacity, and spoilage, this
solution is typically untenable. By considering the different logistics principles in our opti-
mization techniques, we are able to provide insights into selecting optimal prepositioning

locations and distribution routes to construct a more responsive logistics network.
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2.1.2 Demand Uncertainty

While responsiveness focuses on having “the right stuff at the right time,” logistics operations
must also ensure that “the right amount of stuft” is provided to the consumer. Describing the
challenge of perfectly meeting a consumer’s demand, Kress states “the uncertainty in the
theater of operations and the prevailing friction in the battlefield affect the extent at which
responsiveness can be attained.” (Kress 2016, p. 71) Prior to executing an operation, logistics
planners consult with operational planners to devise a support plan. The logistics planners
use information such as anticipated conflict intensity, duration, and scheme of maneuver to
estimate the amount of supplies they should be prepared to deliver. These are, however, only
estimates and the uncertainty of combat leads to scenarios in which the demand for supplies
sometimes exceeds the amount available. While supporting units can sometimes fall short
of perfectly meeting demand, there also exists the risk of providing too much supplies.
Kress refers to these threats as under-responsiveness and over-responsiveness, respectively.
A common approach to mitigating the uncertainty of combat is to design a more flexible
logistics network that is able to provide timely support when needed. We incorporate the
stochastic nature of demand in Chapter 3 by considering a wide range of potential demand

scenarios.

2.1.3 Risk Pooling

In an effort to mitigate the impacts of demand variability in logistics operations, supply
chain managers implement a concept known as risk pooling, or inventory pooling. Risk
pooling is realized through “using centralized inventory instead of decentralized inventory
to take advantage of the fact that if demand is higher than average at some retailers, it
is likely to be lower than average at others” (Du 2007, lecture). By holding the retailers’
demand variance at a central location, a lower expected cost of satisfying demand across
all retailers’ is achieved (Eppen 1979). In supply chain networks where risk pooling is
not practiced, large variations in demand often result in some sort of additional cost to
retailers. Specifically, when forecasted demand exceeds actual demand, retailers typically
incur an inventory or holding fee to house the residual supply. Conversely, when forecasted
demand is less than actual demand, retailers are unable to satisfy their consumers resulting
in unrealized profit. We introduce risk pooling into our model in Chapter 3 by allowing for

supplies to be prepositioned at intermediate nodes. In doing so, we are able to reduce the
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impacts of demand variability and uncertainty at the demand locations.

2.1.4 Hedging

When demand is uncertain, it can be very costly to ensure complete demand satisfaction
regardless of future demand realization. Supply chain disruptions and extreme demand cases
prevent the complete satisfaction of all possible consumer demand scenarios in a network.
As such, consumers may relax their demand satisfaction requirement to a level that is
“good enough.” That is, a consumer understands that their demand cannot be fully met in
every possible future scenario and is willing to accept demand satisfaction Q% of the time.
Doing so necessarily implies that in the remaining 1-Q% of time, no level of satisfaction is
guaranteed. By reducing their requirement to only Q% of scenarios, the consumer assumes
risk in the 1-Q% scenarios. Ideally, the 1-Q% of scenarios are rarely, if ever, realized, but in
the event that such scenarios emerge, the cost of satisfying demand can be quite expensive.
Moreover, since the supply network is not designed to accommodate these rare demand
scenarios that occur 1-Q% of the time, satisfying their demand may even be infeasible. To
manage the impact of the risk assumed, many consumers opt to hedge against the 1-Q%.
Van Mieghem describes hedging in an operational context as a subset of risk management
that “refers to the adjustment of strategies and the structuring of resources and processes to
proactively reduce, if not eliminate, future risk exposure” (Van Mieghem 2011, p. 6). We

introduce hedging into our model in Chapter 3.

2.2 Related Work

With the goal of determining optimal prepositioning locations under uncertainty in the
first stage of our two-stage modeling approach, we are essentially dealing with a facility
location problem. Snyder (2006) conducts a review of facility location under uncertainty
and illuminates various approaches to problems like ours as well as some of their accompa-
nying limitations. Snyder discusses stochastic optimization and highlights two techniques
to account for random parameters. He notes that describing randomness in a parameter
such as demand can be done either through a probability distribution or through the use of
discrete scenarios as proposed by Sheppard (1974). Since we are unaware of the underlying
probability distribution for future demand in EABO, we opt for the latter and construct

discrete scenarios that each have an accompanying probability of being realized. Snyder
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addresses two primary drawbacks in our selected scenario approach noting that generating
scenarios and associated probabilities is not easy, and that computational restrictions limit
the range of future scenarios that can be evaluated. He goes on to explain that the scenario
approach does lend itself to more tractable models and that ““it has the advantage of allowing
parameters to be statistically dependent, which is often not practical when parameters are
described by continuous probability distributions” (Snyder 2006, p. 4).

Sheppard (1974) proposes a discrete scenario approach to accounting for uncertainty in
facility location problems. Sheppard suggests that forecasting a range of possible outcomes
and their assigned probabilities provides the input necessary to derive policies, or strategies,
to satisfy demand. The policy that results in the smallest expected cost would be selected
as the optimal strategy. We leverage Sheppard’s work by calculating an expected cost of
instantiating and operating a network for a discrete set of future demand scenarios, however,
we depart from his research by making a distinction between active and inactive scenarios

as discussed in Chapter 3.

Daskin et al. (2005) incorporate Sheppard’s findings in their Stochastic Location Model
with Risk Pooling, which aims to find solutions that minimize the expected total cost of
defining and operating a supply chain network across possible future scenarios. Included
in the total cost are costs associated with locating distribution centers, inventory costs,
and transportation costs. Rather than optimizing their network for demand following a
probability distribution, they allow the modeler to define a discrete set of possible scenarios
with different demand quantities as proposed by Sheppard. While their research is closely
aligned with ours, we improve upon their work by providing insight into the ability of the

network to satisfy demand in scenarios for which it is not optimized.

Gardner (2015) develops the Asset Allocation Optimization Model which is a two-stage
stochastic mixed-integer linear program that optimizes humanitarian assistance disaster
relief efforts before and after a disaster. In the first stage, the model determines optimal
locations for relief assets near a disaster-affected area. In the second stage, the model
determines how to route aircraft in support relief efforts. Although Gardner also uses a
scenario-based approach to account for uncertainty, her model’s objective minimizes the
expected number of deaths across scenarios, whereas our model minimizes expected cost.

Her work also differs from ours in that she applies design of experiments in her model as
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another way of incorporating uncertainty and variability, and she successfully demonstrates

that design of experiments can be used in optimization models.

The fog of war leads to uncertainty in all aspects of combat. Enemy actions, weather, and
chance all play a role in generating unforeseen circumstances on the battlefield. Ng (2003)
approaches the reality of uncertainty in military operations by developing a modeling
framework that determines the optimal deployment of transportation assets and supplies
at the operational level, with possible interdiction by enemy forces. Ng implements a two-
level, multiple time period scenario-based stochastic model that uses a combination of
optimization, scenario-based simulation, and statistical analysis. By optimizing a network
for a set of reference demand scenarios, Ng’s model aims to define a deployment strategy
that can satisfy a range of arbitrary demand scenarios with a predefined responsiveness
probability. Our work is similar to Ng’s in that we also use a two-stage approach to optimize
our network for certain scenarios, but rather than determining how many scenarios should be
included in our reference set to achieve responsiveness in arbitrary scenarios, we generate a
power set of all possible future scenarios and determine the optimal network for each subset
in the power set. Our approach affords the decision maker more say in determining demand
scenarios for which the network is optimized, as previously discussed. Furthermore, rather
than modeling time using a multiple-period approach like Ng, we handle time implicitly as
described in Chapter 3.

In many supply chain operations, materiel is prepositioned closer to the demand locations
to enable greater responsiveness. Kasdan (2020) studies this practice using the Navy’s Bulk
Fuel Cache (BFC) concept. Specifically, Kasdan investigates the BFC concept as an alter-
native to current methods for sustaining forward deployed forces in contested environments
when conducting distributed maritime operations or expeditionary advanced operations.
With the First and Second Island Chains as bounds for his analysis, Kasdan’s model seeks
to minimize the distance between BFCs and operational Navy and Marine Corps units. He
incorporates uncertainty in the form of stochastic demand and dynamic locations. Through
modeling such uncertainty, he determines optimal BFC locations, quantities, and storage
capacities for sustaining the operational force. Our research varies from Kasdan’s in that
we optimize a network with static facility location in mind. Ultimately, Kasdan’s work, like

ours, informs future planning and acquisition efforts.
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CHAPTER 3:
Methodology

The purpose of a logistics network is to flow supplies from some source location(s) to
consumers who demand these resources. Figure 3.1 depicts an example of a logistics net-
work comprised of source nodes, intermediate nodes, and destination nodes. As shown,
the source nodes represent strategic facilities and depots where vast quantities of resources
are housed. These facilities are typically located at major bases and installations beyond
the reach of enemy weapons systems. The intermediate nodes represent facilities and units
within the theater of operations that are emplaced for the duration of an operation. Further-
more, the intermediate nodes, as the name implies, serve as an intermediary between the
major sources of supply and the ultimate consumer. For that reason, they are much closer
to the combat units than are the source nodes. Finally, the destination nodes represent the
combat units that actually consume the supplies. Each type of node represents a different
level of logistics: activity concerning source nodes is considered strategic logistics, units
and facilities involved with intermediate nodes perform operational logistics, and the flow
of goods to the combat unit constitutes tactical logistics. This thesis focuses on operational
logistics by considering the units and facilities represented by intermediate nodes. Specifi-
cally, we consider facility location, prepositioning of supplies, and route determination for

sustaining forces conducting EABO, at the lowest possible cost, in the western Pacific.

