
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2022-12

CHARTING PROGRESS IN THE SOFTWARE
ACQUISITION PATHWAY

Wahidi, Richard S.
Monterey, CA; Naval Postgraduate School

https://hdl.handle.net/10945/71591

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

MBA PROFESSIONAL PROJECT

CHARTING PROGRESS IN THE SOFTWARE
ACQUISITION PATHWAY

December 2022

By: Richard S. Wahidi

Advisor: Jeffrey R. Dunlap
Co-Advisor: Robert F. Mortlock

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 December 2022 3. REPORT TYPE AND DATES COVERED
 MBA Professional Project

 4. TITLE AND SUBTITLE
CHARTING PROGRESS IN THE SOFTWARE
ACQUISITION PATHWAY

 5. FUNDING NUMBERS

 6. AUTHOR(S) Richard S. Wahidi

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 The Department of the Navy (DON) recently implemented the Department of Defense (DOD) Software
Acquisition Pathway (SWP), a software acquisition strategy for custom application and embedded software.
The purpose of the SWP is to enable rapid and iterative delivery of high-priority software capability to the
intended user. But while the SWP uses an agile software development approach, neither the DOD nor the
DON have yet provided comprehensive governance tools and methods for SWP programs to iteratively plan,
track, and assess acquisition outcomes in agile environments. To close this gap, the author systematically
researched commercial software engineering management and digital product development practices as well
as prior DOD software acquisition reform studies. Based on the results, the author showed that Earned Value
Management is incompatible with the SWP and recommended alternative techniques to measure cost and
schedule performance. Additionally, the author recommended a phased approach to manage DON SWP
custom application programs, whereby a minimal, unitless work breakdown structure is used to track progress
until demonstrating the minimum viable product to the user in a testing environment; product-based metrics
are then tracked until initial release of the custom application software; and then outcome-based goals are
iteratively set, tracked, and assessed using the Objectives and Key Results framework for as long as the custom
application software is in use.

 14. SUBJECT TERMS
software acquisition, metrics, software, acquisition, EVM, project control, project tracking,
earned value management, software acquisition pathway, acquisition management, digital
acquisition, performance measurement, measurement, performance, DoDI 5000.87, 5000.87

 15. NUMBER OF
PAGES
 179
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

ii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

Approved for public release. Distribution is unlimited.

CHARTING PROGRESS IN THE SOFTWARE ACQUISITION PATHWAY

Richard S. Wahidi, Captain, United States Air Force

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF BUSINESS ADMINISTRATION

from the

NAVAL POSTGRADUATE SCHOOL
December 2022

Approved by: Jeffrey R. Dunlap
Advisor

Robert F. Mortlock
Co-Advisor

Rene G. Rendon
Academic Associate
Department of Defense Management

iii

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

iv

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

CHARTING PROGRESS IN THE SOFTWARE ACQUISITION
PATHWAY

ABSTRACT

 The Department of the Navy (DON) recently implemented the Department of

Defense (DOD) Software Acquisition Pathway (SWP), a software acquisition strategy for

custom application and embedded software. The purpose of the SWP is to enable rapid and

iterative delivery of high-priority software capability to the intended user. But while the

SWP uses an agile software development approach, neither the DOD nor the DON have

yet provided comprehensive governance tools and methods for SWP programs to

iteratively plan, track, and assess acquisition outcomes in agile environments. To close this

gap, the author systematically researched commercial software engineering management

and digital product development practices as well as prior DOD software acquisition

reform studies. Based on the results, the author showed that Earned Value Management is

incompatible with the SWP and recommended alternative techniques to measure cost and

schedule performance. Additionally, the author recommended a phased approach to

manage DON SWP custom application programs, whereby a minimal, unitless work

breakdown structure is used to track progress until demonstrating the minimum viable

product to the user in a testing environment; product-based metrics are then tracked until

initial release of the custom application software; and then outcome-based goals are

iteratively set, tracked, and assessed using the Objectives and Key Results framework for

as long as the custom application software is in use.

v

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

THIS PAGE INTENTIONALLY LEFT BLANK

vi

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

vii

TABLE OF CONTENTS

I. INTRODUCTION... 1

A. BACKGROUND .. 2
B. PURPOSE AND SIGNIFICANCE OF STUDY 4
C. RESEARCH QUESTIONS ... 5
D. METHODOLOGY .. 6
E. FRAMEWORK ... 7
F. SUMMARY .. 8

II. LITERATURE REVIEW .. 9

A. EARLY SOFTWARE ENGINEERING ... 9
B. DEFENSE PROJECT MANAGEMENT ... 13
C. LEAN PRODUCTION ... 14
D. THE INTERNET ERA ... 17
E. FROM WATERFALL TO AGILE ... 18
F. AGILE PROJECT MANAGEMENT ... 21
G. LEAN DEVELOPMENT ... 24
H. ENTREPRENEURIAL MANAGEMENT ... 26
I. THE CLOUD ERA ... 28
J. MODERN SOFTWARE ENGINEERING... 29
K. SOFTWARE ACQUISITION REFORM... 31
L. CHALLENGES IN SOFTWARE ENGINEERING............................ 34
M. SUMMARY ... 35

III. AGILE SOFTWARE ENGINEERING METRICS .. 39

A. BACKGROUND ... 39
B. PRE–MINIMUM VIABLE CAPABILITY RELEASE 44
C. POST–MINIMUM VIABLE CAPABILITY RELEASE 58
D. METRICS PRINCIPLES AND PATTERNS 77
E. SUMMARY ... 81

IV. AGILE SOFTWARE ENGINEERING MANAGEMENT 85

A. BACKGROUND ... 85
B. TODAY’S PROGRAM MANAGEMENT TOOL KIT 86
C. AGILE–EVM INTERACTIONS .. 95
D. ADVISORY REPORTS ... 110
E. MANAGEMENT PRINCIPLES AND PATTERNS 115

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

viii

F. SUMMARY ... 129

V. CONCLUSION ... 133

A. SYNOPSIS ... 133
B. RESEARCH FINDINGS .. 135
C. RECOMMENDATIONS .. 141
D. LIMITATIONS ... 145
E. SUMMARY ... 146

APPENDIX. MISCELLANEOUS ... 147

LIST OF REFERENCES ... 149

INITIAL DISTRIBUTION LIST .. 159

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

ix

LIST OF FIGURES

Figure 1. Waterfall Software Development Process. Source: Royce (1970). 10

Figure 2. Iterative Software Development Process. Source: Royce (1970). 11

Figure 3. Software Development Within the System Life Cycle. Source: DOD
(1985). ... 12

Figure 4. Software Development Within the System Life Cycle (Continued).
Source: DOD (1985). .. 12

Figure 5. NPD Teaming Approaches. Source: Takeuchi and Nonaka (1986). 15

Figure 6. The Stage-Gate NPD Governance System. Source: Cooper (1990). 15

Figure 7. Value Proposition Framework. Source: Hughes and Chafin (1998). 16

Figure 8. The Agile Manifesto’s Four Values. Source: Beck et al. (2001). 18

Figure 9. The Agile Manifesto’s 12 Principles. Source: Beck et al. (2001). 19

Figure 10. Transitioning from Waterfall to Agile Development. Source:
Lapham et al. (2011). .. 20

Figure 11. Traditional Versus Agile Project Design. Source: Patel (2021). 23

Figure 12. Waiting Time Versus Resource Utilization. Source: Thomke and
Reinertsen (2012). ... 25

Figure 13. An Iterative, Incremental IT Acquisition Process. Source: DSB
(2009). ... 32

Figure 14. The DOD SWP’s Continuous Software Acquisition Process. Source:
OUSD(A&S, 2020c). .. 33

Figure 15. Traditional Project Metrics. Source: Nicolette (2015). 40

Figure 16. Agile Project Metrics. Source: Nicolette (2015). 41

Figure 17. The DOD SWP’s Planning and Execution Phases. Source:
OUSD[A&S] (2020c). .. 45

Figure 18. Planning, Acquiring, and Assessing Capability Needs in the DOD
SWP. Source: OUSD(A&S, n.d.-c). ... 46

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

x

Figure 19. Dynamically Planning, Prioritizing, and Implementing Software
Development Requirements via User Community Engagement.
Source: OUSD(A&S, n.d.-b). ... 47

Figure 20. Managing Software Development Requirements via Program
Backlogs. Source: OUSD(A&S, 2022b). .. 47

Figure 21. Capacity-Based Contracting. Source: OUSD(A&S, 2019). 48

Figure 22. Notional WBS. Adapted from Rawsthorne (2006). 51

Figure 23. Notional, Weighted WBS. Adapted from Rawsthorne (2006). 51

Figure 24. Notional Stories for Feature 1. Source: Rawsthorne (2006). 52

Figure 25. The EBV Formula. Source: Rawsthorne (2006). 52

Figure 26. Calculating a Project’s EBV. Source: Rawsthorne (2006). 53

Figure 27. Comparing the MVP and MVCR. Source: Garrison (2022). 55

Figure 28. Representing the System MVP and MVCR. Source: Garrison (2022). 56

Figure 29. Notional VA Cycle Goals. Source: OUSD(A&S, n.d.-i). 62

Figure 30. Notional Objective Goal Assessment. Source: OUSD(A&S, n.d.-i). 63

Figure 31. Notional Subjective Goal Assessment. Source: OUSD(A&S, n.d.-i). 63

Figure 32. VA Rating Scale. Source: OUSD(A&S, n.d.-i). 64

Figure 33. Notional Overall VA Rating. Source: OUSD(A&S, n.d.-i). 64

Figure 34. Notional VA Cycle Goals. Source: OUSD(A&S, n.d.-i). 65

Figure 35. The Flow Framework®’s Flow Items. Source: Kersten (2018).
Copyright © 2018 Tasktop Technologies Incorporated. All rights
reserved. Published with permission... 70

Figure 36. The Types of Software Development Work. Source: Kruchten et al.
(2012). ... 71

Figure 37. The Flow Framework®’s Flow Metrics. Source: Kersten (2018).
Copyright © 2018 Tasktop Technologies Incorporated. All rights
reserved. Published with permission... 71

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xi

Figure 38. Project Management vs. Product Management. Source: Kersten
(2018). Copyright © 2018 Tasktop Technologies Incorporated. All
rights reserved. Published with permission. ... 74

Figure 39. Project-led vs. Product-led Organization. Source: Kersten (2018).
Copyright © 2018 Tasktop Technologies Incorporated. All rights
reserved. Published with permission... 75

Figure 40. Flow Efficiency Chart®. Source: Kersten (2018). Copyright © 2018
Tasktop Technologies Incorporated. All rights reserved. Published
with permission. .. 75

Figure 41. Comparison of Cycle Time, Flow Time, and Lead Time. Source:
Kersten (2018). Copyright © 2018 Tasktop Technologies
Incorporated. All rights reserved. Published with permission. 76

Figure 42. Flow Distribution® Dashboard. Source: Kersten (2018). Copyright ©
2018 Tasktop Technologies Incorporated. All rights reserved.
Published with permission. ... 76

Figure 43. Flow Distribution® Timeline. Source: Kersten (2018). Copyright ©
2018 Tasktop Technologies Incorporated. All rights reserved.
Published with permission. ... 76

Figure 44. Notional Value Stream Dashboard. Source: Kersten (2018).
Copyright © 2018 Tasktop Technologies Incorporated. All rights
reserved. Published with permission... 77

Figure 45. Output Measures Versus Outcome Measures. Source: Gavrilovic
(2013). ... 79

Figure 46. Agile Project Design. Source: Carpenter and Carrigan (2022). 80

Figure 47. Determining Value in Agile Projects. Source: Burns (2017). 80

Figure 48. Build-Measure-Learn Loop. Source: Patton and Economy (2014). 81

Figure 49. Burn-Down Chart. Source: OUSD(A&S, 2020b). 87

Figure 50. Burn-Up Chart. Source: OUSD(A&S, 2020b). .. 88

Figure 51. Cumulative Flow Diagram. Source: Norton (2020). 89

Figure 52. Determining Remaining Versus Completed Work in a CFD. Source:
Norton (2020).. 89

Figure 53. Determining WIP Levels in a CFD. Source: Norton (2020). 90

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xii

Figure 54. Determining Cycle Time and Lead Time in a CFD. Source: Norton
(2020). ... 90

Figure 55. Determining Scope Changes in a CFD. Source: Norton (2020). 91

Figure 56. Burn-Down Chart Deviation. Source: Norton (2020). 91

Figure 57. Velocity Chart Deviation. Source: Norton (2020). 92

Figure 58. CFD Showing Two Scope Additions. Source: Norton (2020). 92

Figure 59. Monte Carlo Simulated Schedule Forecast. Source: Magennis
(2017). ... 94

Figure 60. The DOD Software Acquisition Ecosystem. Source: DIB (2019b). 117

Figure 61. Generic Model of a Process Workflow. Source: Liu (2006). 121

Figure 62. Cycle Time Versus Lead Time. Source: DeGrandis (2017). 122

Figure 63. Little’s Law Assumptions. Source: DeGrandis (2017). 122

Figure 64. Kanban Board Example. Source: DeGrandis (2017). 124

Figure 65. Processing Time Versus Capacity Utilization. Source: DeGrandis
(2017). ... 125

Figure 66. The Cultural Factors of an Agile Environment. Source: Coyne
(2020). ... 128

Figure 67. Traditional to Agile Practices. Source: Carpenter and Carrigan
(2022). ... 128

Figure 68. Key Tenets of DevSecOps Practices. Source: Carpenter and Carrigan
(2022). ... 129

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiii

LIST OF TABLES

Table 1. DOD SWP Semiannual Reporting Metrics. Adapted from
OUSD(A&S; n.d.-g). .. 48

Table 2. Partial OKR # 1. Adapted from OUSD(A&S, n.d.-i). 66

Table 3. Partial OKR # 2. Adapted from OUSD(A&S, n.d.-i). 66

Table 4. Formulating OKR # 1. Adapted from OUSD(A&S, n.d.-i). 67

Table 5. Formulating OKR # 2. Adapted from OUSD(A&S, n.d.-i). 67

Table 6. Assessing OKR # 1. Adapted from OUSD(A&S, n.d.-i).......................... 68

Table 7. Assessing OKR # 2. Adapted from OUSD(A&S, n.d.-i).......................... 68

Table 8. Metrics for Software Development. Adapted from DIB (2019a). 114

Table 9. Metrics for DON SWP Custom Application Programs. Adapted from
DIB (2019a). ... 141

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xv

LIST OF ACRONYMS AND ABBREVIATIONS

AAF Adaptive Acquisition Framework
ADM acquisition decision memorandum
AgileEVM agile earned value management
ALM application life cycle management
ASN(RD&A) Assistant Secretary of the Navy for Research, Development, and

Acquisition
ATO authority to operate
BV business value
CapEx capital expenditures
CFD cumulative flow diagram
CI/CD continuous integration, continuous delivery
CNS capabilities needs statement
COTS commercial-off-the-shelf
CSCI computer software configuration item
CVE common vulnerability or exposure
DA Decision Authority
Dev development engineers
DevOps development-IT operations
DevSecOps development-security-IT operations
DIB Defense Innovation Board
DOD Department of Defense
DON Department of the Navy
DORA DevOps Research and Assessment
EBV earned business value
EVM earned value management
EVMS earned value management system
IT information technology
JCIDS Joint Capabilities Integration and Development System
KR key result
LOC lines of code
LOE level of effort
MECE mutually exclusive and collectively exhaustive
MTTR mean-time-to-restore

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xvi

MVCR minimum viable capability release
MVP minimum viable product
NDIA National Defense Industrial Association
NPD new product development
OKRs Objectives and Key Results
Ops IT operations engineers
OpEx operational expenditures
OS operational sponsor
OUSD(A&S) Office of the Under Secretary of Defense for Acquisition and

Sustainment
OUSD(R&E) Office of the Under Secretary of Defense for Research and

Engineering
PM project/program manager
PMB performance measurement baseline
PMO project management organization
SDLC software development life cycle
SMART specific, measurable, actionable, realistic, and time-bound
SP story point
SWAP Software Acquisition & Practice
SWP Software Acquisition Pathway
SWS software work structure
UCD user-centered design
UI user interface
VA value assessment
WBS work breakdown structure
WIP work in progress
WP work package

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xvii

ACKNOWLEDGMENTS

I would like to thank my advisors, Professor Jeffrey Dunlap and Dr. Robert

Mortlock, as well as Dr. David Tate, Eric Lofgren, Brian Misuraca, Emily Miller,

Sarah Arnold, Kristina Botelho, Matt MacGregor, and Melissa Naroski-Merker for

sharing their advice and wisdom. Each provided me critical, timely feedback to help

strengthen my thinking and my research, and to develop my passion for learning.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

xviii

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

1

I. INTRODUCTION

The software engineering process—the continuous process of planning, designing,

developing, integrating, testing, deploying, and operating software—has become the most

critical means of creating and delivering value in the Information Age economy (Kersten,

2018). Because it is both dynamic and indefinite, the need to leverage this engineering process

has forced businesses, including the Department of the Navy (DON), to develop entirely new

ways of work. However, only private sector companies have redesigned their operations and

management around software. On the one hand, successful companies sense and respond to

market demand by continuously delivering digital capability rapidly and iteratively (Defense

Innovation Board [DIB], 2019b). On the other hand, the DON still delivers software at the

pace of discretely planned projects, which hamstrings its ability to field modern digital

capabilities effectively.

This may seem like a technical problem, but it is a management problem. The DON

has already recognized the technological criticality of software. For this very reason, the DON

recently implemented the Department of Defense (DOD) Software Acquisition Pathway

(SWP), a software acquisition strategy that enables rapid, iterative, and indefinite software

delivery. The DON’s SWP drives a fundamental shift from a waterfall software engineering

approach to an agile software engineering one, wherein the goal is to continuously deliver the

highest value software to the operational environment as soon as practicable to iteratively

shape subsequent development cycles. Iterative development requires iterative assessment,

though, and the SWP has not yet provided comprehensive tools and methods to plan, track,

and assess software acquisition outcomes in an agile way of work.

