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ABSTRACT 

 Attitude control system failures are often mission ending even when the mission 

payload remains operational. In this dissertation, the concept of unscented guidance is 

applied to reorient a reaction wheel satellite in the absence of feedback from star trackers 

or an inertial measurement unit (IMU). It is shown that an open-loop maneuver, properly 

designed using optimal control theory, can be used to achieve terminal attitude errors that 

are comparable with closed-loop control in the presence of uncertainty in the satellite 

inertia tensor. Typically, coarse closed-loop control is used to achieve < 1 degree pointing 

accuracy before more accurate pointing is done using fine guidance sensors to close the 

loop for science acquisition. It is shown that reaction wheel maneuvers designed using 

unscented guidance can also achieve sub-degree pointing accuracy of the spacecraft, 

making control hand-off to a functioning fine pointing control mode possible. The 

approach presented here enables large angle attitude control to be recovered so that mission 

operations may be continued despite IMU or star tracker failures. 
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1 

I. INTRODUCTION 

Many spacecraft have a life expectancy that far exceeds their planned mission 

durations and therefore remain in orbit albeit with modified tasking. For example, the 

original mission duration for the National Aeronautics and Space Administration (NASA) 

Kepler space observatory (launched in March 2009) was 3.5 years [1], but the satellite was 

able to perform scientific measurements for over 9 years before being officially retired in 

October 2018 [2]. Similarly, NASA’s Lunar Reconnaissance Orbiter (LRO) has had its 

mission extended multiple times and has been operating for over 13 years, well beyond the 

planned 3-year primary mission [3]. Another astonishing example is the Hubble Space 

Telescope (HST), which has been in operation for over 32 years since its launch in April 

1990 [4]. 

These and other scientific spacecraft’s extended missions are a result of the 

community’s ability to develop guidance and control algorithms that keep systems 

operating when hardware control components such as rate gyros or miniature inertial 

measurement units (MIMU) fail intermittently or completely. As spacecraft components 

shrink in size and grow in computational capability, there is motivation to explore novel 

software solutions that can overcome these common hardware failures. This dissertation 

explores the possibility of using an optimal control technique called “unscented guidance” 

to minimize pointing error of a large angle maneuver implemented in the open-loop, 

allowing a spacecraft with degraded hardware to continue to operate. This method could 

be used to extend the scientific missions of multi-billion-dollar spacecraft thereby 

providing a greater return on taxpayer investment as well as potentially years-more data 

about the makeup of the surface of the moon, the existence of planets outside our solar 

system and images of galaxies far away or as a software replacement to rate gyros which 

is desirable for many small satellites (typically less than 200kg). 

A. MOTIVATION 

Spacecraft are manufactured in an array of sizes, capabilities, and prices. From 

exquisite (large, highly capable, and expensive) to experimental (small, limited capability, 
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and inexpensive), these attributes are traded with one another to fit the desired mission. A 

current example of exquisite, the James Webb Space Telescope (JWST), fully deployed to 

a size of approximately 21.2m x 14.6m x 10.6m with a mass of 6330kg and cost about $10 

billion [5-6]. Its attitude determination and control system (ADCS) suite of instruments 

includes three star-tracker assemblies (STA), one inertial reference unit (IRU), two fine 

sun sensors (FSS) and four coarse sun sensors (CSS) for attitude determination with six 

reaction wheel assemblies (RWA) (sets with isolators in a pyramidal configuration) and 

thrusters for attitude control and momentum management [7]. Conversely, in the 

experimental realm, a 0.1m x 0.1m x 0.1m (1U) spacecraft with mass less than 1.3kg and 

no ADCS can be assembled for about $50,000 using off-the-shelf components from 

companies such as Pumpkin, Inc. Although there is no definition of a typical satellite or a 

typical ADCS, in between exquisite and experimental lies a representative satellite with a 

representative ADCS which will be defined in the following paragraphs. 

Modern spacecraft contain a variety of sub-systems including command and data 

handling (C&DH), electrical, structural, ADCS, communications, thermal and payloads. 

The ADCS provides spacecraft pointing, or a three-dimensional orientation of a space 

vehicle with respect to a reference frame. To accomplish spacecraft pointing, the ADCS 

uses a combination of sensors, software, and actuators. Sensors take measurements of rate 

or position relative to a known reference point and provide the information to the control 

software. This software determines how to apply control torques and sends commands to 

actuators that supply the desired control torques [8]. When all parts are functioning as 

designed, spacecraft pointing occurs with both accuracy and precision enabling scientific 

payloads to perform their duties. Contributions from all sub-systems, including the ADCS, 

must be considered against mission objectives, however, this dissertation will focus 

primarily on the contributions of the ADCS. 

Attitude and rate sensors are measurement devices that include sun sensors, horizon 

sensors, magnetometers, star sensors and gyroscopes. Each sensor provides information 

about the spacecraft with respect to a particular reference frame. Most spacecraft have a 

combination of sensors with onboard processing capable of handling the inherent reference 

frame transformations. Spacecraft attitude determination system accuracy is dependent on 
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the accuracy of these sensors. Star-trackers are the most accurate source, typically with 

sub-arc-second accuracy [9].  

Modern ADCS software aggregates available sensor measurements from on-board 

sources such as earth and star sensors, external sources such as Global Positioning System 

(GPS) and ground-based sources such as two-line element sets (TLEs), then processes the 

information to determine the spacecraft attitude in an inertial frame. Based on the current 

attitude and mode in which the spacecraft operates, such as nominal or low power, the 

software references an attitude control profile. At the appropriate time, the ADCS software 

provides commands to the actuators to execute the desired attitude control profile. 

Actuators include gas thrusters, magnetic coils, and momentum exchange devices. 

These devices provide forces (translational acceleration) or torques (angular acceleration) 

to the spacecraft [9]. Gas thrusters can provide the greatest amount of torque, and they are 

often used on large spacecraft. At the other end of the torque spectrum, magnetic coils are 

found on small satellites where concerns over size and hazardous propellant make gas 

thrusters unpalatable. Safely in the middle, then, momentum exchange devices provide less 

torque than gas thrusters, more than magnetic coils, and are found on spacecraft large and 

small due to their demonstrated ability to provide precision pointing and relative low cost. 

There are many combinations of spacecraft attitude determination sensors, 

software, and actuators. Every spacecraft program tailors the combination to their mission 

needs. Regardless of the situation, if a spacecraft desires fine pointing then a capable 

attitude control system is imperative [9]. 

B. BACKGROUND 

Satellites and their sub-systems have grown increasingly more sophisticated. In the 

realm of attitude control, passive attitude control has given way to active attitude control, 

momentum storage has been harnessed, hardware components have shrunk and 

consolidated onto computer chips and many on-board operations have transitioned from 

analog to digital, human in the loop to autonomous. As the ability to compute more 
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processes continues to grow and hardware continues to shrink, significant changes are, and 

will be, taking place with not only spacecraft appearance, but also spacecraft operations.  

1. Attitude Control 

Modern attitude control literature often assumes three-axis attitude control, but 

satellites did not begin as objects with three axes of control. The earliest satellites lacked 

active control and as their technology advanced, single axis control and later multiple axis 

control were developed. Multi-axis attitude control is necessary for spacecraft that require 

accurate pointing. Although mission-driven, many modern, large spacecraft contain multi-

axis control systems as do a significant portion of small spacecraft such as SpaceX’s 

Starlink satellites. 

Attitude control is separated into two groups, active and passive [10]. Active 

attitude control and stabilization requires dedicated torque production hardware, such as 

reaction wheels, coupled with controllers that minimize attitude error [9]. Many early 

satellites were equipped with limited computational and power resources, so active attitude 

control was not an option. Passive attitude stabilization is dependent on environmental 

torques and requires very little on-board computing or power, if any. Spin-stabilization is 

a passive spacecraft stabilization method that allows a limited amount of control about a 

single axis due to the gyroscopic torque generated by the spinning motion of the spacecraft. 

D. B. DeBra discusses methods of spacecraft control, including spin-stabilization that he 

refers to as “spin control,” and how these methods have changed to accommodate 

technology advances, in his 1981 paper “Evolving Spacecraft Control” [11]. Early 

examples of satellites that relied on spin-stabilization for attitude stabilization were the 

United States’ Explorer satellites that launched in 1958 [11]. As DeBra noted, “Not all 

payloads operated well from a spinning platform” and alternative control methods 

followed. 

Mission designers desired a way to point sensors and payloads continuously at 

objects such as the sun and a spinning spacecraft was not capable of meeting this 

requirement. To provide continuous pointing, the space survivable joint was developed. 

This joint allowed one part of the spacecraft to spin while other parts were pointed at a 
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desired object. This joint was a key design innovation for both the Orbiting Solar 

Observatory (OSO) series of spacecraft and the Improved Television Infrared Observation 

Satellite (ITOS) also known as TIROS-M [11]. OSO launched from 1962–1969 and 

employed dual-spin stabilization whereby one part of the spacecraft spins and the other 

part does not spin. ITOS was launched in 1970 and internalized the spinning wheel, termed 

a “flywheel” [11-12]. The initial Television Infrared Observation Satellite (TIROS) were 

launched between 1960 and 1965 and all were spinning satellites; these satellites were the 

first experimental weather satellites [13]. Development of the space survivable joint 

provided the second generation of TIROS spacecraft, ITOS, momentum storage and 

attitude stability which allowed the satellites to point cameras and infrared sensors directly 

at the earth [11].  

The Nimbus series of spacecraft, launched from 1964 - 1978, addressed the 

principal ‘defect of (first generation) TIROS” [14]. The Nimbus spacecraft featured an 

active, three-axis attitude control system, instead of a passive, spinning spacecraft, that 

provided attitude stabilization and control [14]. This active, three-axis attitude control 

system was based on General Electric’s (GE) prior work with the MARK IIIC TP ICBM 

re-entry vehicle and after launch on August 28, 1964, it made Nimbus I the first three-axis, 

fully stabilized satellite [14-15]. The Nimbus attitude control system managed torque using 

three reaction wheels for pointing and cold-gas thrusters for momentum unloading. 

Infrared horizon scanners provided pitch and roll error signals to the attitude control 

system. Later versions of Nimbus also included gravity-gradient stabilization hardware and 

a sun sensor that provided yaw axis error signals [15-16]. Shortly after Nimbus I launched, 

on September 5, 1964, the first of a series of six Orbiting Geophysical Observatory (OGO) 

spacecraft was launched demonstrating that three-axis attitude control could also be 

achieved using gas jets and horizon scanners without using reaction wheels. Like TIROS 

and Nimbus, the OGO satellites used their pointing ability to look directly at the earth [17].  

Three-axis attitude control has been achieved using myriad methods, but the most 

popular has employed reaction wheels as actuators. Harold Perkel introduced a concept he 

termed “Stabilite” in his 1966 paper “Stabilite - A Three-Axis Attitude Control System” as 

a method to control three-axis motion of a spacecraft [12]. Perkel concluded his paper with 
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a prediction that “it is likely that some form of Stabilite will satisfy more missions than any 

other form of attitude stabilization” [12]. His prediction has proven accurate as SpaceX 

continues to launch Starlink satellites. Numbering over 2,800 thus far, and approved for 

12,000, each one contains a three-axis attitude control system utilizing a set of four reaction 

wheels [18]. This constellation of satellites will dwarf the number of currently operational 

satellites which is 4,852 (including Starlink) as of December 31, 2021, according to the 

Union of Concerned Scientists (UCS) satellite database [19]. Three-axis attitude control 

using reaction wheels is the most common form of three-axis satellite attitude control. 

2. Momentum Storage 

A rotating element, whether it is the satellite itself or a wheel contained within a 

satellite, provides a way to store angular momentum onboard a spacecraft. This gyroscopic 

quality is advantageous because it provides spacecraft attitude stability and a way to 

transfer momentum to and from the satellite body [20]. There are two basic types of 

momentum storage units: control moment gyros (CMGs) which are gimballed, meaning 

they maintain a level position as their support is moved, and momentum/reaction wheels 

which have a support mounted to the spacecraft.  

A CMG contains a gimballed wheel that spins at a constant rate. One CMG is 

required for each axis of desired attitude control with additional units often provided for 

redundancy. Until recently, CMGs have been large, heavy, and expensive so they typically 

have been reserved for spacecraft that were also large, heavy, and expensive.  

The terms momentum wheel and reaction wheel are often used interchangeably 

although momentum wheel usually refers to a reaction wheel that is intended to operate at 

a relatively high speed [21]. Momentum and reaction wheels use the same hardware with 

the name difference based on how the wheels are used. One wheel is required for each axis 

of desired attitude control, for three-axis attitude control there are three wheels often 

arranged along body axes or in a pyramidal shape with a fourth wheel provided for 

redundancy. Earth-pointing spacecraft, such as the ITOS satellites, employ momentum bias 

along the pitch-axis such that pitch control is maintained by momentum wheel torque 

control [12].  
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Momentum/reaction wheels are the “primary attitude control actuators on most 

spacecraft” [22]. Reaction wheels as actuators is a design that has been more accessible 

than other hardware designs due to the relatively small, light, and inexpensive form factor 

which has contributed to its popularity. Regardless of the specific type or physical 

arrangement, rotating elements such as reaction wheels leverage momentum storage to 

provide desired attitude stability and control for spacecraft. 

3. Representative Spacecraft 

The breadth of spacecraft size and capability, especially when considered along an 

historical arc, is extensive and this dissertation will not attempt to address all the 

possibilities. To illustrate the novel work in this dissertation, a representative spacecraft is 

defined. The UCS currently operational satellite database was used as a starting point to 

which was added non-operational and defunct satellites [19]. Based on the resulting list of 

unclassified satellites that have been put into orbit since 1957, it was found that the average 

mass of a satellite is approximately 1500 kg. Since this dissertation is focused on the ADCS 

sub-system, the representative spacecraft must include high-precision pointing capability, 

on the order of sub-arcseconds, which is provided by an active, three-axis attitude control 

system with reaction wheels for pointing control and momentum storage. Best uses for this 

type of satellite lie in multi-target scenarios such as telescopes, gamma-ray burst 

observatories, X-ray observatories or spectroscopy.  

The representative spacecraft chosen for use in this dissertation is purposefully 

skewed toward a medium-large capable spacecraft that is already on-orbit as it is this type 

of spacecraft that could immediately benefit from the novel work that is presented here. 

Smaller or less-capable spacecraft could also benefit, but they will be excluded from 

present analysis. The Far-Ultraviolet Spectroscopic Explorer (FUSE) satellite is a good 

example of a representative spacecraft. At 1360 kg and approximately 5.3 m x 1.9 m in 

size, it was launched into a 765 km circular, 25 deg inclination orbit on June 24, 1999 [23]. 

Its mission was to observe light in high resolution in the far ultraviolet (905–1187 

Angstroms) spectral range from a wide range of astronomical sources such as stars, 

planetary nebulae, interstellar gas, intergalactic gas, and winds from massive stars [23]. To 
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achieve the pointing and stability accuracy necessary for this mission, the FUSE ADCS 

system included: two (redundant) three-axis magnetometers (TAMs), one fine error sensor 

(FES) camera, CSSs, two (redundant) IRUs each containing a set of three body-axis 

aligned, orthogonally mounted gyroscopes, four reaction wheels (three aligned with the 

spacecraft body axes and one redundant), and three orthogonally mounted, body-axis 

parallel magnetic torque bars (MTBs) for momentum management [24]. Additionally, this 

spacecraft was designed to be fully redundant, which means every measurement sensor and 

control surface had at least one hardware backup [25-26]. Although this mission launched 

during the 1990s “faster, better, cheaper” era as one of several cost-constrained, less than 

$200 million, NASA Goddard Space Flight Center’s (GSFC) Explorers satellites, the circa 

1999 state-of-the-art for high pointing accuracy spacecraft dictated fully redundant 

hardware systems to manage on-orbit hardware failures [23]. 

Many spacecraft have been built that followed a similar recipe for ADCS 

construction as FUSE: the International Ultraviolet Explorer (IUE) launched in 1978, 

Hubble Space Telescope (HST) launched in 1990, Solar and Heliospheric Observatory 

(SOHO) launched in 1995, Thermosphere Ionosphere Mesosphere Energetics and 

Dynamics (TIMED) launched in 2001. More recent examples include Dawn launched in 

2007, Lunar Reconnaissance Orbiter (LRO) launched in 2009 and Vegetation Canopy 

LIDAR (VCL)/Glory launched in 2011. Table 1 summarizes these examples.  
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Table 1. ADCS Sensor and Actuator Combinations for Spacecraft Similar 
to the Representative Spacecraft 

Spacecraft Sensors Actuators 

 Coarse 
Sun 
Sensor 
(CSS) 

Fine 
Sun 
Sensor 
(FSS) 

Star-
Tracker 
or Fine 
Error 
Sensor 
(FES) 

Magnet-
ometer 

Rate 
Gyros 

Reactio
n Wheel 
(RW) 

Magnetic 
Torque 
bars (MTB) 

Thrust-
ers 

Dawn [27-28] 16 N 2 N 3 (2DOF) 4 N Y 

FUSE [24] Y N 1 2 6 (1DOF) 4 3 N 

HST [29] 5 N 3 2 6 (1DOF) 4 4 N 

IUE [30] N 2 1 N 6 (1DOF) 4 N Y 

LRO [31-32] 10 N 2 N 3 (1DOF) 4 N Y 

SOHO [33] N 1 1 N 3 (2DOF) 4 N Y 

TIMED [34] 4 N 2 2 2 (3DOF) 4 3 N 

VCL/Glory 
[35] 

16 N 2 1 1 (3DOF) 4 N Y 

 

A better example of a representative spacecraft used to illustrate the novel work in 

this dissertation is the Lunar Reconnaissance Orbiter (LRO). LRO is used in dissertation 

simulations as the representative spacecraft. It is approximately 1916 kg in mass and 

asymmetrical in shape [36]. Its ADCS contains four reaction wheels for actuation and has 

a Miniature Inertial Measurement Unit (MIMU) that contains three rate gyros [31-32]. An 

issue with the MIMU negatively impacted LRO’s maneuvering ability. Control system 

algorithms were modified on-orbit to mathematically manipulate data from other onboard 

sensors to replace missing MIMU data and allow continued operations [37]. This 

combination of mass, on-board control system capability and relevant on-orbit issue makes 

LRO an ideal model for use in this dissertation. 
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4. ADCS Components 

Throughout the 1990s, improvements in digital component technology transformed 

control system hardware and software in the aerospace industry. Proliferation of digital 

control technology happened in aircraft and spacecraft controls as manufacturers replaced 

analog control electronics with digital versions [38]. By the early 2000s, 

microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) 

use in spacecraft were predicted to “evolve over the next decade to provide ever-higher 

levels of functional density per unit area” while the “continuing increase in functional 

density will enable decreased spacecraft system size, and ultra-small spacecraft” [39]. 

Today, MEMS based gyroscopes and accelerometers are readily available. MEMS 

technology has allowed control system designs to shrink by several orders of magnitude. 

For example, a Honeywell HG4930 MEMS Inertial Measurement Unit (IMU) that includes 

three MEMS rate gyroscopes and three accelerometers available in 2020 is about the same 

volume and mass as one Bendix rate gyroscope available in 1978 [40-41].  