Combat Units
Theater Facilities and Units
Strategic Facilities i

and Depots " Rear Forwa%
- T W

V}ritér'}iiéli'at»e>>1Vodes

Source Nodes

Destination Nodes

Figure 3.1. Basic logistics network composed of source nodes, intermediate
nodes, and destination nodes. Source: Kress (2016).
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This chapter first introduces a basic minimum-cost (min-cost) network flow model. From
there, we introduce additional layers of complexity by incorporating the possibility of
including or excluding certain nodes from the network as well as other concepts such as
prepositioning, demand uncertainty, risk pooling, and hedging. While the aspect of time is
not explicitly represented in our models, we do incorporate time implicitly by using data on
a “per time unit” basis. For example, we consider the cost of flowing supplies per month,

and the capacity an arc can support per month.

3.1 Basic Min-Cost Flow Model

A basic min-cost flow problem is composed of nodes and arcs, which together form a
network. Each of the nodes in a basic min-cost flow network has a supply quantity, which
may be non-positive or non-negative, that is associated with the type of node. A node with
a positive supply quantity is classified as a supply node, whereas a node with a negative
supply quantity is classified as a demand node. Nodes associated with a supply quantity of
zero are intermediate nodes. Network arcs connect pairs of nodes and serve as a medium
to flow supplies between nodes. Each arc has an associated cost and capacity. An arc’s cost
represents the cost of flowing one unit of supplies from the arc’s originating node to its
ending node. An arc’s capacity represents the maximum amount of supplies that can flow on
that arc between two nodes. The network’s costs and capacities are not time dependent. The
objective in a min-cost flow problem is to minimize the cost of flowing supplies throughout
the network to satisfy all demand. Consider the network in Figure 3.2. The network is
comprised of five nodes, A, B, C, D and E, as well as the arcs that connects them. As an
example, the arc between nodes B and E is referred to as arc (B, E) and its associated cost
and capacity are $5 and 10 units, respectively. Furthermore, since node A has a positive
supply quantity it is classified as a supply node, and since node E has a negative supply
quantity it is classified as a demand node. Note that since nodes B, C, and D all have supply
quantities of zero, they are classified as intermediate nodes. The objective is to minimize the
cost of flowing 10 units of supplies from node A to node E to satisfy E’s demand, subject

to the network’s flow balance and capacity constraints.
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¢jj = cost

u; j = capacity

b; = supply quantity b;

Figure 3.2. Basic min-cost flow problem network. Nodes have supply or de-
mand values, and arcs have cost and capacity values.

The min-cost flow problem depicted by the network in Figure 3.2 is formulated as follows.

Indices and Sets

nenN Network nodes
(i,j) € A Allarcs

Data

cij (i,j) €A Flow cost of arc (i, j)
u;; (i,j) € A Flow capacity of arc (i, j)
b, neN Supply at node n. Negative values represent demand
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Decision Variables
x;j (i,j) € A Units of supplies flowed on arc (i, )

Formulation
min CiiXi i 3.1
Xi,j Z LY -
(i,/)eA
subject to
> X ). xia<bs VneN (3.2)
JjEN:(n,j)eEA ieN:(i,n)eA
Xij < Ujj V(i,j) e A (3.3)
X 20 V(i,j) € A (3.4)

The objective (3.1) represents the cost of flowing supplies throughout the network to meet

demand as a function of the decision variables x; ;.

Constraints (3.2) are flow-balance constraints that ensure the flow out of a node n must be
less than the flow into node »n plus/minus any supply or demand modifications. For example,
the flow-balance constraint in the context of node A in Figure 3.2 ensures that the amount
of supplies that flows out of node A must be less than the amount that flows into node A (0)
plus node A’s supply (15). Conversely, the same constraint for node E ensures that the flow

out of node E (0) minus the flow in has to be less than or equal to node E’s demand (-10).

Constraints (3.3) limit the amount of supplies that can flow along each arc in the network.
For arc (A, C) in the network in Figure 3.2, the constraint restricts the arc flow, x4 ¢, to the

arc’s capacity which is less than or equal to 10 units.
Lastly, constraints (3.4) ensure that all arc flow values are non-negative.

Looking at Figure 3.2 we can see that there are three paths from A to E. ABE has a total
cost of 105, ACE has a total cost of 25, and ADE has a total cost of 15. Without any
capacity constraints, the optimal solution routes 10 units of supplies through ADE. Once

we incorporate arc capacities, however, we see that ADE is constrained by DE which can
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only flow 5 units of supplies. This issue forces us to flow a portion of the demand through
the next cheapest path ACE.

Solving the problem by inspection results in optimal flows of:
xap=0, xac=5 xap=35xpe=0, xcg=5  xpgp=5

As previously mentioned, we route 5 units of supplies via ADE and the remaining 5 units
via ACE. Multiplying each of the flow values by their respective arcs’ per unit flow cost
yields an objective value of 200. Our objective function value tells us that a cost of 200 is
optimal in terms of satisfying the demand at node E. In other words, no other flow routing

combination results in a lower cost.

3.2 Min-Cost Flow Model with Extensions

To capture various aspects of reality, we incorporate extensions to the basic model.

In Sections 3.2.1-3.2.3, we introduce our extensions to the base model. We begin the
following sections by first introducing each extension conceptually before describing the
associated notation and changes to the base model formulation. By presenting the model in
pieces, the evolution from base model formulation to final formulation with extensions is

easier to understand.

3.2.1 Choosing Nodes and Handling Uncertain Demand

The first extension we introduce is the ability to include or exclude certain nodes when
constructing an optimal sustainment network. Our model considers a wide range of pos-
sible supply, demand, and intermediate nodes, and, depending on possible future demand
scenarios, it may be suboptimal to include all possible nodes in the network. Specifically,
budgetary constraints will likely limit the number of nodes we can include in the network.
We define a binary variable, y,, as a decision variable to determine whether or not node
n is included in the network. Terminal, or demand, nodes where supplies are shipped to
are always included in the network, so they are assigned a y, value of 1. The supply and
intermediate nodes, however, can be either O or 1, depending on whether or not it is optimal

to include them in the network.
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For each node we include in the network there is an associated cost of setting up and
maintaining the node. Infrastructure, manpower, and security costs are some of the factors
that must be considered when determining whether or not to include a node in the network.
We assume that we have a total budget, H, and that each node has a cost, A, to include
in the network. As an example, suppose we have a budget, H, of $100, and suppose each
potential node has a cost, A, of $20 to include in the network. Under these conditions the

maximum number of nodes that we could include in the network is 5.

We allow supplies to be prepositioned at various nodes throughout the network. From an
operational perspective, prepositioning allows the logistics network to provide more timely
support. By centralizing supplies, the network can respond to demand variability across
different nodes more efficiently. The per-unit cost of prepositioning supplies at node 7 is
captured by 7y,, and due to capacity constraints at the nodes, the maximum amount of
supplies that can be prepositioned at node n is V,,. Prepositioning supplies at supply and

intermediate nodes promotes the concept of risk pooling which is discussed in Section 2.1.3.

The next extension aims to model uncertain demand quantities. Since we do not know
what the demand will be in future operations, we define a finite set, F, of possible demand
scenarios that includes the amount of supplies required at each node in the network. For
each scenario f € F we define the demand at node n to be d, y. Moreover, exactly one
demand scenario will be realized in the future. Scenario f € F occurs with probability p f,

and cumulatively, the scenario probabilities sum to 1, 3 rep pr = 1.

Next, we introduce the flow variables x; ; » which represent the amount of supplies shipped
from node i to node j if scenario f is realized. In addition to determining which nodes
to include in the network, y,, and how much supplies to preposition at each node, s,, we
must also determine the optimal amount of supplies to flow along the (i, j) arcs within the
network for each scenario f. In order to do so, we break our decision making process into
two stages. Given the long-term nature of establishing a node in the network and dedicating
resources to preposition supplies at that node, we determine y, and s, prior to any one of
the demand scenarios being realized. These are our first stage decisions and once they are
made, they cannot be easily, or cheaply, undone. Next are the second stage decisions in
which we determine the x; ;  quantities. Only after scenario f is realized can we determine

the optimal x; ; r values. It is important to note that after we make the first stage decisions,
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the y, and s, values remain constant regardless of which demand scenario is realized. The
second stage decisions, however, depend on which scenario is realized, hence the f subscript

presence in second stage decisions and absence in first stage decisions.

Consider the toy example provided in Figure 3.3. Here, we define three demand scenarios
which we refer to as Scenario 1, Scenario 2, and Scenario 3, respectively. Each scenario, f,
has a probability, p s, of being realized in the future, and since their probabilities sum to 1
they represent all possible demand scenarios. For now, we will ignore the probabilities and
assume that Scenario 1 will be realized with certainty. If we look solely at Scenario 1, we
see the demand at EAB 1 is 100 units and the demand at EAB 2 is 20 units. In the context of
our base min-cost flow model, the objective is to find the minimum cost of sending supplies
from Okinawa to each of the EAB nodes to satisfy each of their demands. Without any
constraints on the amount we can preposition, we would simply place 100 units at EAB 1
and 20 units at EAB 2 to satisfy their demands without having to flow any supplies from
Okinawa. While this strategy is optimal for Scenario 1, a quick glance at the nodes’ demands
in Scenarios 2 and 3 will reveal the fact that the same strategy results in either too much
or too little supplies being sent to each of the EABs in those scenarios. To account for the
demand variability across scenarios, we can leverage the idea of risk pooling, described in
2.1.3, and preposition most of the supplies at Okinawa so that when one of the 3 scenarios
occurs, we can flow the required amounts to the two EABs. If we preposition 20 units of
supplies at EAB 2 and 100 units at Okinawa, then we can optimally support any demand
scenario that is realized. Our model makes first and second stage decisions that satisfy the

demand in all three scenarios.
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Scenario 1: probability = .20 Scenario 2: probability = .35 Scenario 3: probability = 0.45

d =100 d=20 d=20 d =100 d=0 d=120

Figure 3.3. Toy example of demand scenarios. Included are demand quantities
for each demand node across different scenarios as well as the scenarios’
respective probability of being realized.