Consequently, while the DON’s SWP enables iterative development and incremental

delivery of software capability, the acquisition workforce executing the SWP must still rely

on long-range, detailed planning metrics and management methods to assess day-to-day

software development activities. To close this management gap, this researcher evaluates

state-of-the-art software engineering practices and proposes a modern software acquisition

management framework for DON SWP custom application programs where none presently

exists.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

2

A. BACKGROUND

Software is what powers Information Age technologies, so creating competitive

advantage in today’s world requires businesses to understand and adapt to the state-of-the-art

practices of the software engineering industry. Because the agile software engineering

movement began in 2001 (Beck et al., 2001), the software engineering industry has all but

perfected the agile approach. Furthermore, the proliferated use of cloud computing in

products, software development tool kits, and data centers in the past decade has both

commoditized and virtualized all the computing resources necessary to produce and deliver

software code, such that new digital products or digital product features can be shipped to

customers at scale in minutes (DIB, 2019b). As a result, businesses aligned to agile software

engineering best practices adapt, maneuver, and grow in the market at software speed,

whereas businesses not yet aligned quickly expose themselves to risk.

For its part, the military already requires agility in all aspects of its business, from

technology development in acquisitions to technology employment in combat operations. The

former defense acquisition executive, the Honorable Frank Kendall, said it best in his 2015

Performance of the Defense Acquisition System assessment: “Simply delivering what was

initially required on cost and schedule can lead to failure in achieving our evolving national

security mission—the reason defense acquisition exists in the first place” (Office of the Under

Secretary of Defense for Acquisition, Technology, and Logistics [OUSD(AT&L)], 2015, p.

iv). Thus, by driving a shift from waterfall to agile software engineering, the new SWP both

aligns the DON to software engineering industry best practices as well as supports greater

institutional capacity for change. Realizing the SWP’s intended business agility is critically

necessary for the DON to accomplish its never-ending, no-fail missions in the Information

Age. Yet, the new SWP requires transformational change in not just the DON’s technical

practices, but in its management practices, too. The shift from waterfall to agile is a shift from

plan-driven acquisition to adaptive acquisition—from reactive to proactive approaches

throughout the software acquisition practice.

To manage performance, the DON SWP requires its programs to track, at a minimum,

four metrics: lead time, cycle time, deployment frequency, and change failure rate (Assistant

Secretary of the Navy for Research, Development, and Acquisition [ASN(RD&A)], 2022).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

3

However, these are software delivery performance metrics, which are applicable only after

each program’s first software release has occurred (Forsgren et al., 2018). The DON SWP has

not yet provided metrics and management methods to cover the initial development and

delivery of a new, custom software application.

Without additional guidance, it is unclear how DON SWP custom application

programs should track and assess project progress and program performance in an entirely

new way of work. For instance, while on-time and on-budget implementation of a detailed

specification constituted success in a waterfall software engineering environment, the SWP

does not identify how to manage cost and schedule resources when practicing agile methods.

Furthermore, upon initially releasing their software to operations, DON SWP custom

application programs become responsible for not only managing cost and schedule resources,

but also for software deployment rate, response rate, code quality, functional performance,

and nonfunctional attributes of the fielded software application (DIB, 2019a). But given the

current lack of a software acquisition management framework, the DON SWP does not

address how DON SWP programs should effectively trade off between and manage these

performance factors. As a result, the DON SWP lacks sufficient metrics and metrics guidance

to cover both initial development and deployment of a custom software application, as well

as longer-term outcomes once the software application is in use.

Moreover, the DON SWP does not exempt custom application software programs

from Earned Value Management (EVM) requirements. Thus, all cost-reimbursement and

incentive-type software programs of $20 million or more must implement a work breakdown

structure, performance measurement baseline, detailed work packages, and so forth, and

deterministically perform activities in compliance with long-range, detailed plans, despite the

stochastic nature of agile software engineering processes (Section 809 Panel, 2018). While

DON SWP custom application programs can request exemption from EVM, they still need

tools and techniques to manage cost and schedule resources in an agile way of work.

Some early agile practitioners attempted to modify EVM by truncating its planning

horizon and adapting its formulas to agile software engineering practices. This resulted in a

lean set of mathematical formulas—dubbed AgileEVM—that can be used for agile software

project control and monitoring (Sulaiman et al., 2006). When extra care is taken to identify

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

4

and track scope creep during iteration/sprint planning, research supports AgileEVM’s utility

in quantifying cumulative cost and schedule progress in agile software environments,

particularly in those practicing the Scrum style (Hodson, 2016).

In the end, however, rapid and iterative software delivery requires a management

framework designed around creating and delivering value, which is continually defined,

refined, and assessed in the eyes of the user. Given the primacy of software in the Information

Age economy, the most successful businesses visualize their end-to-end software

development processes and clearly and consistently track all types of the processes’ work—

features, defects, risk, and debt (Kersten, 2018). In doing so, such organizations enable

themselves to continually create and deliver functional software, as well as protect their

abilities to do so by continually planning and managing nonfunctional, yet critical,

improvement work (Kersten, 2018). On the other hand, there is yet no taxonomy for DON

SWP programs to identify software development features, defects, risk, and debt work items

in their program backlogs, let alone a comprehensive management framework for them to

make all work items visible and plan them accordingly. Consequently, the DON’s most

critical means of creating and delivering value—the software development process—remains

an elusive black box to its stakeholders. Yet now more than ever, DON SWP programs must

open and master this black box to successfully execute their mission.

B. PURPOSE AND SIGNIFICANCE OF STUDY

This researcher systematically studies commercial project management, new product

development, and modern software engineering practices to propose a management

framework for DON SWP programs that are acquiring custom application software.

Accordingly, the purpose of this study is to enable DON SWP custom application programs

to capture the ground truth of software development work and steer it to accomplish the

program’s mission outcomes. To accomplish this purpose, the objectives of this systematic

study are to identify (a) the salient differences between planning and managing software

development work using waterfall and agile methods; (b) several classes of software

development performance metrics based on the type of software acquired, phase of software

system development, and intended business objectives; (c) non-EVM methods to track

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

5

cumulative cost and schedule progress in agile environments; and (d) how to effectively

structure and govern digital product development processes and practices in the Information

Age.

The potential contributions of this research are far reaching. Primarily, it could

facilitate the institutional adoption and effective execution of the DON’s new software

acquisition strategy, the DON SWP. Secondarily, it could either supplant or revamp EVM by

identifying project monitoring techniques that avoid long-ranged, detailed planning and/or

minimize business system requirements, which can potentially streamline software

acquisition management, reduce the costs of compliance for commercial software developers,

and lower barriers to entry in the DON custom application software marketplace. More

broadly, by instantiating a simple yet robust software acquisition management framework,

this research could enable the DON to elevate its software acquisition practices, leverage them

to accelerate digital technology adoption, and continuously deliver new software capability at

the speed of relevance.

C. RESEARCH QUESTIONS

The goal of this research is to propose a software acquisition management framework

for DON SWP custom application programs. As such, the primary research question is

1. What metrics should the DON use to assess agile/incremental program

performance?

However, given the extensive history of efforts to improve DOD software acquisition,

as well as significant efforts to make EVM compatible with agile software engineering

methods, this researcher also investigates several secondary questions:

2. What are the leading tools, monitoring and control methods, and

management practices to track and review software acquisition progress and

performance?

3. Should EVM be replaced or augmented as the standard for acquisition

program performance?

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

6

4. What are the metrics being recommended by the Defense Science Board

(DSB), Defense Innovation Board (DIB) Software Acquisition and Practices

Study, and Section 809 Panel?

Answering these questions requires a systematic review of commercial software

engineering, project management, and new product development best practices; evaluation of

current DON and DOD software acquisition practices; a review of the research on EVM’s

implementation in agile software engineering environments; and analysis of prior DOD

software acquisition advisory reports. The next section includes the approaches taken to

answer these questions.

D. METHODOLOGY

The problem examined in this study is framed by one main research question and three

secondary research questions. Answering the main research question, “What metrics should

the DON use to assess agile/incremental program performance?,” relied on a systematic

review of the prescribed management practices and business objectives of the DON SWP,

DOD SWP guidance, software engineering industry literature, DOD software acquisition

studies, and agile software engineering metric guides. Next are the secondary research

questions.

The question “What are the leading tools, monitoring and control methods, and

management practices to track and review software acquisition progress and performance?”

was answered by examining DON and DOD acquisition policy, program management guides,

defense acquisition literature, DOD software acquisition advisory reports, and an overview of

software development tools currently available to the DOD and the DON. The next question,

“Should EVM be replaced or augmented as the standard for program performance?,” was

answered by carefully reviewing the literature on EVM published since 2001, the year when

the agile software engineering movement first emerged (Beck et al., 2001). Finally, answering

“What are the metrics being recommended by the DSB, DIB Software Acquisition and

Practices Study, and Section 809 Panel?” relied upon analysis of all prior recommendations

to streamline federal acquisition and improve defense software acquisition practice.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

7

In summary, accomplishing this research involved comprehensive, systematic

analysis of the extant software engineering, software project management, new product

development, and defense software acquisition bodies of knowledge.

E. FRAMEWORK

Chapter I, Introduction, served several purposes. First, the chapter set the stage by

acknowledging the primacy of software and software development processes in the

production and distribution of Information Age technology. Second, it articulated the project’s

purpose and why this study may benefit the DON’s future software acquisition efforts.

Finally, it established the academic research framework by identifying the research questions

to be answered and explaining how the answer for each question was developed.

Chapter II, Literature Review, includes a discussion of the relevant software

engineering industry literature, prior research on software engineering management practices,

and DOD acquisition and software acquisition advisory reports examined as part of this

project. This section also includes an overview of software engineering, project management,

new product development, and software acquisition history to provide additional context for

the current disparities between software engineering technical practice and software

engineering management practice within the DOD and the DON.

Chapter III, Agile Software Engineering Metrics, includes a discussion of the unique

complexities of agile software engineering methodologies in comparison with their traditional

waterfall counterpart. It then highlights the most common measures and metrics used in agile

software engineering environments, including project progress, program performance,

functional requirements, nonfunctional requirements, and development productivity. For

DON SWP programs developing custom software on commercial computing infrastructure,

a phased set of software development progress and performance management metrics is

recommended. Finally, because metrics function as incentives, the chapter highlights

numerous principles and patterns to enable DON SWP programs to effectively utilize agile

software engineering metrics.

Chapter IV, Agile Software Engineering Management, discusses the current and best

practice methods and tools available to visualize and manage progress and performance of

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

8

acquisition programs. It also examines the interactions between EVM and agile software

engineering and the recommendations of congressionally commissioned and DOD-level

advisory reports on streamlining acquisition and improving software acquisition practices,

and it highlights several principles and patterns to enable effective digital transformation

leadership.

Chapter V, Conclusion, presents a condensed summary of this research project’s

findings, identifies the limitations with respect said findings and makes final

recommendations to potentially improve the DON’s software engineering management

practices where necessary. According to this project’s research, these recommendations may

strengthen DON SWP programs’ ability to execute their intended mission outcomes.

F. SUMMARY

This concludes Chapter I, Introduction. This chapter included an overview of the

project’s purpose, the academic research problem, and the project’s scope by detailing the gap

between the demands of agile software engineering environments and the management tool

kit presently available to practice DON software acquisition. This chapter also discussed the

anticipated research benefits, planned the research methodology, and provided an overview

of the report’s structure. Chapter II, Literature Review, discusses the existing academic

literature associated with software engineering, project management, new product

development, and DOD software acquisition. By reviewing how the gaps between

commercial and defense software engineering practices developed, Chapter II builds a

foundation for informed analysis and making recommendations to close these gaps in

subsequent chapters.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

9

II. LITERATURE REVIEW

This chapter provides an overview of software engineering, project management,

new product development, entrepreneurial management, and software acquisition reform

literature from the late 20th century through today. The intent of synopsizing the literature

over this period is to provide a socio-technological foundation of the engineering

management principles and practices that have influenced the professionalization of

software engineering, as well as to inform analysis of the structural and cultural factors

involved in designing and implementing an effective software engineering management

framework. For the sake of clarity and brevity throughout this chapter, agile means agile

software engineering, agile project means a software development project that practices

agile software engineering, agile project management means the discipline of managing

software development projects that practice agile software engineering, waterfall means

waterfall software engineering, waterfall project means a software development project

that practices waterfall software engineering, and waterfall project management means the

discipline of managing software development projects that practice waterfall software

engineering.

A. EARLY SOFTWARE ENGINEERING

The commercialization of the computer in the 1950s sparked a Cambrian explosion

of data processing application demand that overwhelmed the programming community

(Mahoney, 1990). In response to a growing software market crisis, the North Atlantic

Treaty Organization Science Committee hosted a conference entitled “Software

Engineering” in the fall of 1968 (Naur & Randell, 1969). The purpose this conference was

to establish the foundations of a professional software engineering discipline based on

systems engineering theory, unique properties of digital systems, and the extant technical

and management practices of other engineering branches (Mahoney, 1990). Based on the

unprecedented success of industrial engineering and its prevailing management thinking in

the early-to-mid 20th century, the conference participants proposed a sequential software

system engineering process that would be governed using mass-production techniques

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

10

(Mahoney, 1990). For instance, software design and development tasks were to be

separated, and managers were to measure and control all software development activities

using manufacturing-oriented techniques (Mahoney, 1990). However, the conference

participants disagreed upon which software system design approach was better: (a) a top-

down approach that began design activities outside the system and progressively worked

down to define each component in greater detail or (b) a bottom-up approach that began

system design by building basic modules and gradually integrating them together to create

increasingly complex combinations (Naur & Randell, 1969). Because bottom-up design

purportedly risked creating a sub-optimal system, top-down design was favored, as it

required first defining and specifying system components, which was intended to maximize

the use of state-of-the-art technologies (Naur & Randell, 1969).

By 1970, however, Winston Royce (1970), a leading software engineer for space

mission control software, strongly warned against using sequential system design

processes. Royce observed that for building small, simple applications within one’s own

company, stage-gate sequencing of software engineering activities may suffice. But Royce

(1970) argued that as problem complexity increases, stage-gate sequencing results in the

following monolithic software development process, shown in Figure 1, which was

“doomed to failure” (p. 328):

Figure 1. Waterfall Software Development Process. Source: Royce (1970).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

11

Royce’s (1970) rationale was that because software system requirements are

emergent (i.e., they’re identified based on how system modules interact rather than what

modules do individually; Bahcall, 2019), there is a need to continually validate software

system behavior during implementation. To do so, Royce argued that testing should inform

program design, and program design should influence test requirements throughout the

development process. Additionally, Royce argued that software design should involve the

user, that resources should be allocated at the correct place at the correct time, and that

isolating developers from software specification activities was unacceptable. Although the

coining of the term waterfall is often misattributed to him (Bell & Thayer, 1976), Royce

was the first software engineer to model a stage-gate, sequential software development life

cycle (SDLC), warn against its limitations, and offer an alternative model to improve

mission outcomes. To better account for the complexity of the software development

process and the emergent behavior of software systems, Royce proposed an iterative

approach to software development, as shown in Figure 2:

Figure 2. Iterative Software Development Process. Source: Royce (1970).

Unfortunately, however, the DOD (1985) ended up adopting and standardizing the

following stage-gate, sequential SDLC model in Military Standard: Defense System

Software Development, as shown in Figures 3 and 4:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

12

Figure 3. Software Development Within the System Life Cycle. Source:

DOD (1985).

Figure 4. Software Development Within the System Life Cycle (Continued).

Source: DOD (1985).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

13

While Military Standard: Defense System Software Development authorized more

than one SDLC iteration to be in progress at the same time (DOD, 1985), it also constrained

developers by mandating that “the contractor shall code and test units in a top-down

sequence, unless alternate methodologies have been proposed … and have received

contracting agency approval” (DOD, 1985, p. 31). By 1987, a DOD study recommended

moving away from a “document-driven, specify-then-build” approach to a more user-

centric, iterative process (Brooks et al., 1987, p. 3). However, no new project management

tools were provided to replace the waterfall-oriented tool kit (Brooks et al., 1987).

B. DEFENSE PROJECT MANAGEMENT

As commercial and noncommercial development projects became increasingly

complex in the 1950s, there was a need for effective techniques to synchronize planning,

monitoring, and management of engineering activities (Stretton, 2007). The creation of the

Project Management Institute in 1969 helped professionalize the project management

discipline and circulate proven practices and specialized knowledge throughout industry

(Stretton, 2007). Some of these included the Critical Path Method and the Program

Evaluation and Review Technique (Stretton, 2007). But since the DOD outsourced

technology development, it needed a common tool to capture timely, reliable snapshots of

performance on highly costly development projects such as ballistic missiles (Abba, 2017).

To standardize management practices of such defense acquisition programs, the DOD in

1967 established the Cost/Schedule Control Systems Criteria—the original guidelines for

an effective EVM system (Abba, 2017).

EVM provided the DOD and defense contractors with a convention for tracking

progress and assessing program performance and has helped maintain efficient

performance in complex defense projects (Abba, 2017). EVM would become the DOD’s

preferred management control system for major defense acquisition programs, and its

techniques and implementation standards have remained relatively intact (Abba, 2017).

But to consistently capture accurate, timely data, the DOD eventually began to enforce

EVM and EVM system requirements through contractual provisions, turning EVM into an

audit-oriented oversight mechanism (Abba, 2017). Additionally, since EVM relied on

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

14

detailed, upfront planning, its metrics and techniques had limited value when a project’s

primary objective was accelerating time to market (Kenney, 2021).