Sun sensors and horizon sensors have similarly shrunk in size yet gained 

functionality. Sensors that used to be larger than a deck of cards (81 x 81 x 20 mm), 

weighed as much as a coffee cup (259 g) and often required analog-to-digital conversion 

are now available in sizes that are smaller in diameter than a penny, are one-seventh the 

previous mass (19 mm, 3 6g) and embed functionality within the sensor packaging, 

although heritage designs continue to be available [42-46].  

Star sensors also have benefitted from technological advances that brought about 

miniaturization and lower cost, in this case via complementary metal oxide semiconductor 

(CMOS) technology that was applied to the manufacture of multi-megapixel cameras [45]. 

CMOS active pixel sensor (APS) technology enabled mass production of “one-chip 

imaging systems with a full digital interface” and were predicted in 1995 to “make image 

capture devices as ubiquitous in our daily lives as the microprocessor” with CMOS APS 

cameras emerging for use in sun sensors and star cameras [47-48]. Modern star-trackers 

utilize this technology to match tracked stars against a catalog for the purpose of 

determining the inertial position of a satellite, that is position of the satellite relative to a 
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celestial reference frame [22]. Typical update rates for modern star-trackers are between 

0.5-10 Hz with a high update rate version at 50 Hz in development [22], [49].  

5. Representative Problem 

Spacecraft anomalies (what happens when things go wrong) have been around for 

as long as spacecraft. Explorer-I, the first American satellite, experienced a flat spin about 

the maximum moment of inertia after several orbits, which was unplanned, but the 

spacecraft was able to continue its mission [50]. There are many reasons why spacecraft 

experience anomalies including poor engineering and faulty components. Component 

failures are of particular interest because they can seem random in their occurrences, but 

with a focus on spacecraft robustness, engineers can design solutions into the spacecraft 

that withstand these failures and deliver a successful mission [51], [52]. Component 

failures - particularly rate gyros - range from human-induced failures such as with IUE and 

SOHO to the slow degradation effects of old age such as with the Hubble Space Telescope 

and LRO. There are also plenty of examples in between including FUSE and TIMED.  

IUE launched in 1978 with an expected life span of three years. One-and-one-half 

years into the mission, three gyros were turned off during eclipse season and only two 

restarted when power was restored [52-53]. At four-and-one-half years into the mission, 

three gyros were non-operational while three remained. Contingency plans were developed 

for additional gyro failures such that fine digital sun sensor data was repurposed for the 

failed axis or axes and combined with the remaining gyro data to continue three-axis 

control [53]. The spacecraft was operational for eighteen years, far exceeding its original 

goal of three [30], [50]. 

SOHO launched in 1995, completed its primary two-year mission in May 1998 and 

then entered an extended mission phase. In June 1998, ground control command errors 

during an otherwise routine gyroscope calibration and momentum unloading event caused 

the spacecraft to be oriented in such a way that the gyro flotation fluid froze. The frozen 

fluid fractured the electrical connections thus causing the failure of all six gyros [50]. 

SOHO benefitted from follow-on contingency plans that were developed for IUE and as a 
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result, (as of the writing of this dissertation) SOHO continues to operate well into its 

twenty-sixth year [50]. 

The Hubble Space Telescope deployed from the space shuttle in April of 1990. Part 

of its operations plan involved the use of manned servicing missions to replace the limited-

life rate gyroscopes [54]. These gyros have been replaced several times over five servicing 

missions [55]. Since future servicing missions are not possible - due to the cancellation of 

the Space Shuttle program—it is necessary to utilize software methods such as Hubble’s 

two- and one-gyro science control laws that compensate for the loss of the aging rate gyros 

to maintain the mission. The two- and one-gyro science control laws fuse measurements 

from magnetometers, star-trackers, and fine guidance sensors to close the loop about failed 

gyro axes [56]. The evolution of Hubble’s attitude control system has allowed it to continue 

operations for over thirty-two years. 

LRO was launched in June of 2009 and by early 2018 had powered off its MIMU 

due to X-axis gyro degraded laser intensity [37]. In the original LRO design, three single-

axis gyros, X, Y, & Z, plus internal processing formed the MIMU. Measurements from the 

MIMU were combined with measurements from two star-trackers and this combination 

was provided to a Kalman filter to estimate the satellite attitude and rate [37]. After MIMU 

failure, with the MIMU no longer in the control loop, the satellite was unable to perform 

science slews—these are slews between targets that are large, on the order of tens to 

hundreds of degrees—because there was insufficient information to estimate the satellite 

attitude and rate. To overcome this issue, the satellite estimates rate by mathematically 

manipulating position and torque sensor measurements—specifically via a complementary 

filter that uses differentiated quaternions and integrated angular acceleration [37]. These 

changes to the control system have allowed LRO to continue operations and it provides 

science data well into its twelfth year. 

FUSE launched in June of 1999 and by October of 2001 had experienced a failure 

of one of the six gyros and degraded laser intensity, tripping low-intensity indicators, on 

five of the six gyros [23], [25]. FUSE was planned to operate a three-year mission, but this 

goal looked questionable at two-and-one-half years into the mission when science 

operations were stopped due to the gyro failure coupled with the loss of two of the four 
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reaction wheels [26]. Through significant modifications to control system algorithms, 

including use of repurposed fine error sensor and three-axis magnetometer data and the 

addition of a non-linear dynamical model of the satellite, the mission was extended to more 

than eight years [23], [25]. 

TIMED launched in December of 2001 with an expected mission lifetime of two 

years. Like the gyro degradation seen with the FUSE spacecraft, one year after launch, a 

single axis (gyro) began to fail in the primary Inertial Reference Unit (IRU) assembly, so 

the secondary IRU was turned on. One year later, a single axis of the backup IRU began to 

fail [34]. A change to the control system software, which used star-tracker provided 

differentiated quaternions and sun sensor data, allowed the mission to continue and it is 

now well into its twentieth year [34]. 

It is clear to see that rate gyros are failure prone [23], [34], [37], [50], [54-55], [57]. 

The failures described here have negatively impacted many spacecraft missions both 

through downtime as new control laws are developed and tested, such as with Hubble, and 

through reduced science collection due to maneuver constraints imposed by control law 

redesign, such as with LRO. A lack of confidence in gyro reliability and gyro failures 

motivate the idea of gyroless attitude control [50]. 

6. Gyroless Attitude Control: Closed-Loop 

The idea of gyroless attitude control has been around since the 1960s [50]. 

Implementation of gyroless attitude control, however, has been much more elusive. 

Gyroless solutions have been applied to emergency situations when gyros have failed on-

orbit. Rarely, until the recent development of capable small satellite designs, has a gyroless 

attitude control solution been implemented as a nominal—primary—operating solution 

[58]. Even for these modern, gyroless small satellites, the governing attitude control system 

depends on feedback-based (closed-loop) attitude control. Closed-loop attitude control 

requires on-board sensor position and rate information to be continuously fed into feedback 

dependent software that provides spacecraft attitude control commands to the spacecraft 

actuators which results in spacecraft movement. 
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Concerns about gyro reliability motivated the gyroless design of the first Orbiting 

Astronomical Observatory (OAO) satellite, part of a four-satellite series launched from 

1966–1972. The first OAO was gyroless and six star-trackers were the method to provide 

attitude reference [50]. This satellite operated for seven minutes at which time it 

experienced high-voltage arcing of the star-trackers which caused a lack of satellite control 

that led to battery depletion and was terminated after 20 orbits (~3 days). Following this 

failure, the subsequent three OAO spacecraft were built with IRUs containing gyros to 

provide attitude reference instead of star-trackers [50]. 

In 1982, the IUE satellite experienced two on-orbit gyro failures, which coupled 

with an earlier failure of one gyro, left the satellite with three of the original six. While 

three gyros were sufficient for satellite operation, the team at NASA’s Goddard Spaceflight 

Center (GSFC) was worried about the possibility of another failure which would probably 

end the mission, so they were tasked with development of a sub-arc second pointing two-

gyro control system, that was considered impossible at the time [50], [53]. The two-gyro 

control system that the team at Goddard developed over the following year depended on 

deriving rate data for the missing axis from the Fine Sun Sensor (FSS) position data; they 

later extended this effort to one-gyro control with the FSS providing derived rate data for 

the two missing axes [53]. The two-gyro control laws were utilized on-orbit with 

performance similar to the baseline whereas the one-gyro control laws were tested on-orbit 

but never used for operations [22].  

Zero-gyro control laws were eventually developed, in anticipation of further gyro 

degradation, for the purpose of keeping the spacecraft power and thermal-safe but would 

not have provided the sub-arc-second pointing accuracy necessary to continue the IUE 

science mission [50], [59]. This was the first evidence of a zero-gyro software solution for 

fixing a failed gyro hardware problem. The IUE zero-gyro control laws, like the one-gyro 

version, used the FSS to provide two axes of position and derived rate information [30]. 

For the third axis, the zero-gyro version used thrusters to set a momentum bias “anchor” to 

inertially fix the satellite then measured the momentum transfer between reaction wheels 

and integrated this measurement to determine angular rate and position of the third axis 

[30], [59]. Although this zero-gyro solution was never used for IUE operations, it was re-
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purposed for use on the SOHO satellite after all six of its gyros failed on-orbit in 1998. 

SOHO did not require precision pointing, so the IUE-developed zero-gyro solution sufficed 

as a substitute for the failed gyros, and this satellite is still operating [50]. 

Between the IUE experience in 1982 and today, engineers at GSFC and supporting 

aerospace entities—Orbital Sciences (now Northrup Grumman), Johns Hopkins 

University, and Lockheed Martin—became fluent in the implementation of zero-gyro 

software solutions for on-orbit gyro hardware failures [58]. Various methods for 

substitution of missing angular rate information emerged such as fine sun sensors coupled 

with a momentum bias anchor for IUE and SOHO. Another approach was to use coarse 

sun sensors coupled with magnetometer data for the low-earth orbiting HST [60-62]. The 

FUSE mission used a payload provided fine error sensor coupled with magnetometer data 

[26]. Yet another approach was to use differentiated quaternions (from star trackers) 

coupled with other sensor data. TIMED combined coarse sun sensor data with 

differentiated quaternions whereas LRO combined angular acceleration (from integration 

of a control torque) with differentiated quaternions [34], [37]. In each case, the closed-loop 

control system design dictated a constant input of angular rate information. Once this 

information was no longer available, each of these bespoke zero-gyro solutions was 

developed to provide an alternative rate data stream using a combination of on-board sensor 

data that was never intended to be used as angular rate data. Although these fixes were 

clever and often extended the mission, they were also time consuming, difficult to produce 

and test after the spacecraft had launched, and inefficiency was inherent. 

Many papers have explored gyroless attitude control systems and cited 

advancements in star-tracker and microprocessor technologies as reasons that could allow 

star-trackers to eclipse the use of gyros for spacecraft angular rate reference. Authors from 

Draper Labs and RCA in 1982 to Thales Alenia Space with Agenzia Spaziale Italiana in 

2018, and many others, have proposed star-trackers or combinations of star-trackers with 

other on-board sensors as innovative control concepts that eliminated the need for gyros 

[49], [63-81]. Star-tracker-based gyroless attitude control systems have become common 

in small satellites and, regardless of spacecraft size, continue to be a popular research area 

as star-tracker size shrinks and robustness improves [82-83].  
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Microprocessor and MEMS improvements have not only have benefitted star-

tracker attitude control algorithms, but also improved other gyroless attitude control 

algorithms. The ability of microprocessors to compute complex data sets on-board 

spacecraft has both increased their utility and shrunk their size [45]. Gyroless attitude 

control systems are a natural progression from large, unreliable hardware to smaller, more 

reliable hardware whose measurements are aggregated and processed on-board the 

spacecraft using microprocessor technology. In the case of many small satellites, star-

trackers paired with on-board microprocessors performing quaternion differentiation have 

replaced the functionality of rate gyros [84]. 

Gyroless attitude control methods require angular velocity estimation to replace 

missing rate sensor data. Gyroless methods in general fall into one of the four following 

categories: derivation, estimation, integration, or combination. Star trackers are a special 

case of the derivation category but were discussed independently due to their singular 

importance and proliferation in gyroless implementations. The paper “Classification of 

Algorithms for Angular Velocity Estimation” by Itzhack Bar-Itzhack defines two methods 

for estimation: the “derivative approach” captures those methods that explicitly perform a 

differentiation of measured positions with respect to time; the “estimation approach” 

captures methods that use initial guesses to directly populate an estimation algorithm that 

obtains a rate estimate as part of the state space [85]. Categorizing gyroless attitude control 

methods is confusing since many of the methods overlap or use two-stage processes which, 

by definition, involve multiple methods. Confusion regarding categorization is made worse 

by references that change categories. A 1998 paper, “The Use of Pseudo-Linear and 

SDARE Filtering for Satellite Angular-Rate Estimation” by Richard Harman and Itzhack 

Bar-Itzhack cited the “Magnetometer-Only Attitude and Rate Estimates During the Earth 

Radiation Budget Satellite 1987 Control Anomaly” paper by M. Challa, S. Kotaru and G. 

Natanson as an example of a derivation approach [86-87]. However, Bar-Itzhack’s 2001 

paper “Classification of Algorithms for Angular Velocity Estimation” cites the M. Challa, 

S. Kotaru and G. Natanson paper as an example of an estimation approach. For the purposes 

of this dissertation, the dividing line between derivation and estimation algorithms is drawn 

at the sensor; derivation methods apply to references where position sensor(s) are specified 
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whereas estimation methods apply to references where no specific sensor or set of sensors 

is identified.  

Derivation methods utilize on-board sensor measurements from magnetometers, 

sun sensors or GPS signals, in addition to star-trackers as previously discussed [57], [86-

122]. Spacecraft angular rate calculations are performed via differentiation with respect to 

time of the available position vector or vectors. This calculation is performed either inside 

a filtering algorithm or outside with the results fed into the filter.  

Estimation methods typically are sensor agnostic and in this sense are more generic 

than derivation methods. Estimation methods are seeded with many types of data including 

on-board sensor vector measurements, a priori data, parameter models or used for offline 

processing [123-138]. Estimation methods commonly use Kalman filters as part of their 

design. 

Integration methods utilize measurements of spacecraft control torques, 

disturbance torques or changes in spacecraft angular momentum to provide a rate 

calculation which is used to seed a dynamics model [136], [139-141]. Accuracy of the rate 

calculation is dependent on the accuracy of the dynamics model and sensor information 

[140]. Dynamics models are often inaccurate due to unknowns such as disturbances that 

are associated with the spacecraft environment.  

When sensor data is aggregated from multiple sources or novel methods of 

processing data are introduced, a combination of methods can result [84], [142-147]. A 

combination of methods often happens when multiple sensor measurements require 

different algorithms for processing. A common example is a combination of derivation of 

star-tracker position and integration of reaction wheel speed change that are used together 

to generate a rate calculation.  

Regardless of method, replacing the rate gyro angular rate data stream is a 

challenging task that introduces error and risk to the satellite program. Gyroless control 

modes have been avoided in baseline designs of attitude control software. Historically, 

avoidance was due to a lack of on-board memory although that issue has vanished with 

improvements in on-board computing. A couple of examples where gyroless control modes 
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were purposefully built into an attitude control system include the Dawn and SORCE 

spacecraft [27], [104]. Dawn’s gyroless mode was built to operate during cruise mode, as 

the satellite traveled to an asteroid, to preserve rate gyro lifetime for science operations. 

SORCE’s gyroless mode was developed in response to schedule and cost constraints that 

caused the rate gyros to be unavailable late in the development cycle. Although SORCE’s 

gyroless mode was successful on-orbit, it was not the design that was intended, and 

operators had to ensure that at least one star-tracker was always un-occulted (not obscured) 

which caused scheduling and maneuver difficulties [58]. LRO experienced similar 

operational challenges with its on-orbit-developed gyroless control mode. At least one star-

tracker always had to be available during a large maneuver, otherwise, the Kalman filter 

might diverge, and this divergence would then destabilize the feedback loop. An approach 

taken to avoid obscuration of the star-trackers during large-angle maneuvers was a 

constrained maneuver trajectory [148] in which keep-out cones prevented star-tracker 

obscuration. 

Today, gyroless control modes for large spacecraft are rarely included in the control 

system design because spacecraft developers focus on designs that have succeeded in space 

before and there is very little tolerance for risk which leads to a perpetuation of the same, 

proven design that includes rate gyros [58]. Small spacecraft have been a notable exception 

over the past few years. The risk tolerance for a small satellite (under 200kg) program is 

much higher while the available volume, mass, and power to accommodate a rate gyro 

system is much lower, in fact in many cases, does not exist. Small satellites have made the 

idea of gyroless control a reality albeit with concessions in pointing stability. Large 

spacecraft, like the Chandra X-Ray Observatory, have depended upon high accuracy 

attitude control for decades; Chandra was able to achieve 0.04 arcsecond pointing stability 

on-orbit in 1999 [149]. Twenty-two years later, the best small satellite performance to date 

is from the Blue Canyon Technologies XACT unit which was able to achieve 1.8-4.6 

arcsecond pointing stability on the ASTERIA 6U CubeSat in 2017 [150]. Shrinking 

electronics while expanding their capability has been ongoing for a few decades but 

shrinking spacecraft control system hardware has proven more difficult. Research 

involving small satellite gyroless systems with fine pointing stability continues. To date, 
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small spacecraft control system hardware has not yet provided the same pointing stability 

as large spacecraft hardware. 

Large spacecraft or small, gyroless attitude control solutions have depended on 

closed-loop (feedback) implementation. For baseline spacecraft control, feedback offers 

stability and robustness in a realm of uncertainties. In his book Synthesis of Feedback 

Systems, Isaac Horowitz states: “One of the foremost properties of feedback is its ability to 

reduce the sensitivity of a system to variations in the system parameters” [151]. This means 

that over time, the feedback attitude control system can desensitize its outputs to errors in 

its inputs. This property of feedback motivates the work previously described on fusing 

measurements from various sensors to replace the loss of information normally provided 

by a failed sensor such as a rate gyroscope. However, when problems occur on spacecraft, 

a feedback control design can have an undesirable effect, inhibiting methods of problem 

correction [58]. 

7. Gyroless Attitude Control: Open-Loop 

Another approach for maneuvering in the presence of feedback sensor failures is to 

operate the spacecraft in the open-loop. Performing an open-loop reorientation maneuver 

is, however, very risky due to the presence of uncertainty in the modeled spacecraft 

dynamics. Even with a reasonable knowledge of the spacecraft parameters, the targeting 

error associated with an open-loop maneuver can be large. The large terminal errors may 

prevent handover to a fine pointing control mode. On the other hand, if uncertainty is 

properly managed in an open-loop framework, then it may be possible to perform an open-

loop reorientation maneuver in such a way that handover to fine pointing control occurs 

and collection of scientific data continues. 

A prime example of on-orbit gyroless open-loop attitude control (the only one the 

author has been able to find) is the ‘dead-reckoning” maneuver implemented on FUSE. 

Using the best rate, vehicle dynamics and torque environment estimates available, <5 deg 

maneuvers were successfully completed with better than 90% accuracy which allowed Fine 

Error Sensor (FES) software to take over to further reduce the attitude error [26]. The 

success of the open-loop FUSE maneuver was limited in its implementation—less than 
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five degrees and only in a situation when there was no better alternative—but demonstrated 

that a gyroless open-loop attitude control solution is possible.  

The idea that an open-loop, gyroless control solution is possible is the motivation 

for the work contained in this dissertation. If a gyroless solution is possible in small angle 

situations, what limitations are there on using it for large angle maneuvers? Is terminal 

error the only limitation? How can terminal error be minimized?  