The following formulation includes all of the extensions mentioned to this point. With this
extension, our model chooses nodes and flow values that satisfy 100% of demand across
all possible scenarios at the lowest cost. In the context of Figure 3.3, our model generates a

solution capable of satisfying 100% of demand across scenarios 1, 2, and 3.

Indices and Sets

teT Terminal nodes

meM Non-terminal nodes

ne N=TUM All nodes

(i,j)e A All arcs

feF Set of all possible future scenarios
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¢ij (,j) €A Flow cost of arc (i, j)
u; (i,j)eA Flow capacity of arc (i, j)
dy, s ne N, f € F Demand at node n in scenario f

Pf feF Probability scenario f occurs, > rep pr = 1

Y neN Per-unit cost to preposition at node n

hm meM Resources required to include node m in network
Va neN Max amount we can preposition at node n

bigM Big M trick to turn on/off constraints

H Resource budget to constrain nodes in the network

Decision Variables

xijr (i,j) €A, feF Flowonarc (i, j) in scenario f

Yn neN Binary variable set to 1 if node n is in network
Sn neN Amount of supplies to preposition at node n
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Formulation

IR
(i,j)eA feF

+ Z YnSn

neN
subject to
yr =1 VteT
> hngm < H
meM
Sy < Vnyn VneN
> Xing < bigMy, VneN,feF
iEN:(i,n)eA
Z Xm,j.f — Z Xim,f < Sm VmeM,feF
JEN:(m,j)eA ieN:(i,m)eA
Z Xt,j’f— Z .xl"t,fssl‘_dt’f VIET,fEF
JEN:(t,j)EA ieN:(i,t)eA
Xij.f < Ui V(i,j)e A, feF
Xijr =20 V(i,j)e A, feF
s, >0 VneN

Objective function components:

(3.5)

(3.6)

(3.7
(3.8)

(3.9
(3.10)

(3.11)

(3.12)

(3.13)
(3.14)
(3.15)

Component (3.5) includes each scenario’s probability of occurring to capture the cost of

the expected flow across all scenarios.

Component (3.6) represents the total cost of prepositioning supplies at each node in the

network.

Constraints:

Constraints (3.7) ensure that all terminal nodes are in the network. Since y, is a binary

decision variable, explicitly assigning each terminal node a value of one ensures that that

node is included in the network.
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Constraint (3.8) controls how many nodes are in the network. Available USMC resources
will limit the number of nodes.

Constraints (3.9) ensure that the amount of prepositioned supplies at node n is zero if that
node is not in the network and is limited by max-supply capacity of the node otherwise.
Constraints (3.10) allow flow into any node n to be turned on or off. If on, there is no
constraint since bigM is practically infinity. These constraints apply for all scenarios f € F.
Controlling flow out of a node is captured in other constraints.

Constraints (3.11) ensure flow-balance for non-terminal nodes such as supply or intermedi-
ate nodes. Like Constraints (3.2) in the basic model, flow out of a node, m, minus flow into
the same node cannot exceed the node’s supply. These constraints apply for all scenarios
fEF.

Constraints (3.12) ensure flow-balance for terminal nodes, ¢t € T. Since this model allows
nodes to possess supply as well as demand, flow out of a node, ¢, minus flow into the same
node now has to satisfy the difference between the node’s supply and demand requirements.
These constraints apply for all scenarios f € F.

Constraints (3.13) ensure flow along an arc does not exceed that arc’s capacity. These con-
straints apply for all scenarios f € F.

Constraints (3.14) ensure flow on an arc is non-negative. These constraints apply for all
scenarios f € F.

Constraints (3.15) prevent the prepositioning of negative supplies at nodes in the network.

3.2.2 QYo Satisfaction

The model in Section 3.2.1 takes a conservative approach to satisfying demand across
potential scenarios by prepositioning, and subsequently flowing, enough supplies to satisfy
demand across all possible demand scenarios. While this strategy meets the objective
of demand satisfaction, it typically results in either extremely high operating costs, or
worse, infeasibility due to arc and node capacity constraints. To develop a more practical
solution, we extend the base model to introduce the idea of Q% satisfaction. We define this
satisfaction percentage to be the decision maker’s required level of demand satisfaction, or
more generally, rate of responsiveness. For example, if a decision maker recognizes that

it is infeasible to strictly satisfy all demand across all possible scenarios, they may relax
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their required level of responsiveness to 90%. In that case, Q% would be equal to 90%.
That is, the decision maker now requires demand to only be fully satisfied 90% of the time.
In practice, we implement Q-satisfaction by solving the model for all minimal subsets of
scenarios with a cumulative probability that is equal to or exceeds Q, and choose the solution

that minimizes expected cost.

Specifically, for any value of Q, we first define a power set that is composed of all subsets
of possible demand scenarios with accumulated probabilities that equal or exceed Q. Each
element of the power set is a list of scenarios, which we define as the active scenarios, F,.
A list of all elements of the power set and the corresponding active scenarios appears, for
example, in Table 3.1. Each active scenario list has a corresponding probability associated
with it, which is the accumulated probabilities of the active scenarios. We denote the
scenarios not in the active scenario list as inactive scenarios. We modify the model such
that we only require complete demand satisfaction in the active scenarios. The only Q%
values we solve for are the Q% values associated with each set of active scenarios in the
power set. For example, in Table 3.1, we only need to consider the seven Q% values in the

last column generated by the different active scenario lists.

Table 3.1. Q% scenario table for Figure 3.3.

Active Scenarios Inactive Scenarios Q%
{Scenario 1} {Scenario 2, Scenario 3} | 20%
{Scenario 2} {Scenario 1, Scenario 3} | 35%
{Scenario 3} {Scenario 1, Scenario 2} | 45%
{Scenario 1, Scenario 2} {Scenario 3} 55%
{Scenario 1, Scenario 3} {Scenario 2} 65%
{Scenario 2, Scenario 3} {Scenario 1} 80%
{Scenario 1, Scenario 2, Scenario 3} | {} 100%

The Q% associated with each subset of active scenarios is equal to the proportion of time
that any one of the scenarios, f, in a given subset, F,, is realized in a future operational

setting. For example, the proportion of time that either Scenario 1 or Scenario 2 is realized
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is equal to 55% as indicated by the fourth row in Table 3.1.

We incorporate the possibility of various scenarios being realized by instantiating and
solving a new model for each element of the power set. That is, the model returns a network
with selected nodes as well as prepositioning and arc flow quantities that can fully satisfy
any of the scenarios in the current set of active scenarios. For each Q% value in Table 3.1,
we solve a separate instance of the model that generates a different solution and different
cost, for a total of seven solutions. Again, consider row four of Table 3.1. When Scenario 1
and Scenario 2 are active, we instantiate and solve a new model that generates a solution that
can satisfy the demands at EAB 1 and EAB 2, given in Figure 3.3, regardless of whether

Scenario 1 or Scenario 2 is realized.

Since the model requires that the demand across all scenarios in a given set of active
scenarios is satisfied, any set of active scenarios whose Q% is greater than or equal to the

decision maker’s desired Q% necessarily meets the required level of satisfaction.

Modifying the model from 3.2.1 to incorporate Q% Satisfaction requires only minor mod-
ification. We introduce active scenarios and modify constraints 3.12 to now only hold for

active scenarios.

Indices and Sets

Same as in 3.2.1

feF,CF Set of active scenarios

Data
Same as 3.2.1

Decision Variables
Same as 3.2.1
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Formulation
Same as 3.2.1 except constraint 3.12 now only applies to active scenarios. It is modified to

the following:

D xpg— DL Xug<si—diyg VieT,feF, (3.16)
JEN:(t,j)€A iEN:(i,H)eA

Objective Function Components:

Same as 3.2.1.

Constraints:

Constraints (3.16) now ensure flow-balance for terminal nodes in active scenarios only.
Since this model allows nodes to possess supply as well as demand, flow out of a node
minus flow into the same node now has to satisfy the difference between the node’s supply

and demand requirements. These constraints apply for scenarios f € F,,.

3.2.3 Hedging

While we require demand to be fully satisfied in the active scenarios, there is no degree
of satisfaction guaranteed in the complementary inactive scenarios, F. Since we do not
impose any demand satisfaction constraints on the inactive scenarios, there exists the risk
of catastrophically failing to meet demand in the event that one of the inactive scenarios is
realized. To encourage our model to satisfy demand in the inactive scenarios we introduce

the concept of hedging as defined in Section 2.1.4.

We incorporate hedging in our model through the use of what we define as an allowable
demand satisfaction gap, or simply, gap. The gap is a percentage of demand across terminal
nodes that the decision maker is willing to leave unsatisfied in inactive scenarios. By allowing
a demand satisfaction gap at demand nodes in inactive scenarios, our model ensures that in
the event an inactive scenario is realized, the amount of supply delivered to each demand
node is at least (1-gap)9 of the node’s demand. In the context of our running example,

when Scenario 1 and Scenario 2 are active Scenario 3 is inactive. Moreover, while the
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model ensures complete satisfaction at EAB 1 and EAB 2 for Scenarios 1 and 2, we also
guarantee at least (1-gap)% satisfaction at EAB 1 and EAB 2 in the event that the inactive
Scenario 3 is realized. By including hedging we limit the impact of an inactive scenario
being realized. When the gap = 0, we must satisfy demand completely across all scenarios,
as was done in 3.2.1. Conversely, when the gap = 1.0, we satisfy active scenarios with no

guarantees on the amount of demand satisfied in the inactive scenarios, as was done in 3.2.2.