C. LEAN PRODUCTION

While DOD policy influenced the development of specific software engineering

and project management practices, the lean production movement in the 1980s was entirely

commercially driven. Lean production originated due to the need for a customer-oriented

system for designing, manufacturing, and distributing automobiles in increasingly global

markets (Poppendieck, 2011). But as its principles and patterns became adopted in other

industries, lean production changed the rules of all new product development (NPD)

processes, not just that of cars (Takeuchi & Nonaka, 1986). NPD is defined as the process

by which companies imagine, create, and bring valuable products and services to market

(Imai et al., 1984). In attempting to implement lean production, companies learned that it

takes more than high quality, low cost, and customization to create competitive advantage

in increasingly globalized and faster moving markets—it also took speed and flexibility

(Takeuchi & Nonaka, 1986). Emphasizing speed and flexibility throughout NPD

demanded changes in project design and project team culture, especially since sequential

or relay race coordination processes conflicted with business goals of maximum speed and

flexibility (Takeuchi & Nonaka, 1986).

One proposed solution was using flattened, cross-functional NPD teams, whereby

a closely integrated team of marketing, engineering, manufacturing, and other business

function members continuously collaborated like a rugby team, figuratively passing the

ball back and forth until its intended product was brought to market (Takeuchi & Nonaka,

1986). Instead of standardizing development project schedules, the NPD design process

would also be tailored to each individual team and its product needs. Figure 5 illustrates

the NPD teaming approaches used at this time: Type A is the relay race approach; Type B

is the phased overlap approach, where teams collaborated only to meet project milestones;

and Type C is the integrated approach, where teams continuously collaborated for the sake

of maximizing NPD outcomes (Takeuchi & Nonaka, 1986).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

15

Figure 5. NPD Teaming Approaches. Source: Takeuchi and Nonaka (1986).

Implementing lean production took more than transforming NPD teaming

approaches, however. To systematically drive new product ideas to market faster, with

fewer mistakes, and with improved market adoption rates, the stage-gate NPD governance

system was created, which conceived NPD as a production system and sought to maximize

its quality by minimizing process variability (Cooper, 1990). To implement stage-gate

governance, organizations divided their NPD process into stages, established quality

control gates in between each stage, and required the project manager (PM) and project

teams to satisfy predetermined exit criteria to proceed to subsequent stages, as shown in

Figure 6 (Cooper, 1990):

Figure 6. The Stage-Gate NPD Governance System. Source: Cooper (1990).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

16

Stage-gate governance was intended to both inform and motivate PMs and project

teams by clearly defining what inputs were required and how said inputs would be

evaluated in advance (Cooper, 1990). Because weak market orientation and assessment

were often cited as the reasons for new product failures, stage-gate governance also

controlled quality by driving detailed marketing research into the NPD process (Cooper,

1990). Thus, just like waterfall software engineering, stage-gate governance prescribed

detailed planning and design as the primary method to reduce risk (Cooper, 1990).

But while stage-gate governance improved time to market, businesses still lacked

the means to dynamically sense and respond to new product ideas and consumer market

segments (Kahn, 1996). To continually account for value in the eyes of the customer while

meeting business needs, researchers recommended augmenting stage-gate governance with

the value proposition framework shown in Figure 7 (Hughes & Chafin, 1998):

Figure 7. Value Proposition Framework. Source: Hughes and Chafin (1998).

The problem, however, was that the value metrics used at this time predominantly

focused on discretely measuring and controlling costs (Hughes & Chafin, 1998). Without

the metrics to implement the value proposition framework, businesses operating on stage-

gate governance remained poorly equipped to adapt to globalized, accelerating markets.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

17

D. THE INTERNET ERA

Because consumer software applications were highly modular and appealed to a

wide variety of market segments, marketing professionals researching the software

industry in the early 1990s learned that product managers typically worked within a

company’s engineering organization, not its marketing organization (Workman, 1993).

There, product managers assumed responsibility for coordinating, specifying, and

managing product and market requirements, whereas PMs assumed responsibility for

managing engineering and manufacturing activities (Workman, 1993). Additionally,

because engineers themselves struggled to keep abreast of cutting-edge capabilities and

competitors’ latest approaches, the marketing function’s influence on the engineering

organization, and on the business’s overall NPD process, was limited (Workman, 1993).

Naturally, predicting customers wants and needs in dynamic markets was

impossible, but what marketing professionals learned was that software businesses needed

the capacity to quickly change direction as new market information became available

(Workman, 1993). Additionally, they learned that software businesses needed more robust

approaches to continually develop new markets, discover breakthrough innovations, and

mitigate unexpected technical and market risks (Wind & Mahajan, 1997). Unfortunately,

while stage-gate governance reliably screened out NPD ideas that didn’t meet a priori

criteria, they also quickly funneled out product opportunities that could create new markets.

Once commerce extended to the Internet, the need to reform and adapt marketing research

practices to the software industry became a matter of survival (Wind & Mahajan, 1997).

Similarly, software engineers desperately struggled to cope with the new business

environment. While waterfall software engineering tools and methods complied with

stage-gate NPD governance systems, they required specifying detailed requirements

upfront, designing a detailed solution, and then implementing the detailed design, which

limited software engineers’ ability to adapt to increasingly uncertain, complex, faster-

moving markets. Invariably, bringing a new software product to market would take years.

But because the underlying market problem tended to change, the detailed software

solution also became irrelevant by the time it was available to customers. Out of

desperation to replace his company’s software products in 6 months to avoid going out of

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

18

business, leading software engineer Jeff Sutherland adapted lean production practices to

software development, enabling him and his colleague Ken Schwaber to deliver seemingly

impossible software projects on time, under budget, and with fewer bugs than ever before

(Rigby et al., 2016). Soon afterwards, Sutherland and Schwaber joined 15 other leading

software engineers in a summit to change the course of the software engineering industry.

E. FROM WATERFALL TO AGILE

In 2001, 17 software engineers seeking to promote better ways of developing

software published the Manifesto for Agile Software Development (the Agile Manifesto),

the core doctrine for agile software engineering methodologies (Beck et al., 2001). The

signatories of Agile Manifesto declared four values and 12 principles to guide agile

practice, shown in Figure 8 and Figure 9:

Figure 8. The Agile Manifesto’s Four Values. Source: Beck et al. (2001).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

19

Figure 9. The Agile Manifesto’s 12 Principles. Source: Beck et al. (2001).

The agile movement’s intent was to lead the entire software industry away from

documentation driven, heavyweight waterfall software engineering practices that were

business as usual at the time (Lapham et al., 2011). The Agile Manifesto was a call to action

to build organizational models based on people, collaboration, and the types of generative

cultures in which its founders knew software engineers would love to work (Lapham et al.,

2011). To drive the necessary paradigm shift, the Agile Manifesto’s founders adapted lean

principles to the software engineering domain (Hartmann & Dymond, 2006). For instance,

the first lean principle—define value in the eyes of the customer—became “our highest

priority is to satisfy the customer” and “deliver working software frequently” within the

Agile Manifesto (Hartmann & Dymond, 2006, para. 17).

As a result, although waterfall and agile methodologies contained the same

engineering tasks, the industry-wide impetus to rapidly and iteratively deliver small

batches of working software to the user forced software engineers to improvise radically

new ways of work (Lapham et al., 2011). On the one hand, waterfall projects

comprehensively planned the design, sequentially performed engineering tasks according

to plan, deterred plan changes via management controls, and delivered one monolithic

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

20

software program at a predetermined completion date (Winterowd, 2013). On the other

hand, agile projects progressively designed a system based on customer feedback,

performed engineering activities in parallel, and delivered small batches of software during

iterations/sprints, each of which was a microcosm of the SDLC and output a working

software product (Winterowd, 2013). Even though the Agile Manifesto had not offered a

new SDLC model, software engineers who practiced its principles and values converged

upon the development approach shown in Figure 10 (Lapham et al., 2011):

Figure 10. Transitioning from Waterfall to Agile Development. Source:

Lapham et al. (2011).

Given the nature of iterative, incremental engineering, agile also required a new

approach to NPD. In some respects, waterfall software engineering simplified NPD by

anchoring on top-down system design (Naur & Randell, 1969). However, because each

agile iteration spanned the SDLC, engineers sought to generate the maximum amount of

useful information in each design step, whether through top-down or bottom-up system

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

21

design choices (Reinertsen, 1997). For instance, to reduce risk for a new user-facing

application, the user interface (UI) would generally be designed and tested first. Another

fundamental difference between waterfall and agile software engineering lay in the

terminology used to plan, manage, and control software work product entities. While

waterfall development projects utilized Computer Software Configuration Items (CSCI) to

identify, describe, and manage software system entities (DOD, 1985), agile environments

used stories, which were defined as “promises for conversation” with the customer because

they represented requested exchanges for something of value, the details of which were

fleshed out through ongoing dialogue between the customer, product owner/manager, and

development team (Rawsthorne, 2006, p. 2). Thus, stories replaced CSCIs as the smallest

fundamental unit of value, requirements, and work through which software engineers,

engineering managers, internal business stakeholders, and external customers interfaced in

agile development projects (Rawsthorne, 2006).

But because stories consist of a description, size, validation criteria, and desired

business value, managers were not sure how to measure them in the context of each project

as well as the NPD process (Rawsthorne, 2006). Naturally, agile emphasized iterative

development and incremental delivery of products rather than following a defined process

correctly, so plan-driven metrics received lesser priority (Hayes et al., 2014). However, the

right metrics could provide insight into a project’s throughput as products were

incrementally built, which was crucial to enable oversight in organizations that contracted

out software development (Hayes et al., 2020). Thus, to understand and account for the

context, work product, and outcomes of agile development teams, new management

methods and metrics became critically necessary (Hayes et al., 2020).

F. AGILE PROJECT MANAGEMENT

Once the agile movement began, researchers questioned what project management

and NPD processes and practices were most appropriate for agile environments (Karlström

& Runeson, 2005). While stage-gate governance required long-range, detailed planning

and allocated fixed resources before engineering work began, agile methods iteratively

designed and developed products using a process that was permeable to change (Karlström

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

22

& Runeson, 2005). Because agile methods aimed to deliver the highest priority features at

any given time, agile environments also needed to establish feedback loops that could

continually validate market demand for work in progress (WIP), specifically by

determining which more important features to add or scale up as well as which less

important features to drop or scale down (Karlström & Runeson, 2005).

One research effort studied three agile projects and observed that “microplanning”

before agile iteration/sprints and making trade-offs for feature changes frustrated PMs until

they became accustomed to its philosophy for dynamically managing scope changes and

leveraging frequent product feedback (Karlström & Runeson, 2005, p. 46). Furthermore,

the study noted that re-baselining Gantt charts and specifications became impractical in

volatile, fast-paced business environments, so project management and NPD governance

systems that could tolerate frequent requirement changes were necessary (Karlström &

Runeson, 2005). That said, despite far more frequent scope changes, the researchers noted

that implementing smaller sized stories improved software engineers’ ability to focus, gain

cadenced control over their work, and develop a better understanding of a system’s

complex, technical inner workings (Karlström & Runeson, 2005).

As for managers, PMs in all three cases observed that agile projects resulted in more

tangible evidence of project progress and performance; improved communications within

the product team and across the business; and improved cost control, product functionality,

and timely delivery (Karlström & Runeson, 2005). But while engineers felt greater control

and reduced uncertainty due to iteratively delivering in small steps and gaining fast product

feedback, PMs initially believed that they lost control without their usual planning and

management tools to describe the state of ongoing work (Karlström & Runeson, 2006).

Moreover, PMs observed it was imperative not to misapply management tools and methods

intended for waterfall projects (Karlström & Runeson, 2006), for waterfall and agile use

diametrically opposed project designs, as shown in Figure 11 (Patel, 2021).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

23

Figure 11. Traditional Versus Agile Project Design. Source: Patel (2021).

While waterfall, or traditional, projects are designed with fixed scope and flexible

cost and schedule constraints, agile projects are designed as a series of mini projects, each

of which has fixed cost and schedule constraints but flexible scope (Patel, 2021). The

purpose of designing agile projects in this manner is to create a process that enables

building the best product possible with all remaining project resources (Patel, 2021). To do

so, agile practitioners adopted new tools and methods to support flexible software

requirements. Typically, agile environments identify, plan, and manage software

requirements using a backlog, which is not a detailed software specification but a dynamic

ledger that is continually updated by adding, removing, scaling up, scaling down, and/or

re-sequencing work items based on current customer priorities and developers’ cumulative

knowledge of their emergent product (Winterowd, 2013).

Thus, when using agile planning methods, project progress could be measured

against work completed in the backlog. That said, measuring backlog progress didn’t

address how to forecast the total estimated cost and schedule of agile projects beyond the

use of “yesterday’s weather” metrics (i.e., the amount of activity development teams could

likely complete in next iterations based on their current throughput levels; Hodson, 2016).

As a result, although the lack of long-ranged, detailed planning made EVM inapplicable,

managers who relied on EVM’s total estimated cost and schedule metrics were initially

reluctant to adopt agile practices (Rawsthorne, 2006). Over time, however, managers

learned that building a product in one big batch required measuring project progress by

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

24

proxies (e.g., documents), whereas iteratively building the product one feature at a time

required measuring attributes of the product itself (Miller, 2020). Furthermore, leading

software engineers observed that NPD governance systems incorrectly treated software

development as a repetitive manufacturing process (Kersten, 2018). Thus, while agile

enabled development teams in engineering organizations to much more effectively develop

technology, businesses themselves could not become agile until they systematically

adapted their philosophy and practice of project management and NPD.

G. LEAN DEVELOPMENT

While lean production practices set the standard for cutting-edge NPD in the late

20th century, misapplying them to software engineering often worsened outcomes for

several reasons (Reinertsen, 1997). First, unlike manufacturing work, software engineering

fundamentally involved nonrecurring design and development, so it tended to contain

significant uncertainty in task arrival times and task durations (Reinertsen, 1997). Second,

while more homogenous, repeatable manufacturing work could use first-in, first-out

(FIFO) task sequencing because job order didn’t matter, queueing discipline was necessary

to dynamically manage nonhomogeneous software engineering workflows (Reinertsen,

1997). Third, while manufacturing processes output physical products that could only be

in one place at any time, software engineering processes output information that could be

in several places at once (Reinertsen, 2009). Fourth, because lean production practices

targeted and minimized variability, they created toxic environments for creative knowledge

work such as software engineering, which needed to tolerate some variability to enable

innovation in early development (Reinertsen, 2009). Consequently, misapplying

manufacturing tools and methods exacerbated software development queues, or WIP

(Thomke & Reinertsen, 2012). Furthermore, because software engineering work was bits

and bytes scattered on various disk drives, not piles of physical objects on the factory floor,

neither developers nor managers could see when they were operating with dangerously

high WIP levels (Reinertsen, 2009). The result was a vicious cycle for agile environments.

Software system requirements are emergent (i.e., new software system

requirements become apparent only as their system modules interface and/or through

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

25

customer use; Pelrine, 2011), so agile development teams routinely discovered new

requirements during iterations/sprints. Naturally, development teams needed marginal

capacity to be able to adapt to emergent requirements. But because lean production

assumed all work was predictable and repetitive, managers tended to fully allocate all

capacity during iteration/sprint planning (Reinertsen, 2011), which led to chronically

overloaded teams, prolonged cycle times, and ever-growing WIP (Thomke & Reinertsen,

2012). Unlike manufacturing processes, where adding 5% more WIP would take 5% more

time to complete, adding 5% more WIP could take anywhere from 5%–100% longer in

software because of the nonlinear relationship between capacity utilization and cycle time

in software engineering processes, as shown in Figure 12 (Thomke & Reinertsen, 2012):

Figure 12. Waiting Time Versus Resource Utilization. Source: Thomke and

Reinertsen (2012).

Thus, as WIP accumulated and awaited available capacity, overall project durations

and NPD time to market grew (Thomke & Reinertsen, 2012). Because excessive WIP also

delayed market feedback, they reduced opportunities for businesses to dynamically adapt

their product to market conditions before it was too late, which ultimately defeated the

purpose of practicing agile methods in the first place (Thomke & Reinertsen, 2012). To

avoid this vicious cycle, a new set of practices, entitled lean development, was synthesized

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

26

to maximize value and minimize waste in software engineering work (Reinertsen, 2009).

Lean development differed from lean production in several ways. First, PMs needed to

treat the software development process as a queuing system, wherein the backlog formed

the waiting line, developers functioned as servers, total time in the system was time to

market, and PMs exercised queuing discipline to dynamically schedule development tasks

based on operational priority and technological dependencies (Reinertsen, 2009). Second,

development teams needed to persistently maintain some marginal capacity to better cope

with the inherent variability of software engineering work (Reinertsen, 2009). Third,

software development WIP needed to be consistently tracked and made visible to all

stakeholders (Reinertsen, 2009). Fourth, because software engineering work could much

more easily undergo parallel processing, the sequences in which NPD activities were

conducted needed to be individually tailored based on optimal economic value (Reinertsen,

2009). Generally, risky steps that could be inexpensively eliminated, such as a risky UI

concept that could jeopardize NPD investments, needed to be tested as early as possible

(Reinertsen, 2009).

Overall, 20th century managerial frameworks leveraged conformance and

efficiency to optimally accomplish static business goals, as exemplified by lean production

(Reinertsen, 2009). However, Information Age markets demanded a shift from static to

dynamic business goals, whereby businesses operated by continually sensing and

responding to new market information to make the best possible decisions in ever evolving

circumstances (Reinertsen, 2009). Lean development resulted in two major breakthroughs.

First, it enabled the software engineering industry to lead the shift from static to dynamic

business goals. Second, it led to a powerful NPD methodology for startups, enabling them

to create new products and capture new markets at software speed (Reinertsen, 2009).

