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ABSTRACT 

 While the use of unmanned vehicles (UxVs) within the Department of Defense 

(DOD) is prevalent, the ability of the DOD to operate these vehicles as a cooperative 

networked control system (NCS) is not fully developed. A MATLAB simulation 

modeling a UxV NCS that jointly optimizes sensing and data communications utilities 

currently exists. However, this implementation is of low fidelity and is not readily 

extensible. This thesis advances the NCS model by converting the MATLAB simulation 

into Python with an object-oriented design. We further extend the Python NCS 

simulation into a truly distributed system, where each node executes in an independent 

Docker container and communicates with other nodes via reliable message 

communications. Our implementation results demonstrated that the object-oriented 

Python simulation incurs a performance penalty with respect to execution times but 

provides for greater extensibility without changes to existing functionality. Furthermore, 

Docker containers offer a lightweight solution for modeling a more realistic version of 

UxV simulations, thus increasing the NCS simulation’s fidelity. 
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CHAPTER 1:
Introduction

Technology is advancing at a rapid rate. Computations once conducted on highly special-
ized supercomputers requiring substantial infrastructure, energy, and resources can now be
completed trivially by mobile devices. For example, in 1975, the Cray-1 supercomputer
“had a raw computing power of 80 million floating-point operations per second” [1]. In
contrast, the iPhone 13 Pro, released in 2021, has a five-core graphics processor capable
of performing 15.8 trillion operations per second [2]. From a networking standpoint, this
advancement in computing power has allowed for the implementation of robust mobile ad
hoc networks (MANETs), or networks that do not rely on pre-existing infrastructure to
operate [3].

One way this is manifested is in drone technology. Drones are becoming increasingly more
capable, accessible, and affordable in both the private sector and military applications.
Governments, militaries, and malicious actors who can leverage this technology effectively
may gain a significant advantage in warfighting. Advances in MANETs have also shifted
the dynamics towards employing systems of systems–individual units that can act in unison
towards a single objective. Such systems are particularly advantageous to militaries, which
often have multiple assets working together to complete specific goals.

One such system is a networked control system (NCS). An NCS is “a single system composed
of multiple discrete entities with control loops that share feedback and control signals over a
shared communications network” [4]. In NCSs, “both control signals and feedback signals
can be exchanged among system components (e.g., sensors, controllers, actuators, and so
on)” [5], enabling them to act on a shared set of information and control parameters.
A key element of NCSs is that they manage coordination between many nodes. Recent
developments in this field of study have inspired new applications for the Department of
Defense (DOD) to gain and maintain a tactical advantage on the battlefield. To achieve this
reality, the DOD must first develop, test, field, and deploy this technology faster than the
adversary.

1
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1.1 Motivation
This thesis advances the work of both ENS Noah Wachlin’s Robust Time-Varying Formation
Control with Adaptive Submodularity [6], and LT Brian Lowry’s Distributed Submodular
Optimization for a UxV Networked Control System [4] theses. In their work, Lowry and
Wachlin utilized submodularity as a mathematical framework to optimize the positioning
of NCS nodes to increase the joint utility of their sensing coverage and communications
robustness. Their simulation was derived from a multi-thread exercise (MTX) scenario
conducted on San Clemente Island (SCI), California, in November 2017. In this scenario,
the nodes under the control of the NCS consisted of three aerial and two surface unmanned
vehicles (UxVs) operating in support of a Naval Special Warfare (NSW) unit conducting
a mission against a target located on SCI. The NSW unit traversed a road network from
one end of the island to the other to close on the objective, while the UxVs positioned
themselves to maintain optimal sensor coverage of the road network, the NSW team, and
the target. Concurrently, the NCS optimized communications connectivity between the
UxVs, the NSW unit, and a U.S. Navy destroyer (DDG) stationed off the coast. Lowry and
Wachlin utilized the Matrix Laboratory (MATLAB) programming language to simulate and
test their NCS submodularity framework. For the remainder of this thesis, the term NCS
will refer to the MATLAB simulation created by Lowry and Wachlin.

While MATLAB can be a valuable tool for modeling and simulation in the field of robotics,
employing the NCS code in real-world systems creates significant technology transfer gaps.
We believe that we can effectively convert the NCS simulation from MATLAB code to
Python to fill some of the gaps.

1.2 Problem Statement
The NCS simulation is very complex. A product of two theses and additional work by
the Naval Postgraduate School (NPS) unmanned systems lab, it comprises 20 modules
(i.e., .m files), 15 functions, and 1,178 lines of code. While this system is a significant
achievement in and of itself, its functionality is not easy to extend and deploy to hardware
because it is procedure-based rather than object-oriented. It is, therefore, advantageous
to convert this MATLAB-based simulation into a code format more suitable for follow-
on development, implementation, testing, and use. Our thesis aims to demonstrate that an

2
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object-oriented programming (OOP)-based NCS implementation can achieve results similar
to the MATLAB-based implementation in [4] and [6] while providing additional function-
ality. Specifically, it will more readily accommodate additional usability and extensibility
requirements.

Lastly, the current MATLAB simulation lacks fidelity. Each node is simulated as a function
call within the program, which is not how the system would truly operate in the real
world. We postulate that we can develop lightweight Docker containers to house the code
to simulate multiple independent nodes. This will allow future implementations to run the
code on the UxVs and other platforms it was intended for.

1.3 Research Questions
Our thesis and associated simulation aim to answer the following basic research questions:

1. Can we demonstrate that the NCS simulation can be implemented in an OOP system
that can be more readily deployed in real-world vehicles?

2. Is there a generalizable methodology for converting MATLAB modules into an OOP
implementation?

3. How can an OOP implementation boost extensibility?
4. Are containers a good technology for modeling a more realistic version of the simu-

lation?

1.4 Overview
The remainder of this thesis is organized as follows. Chapter 2 gives an introduction
to MATLAB, discusses OOP as it applies to Python, introduces the concept of Docker
containers, reviews the NCS in greater detail, and explores works related to our thesis. In
Chapter 3, we discuss our methodology for converting MATLAB to Python. In Chapter
4, we present a detailed description of our software development process from design to
implementation. We analyze the code conversion and its performance in various tests and
present the results. In Chapter 5, we outline our methodology for re-designing our code to
allow for a distributed simulation via Docker containers and furnish the results. Finally, in
Chapter 6, we present our conclusions, discuss lessons learned, and propose future work.

3
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CHAPTER 2:
Background

This chapter explores the foundational tools, concepts, and bodies of work that are the
building blocks for our thesis. Section 2.1 provides an overview of the MATLAB program-
ming language, including its origins, basic syntax, examples of how it differs from Python,
and a demonstration of its plotting capabilities. Section 2.2 provides an overview of the
Python programming language, including discussions on OOP and class objects. Section
2.3 discusses Docker, introduces virtual machines (VMs), and explains our rationale for
choosing Docker over VMs for our implementation. Lastly, we briefly review the high-level
NCS node placement optimization in Section 2.4, and explore works related to our thesis
in Section 2.5.

2.1 MATLAB Programming Language
MATLAB is a computing system for performing the calculations involved in scientific
and engineering problems. MATLAB stands for Matrix Laboratory because the system
was specifically designed to perform matrix computations with relative ease [7]. It was first
made available for commercial use in 1984 and has since undergone substantial changes, and
enhancements [8]. MATLAB is useful for modeling and simulation and includes “a large
number of toolboxes available for license, as well as a number of community-provided tool-
boxes to solve common problems” [1]. However, MATLAB has some significant drawbacks,
especially when compared to Python. Because MATLAB is a multi-paradigm program-
ming language designed primarily for numeric computation, it is not as readily extensible
as Python, which uses OOP. MATLAB is also not as user-friendly and requires a steeper
learning curve. It has a smaller user base and ecosystem than Python and provides less
functionality as a result. Lastly, MATLAB is proprietary software, whereas Python is open
source (i.e., free). When direct comparison is warranted, this thesis displays MATLAB
code against a light blue background and Python code against a light tan background. Index
numbers are displayed on the left-hand side of code blocks as required to aid in referencing
specific lines or to enhance readability.

5
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2.1.1 Basic Syntax
MATLAB is similar to the C programming language in that it uses specific characters (such
as curly braces) to encode discrete flow control structures [1]. However, unlike in C, a
semicolon is not strictly required as a termination character at the end of each line of code.
When the optional semicolon is used as a termination character, the output of that line is
suppressed on the display. For example:
y = 2 + 3;

does not display any output but stores the result in the variable y. However, if the semicolon
is omitted, as in the statement
y = 2 + 3

the following output will result:
>> y = 2 + 3

y =

5

Omitting the semicolon is useful for displaying the results of command execution to the
user and for troubleshooting. Otherwise, programs normally include the semicolon to refrain
from displaying extraneous information.

Variables
MATLAB is a weakly typed language, and variable types do not need to be declared before
a variable can be used [1]. For example, in the code block
x = 4

three = 3

pi = 3.14

my_string = ’Hello World!’

the variables x and three are not explicitly declared as integers before assigning them
integral values. Similarly, the variables pi and my_string did not have to be declared
as float (i.e., floating point decimal value) and string types, respectively, before their as-
signments. This is one instance where MATLAB and Python behave in the same manner.
In Python, it is also not necessary to declare a variable’s type upon its creation (although

6
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Python is considered a strongly typed language because of how variables are maintained
after creation). After declaring a variable, it can be recalled to perform calculations. For
example, based on the previous code snippets, the assignment statement
y = x * three

will have an output of
>> y = x * three

y =

12

Additionally, both MATLAB and Python are dynamically typed and allow the reassignment
of variables with different data types than previously assigned. For instance, given the
previous variable assignments, the MATLAB variable pi can be dynamically reassigned
to a string type in this manner:
pi = "sweet potato"

2.1.2 Comparison of MATLAB and Python Syntax
This section focuses on a few of the syntactic differences between MATLAB and Python.
This list is by no means exhaustive and is primarily intended to give the reader a sense of
the disparities between the two languages.

Semicolons
As discussed in Section 2.1.1, using a semicolon at the end of a line of code in MATLAB
suppresses the display of the output from that line. In Python, the use of a semicolon has
no effect whatsoever. For example, entry of the following lines that are slightly modified
from [9]

1 >>> x = 30

2 >>> y = 40

3 >>> z = x + y

4 >>> z;

will result in the following output:
70
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In the above code, we assigned the variable x the integer value 30, y the integer value 40,
and z the sum of x and y. The value of the variable z was output to the terminal despite
the inclusion of the semicolon in line 4 because the variable name is the only statement on
the command line. The main point to notice from this example is that Python will output
the result of the statement entered into the command line irrespective of the inclusion of
a semicolon whenever the statement evaluates to anything other than None (i.e., Python’s
notion of a “null” or non-value). When executing a program or function, no output is sent
to the terminal unless a statement specifically calls for it (e.g., a print statement).

Commenting
In MATLAB, single-line comments begin with a% character, while in Python they begin with
a #. For this paper, all comments, whether written in Python or MATLAB, are highlighted
in green to improve the readability of the code. By convention, inline documentation is
written differently in MATLAB than in Python. In MATLAB, functions are documented
with multiple single-line comments at the beginning of the function [9]:
function [product] = multiply(n,m)

% MULTIPLY Multiplies two numbers

% PRODUCT = MULTIPLY(N,M) multiplies N and M together

The Python convention, on the other hand, uses multi-line comments, referred to as doc-
umentation strings or docstrings, to document functions and classes [9]. For example, a
Python version of the above function would use docstrings as follows:
def multiply(n, m):

"""Multiplies two numbers together.

Example

-------

>>> product = multiply(30, 40)

>>> product

1200

"""

Leading Whitespace
In MATLAB, code blocks such as “if statements, for and while loops, and function
definitions [terminate] with the end keyword” [9]. The following code snippet provides a
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simple example.
1 var = input("Enter an integer: ");

2

3 if var == 20;

4 fprintf("the input value is 20")

5 else

6 fprintf("the input value is not 20")

7 end

The example code creates the variable, var, to store a user-input integer and then checks
to see whether its value is equal to 20. If it is, line 4 displays the phrase “the input

value is 20;” otherwise the else block displays “the input value is not

20.” It is generally considered a best practice to indent the code within a block to make it
more readable, but it is not syntactically necessary in MATLAB [9]. The following block
of code is semantically identical to the previous block, but the indentation makes it much
easier to visually distinguish the body of the if block from that of the else block.