The following formulation with hedging is similar to 3.2.2, but we now include a flow
balance constraint similar to 3.16 for inactive scenarios. This new constraint includes the

gap variable.

Indices and Sets

Same as in 3.2.2
feF, Set of active future scenarios for current combination
fEF; Set of inactive future scenarios for current combination

feF=F,UF; Setof all possible future scenarios

Data

Same as in 3.2.2
gap Percentage of demand across terminal nodes that the decision maker is

willing to leave unsatisfied in inactive scenarios

Decision Variables

Same as in 3.2.2

Formulation
Same as in 3.2.2 constraints with the addition of the following which enforces hedging in

the inactive scenarios:
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D xmjr— D, xus<si—(l-gap)dy VeeT,feF. (317)
JEN:(t,j)€A ieN:(i,t)eA

Objective function components:

Same as in 3.2.2.

Constraints:
Constraint (3.17) enforces hedging by requiring at least (1-gap)% of demand to be satisfied
for each terminal node in inactive scenarios. This constraint applies for all inactive scenarios

3 Cc
in F.

3.2.4 Complete Model

For completeness, we present the complete model in its entirety below.

Indices and Sets

teT Terminal nodes

meM Non-terminal nodes

ne N=TUM Allnodes

(i,j)e A All arcs

fEeF, Set of active future scenarios for current combination
fEeF; Set of inactive future scenarios for current combination

feF=F,UF Setof all possible future scenarios
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¢ij (,j) €A Flow cost of arc (i, j)
u; (i,j)eA Flow capacity of arc (i, j)
dy, s ne N, f € F Demand at node n in scenario f

Pf feF Probability scenario f occurs, > rep pr = 1

Y neN Per-unit cost to preposition at node n

hm meM Resources required to include node m in network

Va neN Max amount we can preposition at node n

bigM Big M trick to turn on/off constraints

H Resource budget to constrain nodes in the network

gap Percentage of demand across terminal nodes that the decision maker is

willing to leave unsatisfied in inactive scenarios

Decision Variables

xij.r (i,j) €A, f€F Flowonarc (i, j) in scenario f

Yn nenN Binary variable set to 1 if node 7 is in network
Sn neN Amount of supplies to preposition at node n
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Formulation

min Z Ci,jzpfxi,j,f
Xi, j

(i,j)eA feF

+ Z?’nsn

nenN

subject to

yr =1

Z By < H

meM

Sn < Vayy

Z Xin,r < bigMy,

Z Xim, f < Sm
Z Xtj.f — Z Xitf < 8t — d,,f

iEN:(i,n)€eA

D, mis-

JEN:(m,j)eA

JEN:(t,j)€EA

Z Xtjf — Z Xigf <8¢ — (1 —gap)d, s

JEN:(t,j)€EA

Xijf < Ui

Xij.f >0

s, >0

3.2.5 Assumptions and Limitations

(3.18)
(3.19)
VieT (3.20)
(3.21)
VneN (3.22)

VneN,feF (323)
VmeM,feF (3.24)
VteT,feF, (3.25
VieT,feF, (3.26)

V(i,j) €A, feF

(3.27)
V(i,j)€EA f€eF

(3.28)
Vne N (3.29)

This model is constructed under a couple of key assumptions. First, we assume that the EAB

locations are available and that they are stationary. By definition, EABs are expeditionary

and forces conducting EABO will most likely conduct operations for a limited amount

of time before displacing to another EAB. Not to mention, afloat EABs may never be

completely stationary. We also assume that arc flows are not susceptible to any form of
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interdiction or attrition. This assumption is optimistic and not indicative of reality. The
threat of enemy interdiction exists, especially in the conflict phase of operations. Attrition

due to natural disasters or spoilage is also very much a concern.

Our model also has some limitations. Our primary limitation is that our model is commodity
and connector agnostic, meaning we don’t specify classes of supply transported or connec-
tors used. Section 3.2.6 addresses these limitations, but we do not perform any analysis on
specific classes of supply or connectors. Another limitation of our model is that time is
not handled explicitly. Instead, we aggregate demand and arc flow values across a specified
time period and ensure that the total flow into a node satisfies the node’s total demand for
that time period. Although we choose to construct our model and conduct analysis under
these assumptions and limitations, we propose methods in which they can be challenged

and addressed in Chapter 5.

3.2.6 Multi-commodity Model

The models presented previously handle only a single commodity. In this section we present
a multi-commodity model capable of minimizing the expected cost of instantiating and op-
erating a network throughout which multiple commodities flow. This formulation is similar
to the model presented in Section 3.2.4 with minor changes. We introduce a commodity
index k that applies to a number of parameters and decision variables. We slightly modify

the objective function and constraints to now hold for all commodities k € K.

Although we do not conduct experiments with this model, we present it here to highlight

the possibility of extending our model to incorporate more than one commodity.
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Indices and Sets

teT Terminal nodes

meM Non-terminal nodes

ne N=TUM  Allnodes

(i,j)e A All arcs

keK Set of commodities (e.g. food, water, fuel, ammunition)
feF, Set of active future scenarios for current combination
fEeFS Set of inactive future scenarios for current combination

feF=F,UF; Setof all possible future scenarios

Data
criy (@, J)€eA Commodity k per-unit flow cost on arc (i, j)
ue;; (i,j) €A Commodity k flow capacity on arc (i, j)
diny ne€N,feF Demandfor commodity k at node n in scenario f
P feF Probability scenario f occurs, 2. rep pr =1
Yin nenN Per-unit cost to preposition commodity k at node n
hm meM Resources required to include node m in network
Vin nenN Max amount of commodity k we can preposition at node n
bigM Big M trick to turn on/off constraints
H Resource budget to constrain nodes in the network
gap Percentage of demand across terminal nodes that the decision maker is

willing to leave unsatisfied in inactive scenarios

Decision Variables
xkijr k€K,(i,j) €A, f e F Commodity k flow on arc (i, j) in scenario f

Yn neN Binary variable set to 1 if node » is in network
Skn keK,neN Amount of commodity k to preposition at node n
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Formulation

Xki, j

+ Z Z YnSk,n

keK neN

subject to

yr =1

Z hmym < H

meM

Skn < Vinn

Z Xkin f < bigMyn

ieN:(i,n)eA

Z Xem.j.f —

JEN:(m,j)eA

Z Xkt jf ~ Z Xkt f < Skt~ di,f

JEN:(t,j)EA

Z Xkt jof ~ Z Xkigf < Ska = (1= gapi)dis.g

JEN:(t,j)EA

Xiijf < Wkij

Xkij.f =0

Sk 20

Objective function:

min Z Z Ck,i,jzpka,i,j,f

keK (i,j)eA feF

Z Xkjim,f < Skm

(3.30)

(3.31)

VieT (3.32)
(3.33)

Vke K,ne N
(3.34)

VkeK,neN,feF

(3.35)
Vke KmeM,feF

(3.36)
VkeK,teT,fekF,

(3.37)
VkeK,teT,feF;

(3.38)
VkeK,(i,j)e A, feF
(3.39)
VkeK,(i,j)e A, feF
(3.40)

Vke K,neN
(3.41)
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The objective function is now weighted by the cost of flowing commodity k on arc i, j, as
shown in 3.30.

Constraints:

Constraints 3.34-3.41 are the same as constraints 3.22-3.29 except they now hold for each
k € K.

36

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU



CHAPTER 4
Analysis and Results

In this chapter, we present implementation results for a variety of scenarios. First we discuss
some technical details concerning the implementations. For the first scenario, we revisit the
toy example in Figure 3.3 and analyze various network configurations to highlight trade-
offs for a decision maker to consider. We then present a notional operational scenario to
analyze the model and its outputs on a larger scale. The terms solution and network are used

interchangeably throughout this chapter as they both refer to the model’s output.

4.1 Implementation Details

We implement our model using a variety of tools. We begin by organizing our data in
a Microsoft Excel workbook. Each of the workbook’s worksheets contains information,
provided by the user, that is fed into the model. Tables 4.1-4.3 detail the nomenclature
contained within each worksheet of the input file. The first column lists the worksheet
terms, the second column lists how each term is represented in Section 3.2.4, and the third

column lists the description of each term.
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Table 4.1. Description of scenario nodes worksheet.

Scenario_Nodes Worksheet

Term Model Representation | Description

NODE N Column of all nodes in the network

DEMAND x dy, r Column of demand quantities for demand
scenario x

RESOURCE_REQ hp Resources required to include each node
in network

PREPOS_PUC Yn Per-unit cost of prepositioning supplies at
each node

MAX_PREPOS Vi Maximum amount of supplies that can be
prepositioned at each node n

Table 4.2. Description of scenario arcs worksheet.

Scenario_Arcs Worksheet

Term Model Representation | Description

FROM i Node of origin, i, in arc (i, j)

TO J Destination node, j, in arc (i, j)

COST Ci,j Cost of traveling on arc from node i to
node j

CAPACITY u; Maximum amount of supplies that can be

transported on arc (i, j)

38

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU




Table 4.3. Description of scenario data worksheet.

Scenario_Data Worksheet

Term Model Representation | Description
SCENARIOS F Column of demand scenario names
PROBS Py Column of probabilities that correspond

to the probability that each scenario will
be realized

BUDGET H Resource budget that limits the number of
nodes in network

GAPS Column of allowable gap values used in

trade-off analysis

After organizing the inputs in an Excel workbook, we read in the Excel inputs using Python’s
Pandas package. Once the data are read in, we implement the optimization model using
Python’s Pyomo package. Lastly, we leverage the COIN-OR Branch and Cut solver to solve
the model. All experiments are conducted on a laptop with Intel(R) Core(TM) 17-1065G7
processor running at 1.3 GHz, 16.0 GB RAM, and Windows 10 operating system.