H. ENTREPRENEURIAL MANAGEMENT

To survive and flourish under fierce Information Age competition, commercial

firms needed to conduct NPD in less time and under tighter budgets (Gansler & Lucyshyn,

2013). But even for commercial-off-the-shelf (COTS) tax preparation software, the typical

technology and product development timeline was as follows: start coding in September,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

27

release the first beta the following June, then release the second beta in July (Ries, 2011).

Because beta testing only checked for critical failure modes, such as crashing people’s

computer, by that point only major bugs could be fixed—the product design itself had

become locked (Ries, 2011). For simple COTS software, both this technology development

approach and the project team were maladapted to their business environment (Ries, 2011).

To provide better alternatives, two high-technology (high-tech) entrepreneurs,

Steve Blank and Eric Ries, suggested that because the project team developing this COTS

software did not yet know who their customer was or what the product should be, it was a

startup (Ries, 2011). Furthermore, because stage-gate NPD governance systems assumed

prior operating history and a relatively stable market for which to conduct planning and

forecasting, they were ill-suited for Information Age startups (Ries, 2011). To close this

gap, Blank and Ries combined customer-driven marketing, agile software engineering, and

lean development management practices to create Lean Startup, a NPD methodology

which increased the odds of building a successful venture in several ways (Ries, 2011).

First, Lean Startup offered a simple definition of a startup: “A startup is a human

institution [organization] designed to create a new product … under conditions of extreme

uncertainty” (Ries, 2011, p. 27). This definition applied to anyone working in any

organization, whether a government agency, a venture-backed company, a nonprofit, or a

for-profit company (Ries, 2011). Second, Lean Startup broadly defined a product: “any

source of value that customers experience during their interaction with a company whether

at a brick-and-mortar store, an e-commerce website, a consulting service, and/or a

nonprofit agency” (Ries, 2011, p. 28). Third, to quickly discover and validate demand in

new markets or market segments, Blank and Ries argued that startups should quickly build

and deploy a minimum viable product (MVP) containing only critical features to create a

feedback loop with potential customers, enabling startups to continually search and execute

on business opportunities through iterative market development and incremental product

delivery (Blank, 2013).

Lean Startup was a breakthrough paradigm shift from yearlong NPD cycles that

presupposed knowledge of customers’ problems and product needs, required excessive

time and resources upfront, and tended to fail in the market without providing the means

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

28

to correct course (Blank, 2013). Instead, product managers practicing Lean Startup favored

rapid and iterative customer feedback throughout NPD, which systematically improved

business outcomes in two critical ways. First, because Lean Startup defined the means of

survival as the amount of pivot opportunities left, it incentivized startups to effectively use

scarce resources and rapid learning to succeed (Ries, 2011). Second, because it forced

startups to methodically formulate value and growth hypotheses, gather empirical evidence

to test them, and regularly prove to sponsors why they should pivot, persevere, or stop

receiving funding and/or operating (Ries, 2011), Lean Startup also drove scientific rigor in

NPD governance and business decision-making (Goldratt, 1997).

I. THE CLOUD ERA

By 2011, Silicon Valley luminary and high-tech venture capitalist Marc

Andreessen (2011) famously penned an article claiming that “software is eating the world”

(para. 2). Andreessen’s article signaled that software had eclipsed hardware in economic

utility, for businesses’ ability to rapidly reach and acquire new customers—not their ability

to mass-produce a consumer good—had become the most critical determinant of survival

in the Information Age. According to Andreessen (2011), the commoditization and

virtualization of the technology stack as well as the global adoption of high-speed Internet

meant that people could launch a software startup and operate in markets all over the world

without needing to invest in infrastructure and/or train new employees (Andreessen, 2011).

Because of the speed by which it was created and propagated relative to hardware,

software would also eat “much of the value chain of industries that are widely viewed as

primarily existing in the physical world” (Andreessen, 2011, para. 24). Thus, Andreessen

(2011) argued that digital transformation had become imperative for every organization,

and he challenged every company to learn how high-tech companies operate; what the

consequences of commoditized, ubiquitous computing are for their industry; and how their

industry could collectively become digitally native. Because the DOD primarily buys

software, Andreessen (2011) suggested that to continually acquire the most cutting-edge

software available, the DOD’s technology development, project management, and NPD

practices should not conflict with those of the software engineering industry.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

29

J. MODERN SOFTWARE ENGINEERING

The state-of-the-art practice in the software engineering industry is exemplified by

the Development-IT Operations (DevOps) movement (Kim et al., 2021). DevOps is a set

of cutting-edge cultural norms, technical practices, and architectural approaches that

enables businesses to deliver digital products and services to market rapidly and

continuously via a highly agile, secure, and reliable underlying system of software

engineering work (Kim et al., 2021). Cloud computing served as the primordial soup for

this DevOps “system” of work by enabling the mass commoditization, virtualization, and

proliferation of all the computing resources and tools necessary to create, distribute, and

manage software for the software engineering industry (Surbiryala & Rong, 2019). Cloud-

native software engineering innovations include automated provisioning and management

of computing infrastructure, on-demand integrated development environments for building

software, continuous integration and continuous delivery (CI/CD) pipelines that automate

the software build and delivery process, and so forth.

As these innovations converged within an organization’s IT ecosystem, they

enabled software engineers to develop new ways of doing creative design and development

work, rapidly prototype and demonstrate new product ideas to customers, and substantially

accelerate the speed by which businesses could deliver new and/or improved products to

market. Moreover, just as software engineers developed new tools and practices to manage

a cloud-native software development process, agile PMs, product managers, and product

owners developed new integrated application life cycle management (ALM) tools and

practices to support cloud-native project management and NPD (Rossberg, 2019). Because

these ALMs connected to software development workflows, they enabled PMs/product

managers/product owners and software developers to share end-to-end visibility of all

work, and they also enabled PMs/product managers/product owners to dynamically

manage priorities, reallocate resources, and communicate with both technical teams and

business stakeholders using real-time NPD information (Özkan & Mishra, 2019).

The software engineering industry considers DevOps a logical continuation of the

agile movement that began in 2001, for DevOps principles and patterns naturally emerge

when self-organizing teams focus not only on continually shipping high-quality code to

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

30

customers, but also checking code into trunk daily, maintaining code in a deployable state,

and demonstrating features to customers in production-like testing environments (Kim et

al., 2021). To extend DevOps principles and patterns throughout the business, however,

engineering organizations needed to be restructured (Kim et al., 2021). Because businesses

segregate their capital expenditures (CapEx) and operational expenditures (OpEx),

engineering organizations were typically bifurcated into one branch designed for CapEx-

funded new development work (Dev) and another designed for OpEx-funded support work

of existing offerings (Ops; Kim et al., 2021). Unfortunately, because Dev’s metrics

incentivized maximizing new development throughput, whereas those of Ops incentivized

maximizing non-functional systems engineering attributes such as reliability, security,

availability, the goals and behaviors of Dev and Ops were fundamentally misaligned in this

organizational construct (Kim et al., 2021). The bifurcation of Dev and Ops created

structural and cultural barriers, resulting in a “wall” between these software engineers (Kim

et al., 2021). Consequently, when IT organizations planned work in large batches and

didn’t operate in an integrated, cloud-native IT ecosystem, the inherent separation between

Dev and Ops personnel and processes inevitably led to a vicious circle of deteriorating

quality, increased system outages, gradual buildup of technical debt, and slower and slower

release of new products and features for the overall business (Kim et al., 2021).

This downward spiral occurred because of a core, chronic conflict of diametrically

opposed goals and incentives: Dev assumed responsibility for deploying features and

changes into production as quickly as possible to respond to market demands, whereas Ops

assumed responsibility for providing customers with stable, secure, reliable IT service

(Kim et al., 2021). Configured this way, Dev optimized for large-batch developments and/

or time to market, whereas Ops optimized for operational availability, reliability, security,

and stability of the IT service, often by making production changes more difficult (Kim et

al., 2021). Consequently, despite serving in the same technology organization, Dev and

Ops created negative externalities for each other (Singer & Friedman, 2014); and their

software engineers cooperated only in reaction to mission-critical issues (Kim et al., 2021).

To bridge these structural and cultural divides, the DevOps movement seeks to

create one integrated technology organization that enables its business to rapidly innovate

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

31

and adapt to the competitive landscape while providing stable, reliable, and secure service

to the customer (Kim et al., 2021). Like the agile movement in 2001, the DevOps

movement also called upon building the types of generative cultures that creative

knowledge workers would love to work in, beginning by resolving the core, chronic

conflict between Dev and Ops (Kim et al., 2021). To enable the DevOps transformations,

the DevOps movement proposed using four balanced metrics to measure performance of

the IT organization: Lead Time for Changes, Deployment Frequency, Change Failure Rate,

and Mean-Time-to-Restore (Forsgren et al., 2018).

K. SOFTWARE ACQUISITION REFORM

The DOD has made numerous efforts to reform its software acquisition process and

practices. In 1987, the DSB Task Force on Military Software recommended “aggressively

looking for opportunities to buy…[commercial] tools, methods, environments, and

application software” to establish parity with commercially driven digital technology

development (Brooks et al., 1987, p. 2). The same report also recognized that specific

metrics are necessary to detect, measure, and manage the health of software development

projects, which should include program size, software complexity, personnel experience,

testing progress, and incremental-release content (Brooks et al., 1987). In 2000, the DSB

Task Force on Defense Software similarly recognized that certain core metrics are essential

to identify and manage emergent problems in software development projects (Hansen &

Nesbit, 2000). To standardize assessment of software project health, the Task Force on

Defense Software recommended mandating the use of the following core metrics: (a)

progress via earned value reporting, (b) staffing via tracking vacancies and turnovers, (c)

requirements via tracking implementation and volatility rates, (d) quality via tracking

defect and test completion rates, and (e) product stability via tracking inspection and

rework rates (Hansen & Nesbit, 2000).

In 2009, the DSB proposed a new IT acquisition process inspired by commercial

agile software development (Defense Science Board [DSB], 2009). Shown in Figure 13,

the new IT acquisition process was designed to dynamically prioritize requirements based

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

32

on operational impact, increase opportunities to adopt the latest available technology, and

enable iterative, incremental delivery of capability in 18 months or less (DSB, 2009):

Figure 13. An Iterative, Incremental IT Acquisition Process. Source: DSB

(2009).

The DSB’s 2009 report also noted that, in addition to building agility into software

acquisition processes and practices, relevant metrics that could continuously track the

timely, cost-effective delivery of required capabilities were needed (DSB, 2009). However,

no specific metrics were recommended (DSB, 2009). By 2018, the DSB recognized that

the way it conceives, designs, and manages software acquisition programs must change,

stating that, “The classic acquisition metrics include cost, schedule, and performance. The

classic phases of acquisition include development, production, and sustainment. However,

modern software is in continuous development” (Office of the Under Secretary of Defense

for Research and Engineering [OUSD(R&E)], 2018, pp. 20–21). Thus, measuring and

managing software acquisition programs via on-time, on-cost, single delivery of software

“creates a misalignment between the DOD’s processes and the reality of contemporary best

practices” (OUSD[R&E], 2018, p. 21). While the DSB’s 2018 report acknowledged that

each software acquisition program needed a program-appropriate framework, it

recommended using sprint burn-down, epic and release burn-down, velocity, control, and/

or cumulative flow diagram charts to help estimate the status of software deliveries

(OUSD[R&E], 2018). In 2019, the DIB published its Software Acquisition and Practice

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

33

(SWAP) study, the DOD’s most comprehensive software acquisition reform study to date

(DIB, 2019b). The DIB SWAP study highlighted software engineering industry best

practices; DOD digital transformation case studies; several performance metrics and

metrics standards based on the type of software and computing infrastructure involved; and

it established multiple lines of effort to restructure how the DOD procures, develops, and

manages software (DIB, 2019b). In 2020, the DOD then published Department of Defense

Instruction (DODI) 5000.87, Operation of the Software Acquisition Pathway, its newest

software acquisition strategy (Office of the Under Secretary of Defense for Acquisition and

Sustainment [OUSD(A&S)], 2020c). The Software Acquisition Pathway (SWP) envisions

a continuous software acquisition process, as shown in Figure 14:

Figure 14. The DOD SWP’s Continuous Software Acquisition Process.

Source: OUSD(A&S, 2020c).

To streamline the acquisition of custom software, the DOD SWP is exempt from

Joint Capabilities Integration and Development System (JCIDS) requirements, it

encourages maximum use of existing enterprise software and tooling, it requires regular

feedback from software users to validate and prioritize design choices, and it requires the

first software delivery to occur no later than 1 year from the date development efforts are

initially funded (OUSD[A&S], 2020c). To create a feedback loop with intended users and

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

34

reinforce user-centered design (UCD), the DOD SWP also requires building and delivering

a minimally engineered product (i.e., MVP; OUSD[A&S], 2020c). But most importantly,

the DOD SWP requires regularly conducting Value Assessments (VA) with an operational

sponsor to identify and assess the mission impact of software acquisition efforts, to identify

and assess risks, as well as to inform future resourcing decisions (OUSD[A&S], 2022g).

L. CHALLENGES IN SOFTWARE ENGINEERING

Generally, most organizations have recognized the need to digitally transform (i.e.,

maximize their adoption of digital technology; Kersten, 2018). But while manufacturing

and industrial management have benefitted from over 100 years of operational experience

and are extremely mature in terms of performance management methods, metrics, and data

collection tools, the software engineering industry lacks consensus on how to measure the

software development process (Forsgen & Kersten, 2018). Relatively speaking, software

engineering is a young field, and software engineering management is even less mature

(Forsgren & Kersten, 2018). For instance, there is still no standard metric for software

program size—lines of code (LOC), function points, and use case points are only some

alternatives—so software projects estimate and manage tasks differently since no objective

yardstick for complexity or effort yet exists (Efe & Demirörs, 2013). Moreover, even after

20 years, there are still no standard metrics to manage agile software engineering

environments in commercial industry (Maddox & Walker, 2021).

As for the DOD, Development-Security-IT Operations (DevSecOps) provides

SWP programs the technology infrastructure and practices that enable parallelization and

automation of many development, certification, and deployment activities (O’Hearn,

2022), and it spawns a large amount of telemetry data that enables stakeholders to assess

software delivery performance (Nichols et al., 2022). But while DevSecOps metrics

provides rich insight into software development, they do not satisfy program control

metrics for assessing progress, such as burn rates against spend targets, schedule for

integration activities, and schedule for future releases (Nichols et al., 2022). Thus, SWP

programs may outpace program control capabilities because DevSecOps produces working

software at the end of each iteration/sprint, whereas the project management organization

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

35

(PMO) needs up-to-date program control information to make new commitments, which

can unfortunately take weeks or months to obtain (Nichols et al., 2022). Moreover, because

the DOD is one of largest, most complex institutions in the world, the organizations and

people operating within it are also highly susceptible to the “bureaucratic dysfunction of

goal displacement: focusing on the rules rather than their ends” (Schwartz, 2020, p. 186),

so program control metrics for SWP programs are not likely to change fast.

Despite these commercial and non-commercial software engineering management

challenges, all leading software engineers agree: The purpose of digital transformation is

to enhance an organization’s ability to create and deliver business value, and the purpose

of any metric is to inform and enable business decisions (Forsgen & Kersten, 2018) In

other words, technology and metrics are simply a means to an end, whereas business value

and business decisions are fundamentally context dependent. As for SWP programs, while

the PM/product manager/product owner may need to collect and maintain at least two sets

of metrics by necessity, it has always been crucial to bridge the gap between how the DOD

and the individual services will conduct acquisition oversight and how the software

development process will generate insight (Lapham et al., 2011).

M. SUMMARY

To provide context for the disparities between software engineering technical

practice and defense management practice, this chapter included a review of project

management, NPD, and software acquisition reform literature since the creation of the

software engineering industry profession in the late 1960s. Early software engineering was

heavily influenced by industrial management, which conceived and treated software

development as a predictable manufacturing process that required specific inputs of money,

time, and programming activity to output a desired result. Stage-gate NPD governance

systems were also designed after manufacturing practices and reinforced planning rigor by

standardizing the expected project inputs and decision rules at concentrated quality control

checkpoints. While cross-functional teaming and concurrent design activity accelerated

project teams’ time to market performance, stage-gate governance limited larger

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

36

organizations’ ability to competitively adapt to market forces while sustaining a high-

quality, cost-effective product portfolio.

Once the Internet became commercialized, marketing professionals became

marginalized in the software engineering industry, going from directly planning and

directing NPD decisions to advising them via marketing research reporting and committee

reviews. To develop and capture increasingly diverse consumer software market segments,

product managers embedded in engineering organizations and coordinated, managed, and

executed product requirements throughout the NPD process. But given increased

globalization and digitalization of commerce, more and more software engineers and

marketing professionals struggled with outdated methodologies in an increasingly

uncertain, complex, and fast-paced business environment.

After applying lean principles and values to the software development process,

leading software engineers founded the agile software engineering movement, which

largely moved from sequential to concurrent software engineering and small-batch

requirements to enable accelerated SDLC iterations and continual adaptation to dynamic

demand. Initially, PMs resisted agile methodology until they became accustomed to agile

project design and dynamically planning and managing development tasks. Once agile

principles and patterns were applied to the marketing discipline, the high-tech industry also

founded Lean Startup, an NPD methodology that enabled new organizations to effectively

build and deploy new products and services under conditions of extreme uncertainty. In

combination, agile and Lean Startup substantially accelerated digital NPD, most notably

for high-tech startups operating on the public cloud.

However, successfully incorporating agile and Lean Startup across larger

enterprises required new mental models for capacity management, variability, and early

development. Predominantly, this required making software WIP visible, limiting WIP in

software engineering workflows, and recognizing that lean production practices were

applicable only to software deployment activities, not design and development. Moreover,

as cloud computing became commoditized and software engineering tooling became

increasingly cloud-native, it became imperative for IT organizations to eliminate all silos

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

37

between Dev and Ops, primarily by unifying their goals and incentives and deliberately

building one highly agile, secure, and reliable system of software engineering work.