1 var = input("Enter an integer: ");

2

3 if var == 20;

4 fprintf("the input value is 20")

5 else

6 fprintf("the input value is not 20")

7 end

In Python, indentation is used to indicate blocks of code, and statements at the beginning of
a block typically end with a colon. The following code illustrates how the previous example
might be coded in Python:

1 var = int(input("Enter an integer: "))

2

3 if var == 20:

4 print("the input value is 20")

5 else:

6 print("the input value is not 20")

All lines of code within a block must use the same indentation.

2.1.3 Data Visualization in MATLAB
MATLAB dedicates significant functionality to data visualization and plotting. The follow-
ing code modified from [10] demonstrates a simple example.
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x = [0:0.1:20];

y = cos(x);

plot(x,y)

This code produces the simple cosine wave graph shown in Fig. 2.1. Standard Python does
not provide similar functionality, although a number of popular open-source libraries are
available if this functionality is required.

Figure 2.1. MATLAB-rendered cosine wave. Adapted from: [10].

2.2 The Python Programming Language
Python is a high-level, general-purpose OOP language with a user-friendly syntax. It is
open-source and provides extensive libraries that support a wide range of applications
with many pre-defined functions. Python has gained a broad user community in academia
and industry. It is used in many areas, such as automation, software and web development,
Artificial Intelligence, Machine Learning, system and network administration, research, and
game development. We already covered some of the syntactic differences between Python
and MATLAB in the previous section. In this section, we focus primarily on the major
concepts of Python that pertain to our thesis. We begin by discussing the origins of OOP
and provide a definition. We then introduce the concept of classes as a basic building block
of OOP and conclude with an in-depth exploration of the four fundamental concepts of
OOP.
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2.2.1 Object-Oriented Programming (OOP)
The origins of OOP can be traced back to the efforts of two Norwegian computer scientists,
Ole-Johan Dahl and Kristen Nygaard, in designing the programming language Simula that
modeled real-world objects and their processes [11]. OOP is a programming paradigm that
focuses on the functionality and interactions of objects. In everyday language, we describe
an object as something that has a physical representation–something that can be seen and
touched. In computer programming, "an object is a bundle of related state (variables) and
behavior (methods)" [12]. As such, Gönther Blaschek notes that “objects are more than just
data [in that they] can also perform actions” [13]. Blaschek captures this concept well with
the equation

𝑜𝑏 𝑗𝑒𝑐𝑡 = 𝑠𝑡𝑎𝑡𝑒 + 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (2.1)

where state represents the data values in the object, and behavior encompasses the actions
that the object can perform. Data is encoded as attributes that describe a specific object,
and functionality is defined by a set of methods or functions that the object can perform.
By grouping related attributes and methods together, OOP enables programmers to create
complex programs that are implemented with relatively simple structures. These programs
can effectively be summarized as a collection of largely autonomous agents (objects), each
tasked with carrying out a specific job but interacting with each other as needed [14].
Glady Booch formally defines OOP as “a method of implementation in which programs
are organized as cooperative collections of objects, each of which represents an instance
of some class, and whose classes are all members of a hierarchy of classes united via
inheritance relationships” [15].

This definition introduces some fundamental concepts associated with OOP–that objects
are the basic building blocks of a program, that the objects represent a class, and that there
exists some type of inheritance relationship among these classes. Now that we have defined
what objects are, we will next explore the fundamental structure for representing them in
Python.
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2.2.2 Classes
Classes are the foundational programming concept of OOP. We can think of a class as a
group of objects that have similar properties and behaviors. In the real world, a class of
automobiles, for example, can include sedans, buses, and trucks. A particular Ford Focus
would be an instance of that automobile class. By the same reasoning that one would not
include a bicycle in a class of automobiles, objects that do not have both a shared structure
and behavior do not belong in the same class; they are unrelated by definition.

In OOP, a class is the programmatic representation of a type of object and provides a
template for creating new instances of that object [16]. Source Code 2.1, adapted from [17],
defines an Employee class to demonstrate this concept. In this example, the properties and
behaviors of the class would be its attributes and methods. The values assigned to the id,
name, and job_title attributes of each instance of the class uniquely define each object.
Collectively, the attribute values of a specific instance specify the state of that Employee
object.
class Employee: # new Class definition

# Initialize the attributes

def __init__(self, id, name, pay, job_title=None):

self.id = id

self.name = name

self.pay = pay

if job_title != None:

self.job_title = job_title

# set the attributes (setter methods)

def set_title(self, job_title):

self.job_title = job_title

# return the attributes (getter methods)

def get_name(self):

return self.name

def calc_weekly_pay(self, hrs):

ot = (hrs - 40)*1.5*self.pay

return 40*self.pay + ot

Source Code 2.1: Sample Python class structure. See Appendix C.2 for a
complete implementation. Adapted from: [17].

Classes simplify the creation of objects by facilitating reusability of code. The Employee
class is a template from which uniform instances of individual Employee objects can
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be created. Blaschek summarized a class as an abstract concept that aids programmers in
identifying objects with the same characteristics and distinguishing objects with different
structures and behaviors [13].

2.2.3 Fundamental Concepts of OOP
Four fundamental concepts capture the essence of OOP: encapsulation, abstraction, inher-
itance, and polymorphism [18]. In this section, we provide an overview of each.

Encapsulation
Encapsulation is a mechanism that prevents users from directly accessing variables that
hold data within a class. It forms a sort of “protective barrier” around the objects of a class
while providing a safe means of gaining access to those objects through methods. These
methods provide external entities and users of the class with a “public interface” that they
must use to interact with objects of the class. Users cannot see or manipulate an object’s
attributes or utilize methods that have not been provided as part of the public interface.

The class structure hides some information from external entities by only allowing controlled
access to the data through its methods. In the definition of the Employee class in Source
Code 2.1, for example, it might be prudent to restrict external entities from accessing the
id and name attributes directly. The code accomplishes this by providing two methods as
part of the public interface: get_name() and set_title. The get_name() method
is a “getter” function that provides a read-only means of retrieving the employee’s name.
The set_title “setter” method provides a means of updating the title of the employee
and could be written in a way that enforced specific naming requirements (this functionality
is not incorporated into the example). No method is provided in the interface to change
an employee’s name attribute or access an employee’s id attribute. Another useful aspect
of encapsulation is that it allows the implementation to be changed without affecting the
interface (i.e., objects of the class will retain the same functionality). For instance, if there
was a future requirement to break up the name attribute into first and last names, we could
do so without requiring changes beyond the class definition.

Blaschek stresses that this form of information hiding is vital to OOP for two reasons. First,
some programs may have intricate data structures whose components should not be freely
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accessed by clients. Second, if the underlying implementation of the class changes, the
external interface would not need to be updated [13]. Without encapsulation, clients that
relied on the class would all need to be updated to conform to any class implementation
changes.

Abstraction
Abstraction is a form of implementation hiding, where the details of the inner workings of a
system are hidden from its users. Once again, consider the Employee class example from
above. Assume that the system user is a payroll administrator who needs to calculate an
employee’s pay for the week. To do this, they call the calc_weekly_pay() function and
pass it the number of hours the employee worked for the week. The payroll administrator
does not know whether the returned value resulted from a computation or a lookup of the
employee’s pay attribute; they only see that it accomplished their objective. By allowing us
to “focus on what the [system] does, rather than on how it does it [18],” abstraction hides
irrelevant details and simplifies how users interface with a system.

Inheritance
Inheritance allows a class to hierarchically derive its methods and properties from another
class. It implies an “is a” relationship between two classes in which a child class or subclass is
a more specific type of a more general parent class or superclass. Inheritance makes it easier
to define new classes from existing ones by allowing child classes to inherit characteristics
and functionality of the parent class while also adding their own. Inheritance is implicitly
transitive, meaning that subclasses can inherit from superclasses multiple levels deep [14].
Figure 2.2 below illustrates the inheritance principle by defining new classes that inherit
from the Employee class of the previous examples.

In Figure 2.2, the SalaryEmployee and HourlyEmployee subclasses are de-
rived from the Employee superclass, and so they inherit all the attributes and meth-
ods of the Employee class. The CommissionEmployee class is a subclass of the
SalaryEmployee and therefore inherits the attributes and methods of the Employee
superclass in addition to those of the SalaryEmployee class. The inheritance property
enables code reusability, consistency of interfaces, and allows polymorphism.
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Employee

id
name
job_title

get_name()
set_job_title(job_title)

SalaryEmployee

weekly_salary

get_salary()
calculate_pay(num_weeks)

CommissionEmployee

commission_rate

calculate_pay(num_weeks, net_sales)

HourlyEmployee

hourly_wage

get_wages()
calculate_pay(hrs_worked)

Figure 2.2. Sample class hierarchy of an Employee class showing the
class attributes, class methods, and the inheritance relationships with child
subclasses. See Appendix C.2 for a complete implementation. Adapted
from: [17].

Polymorphism
In the context of OOP, polymorphism allows a subclass to redefine structures and
methods inherited from its superclasses. That is, it can override any method or prop-
erty inherited from a superclass by redefining it in its own class specification. In Fig-
ure 2.2, both the SalaryEmployee and CommissionEmployee subclasses have a
calculate_pay() method. For objects of the CommissionEmployee class, the
calculate_pay() method of the subclass overrides the inherited SalaryEmployee
superclass implementation. Polymorphism implies that the correct implementation of a
method is called for the correct class (i.e., the implementation most directly associated with
the calling object will be invoked). In our example, this means that thecalculate_pay()
method of the CommissionEmployee class is invoked for objects of that class and the
SalaryEmployee implementation is called for objects of the parent class. Polymorphism
associated with higher-level components is automatically inherited by child classes lower
in the inheritance tree.
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2.3 Docker
Docker is an open-source platform for developing, distributing, and running applications
through software called containers. A container can be defined as “a standard unit of software
that packages up code and all its dependencies, so the application runs quickly and reliably
from one computing environment to another” [19]. Instructions for building a container exist
within a layered file system called a Docker image [20]. The basic components of a Docker
image include a lightweight version of an operating system (OS), a runtime environment,
application files, third-party libraries, and environmental variables [21]. Docker images
are created by execution of a Dockerfile, which is a “text document that contains all the
commands a user [executes] on the command line to assemble an image” [22].

The Docker architecture is depicted in Figure 2.3. In this depiction, a Docker client issues
commands to the Docker daemon, which manages both the images and containers. The
Docker registry is a service that stores and distributes Docker images which can be made
either publicly or privately accessible. The Docker client, daemon, and various other Docker
services can all be run by utilizing the Docker Desktop application, which is available for
MacOS, Windows, or Linux environments [23]. Before the advent of Docker containers,
VMs were the primary technology to offer similar functionality. Figure 2.4 provides a visual
comparison of applications running on Docker containers and VMs.

Figure 2.3. Docker architecture. Source: [23].

A basic definition of a virtual machine (VM) is “software that runs programs or applications
without being tied to a physical machine” [24]. It is a virtual (i.e., software-defined) com-
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puter that exists like any other program installed on a physical computer. The host machine
provides the infrastructure, which includes all the resources (e.g., memory, central process-
ing unit (CPU), storage) shared by multiple hosted VMs. The hypervisor, or virtual machine
monitor, is “the code responsible for managing virtual machine guests on a physical host
machine” [25]. It allows multiple VMs to be hosted on the same physical machine at the
same time, with each VM having its own guest OS, applications, and dependencies. Each
VM is completely isolated from the others and is also isolated from the physical host’s OS.
VMs can take up significant resources to host each guest OS. VM images can be copied,
deleted, or migrated to other physical hosts, just like regular computer files.

Figure 2.4. Depiction of applications running on Docker containers in com-
parison to VMs. Source: [19].