4.2 Toy Model Revisited

Recall the example from chapter 3 shown again in Figure 4.1. In this figure, there are
3 scenarios, each with a probability of being realized. Our goal is to minimize the cost
of defining a network and its expected flow values. Since the network consists only of 1
supply node and 2 demand nodes, there is no need to determine which nodes will be in
the network, assuming supplies can only be prepositioned at Okinawa. In other words, our
stage 1 decisions are already made, and all nodes will be included in the network. We do,

however, still need to make stage 2 decisions.
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Scenario 1: probability = .20 Scenario 2: probability = .35 Scenario 3: probability = 0.45

d =100 d=20 d=20 d =100 d=0 d=120

Figure 4.1. Toy example of demand scenarios. Included are demand quantities
for each demand node across different scenarios as well as the scenarios’
respective probability of being realized.

4.2.1 No Prepositioning at Terminal Nodes

In the first case for analysis, we assume all arc flow per-unit costs are 10, arc capacities
are 150, the per-unit prepositioning cost is 15, but that prepositioning is not allowed at
the terminal nodes. That is, all supplies resides in Okinawa and must be routed to the
terminal nodes. Additionally, we do not incorporate hedging, meaning we set the allowable
gap equal to 1, so there is no guarantee on the model’s ability to satisfy demand in the
inactive scenarios; we only require complete satisfaction in the active scenarios. The demand
scenarios’ respective probability of occurrence and demand values appear in Figure 4.1.
We instantiate and solve a new (3.2.2) model for each subset of active scenarios in Table
3.1. After solving each of the seven model instances, we plot their respective objective
function values against the various QY% satisfaction values shown in Figure 4.2. Since
prepositioning is not allowed at the terminal nodes in this test case, the objective values are
comprised of the cost of prepositioning supplies at Okinawa plus the cost of the expected
arc flows. Furthermore, since each of the scenarios has a total demand of 120 units, the cost
of prepositioning supplies at Okinawa is constant across all scenarios, and as a result, the
objective values are driven primarily by the cost of the expected arc flows. As expected,
we see that it costs more to satisfy more demand. When Q% is equal to 100, meaning all

scenarios are active, we see the highest cost. This makes sense because when all scenarios
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are active, we require the demand across all scenarios to be satisfied, resulting in the greatest
total flow values.

Demand Satisfaction & Cost Trade-off

3000 4

2500

2000

Cost

1500 4

1000 ~

500 A

0 T T T T T T T T T T
4] 10 20 30 40 30 60 70 80 90 100

% of Time Demand is Fully Satisfied

Figure 4.2. Plot showing the trade-off between complete demand satisfaction
in active scenarios and cost. No prepositioning allowed.

We observe a linear relationship between Q% values and costs in Figure 4.2. We attribute
the linearity observed to the network’s unique structure. Specifically, there are 120 units
of supplies prepositioned and 120 units of supplies shipped in all three scenarios. Since
the flow cost along each arc in Figure 4.1 is identical and our gap is 1, the Q% values
map directly to total demand satisfied. Following this logic, as Q% increases, total demand
satisfied increases, which means total flow increases, which ultimately leads to increased

costs. This relationship is modeled as:
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cost = (units prepositioned)*(prepositioning cost) + Q*(amount flowed in active

scenarios)*(flow cost)

Assuming scenarios 2 and 3 are active with the data from Figure 4.1, the total cost is:

cost = 120%15 + 0.8%120*10 = 2760

Next, we consider the network’s ability to satisfy demand in the inactive scenarios by
enforcing various gap quantities. In the example above, we set the gap equal to 1.0, meaning
there is no requirement to satisfy any demand in the inactive scenarios. We now consider
gaps of 0, 0.2, 0.4, and 1.0 as shown in Figure 4.3. Note that when the gap value is 0.0, as
indicated by the blue horizontal line, the decision maker requires all demand to be satisfied
in all scenarios - active and inactive. In other words, a gap of 0.0 in the inactive scenarios
is the same as all scenarios being active which is why the cost for any network on that line

is the same cost as the network associated with a Q% of 100.
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Demand Satisfaction & Cost Trade-off

3000
2500
2000
+—
uw
]
]
1500 4
1000 +
— Gap =0.0
500 J Gap = 0.2
— Gap =0.4
— Gap =1.0
0 T T T T T T T

T T T
] 10 20 30 40 50 60 70 80 90 100
% of Time Demand is Fully Satisfied

Figure 4.3. Plot showing the trade-off between demand satisfaction, cost,
and gap. No prepositioning allowed.

In Figure 4.3 we observe, once again, a linear relationship between Q% values and cost for
each gap value due to the network’s unique structure. Note that the jump between the first
points of the red and green lines is due to the jump in gap values. When we set the gap
equal to 1.0, we observe the same green line as in Figure 4.2. The new relationship can be
modeled as:

cost = (units prepositioned)*(prepositioning cost) + Q*(amount flowed in active

scenarios)*( flow cost) + (1-gap)*(1-Q)*(amount flow in inactive scenarios)*(flow cost)

The total cost is now composed of prepositioning costs, active scenario flow costs, as well

as inactive scenario flow costs. Moreover, we observe in Figure 4.3 that as we reduce the
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gap value, and require more demand to be satisfied in inactive scenarios, the overall cost

increases.

4.2.2 Expected Demand Prepositioning at Terminal Nodes

In the previous section, prepositioning was not allowed at the terminal nodes. In this section,
the maximum amount of supplies that can be prepositioned at each terminal node is that
node’s expected demand across scenarios. Specifically, the maximum amount of supplies
allowed to be prepositioned at EAB 1 is 27 units while the maximum allowed at EAB 2 is
93. After instantiating and solving the model for each of the seven Q% values, we get the
resultant plot in Figure 4.4. At this point in the analysis, there are still 120 units of demand

across all three scenarios.

Demand Satisfaction & Cost Trade-off

3000

2500

2000

Cost

1500 +

1000 +

500 4

0 T T T T T T T T T T
0 10 20 30 40 30 60 70 80 90 100

% of Time Demand is Fully Satisfied

Figure 4.4. Plot showing the trade-off between demand satisfaction and cost.
In this case, the maximum amount of supplies that can be prepositioned the
terminal nodes is the expected demand across scenarios.
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We now observe points that lie off of the lower envelope curve. We refer to this lower
envelope curve as the Pareto efficiency curve, or efficient frontier. Note that in Figure 4.2
the set of all points makes up the efficiency curve. Efficiency curves are typically generated
and analyzed in multi-objective problems such as ours; we aim to minimize the expected
cost of satisfying as much demand as possible. Each point, therefore, is a tuple (Q, ¢) where
Q represents the probability that the demand is fully satisfied and ¢ represents the cost of
instantiating and operating the network. A (Q, ¢) is on the efficient frontier if, for any other
point (Q’, ¢’) such that Q" > Q, ¢’ > c. The set of points on an efficient frontier are said
to be Pareto optimal since we cannot improve Q% without incurring a higher cost, and
likewise, we cannot achieve a lower cost without sacrificing responsiveness. Any points not
on the efficient frontier represent inefficient networks, because there exist other candidate
networks that achieve greater Q% values at lower costs. As such, we say that these networks
are dominated by those on the efficiency curve. In other words, there are networks that lie
on the efficiency curve that can satisfy more demand at a cheaper cost than the networks
not on the efficiency curve.

To illustrate this notion, consider the first two points from the left in Figure 4.4. We present

their decision variable values in Table 4.4.

Table 4.4. Decision variable values for toy model scenario.

Network | Q% | Active Soki. | SEAB1 | SEAB2 | Xoki.,EAB1 | Xoki.,Ea2 | Obj Val
Scenario
1 20 1 73 27 20 73 0 1946
2 35 2 7 20 93 0 7 1824.5

The first point, corresponding to a candidate logistic network, represents the case where
Scenario 1 is active, resulting in a Q% value of 20%. The cost, shown in Table 4.4, associated
with prepositioning and shipping supplies through this network is 1946, whereas the cost
associated with the second point is 1824.5. Although the second point, or network generated
when Scenario 2 is active, has a greater Q%, it achieves a lower cost by prepositioning more
supplies at the EABs and shipping less supplies in the network. Due to the prepositioning
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limits defined for this example, a total of 73 units of supplies are shipped from Okinawa
to the EABs in Scenario 1, whereas 7 units are shipped to the EABs in Scenario 2. The
fact that the first point, or network, only satisfies demand 20% of the time at a higher cost
than the second point means that it is an inefficient network and should not be considered
as a viable solution. Upon further inspection, we find that the three points that lie off of the
efficiency curve are all networks in which Scenario 1 is active. The first point, when Q%
is 20%, represents the network solution for the case when Scenario 1 is active. The second
point, when Q% is 55%, represents the network solution for the case when Scenarios 1 and
2 are active. Lastly, the third point in Figure 4.4, when Q% is 65%, represents the network
solution for the case when Scenarios 1 and 3 are active. Since Scenarios 2 and 3 have
relatively similar demands at the EABs, a network that satisfies one of these scenarios can
satisfy the other for little added cost as shown in Figure 4.4. We observe that an increase
in Q% from 35%, when Scenario 2 is active, to 80%, when Scenarios 2 and 3 are active,
comes at a minor increase in cost, whereas including Scenario 1 to achieve a Q% of 100%
is significantly more expensive. For example, prepositioning the maximum allowable (93)
units of supplies at EAB 2 can satisfy 77.5% of Scenario 2 demand and 77.5% of Scenario 3
demand while the same strategy only satisfies 16.67% of demand in Scenario 1. Satisfying
the remaining demand in Scenarios 2 and 3 comes at a much cheaper cost than satisfying

the remaining 83.33% of demand in Scenario 1.