One approach for minimizing uncertainty, such as terminal error, in an open-loop 

framework was proposed in a paper titled “Unscented Optimal Control for Space Flight” 

by I. Michael Ross, Ronald Proulx and Mark Karpenko [152]. This paper proposed a proof-

of-concept for gyroless (zero-gyro) operation of the Hubble Space Telescope using a rigid-

body as the spacecraft model. Standard optimal control theory was combined with a 

nonlinear filtering approach to reduce problem size; this combination was later referred to 

as “Unscented Guidance” in a paper by I. Michael Ross, Ronald Proulx and Mark 

Karpenko [153]. The nonlinear filtering approach was first introduced by Simon Julier, 

Jeffrey Uhlmann and Hugh Durrant-Whyte in a 1995 paper titled “A New Approach for 

Filtering Nonlinear Systems” and was later referred to as the “Unscented Transform” [154-

155]. The objective of the unscented guidance approach is to produce an optimal control 

trajectory for a spacecraft that maneuvers from an initial state to a final state. The optimal 

control trajectory achieves the final state while simultaneously minimizing a desired 

parameter such as time or position error. 

The “Unscented Optimal Control for Space Flight” paper proposed that using an 

unscented guidance method may provide a viable approach to continue spacecraft large-

angle maneuvers in the absence of feedback which allows science operations to continue 

[152]. This paper, however, modeled the spacecraft as a simple rigid-body without 

explicitly considering the dynamics of the reaction wheels. Thus, it remains unclear if 

unscented guidance would be feasible on a practical reaction wheel spacecraft.  

This dissertation explores unscented guidance as a means to design a gyroless open-

loop attitude control method that utilizes reaction wheels to perform large-angle 

maneuvers. This gyroless open-loop large-angle capable control method could be used on 
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any spacecraft that contains reaction wheels, as a backup mode in case of hardware failure 

on highly capable spacecraft which would extend their life or as a low-cost full-time mode 

on a small spacecraft. 

C. CONTRIBUTIONS OF THIS DISSERTATION 

As spacecraft attitude control components fail, mission engineers regain control 

through various and sometimes elaborate methods. These methods differ among spacecraft, 

and each is unique due to the combination of spacecraft component, mission, and solution 

affordability that each situation confers. Existing methods operate in closed-loop 

environments and there are currently no methods that operate exclusively in an open-loop 

environment. Development of a mission-extending concept that maintains control of the 

reaction-wheel-based spacecraft while minimizing both position and angular rate error in 

an uncertain, open-loop environment would provide additional scientific data and a greater 

return on the dollars invested. 

Previous papers describing an open-loop concept showed as a proof-of-concept that 

it is possible to accurately reorient a rigid-body spacecraft in the presence of uncertainty 

and in the absence of sensor feedback using a concept called unscented guidance [152-

153]. As part of the original work shown in this dissertation, a paper titled “Unscented 

Guidance for Zero-Feedback Reaction Wheel Slews” described unscented guidance for 

point-to-point reaction wheel maneuvers for a satellite with an arbitrary momentum bias 

[156]. This paper extended the rigid-body idea to a more realistic spacecraft model that 

includes reaction wheel actuators. The original work was further extended in a paper titled 

“Optimum Momentum Bias for Zero-Feedback Reaction Wheel Slews” [157] by exploring 

the relationship between momentum bias magnitude and terminal accuracy, and an 

optimum bias for performing an unscented reaction wheel attitude maneuver was found. 

Additionally, it was found that non-zero momentum bias is a necessary condition for a 

solution to an open-loop, rest-to-rest large-angle maneuver using reaction wheels. The 

initial momentum is incorporated in the problem formulation as an additional optimization 

parameter. This is because the magnitude and direction of the momentum bias influences 
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the non-linear dynamic coupling. Finding the ideal momentum bias for a given maneuver 

is, however, a non-trivial problem.  

This dissertation presents an open-loop method to minimize error for a reaction-

wheel-based spacecraft using optimal control techniques such that a large-angle maneuver 

is performed with accuracy sufficient for handing off fine pointing to fine-guidance sensors 

(FGS). To solve this problem, this dissertation develops equations of motion, defines 

representative spacecraft parameters, creates the unscented reaction wheel maneuver 

algorithm, and solves various versions of the problem. Unscented reaction wheel 

maneuvers with arbitrary momentum bias and with optimum momentum bias are solved to 

quantify the level of improvement in the final error that this algorithm provides [156-157]. 

This open-loop method is a novel and practical contribution to the body of knowledge.  

D. DISSERTATION OUTLINE 

Chapter II reviews some optimal control concepts that can be used to solve 

nonlinear optimization problems. Optimal control with uncertain parameters is introduced. 

Discussion includes sampling methods such as Monte Carlo, Multidimensional 

Approximation and Unscented Guidance [153], [158]. Ernst Zermelo’s shortest time 

vehicle steering problem in a wind vector field is used to illustrate concepts [159]. A semi-

discrete Lebesgue-Stieltjes version of the Zermelo problem is solved for comparison with 

the deterministic version. These results are a reproduction of previous work [153] to 

illustrate the concept. Analysis and discussion of results follow including applicability to 

the unscented reaction wheel maneuver problem. 

Chapter III reviews concepts for conventional reaction-wheel attitude control. 

Definitions for the representative spacecraft, quaternions, equations of motion and 

quaternion error feedback are reviewed. Open-loop kinematic profiles are developed to 

establish the baseline performance of open-loop maneuvers. Results are provided for a 

closed-loop attitude control maneuver and open-loop based on the kinematic profile 

maneuver. Open-loop results are discussed for both single-axis and three-axes of inertia 

tensor uncertainty. Results are reviewed and a discussion regarding why open-loop 

solutions are generally not practical is provided. 
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Chapter IV formulates an unscented reaction wheel maneuver nonlinear optimal 

control problem for solving a cost functional. The unscented reaction wheel maneuver 

problem cost functional is based on the concept of mean squared error. Necessary 

conditions for this problem are defined both for the case of arbitrary momentum bias and 

for the case of optimum momentum bias. 

Chapter V provides results for the unscented reaction wheel maneuver nonlinear 

optimal control problem. Single-axis and three-axes of uncertainty with arbitrary 

momentum bias results are provided. These results show that an unscented reaction wheel 

maneuver provides final error comparable to a closed-loop solution and hint at perhaps an 

even better solution if momentum bias is simultaneously optimized [156]. An unscented 

reaction wheel maneuver including simultaneous optimization of momentum bias for both 

single-axis and three-axis uncertainty further improves the solution which results in less 

final average error than the comparable closed-loop solution [157].  

Chapter VI provides conclusions and thoughts regarding future work which are 

included for completeness and to inspire future work in this valuable area of research. 
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II. OPTIMAL CONTROL BACKGROUND 

The earliest examples of optimization theory date from the time of Ancient Greeks 

[160-161]. One example demonstrates that a circle is the shape that maximizes the area 

inside a perimeter, as shown by Queen Dido. Through the 1600–1700s, dynamic 

optimization theory problems were popular with academics, and many weighed in on the 

topic including Bernoulli, Newton, Leibniz, and Euler [160], [162-164]. The problems that 

were posed at this time were focused on the interconnectedness of time and motion—

Newton’s laws of motion were first published in 1687. Regarding the optimization of time 

coupled with motion, Bernoulli’s Brachistochrone example is a good one—is a straight 

line the fastest way to get to a destination? Under certain conditions, it’s not.  

In the 1950s, optimization theory and optimal control theory developed as scientists 

sought new methods to control spacecraft [161]. The calculus of variations was an 

established method for solving optimization problems in the 1950s and continues to be 

widely used. However, the calculus of variations has limitations on what problems it can 

solve—it cannot be used to solve many optimal control problems. This is because the 

calculus of variations assumes there are no constraints on the value of the control variable 

(and originally did not include the existence of a control variable), but in optimal control 

of physical systems, control variable constraints, such as for finite amounts of thrust, are 

commonplace [161], [164]. Lev Pontryagin and his students formulated a way to work with 

these constraints and obtain an optimal control solution. They produced a wealth of work 

in this area including a rigorous proof of the theorem of optimal control called: 

Pontryagin’s maximum principle [160-161], [164].  

The idea underlying all optimal control problems is that of a “control function that 

minimizes a performance measure,” which is a mathematical functional [160]. What the 

control function is and what performance measures it is desired to minimize are unique to 

each problem. Moreover, each problem can be part of a landscape of optimal control 

problems, so users must explore carefully. A commonality among these problems is that 

their results are often not intuitive—there are few straight lines. This non-intuitive nature 
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makes optimal control problems both difficult to solve and to comprehend. Thankfully, 

computers help with both. 

The control function is chosen by the user and can have many values. A standard 

optimal control problem seeks a control trajectory, u, that both shapes and controls the 

function such that a performance measure is minimized [160], [164]. The standard optimal 

control problem defined here is a Bolza-type problem [164]. It has a cost functional 

comprised of the endpoint, or Mayer, cost which is shown as E in the problem formulation, 

and the running, or Lagrange, cost which is shown as F. This cost functional is to be 

minimized—final time is a common example. The minimization is subject to state 

variables, x, the control trajectory, u, which are captured in the dynamics, and any initial 

or final endpoints including any constraints. Ross’s text “A Primer on Pontryagin’s 

Principle in Optimal Control” presents a standard optimal control problem of the Bolza-

type that is reproduced here (1) [164]: 

  (1) 

One example of a standard optimal control problem is a Zermelo minimum time 

problem. Ernst Zermelo first proposed the minimum time problem in his 1930 paper “Über 

die Navigation in der Luft als Problem der Variationsrechnung 1930c” reprinted in 

“Collected Works Vol. II Calculus of Variations, Applied Mathematics, and Physics” 

[159]. This problem describes the possible paths taken by an airship moving in a constant 

wind vector field—in later literature the airship is replaced by a boat and wind replaced 

with current—and has been used often as an example in optimal control [153], [163], [165-

166]. This chapter uses the problem, reconstructed from previous work in [153], as an 

illustrative example to demonstrate how an optimal control problem is constructed, 

including how it is extended to include uncertainty. A solution to the optimal control 
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problem is presented through the development of Pontryagin’s necessary conditions for 

optimality. 

A. DETERMINISTIC ZERMELO MINIMUM-TIME PROBLEM 

A deterministic function is one that, using specific inputs, returns the same result 

every time it is evaluated. In this sense, a deterministic function is one that produces a 

result that is not random. One version of a deterministic Zermelo problem (ZD) is 

constructed as a “standard” optimal control example problem, as shown in the Ross et al. 

paper titled “Unscented Guidance” [153]. Motion for this problem is constrained to the xy-

plane, so the state solutions to the problem exist in ℝ2. The cost to be minimized is time. 

Final time should be as small as possible, and this is defined in the top row of the problem 

formulation where final time is the variable to be minimized. Notice that there is no running 

cost, F, associated with this problem, only a cost, E, at time final which is consistent with 

a Mayer-type optimal control problem. The dynamics refer to a ship steering with constant 

wind. The start position is x0 = 2.25, y0 = 1.0, at initial time = 0 sec., and the final position, 

at time final, tf, is xf = 0 and yf = 0. This Zermelo problem is reproduced here [153]: 

 

 

 

  (2) 

where the ship steering vector normalized by ship speed is u = (u1, u2) and the wind vector 

field is p = (p, q). 
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A verification and validation of any candidate optimal control solution must be 

performed. A set of necessary conditions that a candidate optimal control solution to the 

ZD problem (2) must satisfy is found by developing Pontryagin’s necessary conditions for 

optimality [164]. The necessary conditions are derived as follows: 

1. Construct the Hamiltonian 

2. Develop the Adjoint equations 

3. Minimize the Hamiltonian 

4. Construct the Endpoint Lagrangian 

5. Determine transversality conditions 

6. Evaluate the Hamiltonian value condition 

7. Analyze the Hamiltonian evolution equation 

 

Construct the Hamiltonian 

The problem formulation defines the following state vector in primal space:  

 

A common unit of measure is needed, and this unit is defined as λ for the control 

Hamiltonian. The problem of measuring a sandwich may define λ as calories, ounces, or 

dollars for a common unit of measure [164]. The λ cost unit is defined for measurement of 

the control Hamiltonian, and it follows for the deterministic Zermelo problem that this 

adjoint co-vector exists in the same dimension but in dual space: 

 

 
The adjoint co-vector for the deterministic Zermelo problem is defined as: 
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The control Hamiltonian equation is defined as the following:  

  (3) 

For the deterministic Zermelo problem, there is no running cost, F, associated with 

this problem or: 

 

The cost co-vector transpose is defined as: 

 

The dynamics are given by: 

 

The deterministic Zermelo Hamiltonian equation is then given by: 

  (4) 

 
 This equation can be re-written using p = 1 and q = -1 as defined in the problem 

statement: 

 

 

Because this problem also has a control constraint, the Lagrangian of the 

Hamiltonian (𝐻𝐻�) must be used. The Lagrangian of the Hamiltonian equation is defined as: 
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  (5) 

The µ units are defined for consistent measurement of the Lagrangian of the 

Hamiltonian (5). The transpose of the path co-vector (µ) is defined as: 

 

The path function, h, uses the path constraint: 

 

Which allows the ZD Lagrangian of the Hamiltonian to be rewritten as: 

  (6) 

 

Develop the adjoint equations 

The ZD adjoint equations are found by taking the partial derivative of the control 

Hamiltonian (4) with respect to the state variables: 

  (7) 

  (8) 

 

Minimize the Hamiltonian 

Pontryagin’s Principle requires that the Hamiltonian (3) be minimized at each 

instant of time for the deterministic Zermelo’s time-varying control space [164]. To meet 

this requirement, the deterministic Zermelo problem must meet a combination of 

stationarity and complementarity conditions. The stationarity condition is: 

  (9) 
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The complementarity condition is: 

  (10) 

The stationarity condition is now applied to the deterministic Zermelo problem such 

that the partial derivative of 𝐻𝐻� with respect to u is set equal to zero: 

  (11) 

  (12) 

Then the complementarity condition is applied, which provides information about 

the behavior of the path co-vector. This results in µ being unrestricted because: 

  (13) 

is an equality constraint. 

 

Construct the Endpoint Lagrangian 

The deterministic Zermelo problem is in the Mayer form, with final time the 

objective. Endpoint boundary conditions must be evaluated at final time using the 

transversality conditions, minimized Hamiltonian, the Hamiltonian value condition, and 

the Hamiltonian evolution equation. The Endpoint Lagrangian equation is constructed to 

evaluate these conditions. 

The endpoint Lagrangian equation is defined as: 

  (14) 
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This equation partially depends on the endpoint function which is defined as the 

following: 

 

The υ co-variables are defined for measurement of the endpoint Lagrangian. The 

transpose of the endpoint co-vector (υ) is defined as: 

 

For the deterministic Zermelo problem, the endpoint Lagrangian equation becomes: 

  (15) 

 

Determine the transversality conditions 

Transversality conditions are found by taking the partial derivative of the Endpoint 

Lagrangian (𝐸𝐸�) with respect to the final positions of the state vectors, or more generally, 

the terminal state: 

  (16) 

These terms give us unknowns in terms of other unknows, so no new useful 

information is provided. 

Hamiltonian value condition 

The minimized Hamiltonian is called the lower Hamiltonian which is denoted by 

H. The lower Hamiltonian at final time is equivalent to the negative of the partial 
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derivative of the endpoint Lagrangian (𝐸𝐸�) (14) taken with respect to final time. Evaluating 

this partial derivative is known as the Hamiltonian value condition [164]. The deterministic 

Zermelo problem yields the following Hamiltonian value condition: 

  (17) 

 This equation can be rewritten as: 

 

where the constant Hamiltonian value of -1 is standard for minimum time problems. 

 

Hamiltonian evolution equation 

The derivative of the lower Hamiltonian with respect to time is equivalent to the 

partial derivative of the Lagrangian of the Hamiltonian with respect to time. The 

deterministic Zermelo problem yields the following Hamiltonian evolution equation: 

   (18) 

This equation tells us that the value of the lower Hamiltonian will be a constant 

with respect to time. 

 

Review of Necessary Conditions 

The Hamiltonian and the Lagrangian of the Hamiltonian, (4) and (6), were found 

for the deterministic Zermelo problem. The Hamiltonian offered no insight to the problem, 

but the Lagrangian of the Hamiltonian provided more information. The Lagrangian of the 

Hamiltonian was evaluated using both the complementarity and stationarity conditions, (9) 

and (10). The complementarity condition, when applied to the deterministic Zermelo 

problem, resulted in the path co-vector, µ, being unrestricted (13). The stationarity 

condition provided equations that relate the adjoint co-vectors to the path co-vector and 
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control solutions (11) and (12). These equations will be used to validate the control solution 

results shown later in this section. In addition, the adjoint co-vectors (7) and (8) must meet 

requirements imposed on their derivatives such that the derivative of λx is equivalent to λy 

and the derivative of λy is equal to -λx as required by the transversality equations (16). The 

Endpoint Lagrangian was developed to provide evaluation of transversality conditions, the 

Hamiltonian value condition, and the Hamiltonian evolution equation (15). Transversality 

conditions were evaluated but no new information was provided. The Hamiltonian value 

condition was evaluated for the deterministic Zermelo problem and showed that the value 

of the lower Hamiltonian was a constant of -1 (17). This value is consistent with the 

literature regarding minimum-time problems. Evaluation of the Hamiltonian evolution 

equation for the deterministic Zermelo problem stipulated that the value of the lower 

Hamiltonian be a constant, and the result of -1 meets that expectation (18).  

With knowledge of these necessary conditions, a candidate control solution (both 

u1 and u2) for the ZD problem is found by using an optimal control solver. In this 

dissertation, the control history is obtained using DIDO, the MATLAB toolbox for solving 

optimal control problems [167]. Figure 1 shows the candidate control solutions for u1 and 

u2. 

 
Figure 1. Solution of the Deterministic Zermelo Problem: Optimal 

Control Versus Time 
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The optimal trajectory, y-position vs. x-position, is shown in Figure 2 and as is seen, 

the time-optimal trajectory is not a straight line. This view of the x and y positions makes 

it easy to visualize a boat moving on the surface of the water from one location to another, 

in this case from an initial position of (2.25, 1) to a final position of (0, 0). 

 
Figure 2. Solution of the Deterministic Zermelo Problem: Optimal 

Position y Versus x 

For this deterministic Zermelo optimal control problem, Hamiltonian, co-states 

(adjoint and path co-vectors) and path constraint are reviewed as an indication of solution 

optimality. These necessary conditions derivations must hold for the candidate solution to 

be considered an optimal solution. As a part of the necessary conditions derivations, 

evaluation of the Hamiltonian value condition stipulated that the minimized Hamiltonian 

would be a constant value of -1 which is consistent with a minimum time problem. Indeed, 

as seen in Figure 3, the candidate solution does have a minimized Hamiltonian value close 

to -1. Figures 4 and 5 show that control and co-state pairs are the same function scaled by 

-1. This knowledge can be used to re-visit the stationarity condition that produced the 

following equations (11) and (12) that are reprinted here for clarity: 
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Substitution of the co-state variable by the negative of the control variable in either 

equation yields a µ value of ½. Figure 6 shows that the value of the path co-vector, µ, is ½ 

for all time. 

A path constraint was imposed on the problem such that u12 + u22 = 1. Figure 7 

shows that this constraint was met as the value of the path function is 1 for all time. 