VMs differ from Docker containers in that they virtualize the hardware on the physical
host, while Docker containers virtualize the OS in the application layer [19]. This allows
containers to eliminate the additional overhead required to host a guest OS. When comparing
Docker containers and VMs, Babu Kavitha and Perumal Varalakshni concluded that Docker
containers are superior “in terms of CPU Performance, Memory throughput, Disk I/O, Load
test, and operation speed measurement [benchmarks]” [26]. The findings that containers
almost always equal or outperform VMs were mirrored in [27]. Allison Randal argues that
containers provide more secure isolation than VMs because “containers take a modular
approach to implementation that permits them to be more flexible over time and across
different underlying software and hardware architectures” [25]. However, VMs retain an
edge in some instances. For example, they can be useful when there is a need to maintain
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support for legacy applications that can only run on obsolete OSs [24]. In contrast to the
findings above, Manco, et al. [28] demonstrated that a VM instantiation of an application
performed significantly faster than a Docker container instantiation of the same application.

Ultimately, while both architectures have their advantages and disadvantages, Docker con-
tainers are better suited for our work for two significant reasons. First, Docker containers
are less resource intensive, which makes them easier to build, modify, and test on a single
host. Second, their small size makes containers well-suited for deployment on memory-
constrained platforms like UxVs.

2.4 Networked Control System (NCS)
As discussed in Chapter 1, this thesis builds on the works of Lowry [4] and Wachlin [6].
A key concept of their work was the idea of submodularity. Tyler Summers and Maryam
Kamgarpour best describe submodularity as “a diminishing returns property, [whereby]
adding an element to a smaller set gives a larger benefit than adding it to a larger set” [29].
This property was used to increase the NCS’s total network utility. An in-depth analysis of
how the submodular utility function was selected to evaluate the NCS is available in [6].
The resulting submodular total utility function, 𝐽, is represented by Equation 2.2

𝐽 (𝑆) = 𝛼𝑠 𝑓𝑠 (𝑆) + 𝛼𝑟 𝑓𝑟 (𝑆) (2.2)

In this function, the position set, 𝑆, is the optimal set of all possible node locations in a
100-meter by 100-meter grid, and 𝑓𝑠 and 𝑓𝑟 are the sensing and communications-robustness
utility functions that are respectively assigned the weights 𝛼𝑠 and 𝛼𝑟 [4]. For the sensing
function “in the MTX scenario, the road network, NSW team, and target objective all have
high sensing values, so a node positioned closer to one of these would contribute to a
higher sensing utility 𝑓𝑠 than one positioned farther away” [4]. The robustness utility was
calculated by measuring connectivity to ensure effective communications between nodes.
This was done by measuring the effective graph resistance by increasing the edge weight
as the distance between nodes increases so that the graph equates to increased resistance to
communication (i.e., a less robust network) [4].
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In their MATLAB implementation, Lowry and Wachlin compared two distinct methods for
determining node placement: the centralized and distributed submodularity (DS) methods.
The centralized method utilizes a single controller to calculate all of the nodes’ optimal
positions [4]. Node placement must be done in a specified sequence, and nodes cannot
be repositioned after the initial placement. In contrast, the DS method uses an iterative
approach to the node placement process that allows nodes to be placed in any order and
repositioned multiple times until the best possible total network utility is achieved. The DS
approach is more robust and is the method upon which most of this work focuses.

2.5 Related Work
In an ongoing research effort to convert MATLAB Bridge modules into a Python-integrated
3DSlicer, Sharon Peled and Andras Laso [30] began their implementation by mapping out
the MATLAB Bridge module function dependencies. They concluded that MATLAB to
Python converters would not work, and that conversion would have to be done manually.
In [31], Sollfrank, et al. explored how “containerization supports platform independent
development and deployment of secure and isolated applications,” on a cyber-physical-
system-based NCS. They determined that Docker containers are capable of supporting real-
time NCS applications so long as the container is provided the highest real-time process
priority. However, Sollfrank et al. noted a slight delay of approximately 43 𝜇s in the
round-trip-total time in the containerized version of a user datagram protocol client-server
application [31]. Lastly, Gergely Imreh [32] proved that containerized Docker applications
could successfully run on a unmanned aerial vehicle (UAV). During a keynote speech at
Dockercon 2016, Imreh gave a live demonstration where he updated the drone’s software
while it was still in flight by creating a "user application [...] as a Docker container from the
source pushed with git to the resin.io servers” [32]. The drone then synchronized with the
servers and “pulled” an updated container once it was made available.

2.6 Chapter Summary
In this chapter, we introduced both the MATLAB and Python programming languages.
We discussed basic syntax rules for MATLAB and provided examples whenever they dif-
fered from Python. For Python, we introduced the concept of OOP and classes and
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discussed the four fundamental concepts of OOP: abstraction, encapsulation, inheritance,
and polymorphism. We also introduced the concept of Docker containers, discussed VMs,
and provided a justification for choosing Docker containers over VMs for our implemen-
tation. Lastly, we reviewed the NCS and discussed related works. Chapter 3 describes our
methodology for converting the MATLAB code to Python.
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CHAPTER 3:
Methodology

This chapter discusses our methodology for converting MATLAB code to Python. We
begin by evaluating the feasibility of automatic converters to automate the job for us in
Section 3.1. Next, we use function mapping tools (discussed in Section 3.2) to better
understand the functions in the MATLAB code and how they interact with each other.
Lastly, we present our conceptualized design for the Python classes and propose a class
hierarchy in Section 3.3.

3.1 Automated MATLAB-to-Python Code Conversion
Several tools exist to automatically parse and convert MATLAB code to Python. Small
MATLAB and Octave to Python compiler (SMOP), matlab2python, Open-Source MATLAB
to Python Compiler, Mat2py, and Libermate are but a few. From this list, we selected SMOP
for evaluation because, according to Python Pool, it is considered among the best available
tools [33]. Although we ultimately could not get our test code to run with SMOP, our
experimentation was partially fruitful. The test code and resulting conversion are provided
in Appendix A. We concluded that SMOP and similar tools would more accurately be
classified as code wrappers rather than code converters because they “wrap” the pre-existing
code with an outer layer of code that a particular interpreter can understand. In essence,
the translated code still reads like conventional MATLAB syntax but can be run in Python
environments. Based on this observation, we determined that this tool was not suited for
our thesis since our objective was the full implementation of the NCS in Python. The only
option left was for manual code conversion.

3.2 Function Mapping
There are two types of MATLAB source code files (called m-files): scripts and functions.
m-file scripts do not take inputs or return results–they simply operate on data in their
Workspace. m-file functions, on the other hand, can accept inputs and return results. For
this thesis, we use the term function interchangeably to refer to both m-file types. Our initial
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approach to determining the dependencies between functions in the MATLAB code was a
manual evaluation. We methodically examined the code to identify every function and then
determined when and in what order they were called. Ultimately, this approach proved too
cumbersome to be feasible. Our alternative approach was to identify a suitable automated
tool for building function inter-dependencies.

One tool that is widely used to generate documentation from source code for traditional
OOP languages is Doxygen [34]. It is freely available and can generate user-friendly output
in HTML format. A similar tool that automates the generation of HTML documentation for
MATLAB files is MATLAB to Hypertext Markup Language (M2HTML) [35]. It evaluates
a MATLAB file and generates a full list of functional dependencies. When used in conjunc-
tion with visualization software, this list can be displayed as a graphical rendering of the
relationships between functions. M2HTML integrates well with Graphviz, an open-source
graph visualization software for representing abstract structural information [36]. For our
implementation, we settled on M2HTML. In demonstrating M2HTML’s functionality, con-
sider the following MATLAB list adapted from [37]. In this example, function dependencies
are depicted as pairs (‘X,’ ‘Y’), indicating that function X calls function Y:
calls = {’foo’,’A’; ’foo’,’C’; ’foo’,’D’; ’foo’,’bar’; ’D’,’E’;

’E’,’F’; ’A’,’bar’; ’Y’,’Z’; ’bar’,’bar’};

M2HTML utilizes the dot tool of GraphViz to generate a 2D rendering of the function
dependencies. The output of this example is shown in Fig. 3.1, where the nodes represent
the various functions and the directed edges represent the caller-callee relationships. The
complete MATLAB m-file and the associated HTML document produced are provided in
Appendix B.
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(a) Dot file (b) Graphic rendering

Figure 3.1. Sample GraphViz dependency graph depiction. GraphViz ren-
ders the dependencies defined in the Dot file as a directed graph in which
nodes represent functions and vertices represent the caller-callee relation-
ships. Adapted from: [37].

We used M2HTML and GraphViz to produce the dependency graph in Figure 3.2 from the
MATLAB NCS m-files. We adopted this figure as a starting point for designing our Python
class definitions.

Figure 3.2. GraphViz rendering of the NCS functions and their dependencies.

3.3 Conceptualizing Python Classes
This section discusses the conceptualized Python classes and presents the initial design
for our class hierarchy. Before commencing the code conversion process, we used a top-
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down approach in order to gain a high-level understanding of the MATLAB program.
From the dependency graph depicted in Figure 3.2, the logical starting point was the
MTX_infil_mission file. We also wanted to understand what each function accom-
plished. We noted that the first function call was made to MTX_set_parameters. This
function defines the general scenario parameters for the NCS simulation. Based on our
review of all the functions in the dependency graph, we conceptualized our class objects
and the class hierarchy design as depicted in Figure 3.3.

NCS Sim

Group Behavior

CentralizedDistributed Submod

Robustness UtilitySensing Utility

Scenario

Node

UxVDDGNSW

Map

TargetRoad

Figure 3.3. Proposed NCS Python class hierarchy.

In this hierarchy, NCS Sim is the class that runs the entire simulation. The Scenario
class defines the physical parameters, including the location, players, and objective. The
Node class contains the actors in this scenario. Its subclasses are the virtual leader, a NSW
team class, a DDG class, and a UxV class representing different types of unmanned vehi-
cles with distinct characteristics. The Group Behavior class represents functionality
for manipulating collective node behaviors. Its Distributed Submod subclass repre-
sents node placement using the DS method, and its Centralized subclass represents
node placement using the centralized method. The Sensing Utility class is used to
maximize the coverage of the UxVs over high-value locations (i.e., the NSW team, the road
network, and the target objective), and the Robustness Utility is used to maximize
the communications connectivity between the nodes in the scenario.

3.4 Chapter Summary
This chapter outlined our methodology for converting the MATLAB code to Python. We ex-
plored the use of automatic converters, discussed function mapping tools, and demonstrated
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the effectiveness of pairing M2HTML with GraphViz to generate function dependencies.
Finally, we presented our conceptualized Python classes and proposed a class hierarchy for
our Python NCS, the implementation of which we discuss in Chapter 4.
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CHAPTER 4:
Implementation and Evaluation

This chapter covers the process we used to implement our code conversion. Section 4.1 de-
scribes the iterative software development process that we followed to refine and implement
the initial design presented in Section 3.3. In Section 4.2, we validate the correctness of our
final Python implementation by comparing its results with those of the original MATLAB
implementation. We also present a performance evaluation based on execution times.

4.1 Python Design Implementation
We start this section with a step-by-step explanation of the iterative process we utilized to
develop and debug our Python program. We then describe the different types of relationships
that exist between elements in our implementation. Finally, we present the optimized class
hierarchy and structure for the simulation.

4.1.1 The Multi-Step Iterative Process
We used an iterative approach to translating the MATLAB code to Python. Most importantly,
translating the code in small blocks enhanced our ability to debug coding errors before the
program expanded in length and complexity. Figure 4.1 provides a road map of our multi-
step iterative process, and the following sub-sections elaborate on the methods employed at
each stage of the process.

1 Pseudocode Review Our first objective was to gain a high-level understanding of the
code from the Lowry thesis [4, p. 25]. Reviewing this pseudocode gave us a scaled-out
view of the original work’s methodology and facilitated our understanding of the scope
of our work. The pseudocode review included mapping each line of the pseudocode to its
associated MATLAB implementation.