Next, we examine the model’s ability to satisfy demand in inactive scenarios by analyzing

the cost-demand satisfaction trade-off for various gap values. Figure 4.5 captures the results.
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Demand Satisfaction & Cost Trade-off
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Figure 4.5. Plot showing the trade-off between demand satisfaction and cost
for different gap values. The maximum amount of supplies that can be prepo-
sitioned the terminal nodes is the expected demand across scenarios.

Setting the gap equal to 1.0 results in the same plot as shown in Figure 4.4. Each point
represents a different network produced by the model. As previously discussed, any point
that does not lie on one of the efficiency curves is an inefficient network since there exists
at least one other network that satisfies demand more often at an equal or cheaper cost.
For each QY% value, we see an increasing cost associated with decreasing gaps. That is, as
the gap value decreases, we require more demand to be satisfied in the inactive scenarios,

which results in greater flow values and ultimately greater costs.

We interpret the results from Figure 4.5 from the decision maker’s standpoint as follows.
First, we assume the decision maker cares only about selecting a network that is optimized to

satisfy demand in active scenarios, and that they are unconcerned with the network’s ability
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to satisfy demand in the event that an inactive scenario is realized. Under this assumption,
they most likely turn their attention to the green line representing a set of networks with
a gap value of 1.0. Furthermore, the decision maker would only consider the candidate
networks that lie on the efficiency curve for reasons discussed previously. The 4 candidate

networks QY% and cost are shown in Table 4.5.

Table 4.5. Candidate network solutions.

Network | Q% | Active Scenario(s) | Obj Val
1 35% 2 1824.5
2 45% 3 1921.5
3 80% 2,3 2016.0
4 100% 1,2,3 2800.0

By looking at Table 4.5 and Figure 4.5, a reasonable network selected by the decision
maker is network 3 due to its drastic improvement in Q% over network 2 coupled with
only a marginal cost increase. While satisfying demand 100% of the time, which network 4
guarantees, is appealing, it may not be worth the significant cost increase. Furthermore, it
is clear that Scenario 1 is problematic. We observe that any time Scenario 1 is included as
an active scenario, the resultant network solution is inefficient. This finding indicates that
the sustainment network should be optimized for Scenarios 2 and 3, and that the decision
maker should accept the risk associated with the relatively low percent of time that Scenario

1 is realized.

4.2.3 Unlimited Prepositioning at Terminal Nodes

Next, we remove prepositioning capacities and allow an infinite amount of supplies to be
prepositioned at each of the nodes in the network. Since the demand across each scenario
is equal, the first three points in Figure 4.6 have the same cost. We observe that this plot is
nearly identical to Figure 4.4 with the exception of the first three points in which only one
scenario is active for each. This finding is attributed to the fact that once we begin including

multiple demand scenarios risk pooling takes effect. That is, even though an infinite amount
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of supplies can be prepositioned at the terminal nodes, it is typically more efficient to pool
supplies at supply or intermediate nodes.

Demand Satisfaction & Cost Trade-off
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Figure 4.6. Plot showing the trade-off between demand satisfaction, cost,
and gap. No prepositioning limit at terminal nodes.

Table 4.6 provides the decision variable values of the networks associated with the first three
solution points in Figure 4.6 along the efficiency curve. Note that since prepositioning is
not limited at the terminal nodes, the optimal strategy, given this example’s cost parameters
and gap value, is to preposition a node’s entire demand at that node. Under this strategy,
no supplies are prepositioned at Okinawa and no supplies are shipped from Okinawa to
either EAB. Moreover, the cost associated with each network is composed solely of the
cost to preposition supplies at each of the EABs. The first and second stage decisions are
combined in Table 4.6 since the only scenario that can be realized for each network is the

active scenario associated with a given Q% meaning there is only one flow value associated
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with each arc. In other examples, the tables are split into first stage decisions and second

stage decisions.

Table 4.6. Decision variable values for candidate network solutions.

Network | Q% | Active Soki. | SEAB1 | SEAB2 | XokiEAB | XokiEA2 | Obj Val
Scenario
1 20 1 0 100 20 0 0 1800
2 35 2 0 20 100 0 0 1800
3 45 3 0 0 120 0 0 1800

The remaining solution points in Figure 4.6, however, have a different prepositioning strat-
egy. Now, when multiple scenarios are active, we observe risk pooling. Since the demand
across EABs varies by scenario, it is no longer optimal to preposition a node’s demand for
a single scenario at that node. For example, if Scenarios 1 and 2 are active, and the EAB
demands from Scenario 1 are set as the prepositioned supply values, then when Scenario
2 is realized there will be an excess of 80 units of supply at EAB 1 and a deficit of 80
units of supply at EAB 2. Under risk pooling, the optimal strategy is to preposition a node’s
minimum demand across scenarios at that node and to preposition the remaining supply
at Okinawa. Once a scenario is realized, the required amount of supply can be shipped
from Okinawa to the appropriate EAB. Now that multiple scenarios are active, there are
different flow values in the network depending on which scenario is realized. We break the
solution into two tables. Table 4.7 provides the first stage decision variable values of the
fourth solution point from Figure 4.6 when Scenarios 1 and 2 are active. Table 4.8 shows
the second stage decision variable values of the fourth solution point from Figure 4.6 when

Scenarios 1 and 2 are active.
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Table 4.7. First stage decision variable values for candidate network.

Network | Q% | Active soki. | SEaB1 | SEaB2 | Obj Val
Scenario
4 55 1,2 80 20 20 2240

The risk pooling effect is evident as only 20 units of supply are prepositioned at each
EAB even though there is no prepositioning limit. The remaining supply is prepositioned at
Okinawa. Once a scenario is realized, the required supplies are shipped to the appropriate

EAB to meet demand according to the flow values in Table 4.8.

Table 4.8. Second stage decision variable values for candidate network.

Realized | xori EAB1 | XOki..EAB2
Scenario

1 80 0

2 0 80

Next, we examine the model’s ability to satisfy demand in inactive scenarios by analyzing
the cost-demand satisfaction trade-off for various gap values under limitless prepositioning.
The results in Figure 4.7 are nearly identical to those in Figure 4.5. Again, we attribute this
finding to risk pooling as it is suboptimal to preposition excess supply at terminal nodes
when considering multiple demand scenarios. Although we allow for an infinite amount of
supplies to be prepositioned at the EABs, our model never prepositions more than necessary
to satisfy the minimum possible demand at an EAB. The remaining demand variability is
prepositioned at nodes further away from the demand nodes in order to provide better

responsiveness.
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Figure 4.7. Plot showing the trade-off between demand satisfaction, cost,
and gap. No prepositioning limit at terminal nodes.

4.3 Operational Scenario

In this section we introduce a notional operational scenario using the Naval Postgraduate
School Joint Campaign Analysis Global War 2045 scenario (Kline 2022). The scenario
is summarized as follows. The year is 2045 and tensions are rising in the SCS. Taiwan’s
president recently called for the declaration of complete independence from China to which
China responded with a close blockade. While the U.S. military and Taiwan view this as an
act of war, China argues that Taiwan is a Chinese territory and that they have the right to
act as they deem appropriate. As a result of the blockade, the U.S. Navy begins providing
flags and escorts to merchant ships heading toward Taiwanese ports. Meanwhile, the U.S.
military also continues to increase the frequency and scale of exercises with Philippine

and Indonesian armies. One of the exercises involves coalition forces placing land-based
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anti-ship missiles along various access points to the SCS. China threatens to occupy the
Indonesian island of Natuna Besar if coalition forces continue to arm locations in the FIC.
Tensions reach an all time high as a series of attacks take place in the SCS. A U.S.-flagged
tanker ship is struck by an underwater explosion while approaching Kaohsiung. One week
later, a Chinese deep-sea exploration ship is sunk just north of Natuna Besar. Following the
attack on the Chinese ship, China sinks a Vietnamese patrol boat using a land-based missile
from Woody Island in the Paracels. At this time, China reasserts its threat of invading
Natuna Besar and embarks the Chinese 1st Marine Brigade at Zhanjiang, Guangdong on
the South China amphibious flotilla.

Using this notional operational scenario, we construct five demand scenarios to be used as
input in our model. Each demand scenario is unique and contains different demand loca-
tions and quantities as depicted in Table 4.9. Included in the table are the scenarios and
their respective probabilities of being realized. The task is to define an optimal sustainment
network to support the possible demand generated by friendly forces conducting EABO
across EABs. Figure 4.8 displays all possible nodes and arcs that can be included in the
optimal sustainment network. Hawaii is not shown, but there are three arcs coming from
the right side of the figure that connect Hawaii to other nodes in the network. Green pins
represent supply and intermediate nodes. Red pins represent EABs with varying demand
across scenarios. The results produced by the model provide decision makers with informa-
tion to aid in the determination of which nodes to include in the network as prepositioning
sites, prepositioning quantities at different nodes, and arc flow values between nodes in the

network.
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Table 4.9. Demand scenario data.