As for the DOD, its earliest software acquisition reform efforts recognized the need

to keep parity with commercial industry’s digital technology and development

methodology. By 2020, however, the DOD formally recognized software development as

a continuous process and issued a software acquisition strategy for custom application and

embedded software built around agile methods. But while modern software engineering

technology and methodology has significantly expanded the amount of performance data

available to managers, the software engineering industry has not yet standardized any

performance metrics for concurrent software engineering processes. Therefore, as DOD

custom software development outpaces the defense acquisition governance process, it is

critical to note that there is no one-size-fits-all tool kit to manage software development.

Indeed, because software development is a continuous process, the optimal management

tools and methods are entirely context dependent. The next chapter includes a discussion

of measurements and metrics considerations for use in the DOD’s SWP.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

38

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

39

III. AGILE SOFTWARE ENGINEERING METRICS

This chapter includes a discussion of the most common measurements and metrics

used in commercial agile software engineering environments and analysis of how to adapt

them to the specific objectives of the SWP. To effectively implement agile measurements

and metrics, the chapter also synopsizes several management principles and patterns from

modern software engineering and digital NPD. For the sake of clarity and brevity

throughout this chapter, agile means agile software engineering, agile project means a

software development project that practices agile software engineering, agile project

management means the discipline of managing software development projects that practice

agile software engineering, waterfall means waterfall software engineering, waterfall

project means a software development project that practices waterfall software

engineering, and waterfall project management means the discipline of managing software

development projects that practice waterfall software engineering.

A. BACKGROUND

Before discussing common agile metrics, it is necessary to distinguish between a

measurement and metric. Measurement is the act of using an instrument to assign a value

on a scale to an object or event (Kahneman et al., 2021). For instance, one measures the

length of a carpet in inches using a tape measure, and one measures the temperature in

degrees Fahrenheit or Celsius by consulting a thermometer (Kahneman et al., 2021). The

purpose of a measurement is to obtain an accurate and precise value—“to approach truth

and minimize error” (Kahneman et al., 2021, p. 39). Measurements provide simple, readily

obtained facts. On the other hand, a metric is “the measurement portion of a control system”

(Reinertsen, 2009, p. 222). Metrics consist of measurements, but not all measurements

should be metrics. The purpose of a metric is to “induce the departments to do what is good

for the company as a whole” (Goldratt, 1997, p. 107), for example, to inform business

decisions and/or accomplish a business objective. As such, because metrics function as

incentives and involve managerial judgment, they must be used with great care and close

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

40

attention. Having defined these terms, this section now highlights how waterfall and agile

software development approach metrics differently.

In waterfall projects, all stakeholder needs are identified and thoroughly analyzed,

a comprehensive solution is designed, risks are identified and assessed, and a full budget

is estimated and allocated in advance (Nicolette, 2015). Thus, a complete plan is

formulated at the start of the development project. On the other hand, in agile projects, a

desired future end state is envisioned; only short-term analysis is performed to initiate the

engineering process; and teams collaboratively explore the problem/solution space through

iterative development, incremental delivery, and frequent market feedback (Nicolette,

2015). So, while the design is highly uncertain in agile projects, the development team

discovers and implements it through an adaptive process.

As noted, development project plans are merely a proxy for the intended product

(Perri, 2018). Generally, metrics also compare expected versus actual levels of

performance (Nicolette, 2015). From the perspective of the development project, however,

waterfall project plan expectations are comprehensively defined in the past, even when

plans are re-baselined (Nicolette, 2015). As such, as waterfall projects progress, they

always look to the past to identify performance goals, maintain alignment to them, and to

measure their success (Nicolette, 2015). Thus, waterfall projects tend to rely on backward-

facing metrics, as shown in Figure 15 (Nicolette, 2015):

Figure 15. Traditional Project Metrics. Source: Nicolette (2015).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

41

However, within agile projects, teams define performance expectations based on

their current understanding of the desired future end state (Nicolette, 2015). Naturally, the

team’s understanding evolves from each iteration/sprint to the next (Nicolette, 2015). Thus,

as agile projects progress, they continually look to the future to identify performance goals,

maintain alignment to them, and to measure success (Nicolette, 2015). As a result, to cope

with dynamic performance expectations, agile projects tend to rely on forward-facing

metrics, as shown in Figure 16 (Nicolette, 2015):

Figure 16. Agile Project Metrics. Source: Nicolette (2015).

Additionally, as noted, waterfall projects are designed with fixed scope and flexible

cost and schedule constraints, whereas agile projects are designed using a series of mini

projects, each of which has flexible scope and fixed cost and schedule constraints (Patel,

2021). Now that the salient differences between waterfall and agile metrics and project

design have been identified, the researcher identifies the most common commercial

practices in agile planning and metrics.

In most schools of agile software engineering, commercial business problems are

identified and broken down to represent a basic unit of customer need called stories

(Forsgren et al., 2018). From there, development teams estimate and assign the relative

level of effort (LOE) needed to implement and ship each story by using a scale of “story

points” (SP; Forsgren et al., 2018). SPs are an abstract measure for what it takes to realize

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

42

a story in current and/or future iterations (Rawsthorne, 2008). To this end, instead of

measuring how “long” the story is, SPs measure the difficulty of each story relative to

others by asking a question like, “Given good code to work with, how difficult is this story

for our team?” (Rawsthorne, 2008). Thus, agile development teams use SPs for relative

sizing, and because SPs are highly contextual, each team tends to use them differently.

Because agile environments commonly plan work in iterations/sprints, or fixed-

time intervals, many agile development teams also measure their velocity, or iteration

throughput (Forsgren et al., 2018). Velocity is a simple enough metric to calculate. After

completing each iteration, the team counts the total number of approved SPs to determine

its iteration velocity (i.e., velocity). After a few iterations, teams also begin tracking their

average number of SPs completed per iteration, or average velocity (Forsgren et al., 2018).

Agile teams internally calculate velocity for the sake of tracking their productivity. For

instance, if the team has been completing 30 SPs per iteration on average, it can plan its

work accordingly in future iterations. Additionally, by using SPs and their average velocity,

teams could roughly extrapolate by when they could expect to complete all planned and

estimated outstanding project work (Forsgren et al., 2018). But while estimating and

tracking SPs and velocity have become common agile practices, their utility is limited to

individual development teams and the teams’ unique projects; additionally, these practices

are primarily used for the purpose of capacity planning and management. That said,

depending on the software development phase or objective, there are many other

commonly used agile software engineering measurements and metrics.

Once the agile movement gained a critical mass of followers in the software

engineering industry, software developers and their managers realized that at least three

classes of metrics are necessary in any agile environment: (a) code-level metrics such as

code quality, (b) productivity metrics such as velocity, and (c) economic metrics such as

business value (BV) (Oza & Korkala, 2012). For instance, code-level metrics provide a

wealth of insight into software development, but they seldom account for the customer in

a manner that drives product decisions (Oza & Korkala, 2012). On the other hand, while

productivity and economic metrics more readily support product decision-making, they

often heavily rely on judgment and/or tacit knowledge due to the fast-paced, dynamic

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

43

nature of agile software development (Oza & Korkala, 2012). In any case, using a

combination of code-level, productivity, and economic metrics became a best practice to

drive business decisions in agile environments (Oza & Korkala, 2012).

However, to effectively align, motivate, and focus software development teams,

agile practitioners also realized that agile metrics must clearly and consistently connect

daily work to the organization’s current goals (Oza & Korkala, 2012). Naturally, using an

overly complex set of metrics inhibits, rather than enhances, sustained mission focus. To

this end, some agile practitioners argued for using only one performance metric—BV—

and subordinating all code-level, productivity, and any other metrics to this economic

metric (Hartmann & Dymond, 2006). According to this management approach, code-level,

productivity, and other classes of metrics and measurements should be considered

“diagnostics,” for BV is the only viable metric to measure progress and assess performance

(Hartmann & Dymond, 2006). Overall, these agile metric practices seem sensible to apply

to DON SWP programs: a combination of code-level, productivity, and economic metrics

provides a robust set of quantitative and qualitative information, and ensuring the preferred

economic metric—BV—takes always takes precedence helps drive and sustain focus on

operational outcomes.

Before addressing SWP program execution, this section addresses the conditions in

which agile methods are most effective. All things being equal, agile software engineering

is not an inherently faster development methodology than waterfall software engineering

(Tate & Bailey, 2022). The practical value of practicing agile methods is that small batches

of work and fast feedback improve the ability to rapidly adapt to an uncertain, complex,

fast-moving business environment (Smith & Reinertsen, 1997). To develop this ability,

however, the DON SWP program’s culture must always prioritize speed to all throughout

the software development process (DIB, 2019b).

Time to market, which is defined as the total time from which a new DON SWP

program is launched to its first deployment of useful capability, is the best measurement to

instill an agile mindset because it determines the first point at which new software creates

real market value and captures user feedback to iteratively shape future capability delivery

(DIB, 2019a). Time to market captures more than programming performance—it also

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

44

measures the time necessary to satisfy critical regulatory requirements for release approval,

which is often the most time-consuming part of delivering new defense software

capabilities (DIB, 2019a). Again, agile methods are not necessarily faster than waterfall

methods. However, by doing less total work upfront, agile methods enable organizations

to push code to market much sooner, enabling them to continually develop and deliver new

and/or improved software capability based on rapid feedback and day-to-day product use.

Thus, DON SWP programs must establish urgency to put working software into

the user’s hands as soon as practicable. To drive the mindset for market speed in all SWP

programs, the DOD SWP requires delivery of operationally useful capability (e.g., the

MMVR) no later than one year from the date software development is first funded

(OUSD[A&S], 2020c). No later than one year after funding development is therefore the

time to market standard for all new DOD SWP programs (OUSD[A&S], 2020c). Having

established an overview of agile practices, this discussion now turns to adopting them to

execute the SWP.

B. PRE–MINIMUM VIABLE CAPABILITY RELEASE

The set of technologies required to build and operate a software system, from the

operating system platform to the mission application, is called the technology stack, or tech

stack, in the software engineering industry (Hering, 2018). The tech stack determines the

type of systems that can be built, the level of customization possible, as well as the

computing resources needed to develop, deploy, and operate software (Hering, 2018). To

recommend the appropriate metrics, the researcher assumes that DON SWP programs are

acquiring custom application software running on commercial hardware/operating

systems, or Type C software as defined in the DIB SWAP study (DIB, 2019b).

Additionally, the researcher assumes that the custom application software is developed,

assured, deployed, and supported primarily by contractors.

The DOD SWP seeks to adopt commercial software engineering and digital NPD

best practices to the greatest extent practicable, and its explicit intent is to “facilitate rapid

and iterative delivery of [custom] software capability to the user” (OUSD[A&S], n.d.-f).

To that end, the DOD SWP exempts all SWP programs from JCIDS requirements,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

45

encourages leveraging existing enterprise IT services as much as possible, and requires

building and demonstrating an MVP to the customer, user, or designated representative as

soon as possible to create the feedback loops that enable agility and reinforce UCD

(OUSD[A&S], 2022b; OUSD[A&S], n.d.-d).

The DOD SWP has a Planning Phase an Execution Phase, as shown in Figure 17.

Figure 17. The DOD SWP’s Planning and Execution Phases. Source:

OUSD[A&S] (2020c).

The Planning Phase begins as soon as the Decision Authority (DA) has reviewed

the draft Capabilities Need Statement (CNS) and signed the Acquisition Decision

Memorandum (ADM) authorizing use of the DOD SWP (OUSD[A&S], 2020c). The

purpose of the Planning Phase is to learn the user’s capability needs and to plan the

approach to develop and deliver the software that satisfies those needs (OUSD[A&S],

2020c). Planning Phase key artifacts include the CNS; User Agreement; Program

Strategies, including acquisition, contracting, intellectual property, test, cybersecurity, and

product support strategies; and Cost Estimate (OUSD[A&S], 2020c). According to the

DOD Adaptive Acquisition Framework (AAF), given the strategic intent to move fast, all

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

46

SWP programs are expected to spend 60–180 days in the Planning Phase, depending on

their context and acquisition complexity (OUSD[A&S], n.d.-a). Once these key artifacts

are sufficiently developed, SWP programs enter the Execution Phase, the purpose of which

is to rapidly and iteratively design, develop, deliver, and operate high quality software

capabilities that meet the users’ highest priority needs (OUSD[A&S], 2020c).

To do this, SWP programs build two key artifacts through active user engagement,

UCD, and agile planning: the Product Roadmap and Program Backlogs (OUSD[A&S],

n.d.-c). The Product Roadmap is a high-level, time-phased map that shows projected

software capability deliveries, and the Program Backlogs function as a dynamic ledger to

identify, plan, prioritize, and allocate near-term software development work

(OUSD[A&S], 2020c). According to the AAF SWP guidance, the CNS might cover a

Future Years Defense Program horizon, but the Product Roadmap should cover the next

12–18 months, whereas the Program Backlogs should cover nearer-term release

requirements that are continuously re-prioritized (OUSD[A&S], n.d.-a). The Product

Roadmap and Program Backlogs also complement each other, for the former provides an

enterprise view of the product vision, the latter provides team-level context of unmet

software development requirements, and SWP programs iteratively and continuously build

and refine these artifacts via active user engagement, UCD, and agile planning throughout

the Execution Phase, as shown in Figures 18 and 19.

Figure 18. Planning, Acquiring, and Assessing Capability Needs in the DOD

SWP. Source: OUSD(A&S, n.d.-c).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

47

Figure 19. Dynamically Planning, Prioritizing, and Implementing Software

Development Requirements via User Community Engagement. Source:
OUSD(A&S, n.d.-b).

To distinguish high priority work items from lower priority requirements in the

queue, AAF guidance suggests that SWP programs structure their Program Backlogs as

shown in Figure 20 (OUSD[A&S], 2022):

Figure 20. Managing Software Development Requirements via Program

Backlogs. Source: OUSD(A&S, 2022b).

To design, implement, and deliver the highest priority needs, the PM/product

manager/product owner allocates software development requirements to upcoming

iterations/sprints through the DOD SWP program’s contracts as shown in Figure 21:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

48

Figure 21. Capacity-Based Contracting. Source: OUSD(A&S, 2019).

Finally, to help improve the DOD SWP, the OUSD(A&S; n.d.-g) requires each

SWP program to semiannually report its performance under 12 metrics, shown in Table 1:

Table 1. DOD SWP Semiannual Reporting Metrics. Adapted from
OUSD(A&S; n.d.-g).

ID Metric Definition

(a)
Average Lead time for Authority

to Operate (ATO) “Average number of days to obtain [ATO] by release” (OUSD[A&S], n.d.-g)

(b) Continuous ATO In-Place
“Indicator of program’s ability to achieve a continuous [ATO] or similarly expedited
[Approving Official] approval process” (OUSD[A&S], n.d.-g)

(c)

Mean Time to Resolve
Experienced Cyber Incident or

Common Vulnerability or
Exposure (CVE)

“The mean response time a program was able to resolve a Cyber Incident or [CVE] from the
time of identification through resolution” (OUSD[A&S], n.d.-g)

(d)
Mean Time to Detect Cyber

Incident “The mean time from Cyber Incident start to time of identification” (OUSD[A&S], n.d.-g)

(e) Average Deployment Frequency “The average frequency of releases into an operational environment” (OUSD[A&S], n.d.-g)

(f) Average Cycle Time

“The average duration time to deliver a capability or feature into operation, measured from
the time the need is identified for a specific build (moved from the backlog to a planned
release) to the time the code is committed (development activity finished)” (OUSD[A&S],
n.d.-g)

(g) Average Lead Time for Change
“The average duration to deliver a capability or feature into operation, measured from the
time the code is committed (development activity finished) to the time it is available for
release to operations (production)” (OUSD[A&S], n.d.-g)

(h) Minimum Lead Time for Change
“The minimum duration to deliver a capability or feature into operation, measured from the
time the code is committed (development activity finished) to the time it is available for
release to operations (production)” (OUSD[A&S], n.d.-g)

(i) Maximum Lead Time for
Change

“The maximum duration to deliver a capability or feature into operation, measured from the
time the code is committed (development activity finished) to the time it is available for
release to operations (production)” (OUSD[A&S], n.d.-g)

(j) Change Fail Rate
“The percentage of releases to the production/operational environment that requires
subsequent remediation” (OUSD[A&S], n.d.-g)

(k) Mean Time to Restore (MTTR)
“The mean time to restore the system in response to a downtime event or a defect that
requires subsequent remediation” (OUSD[A&S], n.d.-g)

(l) Value Assessment (VA) Rating
“The [PMO’s] perceived rating based on the last feedback received from the operational
sponsor” (OUSD[A&S], n.d.-g)

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

49

Unfortunately, there are some challenges with the DOD SWP’s semiannual

reporting metrics. First, the requirement to track and semiannually report these 12 metrics

applies as soon as software acquisition programs enter the DOD SWP (OUSD[A&S], n.d.-

g), even though Average Deployment Frequency, Average Cycle Time, Average Lead

Time for Change, Minimum Lead Time for Change, Maximum Lead Time for Change,

Change Failure Rate, and MTTR measure deployment and response rate for an

operationalized software system. Given that accomplishing the MVCR may take up to 1

year after first funding development, imposing these metrics creates an unnecessary burden

during the Planning Phase and early Execution Phase of each SWP program. Second, since

the first VA cycle will not close out until well into the post-MVCR phase (OUSD[A&S],

2020c), prematurely tracking and reporting VA Rating creates similar waste.