2 Scenario Initialization Review
After gaining a high-level perspective of the code, we next sought to understand the pro-
gram flow starting from initialization. The GraphViz dependency graph of Figure 3.2
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1. Pseudocode review

2. Scenario initialization review

3. Translation of MATLAB functions to Python

4. Main loop translation

5. Code optimization

6. Class refining and implementation

Figure 4.1. Flow chart of the iterative process used for converting MATLAB
code to Python. See Appendix C.1 for a more granular flow chart.

indicates that MTX_infil_mission.m is the entry point for the program and initial-
izes and runs the scenario. However, while this rendering accurately depicts the function
dependencies, it does not indicate the order in which the functions are called. For exam-
ple, MTX_infil_mission.m is depicted with ten dependencies. Only by examining
the actual code does it become clear that MTX_set_parameters.m is the first func-
tion called. This function defines the parameters that characterize the SCI Scenario. These
parameters include variables derived from the geographical topography and user-defined
variables. For example, MTX_set_parameters.m reads a .jpg image of a map of SCI
and stores it in an “image” variable that is then scaled according to a user-defined variable.
The MTX_infil_mission.m file saves all the parameters to a .mat file. This file is
imported into our Python program to initialize the SCI scenario.

3 Translation of MATLAB Functions to Python
Armed with an understanding of the overall structure of the code and how it is initialized, we
commenced our code translation. Because some functions depended on others, we started
by first converting the leaf nodes on the dependency graph in Figure 3.2. An unintended
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benefit of this approach was that these functions were generally only a few lines of code
and, thus, the easiest to convert. After converting each MATLAB function to an equivalent
Python function, we tested for correctness. For each MATLAB function, we noted both the
input arguments at the start of the function execution and the output values just before the
function returned. We then used this data to verify the functionality of our Python functions.

We demonstrate a successful conversion of the calc_adj_mtx function, which calculates
a communications adjacency matrix from MATLAB to Python in Source Codes 4.1 and 4.2.
Source Code 4.3 shows the test script we utilized to check for correctness in the function.

1 function [A] = calc_adj_mtx(pos,rmax)

2 % The Adjacency matrix describes the interaction strength among the agents in the group

3 % and is given by a_ij(q)=\rho_h(||q_j-q_i||_\sigma / d_x) \in [0,1]

4 % where d_x is a constant representing the maximum communication distance

5

6 [n,~]=size(pos);

7 A = zeros(n);

8

9 for i=1:n

10 for j=1:n

11 if (i~=j)

12 r = calc_dist(pos(i,:), pos(j,:));

13 if r < rmax

14 A(i,j) = calc_edge_weight(r,rmax); %% rmax = cmax = 500

15 end

16 end

17 end

18 end

19 end

Source Code 4.1: MATLAB calc_adj_mtx function for calculating the
communication system adjacency matrix.

1 # ---------- calc_adj_mtx -----------------------------------------------------

2 def calc_adj_mtx(pos, rmax):

3 """The Adjacency matrix describes the interaction strength among the

4 agents in the group and is given by:

5

6 a_ij(q)=\rho_h(||q_j-q_i||_\sigma / d_x) \in [0,1]

7

8 where d_x is a constant representing the maximum communication distance.

9 """

10

11 n = np.shape(pos)[0]

12 A = np.zeros([n, n])

13
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14 for i in range(n):

15 for j in range(n):

16 if i != j:

17 r = calc_dist(pos[i, :], pos[j, :])

18 if r < rmax:

19 A[i, j] = calc_edge_weight(r, rmax)

20 return A

Source Code 4.2: Python version of the MATLAB calc_adj_mtx
function.

The calc_adj_mtx function in Source Code 4.2 serves as an example of the impor-
tance of understanding the function dependencies before code conversion. The function
calc_dist is called in line 17 and calc_edge_weight in line 19. Therefore, the
Python version of calc_adj_mtx would not work unless these two functions were trans-
lated to Python first.

1 # ---------- TESTING: calc_adj_matrix -----------------------------------------

2 # test parameters set

3 cmax = 500

4 pos = np.array([[444.7388, 452.4329],

5 [853.9999, 220.0796],

6 [1.0, 1.0]])

7

8 # calcualte adjacency matrix and round values to 4 decimals

9 A = calc_adj_mtx(pos, cmax)

10 A = np.round(A, decimals=4)

11

12 # A_test is our expected output to test against

13 A_test = np.array([[0., 0.9144, 0.],

14 [0.9144, 0., 0.],

15 [0., 0., 0.]])

16

17 # compare our output with expected output to test for correctness

18 if np.array_equal(A, A_test):

19 print("+ calc_adj_matrix test SAT")

20 else:

21 print("- calc_adj_matrix test FAILED")

Source Code 4.3: Python test script for the calc_adj_mtx function
translation.

In the Source Code 4.3 test script, the test input and anticipated output are encoded in
lines 3-6 and lines 13-15, respectively. Both were captured by setting breakpoints in Source
Code 4.2 at lines 6 and 19, respectively. Some test failures necessitated testing with ad-
ditional input-output combinations due to the requirement for some functions to accept
multiple data types as inputs. For example, a function might take a float type input on one
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iteration and an array type on the next. Line 10 rounds the output to four decimal places
to match MATLAB’s output; otherwise, the test would fail due to float data type precision
rounding. Line 18 performs the comparison that determines whether or not the test was a
success.

4 Main Loop Translation
Once all the functions were individually validated, we began translating the program’s
main loop. The methodology was similar to the one described in the previous section for
converting and testing individual functions. We initially intended to execute the Python
program in one main loop as in the MATLAB version. We refer to this initial approach as
the streamlined approach. It allowed us to understand the program flow better and made
resolving conversion errors easier.

We began by setting up the SCI scenario, which involved loading the initialization parameters
from the imported .mat file. We then iterated through the MATLAB main loop line by line
and translated the code into its Python equivalent. This step was not trivial as translations
between MATLAB and Python are not always direct. For example, consider the MATLAB
command
snapshots = [100 500:300:length(NSW_Path)]

which creates an array variable with values starting at 100, followed by 500, and increments
by 300 thereafter. There is no equivalent Python command, so multiple steps are required
to achieve the intended result:
# create array of starting value

head = np.array([100])

# create array of tail end

tail = np.arange(500, len_NSW_Path, 300)

tail = np.array([tail])

# concatenate the them into one array

snapshots = np.concatenate((head, tail), axis =None)

5 Code Optimization
In an effort to improve execution times, we considered several performance-enhancing so-
lutions and ultimately adopted Cython for its utility, relative ease of use, and compatibility.
Cython is a superset of the Python language that acts as a bridge between Python and
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C or C++ [38]. Cython improves the performance of Python code without requiring any
prior understanding of C++ by translating it into optimized C/C++ code that can be com-
piled [38]. A setup file is used to specify all the target files to be compiled. Simply compiling
a Python file can bring notable performance improvements. For additional performance im-
provements, Python code can be “Cythonized” by using Cython-specific syntax to declare
variable types. This approach allows a programmer to run the code either as a Python or as a
Cython script and allows for easy performance comparison. Additional analysis of Cython
and a “Cythonized” code sample is provided in Appendix D.

When we Cythonized our code at this stage, the largest file was 652 lines long and took ap-
proximately 1 hour and 37 minutes to compile. Once compiled, the results were promising–
execution time was improved by over two orders of magnitude. As much as this was an
improvement, however, the compilation time was intolerably long. We assessed that decom-
posing the main loop into smaller files as described in Section 6 would be necessary to
improve the compilation time.

6 Class Refining and Implementation
The product of the first phase of our conversion process–the streamlined Python version–
turned out to be too complex, as evidenced by the unacceptably long Cython compilation
time. The most extensive file, NCS_sim_f.py, had 598 lines of code and contained
multiple nested loops that were costly in execution time. In our final step, we broke this
large file into smaller modular files. We more rigorously defined how we wanted to represent
our data and, more importantly, the class structures in which the data would be stored. The
following sections detail the resolution of the relationships between classes, which resulted
in the comprehensive Python class hierarchy portrayed in Figure 4.2.

4.1.2 Relationship Types
We considered three central relationship types when implementing the class hierarchy of
Figure 3.3: inheritance (“is a”), composition (“has a”), and semantic relationships.

Inheritance (“is a”) Relationships
Inheritance is characterized by an “is a” relationship where a child class is a subtype of its
parent class. In this relationship, the parent class is referred to as the superclass, and the
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child class is referred to as the subclass. The subclass is said to “derive from” the superclass.
For example, in the inheritance relationship of Source Code 4.4, the child UAV subclass
derives from the parent Node superclass. This indicates that a UAV is a specialized kind
of Node, and similarly, a Node is a generalization of a UAV. The UAV subclass inherits
the structure and functions of the Node superclass. Our finalized NCS class hierarchical
representation in Figure 4.2 depicts inheritance relationships as solid lines.
class Node(): # Node class definition

num_nodes = 0

def __init__(self, id=00, name="defaultName", vel=00):

self.id = id

self.name = name

self.vel = vel

Node.num_nodes += 1

def identify_node(self):

print("Node id: %d of %d, name: %s, vel: %d" %(self.id, Node.num_nodes, self.name,

self.vel))

def set_num_nodes(self, num):

Node.num_nodes = num

class UAV(Node):

# constructor for initialization

def __init__(self, id, name, vel, path):

self.UAV_path = path

super().__init__(id, name, vel)

# ======== Demonstrating the Node-UAV relationship ========

# instantiating a Node object

>>>nd = Node()

>>>nd.identify_node()

[Out] Node id: 0 of 1, name: defaultName, vel: 0

# instantiating a UAV object

>>>uav1 = UAV(1, "UAV1", 5, "uav_path")

>>>uav1.identify_node()

[Out] Node id: 1 of 2, name: UAV1, vel: 5

# demonstrating a UAV is-a Node

>>>uav1.set_num_nodes(9)

>>>uav1.identify_node()

[Out] Node id: 1 of 9, name: UAV1, vel: 5

>>>nd.identify_node()

[Out] Node id: 0 of 9, name: defaultName, vel: 0

Source Code 4.4: Inheritance (“is a”) relationship example written in Python
with typical runtime results.
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Composition (“has a”) Relationships
A composition relationship is characterized by an instance of one class being contained as
a data element of another class. In the Source Code 4.5 example, the Map class contains
a Target class object as one of its member variables. The definition of this composition
relationship enables us to reference methods of theTarget class instance using aMap class
object as demonstrated in the display_map() class method. The NCS class hierarchical
representation of Figure 4.2 depicts composition relationships as dotted lines.
class Target(): # Target class definition

def __init__(self, x, y):

self.x_cord = x

self.y_cord = y

def display_target(self):

print("(%d, %d)" %(self.x_cord, self.y_cord))

class Map(): # Map class definition

# constructor for initialization

def __init__(self, height, width):

self.height = height

self.width = width

self.target_obj = Target(350, 120)

def display_map(self):

# some plot map code here

self.target_obj.display_target()

# ======== Demonstrating the Map-Target relationship ========

# instantiating a Map object

>>>mp = Map(750, 750)

# accessing the Target object via Map instance

>>>mp.display_map()

[Out] (350, 120)

# another direct method of access

>>>mp.target_obj.display_target()

[Out] (350, 120)

Source Code 4.5: Composition (“has a”) relationship example written in
Python with typical runtime results.

Semantic Relationships
The third type of relationship is one in which two classes have no inherent connection
outside a specific context. A pumpkin, flowers, cornucopia, vase, and candles are seemingly
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unrelated when viewed as individual objects but are related in the context of items used
for decorating a Thanksgiving dinner table. Similarly, a Target object and a Node object
are not strongly coupled since a Target can exist independent of a Node, and vice-versa.
However, viewed in the context of the NCS simulation, the two are related in that the
Target is the objective towards which the Node(s) navigate.

Although the proposed design of Figure 3.3 was correct, we incorrectly assumed that
every node in the hierarchy represented an inheritance relationship. This created significant
hardships during the implementation phase of our conversion process. Once we gained
clarity on the different types of relationships, we adopted the following guidelines to assist
in identifying them accurately [39]:

1. To determine inheritance relationships, ask if a child class is a type of its parent class.
If so, reverse the question and ask if the parent is a generalized type of its child. There
should be a clear “is a” child and “is a” parent relationship, respectively.