SCENARIO (f) DEMAND_1 | DEMAND_2 | DEMAND_3 | DEMAND_4 | DEMAND_5
PROBABILITY (py) 0.35 0.22 0.05 0.21 0.17
NODE (n) dnDEMAND, | AnDEMAND, | AnDEMAND; | An.DEMAND, | dn.DEMAND;
Singapore 0 0 0 0 0
Cam Ranh Bay 0 0 0 0 0
Manila 0 0 0 0 0
Cebu 0 0 0 0 0
Yokosuka 0 0 0 0 0
Okinawa 0 0 0 0 0
Zuoying 0 0 0 0 0
Pattaya 0 0 0 0 0
Palau 0 0 0 0 0
Sasebo 0 0 0 0 0
Darwin 0 0 0 0 0
Guam 0 0 0 0 0
Hawaii 0 0 0 0 0
Zamboanga 0 0 0 0 0
EABI1 25 10 15 10 10
EAB2 10 25 15 0 25
EAB3 0 0 0 15 0
EAB4 25 15 0 50 25
EAB5 10 35 200 0 125
EAB6 10 15 315 50 125
EAB7 100 0 200 0 150
EABS 100 15 300 50 150
EAB9 15 0 325 15 150
EAB10 0 35 300 50 150
EABI11 0 15 0 15 15
EAB12 50 15 0 50 0
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Figure 4.8. All possible nodes and arcs in consideration when determining
optimal sustainment network.

In addition to the information contained in Table 4.9, we provide more scenario input data.
In this example, we limit the number of intermediate and supply nodes that can be included
in the network by enforcing a budget. This resembles reality because there typically exists
some financial constraints that limit the amount of nodes you can establish in a sustainment
network. We simplify the problem and say the cost to include each intermediate or supply
node is one. We then set a budget of eight, so the maximum number of intermediate and
supply nodes allowed in each candidate network is eight. Furthermore, we select five gap
values to use in our analysis. Those gap values are: 0.0, 0.20, 0.35, 0.50, 1.0. Of note, the
cost to flow supplies on each arc is proportional to the arc’s distance. We present more
details on the parameters associated with each node and arc, which are also required as

input, in Tables A.2 and A.1, respectively.
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The power set generated by the five demand scenarios contains 31 elements. Crossing the
power set with the five gap values results in 155 model instances. The 12 possible EAB
nodes, 14 possible supply nodes, and 49 arcs, equates to 297 decision variables, 26 of which
are binary, and 815 constraints for each model instance. It takes roughly 30 seconds to solve

all 155 instances.

4.3.1 Operational Scenario Assumptions

In addition to the modeling assumptions stated in 3.2.5, there are assumptions associated
with the operational scenario. For the purposes of our analysis, we picked locations in
and around the SCS as potential EABs, assuming they are accessible to U.S. forces. In
reality, special permissions and authorities must be negotiated by the United States and
host nations to occupy foreign territory. Another assumption we make is that EABs cannot
conduct lateral resupply. That is, each EAB is purely a demand node and cannot be used as
an intermediate node for supplying another EAB. This is a pessimistic assumption because
when it is removed or relaxed, and lateral resupply is permitted, we expect to see a more

efficient network.

4.3.2 Base Case Results

In this section, we produce results for the notional scenario and showcase them in the
demand satisfaction and cost trade-off plot shown in Figure 4.9. Given the number of
possible nodes, arcs, demand scenarios, and gaps, we solve 155 different model instances.
Recall that each of the points in the plot represents a solved model instance, or candidate
logistic network. That is, each point contains stage one decision values, or prepositioning
locations and quantities, as well as stage two decision values, or arc flows for each scenario.
The optimal prepositioning locations and quantities for a model instance are shown in Table
4.10.
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Table 4.10. Partial stage one decision variable values.

NODE (n) PREPOS AMOUNT (s,)
Cam Ranh Bay 100
Cebu 100
Darwin 950
EAB1 15
EAB10 15
EABI11 15
EABI12 15
EAB2 15
EAB3 15
EAB4 15
EABS 15
EAB6 15
EAB7 15
EABS 15
EAB9 15
Manila 100
Pattaya 100
Singapore 100
Zamboanga 100
Zuoying 10

Given the amount of supplies prepositioned at Darwin, it appears to be a critical node in
the network. Figure 4.9 is interpreted in the same manner as the trade-off plots produced
in Section 4.2. We remove all points not on the Pareto frontiers for simplicity. A decision
maker analyzes the plot by first drawing their attention to the Pareto frontiers associated with
different gap values. From there, the analyst conducts a cost-benefit analysis to determine
how much they are willing to pay to achieve a certain Q%, or responsiveness. Lastly, they
determine how much they wish to hedge in the inactive scenarios. For example, a gap of

0.0, shown in blue, ensures complete demand satisfaction in the inactive scenarios, but it
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comes at a much greater cost than a gap of 0.2, shown in orange, which guarantees 80%
demand satisfaction in the inactive scenarios. As expected, we observe that as the gap value

decreases, the cost increases since more demand satisfaction is required in the inactive

scenarios.
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Figure 4.9. Demand satisfaction and cost trade-off plot for five gap values.

To further illustrate this thought process, imagine a decision maker wants to achieve a Q%
of at least 80%. There are three elements of the power set whose accumulated probabilities

sum to at least 80% and satisfy the decision maker’s requirement as shown in Table 4.11.
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Table 4.11. Scenario combinations with at least 80% responsiveness.

QY% | Active Scenarios Inactive Scenarios
83 | {DEMAND_1, DEMAND_2, {DEMAND_5}
DEMAND_3, DEMAND_4}
95 | {DEMAND_1, DEMAND_2, {DEMAND_3}
DEMAND_4, DEMAND_5}
1 {DEMAND_1, DEMAND_2, {}
DEMAND_3, DEMAND_4,

DEMAND_5}

For each row in Table 4.11, there are five network solutions, each with a different gap value.
While each network for a given Q% achieves the same responsiveness, they vary in cost and
demand satisfied in the inactive scenarios. Given these trade-off considerations, the decision
maker must determine what they are willing to pay, in terms of cost and performance in
the inactive scenarios, to achieve a desired Q%. That said, given the decision maker’s
desire to achieve a QY% of at least 80%, they initially settle on the green curve at the point
corresponding to a Q% of 83% that guarantees 50% satisfaction in the inactive scenarios.
They notice a network on the red curve, however, that still achieves a Q% of 83% while also
guaranteeing 65% satisfaction in the inactive scenarios for only a minor cost increase. The
decision maker then sees that if they are willing to accept a Q% of only 77%, with a gap
of 0.35, the cost decreases from 225,428 to 157,336, for a savings of 30%. This calculus is

repeated until the decision maker arrives at a network solution that they deem to be the best.

Furthermore, the results in Figure 4.9 contain plateaus at various cost values for each gap.
While not strictly flat, these plateaus showcase the fact that there are some networks that
achieve roughly 60% more responsiveness for essentially the same cost. The decision maker

should only consider those networks on the right end of the plateaus.

To show an example of the results produced for each model instance, we display the decision
variable values for the solution network associated with a Q% of 83% and gap of 0.5 in
Tables A.3, A.4, and A.5.
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4.3.3 Removing Node From Network

In this section, we remove a node from the network to study the changes in the solution and
objective function value. Analyzing the base case results in Table 4.10 from an adversary’s
perspective, it appears that Darwin is a critical node. The amount of supplies prepositioned
at Darwin coupled with its connectedness to intermediate nodes makes it a high-value target
for adversaries. Therefore, in the first case, we remove Darwin from the set of possible nodes
and run the model again to determine the impact of an adversary eliminating Darwin. The

results are shown in Figure 4.10.
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Figure 4.10. Demand satisfaction and cost trade-off plot after removing Dar-
win. It is more expensive to satisfy demand without Darwin in the network.

When we compare these results to the base case results in Figure 4.9, we notice that by
removing Darwin the cost of each candidate network increases. When the gap value is

greater than 0.2, the cost increase is marginal. For gap values 0.0 and 0.2, however, the cost
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increases are more pronounced. Specifically, when the gap value is 0.0, the cost for any

network increases by more than 12% as shown in Table 4.12.

Table 4.12. Cost increase after removing Darwin.

Sparwin | Obj Val (cost) | % change
With Darwin 950 318532 -
Without Darwin 0 357294 +12.2

Furthermore, among all nodes, the greatest amount of supplies is prepositioned at Darwin
when it is included in the network. In fact, the 950 units of supplies prepositioned at Darwin
equates to 54.6% of all supplies in the network, highlighting its importance as a supply node.
When Darwin is removed from consideration and no supplies are able to be prepositioned
at Darwin, we find that Okinawa becomes the major prepositioning node in the network.
Looking at Figure 4.8, we observe that Okinawa is located in close proximity to EABs and
intermediate nodes. When demand resides at EABs in the northern end of the SCS, supplies
can be shipped from Okinawa in a timely and cost-effective manner. In this operational
scenario, however, the preponderance of the demand, across demand scenarios, resides in
the southern end of the SCS near the island of Natuna Besar. As such, when most of the
supplies are prepositioned at Okinawa, they must be shipped through numerous intermediate
nodes in and around the SCS which comes at an increased cost. Based on our analysis, it
appears that Darwin is an important node to consider incorporating in our network due to

its cheap arc flow cost, prepositioning capacity, and connectedness to other nodes.

Our analysis in this section serves as a basis from which more rigorous attacker-defender
modeling and analysis can be conducted in future research. Furthermore, while we only
explore a single what-if scenario, this section demonstrates the capability that our model

provides planners to conduct this type of analysis.
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CHAPTER 5:

Conclusion and Future Work

5.1 Conclusion

The success of the Marine Corps in the future operating environment is dependent upon its
ability to make the right decisions today to sustain its forces tomorrow. What makes this a
challenging endeavor is two-fold; planners do not know what the operational demand will
be in the future, and current prepositioning and sustainment networks are not capable of
sustaining EABO. Without knowledge of exact demand quantities, or even an underlying
demand distribution, developing an optimal sustainment network is not easy. By considering
a range of possible conflict scenarios, however, logistics planners can better address the
uncertainty of the future. Furthermore, by exploring a host of potential prepositioning
sites and network architectures, planners can gain a better understanding of the optimal

sustainment network.