DON SWP programs are also required to have a DA-approved metrics approach at

the time of entering the DON SWP, to prioritize automation in collecting and reporting

metrics, to adopt metrics reviews that become part of the VA process, and to use, at

minimum, the following four metrics: “(1) Average Deployment Frequency; (2) Average

and Minimum/Maximum Lead Time to commit code to production; (3) Average Cycle

Time; (4) Change Failure Rate” (ASN[RD&A]), 2022, pp. 6–7). By requiring maximum

use of automated telemetry and incorporating software delivery performance metrics from

the DevOps movement, the DON SWP—as well as the DOD SWP, given their overlapping

metrics—has attempted to adopt state-of-the-art software delivery practices (Kim et al.,

2021). However, there are also challenges with the DON SWP’s required metrics.

First, until DON SWP programs gain the authority to operate (ATO), satisfy

operational acceptance requirements, and attain any other required certifications, they will

be unable to deploy code to operations (i.e., production environments; Tate & Bailey,

2022). The DON SWP’s required metrics are applicable only when DON SWP programs

have both developed the technical capability and obtained the appropriate authorities to

deploy code to production environments, which is no earlier than deployment of the

Minimum Viable Capability Release (MVCR). Second, while metric reviews are required

to become part of the VA process, the first VA will not be conducted until after the software

system is fielded, which both the DOD SWP and DON SWP anticipate can take up to a

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

50

year from the date development activities are first funded (OUSD[A&S], 2020c;

ASN[RD&A], 2022). As such, the DON’s SWP provides no metrics or metric guidance to

manage the software development process from the onset of the Execution Phase through

deployment of the MVCR (i.e., the pre-MVCR phase).

That said, there are some potential strategies for DON SWP programs to manage

progress in the pre-MVCR phase while attempting to comply with the DON SWP.

According to the DON SWP, programs must accomplish their first release, or MVCR, no

later than 1 year, or 52 weeks, from first funding development. Thus, according to the

AAF’s suggested approach for structuring Program Backlogs, the initial Release Backlog

covers a period of 52 weeks. Assuming the DON SWP program uses a fixed time interval

for each iteration/sprint, it could divide 52 weeks by this fixed time interval to calculate

the anticipated number of iterations/sprints necessary to implement all initial Release

Backlog requirements. For instance, if the DON SWP program uses 2-week intervals for

each iteration/sprint, then there are 52 / 2 = 26 iterations/sprints available to complete the

DON SWP program’s initial Release Backlog requirements. Knowing this, the DON SWP

program can then use velocity and velocity-based metrics to track and assess productivity

for each development team during the pre-MVCR phase. Because the metric is so

commonly used in agile environments, the PM/product manager/product owner can also

automatically collect and track velocity-based information through ALM tools (DIB,

2019b). Velocity-based metrics could therefore help efficiently and effectively measure

and manage productivity during the pre-MVCR phase.

Moving on, one technique that was developed to track and assess progress within

agile software projects is Earned Business Value (EBV; Rawsthorne, 2006). DON SWP

programs are advised to use EBV to measure progress towards building and demonstrating

their MVP to users in a testing environment. To apply this method, the DON SWP program

first organizes all initial software development work into a custom Work Breakdown

Structure (WBS) that uses three legs: (a) product: work to build the MVP, (b) platform:

work that enables building the MVP, and (c) deployment: work that enables demonstrating

the MVP (Rawsthorne, 2006). For example, the notional WBS for a custom application

development project would be structured as shown in Figure 22:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

51

Figure 22. Notional WBS. Adapted from Rawsthorne (2006).

Next, the government PM/product manager/product owner assigns relative weights

to each WBS leg and bucket, whereby only completing Product leg features and

Deployment leg tasks can generate BV (Rawsthorne, 2006). Once BV weights have been

assigned to the relevant legs and buckets, the notional WBS would appear as in Figure 23:

Figure 23. Notional, Weighted WBS. Adapted from Rawsthorne (2006).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

52

Finally, additive weights are assigned to the stories for each Product feature

(Rawsthorne, 2006). For instance, Figure 24 shows the notional stories for Feature 1:

Figure 24. Notional Stories for Feature 1. Source: Rawsthorne (2006).

Having mapped all initially known work, EBV then calculates the cumulative

percentage of all implemented BV as DON SWP programs progress towards their MVP

(Rawsthorne, 2006). Specifically, EBV enables DON SWP programs to track and assess

their initial progress via the formula shown in Figure 25 (Rawsthorne, 2006):

Figure 25. The EBV Formula. Source: Rawsthorne (2006).

EBV is recursively calculated based on multiplying weight percentages of weight

percentages down to the lowest WBS element (Rawsthorne, 2006). For instance, the

calculations in Figure 26 evaluate the notional project’s EBV once the first two stories for

Feature 1 have been completed:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

53

Figure 26. Calculating a Project’s EBV. Source: Rawsthorne (2006).

In other words, after completing these two Feature 1 stories, the MVP can be

considered 9.38% complete. While the government PM/product manager/product owner’s

assigning relative weights to WBS elements is subjective, this method ensures all work to

build and demonstrate the MVP to users in a testing environment is weighed and prioritized

in alignment with the highest operational priorities (Rawsthorne, 2006).

Overall, EBV has several practical benefits for measuring and managing progress.

First, because EBV is calculated using unitless percentages, it is not biased towards dollars,

duration, man-hours, effort, or any other specific unit of measure (Norton, 2020). Second,

EBV does not use cost metrics, so it enables estimating and measuring project progress in

a manner that creates no cost accounting overhead, unlike EVM. Third, EBV’s product

oriented WBS and relative weighting scheme can help create and maintain a holistic view

of project progress, including the relative BV of all essential software development work.

Ultimately, EBV is intended for use only on one software deployment comprised of

multiple iterations/sprints (Rawsthorne, 2006). Given that it helps organize all initially

known work and enables measuring the value of said work in a simple, mission-focused

manner, EBV is a practical tool that enables DON SWP programs to track and assess

progress towards their MVP. While DON SWP programs will be able to automatically

track work item completion using ALM tools, configuring, calculating, and updating EBV

itself may have to be done manually, given that the WBS will be completely tailored to

each Type C DON SWP program’s custom application MVP.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

54

With respect to quality, DON SWP programs can readily track the rate and count

of defects using ALM and/or software development tools (Norton, 2020). Naturally,

maximizing quality should always be a desired outcome. That said, based on leading agile

practices, defects should be treated as a natural byproduct of software development work,

whereby instead of impractically seeking to avoid defects, the rate and count of defects are

used to understand and manage the quality of the software development process (Harrison

& Lively, 2019). To detect and contain excessive quantities and/or poor trends of defects,

one useful metric is the ratio of defects created/work units completed in a set period (e.g.,

per software development iteration/sprint; Norton, 2020). Ideally, the lower this ratio is

over time, the better.

As for tracking quality of the codebase, one useful metric is the percentage of

automated unit testing for all implemented code (i.e., test coverage; Norton, 2020). While

test coverage itself is not a measure of quality, having test coverage is an indicator of well-

designed code because unit tests—tests that validate a method’s behavior without calling

any other method—are possible only when the code is constructed in a way that indicates

loose dependencies or loose coupling (Norton, 2020). Thus, the amount of code

successfully covered by unit tests can indicate how well the code is written (Norton, 2020),

and based on the DIB SWAP study’s Metrics for Software Development supplement, the

target test coverage rate for Type C DON SWP programs is 90% (DIB, 2019a). To manage

software development process and code quality during the implementation of the initial

Release Backlog, DON SWP programs should therefore track ratio of defects created/work

units completed in a set period and test coverage, respectively.

But while these metrics, velocity-based metrics, and EBV can help respectively

track quality, productivity, and economic performance enroute to the MVP, reviewing

these metrics does not necessarily support the VA process in the post-MVCR phase. The

purpose of the VA is to learn, from the end user’s perspective, how much short-term and

long-term mission impact the delivered software has (i.e., assess the delivered software’s

BV; OUSD[A&S], 2020c), and the DON SWP requires that “metrics review should

become part of the [VA] process” (ASN[RD&A], 2022, p. 6). In other words, the way

DON SWP programs review metrics in the pre-MVCR phase should help them prepare to

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

55

conduct VAs in the post-MVCR phase. Naturally, DON SWP programs are externally

constrained by ATO and other release requirements during the pre-MVCR phase, so

delivery to operations is not applicable. That said, based on agile best practices, the best

times to measure BV are either when demonstrating completed features to the user(s) at

the end of each iteration/sprint or after releasing completed features to production, with

release to production being most preferred (Hartmann & Dymond, 2006). Fortunately,

showing the MVP creates opportunities to conduct metrics review with the user, so DON

SWP programs should use EBV to track progress until their MVP demonstration event.

The MVP demonstration is an important milestone in the pre-MVCR phase for

several reasons. First, MVPs are minimally engineered products that begin the process of

iterating and retesting (Ries, 2017). Thus, the MVP is a working prototype of the intended

product. Second, the MVP demonstration helps understand what the user actually wants,

not what DON SWP programs think the user wants (Ries, 2017). Third, the MVP

demonstration creates a feedback loop around the user’s highest priority operational needs,

which is critical to make the most of the MVCR’s impact and that of all subsequent

software releases (OUSD[A&S], n.d.-e). Fourth, while the MVCR creates mission effects

for the user, the MVP demonstration shows what the custom application does to enable

those mission effects. The relationship between the MVP and MVCR is shown in Figures

27 and 28.

Figure 27. Comparing the MVP and MVCR. Source: Garrison (2022).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

56

Figure 28. Representing the System MVP and MVCR. Source: Garrison

(2022).

Second, neither the DOD nor the DON SWP prescribed MVP metrics because they

intended the MVP review process to be based on customer and/or end user feedback

(OUSD[A&S], 2020c; ASN[RD&A], 2022). Thus, given that the purpose of the VA is for

the customer and/or end user to assess BV, DON SWP programs could use the MVP review

process to help prepare for the VA process in the post-MVCR phase.

Now, to make the most of its prototype and its subsequent feedback loop, the DON

SWP program should create and demonstrate its MVP in a production-like testing

environment as soon as practicable. While this timeline will vary from one DON SWP

program to another, assume, for illustrative purposes, that this becomes possible during

Iteration/Sprint 20. Then, to align to agile best practices, the DON SWP program should

demonstrate the MVP to the user immediately after Iteration/Sprint 20, newly completed

functionality immediately after Iteration/Sprint 21, and so on through delivery of the

MVCR, ideally during Iteration/Sprint 26. Once a DON SWP program has demonstrated

the MVP, it should forgo EBV and graduate to tracking and assessing product-oriented

metrics through delivery of the MVCR. According to the DOD’s Agile Metrics Guide:

Strategy Considerations and Sample Metrics for Agile Development Solutions, the most

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

57

effective product-oriented metrics are the number and/or percentage of accepted user

stories/features (OUSD[A&S], 2020b).

Tracking and updating product-oriented metrics in this manner enables DON SWP

programs to align themselves to agile best practices; establish a pre-MVCR metrics review

process that becomes part of the VA process in the post-MVR phase, as required by the

DON SWP (ASN[RD&A], 2022); and, most importantly, ensure that DON SWP programs

deliver the highest-priority software capability to operations in their MVCR. Because user

stories/features are automatically tracked in the Program Backlogs, the data to track these

product-oriented metrics are also automated and readily available.

All in all, to effectively manage contractor-led development of Type C software in

the pre-MVCR phase, the DON SWP program should use velocity-based metrics, EBV,

and the rate of created defects/completed work items in a set period and test coverage to

respectively track and assess productivity, value, and quality from the time software

development work is first funded to demonstrating its prototype to the user in a production-

like testing environment (e.g., its MVP). But once the MVP is accomplished, DON SWP

programs gain the critical ability to regularly capture feedback for completed features.

Thus, after showing the MVP, DON SWP programs should replace EBV with product-

oriented metrics to track and assess the number and/or percentage of accepted user stories/

features immediately after every iteration/sprint through delivery of the MVCR.

By regularly demonstrating and tracking completed features to users in this manner,

DON SWP programs will enable themselves to iteratively reduce risk and practice UCD;

maximize their use of automated telemetry and establish a metrics review process that later

becomes part of the VA process, as required by the DON SWP; and implement a robust

combination of productivity, code-level, and economic performance indicators that aligns

to agile metrics best practices (Oza & Korkala, 2012). That said, development projects are

capital investment plans, and each development project plan is merely a proxy for the

intended product (Perri, 2018). Additionally, technology is just a tool, but it is the product

that serves as a vehicle enabling the exchange of value (Perri, 2018). Thus, once the DON

SWP program deploys its software system to operations, its metric considerations

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

58

necessarily become much more complex. The next section includes a discussion of metrics

and metrics considerations to manage software development in the post-MVCR phase.

C. POST–MINIMUM VIABLE CAPABILITY RELEASE

This section includes recommended metrics for DON SWP programs to manage

performance throughout the post-MVCR phase. Once DON SWP programs have deployed

their custom software system to operations, there are several metrics considerations. First,

the programs must track and semiannually report the metrics required by the DOD SWP.

Second, they must track the metrics required by the DON SWP. Third, they must establish

goals and metrics for said goals, and they must track their progress throughout the first VA

cycle. Finally, the DON SWP programs must adopt a comprehensive management

framework to plan, track, and assess longer-term software acquisition outcomes.

As noted in the previous section, to help improve the DOD SWP itself, the DOD

SWP requires each SWP program to track and semiannually report its performance for 12

metrics: (a) average lead time for ATO; (b) continuous ATO in-place; (c) mean time to

resolve experienced cyber incident or CVE; (d) mean time to detect cyber incident; (e)

average deployment frequency; (f) average cycle time; (g) average lead time for change;

(h) minimum lead time for change; (i) maximum lead time for change; (j) change fail rate;

(k) MTTR; and (l) VA rating (OUSD[A&S], n.d.-g). While tracking and semiannually

reporting these metrics is a matter of compliance, it is worth noting that several of these

metrics, such as metrics f–k, were adopted from the DIB SWAP study’s Metrics for

Software Development supplement (DIB, 2019a). Thus, establishing the production

telemetry to automatically track and collect these metrics aligns DOD SWP programs to

DOD software acquisition best practices.

The DON SWP, as noted earlier, prescribed the use of four metrics: “(1) Average

Deployment Frequency; (2) Average and Minimum/Maximum Lead Time to commit code

to production; (3) Average Cycle Time; (4) Change Failure Rate” (ASN[RD&A]), 2022,

pp. 6–7). These metrics overlap with metrics e–j required by the DOD SWP. Additionally,

the DON SWP’s metrics are partially aligned to the set of metrics that the DevOps Research

and Assessment (DORA) State of DevOps research program has used to assess the software

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

59

delivery performance of over 25,000 IT organizations: (a) Lead Time for Changes, (b)

Deployment Frequency, (c) Change Failure Rate, and (d) MTTR (Forsgren et al., 2018).

Collectively, these four metrics have been dubbed the “DORA metrics” (Kim et al., 2021).

By partially including the DORA metrics, the DON SWP has attempted to adopt

state-of-the-art software delivery practices. How these metrics are used, however, is

critically important. By analyzing IT organizations via the DORA metrics, DORA’s

research has shown software delivery performance is highly correlated to business-level

performance and growth, and that the highest performing IT organizations quickly,

regularly, reliably, and responsively deploy and operate software (Forsgren et al., 2018).

In other words, DORA’s research has scientifically demonstrated that building a highly

agile, secure, and reliable software engineering work system (i.e., practicing DevOps) is

strongly connected to successful business outcomes.

Naturally, building such a system of work takes time, concerted effort, and

continuous improvement, but this is where the DORA metrics help. The first two DORA

metrics, Lead Time for Changes and Deployment Frequency, provide insight into the

velocity of the software development process and how responsive it is to users’ evolving

needs, whereas the last two DORA metrics, Change Failure Rate and MTTR, indicate how

stable the provided services and responsive the technology organization are to production

incidents (Forsgren et al., 2018). However, when technology organizations track all four

DORA metrics and widely radiate (i.e., make readily visible) their current performance

levels, they motivate speed with discipline throughout the software delivery process,

rallying the entire IT organization around continuous improvement of its culture,

architecture, and technical practices (Kim et al., 2021).

Thus, when used holistically and displayed widely, the DORA metrics are a

powerful benchmark to assess software delivery health, improve software delivery

performance, and motivate DevOps practices (Forsgren et al., 2018). To serve as an

effective benchmark for IT organizations, DORA has clearly defined its metrics:

• Lead Time for Changes: the time elapsed from code committed to code

in use in production

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

60

• Deployment Frequency: the average rate of code deployments over a

time period

• Change Failure Rate: the percentage of code deployments that result in a

production failure, requiring rollback and/or other intervention to resolve

• MTTR: the average amount of time required to restore a degraded service

(Forsgren et al., 2018).

Fortunately, the DOD SWP has, on one hand, adopted all four DORA metrics, and

it has also adopted very similar definitions for each DORA metric (OUSD[A&S], n.d.-g).

On the other hand, the DON SWP only requires the use of three of the four DORA metrics:

Lead Time for Changes, Deployment Frequency, and Change Failure Rate (Forsgren et al.,

2018; ASN[RD&A]), 2022). The DON SWP doesn’t require the use of MTTR, which can

potentially be a problem (ASN[RD&A]), 2022). As noted, to understand and manage

software delivery performance, the DORA metrics must be holistically tracked (Forsgren

et al., 2018). Furthermore, to motivate DevOps practices, the DORA metrics and current

performance levels under them must be transparently shared throughout the technology

organization (Forsgren et al., 2018). Given that the DOD SWP requires the use of MTTR

anyway, DON SWP programs are advised to track and display all four DORA metrics

together.

Additionally, to improve software delivery performance via the DORA metrics,

DON SWP programs are advised to adopt the performance standards proposed in the DIB

SWAP study’s Metrics for Software Development supplement (DIB, 2019a). Based on

DOD software acquisition best practices, the DIB (2019a) recommended a target Lead

Time of less than 1 day, target Change Failure Rate of less than 10%, and target MTTR of

less than 1 day for Type C software acquisition programs.