2. For components that can be reused by more than one class, use a composition rela-
tionship.

3. For classes representing behavior groups that are interchangeable with other classes,
use a composition relationship.

4. When there seems to be no clear relationship, default to a semantic relationship.

4.1.3 Refined NCS Python Class Definitions
Figure 4.2 depicts a comprehensive hierarchical view of the final NCS class definitions
and their relationships. Each class is represented as a rectangular box with the class name
displayed across the top. The class variables are listed below the class name and the
class methods below the class variables. Due to space constraints, we listed only the critical
components for some of the classes. “Has a” composition-type relationships are represented
as dotted lines, and “is a” inheritance-type relationships are represented as solid lines.
Semantic relationships are not depicted.

To address the performance concerns identified earlier in the iterative design process, our
last step was to Cythonize the Python code to improve performance. The Cythonized version
of the Python NCS consisted of 13 files and over 1,250 combined lines of code, with each file
averaging around 100 lines of code. Having smaller files drastically reduced the compilation
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Figure 4.2. Finalized Python NCS diagram showing class structures and re-
lationships (solid lines indicate inheritance and dashed lines indicate compo-
sition).

time to a more tolerable 5 minutes. A detailed description of our performance evaluation is
discussed in Section 4.2.2.
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4.2 Evaluation of Design Implementation
This section provides an evaluation of our Python implementation of the NCS simulation,
including an assessment of the correctness of the system (i.e., does it get the desired results)
and the system’s performance (i.e., how quickly it obtains a final solution). In Section 4.2.1,
our results are compared against the outputs of the MATLAB implementation to validate
the correctness of our code conversion. In Section 4.2.2, we compare the performance of
our code to that of MATLAB.

4.2.1 Correctness Validation
Figures 4.3 through 4.5 present a side-by-side comparison of the results from the Python
and MATLAB implementations. In Figure 4.3, plots (a) and (b) show the initial node
placements for the NCS simulation, (c) and (d) the node placements after the first iteration
of the centralized method, and (e) and (f) the node placements after the first iteration of the
DS method. Figure 4.4 shows the final node topologies for the NCS simulation, centralized,
and DS methods, respectively.

The “𝐽” values at the top of each plot represent the total network utility for the NCS topology
at the completion of an iteration. This utility value indicates that the topology has achieved
the best placement of nodes for that iteration–rearranging the nodes in any manner cannot
achieve a better network utility. We compared the 𝐽 values of the Python figures on the left to
the MATLAB figures on the right and performed a visual inspection of the node topologies
to confirm that our results were accurate. By demonstrating that our total utility values are
equal to those of MATLAB, we showed that our Python implementation achieved node
placements equal to the MATLAB implementation. Figure 4.5 displays the utility values
for the sensing and communications robustness and the combined total utilities for each
iteration. Plots (a) and (b) show the network utilities after the first iteration of the simulation,
plots (c) and (d) show the final utilities after the last iteration of the simulation, and plots
(e) and (f) summarizes the total utilities over all the iterations of the simulation. Our results
demonstrate that the Python conversion and implementation were successful–the outputs
were precisely equivalent to those of MATLAB.
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(a) Python (b) MATLAB
Initial NCS node placement at beginning of infiltration phase.

(c) Python (d) MATLAB
NCS topology for the centralized method after first simulation iteration.

(e) Python (f) MATLAB
NCS topology for the DS method after first simulation iteration.

Figure 4.3. Comparison of the Python and MATLAB topology plots after
the first iteration of the simulation.
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(a) Python (b) MATLAB
NCS topology node placement at beginning of the final simulation iteration.

(c) Python (d) MATLAB
NCS topology for the centralized method after the final simulation iteration.

(e) Python (f) MATLAB
NCS topology for the DS method after the final simulation iteration.

Figure 4.4. Comparison of the final Python and MATLAB plots after the
final iteration of the simulation.
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(a) Python initial utility (b) MATLAB initial utility

(c) Python final utility (d) MATLAB final utility

(e) Python total utility (f) MATLAB total utility

Figure 4.5. Comparison of the network utilities after the first simulation
iteration (a)-(b) and final simulation iteration (c)-(d). Plots (e)-(f) show
the overall network utility for the simulation.
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4.2.2 Performance Evaluation Results
Table 4.1 lists the manufacturer’s specifications for the host used to benchmark our perfor-
mance evaluations.

General
Model MacBook Pro (14-inch, 2021)
Processor Apple M1 Pro chip
Operating System macOS Monterey Version 12.6
Storage 512GB SSD
Memory 16GB unified memory

Processor Details
CPU 8-core CPU with 6 performance cores

and 2 efficiency cores
Speed 8x 3.22 GHz P-cores and 2x 2.06 GHz E-cores
Graphics Card 14-core GPU
WiFi 802.11ax Wi-Fi 6 wireless networking

IEE 802.11a/b/g/n/ac/ax compatible
I/O Ports

Display port HDMI
USB ports 3x Thunderbolt 4 USB-C ports
Card Slot SDXC card slot
Aux Port 3.5 mm headphone jack with advanced support for

high-impedance headphones
Table 4.1. Specifications of the Apple MacBook Pro (2021) laptop used for
benchmarking.

The results of our execution time assessments are presented in Tables 4.2 and 4.3. Table 4.2
compares the individual run times for five iterations of the MATLAB, Python, and Cython
versions of the simulation and the overall average time. The MATLAB column contains
the run times for the original MATLAB code. The Python column contains the run times
for our finalized NCS simulation, which incorporates the refined class definitions discussed
in Section 4.1.3. The Cython column includes the run times for our Cythonized version of
the code. The MATLAB code executed the fastest, averaging 2 minutes and 10 seconds.
As expected, our Python code had relatively slower execution times, averaging 33 minutes
and 44 seconds. However, our Cythonized code showed significant improvement over the
Python variant, averaging 14 minutes and 58 seconds. The Cythonized version incorporates
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special variable declarations and is compiled into a C/C++ file that significantly improves
performance (see Appendix D for a detailed discussion of Cython conversion).

Execution Times (min:sec.ms)
MATLAB Python Cython

Run 1 02:11.21 33:27.53 14:56.84
Run 2 02:11.68 34:11.46 15:01.59
Run 3 02:11.94 33:44.27 15:02.40
Run 4 02:11.31 33:43.66 14:54.13
Run 5 02:07.51 33:33.10 14:56.59
Average 02:10.73 33:44.00 14:58.31

Table 4.2. Observed NCS simulation execution times for MATLAB, Python,
and Cython.

Table 4.3 provides a further breakdown of the performance comparison. Column two
compares the relative execution times between Python and MATLAB, and column three
between Cython and MATLAB. On average, Python executed 15.48x slower than MATLAB.
However, the Cython version performed only 6.87x slower than MATLAB–thus showing
that Cython improved the average performance time of our Python script by a notable 225
percent. We postulate that the MATLAB version ran significantly faster than the Python and
Cython versions because its optimized matrix processing allowed for much more runtime
parallelization than the nested loops of our conversions. However, additional analysis beyond
the scope of this work would be required to verify this hypothesis.

Performance Comparison
Python v. MATLAB Cython v. MATLAB (Cython Speedup)

Run 1 15.30x 6.84x (224%)
Run 2 15.58x 6.85x (228%)
Run 3 15.34x 6.84x (224%)
Run 4 15.41x 6.81x (226%)
Run 5 15.79x 7.03x (225%)
Average 15.48x 6.87x (225%)
Table 4.3. Performance comparison between MATLAB, Python, and Cython.
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4.3 Chapter Summary
This chapter covered the multi-step iterative process of converting the MATLAB code
to Python. We discussed the three types of relationships used in implementing our class
hierarchy. We evaluated the system for correctness and analyzed its performance based on
execution times. We also discuss Cython’s improvement to the overall performance of the
system. In Chapter 5, we discuss system modifications to enable the implementation of UxV
nodes on Docker containers.

43

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



THIS PAGE INTENTIONALLY LEFT BLANK

44

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



CHAPTER 5:
Docker Container Implementation and Evaluation

Chapters 3 and 4 focused on the general process for converting the MATLAB simulation
to Python. This chapter follows by discussing the specific development of our Python
NCS simulation code for implementation in Docker containers in order to increase fidelity.
Section 5.1 discusses the methodology used to plan and structure our code redesign. We
next explore the implementation of our re-design in Section 5.2. Finally, in Section 5.3, we
present the performance evaluation of our implementation.

5.1 Methodology
The first step in developing our redesign was to tabulate the functionality of the NCS
implemented in Chapter 4 to determine which things we could prune and which were
essential for our implementation.

The NCS simulation is executed in eleven steps. These steps correlate with equally spaced
points along the NSW team’s predetermined path to a target location. This implementation
is summarized in Algorithm 1. For each step, 𝑠𝑐, the program determines the optimum
placement of each node to maximize the system’s total utility, 𝐽. While the implementation
described in Chapter 4 utilized both the centralized and DS methods, this chapter focuses
solely on the DS method because the centralized method’s reliance on a single controller
for the placement of nodes is not representative of a distributed simulation that we desired
to model.

For each step in the NSW team’s path, the determination of the node placement is iteratively
updated to maximize total network utility. The total network utility, 𝐽𝑘 , following iteration
𝑘 , is calculated as the sum of the individual utilization contributions:

𝐽𝑘 =

𝑛∑︁
𝑖=1

𝑗 𝑘𝑖 (5.1)
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where 𝑗 𝑘
𝑖

is the individual contribution of node 𝑖 to the total utility. For each update from 𝑘

to 𝑘 + 1, a single node, 𝑣𝑘+1, is repositioned based on the following equations:

Δ 𝑗 𝑘+1
𝑚𝑎𝑥 = 𝑚𝑎𝑥

𝑖
(Δ 𝑗 𝑘+1

𝑖 ) (5.2)

𝑣𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

(Δ 𝑗 𝑘+1
𝑖 ) (5.3)

whereΔ 𝑗 𝑘+1
𝑚𝑎𝑥 is the maximum increase possible by a movement of any single node andΔ 𝑗 𝑘+1

𝑖

is the maximum that each node, 𝑖, can increase its contribution by moving unilaterally. A
more detailed description of the DS method used in this simulation can be found in [4].

Algorithm 1: Centralized DS Simulation
1 n: number of UxV nodes under control
2 hasMoves: whether new move exists to increase overall utility J
3 s: total number of NSW path snapshots
4 𝑠𝑐: step count to cover the entire NSW path

5 for 𝑠𝑐 = 1 to S do
6 ℎ𝑎𝑠𝑀𝑜𝑣𝑒𝑠 = true
7 while hasMoves do
8 for i = 1 to n do
9 compute (Δ 𝑗𝑖)

10 determine 𝑚𝑎𝑥(Δ 𝑗𝑖) and 𝑣

11 if 𝑚𝑎𝑥(Δ 𝑗𝑖) <= 0 then
12 ℎ𝑎𝑠𝑀𝑜𝑣𝑒𝑠 = false
13 else
14 reposition node 𝑣 to effect 𝑚𝑎𝑥(Δ 𝑗𝑖)

As specified in Algorithm 1, the DS method is not truly “distributed” in its execution. A
more accurate characterization would be the “centralized simulation” of the DS method.
This is because the simulation for the DS method runs as a single process where each
node “knows” about all the others. Our goal was to create a more realistic simulation
that distributed the computational load among all the nodes by running each node in an
isolated Docker container. For nodes to operate independently, we needed to develop an
algorithm where the nodes communicated via messages. Thus, for this implementation to
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work seamlessly, we needed a reliable message exchange system. The Message Queuing
Telemetry Transport (MQTT) protocol was a good fit.

MQTT is a “client server publish/subscribe messaging transport protocol [that] is
lightweight,” [40] relatively easy to implement and supports reliable message broadcast.
We used the Eclipse Mosquitto MQTT v5/v3.1.1 broker and the associated application
programming interface (API) for this thesis. Figure 5.1 depicts our design for achieving re-
liable communications between nodes. A node communicates (i.e., publishes) its message
to a specific topic managed by the MQTT broker, and the broker forwards the message to
all nodes that have subscribed to that topic. This approach allows any connected node to
communicate reliably with all other nodes.

Figure 5.1. Reliable communications via MQTT broadcast.