 
Figure 3. Solution of the Deterministic Zermelo Problem: Optimal 

Hamiltonian Versus Time 
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Figure 4. Solution of the Deterministic Zermelo Problem: Optimal 

Control u1 and Co-State λx Pair Versus Time 

 
Figure 5. Solution of the Deterministic Zermelo Problem: Optimal 

Control u2 and Co-State λy Pair Versus Time 
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Figure 6. Solution of the Deterministic Zermelo Problem: Optimal 

Path Co-Vector Versus Time 

 
Figure 7. Solution of the Deterministic Zermelo Problem: 

Constraint Path Versus Time 

As a final test of the candidate control solution, a propagation test was performed. 

This test takes the candidate control solutions, u1 and u2, then uses a MATLAB numerical 

integrator to produce a position solution in the xy-plane. The “goodness” of the candidate 

control solutions can be evaluated based on how close the propagated position results come 

to the optimal results [164]. Figure 8 shows that propagation of this set of candidate control 

solutions provides a result that is similar to the optimal result shown in Figure 2. The shape 

of the curves for both result sets are similar, but the propagated figure shows a final position 
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that is offset approximately (0.06, -0.38) from the desired position of (0, 0). This error is 

to be expected as an artifact of the interpolation and numerical integration of the control 

and so the propagated result shows that the optimal solution is reasonable. 

 
Figure 8. Solution of the Deterministic Zermelo Problem: 

Propagation Test y Versus x 

Due to the predicted Hamiltonian, co-states, path constraint, and propagation test 

results meeting expectations, this candidate optimal control solution is considered an 

optimal solution to the ZD problem. 

B. OPTIMAL CONTROL WITH UNCERTAIN PARAMETERS 

Nonlinear optimal control problems that include parameter uncertainty are a 

“particularly challenging” subset of optimal control problems [168]. There is substantial 

interest in solving problems with inherent uncertainty as they are numerous and broadly 

apply to areas such as spacecraft dynamics, aircraft routing, combat modelling, and 

management science [169-171]. The main challenge in solving this subset of optimal 

control problems is the existence of a solution [164].  

This section presents an introduction to optimal control problems with parameter 

uncertainty, including various methods that may be used to solve these problems. The 

Zermelo minimum-time problem is adapted such that the wind becomes an uncertain 
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parameter [172]. This adaptation changes the cost functional from minimum time to minimum 

error at the desired final position. A set of necessary conditions that a candidate optimal 

control solution must satisfy is found and results are reviewed. 

1. Introduction to Optimal Control with Parameter Uncertainty 

A deterministic optimal control problem may be written in a Mayer form as [164], 

[172-175]: 

 

where Jdet is a deterministic cost functional defined by the Mayer (endpoint) cost, E. The 

vector function, f, contains the problem dynamics. Vector functions, e and h, are the 

endpoint constraint function and path constraint function, respectively. 

This problem may be subject to an uncertain parameter, p, such as a wind vector 

field or water current. Consider the state-space dynamics of a system with uncertain 

parameter p:  

 

 

where vector function f is the dynamics function. The dynamics are deterministic if the 

values for p are known, as was demonstrated in the deterministic Zermelo problem where 

p = (1, -1) for the specific values of p selected. Given control trajectory, u(t), we obtain 

x(t,p) as the solution to this dynamics system. Following standard practice in control 

systems design, values for uncertain p may be selected as some “nominal” p ∈ supp(p), 

where supp(·) denotes the support of a statistical distribution, e.g. Gaussian, uniform, etc. 

[151], [176]. The Mayer cost may be defined, for example, in terms of the terminal attitude 

or rate errors. However, the solution to the Mayer problem will only minimize the terminal 
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error for p and not necessarily over supp(p) because p is uncertain. What is desired is to 

minimize the cost functional over supp(p), but this is not straightforward due to p being an 

uncertain parameter. To resolve this issue, define a new cost functional with an explicit 

dependence on p [172], [174-175]: 

  (19) 

However, Jp (19) cannot be minimized due to its dependence on uncertain p. 

Recognizing that p is a scalar function in the real domain, a cost functional J can be created 

by integrating Jp over the support of p. This equation is written in terms of a Lebesgue-

Stieltjes integral [172], [174-175]: 

  (20) 

where the cost functional J is defined as an Np-dimensional integral over supp(p). 

Formulation of the problem in terms of a Lebesgue-Stieltjes integral (20) allows a measure 

function, m, to be chosen as the joint cumulative distribution function (CDF) of p [31], 

[153], [172], [174-175]. As mentioned previously, this distribution can take many forms, 

including Gaussian or uniform distributions, as defined by the user [151], [176]. 

Using the Lebesgue-Stieltjes integral, the standard Mayer optimal control problem 

is re-cast as a Lebesgue-Stieltjes optimal control problem [172], [174-175]: 

 

In a deterministic optimal control problem, the objective is to determine one state-

control function pair (u(·), x(·)) that minimizes the Bolza cost functional. In the Lebesgue-

Stieltjes optimal control problem, the objective is to determine the function-tube pair, 
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(u(·),x(·,·)):=(u(·),{x(·,p):p∈supp(p)}), that minimizes the Lebesgue-Stieltjes cost 

functional and further satisfies the constraints for all t ∈ [t0, tf] and all p ∈ supp(p). The 

“tube” in this sense is defined by the CDF and statistically limits the possible function or 

functions that can minimize the cost. The Lebesgue-Stieltjes optimal control problem thus 

demands that all conditions associated with the original problem be satisfied for all values 

of p ∈ supp(p) by a single control trajectory, u(t). This suggests that uncertainty can be 

completely managed without feedback. Note that a solution to this “stringent” problem 

may not exist. 

2. Semi-Discrete Lebesgue-Stieltjes 

Evaluation of the Lebesgue-Stieltjes integral may be done using any suitable 

cubature (numerical computation of a multiple integral) scheme [175]: 

  (21) 

where  for i = 1, 2, ..., n is a collection of points and weights for sampling the 

support of p. For finite n, a semi-discrete Lebesgue-Stieltjes optimal control problem is 

constructed by replacing the Lebesgue-Stieltjes integral (21) by its cubature [175]. The 

semi-discrete Lebesgue-Stieltjes optimal control problem is written in terms of a standard 

deterministic optimal control problem by assembling an ensemble of models for each 

cubature point as [175], [177-178]: 
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Because this problem is a standard optimal control problem, it can, in theory, be 

solved using any suitable technique such as shooting, collocation, robust optimization, 

polynomial chaos, Monte Carlo, approximation, multidimensional approximation, 

Pseudospectral or unscented guidance [158], [168], [179-191]. This chapter discusses three 

sampling techniques: Monte Carlo, multidimensional approximation, and unscented 

guidance. This discussion is followed by a demonstration of the unscented guidance method 

using the frequently cited Zermelo minimum time problem [153], [159], [165-166]. 

3. Monte Carlo Sampling 

National Aeronautics and Space Administration’s (NASA) Independent 

Verification and Validation (IV&V) program states that “Monte Carlo (MC) simulation is 

the forefront class of computer-based numerical methods for carrying out precise, 

quantitative risk analyses of complex projects” [192]. The aerospace industry uses MC to 

verify and validate software that is used on aircraft, spacecraft, missiles, and more. Impacts 

of uncertain spacecraft parameters, such as spacecraft inertia, can be assessed by using a 

MC simulation. For Monte Carlo sampling, the cubature weights are  for all i and 

the cubature nodes are random samples of the support of p. By the law of large numbers 

[193], the cubature should be close to the expected value when the number, n, of Monte 

Carlo samples is large, e.g., n = 1000 or greater. The semi-discrete Lebesgue-Stieltjes 

problem formulation using 1000 Monte Carlo samples is re-written as: 
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It is apparent from the problem statement above that Monte Carlo sampling will generate 

a very large-scale optimal control problem.  

4. Multidimensional Approximation Sampling 

Multidimensional approximation, also called GenOC in Kragelund’s thesis 

“Optimal Sensor-Based Motion Planning for Autonomous Vehicle Teams,” is a method 

for sampling an uncertain nonlinear optimal control problem developed by Claire Walton 

and described in her 2015 thesis titled “The Design and Implementation of Motion 

Planning Problems Given Parameter Uncertainty” [188], [194]. This method expands the 

approximation methods presented by Chris Phelps et al. in “Sample Average 

Approximations in Optimal Control of Uncertain Systems” and “Consistent 

Approximation of an Optimal Search Problem” and is similar to the multidimensional 

Pseudospectral method developed by Ruths and Li in “Multidimensional Pseudospectral 

Method for Optimal Control of Quantum Ensembles” [168], [184], [195]. 

Multidimensional approximation is a numerical algorithm for performing integrations of 

both space and time using any suitable optimal control solver(s). The ability to use a varied 

combination of optimal control solvers differentiates it from previous work by Ruths and 

Li that specified integrations over space and time using only Pseudospectral methods [187]. 

The multidimensional approximation method is well established and has been used in 

numerous publications. Its use has primarily addressed optimal control problems dealing 

with uncertain targets such as the case of finding a search trajectory (candidate solution 

path) that maximizes the probability of detecting an uncertain target [158], [168], [184], 

[190], [194]. The resulting optimal control problem is solved using SNOPT (a large-scale 

optimal non-linear problem (NLP) solver) to compute the numerical solution [196]. A 

Bolza-type problem formulation using multidimensional approximation sampling is 

written as [188]: 

  (22) 

This cost functional (22) has one finite set of nodes with weights, M, that discretizes 

the parameter space—set M has nodes {ωι
M}i=1M with associated weights {αι

M}Mi=1. For 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



45 

discretization over time, there is a finite set of grid points, N—set N has associated weights 

{bNk}Nk=0. In this way, multidimensional approximation reduces the number of sampling 

points to something on the order of 1e1 to 1e2 versus a comparable Monte Carlo sampling 

that is on the order of 1e3 or larger [158]. The multidimensional approximation method will 

not be used to solve the unscented reaction wheel maneuver nonlinear optimal control 

problem featured in this dissertation but could be considered for future research. 

5. Unscented Sampling 

To overcome the curse of dimensionality normally associated with cubature 

techniques [160], [164], [197], another sampling option is to take (pi, wi) to be the sigma 

points (weighted sampling points) that are normally associated with the unscented Kalman 

filter [198-202]. The unscented transform was originally introduced by Julier et al. as a 

method to avoid linearization in nonlinear filtering under the idea that it is better to 

approximate a probability density function than to linearize a nonlinear function [154], 

[198-200], [203-206]. A combination of the concept of the unscented transform, as defined 

by Julier et al., with standard optimal control is the basis for unscented guidance [153], [172], 

[207].  

In unscented guidance [153], the philosophy of approximation being better than 

linearization is followed to obtain a low-order semi-discretization of the Lebesgue-Stieltjes 

optimal control problem. The unscented guidance method results in a “tube” of potential 

solution-parameter paths for the system. This method reduces the overall number of 

calculations and still achieves the same or better statistical performance as a much larger 

random sampling method. In contrast to Monte Carlo sampling where n must be suitably 

large, the unscented transform uses a minimal number of cubature points to match 

statistical moments to a given order. For example, using the spherical simplex unscented 

transformation [155], only  cubature points are needed which is on the order of 

1e0 [208]. The multidimensional approximation method also samples the problem space to 

achieve a solution using a small number of points. Due to the multidimensional problem 

setup, the number of points needed to achieve a solution will typically be larger than an 

unscented guidance method. For example, if three points are need for a solution using 
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unscented guidance, the comparable problem would require 3 x 3 or nine points to sample 

the multidimensional problem space. The comparatively small number of points needed 

for unscented sampling generates a smaller-scale semi-discretization of the Lebesgue-

Stieltjes optimal control problem. This problem is easily solved for an open-loop control 

trajectory, u(t), that manages the effects of parametric uncertainty. This method is an 

established approach to sampling nonlinear optimal control problems and has been featured 

in numerous publications [152-153], [156-157], [172], [209-211]. The Ross, Proulx & 

Karpenko paper titled “Unscented Optimal Control for Spaceflight” describes a proof-of-

concept for a zero-gyro large-angle maneuver of a rigid-body that uses unscented guidance to 

reach a near-zero-mean-error final position solution [152]. 

The Zermelo minimum time problem is used here as an illustrative example to 

demonstrate how the unscented guidance approach is formulated [153], [172]. This 

example will show that a combination of an approximate probability distribution function 

(PDF) with optimal control software achieves a desired open-loop solution to a nonlinear 

optimal control problem with uncertainty. 

6. A Semi-Discrete Lebesgue-Stieltjes Zermelo Problem 

In this example, the deterministic Zermelo problem is developed into an uncertain 

one where the wind, p, is the uncertain parameter [153], [172]. This uncertain Zermelo 

problem is then transformed into a semi-discrete Lebesgue-Stieltjes Zermelo problem that 

easily changes to an unscented guidance version of the problem. Results are included to 

illustrate statistical improvements.  

The goal of the control solution for this uncertain problem is to determine a 

function-tube pair, (u(·), x(·,·)) := (u(·), {x(·,p) : p ∈ supp(p)}) that minimizes the user-

defined cost functional. In the case of this example Zermelo problem, the cost functional 

minimizes the mean error of the terminal position of the ship [153], [172]. The goal is to 

maneuver the ship in the uncertain wind environment while reaching the destination or 

getting as close as possible to it. An uncertain version (Zunc) of the deterministic Zermelo 

(ZD) problem is shown here: 
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The problem formulation for uncertain Zermelo incorporates the wind vector field as a 

uniformly uncertain term. In deterministic Zermelo, the wind vector field was defined as p 

= (p, q) = (1, -1), whereas in uncertain Zermelo it is defined as a nominal value at (1, -1) 

with uniform uncertainty of 0.22 in p and 0.12 in q. The uncertainty in the p vector field 

propagates into the dynamics terms and the final position of the ship, as shown by the 

addition of both p and q terms in the problem formulation. 

The uncertain Zermelo problem is not readily solvable due to uncertainty in p. 

Using the same technique described in “Introduction to Optimal Control with Parameter 

Uncertainty” and “Semi-Discrete Lebesgue-Stieltjes,” the uncertain Zermelo problem is 

transformed into a semi-discrete Lebesgue-Stieltjes problem. The Lebesgue-Stieltjes 

integral is replaced by an ensemble of sampling points, pi, with weights, wi, (pi, wi) for i = 

1, 2, ..., n, that sample the statistical distribution of the uncertain wind vector field, p [175], 

[177-178]. The semi-discrete Lebesgue-Stieltjes Zermelo problem formulation is written 

as a sequence of standard endpoint (“Mayer”) optimal control problems where n = ∞ [153], 

[172], [174-175], [177-178], [211]: 
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This semi-discrete Lebesgue-Stieltjes Zermelo problem formulation is easily 

changed to an unscented guidance problem formulation by replacing the infinite number 

of Lebesgue-Stieltjes weighted points with a small number of sigma points. The sigma 

points statistically sample the solution space [153]. They are developed using the spherical 

simplex unscented transform methodology as defined by Julier [155] where spherical 

simplex points lie on the origin or on a hypersphere centered at the origin. The general 

spherical simplex unscented transform sigma point definition is: 
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  (23) 

For the semi-discrete Lebesgue-Stieltjes Zermelo problem, the number of sigma 

points desired, i, is four, the space dimension, j, is two, and the state dimension, n, is two. 

A set of four spherical simplex points for ZLSn gives us ZN=4. This set of four sigma points 

(23) is defined using the following six steps: 

1. Define the dimension of the problem then calculate the number of sigma 

points necessary to describe it: 

a. Define ZN=4 as an n = 2-dimension problem 

b. Number of sigma points = n + 2 = 4 (or N=4 for ZN=4) 

2. Choose a weight for initial sigma point that is between 0 and 1 

c. Choose W0 = 1/4 for this case since it is one of N=4 total sigma 

points which makes the math straightforward 

3. Constrain W1 = W2 and solve for these weights using: 

 

d. So W1 = W2 = W3 = 1/4 

4. Check that W0 + W1 + W2 + W3 = 1 

5. Initialize sigma point vector sequence for j = 2: 
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  (24) 

6. Transform the sigma point vector sequence (24) from zero mean and unit 

covariance of the n x n Identity matrix Pzz to center at mean p = (1, -1) and 

covariance: 

 

This transformation uses the following equation [155]: 

  (25) 

where the square root of Pzz is a matrix square root of Pzz using for example 

the Cholesky decomposition. This transformation (25) results in the 

following transformed sigma point vector sequence: 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



51 

  (26) 

Using this set of N = 4 sigma points (26), the next step is to re-write the ZLSn 

problem formulation as the following semi-discretization ZN=4 where each sigma point is a 

copy of the initial problem formulation: 
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A candidate optimal control solution to this uncertain Zermelo problem by can be 

evaluated by developing Pontryagin’s necessary conditions. 

 

Construct the Hamiltonian(s) 

The uncertain Zermelo problem formulation defines the following state vector in 

primal space:  
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The λ cost unit is used for measurement of the control Hamiltonian, and it follows 

for the uncertain Zermelo problem that this adjoint co-vector exists in the same dimension 

but in dual space: 

 

The adjoint co-vector for the uncertain Zermelo problem is defined as: 

 

The uncertain Zermelo Hamiltonian is then given by: 

 

 (27) 

This equation can be rewritten as: 
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Because this problem also has a control constraint, the Lagrangian of the 

Hamiltonian (𝐻𝐻�) must be used. The Lagrangian of the Hamiltonian is defined as: 

 

The µ cost unit is defined for measurement of the Lagrangian of the Hamiltonian. 

The transpose of the path co-vector (µ) is defined as: 

 

The path function, h, uses the path constraint: 

 

Which allows the uncertain Zermelo Lagrangian of the Hamiltonian to be written: 

 

 (28) 

 

Develop the adjoint equations 

The adjoint equations are found by taking the partial derivative of the Hamiltonian 

with respect to the state variables at each of the four sigma points: 
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  (29) 

 
 

Minimize the Hamiltonian 

The uncertain Zermelo problem must meet a combination of stationarity and 

complementarity conditions such that the problem is minimized at each instant of time 

[164]. The stationarity condition as defined in (9) is repeated here for reference: 

 

The complementarity condition as defined in (10) is: 
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The stationarity condition is now applied to the uncertain Zermelo problem such 

that the partial derivative of 𝐻𝐻� with respect to u is set equal to zero: 

  (30) 

  (31) 

Then the complementarity condition is applied, which provides information about 

the behavior of the path co-vector that in this case is the same equation as for the 

deterministic Zermelo case (13): 

 

This condition results in µ being unrestricted because: 

 

 
Construct the Endpoint Lagrangian 

The uncertain Zermelo problem is in the Mayer form, with final position equal to 

zero as the objective. Endpoint boundary conditions must be evaluated at final time using 

the transversality conditions, the Hamiltonian value condition, and the Hamiltonian 

evolution equation. The Endpoint Lagrangian equation is constructed to evaluate these 

conditions. 

The endpoint Lagrangian equation is defined in (14) as: 

 

This equation partially depends on the endpoint function which is defined as the 

following: 
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The υ variables are defined for measurement of the endpoint Lagrangian. The 

transpose of the endpoint co-vector (υ) is defined as: 

 

For the uncertain Zermelo problem, the endpoint Lagrangian equation becomes: 

 

This equation can be written as: 

  (32) 

 

Determine the transversality conditions 

Transversality conditions are found by taking the partial derivative of the Endpoint 

Lagrangian (𝐸𝐸�) with respect to the final positions of the state vectors, or more generally, 

the terminal state at each of the four sigma points where the sum of weights is equal to one: 

 

 

  (33) 
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These terms give us unknowns in terms of other unknows, so no new useful 

information is provided. 