As for Deployment Frequency, because each software acquisition program has

highly unique system requirements, the DIB (2019a) did not propose performance

standards for this metric. However, because faster Deployment Frequency correlates with

smaller batch sizes, which DORA’s research has shown accelerates feedback, increases

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

61

motivation and sense of urgency, and reduces cycle time, risk, and cost and schedule

growth (Forsgren et al., 2018), the DIB (2019a) recommended a target time of less than 3

months to identify and deploy new functions as well as a target time of less than 1 week to

find and fix new issues for Type C software acquisition programs.

Thus, although the DON SWP prescribed the use of Lead Time, Change Failure

Rate, Deployment Frequency, and Cycle Time, it did not clearly define these metrics,

provide guidance for how to use said metrics, or recommend standards to monitor and

assess performance against them (ASN[RD&A], 2022). To adopt state-of-the-art software

delivery and DOD software acquisition practices, Type C DON SWP programs should

holistically track and display Lead Time, Change Failure Rate, Deployment Frequency,

and MTTR; they should adopt the DOD SWP’s definitions for these metrics, and they

should adopt the standards for Lead Time, Change Failure Rate, and MTTR proposed by

the DIB (2019a) within Metrics for Software Development. Additionally, Type C DON

SWP programs should track the time to identify and deploy new functions and the time to

find and fix issues, as well as adopt the proposed performance standards for these metrics.

Finally, DON SWP programs should adopt the DOD SWP’s definition of Cycle Time to

ensure clarity and consistency. Following these recommendations will enable DON SWP

programs to not only adopt leading software delivery practices but also make the most of

the DON SWP’s required metrics. That said, DON SWP programs still have more metrics

considerations for the post-MVCR phase.

Upon accomplishing MVCR, SWP programs begin their first VA cycle and have

up to 1 year to complete it (OUSD[A&S], n.d.-i). The purpose of the VA is for the

Operational Sponsor (OS), the “individual [office] that holds the authority and advocates

for needed end user capabilities and associated resource commitments” (OUSD[A&S],

2020c, p. 22) to assess the outcomes of all delivered software in each VA cycle. Thus, the

VA process is a critical source of feedback, for it enables the DA and the PMO to assess

the SWP program’s progress, update strategies and designs, and make informed resourcing

decisions throughout their post-MVCR phase (OUSD[A&S], n.d.-i).

To drive rigor in doing so, the DOD SWP encourages using both objective and

subjective goals in each VA cycle, requires VAs to be conducted at least once per year,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

62

and requires the OS to assess goals using a standardized rating scale (OUSD[A&S], n.d.-

i). However, to plan and manage their VA cycles, SWP programs are afforded broad

discretion to set relevant goals, select appropriate performance metrics, and drive

improvements based on their mission needs.

For instance, the timing of each VA cycle is negotiated between the OS and the

PMO (OUSD[A&S], n.d.-i). Additionally, the VA template lists a variety of measures of

effectiveness to consider in goal setting, including (a) Software Development Performance,

(b) Increase in Mission Effectiveness, (c) Cost Efficiencies, (d) User Workload Reduction,

(e) Manpower Reduction, (f) Equipment Footprint Reduction, and (g) User Adoption

(OUSD[A&S], n.d.-i). In any case, the SWP program and OS identify all performance

goals at the start of each VA cycle within the User Agreement, and they continually update

them each VA cycle to ensure performance improvements align to mission priorities

(OUSD[A&S], n.d.-i).

To model initial goal setting, the VA template lists a notional group of objective

goals and supporting metrics, as well as subjective goals, as shown in Figure 29

(OUSD[A&S], n.d.-i).

Figure 29. Notional VA Cycle Goals. Source: OUSD(A&S, n.d.-i).

To model assessment at the end of the VA cycle—a 4-month period, in this case—

the VA template also shows how the OS rated each notional goal in Figures 30 and 31.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

63

Figure 30. Notional Objective Goal Assessment. Source: OUSD(A&S, n.d.-i).

Figure 31. Notional Subjective Goal Assessment. Source: OUSD(A&S, n.d.-

i).

Thus, a VA cycle is complete, and the OS assesses the SWP program’s performance

under each of its goals. To facilitate clear, consistent VAs, the VA template has

standardized the rating scale, as shown in Figure 32 (OUSD[A&S], n.d.-i).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

64

Figure 32. VA Rating Scale. Source: OUSD(A&S, n.d.-i).

Finally, to close out each VA, the OS provides an overall VA Rating for the entire

VA cycle, general feedback to the SWP program, and requested changes to consider in the

next VA cycle, as shown in the notional example in Figure 33 (OUSD[A&S], n.d.-i).

Figure 33. Notional Overall VA Rating. Source: OUSD(A&S, n.d.-i).

Overall, the VA process captures timely, actionable, outcome-oriented feedback,

providing the user community a voice and SWP programs a means to continually improve

their performance. That said, while the VA template suggests using both objective and

subjective goals, it doesn’t clarify when and how to use each type effectively. For instance,

the VA template may have used the terms “Objective Assessment” and “Subjective

Assessment” merely to distinguish quantitative goals from qualitative goals, implying that

they should be separated. However, this approach limits the potential for objective goals to

elicit superior performance.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

65

Naturally, to drive concrete performance improvements, DON SWP programs must

ensure that objective goals, including their supporting metrics, are specific, measurable,

actionable, realistic, and time-bound (SMART; Harrison & Lively, 2019). But while the

notional, objective goals listed in the VA template provide SMART benchmarks, they lack

a unifying vision or theme. As a result, the notional objective goals listed in Figure 34 are

somewhat mechanical:

Figure 34. Notional VA Cycle Goals. Source: OUSD(A&S, n.d.-i).

Clearly, SMART metrics are necessary but not sufficient for teams to improve

performance in highly uncertain agile environments. These notional, objective goals lack

several elements. First, to focus teams on mission outcomes, objective goals must provide

direction by envisioning a future end state (Wodtke, 2016). Second, to intrinsically

motivate knowledge workers, objective goals must also clearly articulate an inspirational

purpose (Doerr, 2018). Finally, because agile is based on principles and values (Beck et

al., 2001), objective goals must also reflect desired behaviors to reinforce cultural norms.

To make the most of their objective goals, and ultimately the VA process, DON

SWP programs should formulate their objective goals by using Objectives and Key Results

(OKRs). OKRs are a goal-setting framework and management best practice from the

software engineering industry (Doerr, 2018). Within it, teams first define what is to be

achieved through a “significant, concrete, action oriented, and (ideally) inspirational”

(Doerr, 2018, p. 7) qualitative goal, entitled an Objective; then, they pair it with SMART

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

66

metrics, entitled Key Results (KRs), which provide success criteria to benchmark and

monitor how to accomplish the intended Objective successfully (Doerr, 2018). When

combined, each Objective and its set of KRs form an OKR, an outcome-oriented goal that

is well-suited for objective goal setting in the DOD SWP VA process for many reasons.

First, when formulating OKRs, each Objective and its KRs must be designated a

period, entitled the OKR cycle, in which to meet all intended outcomes (Doerr, 2018). To

do so easily, DON SWP programs may formulate objective goals such that all OKR and

VA cycles align. Second, OKRs are assessed at the end of each OKR cycle, whereby only

Objectives with no outstanding KRs are considered complete (Doerr, 2018). OKRs are

therefore intended for challenging performance goals, just like the VA process. Third,

while Objectives “can be long-lived, rolled over for a year or longer, [KRs] evolve as the

work progresses” (Doerr, 2018, p. 8). Thus, OKRs facilitate a goal setting, tracking, and

assessment process that naturally complements agile software engineering practices.

Interestingly, the notional objective goals listed in the VA template partially form

two OKRs for a 4-month cycle, as shown in Tables 2 and 3:

Table 2. Partial OKR # 1. Adapted from OUSD(A&S, n.d.-i).

Measurement Improvement Goal

ID Range From 50km to 70km

Accuracy From 60% to 70%

Operating Time From 100 hours to 150 hours

Assessment Period: Feb 2021 to June 2021.

Table 3. Partial OKR # 2. Adapted from OUSD(A&S, n.d.-i).

Measurement Expected Performance

Deployment Frequency
6x/yr

For Highest Prioritized
Features

Change Fail Rate <6%
Assessment Period: Feb 2021 to June 2021.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

67

Currently, these are two sets of KRs that lack a clearly, concisely stated qualitative

goal (i.e., Objective). Given its operational context, an appropriate Objective for the first

set of KRs could be “Sharpen the Warfighter’s Edge.” Additionally, to suit its software

delivery context, an appropriate Objective for the second set of KRs could be “Small,

Speedy Software Deliveries.” Thus, had these notional objective goals been formulated

using the OKR framework, they’d respectively appear as shown in Tables 4 and 5:

Table 4. Formulating OKR # 1. Adapted from OUSD(A&S, n.d.-i).

Objective: Sharpen the Warfighter’s Edge

KR # 1 Improve ID Range From 50km to 70km

KR # 2 Improve Accuracy From 60% to 70%

KR # 3 Improve Operating Time From 100 hours to 150 hours
Assessment Period: Feb 2021 to June 2021.

Table 5. Formulating OKR # 2. Adapted from OUSD(A&S, n.d.-i).

Objective: Small, Speedy Software Deliveries

KR # 1 6x/yr Deployment Frequency
For Highest Prioritized Features

KR # 2 <6% Change Fail Rate
Assessment Period: Feb 2021 to June 2021.

Furthermore, at the end of each 4-month VA/OKR cycle, these OKRs would be

respectively assessed as shown in Tables 6 and 7

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

68

Table 6. Assessing OKR # 1. Adapted from OUSD(A&S, n.d.-i).

Objective: Sharpen the Warfighter’s Edge

KR # 1 Improve ID Range
From 50km to 70km

Achieved
ID

Range:
80 km

Assessed Value:
Exceeded KR. Can identify targets

30km farther, increased engagement
opportunities by x%.

KR # 2 Improve Accuracy
From 60% to 70%

Achieved
Accuracy:

80%

Assessed Value:
Exceeded KR. 20% more reports

accurate, reduced risk of fratricide by
x%.

KR # 3
Improve Operating

Time From 100 hours
to 150 hours

Achieved
Operating

Time:
150 hrs

Assessed Value:
Met KR. New software improves power
utilization and increases operating time.

Assessment Period: Feb 2021 to June 2021.

Table 7. Assessing OKR # 2. Adapted from OUSD(A&S, n.d.-i).

Objective: Small, Speedy Software Deliveries

KR # 1

6x/yr Deployment
Frequency

For Highest Priority
Features

 Deployment
Frequency
Achieved:

4x/yr

Assessed Value:
Did Not Meet KR. The releases

delivered however provided
important capability.

KR # 2 <6% Change Fail Rate

Change Fail
Rate

Achieved:
10%

Assessed Value:
Did Not Meet KR. The program
still achieved reasonable fail rate

levels.
Assessment Period: Feb 2021 to June 2021.

Because all its KRs were met, OKR # 1 is considered complete. As for OKR # 2, it

would either be reformulated and/or carried over into subsequent OKR/VA cycles until all

its KRs are accomplished. To be sure, these may seem like simple adjustments to the

notional objective goals which were formulated and assessed in the VA template. However,

by providing a pithy vision, the Objectives unify each set of KRs/metrics in a forceful,

expressive manner that the notional objective goals otherwise completely lacked.

Moreover, whenever people “have conflicting priorities or unclear, meaningless, or

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

69

arbitrarily shifting goals, they become frustrated, cynical, and demotivated” (Doerr, 2018,

p. 10). OKRs solve this problem by enabling DON SWP programs to link their objective

goals to the broader mission; respect clear targets and deadlines while providing freedom

to maneuver and adapt to circumstances; enable teams to rapidly learn and celebrate small,

meaningful wins via each KR; and, most importantly, motivate teams to strive for what

might currently seem beyond reach (Doerr, 2018). Put simply, the VA template currently

underutilizes objective goals, whereas OKRs are intended to make the most of them.

Furthermore, OKRs are the primary goal-setting framework for Google, LinkedIn, Spotify,

and many other leading high-tech companies, each of which leverages agile software

development and iterative goal setting and assessment to synergistically drive and

continually improve business performance (Doerr, 2018). To fully tap into the potential of

its software acquisition workforces, developers, and the SWP, DON SWP programs should

formulate and assess their objective goals, in each VA cycle, by using the OKR framework.

Once DON SWP programs have closed out their first VA cycle, they will establish

the goals to drive program performance for their second VA cycle, then their third VA

cycle, and so on for as long as their software application is in use. However, DON SWP

must also avoid re-creating management approaches each VA cycle. Thanks to the DevOps

movement, the software engineering industry has significantly benefitted from a

proliferation of digital data collection capabilities (Kim et al., 2021). However, what is

needed is telematics, or the systematic approach of instrumenting the end-to-end value

chain in which a software application is developed, delivered, and operated (Hering, 2018).

When measuring the end-to-end performance of a value stream, it is important to

not overly rely on one proxy metric, such as the number of LOC committed or the

frequency of code deployments, as doing so both leads to goal displacement and fails to

account for the complexity of software development. Ultimately, all software development

work items must be tracked and made so visible that they are effectively tangible, and a

robust approach is needed to connect all functional, non-functional, value-added, and non-

value-added but important requirements clearly and consistently to business outcomes

(Kim et al., 2021). Fortunately, the software engineering industry has already developed

the Flow Framework® to do just this (Kersten, 2018). The Flow Framework® is a telematics

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

70

framework designed to continually track four backlog Flow Items: features, defects, risks,

and debts (Kersten, 2018). The Flow Items are defined in Figure 35:

Figure 35. The Flow Framework®’s Flow Items. Source: Kersten (2018).

Copyright © 2018 Tasktop Technologies Incorporated. All rights reserved.
Published with permission.

Crucially, the Flow Framework®’s taxonomy for Flow Items is mutually exclusive

and collectively exhaustive (MECE; Kersten, 2018). Consequently, it is a software

engineering management approach that ensures all functional and nonfunctional

requirements that either create or impact the ability to create software-defined BV are

clearly, consistently defined and tracked, as seen in Figure 36.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

71

Figure 36. The Types of Software Development Work.

Source: Kruchten et al. (2012).

Technical debt is the cost of software rework (i.e., the Flow Item® debt) that needs

to be incurred at a future time, often resulting from implementing a simple solution to

complete urgent development work instead of a better approach that would otherwise take

longer to complete (Kersten, 2018). The goal of the Flow Framework® is to provide a

holistic picture of BV produced by the software development process using five Flow

Metrics, as shown in Figure 37 (Kim et al., 2021):

Figure 37. The Flow Framework®’s Flow Metrics. Source: Kersten (2018).

Copyright © 2018 Tasktop Technologies Incorporated. All rights reserved.
Published with permission.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

72

Just as the DORA metrics are a balanced set of metrics intended to holistically

measure software delivery performance, the Flow Metrics are a balanced set of metrics

intended to holistically measure software development performance (Kersten, 2018).

Additionally, while the DORA metrics are technical in nature, Flow Metrics were designed

to abstract technical details and communicate the state of software development work in a

business-level context. In doing so, Flow Velocity® helps determine whether value delivery

is accelerating or decelerating (Kersten, 2018) by asking, “How much value did we

deliver?” (Flow Framework®, 2022). Flow Efficiency® helps identify excessive queues and

the rate of waste growth in upstream work activities (Kersten, 2018) by asking, “Do we

know where our bottlenecks are?” (Flow Framework®, 2022). Flow Time helps determine

if time to value is getting longer or shorter (Kersten, 2018) by asking, “How fast did we

deliver value?” (Flow Framework®, 2022). Flow Load® helps determine when demand is

outgrowing available capacity, thereby enabling control of queue growth (Kersten, 2018),

by asking, “Is demand impacting capacity?” (Flow Framework®, 2022). Finally, Flow

Distribution® helps prioritize workload composition based on the intended mission

outcomes at the time (Kersten, 2018) by asking, “Are we aligned to the business priority?”

(Flow Framework®, 2022). Naturally, given how comprehensive the Flow Framework® is,

implementing it requires a relatively mature software development and delivery process.

That said, there are several reasons why DON SWP programs should adopt the Flow

Framework® to measure and manage longer-term software acquisition outcomes.

First, because it uses a MECE work item taxonomy, the Flow Framework® provides

DON SWP programs a comprehensive, clear, and consistent analytical framework to

identify, plan, and track all software development activities that deliver value, enhance the

ability to deliver value, or overall protect the ability to do so. For example, without an

analytical framework to identify and track the accumulation of technical debt, DON SWP

may focus only on implementing features and/or defect fixes, eventually becoming

hamstrung by an overly complex codebase. On the other hand, with the aid of a decision

support tool like the Flow Framework®, managers can proactively identify and trade off

between functional and nonfunctional requirements, regularly refactoring the codebase to

keep technical debt under control.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

73

Second, the Flow Framework® provides a clear, consistent standard for SWP

programs to measure process performance. On the other hand, while both the DOD and

DON SWP use Lead Time and Cycle Time, their metrics are not interchangeable

(OUSD[A&S], n.d.-g; ASN[RD&A], 2022). Unfortunately, process performance metrics

such as Lead Time and Cycle Time have been confused with each since the lean production

movement of the 1980s (Kim et al., 2021). To avoid repeating the same mistakes within

DOD software acquisition, the DOD SWP should standardize its process performance

metrics, specifically by adopting those of the Flow Framework®.

Finally, the Flow Framework® provides the governance structure necessary for

technology organizations to shift from project-oriented to product-oriented management

practices, making it a critical enabler of continuous software acquisition. As noted,

development project plans are merely proxies for the intended product (Perri, 2018), and

project-oriented management focuses on the delivery of discrete projects according to a set

of milestones, resources, and budget criteria to accomplish stable goals (Kersten, 2018).