To incorporate MQTT communications into our simulation, we utilized the following high-
level conceptualization for an individual node:

1 calculate Δ 𝑗𝑖

2 publish Δ 𝑗𝑖 to MQTT broker
3 while number of messages received is < 5

(a) receive Δ 𝑗𝑖 broadcast message
(b) store max(Δ 𝑗𝑖)

4 if node with max(Δ 𝑗𝑖) then move node
else update location of node with max(Δ 𝑗𝑖)

5 repeat steps 1-4 until simulation is complete
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A detailed pseudocode specification of this concept as implemented is provided in Algo-
rithm 2.

5.2 Design Implementation
This section details the two-phased process we used to achieve our desired end state of a
truly distributed simulation of the DS method. We first present the process of redesigning
the Python code to be more modular, utilizing MQTT for broadcast communications. We
then detail how we furthered our design to house the execution of each UxV node in an
individual Docker container.

5.2.1 Phase I: Modular DS Simulation with MQTT
In this step, we developed a message-driven approach. Since the program flow execution
depends on the receipt of all messages (i.e., all nodes have published their Δ 𝑗𝑖 values), it
seemed reasonable to implement the program flow control logic at the point in the code where
each node waited to receive the messages from the other nodes. That is, we needed to get the
preexisting functionality into the on_connect() and on_message() functions. To do
this, we needed to reformulate the loops in Algorithm 1 into modular, reusable functions.
Our analysis of each loop necessitated functions that initialized loop parameters before
executing the body of the loops. Algorithm 2 provides an outline of this message-driven
approach.

We used the on_connect() and on_message() functions from the MQTT API to
implement our flow control mechanism. on_connect() is the callback function that
executes when a client requests a connection to the MQTT broker and receives a positive
acknowledgment, while on_message() is the callback function that executes when a
client receives a message from the broker [41]. We used a looping mechanism within the
on_message() function to pause the program execution until all messages were received.

Upon establishing a connection to the broker via the on_connect() function, a new
node completes function initialization and then calculates and publishes its initial Δ 𝑗𝑖 value.
The on_message() function then takes over and manages flow control. Whenever a new
message is received, the function extracts the node id, utility value, and node coordinates
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Algorithm 2: Event-Based DS Simulation

1 n: number of UxV nodes under control
2 𝑚: message count, initialized to 0
3 s: total number of NSW path snapshots
4 𝑠𝑐: step counter to cover the entire NSW path, initialized to 0

5 if on_connect() then
6 initialize global parameters
7 initialize step parameters
8 initialize 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝐽 () function parameters
9 calculate and publish initial utility Δ 𝑗𝑖

10 if on_message() then
11 extract node ID 𝑖 and utility Δ 𝑗𝑖 from message
12 increment 𝑚 by 1
13 if 𝑚 >= n then
14 reset 𝑚 to 0
15 if 𝑚𝑎𝑥(Δ 𝑗𝑖) <= 0 then
16 if 𝑠𝑐 ≥ 𝑠 then
17 return (Simulation Complete)
18 else
19 increment 𝑠𝑐 by 1

20 reposition node 𝑖 with 𝑚𝑎𝑥(Δ 𝑗𝑖)
21 reinitialize step parameters
22 reinitialize 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑢𝑡𝑖𝑙𝑖𝑡𝑦_𝐽 () function parameters
23 calculate and publish Δ 𝑗𝑖

and increments a message counter. It compares the received utility value to the current
known maximum. For simplicity, the function only keeps track of these three values from
the message in order to calculate the largest Δ 𝑗𝑖 value received during each cycle. A cycle is
defined by the receipt of n messages, one from each node. Upon receiving the 𝑛th message,
the node with the maximum utility repositions to the proposed coordinates. The rest of the
nodes update their reference to the node that repositioned with its new coordinates. All
nodes then calculate and publish their updated utility values.

Multiple cycles are completed for each step until all nodes have achieved the placement
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that maximizes the total utility (i.e., until no individual movement is possible without
decreasing the total utility). This is identified by the 𝑚𝑎𝑥(Δ 𝑗𝑖) value being less than or
equal to zero, indicating that the total utility has reached a local maximum. This is also the
trigger condition to advance to the next step. The simulation is complete once there are no
more steps to take (i.e., the NSW team has reached the objective).

An unintended consequence of the message-driven approach was that reinitializing the step
parameters after the conclusion of each step also reset the node coordinates to their locations
at the start of the simulation. We needed to store the position of the nodes at the end of each
step so that they maintained their locations from the end of the last step into the next one.

Reliable Broadcast Configuration
When a new node connects to the MQTT broker, it provides its ID, subscribes to a topic (or
topics), and sets a message retention flag. The broker identifies the node (i.e., client) by a
client_id field. The message topic determines what messages the broker will forward
to the client. The retain message flag instructs the broker to store the last message received.
Initially, we erroneously assigned all our nodes the same ID. This caused the connected
node to be disconnected from the broker with each subsequent node’s connection since only
one node can be connected with any unique client_id. MQTT automatically attempts
to reestablish dropped connections, resulting in an infinite cycle of nodes kicking each other
off the broker. Renaming the nodes with unique client_ids was a simple resolution.

Another configuration modification dealt with how the broker handled published messages.
By design, when the message retention flag is set, the broker retains only the last message
published to a topic [42]. By structuring our nodes to all publish to the same topic, the
nodes were overwriting each other’s messages. This would not be a problem if all of the
nodes were connected to the broker simultaneously and only one node transmitted at a time
(as depicted in Figure 5.1). It does become a problem if all the nodes connect to the broker
sequentially (as was the case in our implementation). For example, consider the following
sequence of events.

1. Node 1 connects to the broker, subscribes to the NCS/Node topic, and publishes its
message to that topic

2. The broker broadcasts node 1’s message, which is received by node 1
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3. Node 2 connects to the broker, subscribes to the NCS/Node topic, and publishes its
message to that same topic, overwriting the message published by node 1

4. The broker broadcasts node 2’s message, which is received by nodes 1 and 2

In this example, node 2 does not receive the message that node 1 published in step one
because it overwrote that message upon publishing its own message in step three. The
remaining nodes experience issues similar to node 2 upon connecting and publishing to the
broker.

To overcome this issue, we needed to retain the last message published by each node so
that any new node that established a connection to the broker would immediately receive
the retained messages. We accomplished this by having each node subscribe to a topic
heading but publish to its own subtopic. To illustrate, assume nodes 1 and 2 published to
the NCS/Node 1 and NCS/Node 2 topics, respectively, and that the retain flags are set.
If node 3 later connected to the broker and subscribed to NCS/#, it would receive both
messages from the NCS/Node 1 topic and also from NCS/Node 2 topic. MQTT treats
“#” as a multi-level wildcard character that, in this case, allows nodes to receive messages
from all subtopics of the top-level NCS topic.

Phase I Final Product
Phase I efforts resulted in a message-based, modular version of the Python DS implemen-
tation. This version consisted of 17 .py files, three .mat files, and 1,520 lines of code.
To run the simulation, we configured the code to accept a node name as an input argument
string. This way, the same file could be utilized multiple times–once for each node. For
example, to run the program for USV1, the user would enter the following command in a
terminal or shell.
python3 d_node_main.py USV1

The next and last step was to implement the redesigned code in Docker containers to create
a fully distributed NCS simulation.
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5.2.2 Phase II: Docker Implementation of the DS Simulation

Proof of Concept
Before implementing our redesigned code in Docker containers, we first developed simple
Python test scripts that ran in separate containers and communicated via MQTT protocol:
ping.py and pong.py. The first script performed a simple calculation and then “pinged”
the other by publishing its result. The second script extracted the result from the received
message, performed another simple calculation, and returned its result to the sender. Each
script repeated this cycle three times and then ended the program.

While these scripts communicated perfectly in a conventional environment, additional
configuration changes were required for them to run correctly in containers. Initially, we
designed the scripts to connect to the broker when on_connect() was called with the
command
client.connect("localhost",1883)

which accounted for the MQTT broker’s default security settings that only allow connections
from the “localhost” address (i.e., 127.0.0.1) on port 1883. We modified the Mosquitto
software configuration to permit connections from anonymous hosts. Once the security
settings were updated, we were able to modify the scripts to utilize the internet protocol
address of the machine hosting the Mosquitto broker rather than connecting to the loopback
address:
ipaddr = "172.20.145.225" # where ipaddr is the IP address of the broker

client.connect(ipaddr,1883)

After making these changes, the scripts had no issues communicating with one another
from separate Docker containers. Once we confirmed the functionality of this pattern, our
last step was to implement the DS functionality of our nodes in the Docker containers.

Docker Implementation
Our first step in implementing our code in Docker containers was to make five copies of
the node_files folder from Phase I–one for each node in our simulation. Second, we
implemented the programming pattern from our ping.py and pong.py examples to
enable the nodes’ containers to communicate via MQTT. Lastly, we renamed each folder
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to node_files_docker1 through node_files_docker5 and added a Dockerfile
to each. This step ensured that we generated a unique docker image for each node. Source
Code 5.1 provides an example of the Dockerfile used to create the USV2 node image.

1 FROM python:3

2

3 # copy all files from the current directory into the app directory of the container

4 COPY . /app

5

6 # set working directory. all following instructions now assume we are in

7 # this directory.

8 WORKDIR /app

9

10 RUN pip install --upgrade pip

11 RUN pip3 install matplotlib

12 RUN pip3 install numpy

13 RUN pip3 install datetime

14 RUN pip3 install networkx

15 RUN pip3 install scipy

16 RUN pip3 install python-math

17 RUN pip3 install paho-mqtt

18 RUN pip3 install cython

19

20 # execute the d_node_main.py file

21 CMD [ "python3", "./d_node_main.py" ]

Source Code 5.1: Dockerfile source code for USV2 image.

To build each Docker image, we executed the following command from the respective
directories (the example is for USV2):
docker build -t node_files_docker1 .

This command produced a 1.25 gigabyte (GB) image containing everything USV2 needed
to run in a container. We repeated this process for the remaining four nodes in four separate
terminals. We executed the script for the USV2 node by entering the command
docker run -t -i node_files_docker1

in the same terminal (use of “docker1” for USV2 intentionally duplicates the numbering of
the original source [4]). We executed the same command for the remaining four nodes (i.e.,
node_files_docker2 through node_files_docker5) in their respective termi-
nals. Each node then ran its simulation within its containerized environment, communicating
with the other nodes through the MQTT broker until the simulation terminated. The final
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implementation of this system consisted of five 1.25 GB Docker images, each containing a
folder with the 17 .py files, the three .mat files, and one Dockerfile.

5.3 Evaluation of Design Implementations
This section presents a validation and performance evaluation of our initial modular DS
implementation and final Docker-compatible version.

Correctness Validation
We used utility values (i.e., 𝐽-values) and node coordinates to validate the correctness of
our implementations (as shown in Figure 5.2). The final total network utility obtained by
both versions of our implementation was 2.453, which matched the results presented in
Figure 4.4 plots (e) and (f). This value could only be obtained if all of the previous steps in
the simulation were executed correctly, thus showing that our code performed precisely as
the original MATLAB version.

Figure 5.2. Final output of Docker-compatible DS simulation used for cor-
rectness validation.

Performance Evaluation Results
In this section, we compare execution times of the Modular DS simulation discussed in
Section 5.2.1 to that of the Docker-compatible DS simulation in 5.2.2. Table 5.1 shows the
results of execution times and relative performance for five runs.
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Execution Times (min:sec.ms) Comparison
Modular DS Docker DS Docker Speedup

Run 1 11:18.27 05:18.59 213%
Run 2 11:15.69 05:12.95 216%
Run 3 11:19.66 05:15.14 216%
Run 4 11:25.06 05:12.11 219%
Run 5 11:17.98 05:12.05 217%
Average 11:19.33 05:14.17 216%

Table 5.1. Performance comparison of the modular and Docker container
simulation of the DS methods.

Surprisingly, the Docker implementation ran, on average, 2.16 times faster than the Python
implementation. We hypothesize that the host used for benchmarking may support multi-
threading differently for Docker images than for the modular implementation. A full inves-
tigation of this phenomenon is left for future work.