The model allows planners to include a variety of possible demand scenarios, locations, and
routes for analysis enabling decision makers to derive actionable insights for developing a
sustainment network in support of EABO. We find that when multiple demand scenarios
are considered, risk-pooling takes effect. By holding back supplies at intermediate nodes,
risk-pooling enables the network to provide more responsive support while simultaneously
reducing waste. Furthermore, while the model guarantees complete demand satisfaction in
active scenarios, hedging in the inactive scenarios also allows decision makers to guarantee
their desired level of satisfaction in those scenarios as well. Our tool enables quick trade-off
analysis for planners to explore a wide range of what-if scenarios as demonstrated in Section
4.3.3.

The proposed model addresses the Marine Corps’ challenge of designing an optimal sus-
tainment network capable of supporting EABO by determining prepositioning locations,
quantities, and routes. The model provides decision makers with numerous candidate net-

works, each optimized under certain conditions, and allows decision makers to decide which
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network they deem best given their risk tolerance and required level of responsiveness.

5.2 Future Work

Our generic modeling approach provides a solid foundation for future research. As such,

we propose the following topics for follow-on work.

Since the model is connector and supply agnostic, the first recommendation we have for
future research involves exploring different connectors. In order to fully develop our pre-
liminary model with multiple commodities in Section 3.2.6, it should be extended to match
different commodities with different connectors. The Marine Corps is currently investi-
gating various ship-to-shore and shore-to-shore connectors for employment in an EABO
context. Current resupply platforms are too large, and assume too much risk in a contested
environment. Smaller platforms with smaller signatures are attractive alternatives, but their
limited capacity implies a requirement for numerous platforms to satisfy demand. This area
of research should examine specific connectors that either exist, or are in development.
Platform parameters such as capacity, speed, signature, and cost could all inform various
research questions posed by a sponsor. Another area of possible work is in the analysis of
different classes of supply. The size, weight, storage, and compatibility concerns of indi-
vidual classes of supply are significant. For example, current connector prototypes cannot
transport large vehicles and are better suited for bulk liquids. Additionally, there are a num-
ber of security concerns and requirements associated with the storage of ammunition that
cannot be overlooked. Analysis into one or more classes of supply provides planners with a

much more realistic understanding of possibilities and limitations.

Several of our modeling assumptions can be challenged and investigated in future work. The
assumption that EAB locations are stationary is not likely to hold up in an actual conflict
scenario. The expeditionary nature of EABs and the requirement to displace after shooting
to avoid counter-fire is something we choose not to incorporate in our model. A Markovian
approach to modeling demand locations, or EABs, over time can help determine an optimal

network, or can provide valuable insight into the responsiveness of a predetermined network.

Lastly, we recommend that future work consider the reality of risk in the form of attrition and

interdiction. Our model’s assumption that there is no enemy interdiction or loss of supplies
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along resupply routes is optimistic. Given the enemy’s increased sensing and shooting
capabilities, planners must account for loss of supplies, connectors, and even nodes in the
network. Enemy attacks and network operator defenses can be modeled in a more rigorous
attacker-defender analysis than what is done in Section 4.3.3. By modeling interdiction of
various arcs or nodes, network operators can gain a better sense of network vulnerabilities
as well as network elements that should be hardened against attacks. Incorporating this
aspect of reality and defining a resilient network capable of handling such losses provides

great value to forces reliant upon timely resupply.
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APPENDIX: Operational Scenario Inputs and Results

Tables A.1-A.5 in this appendix contain the input parameters, as well as the base case and

what-if results, for the notional operational scenario explored in Section 4.3.

Table A.1. Operational scenario arc data.

FROM (i) TO (j) COST (c; ;) | CAPACITY (u; ;)
Hawaii Guam 3971.60 10000
Hawaii Okinawa 4844.55 10000
Hawaii Palau 4907.17 10000
Guam Manila 1598.54 10000
Guam Cebu 1438.75 10000
Guam Zamboanga 1602.82 10000
Guam Palau 980.35 10000

Yokosuka Okinawa 935.97 10000
Sasebo Okinawa 485.20 10000

Okinawa Zuoying 535.17 10000
Okinawa Manila 921.62 10000
Okinawa EABI1 539.93 500
Okinawa EAB2 628.75 500
Palau Cebu 720.74 10000
Palau Zamboanga 749.10 10000
Darwin Palau 1233.98 10000
Darwin Zamboanga 1463.01 10000
Darwin Singapore 2083.20 10000
Darwin Pattaya 2696.05 10000
Zuoying EAB1 167.12 500
Zuoying EAB2 244 .24 500
Zuoying EAB3 257.88 500
Zuoying EAB4 540.83 500
Manila EAB1 427.29 500
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Manila
Manila
Manila
Cebu
Cebu
Cebu
Cebu
Cebu
Zamboanga
Zamboanga
Zamboanga
Zamboanga
Zamboanga
Zamboanga
Zamboanga
Singapore
Singapore
Singapore
Singapore
Singapore
Pattaya
Pattaya
Cam Ranh Bay
Cam Ranh Bay
Cam Ranh Bay

Zamboanga
EAB4
Cebu
Manila
Zamboanga
EAB1
EAB4
EAB3
Cebu
Manila
EABS
EAB7
EABI11
EAB12
Singapore
EABS
EAB9
EABI10
EABI11
Pattaya
EABS
Cam Ranh Bay
EAB6
EAB9
EABI11

529.27
220.02
337.52
337.52
264.37
716.40
517.77
687.37
264.37
529.27
320.98
452.82
958.33
591.19
1320.08
379.09
366.91
207.75
361.60
822.08
485.78
565.72
93.91
325.84
619.55

10000
500
10000
10000
10000
500
500
500
10000
10000
500
500
500
500
10000
500
500
500
500
10000
500
10000
500
500

500
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Table A.2. Operational scenario node data.

NODE (n) RESOURCE_REQ (#,) | PREPOS_PUC (y,) | MAX_PREPOS (V,)
Singapore 1 10 100
Cam Ranh Bay 1 10 100
Manila 1 10 100
Cebu 1 10 100
Yokosuka 1 1 1000
Okinawa 1 1 1000
Zuoying 1 25 100
Pattaya 1 10 100
Palau 1 10 100
Sasebo 1 1 1000
Darwin 1 1 1000
Guam 1 1 1000
Hawaii 1 1 1000
Zamboanga 1 10 100
EAB1 1 15 15
EAB2 1 15 15
EAB3 1 15 15
EAB4 1 15 15
EABS 1 25 15
EAB6 1 25 15
EAB7 1 25 15
EABS8 1 25 15
EAB9 1 25 15
EAB10 1 25 15
EABI11 1 25 15
EAB12 1 25 15
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Table A.3. Operational scenario prepositioning decision values.

NODE (n) PREPOS AMOUNT (s,)
Cam Ranh Bay 100
Cebu 100
Darwin 950
EABI1 15
EAB10 15
EABI11 15
EAB12 15
EAB2 15
EAB3 15
EAB4 15
EABS5 15
EAB6 15
EAB7 15
EABS 15
EAB9 15
Guam 0
Hawaii 0
Manila 100
Okinawa 0
Palau 0
Pattaya 100
Sasebo 0
Singapore 100
Yokosuka 0
Zamboanga 100
Zuoying 10
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Table A.4. Operational scenario node selection decision values.

NODE (n) INCLUDE NODE (y,,)
Cam Ranh Bay
Cebu
Darwin
EABI1
EAB10
EABI11
EABI12
EAB2
EAB3
EAB4
EABS
EAB6
EAB7
EABS
EAB9

Guam

Hawaii
Manila
Okinawa
Palau
Pattaya
Sasebo
Singapore
Yokosuka

Zamboanga

—_ e, O Rk O = O O MmO O o R e e e e R e = e = e

Zuoying
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Table A.5. Operational scenario arc flow decision values.

FROM (i) TO () SCENARIO (f) | FLOW VALUE (x; ; )
Cam Ranh Bay EAB6 DEMAND 3 300
Cam Ranh Bay EAB6 DEMAND_4 35
Cam Ranh Bay EAB6 DEMAND _5 47.5
Cam Ranh Bay EAB9 DEMAND_5 52.5

Cebu Zamboanga DEMAND 1 20

Cebu Zamboanga DEMAND_3 100

Cebu Zamboanga DEMAND 5 7.5
Darwin Pattaya DEMAND 3 100
Darwin Singapore DEMAND_3 780
Darwin Zamboanga DEMAND_3 70
Manila EAB4 DEMAND_1 10
Manila EAB4 DEMAND_4 35
Manila Zamboanga DEMAND_3 100
Pattaya Cam Ranh Bay | DEMAND_3 200
Pattaya EAB8 DEMAND_5 27.5

Singapore EAB10 DEMAND_2 20

Singapore EAB10 DEMAND_3 285

Singapore EABI0 DEMAND_4 35

Singapore EAB10 DEMAND_5 60

Singapore EABS DEMAND 1 85

Singapore EABS DEMAND_3 285

Singapore EABS DEMAND_4 35

Singapore EABS DEMAND _5 32.5

Singapore EAB9 DEMAND_3 310

Singapore EAB9 DEMAND_5 7.5

Zamboanga EAB12 DEMAND 1 35
Zamboanga EAB12 DEMAND 4 35
Zamboanga EABS5 DEMAND 2 20
Zamboanga EAB5S DEMAND 3 185
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Zamboanga EAB5S DEMAND _5 47.5
Zamboanga EAB7 DEMAND 1 85
Zamboanga EAB7 DEMAND 3 185
Zamboanga EAB7 DEMAND 5 60
Zuoying EABI1 DEMAND 1 10
Zuoying EAB2 DEMAND_2 10
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