 

Hamiltonian value condition 

An endpoint cost is evaluated using the Hamiltonian value condition. The 

minimized Hamiltonian is called the lower Hamiltonian which is denoted by H. The lower 

Hamiltonian at final time is equivalent to the negative of the partial derivative of the 

endpoint Lagrangian (𝐸𝐸�) taken with respect to final time. Evaluating this partial derivative 

is known as the Hamiltonian value condition. The uncertain Zermelo problem yields the 

following Hamiltonian value condition: 

  (34) 

that is standard for time-free problems. 

 

Hamiltonian evolution equation 

The derivative of the lower Hamiltonian with respect to time is equivalent to the 

partial derivative of the Lagrangian of the Hamiltonian with respect to time. The uncertain 

Zermelo problem yields the following Hamiltonian evolution equation: 

  (35) 

This equation tells us that the value of the lower Hamiltonian will be a constant. 

 
Review of Necessary Conditions 

Both the Hamiltonian and Lagrangian of the Hamiltonian (27) and (28), were found 

for the uncertain Zermelo problem. The Hamiltonian offered no insight to the problem, but 

the Lagrangian of the Hamiltonian provided more information. The Lagrangian of the 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



59 

Hamiltonian was evaluated using both the complementarity and stationarity conditions (9) 

and (10). The complementarity condition, when applied to the uncertain Zermelo problem, 

resulted in the path co-vector, µ, being unrestricted as in deterministic Zermelo (13). The 

stationarity condition provided equations that relate the adjoint co-vectors at each sigma 

point to the path co-vector and control solutions (30) and (31). These equations will be 

used to validate the control solution results shown later in this section. In addition, the 

adjoint co-vectors at each sigma point must meet requirements imposed on their derivatives 

such that the derivative of λx is equivalent to -λy scaled by an uncertain wind term, q. Also, 

the derivative of λy is equal to -λx scaled by an uncertain wind term, p. These derivative 

requirements hold true at each sigma point (29). The Endpoint Lagrangian was developed 

to provide evaluation of transversality conditions, the Hamiltonian value condition, and the 

Hamiltonian evolution equation (32). Transversality conditions were evaluated for each 

sigma point, but no new information was provided (33). The Hamiltonian value condition 

was evaluated for the deterministic Zermelo problem and showed that the value of the 

lower Hamiltonian was a constant of 0 (34). This value is consistent with the literature 

regarding time-free problems [164]. Evaluation of the Hamiltonian evolution equation for 

the uncertain Zermelo problem stipulated that the value of the lower Hamiltonian be a 

constant, and the result of 0 meets that expectation (35).  

With knowledge of these necessary conditions and using the ZN=4 unscented 

guidance framework, a candidate control solution (both u1 and u2) for the ZN=4 problem is 

found using the optimal solver, DIDO [167]. Figure 9 shows the candidate control solutions 

of u1 and u2 for the uncertain Zermelo problem. 
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Figure 9. Solution of the Uncertain Zermelo Problem: Optimal 

Control Versus Time 

The optimal trajectories, y-position vs. x-position for each sigma point, are shown 

in Figure 10 and their shapes are spirals. The four sigma point solutions are grouped close 

to a final position of (0, 0): (0.08, 0.06), (-0.02, -0.03), (-0.03, -0.02) and (-0.03, -0.02). 

 
Figure 10. Solution of the Uncertain Zermelo Problem: Optimal 

Position y Versus x 

For this uncertain Zermelo optimal control problem, Hamiltonian, co-states (adjoint 

and path co-vectors) and path constraint are reviewed as an indication of solution 

optimality. These necessary conditions derivations must hold for the candidate solution to 
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be considered an optimal solution. As a part of the necessary conditions derivations, 

evaluation of the Hamiltonian value condition stipulated that the minimized Hamiltonian 

would be a constant close to 0 which is consistent with a time-free problem. Indeed, as 

seen in Figure 11, the candidate solution does have a minimized Hamiltonian value close 

to 0. Figures 12 and 13 show that all co-states are close to zero even though the associated 

control trajectories are not. This knowledge can be used to re-visit the stationarity condition 

that produced the following equations: 

 

 
Substitution of the co-state variables with values close to zero in either equation 

leads to a µ value that is also close to zero. Figure 14 shows that the value of the path co-

vector, µ, is close to zero for all time. 

A path constraint was imposed on the problem such that u12 + u22 = 1. Figure 15 

shows that this constraint was met as the value of the path function is 1 for all time. 

 
Figure 11. Solution of the Uncertain Zermelo Problem: Optimal 

Hamiltonian Versus Time 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



62 

 
Figure 12. Solution of the Uncertain Zermelo Problem: Optimal 

Control u1 and Co-States λx Pair Versus Time 

 
Figure 13. Solution of the Uncertain Zermelo Problem: Optimal 

Control u2 and Co-States λy Pair Versus Time 
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Figure 14. Solution of the Uncertain Zermelo Problem: Optimal 

Path Co-Vector Versus Time 

 
Figure 15. Solution of the Uncertain Zermelo Problem: Constraint 

Path Versus Time 

As a final test of the candidate control solution, a propagation test was performed. 

This test takes the candidate control solutions, u1 and u2, then uses a MATLAB numerical 

integrator to produce a position solution in the xy-plane. This Monte Carlo solution was 

generated N=10 times to capture the effect of the uncertain wind terms. The “goodness” of 

the candidate control solutions can be evaluated based on how close the propagated 

position results come to the optimal results [164]. Figure 16 shows that propagation of this 

set of candidate control solutions provides results that are similar to the optimal results 
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shown in Figure 10. The shape of the curves for both result sets are similar, but the 

propagated figure shows final position offsets within approximately (+/-0.05, +/-0.03) from 

the desired position of (0, 0). This error is expected due to the uncertainty in the wind 

vector field, p. This propagated result shows that the optimal solution has successfully 

accommodated the uncertainty. 

 
Figure 16. Solution of the Uncertain Zermelo Problem: Propagation 

Test y Versus x Using N=10 Monte Carlo Runs 

Due to the predicted Hamiltonian, co-states, path constraint, and propagation test 

results meeting expectations, this candidate optimal control solution is considered an 

optimal solution to the ZN=4 problem. Figure 17 depicts the data from the N=1000 run 

Monte Carlo scenario for the uncertain Zermelo problem, ZN=4. The mean final position 

was (0.12, 0.02) for the Monte Carlo solution. The mean error for the Monte Carlo solution 

was x = 0.0014 and y = 0.0008. The Monte Carlo standard deviation was 0.0828 and 0.1631 

for x and y respectively. These results agree with results published in the paper “Unscented 

Guidance” where the error mean was x = -0.0018 and y = 0.0005 and standard deviation 

was x = 0.1139 and y = 0.1112 [153]. 

Table 2 summarizes mean error and standard deviation results for ZD and ZN=4. Both 

mean error and standard deviation values were smaller for ZN=4 versus ZD even though ZN=4 

includes uncertainty in the dynamics. Mean error for ZN=4 was (0.0014, 0.0008) which was 
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more than an order of magnitude (ten times) smaller than the ZD values of (0.0333, 0.0152). 

Standard deviation for ZN=4 was (0.0828, 0.1631) which was smaller than the ZD values of 

(0.2351, 0.1712). These uncertain Zermelo results are better than the deterministic Zermelo 

results because use of sigma points properly captures the statistics of the problem whereby 

both the mean error and standard deviation values are reduced.  

 
Figure 17. Solution of the Uncertain Zermelo problem: N=1000 

Monte Carlo Simulation of Target Error Distribution 

Table 2. ZD and ZN=4 Monte Carlo Error and Standard Deviation Results 

Zermelo Version Target Value Error Mean Standard Deviation 
ZD x(tf) = 0 0.0333 0.2351 

y(tf) = 0 0.0152 0.1712 
ZN=4 x(tf) = 0 0.0014 0.0828 

y(tf) = 0 0.0008 0.1631 

 

It is obvious that a minimum number of sigma points is necessary to properly 

capture statistical information about the optimal control problem. These Zermelo problem 

results reveal that a number of sigma points corresponding with only the first few moments 

of the problem contributes to reductions in mean error and covariance. These reductions in 
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error and covariance give confidence in the methodology of using unscented guidance with 

sigma points to achieve an optimal solution. 

7. Dissertation Use of Unscented Guidance Method 

The two versions of the Zermelo problem studied in [153] developed a 

methodology for generating an unscented guidance optimal control solution. The 

deterministic Zermelo problem established a foundation of problem development. The 

optimal control solution found for the uncertain Zermelo problem was verified using a 

Monte Carlo simulation. This simulation showed improved error statistics, both smaller 

mean error and standard deviation, thus demonstrating that the unscented guidance concept 

is a valid method for sampling an uncertain linear system. The methodology summarized 

here is used to develop a control solution for the non-linear unscented reaction wheel 

maneuver problem in the following chapters of this dissertation. 

C. CHAPTER SUMMARY 

The purpose of this chapter was to introduce the concept of optimal control for a 

linear system (with application for non-linear systems), the effect of uncertain parameters 

on these systems and the framework of sampling that is used to find solutions for uncertain 

optimal control problems. A deterministic Zermelo minimum-time problem was used to 

illustrate how a linear optimal control problem is formulated. This problem was then solved 

through application of Pontryagin’s necessary conditions for optimality. A candidate 

control solution was developed using DIDO in MATLAB and tested against the necessary 

conditions. The candidate control solution was found to be an actual optimal control 

solution. The deterministic Zermelo problem was changed to accommodate an uncertain 

parameter, in this case a wind vector field, that affects the position of a ship maneuvering 

within it. Monte Carlo, Multidimensional Approximation and Unscented Guidance 

sampling were introduced as possible methods for determining a solution for an optimal 

control problem with uncertain parameters. An uncertain Zermelo problem was developed 

using a semi-discrete Lebesgue-Stieltjes approach then solved through development of 

Pontryagin’s necessary conditions for optimality. A candidate control solution was 

produced using the chosen method of unscented guidance sigma point sampling within 
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DIDO/MATLAB. The candidate uncertain Zermelo control solution was compared against 

the necessary conditions for optimality and was found to be an optimal control solution. A 

Monte Carlo analysis of the candidate control solution was also run to confirm optimal 

results and validate use of sigma points as a sampling method. The sigma point sampling 

is used going forward in this dissertation. 
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III. CONVENTIONAL REACTION-WHEEL ATTITUDE 
CONTROL 

This chapter defines the representative spacecraft model, describes useful concepts 

associated with the model such as equations of motion and quaternions, uses the model to 

demonstrate a closed-loop (feedback) maneuver, uses the model to demonstrate a baseline 

open-loop maneuver, and illustrates why open-loop control systems are typically not used.  

A. REPRESENTATIVE SPACECRAFT 

There are many spacecraft that have experienced mission ending feedback sensor 

hardware failures. Some spacecraft such as the Hubble Space Telescope (HST) and the 

Lunar Reconnaissance Orbiter (LRO) have been able to overcome hardware failures and 

experience longer science lifetimes due to the work of engineers and scientists who have 

been able to craft mission extending control system software fixes to these hardware 

problems.  

HST has generated a wealth of science data; its hardware components and software 

changes, including to the control system, are well documented [29], [55], [212-222]. HST 

engineering and science teams conceived of reduced mode (safemode) software 

contingency plans for expected hardware failures as far back as 1990, some of which have 

been tested on the spacecraft [29], [213]. Additional reduced mode (Two-Gyro Science 

Mode (TGS) and One-Gyro Science Mode (OGS)) software contingency plans have been 

developed since that time and tested on-orbit [53], [222]. These reduced mode software 

versions are available to be turned-on as hardware continues to age and fail [55].  

In contrast, LRO is a much newer spacecraft that recently experienced a hardware 

failure that forced changes to the control software for the mission to continue [56]. In fact, 

research is ongoing among the LRO team to further improve the control software and 

extend the mission given the failed hardware and other mission constraints [223]. Values 

used for the dissertation spacecraft include baseline inertia tensor, reaction wheel 

alignment matrix and maximum reaction wheel torque are similar to the values of the LRO 

satellite. Maximum slew rate is a value imposed on the dissertation spacecraft due to the 
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proportional rate limiter. Reaction wheel torque discount, position and rate gains are 

chosen to be representative values [31]. Table 3 presents an overview of the parameters 

used in this dissertation. 

Table 3. Spacecraft Parameters Used in This Dissertation 

Parameter Symbol Value Units 

nominal 
inertia tensor    

reaction wheel 
alignment 

matrix 
  —  

maximum 
reaction wheel 

torque 
  0.16  

reaction wheel 
torque 

discount 
  0.75 — 

maximum 
slew rate*    0.5 deg/s 

position gain     

rate gain      

*Maximum slew rate is a value that is imposed due to the proportional rate limiter. 

B. SPACECRAFT ATTITUDE KINEMATICS 

Quaternions are four-component vectors that are used extensively to describe 

spacecraft attitude [22], [162], [223-225]. A four-component vector is defined where q1-3 

is known as the vector component and q4 is the scalar component: 

 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



71 

A 4x4 skew-symmetric matrix generated from the four-vector is commonly defined 

as [224]: 

 

The kinematic differential equation for quaternions is thus [225]: 

  (36) 

 

C. CLOSED-LOOP EQUATIONS OF MOTION 

Closed-loop attitude control systems depend on a comparison of desired attitude to 

sensed attitude where error is driven to zero by the controller. When using quaternions as 

the spacecraft attitude representation, this action can be termed “quaternion error feedback” 

[225]. In this section, we develop the equations of motion for the attitude control of a 

reaction-wheel-based satellite using quaternion error feedback. 

1. Satellite Equations of Motion 

A mathematical model of the attitude dynamics of a reaction-wheel-based satellite 

is developed by extending Euler’s rigid body equations [225] to include the momentum 

stored by the reaction wheels. For a reaction wheel system, angular momentum is 

conserved in the inertial frame. In the absence of external torques, the rotational dynamics 

are derived by differentiating the momentum vector with respect to time and setting the 

derivative to zero. In the inertial frame this derivative is simply: 

  (37) 
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where superscript “N” is used to denote a vector referenced to the inertial frame. Since it 

is generally more convenient to write the system momentum, H, in a spacecraft body-fixed 

frame, the derivative (37) is re-written (using the transport theorem [226]) as: 

  (38) 

where the vector quantities are now referenced to the body frame, ‘B’. 

The total system momentum in the body frame is written as: 

  (39) 

where J is the body-frame referenced inertia tensor of the spacecraft (including the reaction 

wheels), is the spacecraft angular rate vector and vector is the vector of reaction 

wheel momenta about the individual spin axes. Matrix is a column matrix of unit-

vectors relating the reaction wheel spin axes to the body-fixed frame so the product 

expresses the reaction wheel momentum in the body frame. 

Differentiating, the total system momentum in the body frame (39), we have: 

 (40) 

Assuming that the spacecraft mass properties are nominally fixed during the period 

of interest and knowing that the directions of the reaction wheel spin axes are also fixed, 

the differentiated total system momentum in the body frame equation (40) becomes: 

  (41) 

Substituting the total system momentum (39) in the body frame and the reduced 

differentiated total system momentum in the body frame (41) into the derivative of the 

system momentum in the body frame (38) gives: 

  (42) 

/ /
B B B B W W B W W

B N B Nω ω= ++ +H J J Z h Z h   
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This equation (42) may be rearranged as: 

  (43) 

From Sidi [9], the equation for the torque of reaction wheel i is given as: 

  (44) 

The second term on the right-hand side of this equation accounts for the relative 

motion between the spacecraft and the wheel and can be ignored if the angular rate of the 

wheel is larger than the rotational rate of the spacecraft, which is normally the case. Thus, 

either vector or vector is considered as the control vector (44) for the system. 

To complete the spacecraft model, the attitude kinematics need to be specified. 

Quaternions are used for this purpose. Taking q4 as the scalar, the quaternion kinematic 

differential equations are found in [225] and shown in (36) with: 

 

Selecting the system state vector as and the control vector as 

, a system of nonlinear ordinary differential equations including (43) describes the 

attitude dynamics of the spacecraft and is written as: 

 (45) 
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2. Quaternion Error Feedback 

The block diagram of a closed-loop quaternion error attitude control system is 

shown in Figure 18. In this section and for the remainder of this dissertation, the subscripts 

and superscripts used to denote relative motion and reference frames will be dropped to 

simplify the equations. The meaning of the variables will be as described previously unless 

otherwise noted in the text. As seen in Figure 18, the control loop is comprised of a series 

of blocks designed to determine the control input vector, u, which is fed to the reaction 

wheels. Changes in the wheel momentum produce changes to the spacecraft attitude which 

results in a desired orientation as specified by the commanded quaternion, qc. A key 

element of the feedback loop is the attitude estimator that utilizes various sensors such as 

rate gyroscopes, star-trackers, etc., along with a measurement-fusing filter to estimate the 

spacecraft attitude and angular rate. The signals output by the attitude estimator are used 

to evaluate the estimated error quaternion, , and error rate, . These two error 

vectors are then processed by the feedback law to generate a vector of feedback torques, 

, defined in the spacecraft body-fixed frame. An additional torque command, , is 

injected into the control loop to approximately cancel the gyroscopic torque. The resulting 

command torque vector,  is then mapped to the reaction wheels by a control 

allocation block, so that the vector of individual wheel commands, u, is implemented to 

change the stored momentum, h, of the reaction wheel array. The spacecraft will then 

respond according to the physics of rotational motion. 

 
Figure 18. Block Diagram of Closed-loop Quaternion Error 

Feedback Attitude Control System 
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In this dissertation, the details of the attitude estimator are not of interest. It is 

therefore assumed that the signals, and are equivalent to q and in Figure 18. Under 

this assumption, the quaternion error, qe, may be computed as in [9], [225]: 

  (46) 

where superscript “q-1” is used to denote the quaternion conjugate and symbol “ “ 

denotes quaternion multiplication. Furthermore, vector ve and scalar se represent the vector 

and scalar parts of the quaternion error, respectively. 

The actual value of the attitude error angle, , is proxied as the argument of the 

inverse tangent as described in [225] for eigenaxis rotations under slew rate constraint. The 

attitude error angle is computed from the quaternion error (46) trajectory using the 

following equation: 

  (47) 

The quaternion angle error is taken as  when . 