5.4 Chapter Summary
This chapter described the methodology for revising our Python NCS for deployment
on Docker containers. We outlined the steps taken to convert the implementation from
a centralized version of the DS method to a distributed one using MQTT as a reliable
broadcast medium between Docker containers. Lastly, we detailed the process of creating
Docker images from Python scripts to implement our UxV nodes into Docker containers.
In Chapter 6, we summarize our work and provide recommendations for future works.
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CHAPTER 6:
Conclusion

In this chapter, we first summarize the major findings of our work and present our conclusions
and lessons learned. We conclude by suggesting areas for further exploration as an extension
of this thesis.

6.1 Summary and Conclusions
At the onset of this thesis, we sought to answer four research questions. Through our research
and simulation experimentation, we reached several conclusions that addressed them.

The NCS simulation can be implemented in an OOP language (in this case, Python) that can
be more readily deployed in real-world vehicles. Although there was a considerable perfor-
mance decline in the Python implementation relative to MATLAB, the benefits potentially
outweigh the cost in performance. Furthermore, this work demonstrated that performance
improvement tools like Cython can be utilized to significantly speed up Python code exe-
cution.

Currently, no single generalizable methodology exists for converting MATLAB modules
into an OOP implementation. Tools available in the industry can aid in this effort, but they
are only partially effective and better suited for small code snippets than for large projects.
Open-source Python converters are not suitable for programs of considerable complexity.
Unfortunately, the most reliable way to achieve a viable conversion is to do it manually.

The structures for implementing OOP provide the flexibility to incorporate additional func-
tionality. For example, adding new node placement optimization algorithms can be achieved
by designing and implementing new subclasses of the “Group Behavior” class. In addition,
the internal implementations of objects can be modified to meet new specifications without
affecting the objects’ external interfaces. This provides the ability to update and extend
functionality without requiring a complete overhaul of existing program structures.

Docker containers offer a lightweight solution for modeling a more realistic version of UxV
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simulations. As independent discrete virtual machines, they introduce features into the
simulation that better represent actual interactions between real-life vehicles. We consider
the Docker DS implementation a step forward in moving the NCS software from a lab
environment to actual physical devices.

6.2 Lessons Learned
Challenges encountered at the infancy stages of this project and the lessons learned from
them propagated throughout the rest of the thesis and can be summarized in two categories:

Software engineering: Developing a plan of attack and breaking down complex problems
into smaller incremental tasks was instrumental in managing code conversion and allowed
us to build a few lines of code at a time and test each incremental step.

Technical lessons: Simplicity in implementation is preferable. The MATLAB implementa-
tion of the NCS simulation had multiple nested loops. In our first iteration of the conversion,
we maintained the iterative structures in Python. This implementation worked seamlessly
in a centralized control simulation but did not translate well to a truly decentralized control
model. In particular, this implementation contained race conditions that led to buggy and
unreliable code. Our final, better implementation relied on modular functions in a distributed
simulation environment and proved much more reliable as a result.

6.3 Future Work
We have demonstrated the concept of Docker containers simulating the NCS nodes. A natu-
ral progression of this work would be to explore an implementation of the images on actual
physical models. In our simulation, the nodes were pre-programmed with scenario-specific
information ahead of time. The next iteration of this thesis would have the nodes ingest in-
coming data communication and other sensory data as inputs from their natural environment
and perform the necessary calculations in real-time to achieve optimal positioning.

Our implementation utilized MQTT to simulate reliable communication between nodes.
This potentially introduces a single point of failure since the broker acts as the central
link in the communication infrastructure. Alternative communication models are a topic
worthy of further consideration. A mesh architecture, for example, involves each node
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communicating directly with every other node, but it might be operationally infeasible to
establish or maintain. A relay system where each node communicates with its immediate
neighbors while forwarding messages on behalf of other nodes may be a more realistic
model.
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APPENDIX A:
SMOP Code

A.1 MATLAB Test Code
Source Code A.1 is a MATLAB script adapted from [43] that establishes a client-server
session between a single host and a server.
%Find Host Name and Address

[~,hostname] = system(’hostname’);

hostname = string(strtrim(hostname));

address = resolvehost(hostname,"address");

%%%%%% Create Server %%%%%%

server = tcpserver(address,4999,"ConnectionChangedFcn",@connectionFcn);

%Read Binary Data Using Byte Callback Mode

configureCallback(server,"byte",7688,@readDataFcn);

%%%%%% Create Client Session %%%%%%%

client = tcpclient(server.ServerAddress,server.ServerPort,"Timeout",5);

pause(1);

% Read Data and Display

rawData = read(client,961,"double");

reshapedData = reshape(rawData,31,31);

surf(reshapedData);

%Write Data to the Server

write(client,rawData,"double");

%Clear the Client

clear client

%Callback Functions

%This function calls write data to the connected TCP/IP client.

function connectionFcn(src, ~)

if src.Connected

disp("Client connection accepted by server.")

data = membrane(1);

write(src,data(:),"double");

end

end
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%This function calls read to read BytesAvailableFcnCount number of bytes of data.

function readDataFcn(src, ~)

disp("Data was received from the client.")

src.UserData = read(src,src.BytesAvailableFcnCount/8,"double");

reshapedServerData = reshape(src.UserData,31,31);

surf(reshapedServerData);

end

Source Code A.1: MATLAB test code for automatic conversion. Adapted
from: [43].

A.2 SMOP Functionality Testing
Source Code A.2 illustrates the functionality of SMOP in converting the MATLAB code in
Source Code A.1 into Python.
# Generated with SMOP 0.41

from libsmop import *
# ClientServerSession.m

#Find Host Name and Address

__,hostname=system(’hostname’,nargout=2)

# ClientServerSession.m:2

hostname=string(strtrim(hostname))

# ClientServerSession.m:3

address=resolvehost(hostname,’address’)

# ClientServerSession.m:4

###### Create Server ######

server=tcpserver(address,4999,’ConnectionChangedFcn’,connectionFcn)

# ClientServerSession.m:8

#Read Binary Data Using Byte Callback Mode

configureCallback(server,’byte’,7688,readDataFcn)

###### Create Client Session #######

client=tcpclient(server.ServerAddress,server.ServerPort,’Timeout’,5)

# ClientServerSession.m:14

pause(1)

# Read Data and Display

rawData=read(client,961,’double’)

# ClientServerSession.m:18

reshapedData=reshape(rawData,31,31)

# ClientServerSession.m:19

surf(reshapedData)

#Write Data to the Server

write_(client,rawData,’double’)

#Clear the Client

clear(’client’)

#Callback Functions
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#This function calls write to write data to the connected TCP/IP client.

@function

def connectionFcn(src=None,__=None,*args,**kwargs):

varargin = connectionFcn.varargin

nargin = connectionFcn.nargin

if src.Connected:

disp(’Client connection accepted by server.’)

data=membrane(1)

# ClientServerSession.m:34

write_(src,ravel(data),’double’)

return

if __name__ == ’__main__’:

pass

#This function calls read to read BytesAvailableFcnCount number of bytes of data.

@function

def readDataFcn(src=None,__=None,*args,**kwargs):

varargin = readDataFcn.varargin

nargin = readDataFcn.nargin

disp(’Data was received from the client.’)

src.UserData = copy(read(src,src.BytesAvailableFcnCount / 8,’double’))

# ClientServerSession.m:42

reshapedServerData=reshape(src.UserData,31,31)

# ClientServerSession.m:43

surf(reshapedServerData)

return

if __name__ == ’__main__’:

pass

Source Code A.2: SMOP conversion of MATLAB code to Python. Adapted
from: [43].
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APPENDIX B:
M2HTML Code

B.1 M2HTML Demonstration
The functionDependanciesDemo.m file (adapted from [37]) in Source Code B.1
below creates a list of function dependency pairs (‘X’, ‘Y’) where function X calls function
Y. The produced HTML document is provided in Source Code B.2.

1 function functionDependenciesDemo(calls)

2 % This MATLAB code creates function dependancies dot file and renders

3 % a 2D graphical representation of these functions interdependencies.

4 % The nodes represent the functions and the directed vertices

5 % represent the function calls.

6

7 % Calls (cellstr) is an n-by-2 cell array in format {caller,callee;...}.

8 calls = { ’foo’,’A’; ’foo’,’C’; ’foo’,’D’; ’foo’,’bar’; ’D’, ’E’;

9 ’E’, ’F’; ’bar’,’bar’; ’A’, ’bar’; ’Y’, ’Z’};

10

11 % Create a GraphViz DOT diagram functions dependencies for "calls"

12 fileName = ’dependenciesDemo’;

13 dotFile = [fileName ’.dot’];

14 fid = fopen(dotFile, ’w’);

15 fprintf(fid, ’digraph G {\n’);

16 for i = 1:size(calls,1)

17 [parent,child] = calls{i,:};

18 fprintf(fid, ’ "%s" -> "%s"\n’, parent, child);

19 end

20 fprintf(fid, ’}\n’);

21 fclose(fid);

22

23 % Render image to create a 2D graphical representation

24 imageFile = [fileName ’.png’];

25 % Assumes the GraphViz bin dir is on the path; if not, use full path to

26 % dot.exe

27 cmd = sprintf(’dot -Tpng -Gsize="2,2" "%s" -o"%s"’, dotFile, imageFile);

28 system(cmd);

29 fprintf(’Image file created: %s\n’, imageFile);

30

31 end

Source Code B.1: MATLAB test code to demonstrate M2HTML
functionality. Adapted from: [37].
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Below is the HTML code for the dependencies of the functions defined in Source Code B.1
above.

1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

2 "http://www.w3.org/TR/REC-html40/loose.dtd">

3 <html>

4 <head>

5 <title>Description of functionDependenciesDemo</title>

6 <meta name="keywords" content="functionDependenciesDemo">

7 <meta name="description" content="This MATLAB code creates function dependancies dot

file and renders">

8 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

9 <meta name="generator" content="m2html v1.5 &copy; 2003-2005 Guillaume Flandin">

10 <meta name="robots" content="index, follow">

11 <link type="text/css" rel="stylesheet" href="../m2html.css">

12 </head>

13 <body>

14 <a name="_top"></a>

15 <div><a href="../index.html">Home</a> &gt; <a href="index.html">CallsDemo</a> &gt;

functionDependenciesDemo.m</div>

16

17 <!--<table width="100%"><tr><td align="left"><a href="../index.html"><img alt="<" border="

0" src="../left.png">&nbsp;Master index</a></td>

18 <td align="right"><a href="index.html">Index for CallsDemo&nbsp;<img alt=">" border="0"

src="../right.png"></a></td></tr></table>-->

19

20 <h1>functionDependenciesDemo

21 </h1>

22

23 <h2><a name="_name"></a>PURPOSE <a href="#_top"><img alt="^" border="0" src="../up.png"></

a></h2>

24 <div class="box"><strong>This MATLAB code creates function dependancies dot file and

renders</strong></div>

25

26 <h2><a name="_synopsis"></a>SYNOPSIS <a href="#_top"><img alt="^" border="0" src="../up.

png"></a></h2>

27 <div class="box"><strong>function functionDependenciesDemo(calls) </strong></div>

28

29 <h2><a name="_description"></a>DESCRIPTION <a href="#_top"><img alt="^" border="0" src="

../up.png"></a></h2>

30 <div class="fragment"><pre class="comment"> This MATLAB code creates function dependancies

dot file and renders

31 a 2D graphical representation of these functions interdependencies.