A practical quaternion error feedback law is given by [31]: 

  (48) 

where kp and kr are suitably chosen “position” and “rate” gains and Jnom denotes the 

assumed (nominal) inertia tensor for the vehicle. Due to imprecise knowledge of the 

spacecraft mass properties, , in general. The nonlinear function is a 

proportional limiter on the quaternion error that enforces a slew rate limit while 

simultaneously preserving the direction of the attitude error vector [31]. A slew rate limit 

is a practical constraint needed to ensure that the gyroscopic torque does not become so 

large that it exceeds the torque capability of the reaction wheels. In the equation for 
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quaternion error feedback (48), the proportional limiter implements the following logic 

[156]: 

 

The command torque , determined by the previously defined feedback law (48)

, is allocated to the individual wheels by inverting matrix Z. For many spacecraft a 

redundant array of wheels is used to ensure that the three-axis control is maintained in the 

event of a wheel failure. In this case, matrix Z is not a square matrix, so the Moore-Penrose 

pseudoinverse is used to allocate the command torque to the wheels. The Moore-Penrose 

pseudoinverse is computed as: 

  (49) 

When the control allocation is computed, some or all the commanded reaction 

wheel torques may be larger than the capability of the wheels. Thus, to accommodate the 

actuator saturation constraints, the actuator commands must be scaled so that for 

each actuator. To ensure that the torque vector scaling lies in the desired direction, the 

scaling should be done as follows with (49) from [227]: 

  (50) 

where denotes the max-norm (element of vector Z#τc with the maximum absolute 

value) and parameter is a discount factor on the total reaction wheel torque reserved 

for feedback. The remaining torque authority is allocated for compensation of the 

gyroscopic torque. 
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D. EXAMPLE CLOSED-LOOP MANEUVER 

The quaternion error feedback logic (48) is simulated for an example reorientation 

maneuver to illustrate how a conventional closed-loop control scheme can desensitize 

output to errors in knowledge of the system parameters. The dissertation spacecraft 

parameters listed in Table 3 are used and it is assumed that the uncertainty lies in the 

knowledge of the spacecraft inertia tensor, specifically, 10% uncertainty in the (1,1) 

element of the inertia tensor. The simulated maneuver is a rest-to-rest slew through angle 

 deg about the spacecraft body x-axis. Thus, the initial conditions on the satellite 

attitude and rate are q(t0) = [0,0,0,1]T and ω(t0) = [0,0,0]T while the commanded offset 

quaternion is qc = [√3/2,0,0,1/2]T. The initial momentum bias for the spacecraft is chosen 

as an arbitrary, but achievable, value of  Nms, which for the 

reaction wheels translates to  Nms. The results of this section 

were first published in [156]. 

Figure 19 reports the time history of the attitude error angle,  (47), as the 

spacecraft maneuvers from the 120 deg x-axis offset to the final position at zero degrees 

offset. This maneuver is performed in the closed-loop using error feedback. It is apparent 

that the closed-loop attitude control system does a very good job of regulating the angle 

error to zero, despite the uncertainty in the satellite inertia tensor. Using baseline values of 

the satellite inertias, the closed-loop attitude controller reduces the position (angle) error to 

less than 0.05 deg at t = 313 seconds.  

Figure 20 reports the time history of the angular rate through the closed-loop 

maneuver. The angular rate response corresponding to the baseline inertia values of the 

satellite are shown as solid lines. Variation in the body axis rates is shown as shaded 

“uncertainty tubes” surrounding the nominal (baseline) curve. The satellite rate response 

adheres to the 0.5 deg/s rate limit imposed on the slew via the proportional limiter. It is 

also evident that the satellite body rates vary only slightly over the simulation as shown by 

the small size of the uncertainty tubes. The largest variation in the satellite rate occurs for 

the body x-axis. 
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The satellite momentum (expressed in the body frame) is shown in Figure 21. 

Similar to Figure 20, the nominal momentum is shown as solid lines and the variations 

from nominal are shown as shaded uncertainty tubes surrounding the nominal curves. 

Referring to Figure 21, it is evident that the closed-loop control system functions by 

adjusting the momentum exchange in response to the attitude and rate feedback in such a 

way that the slew rate limit is enforced despite the inertia uncertainty. Additionally, the 

feedback signals are utilized by the closed-loop system to drive the terminal attitude and 

rate errors toward zero. This desensitizing characteristic of the feedback system is precisely 

why sensors such as rate gyroscopes need to be used to perform practical reorientation 

maneuvers. 

 
Figure 19. Simulation of Closed-Loop Maneuver Angle Error 
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Figure 20. Simulation of Closed-Loop Maneuver Angular Rate in 

the Body-Frame 

 
Figure 21. Simulation of Closed-Loop Maneuver Momentum in the 

Body-Frame 

E. OPEN-LOOP KINEMATIC MANEUVER PROFILE 

When the feedback sensors of a closed-loop attitude control system fail, options to 

continue spacecraft control are limited. Sometimes, spacecraft control can continue in the 

open-loop. The block diagram of an open-loop attitude control system is shown in Figure 

22. As seen in Figure 22, the open-loop system is comprised of a set of blocks designed to 

implement the control input vector, , that adjusts the reaction wheel momenta which 

changes the attitude of the spacecraft. Ideally, the open-loop control will achieve the 
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desired final position. In the presence of uncertainty, however, there may be a significant 

difference between the desired attitude and the attitude that is achieved by the application 

of the open-loop control. The results of this section were first published in [157]. 

To determine the open-loop control vector, a body-frame torque vector, τbf, is 

constructed from a kinematic maneuver profile about the Eigenaxis and an estimate of the 

satellite inertia tensor. Such a maneuver is typically a bang-off-bang maneuver (see [227] 

for details). Using the kinematic maneuver profiles of Figures 23–25, an additional torque 

command, , is computed and added to the path to approximately cancel the gyroscopic 

torque. The resulting command torque vector, τc = τbf + τg, is then mapped to the reaction 

wheels by a control allocation block, so that the vector of individual wheel commands, , 

is implemented. The spacecraft will then respond according to the physics of rotational 

motion. A kinematic profile maneuver time of t = 313 sec. was chosen to match the closed-

loop solution time. The baseline simulated maneuver is a rest-to-rest slew through angle 

 deg about the spacecraft body x-axis. Thus, the initial conditions on the satellite 

attitude and rate are q(t0) = [0,0,0,1]T and ω(t0) = [0,0,0]T while the commanded offset 

quaternion is qc = [√3/2,0,0,1/2]T. 

Jnom Control Allocation Reaction Wheels Spacecraft

αslew q, ωḣ uτc 

τslew 

τg = ω×(Jnomω+Zh) 

 
Figure 22. Block Diagram of Open-Loop Attitude Control System 
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Figure 23. Open-Loop Profile of Maneuver Rotation Acceleration 

 
Figure 24. Open-Loop Profile of Maneuver Rotation Rate 
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Figure 25. Open-Loop Profile of Maneuver Rotation Angle 

F. OPEN-LOOP KINEMATIC MANEUVER: SINGLE-AXIS INERTIA 
UNCERTAINTY 

Using the kinematic maneuver profiles, the performance of an open-loop large-

angle slew is explored to establish a baseline for open-loop performance and for 

comparison later against unscented guidance solutions. As specified with the closed-loop 

slew, it is assumed that the parametric uncertainty lies in the knowledge of the spacecraft 

inertia tensor. Specifically, 10% uncertainty in the (1,1) element of the inertia tensor will 

be implemented using the representative spacecraft parameters listed in Table 3. The initial 

momentum bias for the spacecraft is assumed to be  Nms, which 

for the reaction wheels translates to  Nms. The gyroscopic 

torque correction in Figure 22 is also computed. The results of this section were first 

published in [156-157]. 

Figure 26 reports the time history of the attitude error angle through the open-loop 

slew from 120 degrees to zero degrees of position error. It is apparent that the open-loop 

attitude control system does a very poor job of regulating the angle error to zero due to the 

inherent system uncertainty found in the satellite inertia tensor. When reoriented in the 

open-loop, a large angle error is developed as seen in the shaded “uncertainty tube” 

surrounding the baseline curve in Figure 26.  
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Figure 27 reports the time history of the angular rates of the spacecraft body axes 

through the slew. The angular rate response for each body axis corresponds to the baseline 

inertia values of the satellite and are shown as solid lines. Variation in the body axis rates 

is shown as shaded “uncertainty tubes” surrounding the nominal (baseline) curves. It is 

evident that the satellite body rates vary considerably over the simulation as shown by the 

large size of the uncertainty tubes. The largest variation in the satellite rate occurs for the 

body x-axis but is present in the body y-axis and z-axis as well. It is notable that rate errors 

are observed about all three body-axes when the maneuver is performed in the open-loop. 

This is because the gyroscopic torques cannot be properly canceled by the open-loop 

commands. 

The open-loop satellite momentum (expressed in the body frame) is shown in 

Figure 28. It is observed that the spacecraft body momentum does not show any variation. 

This is because the system error exists in the inertia tensor, not in the torque profile that is 

fed into the open-loop controller. In the open-loop, it is not possible to modulate the system 

momentum to control the error as is done by a closed-loop controller.  

Figure 29 shows Monte Carlo simulation results of open-loop kinematic slew 

terminal pointing errors for N=1000 runs. Using baseline values of the satellite inertias, the 

average open-loop angle error was calculated to be 5.50 deg and the average value of the 

rate error was computed as 0.034 deg/sec at t = 313 seconds. Reorienting the spacecraft in 

the open-loop can lead to large pointing errors, even when the error exists in only one axis.  
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Figure 26. Open-Loop Kinematic Maneuver Angle Error 

 
Figure 27. Open-Loop Kinematic Maneuver Body-Frame Angular 

Rate 
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Figure 28. Open-Loop Kinematic Maneuver Body-Frame 

Spacecraft Momentum 

 
Figure 29. Monte Carlo Simulation Results of Open-Loop 

Kinematic Slew: Terminal Pointing Errors 

G. OPEN-LOOP KINEMATIC MANEUVER: THREE-AXIS INERTIA 
UNCERTAINTY 

Using the kinematic maneuver profiles, the performance of an open-loop large-

angle slew with three-axis uncertainty is explored for comparison with closed-loop and 

open-loop single-axis uncertainty results. It is assumed that the parametric uncertainty lies 

in the knowledge of the spacecraft inertia tensor. Specifically, 10% uncertainty in the (1,1), 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



86 

(2,2) and (3,3) elements of the inertia tensor will be implemented using the dissertation 

spacecraft parameters listed in Table 3. 

Torque profiles were provided to the four reaction wheels to generate a response. 

These profiles are shown in Figure 30. Position error time history of the three-axis 

uncertainty 120 degree maneuver is shown in Figure 31. It is apparent that the open-loop 

attitude control system does a poor job of regulating the angle error to zero due to the 

uncertainty in the satellite inertia tensor. Angular rate error of the body axes time history 

is shown in Figure 32. It is evident that like the single axis uncertainty, the satellite body 

rates increase in variability over the simulation run time indicating cross-coupling in the 

open-loop dynamics.  

The satellite body-frame momentum with three-axis uncertainty is shown in Figure 

33. As seen in the single-axis uncertainty problem, the three-axis uncertainty reaction 

wheel momentum does not show any variation. This behavior happens for the same reason, 

that there is no error in the torque profile that is fed to the reaction wheels. The error exists 

in the inertia tensor and without closed-loop feedback, there is no method for that error to 

manifest in the spacecraft body momentum. 

 
Figure 30. Open-Loop Reaction Wheel Torque Kinematic 

Maneuver for Three-Axis Uncertainty 
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Figure 31. Open-Loop Kinematic Maneuver for Three-Axis 

Uncertainty Angle Error 

 
Figure 32. Open-Loop Kinematic Maneuver for Three-Axis 

Uncertainty Body-Frame Angular Rate 
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Figure 33. Open-Loop Kinematic Maneuver for Three-Axis 

Uncertainty Body-Frame Spacecraft Momentum 

The average value of the three-axis uncertainty angle error corresponding to 

nominal inertia values was calculated to be 88.66 deg and the average value of the rate 

error was computed as 0.430 deg/sec at t = 313 seconds. Reorienting the spacecraft in the 

open-loop can lead to large pointing errors, as was seen in both the single-axis and three-

axis uncertainty results. It is obvious from the scale of these pointing errors, over 88 

degrees of error for a 120-degree maneuver with three-axis error present, that open-loop 

methods for controlling spacecraft are not often used. 

H. CHAPTER SUMMARY 

The purpose of this chapter was to discuss conventional reaction-wheel attitude 

control in both a closed and open-loop approach. A representative spacecraft for use in the 

dissertation examples was defined as a medium-sized spacecraft with a set of four reaction 

wheels. This type of spacecraft is quite common as discussed in the background section of 

this dissertation. Tools for use in building the dissertation MATLAB code such as 

definition of quaternions, equations of motion, and quaternion error feedback were 

described. The dissertation spacecraft definition was used with these tools to build an 

example closed-loop maneuver for which results were provided. Based on the closed-loop 

results, a set of position, rate and acceleration open-loop kinematic maneuver profiles were 

created to emulate the 120 degree closed-loop maneuver. These profiles were used to 
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maneuver the dissertation spacecraft in the open-loop with a single axis of inertia tensor 

uncertainty. As expected, position and rate of the open-loop maneuver exhibited more error 

than the comparable closed-loop system. The closed-loop maneuver had an average 

position error of less than 0.05 deg whereas the open-loop maneuver had an average 

position error of 5.50 deg. The closed-loop maneuver average rate error was 0.004 deg/sec 

whereas the open-loop was 0.034 deg/sec. The profiles were further used to maneuver the 

dissertation spacecraft in the open-loop with three axes of inertia tensor uncertainty. 

Results for the three-axis inertia uncertainty case were worse than the single-axis 

uncertainty case. The three-axis uncertainty case had an average position error of 88.66 

deg where single-axis uncertainty was 5.50 deg and closed-loop maneuver was less than 

0.05 deg. The three-axis uncertainty case had an average rate error of 0.430 deg/sec where 

single-axis uncertainty had 0.034 deg/sec and closed-loop was 0.004 deg/sec. The results 

of this chapter demonstrate why open-loop control is rarely used for spacecraft. Errors in 

the position and rate of the spacecraft are large enough to prevent hand-off to fine guidance 

sensors. Both the dissertation spacecraft and kinematic maneuver profiles defined in this 

chapter will be used later in open-loop scenarios of this dissertation. 
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IV. FORMULATION OF UNSCENTED REACTION WHEEL 
MANEUVER PROBLEM 

This chapter sets up the equations necessary to formulate the unscented reaction 

wheel maneuver optimal control problem. The first step in this formulation is to define a 

cost functional. This specific cost functional is defined to mitigate the large amount of 

terminal error observed when closed-loop reaction wheel torque commands are 

implemented in the open-loop [156]. An unscented guidance problem formulation 

including sigma points is applied. Necessary conditions for optimality are derived for two 

versions of the problem. The first version of necessary conditions considers arbitrary 

momentum bias cases where a known value of momentum bias is provided to the system. 

The second version of necessary conditions considers the cases when momentum bias is 

unknown but assumed present, so its value is treated as another variable for which to solve. 

The unscented reaction wheel maneuver problem formulation is used in the following 

chapter to provide results of the maneuvering problem. 

A. COST FUNCTIONAL DEFINITION 

To solve the unscented reaction wheel maneuver problem using optimal control, a 

cost functional must be defined that minimizes terminal error. Start by defining an error 

cost functional. The difference between actual position and desired position at final time 

gives an error term, e, as shown in equation (51): 

 

  (51) 

It is desirable to find both mean terminal error as close to zero as possible and 

variance between tf measurements as small as possible. Minimizing the mean squared error 

of the system provides a measure for both desired qualities. It is also desirable to 

incorporate parameter uncertainty, p. By including parameter uncertainty, the cost 

functional equation incorporates the distribution of error as a function of distribution of 

parameter uncertainty. The squared errors add to be the total system cost which is desired 
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to be as small as possible. The cost functional for mean squared error with parameter 

uncertainty is: 

  (52) 

This cost functional definition (52) is easily used by any sampling technique to 

develop a solution. For example, Monte Carlo can be used to sample the problem with 

N=1000 or greater points. Other sampling techniques such as multidimensional 

approximation or unscented guidance can use N sampling points as small as three with 

similar statistical results. 

B. UNSCENTED REACTION WHEEL MANEUVER COST FUNCTIONAL 

The mean squared error with parameter uncertainty cost functional (52) is changed 

to be the unscented reaction wheel maneuver cost functional used for analysis in this 

dissertation. The errors that are desired to be minimized are quaternion vector distance, ν, 

and vehicle angular rate, ω. The unscented guidance sampling weights, wi, are applied to 

the squared sum of errors for the three quaternion vector quantities and three angular rate 

vectors. The fourth quaternion, a scalar se, is applied as a scaling function to the sum of 

vector quaternion errors. This unscented reaction wheel maneuver cost functional is: 

 

  (53) 

where  and  are weights on the terminal attitude and rate errors, respectively. A 

solution to this problem (53) should minimize the variance of terminal pointing error for 

an open-loop slew in the presence of inertia tensor uncertainty. 

In this dissertation, the focus is first to mitigate the effects of uniform uncertainty 

in the (1, 1) element of the inertia tensor. The standard uniform distribution U (0,1) may 

be represented up to the third-order central moment using a set of only three spherical 

simplex sigma points [155]: 
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with the weights: 

 

The sigma points so far derived are for standard distributions with zero mean and 

uniform covariance. To apply the sigma points’ sampling to the uncertainty associated with 

the inertia tensor, the points need to be shifted and scaled to match the mean, Jnom, and 

covariance, P, of the problem data. The scaling is done by applying the following transform 

to get the inertia tensors for unscented guidance: 

  (54) 

In the transform (54), i = 1, 2, ..., Np + 2 (spherical simplex points) and  is the 

matrix square root of P, which is computed as the Cholesky decomposition of P (a 

symmetric positive definite matrix). 

Now that the sigma points have been defined, the next step is to create an ensemble 

of models to form the unscented guidance problem that minimizes the cost functional. 

Since the cost functional utilizes quaternion error, the differential equations associated with 

quaternion error are utilized in lieu of quaternions. The quaternion error differential 

equations are: 

  (55) 

This quaternion error differential equation (55) is simplified by noting that the 

commanded quaternion, qc, is constant for a reorientation maneuver: 

  (56) 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



94 

Using this simplified quaternion error differential equation (56), the unscented 

reaction wheel maneuver problem that is time-free and uses three sigma points for sampling 

is formulated using (45) and (50). The quaternion error, vehicle rate and momentum bias 

terms are defined as qe, ω, and h. The qe vector has four terms in the body frame while the 

ω vector has three terms in the body frame. The h vector has four terms in the wheel frame 

which is easily converted to the body frame by using the reaction wheel alignment matrix, 

Z, to convert it to three terms. The total of vector terms for the unscented reaction wheel 

maneuver is eleven. These eleven terms exist at each of the three sigma points, giving a 

total of thirty-three differential equations which is the size of the real valued space for x. 

The size of the control space, u, is four, one for each of the wheel-frame h terms as defined 

in the dynamics equations. Initial conditions are provided for qe, ω, and h. The quaternion 

error initial condition, qe at t0, is the desired offset which for the examples within this 

dissertation is a 120 degree x-axis (roll) maneuver. The spacecraft body rate initial 

condition, ω at t0, is zero degrees/second. The initial value of momentum bias, h at t0, is 

defined for the reaction wheels as Wh = [1.72,-4.24,-4.64,1.32]T Nms which is chosen 

arbitrarily but within the capabilities of the spacecraft reaction wheels.  

Final conditions are specified for a subset of the dynamics terms. The quaternion 

error final condition, qe at tf, is specified for the first (nominal) sigma point only. Sigma 

points 2–3 are free to complete the maneuver within the statistically relevant space. 

Momentum at final time on the reaction wheels is defined to be the same as initial values, 

a requirement for this problem. It is not always a requirement that the initial and final 

momentum values be the same, as will be seen in the optimum momentum bias version of 

this problem. For this arbitrary momentum bias problem, the wheel momentum values at 

initial and final time are chosen to be the same. Spacecraft body rate at both initial and final 

time are zero since this is a rest-to-rest maneuver. The optimal control problem definition 

for an unscented reaction wheel maneuver with arbitrary momentum bias is shown as [156-

157]: 
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  (57) 

In the unscented reaction wheel maneuver problem formulated here (57), we seek 

a control torque trajectory to drive the nominal plant to the desired quaternion subject to 

the torque capacity of the reaction wheel array. The absolute value of the torque is a path 

constraint on the control trajectory. Moreover, the average terminal offset error variance 

will be minimized over the considered uncertainty in the satellite inertia tensor. The final 

momenta of the reaction wheels are specified by considering the conservation of angular 

momentum in the inertial frame. 

C. NECESSARY CONDITIONS FOR ARBITRARY MOMENTUM BIAS 

A set of necessary conditions that a candidate optimal control solution to the 

unscented reaction wheel maneuver with arbitrary momentum bias (ZFarb) problem must 

satisfy is found by developing Pontryagin’s necessary conditions for optimality as outlined 

in the example Zermelo problems [164]. The necessary conditions are derived as follows: 

1. Construct the Hamiltonian 

2. Develop the Adjoint equations 
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3. Minimize the Hamiltonian 

4. Construct the Endpoint Lagrangian 

5. Determine transversality conditions 

6. Evaluate the Hamiltonian value condition 

7. Analyze the Hamiltonian evolution equation 

 

Construct the Hamiltonian(s) 

The problem formulation defines:  

 

 

It follows that: 

 

 

Due to the lengthy nature of these derivations, only a portion of them will be shown, 

specifically one set of eleven equations that describe the first sigma point. The process of 

deriving each set of equations will need to be repeated for the two following sigma points 

although those equations are not shown here.  
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The adjoint co-vectors for the first sigma point are defined as the following (58): 

 

  (58) 

The transpose of the co-vectors for the first sigma point is given by: 
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The dynamics of ZFarb for the first sigma point include initial momentum bias, H0, 

reaction wheel momentum, hB, and control torque, uB, in the body frame and control torque, 

uw, in the wheel frame as described by: 
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The ZFarb Hamiltonian equation for the first sigma point is given by (59): 

 

  (59) 

 
Re-writing the ZFarb Hamiltonian for the first sigma point is then (60): 

 

  (60) 
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The ZFarb problem constrains the control, so the Lagrangian of the Hamiltonian (𝐻𝐻�) 

for the first sigma point must be defined using (5): 

 

A path co-vector (µ) is added to the original Hamiltonian for each control u which 

gives the Lagrangian of the Hamiltonian for the first sigma point of the arbitrary 

momentum bias problem as (61): 

 

  (61) 

 
Develop the adjoint equations 

The adjoint equations are found by taking the partial derivative of the Hamiltonian 

with respect to q, ω and h. To properly derive the adjoint equations for h, the momentum 

terms must be re-written in the wheel frame using appropriate terms from the reaction 

wheel alignment matrix, Z. This change affects the rate equations which can be re-written 

for the first sigma point as (62): 
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  (62) 
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The ZFarb adjoint equations for the first sigma point are thus (63): 
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  (63) 

 

Minimize the Hamiltonian 

Pontryagin’s Principle requires that the Hamiltonian be minimized at each instant 

of time for the unscented reaction wheel maneuver problem’s time-varying control space 

[164]. To meet this requirement, the problem must meet a combination of stationarity and 

complementarity conditions. The stationarity condition is (9): 
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The complementarity condition is (64): 

 

  (64) 

The stationarity condition is now applied to the unscented reaction wheel maneuver 

with arbitrary momentum bias problem such that the partial derivative of 𝐻𝐻� with respect to 

u is set equal to zero (65): 

 

 

 

 

  (65) 

Then the complementarity condition is applied, which provides information about 

the behavior of the path co-vectors. Per the problem definition, the control torque must 

exist between positive and negative values of maximum torque. As the values of applied 

torque hit the bounds, this constraint results in µu being unrestricted. 
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Construct the Endpoint Lagrangian 

The endpoint Lagrangian equation is constructed to evaluate the endpoint boundary 

conditions at final time. The transversality conditions, minimized Hamiltonian, the 

Hamiltonian value condition, and the Hamiltonian evolution equation use the endpoint 

Lagrangian for this evaluation. The endpoint Lagrangian equation is defined as (15): 

 

The equation partially depends on the endpoint function which is defined only for 

the nominal response as modeled by the first sigma point: 

 

The unscented reaction wheel maneuver arbitrary momentum bias endpoint 

Lagrangian equation is thus (66): 

 

  (66) 

 
Determine the transversality conditions 

Transversality conditions are found by taking the partial derivative of the endpoint 

Lagrangian (𝐸𝐸�) with respect to the final positions of the state vectors q, ω, and h. The 

transversality conditions are in general not useful for verification and validation as they 

often provide unknowns in terms of other unknowns, as such they are not included in this 

analysis. 
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Hamiltonian value condition 

An endpoint cost is evaluated using the Hamiltonian value condition. The 

minimized Hamiltonian is called the lower Hamiltonian which is denoted by H. The lower 

Hamiltonian at final time is equivalent to the negative of the partial derivative of the 

endpoint Lagrangian (𝐸𝐸�) taken with respect to final time. Evaluating this partial derivative 

is known as the Hamiltonian value condition. The unscented reaction wheel maneuver 

arbitrary momentum bias problem yields the following Hamiltonian value condition (67): 

  (67) 

that is standard for time-free problems. 

 

Hamiltonian evolution equation 

Because 

 

  (68) 

the minimized Hamiltonian is a constant in time. 

D. NECESSARY CONDITIONS FOR OPTIMUM MOMENTUM BIAS 

The problem formulation for optimum momentum bias changes the formulation of 

the arbitrary bias problem in two ways related to the momentum requirements: one change 

is in the dynamics equations, the other is in the momentum bias specification. For the 

arbitrary problem, the derivative of reaction wheel momentum is equal to the candidate 

control solution and because both initial and final values of momentum bias are specified, 

the resulting momentum bias path is the same each time the control solution is integrated. 

For the optimum problem, a range of momentum bias is allowed which can influence the 

solution. In this way, the momentum bias becomes another variable to be optimized. The 
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optimal control problem definition for an unscented reaction wheel maneuver with 

optimum momentum bias is shown as (69) [156-157]: 

 

 

 

 

  (69) 

A set of necessary conditions that a candidate optimal control solution to the 

unscented reaction wheel maneuver with optimum momentum bias (ZFopt) problem must 

satisfy is found by developing Pontryagin’s necessary conditions for optimality [164]. 

These necessary conditions follow the framework that was developed for the arbitrary bias 

problem with differences occurring where momentum bias requirements are specified. The 

necessary conditions are derived as follows: 

1. Construct the Hamiltonian 

2. Develop the Adjoint equations 
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3. Minimize the Hamiltonian 

4. Construct the Endpoint Lagrangian 

5. Determine transversality conditions 

6. Evaluate the Hamiltonian value condition 

7. Analyze the Hamiltonian evolution equation 

 

Construct the Hamiltonian 

The Hamiltonian formulation for the optimum momentum bias case is the same as 

the one for the arbitrary case. As in the arbitrary case, derivations shown here are for one 

sigma point. Derivations for sigma points two and three are not included for the sake of 

brevity. The ZFopt Hamiltonian is (70): 

 

  (70) 

 

The Lagrangian of the Hamiltonian (𝐻𝐻�) includes path co-vectors (µ) added to the 

original Hamiltonian for each control u and each momentum h. The Lagrangian of the 
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Hamiltonian for the first sigma point of the unscented reaction wheel maneuver optimum 

momentum bias problem is (71): 

 

  (71) 

 
Develop the adjoint equations 

The adjoint equations are found by taking the partial derivative of the Hamiltonian 

with respect to q, ω and h. The adjoint equations for the optimum momentum bias case are 

nearly identical as found for the arbitrary bias case only with the addition of a µ term 

associated with the wheel momentum. Please see the arbitrary bias case in the previous 

section for details. 

 

Minimize the Hamiltonian 

To meet the requirement that the Hamiltonian be minimized at each instant of time 

[164], the problem must meet a combination of stationarity and complementarity 

conditions. The stationarity condition is (9): 
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The complementarity conditions for the control path and momentum path 

constraints for the first sigma point are (72) and (73): 

 

  (72) 

 

  (73) 

The stationarity condition is now applied to the unscented reaction wheel maneuver 

with optimum momentum bias problem for the first sigma point such that the partial 

derivative of 𝐻𝐻� with respect to u is set equal to zero (74): 
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  (74) 

Then the complementarity conditions are applied. Per the problem definition, the 

control torque must exist between positive and negative values of maximum torque. As the 

values of applied torque hit the bounds, this constraint results in µu being unrestricted. The 

value of momentum is constrained to a range of values, but if the optimum bias value is 

not on the boundaries, then µh is zero and the term drops.  

 
Construct the Endpoint Lagrangian 

The endpoint Lagrangian equation is constructed to evaluate the endpoint boundary 

conditions at final time. The transversality conditions, minimized Hamiltonian, the 

Hamiltonian value condition, and the Hamiltonian evolution equation use the endpoint 

Lagrangian for this evaluation. The endpoint Lagrangian equation is defined as (14): 

 

The equation partially depends on the endpoint function. It should be noted that this 

optimum bias definition is different from the arbitrary bias problem in that there is now no 

specific value for the momentum bias at final time since it can be a within a range of values 

according to the path constraint. Therefore, there is no endpoint requirement for the value 

of the optimum momentum bias. The endpoint function for the optimum bias problem for 

the first sigma point (nominal response) is defined as the following: 

 

The unscented reaction wheel maneuver optimum momentum bias endpoint 

Lagrangian equation for the first sigma point is thus (75): 

 

  (75) 
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Determine the transversality conditions 

Transversality conditions for the optimum momentum bias case are found by taking 

the partial derivative of the endpoint Lagrangian (𝐸𝐸�) with respect to the final positions of 

the state vectors q and ω. Results for the transversality conditions associated with q and ω 

are the same for the optimum case as for the arbitrary momentum bias case. For the optimal 

case, there are no requirements imposed on h at final time, so there is no transversality 

condition associated with it, unlike with the arbitrary case. This means that the 

corresponding co-state values for h will be zero at final time.  

 

Hamiltonian value condition and Hamiltonian evolution equation 

The analysis for this problem produces the same results as before. 

E. CHAPTER SUMMARY 

The purpose of this chapter was to formulate an unscented reaction wheel maneuver 

cost functional and use it to develop full problem descriptions with necessary conditions 

for both a version with arbitrary momentum bias and a version with optimum momentum 

bias. A cost functional was developed using mean squared error combined with 

uncertainty. This cost functional was then expanded to include terms of interest in the 

unscented reaction wheel maneuver, spacecraft position and rate. Using these variables 

with a mean squared error approach minimizes the variance of terminal pointing error 

which is the desired outcome. Three sigma points were defined for use with the arbitrary 

and optimum momentum bias problems. The unscented reaction wheel maneuver problem 

definition incorporates this information in the weighted sum term. A full problem definition 

was provided for the arbitrary momentum bias that included dynamics, initial and final 

time conditions for all state vectors, q, ω, and h. For the full definition of the optimum 

momentum bias problem, additional dynamics terms were included for h and a path 

constraint was added thereby allowing h to become an optimizable variable. Necessary 

conditions were developed for both the arbitrary and optimum momentum bias problems. 
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The adjoint equations were nearly identical for both problems with extra terms for 

momentum in the optimum bias case. The Lagrangian of the Hamiltonian included 

additional terms for the optimum momentum bias path constraint, h. The endpoint 

Lagrangian differed in that the arbitrary problem included endpoint functions for all state 

vectors, q, ω, and h, whereas the optimum problem included only q and ω. This difference 

in the h term appears in the transversality conditions, which are based on the endpoint 

Lagrangian, where the arbitrary case includes h, and the optimum case does not. Results 

for the Hamiltonian value condition and Hamiltonian evolution equation were the same for 

both problems since they are both time-free problems. These necessary conditions provide 

a roadmap to evaluate the results of the unscented reaction wheel maneuver optimal control 

problems in the following chapter. 
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V. UNSCENTED REACTION WHEEL ATTITUDE MANEUVERS 

This chapter of the dissertation solves an unscented reaction wheel maneuver 

optimal control problem with increasing levels of uncertainty. The arbitrary and optimum 

momentum bias problems from the previous chapter are solved with both single axis and 

three axes of uncertainty and results are provided. These results are compared against the 

necessary conditions that were developed in previous sections. It is shown that unscented 

guidance is a viable method for reduction of sensitivity to problem uncertainty thus 

allowing a spacecraft to perform a large angle unscented reaction wheel maneuver in the 

absence of feedback control. The results of this section were first published in [156-157]. 

A. ARBITRARY MOMENTUM BIAS SOLUTIONS 

1. Single-Axis Inertia Uncertainty 

A fundamental tenet of feedback systems is their ability to reduce the sensitivity of 

the system to variations in the parameters [151]. This perspective implies that open-loop 

sensitivity cannot be mitigated without feedback. It is reasonable, then, to question how a 

satellite might be accurately maneuvered in the presence of uncertainty in the mass 

properties, but in the absence of feedback. The mechanism for reducing open-loop 

sensitivity in reaction wheel attitude maneuvering relies on leveraging the non-linear 

coupling inherent to the rotational dynamics of the system. To help illustrate this cross-

coupling, re-write Euler’s equations in the body fixed frame. Note that in this frame, h has 

been transformed from the reaction wheel frame to the body fixed frame by applying the 

Z matrix present in earlier problem formulations: 

  (76) 

This expression (76) can be expanded for x, y, and z axes with the following set of 

equations: 
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  (77) 

where ho represents the initial momentum state of a reaction wheel array in the body frame. 

It is clear (and not surprising) from the equation expansion that rotational motion of the 

satellite is cross-coupled amongst the axes (77). This cross-coupling provides natural non-

linear feedback paths that could be used to reduce the effects of inertia tensor uncertainties. 

In this sense, naturally occurring feedback as opposed to artificial feedback is relied upon 

to null-out the error. Thus, the open-loop guidance problem to be solved is one of finding 

the feed-forward reaction wheel command trajectories, u(·), that achieve the specified 

terminal conditions as closely as possible in the presence of uncertainty via the suitable 

exploitation of the cross-coupling feedbacks.  

Up to this point, no assumptions have been made on the initial momentum state of 

the satellite. Consider now the situation for the case of a zero-net bias system which is quite 

common for spacecraft control systems. In this case, we have Jω + h = 0 during the 

timeframe of a maneuver due to the conservation of angular momentum. Thus, in a zero-

net bias system, the natural non-linear feedback paths are all open meaning that their 

contribution does not enter the closed-loop system or is actively cancelled by the system. 

Consequently, in the absence of any appreciable momentum bias, the open-loop sensitivity 

cannot be managed. It will therefore not be possible to improve upon the open-loop 

performance of the baseline slew. A non-zero momentum bias is a necessary condition for 

an unscented reaction wheel maneuver. 
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Returning to the three-axis expansion of Euler’s equation (77), it is evident in the 

case of a non-zero momentum bias that the naturally occurring feedback gains are fixed, 

with the values determined by the mass properties of the satellite and the magnitude of the 

momentum bias in the system. Momentum bias is altered by momentum loading or 

unloading. This relationship provides tuning knobs that can be used to affect the open-loop 

response. Finding the optimum tuning of these gains for a given unscented reaction wheel 

maneuver is part of the subject of this chapter. 

A Monte Carlo simulation of the unscented reaction wheel maneuver solution for 

an arbitrary momentum bias, , is shown in Figures 34–36. The 

control history was obtained using DIDO, the MATLAB toolbox for solving optimal 

control problems [167]. The state trajectories were generated by 4th-order Runge-Kutta 

propagation (ode45 in MATLAB) using interpolated values of the DIDO controls and a 0.2 

sec time step. This is the same type of interpolation and verification process described in 

[164] and used in practical flight implementations of optimal control [228]. 

Referring to Figures 34–36, it is seen that the unscented reaction wheel maneuver 

can control the angle error nearly as well as quaternion error feedback as seen in “Example 

Closed-Loop Slew,” even though the control is implemented as open-loop. The uncertainty 

associated with the inertia tensor is mitigated in the open-loop by following the nominal 

angular rate profile shown as the solid lines in Figure 35. Comparing Figure 35 with the 

open-loop angular rates (Figure 27), it is apparent that the unscented reaction wheel 

maneuver utilizes motion about all three body axes to mitigate the effects of the 

uncertainty. Figure 35 also shows the uncertainty tubes as shaded areas around the nominal 

curves, although the uncertainty tubes for this case tightly follow the nominal curves which 

makes them difficult to see. The small width of the uncertainty tubes show that the 

unscented reaction wheel maneuver can find a profile that is robust against the uncertainty. 

The angular momentum of the reaction wheels expressed in the body frame is shown in 

Figure 36. Comparing Figure 36 with Figure 28 it is seen that the momentum profile for 

unscented reaction wheel maneuver is quite different than its open-loop counterpart as the 

momentum adjusts with the changes in the angular rate to minimize open-loop error. 

Nonetheless, application of the momentum profile obtained from the unscented reaction 
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wheel maneuver solution enables the satellite to be quite accurately reoriented in the open-

loop. 

 
Figure 34. Unscented Reaction Wheel Maneuver Single-Axis 

Uncertainty Angle Error with Arbitrary Momentum Bias 

 
Figure 35. Unscented Reaction Wheel Maneuver Single-Axis 

Uncertainty Body-Frame Angular Rate with Arbitrary 
Momentum Bias 
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Figure 36. Unscented Reaction Wheel Maneuver Single-Axis 

Uncertainty Body-Frame Reaction Wheel Momentum with 
Arbitrary Momentum Bias 

Statistics are evaluated for the unscented reaction wheel maneuver with arbitrary 

momentum bias. The terminal pointing errors are measured at t = 313 seconds and are 

shown in Figure 37 superimposed on the open-loop results from Figure 29 and includes the 

3σ error ellipse. The average angle error is 0.21 degrees and average rate error is 0.0011 

deg/sec. As seen in Figure 37 (inset), the unscented reaction wheel maneuver solution 

reduces the terminal error by over an order of magnitude in comparison with the baseline 

open-loop attitude control.  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



120 

 
Figure 37. Monte Carlo Simulation Results of Unscented Reaction 

Wheel Maneuver Arbitrary Momentum Bias with Single-Axis 
Uncertainty: Terminal Pointing Errors 

Review of Necessary Conditions 

For these unscented guidance optimal control problems with uncertainty and 

arbitrary momentum, Pontryagin’s necessary conditions for solution accuracy are 

reviewed. Details of the necessary conditions can be found in the previous chapter. The 

Lagrangian of the Hamiltonian captured the control, u, path constraint. The 

complementarity condition for the single-axis and three-axis uncertainty problems 

indicated that µ was unrestricted in its value due to the control path constraint. The 

Hamiltonian value condition and Hamiltonian evolution equation stipulated that the value 

of the lower Hamiltonian be zero and that the value be a constant (67) and (68). This 

constant zero value is consistent with the literature regarding time-free problems. 

Figure 38 shows the four candidate control torque solution profiles, u1, u2, u3, and 

u4, one for each of the four reaction wheels, for the unscented reaction wheel maneuver 

arbitrary momentum bias single-axis uncertainty solution. These control paths show the 

wheel torques switching between positive maximum and negative maximum wheel limits 

which were expected due to the results from the complementarity condition indicating that 

µ was unrestricted. Evaluation of the Hamiltonian value condition stipulated that the lower 

Hamiltonian would be a constant close to zero which is consistent with a time-free problem. 
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As seen in Figure 39, the lower Hamiltonian maintains a value close to zero for the full 

time of the maneuver. 