32 The nodes represent the functions and the directed vertices

33 represent the function calls.</pre></div>

34

35 <!-- crossreference -->

36 <h2><a name="_cross"></a>CROSS-REFERENCE INFORMATION <a href="#_top"><img alt="^" border="

0" src="../up.png"></a></h2>
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37 This function calls:

38 <ul style="list-style-image:url(../matlabicon.gif)">

39 </ul>

40 This function is called by:

41 <ul style="list-style-image:url(../matlabicon.gif)">

42 </ul>

43 <!-- crossreference -->

44

45

46

47 <h2><a name="_source"></a>SOURCE CODE <a href="#_top"><img alt="^" border="0" src="../up.

png"></a></h2>

48 <div class="fragment"><pre>0001 <a name="_sub0" href="#_subfunctions" class="code">

function functionDependenciesDemo(calls)</a>

49 0002 <span class="comment">% This MATLAB code creates function dependancies dot file and

renders</span>

50 0003 <span class="comment">% a 2D graphical representation of these functions

interdependencies.</span>

51 0004 <span class="comment">% The nodes represent the functions and the directed vertices</

span>

52 0005 <span class="comment">% represent the function calls.</span>

53 0006

54 0007 <span class="comment">% Calls (cellstr) is an n-by-2 cell array in format {caller,

callee;...}.</span>

55 0008 calls = { <span class="string">’foo’</span>,<span class="string">’A’</span>; <span

class="string">’foo’</span>,<span class="string">’C’</span>; <span class="string">’foo

’</span>,<span class="string">’D’</span>; <span class="string">’foo’</span>,<span

class="string">’bar’</span>; <span class="string">’D’</span>, <span class="string">’E’

</span>;

56 0009 <span class="string">’E’</span>, <span class="string">’F’</span>; <span

class="string">’bar’</span>,<span class="string">’bar’</span>; <span class="string">’A

’</span>, <span class="string">’bar’</span>; <span class="string">’Y’</span>, <span

class="string">’Z’</span>};

57 0010

58 0011 <span class="comment">% Create a GraphViz DOT diagram functions dependencies for &

quot;calls&quot;</span>

59 0012 fileName = <span class="string">’dependenciesDemo’</span>;

60 0013 dotFile = [fileName <span class="string">’.dot’</span>];

61 0014 fid = fopen(dotFile, <span class="string">’w’</span>);

62 0015 fprintf(fid, <span class="string">’digraph G {\n’</span>);

63 0016 <span class="keyword">for</span> i = 1:size(calls,1)

64 0017 [parent,child] = calls{i,:};

65 0018 fprintf(fid, <span class="string">’ &quot;%s&quot; -&gt; &quot;%s&quot;\n’</

span>, parent, child);

66 0019 <span class="keyword">end</span>

67 0020 fprintf(fid, <span class="string">’}\n’</span>);

68 0021 fclose(fid);

69 0022

70 0023 <span class="comment">% Render image to create a 2D graphical representation</span>

71 0024 imageFile = [fileName <span class="string">’.png’</span>];
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72 0025 <span class="comment">% Assumes the GraphViz bin dir is on the path; if not, use full

path to</span>

73 0026 <span class="comment">% dot.exe</span>

74 0027 cmd = sprintf(<span class="string">’dot -Tpng -Gsize=&quot;2,2&quot; &quot;%s&quot; -

o&quot;%s&quot;’</span>, dotFile, imageFile);

75 0028 system(cmd);

76 0029 fprintf(<span class="string">’Image file created: %s\n’</span>, imageFile);

77 0030

78 0031 <span class="keyword">end</span></pre></div>

79 <hr><address>Generated on Thu 12-May-2022 01:31:38 by <strong><a href="http://www.artefact

.tk/software/matlab/m2html/" title="Matlab Documentation in HTML">m2html</a></strong>

&copy; 2005</address>

80 </body>

81 </html>

Source Code B.2: M2HTML output of function dependencies. Adapted
from: [37].
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APPENDIX C:
Python Code

C.1 Source Code Repository
A link to the GitLab repository, which includes all of the source code for our Python NCS
simulation, can be found at:

https://gitlab.nps.edu/andrew.faulk/thesis-matlab-to-python#

C.2 Sample Employees Class Definition
Usually, the first argument to any method of a class is the self argument, which refers
to the object itself and the particular instance of the object being operated on. To use the
Employee class, you can instantiate the class like this:
emp = Employee()

This will instantiate an object instance of the class. Class methods can now be called in this
format:
emp.Classmethod()

Note that there is no need to supply the self parameter when calling class methods–Python
runtime automatically takes care of that.

class Employees: # PARENT class

def __init__(self, id, name, job_title):

self.id = id

self.name = name

self.job_title = job_title

def get_name(self):

return self.name

def get_title(self):

return self.job_title

def set_title(self, job_title):
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self.job_title = job_title

class SalaryEmployees(Employees): # child to Employees class

def __init__(self, id, name, job_title, weekly_salary):

super().__init__(id, name, job_title)

self.weekly_salary = weekly_salary

def get_salary(self):

return self.weekly_salary

def calc_pay(self, num_weeks):

return (self.weekly_salary * num_weeks)

class HourlyEmployees(Employees): # child to Employees class

def __init__(self, id, name, job_title, hourly_wage):

super().__init__(id, name, job_title)

self.hourly_wage = hourly_wage

def get_wages(self):

return self.hourly_wage

def calc_pay(self, hrs_worked):

return (self.hourly_wage * hrs_worked)

class CommissionedEmployees(SalaryEmployees):

def __init__(self, id, name, job_title, weekly_salary,

sales_commission):

super().__init__(id, name, job_title, weekly_salary)

self.commission_rate = sales_commission/100

def calc_pay(self, num_weeks, total_sales):

fixed = super().calc_pay(num_weeks)

return (fixed + total_sales * self.commission_rate)

# ==================== Testing Code ===================================

n_empl = Employees(1, "Emperor", "worker") # new base employee

print(’Name:’, n_empl.get_name(), ’\tTitle:\t’, n_empl.get_title())

s_empl = SalaryEmployees(2, "Sally", "manager", 1200)

print(’Name:’, s_empl.get_name(), ’\tSalary:\t$’, s_empl.calc_pay(2))

w_empl = HourlyEmployees(3, "Walle", "secretary", 17.50)

print(’Name:’, w_empl.get_name(),’\tWages:\t$’, w_empl.calc_pay(40))

c_empl = CommissionedEmployees(4, "Carla", "hr", 900, 10)

print(’Name:’, c_empl.get_name(), ’\tComissioned Salary: $’,

c_empl.calc_pay(2, 8000))

# ==================== Output =========================================

’’’
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Name: Emily Title: worker

Name: Sally Salary: $ 2400

Name: Walle Wages: $ 700.0

Name: Carla Comissioned Salary: $ 2600.0

’’’

Source Code C.1: Employees class definition. Adapted from: [17].

C.3 Detailed Iterative Process Flow Diagram
The flow chart below is a more detailed version of the flow diagram in Section 4.1.

Figure C.1. Granular flow chart detailing the iterative process used for con-
verting MATLAB code to Python.
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APPENDIX D:
Cython Code

D.1 Cython Conversion Test
To illustrate Cython functionality, we use Source Code D.1 through D.3 below, slightly
adapted from [38]. Source Code D.1 is a simple Python program file we namedprimes.py
that takes a number and determines if it is prime.

1 def primes(nb_primes):

2 p = []

3 n = 2

4 while len(p) < nb_primes:

5 # Is n prime?

6 for i in p:

7 if n % i == 0:

8 break

9

10 # If no break occurred in the loop

11 else:

12 p.append(n)

13 n += 1

14 return p

Source Code D.1: Python test script. Source: [38].

Next, we Cythonize this code to show the improvement in performance. This involves
declaring variables using special Cython notation, such as i: cython.int (equiv-
alent to int i in C++) seen on line 5 of Source Code D.2. We name this file
primes_cythonized.py. The import cython statement on line 1 enables Cython
functionality.

1 import cython

2

3 def primes(nb_primes: cython.int):

4 i: cython.int

5 p: cython.int[1000] # An array of size 1000. any larger and it will break!

6

7 if nb_primes > 1000:

8 nb_primes = 1000

9

10 if not cython.compiled: # Only if regular Python is running
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11 p = [0] * 1000 # Make p work almost like a C array. Zeros out array

12

13 len_p: cython.int = 0 # The current number of elements in p.

14 n: cython.int = 2

15 while len_p < nb_primes:

16 # Is n prime?

17 for i in p[:len_p]:

18 if n % i == 0:

19 break

20

21 # If no break occured in the loop, we have a prime.

22 else:

23 p[len_p] = n

24 len_p += 1

25 n += 1

26

27 # Copy the result into a Pyhton list:

28 result_as_list = [prime for prime in p[:len_p]]

29 return result_as_list

Source Code D.2: Cythonized Python test script. Adapted from: [38].

Lastly, we create a setup file,setup.py, to compile the target filesprimes_cythonized.py
and primes_compiled.py. The latter is a compiled version of the primes.py file in
Source Code D.2. The file primes_compiled.py is used as a benchmark to compare
execution times against primes.py and primes_cythonized.py in Section D.2.

1 from setuptools import setup

2 from Cython.Build import cythonize

3

4 setup(

5 ext_modules=cythonize(

6 [’primes_compiled.py’, # Python code that is compiled

7 ’primes_cythonized.py’]) # Python code that is compiled and Cythonized

8 )

9

10 # to run, do:

11 # python3 setup.py build_ext --inplace

Source Code D.3: Python script to compile target files. Adapted from: [38].

To run setup.py, the user must enter the following command in a terminal or shell.
python3 setup.py build_ext --inplace

The cythonize command on line 5 of Source Code D.3 “takes a .py or .pyx file and
compiles it into a C/C++ file. It then compiles the C/C++ file into an extension module which
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is directly importable from Python” [44]. This means that two files are generated from each
target file. For example,primes_compiled.py generatesprimes_compiled.c and
an associated binary file. The setup file must be re-run whenever a change is made to any
of the target files.

D.2 Conversion Results
Source Code D.4 is a test script that was modified from [45] to evaluate the performance
of the code in Section D.1 above. To run this script, execute the following command in a
terminal or shell.
python3 time_test.py

import timeit

primes = timeit.timeit(’primes.primes(2000)’, setup=’import primes’, number = 3)

primes_compiled = timeit.timeit(’primes_compiled.primes(2000)’, setup=’import

primes_compiled’, number = 3)

primes_cythonized = timeit.timeit(’primes_cythonized.primes(2000)’, setup=’import

primes_cythonized’, number = 3)

print("primes=", primes)

print("primes_compiled=", primes_compiled)

print("primes_cythonized=", primes_cythonized)

print(’primes_compiled is {}x faster than primes’.format(primes/primes_compiled))

print(’primes_cythonized is {}x faster than primes_compiled’.format(primes_compiled/

primes_cythonized))

print(’primes_cythonized is {}x faster than primes’.format(primes/primes_cythonized))

# to test, do:

# python3 time_test.py

Source Code D.4: Python script to evaluate performance. Adapted from: [45].

Below is a snapshot of the output produced by the above Python script.
********************* BEGIN EXAMPLE OUTPUT ***************************

andrewfaulk@Andrews-MBP Source Code % python3 time_test.py

primes= 0.15482049999991432

primes_compiled= 0.0749014589964645

primes_cythonized= 0.0015983749908627942

primes_compiled is 2.066989109080267x faster than primes

primes_cythonized is 46.8610053489595x faster than primes_compiled

primes_cythonized is 96.86118769685145x faster than primes
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********************* END EXAMPLE OUTPUT ******************************

Tables D.1 and D.2 show the results of five iterations of running the test script. On
average, primes_compiled.py ran approximately 1.96x faster than primes.py.
This is a significant improvement accomplished by simply compiling the file. How-
ever, the performance improvements are even more impressive when benchmarking
against primes_cythonized.py. On average, primes_cythonized.py per-
formed 41.06x faster than primes_compiled.py and an impressive 82.77x faster than
primes.py. This simple illustration shows the powerful performance-enhancing potential
of Cython.

Execution Times (in seconds)
primes.py primes_compiled.py primes_cythonized.py

Run 1 0.160 0.102 0.006
Run 2 0.155 0.075 0.002
Run 3 0.154 0.075 0.002
Run 4 0.153 0.075 0.002
Run 5 0.155 0.075 0.002
Average 0.155 0.080 0.002

Table D.1. Comparison of execution times.

Performance Comparison
primes_comp v. primes primes_cyth v. primes_comp primes_cyth v. primes

Run 1 1.57x 16.74x 26.28x
Run 2 2.06x 47.25x 97.36x
Run 3 2.05x 46.87x 96.31x
Run 4 2.04x 47.56x 97.06x
Run 5 2.07x 46.86x 96.86x
Average 1.96x 41.06x 82.77x

Table D.2. Python test code performance comparison.
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