 
Figure 38. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Single-Axis 
Uncertainty: Optimal Control Versus Time 

 
Figure 39. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Single-Axis 
Uncertainty: Optimal Hamiltonian Versus Time 

The functions seen in Figures 40–42 for the co-state trajectories show that the 

quaternion, rate and momentum co-states are close to, but not exactly zero. 
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Figure 40. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Single-Axis 
Uncertainty: Co-States λq Versus Time 

 
Figure 41. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Single-Axis 
Uncertainty: Co-States λω Versus Time 
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Figure 42. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Single-Axis 
Uncertainty: Co-States λh Versus Time 

Path constraints were imposed on this problem as limits on the control, u. Initial 

and final values of momentum were specified as Nms. Figure 43 

shows that the conservation of angular momentum holds for the values of the paths as they 

match the specified initial and final momentum values. Due to the predicted Hamiltonian, 

co-states and path constraint results meeting expected results, this candidate optimal 

control solution is considered an optimal solution to the ZFarb problem. 
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Figure 43. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Single-Axis 
Uncertainty: Conservation of Angular Momentum 

2. Three-Axis Inertia Uncertainty 

The previous unscented reaction wheel maneuver solution accounts for uncertainty 

in only one axis. This uncertainty exists solely in the x-axis. Although it is apparent that 

the parametric uncertainty is managed in the open-loop by the unscented reaction wheel 

algorithm, it remains to be seen what effect most realistic uncertainty in all three axes has 

on the solution. The unscented reaction wheel maneuver using arbitrary momentum bias is 

solved for three-axis uncertainty to understand these effects. The optimum momentum bias 

cases follow. A Monte Carlo simulation of the three-axis-uncertainty arbitrary momentum 

bias is shown in Figures 44–47. 

The three-axis uncertainty solutions are run using the same time frame as their 

respective single-axis solutions, that is 313 seconds. Referring to Figures 44–47, it is seen 

that uncertainty in all three axes produces remarkably different response trajectories for 

position, angular rate and momentum as compared to the single-axis-uncertainty unscented 

reaction wheel solutions (see Figures 34–36), as the shape and mass of the satellite are 

taken into full account. The Monte Carlo error results show this increase in fidelity comes 

with an increase in error, as expected. 
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The terminal pointing errors for the three-axis uncertainty with arbitrary 

momentum bias solution is shown in Figure 47 along with the associated 3σ error ellipse. 

Figure 47 shows very clearly that the pointing errors are less than half the amount that was 

seen in the open-loop but ten times greater that the errors that were seen with single-axis 

uncertainty solutions.  

 
Figure 44. Unscented Reaction Wheel Maneuver Three-Axis 

Uncertainty Angle Error with Arbitrary Momentum Bias 

 
Figure 45. Unscented Reaction Wheel Maneuver Three-Axis 

Uncertainty Body-Frame Angular Rate with Arbitrary 
Momentum Bias 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



126 

 
Figure 46. Unscented Reaction Wheel Maneuver Three-Axis 

Uncertainty Body-Frame Reaction Wheel Momentum with 
Arbitrary Momentum Bias 

 
Figure 47. Monte Carlo Simulation Results of Unscented Reaction 

Wheel Maneuver Arbitrary Momentum Bias with Three-Axis 
Uncertainty: Terminal Pointing Errors 

For the unscented reaction wheel maneuver arbitrary momentum three-axis 

uncertainty case, Figure 48 shows the four candidate control torque solution profiles, u1, 

u2, u3, and u4, one for each of the four reaction wheels. These profiles are similar to the 

single-axis uncertainty case in that they exhibit bang-bang response but are dissimilar in 

that the control torques switch more often due to the additional error present in the three-

axis case. The three-axis uncertainty case has the same Hamiltonian value condition 
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stipulation as the single-axis case, that the lower Hamiltonian would be a constant close to 

zero which is consistent with a time-free problem. As seen in Figure 49, the lower 

Hamiltonian maintains a value close to zero for the full time of the maneuver, however 

there is some variability in the response which indicates this solution could be improved. 

 
Figure 48. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Three-Axis 
Uncertainty: Optimal Control Versus Time 

 
Figure 49. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Three-Axis 
Uncertainty: Optimal Hamiltonian Versus Time 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



128 

Just the same as in the single-axis arbitrary momentum bias problem, the three-axis 

problem had path constraints imposed on it as limits on the control, u. Initial and final 

values of momentum were specified as Nms. Figure 50 shows 

that the conservation of angular momentum holds for the paths as the values of the paths 

match the specified initial and final momentum values. The necessary conditions analysis 

meets expected results; thus, the candidate optimal control solution is considered an 

optimal solution to the ZFarb problem. 

 
Figure 50. Solution of the Unscented Reaction Wheel Maneuver 

Arbitrary Momentum Bias Problem with Three-Axis 
Uncertainty: Conservation of Angular Momentum 

B. OPTIMUM MOMENTUM BIAS SOLUTIONS 

1. Single-Axis Inertia Uncertainty 

It is apparent from the unscented reaction wheel maneuver with arbitrary 

momentum bias results that unscented guidance allows the effects of parametric 

uncertainty to be managed in the open-loop. These unscented reaction wheel maneuver 

with arbitrary momentum bias problems are changed in their momentum related conditions 

and re-solved to find the optimum momentum bias with the goal of further reducing the 

terminal error. This was accomplished by modeling the bias momentum as an uncertain 

event that changes the necessary conditions and is optimized alongside the unscented 
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maneuver profile. The optimum bias for the large-angle maneuver was determined to be

. A Monte Carlo simulation of the optimum bias solution is 

shown in Figures 51–55. The results of this section were first published in [157]. 

Referring to Figures 51–53, it is seen that optimum bias solution is qualitatively 

similar to the solutions for arbitrary momentum bias. Note that the angle error profile has 

a small error tube width. The rate error tube widths are also small and adhere tightly to the 

shape of the rate profile with most of the error concentrated in the peaks and valleys of the 

x-axis. The subtle changes in the momentum profile do, however, improve the overall 

performance of the open-loop system albeit at a cost of an additional 94 seconds to 

complete the maneuver. This aspect is best seen in the statistics associated with the terminal 

pointing error. The terminal pointing errors for both the arbitrary and optimum bias 

solutions are shown in Figures 54 and 55 along with their associated 3σ error ellipses. 

Figures 54 and 55 show very clearly that the optimum bias solution does a superior job of 

reducing the terminal error. The optimum bias solution reduces the terminal error by an 

order of magnitude compared with an unscented reaction wheel maneuver solution for an 

arbitrary momentum bias.  

The optimum bias solution drives the average terminal pointing error for the large 

120 deg slew to less than 0.1 deg and 0.002 deg/sec. This is similar to the performance of 

a closed-loop attitude control system prior to settling. Thus, the error tolerances achieved 

using the optimum bias solution should be sufficiently small to enable handover to a 

science-mode pointing controller, which is used to enable data collection operations. 
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Figure 51. Unscented Reaction Wheel Maneuver Single-Axis 

Uncertainty Angle Error with Optimum Momentum Bias 

 
Figure 52. Unscented Reaction Wheel Maneuver Single-Axis 

Uncertainty Body-Frame Angular Rate with Optimum 
Momentum Bias 
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Figure 53. Unscented Reaction Wheel Maneuver Single-Axis 

Uncertainty Body-Frame Reaction Wheel Momentum with 
Optimum Momentum Bias 

 
Figure 54. Monte Carlo Simulation Results of Unscented Reaction 

Wheel Maneuver Arbitrary Momentum Bias with Single-Axis 
Uncertainty: Terminal Pointing Errors 
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Figure 55. Monte Carlo Simulation Results of Unscented Reaction 

Wheel Maneuver Optimum Momentum Bias with Single-Axis 
Uncertainty: Terminal Pointing Errors 

Review of Necessary Conditions 

Pontryagin’s necessary conditions for solution accuracy are reviewed for the 

unscented guidance problems with optimum momentum. Details of the necessary 

conditions can be found in previous chapters of this dissertation. The Lagrangian of the 

Hamiltonian captured the path constraints, u, and h. The complementarity condition for the 

optimum momentum bias problems indicated that µ was zero in its value due to the 

momentum path constraint. Co-state values of h were zero for both the single-axis and the 

three-axis cases. Transversality conditions were evaluated, but no new information was 

provided as equations generated more unknowns in terms of existing unknowns. The 

Hamiltonian value condition and Hamiltonian evolution equation stipulated that the value 

of the lower Hamiltonian be zero and that the value be a constant. This constant zero value 

is consistent with the literature regarding time-free problems. 

Figure 56 shows the four candidate control torque solution profiles, u1, u2, u3, and 

u4, one for each of the four reaction wheels, for the unscented reaction wheel maneuver 

optimum momentum bias single-axis uncertainty solution. Compared to the arbitrary 

momentum bias solutions, these profiles contain more variability and less bang-bang 

behavior due to the influence of the optimum momentum adjustments. Evaluation of the 

Hamiltonian value condition stipulated that the lower Hamiltonian would be a constant 
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close to zero which is consistent with a time-free problem. As seen in Figure 57, the lower 

Hamiltonian maintains a value close to zero for the full time of the maneuver. 

 
Figure 56. Solution of the Unscented Reaction Wheel Maneuver 

Optimum Momentum Bias Problem with Single-Axis 
Uncertainty: Optimal Control Versus Time 

 
Figure 57. Solution of the Unscented Reaction Wheel Maneuver 

Optimum Momentum Bias Problem with Single-Axis 
Uncertainty: Optimal Hamiltonian Versus Time 

The momentum co-state trajectories seen in Figure 58 are zero for the entire 

maneuver time. Co-state trajectories for the arbitrary bias cases were not as well behaved 

as the ones seen here which means that this solution is well balanced. The stationarity 
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condition (74) for the optimum momentum bias cases includes an additional path 

constraint, momentum, that was not present for the arbitrary cases. 

 
Figure 58. Solution of the Unscented Reaction Wheel Maneuver 

Optimum Momentum Bias Problem with Single-Axis 
Uncertainty: Co-States λh Versus Time 

Due to the constancy of the lower Hamiltonian and momentum co-state trajectories 

meeting expected results, this candidate optimal control solution is considered an optimal 

solution to the ZFopt problem. 

2. Three-Axis Inertia Uncertainty 

To further examine the three-axis uncertainty problem, an unscented reaction wheel 

maneuver using optimum momentum bias is solved for three-axis uncertainty. Previous 

results for three-axis uncertainty with arbitrary momentum bias suggested that better 

solutions to the problem exist. In this section, we find an improved solution to the problem. 

A Monte Carlo simulation of the three-axis-uncertainty optimum momentum bias is shown 

in Figures 59–63. 

These solutions are run using the same time frame as their respective single-axis 

solutions, that is 407 seconds for optimum momentum bias. Referring to Figures 59–61, it 

is seen that uncertainty in all three axes produces different response paths for position, 

angular rate and momentum as compared to the three-axis uncertainty with arbitrary 
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momentum bias unscented reaction wheel maneuver solution and improves error statistics. 

The error results show this increase in fidelity with a decrease in error when compared to 

the three-axis uncertainty arbitrary momentum bias case and an increase in error when 

compared to the single-axis uncertainty optimum momentum bias case. 

Both the arbitrary and optimum bias three-axis uncertainty terminal pointing errors 

are shown in Figures 62 and 63 along with their associated 3σ error ellipses. Figures 62 

and 63 show very clearly that the average pointing errors for the optimum bias case are less 

than half the amount that was seen in the arbitrary bias case but ten times greater that the 

errors that were seen with the optimum single-axis uncertainty case. The three-axis 

uncertainty optimum bias solution drives the average terminal pointing error for the large 

120 deg slew to about 1.0 deg and 0.006 deg/sec. These errors are greater than the 

comparable closed-loop solution, but sufficiently small to enable handover to a science-

mode pointing controller. 

 
Figure 59. Unscented Reaction Wheel Maneuver Three-Axis 

Uncertainty Angle Error with Optimum Momentum Bias 
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Figure 60. Unscented Reaction Wheel Maneuver Three-Axis 

Uncertainty Body-Frame Angular Rate with Optimum 
Momentum Bias 

 
Figure 61. Unscented Reaction Wheel Maneuver Three-Axis 

Uncertainty Body-Frame Reaction Wheel Momentum with 
Optimum Momentum Bias 
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Figure 62. Monte Carlo Simulation Results of Unscented Reaction 

Wheel Maneuver Arbitrary Momentum Bias with Three-Axis 
Uncertainty: Terminal Pointing Errors 

 
Figure 63. Monte Carlo Simulation Results of Unscented Reaction 

Wheel Maneuver Optimum Momentum Bias with Three-Axis 
Uncertainty: Terminal Pointing Errors 

The four candidate control torque solution profiles, u1, u2, u3, and u4, one for each 

of the four reaction wheels are shown for the unscented reaction wheel maneuver optimum 

momentum three-axis uncertainty case in Figure 64. These profiles are more similar to the 

single-axis and three-axis uncertainty cases for arbitrary bias in that they exhibit obvious 

bang-bang behavior compared to the single-axis optimum bias case. This three-axis 

uncertainty case has the same Hamiltonian value condition stipulation as the single-axis 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



138 

case, that the minimized Hamiltonian would be a constant close to zero which is consistent 

with a time-free problem. Figure 65 shows that the minimized Hamiltonian maintains a 

value close to zero for the full time of the maneuver. 

 
Figure 64. Solution of the Unscented Reaction Wheel Maneuver 

Optimum Momentum Bias Problem with Three-Axis 
Uncertainty: Optimal Control Versus Time 

 
Figure 65. Solution of the Unscented Reaction Wheel Maneuver 

Optimum Momentum Bias Problem with Three-Axis 
Uncertainty: Optimal Hamiltonian Versus Time 

Due to the predicted Hamiltonian meeting expected results, this candidate optimal 

control solution is considered an optimal solution to the ZFopt problem. 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



139 

C. SUMMARY OF RESULTS 

Unscented reaction wheel maneuver optimal control using unscented guidance 

provides terminal error statistics that are over sixty times better than comparable open-loop 

maneuver results. Baseline open-loop maneuvers for single-axis inertia tensor uncertainty 

and three-axis uncertainty were 5.50 degrees and 88.66 degrees, respectively. Unscented 

reaction wheel maneuver optimal control using an arbitrary momentum bias resulted in 

average angle error of 0.21 degrees for single-axis uncertainty and 2.47 degrees of average 

angle error for three-axis uncertainty, respectively. Additional average error reduction was 

achieved by optimizing the momentum bias as part of the control solution. This 

improvement was brought about through the natural feedback paths that exist in the open-

loop control environment. Optimum momentum bias with single-axis uncertainty resulted 

in average angle error of 0.09 degrees of error while three-axis uncertainty resulted in 1.00 

degree of average angle error. Table 4 summarizes these results. These results show that 

unscented reaction wheel maneuver optimal control is a valid method for managing open-

loop uncertainty for large-angle spacecraft maneuvers. 

  

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



140 

Table 4. Statistical Performance of Unscented Reaction Wheel 
Maneuvering 

Control Mode  
120 deg roll 

Average Angle  
Error (deg) 

Average Rate 
Error (deg/sec) 

Error Covariance 

open-loop,  
arbitrary bias,  

1-axis error 

5.50 0.0340 

 
unscented reaction 
wheel maneuver, 
arbitrary bias,  

1-axis error 

0.21 0.0011 

 

unscented reaction 
wheel maneuver, 
optimized bias, 

1-axis error 

0.09 0.0016 

 

open-loop,  
arbitrary bias,  

3-axis error 

88.66 0.4300 

 
unscented reaction 
wheel maneuver, 
arbitrary bias,  

3-axis error 

2.47 0.0046 
  

unscented reaction 
wheel maneuver, 
optimized bias, 

3-axis error 

1.00 0.0058 
  

 

D. CHAPTER SUMMARY 

The purpose of this chapter was to show results of unscented reaction wheel 

maneuver problems with both arbitrary and optimum momentum bias and compare the 

approaches. The necessary conditions were used to determine if the candidate control 

profiles were viable solutions to the problem. Arbitrary momentum bias problems were 

solved exploring both single-axis and three-axis uncertainty in the inertia tensor. A Monte 

Carlo analysis was performed on the terminal angle and terminal rate errors to provide 

statistical comparison with the open-loop solution. Both average angle and average rate 

errors showed improvement in the arbitrary bias cases over the open-loop performance. 

Necessary conditions analysis was performed on both the single-axis and three-axis error 

candidate solutions to the arbitrary bias problem. Both solutions met the necessary 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



141 

conditions for optimality. Optimum momentum bias problems were also solved for cases 

using both single-axis and three-axis uncertainty. Like the arbitrary bias problems, Monte 

Carlo analyses were performed to provide data comparison This data showed improvement 

in both average angle and average rate errors compared to open-loop and arbitrary bias 

cases. This statistical information is summarized in Table 4. For the optimum bias cases, 

wheel momentum, h(t0), was an optimizable variable, unlike previous problems. This 

allowed for improvement in the terminal error statistics over the arbitrary results. 

Necessary conditions analysis was performed on both the single-axis and three-axis error 

candidate solutions to the optimum bias problem and both solutions met the necessary 

conditions for optimality. These results show that unscented guidance is a viable approach 

to solving optimal control problems with inertia tensor uncertainty for reaction wheel based 

spacecraft. 
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VI. CONCLUSIONS AND FUTURE WORK 

Failure of a satellite’s attitude control feedback sensors can be mission ending 

unless an alternative control mode is implemented. In this dissertation, reaction wheel 

maneuver solutions using unscented guidance were presented to facilitate a large angle 

open-loop maneuver between two attitudes. Cases for both arbitrary and optimum 

momentum bias were studied. It was shown that natural feedback paths, which exist in the 

dynamics, influence the outcome of an open-loop maneuver. These paths were exploited 

in the optimum momentum bias cases where h(t0) was defined as an optimizable variable. 

The unscented reaction wheel maneuvers were shown to achieve terminal errors 

comparable to conventional closed-loop control, with the optimized bias solutions 

performing better. An unscented reaction wheel maneuver with single axis uncertainty 

average angle error was 0.09 degrees and three-axis error was 1.00 degree compared to 

comparable closed-loop average error of 0.05 degrees. An unscented reaction wheel 

maneuver with single axis uncertainty average rate error was 0.0016 degrees/sec and three-

axis error was 0.0058 degrees/sec compared to comparable closed-loop average error of 

0.0036 degrees/sec. Thus, handover to a science-mode pointing controller that uses other 

sensors (e.g., star-trackers or fine guidance sensors) should be possible even if further 

reduction in the pointing error is required for science collection. This contribution allows 

satellite operators another control method to extend the life of hardware compromised 

spacecraft. 

This research suggests several paths of follow-on work for the methodology such 

as extension to other momentum-exchange devices e.g., control-moment-gyro (CMG) 

spacecraft, testing on an actual spacecraft, or exploration of spacecraft size and capability 

that could benefit from this methodology. Research on whether the three-axis errors seen 

in this dissertation can be further reduced is another topic for future work. Applications of 

this research to spacecraft with changing inertia tensors such as through spacecraft breakup, 

separation or docking are also rich areas of exploration. A formal concept of operations for 

using the new ideas as part of a practical mission should also be developed. 
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