This management approach works for the pre-MVCR phase, but once DON SWP programs

deliver their software to operations, project-oriented management practices become

insufficient. To continually develop and deliver new and/or improved custom software and

accomplish their intended mission outcomes, DON SWP programs must undergo a

paradigm shift from project- to product-oriented management (Kersten, 2018) and adopt

fundamentally different governance practices, as shown in Figure 38.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

74

Figure 38. Project Management vs. Product Management. Source: Kersten

(2018). Copyright © 2018 Tasktop Technologies Incorporated. All rights
reserved. Published with permission.

Making this paradigm shift also requires structural change, as shown in Figure 39.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

75

Figure 39. Project-led vs. Product-led Organization. Source: Kersten (2018).

Copyright © 2018 Tasktop Technologies Incorporated. All rights reserved.
Published with permission.

Naturally, changes in organizational culture and structure take significant time and

effort to implement. However, with strong organizational alignment and focus, such efforts

may be dramatically more successful. The Flow Framework® is intended to drive

organizational alignment and focus by managing software development through

automated, transparent dashboards, charts, and other tools, as shown in Figures 40–44.

Figure 40. Flow Efficiency Chart®. Source: Kersten (2018). Copyright ©

2018 Tasktop Technologies Incorporated. All rights reserved. Published
with permission.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

76

Figure 41. Comparison of Cycle Time, Flow Time, and Lead Time. Source:

Kersten (2018). Copyright © 2018 Tasktop Technologies Incorporated.
All rights reserved. Published with permission.

Figure 42. Flow Distribution® Dashboard. Source: Kersten (2018). Copyright

© 2018 Tasktop Technologies Incorporated. All rights reserved. Published
with permission.

Figure 43. Flow Distribution® Timeline. Source: Kersten (2018). Copyright ©

2018 Tasktop Technologies Incorporated. All rights reserved. Published
with permission.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

77

Figure 44. Notional Value Stream Dashboard. Source: Kersten (2018).

Copyright © 2018 Tasktop Technologies Incorporated. All rights reserved.
Published with permission.

As seen, once DON SWP programs deliver their custom software systems to

operations, the Flow Framework® provides a robust telematics framework to dynamically

track, manage, and scale software acquisition outcomes indefinitely. Such a framework is

critical for both rapid startup and effective, long-term software acquisition decision-

making. But while the Flow Framework® offers the necessary structure and tools to manage

software acquisition outcomes, practicing software acquisition well also requires careful

management and leadership. The next section includes a discussion of management best

practices from the software engineering industry that can enable DON SWP programs to

achieve effective software acquisition.

D. METRICS PRINCIPLES AND PATTERNS

Because agile software engineering is principles-based and there are many schools

of practice, it is important to note that there are no “one size fits all” approaches to

measurements and metrics (Miller, 2020, p. 4). As previously mentioned, there are also

still no standardized agile metrics, even after 20 years (Maddox & Walker, 2021). That

said, several management principles and patterns have been recognized.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

78

First, since the agile movement began, managers have often used velocity as a

proxy metric to compare software development team productivity. This should be avoided,

for velocity is not an absolute measure (Forsgren et al., 2018). Software development teams

usually have significantly different contexts, so their velocities are not comparable

(Forsgren et al., 2018). Additionally, once teams become aware that their productivity is

being evaluated, they inevitably work to game their velocity metrics by inflating their SP

estimates and/or prioritizing completing as many of their own stories as possible over

cross-team collaboration. As a result, comparing team velocity both distorts the utility of

velocity for each team and discourages software developers—creative knowledge

workers—from openly communicating and collaborating in their agile environment

(Forsgren et al., 2018). Thus, team velocity should not be compared.

Second, software development performance metrics must focus teams on business-

level performance (Forsgren et al., 2018). Prior to the DevOps movement, otherwise

bifurcated IT organizations measured their Dev department(s) by throughput and their Ops

department(s) by reliability (Forsgren et al., 2018). Because these performance metrics

were locally focused, they incentivized Dev’s software engineers to hurriedly implement

code and hand it off to Ops, whereas Ops’ software engineers become motivated to adopt

heavyweight change management processes that could limit change (Forsgren et al., 2018).

However, once the entire organization was visibly measured by the four balanced DevOps

metrics of Lead Time for Changes, Deployment Frequency, Change Failure Rate, and

MTTR (Kim et al., 2021), all software engineers became motivated to make the IT

organization’s software development process as responsive and stable as possible.

Third, software development performance metrics must focus teams on

organizational outcomes, not outputs. When software development performance metrics

measured output instead of outcome, such as LOC, they motivated people to put in

busywork instead of helping to achieve organizational goals (Forsgren et al., 2018). The

SWP’s VA process is intended to ensure that SWP programs regularly assess their

performance outcomes. But because outputs are needed to produce outcomes, managers

must ensure that day-to-day output metrics continually link to outcome metrics, starting

with clearly, consistently distinguishing the two as shown in Figure 45:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

79

Figure 45. Output Measures Versus Outcome Measures. Source: Gavrilovic

(2013).

In a software development context, outputs are quantities of delivery, such as the

count of features delivered, so performance measures focused on output tell us how fast

we are moving (Norton, 2020). On the other hand, outcomes are the impacts of delivery,

such as how many customers are using delivered features, so performance measures

focused on outcome tell us if we are headed in the right direction (Norton, 2020). Naturally,

speed (output) is beneficial only if one is headed in the right direction (outcome; Norton,

2020). Thus, to help SWP programs move in the right direction, all software development

metrics must link to VA outcomes. To effectively adopt software engineering industry best

practices in doing so, SWP program VA goals should be set and managed using the OKR

framework, and day-to-day SWP program activities should, to the greatest extent

practicable, drive progress towards the KRs of each VA (i.e., OKR) cycle (Wodtke, 2016).

Fourth, software development progress metrics must make the correct assumptions

about agile planning and agile project design. As noted, waterfall and agile software

engineering methodologies utilize diametrically opposed project management paradigms,

and a critical enabler of agile adoption is increasing capacity to manage dynamic

requirements and requirement priorities. As such, agile planning and project design should

be characterized as shown in Figure 46:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

80

Figure 46. Agile Project Design. Source: Carpenter and Carrigan (2022).

Finally, all software development management methods must make the correct

assumptions about value: It is iteratively defined in the eyes of a customer, whether external

or internal. Value can be difficult to measure well because products and services are not

inherently valuable (Perri, 2018). Rather, it is what products and services do for the

customer or user that creates value—solving a problem, for example, or fulfilling a desire

or need (Perri, 2018). Thus, metrics that attempt to measure value must ask the right

questions, as shown in Figure 47:

Figure 47. Determining Value in Agile Projects. Source: Burns (2017).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

81

In context of the SWP, how value is defined and assessed for the MVP is critical,

as this process develops and matures the SWP program’s cultural norms. To make the most

of the SWP’s adoption of Lean Startup, the process by which the MVP is created, assessed,

and refined should be treated as an experiment (Ries, 2011). In doing so, the SWP program

iteratively learns and refines its knowledge of the user’s problem and what the user values

through the Build-Measure-Learn process shown in Figure 48 (Ries, 2011):

Figure 48. Build-Measure-Learn Loop. Source: Patton and Economy (2014).

Ideally, the metrics that attempt to measure the MVP’s value will establish the

cultural norms that later drive the SWP program’s VA process. In effect, each VA cycle

will constitute a Build-Measure-Learn cycle. Overall, because agile software development

is a continuous process, how managers use metrics in agile environments is critical. Metrics

are a means to inform and enable business decision-making. Thus, when used effectively,

agile metrics do not compare teams unfairly; they focus software development teams on

business-level, outcome-oriented goals; they make the right assumptions about agile

project design; and they motivate software development teams to continually build,

measure, and learn what the customer values.

E. SUMMARY

The DOD SWP requires the tracking and semiannual reporting of 12 metrics,

several of which are not applicable prior to the initial release of software to operations.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

82

Similarly, the DON SWP requires the use of four software delivery performance metrics

that are not applicable in the pre-MVCR phase. Additionally, the DON SWP requires

metric reviews to become part of the VA process, yet it does not offer metrics or

management methods to track and assess performance prior to conducting its first VA.

To align to agile best practices in the pre-MVCR phase, DON SWP programs

should use velocity-based metrics to track productivity; EBV to track and assess progress

towards building and demonstrating their MVP; and the ratio of created defects/completed

work items in a set period and test coverage to monitor quality of the software development

process and codebase, respectively. Furthermore, once DON SWP programs build and

demonstrate their MVP in a production-like testing environment, they should replace EBV

with product-oriented metrics and track the number and/or percentage of accepted user

stories/features immediately after every iteration/sprint through delivery of the MVCR.

Tracking progress against recently implemented features will enable DON SWP programs

to capture rapid user feedback new functionality, ensuring that they deliver the highest

quality, highest priority software capability in their MVCR. Additionally, using this robust

combination of productivity, code-level, and economic performance metrics enables DON

SWP programs to adopt agile metric best practices, maximize their use of automated

telemetry, and establish a metrics review process that becomes part of the VA process

throughout the post-MVCR phase, as required by the DON SWP.

Once DON SWP programs deploy their software to operations, they must begin

tracking and semiannually reporting all 12 metrics required by the DOD SWP; tracking the

four metrics required by the DON SWP; tracking the metrics towards the goals established

for their first VA cycle; and adopting metrics to manage longer-term software acquisition

outcomes, such as technical debt reduction and/or architectural upgrades. While the DON

SWP prescribed using three of the four DORA metrics, DORA intended for them to be

used together to understand and manage the health of the software delivery process. Given

that DON SWP programs will already be tracking all four DORA metrics—Lead Time for

Changes, Deployment Frequency, Change Failure Rate, and MTTR—to comply with the

DOD SWP, they should track these metrics holistically. To improve their software delivery

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

83

performance via use of the DORA metrics, DOD SWP programs should also adopt the

performance standards for Type C software proposed by the DIB SWAP study.

With respect to the VA process, DON SWP programs should formulate and assess

their objective goals using the OKR framework, an iterative goal-setting framework widely

used within the software engineering industry. To do so, they must clearly, concisely

articulate a vision statement and pair it with a set of SMART outcomes. Moreover, to

effectively plan and manage all types of software engineering work—features, defects,

risks, and debt (Kersten, 2018)—DON SWP programs need a comprehensive analytical

framework that enables long-term, comprehensive management of the software

development process. To meet this need, DON SWPs should adopt the Flow Framework®,

a state-of-the-art management tool kit used within the software engineering industry.

Finally, to use agile metrics effectively, managers must ensure that they do not

compare teams unfairly, that they focus teams on business-level outcomes, that they make

the right assumptions about project design, and that they motivate software development

teams to continually learn what the customer values. That said, metrics are only one aspect

of measuring progress and performance. The next chapter includes a discussion of the most

effective tools and methods to manage software acquisition programs.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

84

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

85

IV. AGILE SOFTWARE ENGINEERING MANAGEMENT

This section includes a discussion of the current and best practice methods and tools

available to visualize and manage progress and performance of software acquisition

programs. It also includes an examination of the interactions between EVM and agile

software engineering, including the trade-offs necessary to implement EVM in agile

software engineering environments. Finally, this section includes an evaluation of advisory

report recommendations to reform DOD software acquisition and/or streamline acquisition

practice. For the sake of clarity and brevity throughout this chapter, agile means agile

software engineering, agile project means a software development project that practices

agile software engineering, agile project management means the discipline of managing

software development projects that practice agile software engineering, waterfall means

waterfall software engineering, waterfall project means a software development project

that practices waterfall software engineering, and waterfall project management means the

discipline of managing software development projects that practice waterfall software

engineering.

A. BACKGROUND

Because waterfall and agile software engineering environments use diametrically

opposed project designs for cost, schedule, and scope parameters, mismatching

management practices can distort agile ways of work and expectations for program success

(Patel, 2021). For example, while EVM enables waterfall projects to earn and track their

value by completing preset requirements, it disincentivizes agile teams from discovering

and/or refining requirements via customer feedback (Wrubel et al., 2014). Naturally, agile

environments need more flexible governance. That said, teams often fail to adopt agile

methods by hurriedly discarding existing practices (Hayes et al., 2014).

The Agile Manifesto does not condemn the use of plans or planning, documentation

standards, progress tracking, performance management, or other project governance

methods and tools (Wrubel et al., 2014). Rather, it challenges software engineers to

consistently build high quality software, rapidly and iteratively deliver working software

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

86

to the customer, and continually adapt to the technical changes resulting from these

frequent interactions through greater development speed and discipline, all of which

requires new ways of thinking and managing the end-to-end flow of work (Hayes et al.,

2014). Thus, instead of eliminating governance, the Agile Manifesto calls for tailoring and/

or adopting project management and program assessment tools and methods to suit agile

environments (Wrubel et al., 2014).

B. TODAY’S PROGRAM MANAGEMENT TOOL KIT

This section includes a discussion on currently available tools and best practices to

manage software acquisition programs. Normally, acquisition programs are managed by

measuring how much work is done, how much work is left, what issues there are, and

whether the program is on schedule (Hayes et al., 2014). However, agile software

development workflows are managed using a wide variety of tools and techniques, such as

burn-down charts, burn-up charts, cumulative flow diagrams (CFDs), velocity- and defect-

based metrics, version control tools, CI/CD tools, as well as recurring post-iteration/sprint

reviews (Hayes et al., 2014). Software acquisition programs practicing agile can benefit

from significantly increased transparency into day-to-day progress and performance

(Hayes et al., 2014). That said, using these tools and techniques effectively requires

learning to manage via insight as opposed to oversight, as well as adopting new ways of

thinking about requirements and risk.

As noted, agile projects are designed fundamentally differently, and shifting from

defining and decomposing fixed scope up front to iteratively building the system from the

bottom up requires acceptance of greater levels of uncertainty (Fox, 2020). Unlike waterfall

software development and stage-gate defense acquisition decision support systems that use

attendant milestones and detailed cost estimates to execute towards a defined product, agile

environments execute LOE processes, where one does not fund for a specific capability to

be delivered at a target time and target cost (Fox, 2020). Instead, agile environments can

be thought of as budgeting for the capacity to execute a certain number of LOC against

dynamic requirements, where the funding level reflects how fast the development teams

can burn down their backlog (Fox, 2020). Planning and budgeting work of this manner

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

87

requires a fundamental cultural shift that can only happen via hands-on experimentation

and learning by doing (Fox, 2020).

That said, there are many automated productivity, collaboration, and management

tools designed to manage agile software engineering workflows. Commonly used ALM

software, which are used to develop and manage backlogs, plan and manage iterations/

sprints, plan and manage releases, determine and track team velocity, and so forth, are

JIRA, VersionOne, Rally, ServiceNow, and PlanView (Mihalache, 2017; DIB, 2019b).

These and other ALM technologies automatically generate three commonly used charts to

visualize and monitor progress: burn-up charts, burn-down charts, and CFDs (Maddox &

Walker, 2021). Burn-down charts show the amount of scheduled work items relative to the

time remaining as of a specific date, as shown in Figure 49 (OUSD[A&S], 2020b).

Figure 49. Burn-Down Chart. Source: OUSD(A&S, 2020b).

This specific burn-down chart shows the amount of planned versus actual work

done on Sprint 42. Agile development teams use burn-down charts to track their pace of

completing work units, typically measured in SPs or hours of work (OUSD[A&S], 2020b).

Based on the team’s throughput, the burn-down chart is used to estimate the completion

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

88

date of all scheduled work items. However, because of their unique contexts, the utility of

burn-down charts is mostly limited to individual development teams (OUSD[A&S],

2020b). Another tool for visualizing progress is the burn-up chart. Burn-up charts function

like EVM charts comparing Earned Value versus Planned Value, for they show the total

completed work relative to the total planned work as of a specific date as seen in Figure 50

(OUSD[A&S], 2020b):

Figure 50. Burn-Up Chart. Source: OUSD(A&S, 2020b).

Like burn-down charts, burn-up charts measure work items typically in SPs or

hours of work (OUSD[A&S], 2020b). Unlike burn-down charts, however, burn-up charts

are used to track the rate of progress and estimate completion dates over several iterations/

sprints (OUSD[A&S], 2020b). For instance, in agile environments practicing the Scrum

framework, burn-up charts are commonly used to show progress planned versus actual

progress over an entire release (OUSD[A&S], 2020b). Assuming the Scrum team’s release

backlog contained 500 SPs and its average velocity is 100 SP/sprint, then by maintaining

this pace of work, the team could estimate to require about five sprints to complete all

assigned work (OUSD[A&S], 2020b). That said, because of the emergent nature of

software development requirements, it should be noted that longer-term planning can be

highly uncertain (OUSD[A&S], 2020b). As a result, while burn-up charts provide a point-

in-time progress assessment, managers should assess longer-term progress not on one but

many data points (OUSD[A&S], 2020b). Moreover, because burn-up charts are based on

a specific team’s throughput in a unique context, their utility is limited to individual

development teams (OUSD[A&S], 2020b).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

89

One of the best tools to capture the health of a software development process is the

CFD, as shown in Figure 51.

Figure 51. Cumulative Flow Diagram. Source: Norton (2020).

Given a software development process, CFDs plot the total quantity of work in each

state on the y-axis, time on the x-axis, and capture lots of process performance information

(Norton, 2020). The CFD’s top line represents the work item arrival subprocess, typically

measured in new backlog stories, and the bottom line represents the work item departure

subprocess, usually defined as code deployment to production (Norton, 2020). Generally,

a healthy software development process is indicated by relatively thin, parallel lines

representing synchronized work arrival and work completion rates, as shown in Figure 52

(Norton, 2020):

Figure 52. Determining Remaining Versus Completed Work in a CFD.

Source: Norton (2020).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

90

When viewed along the y-axis, the vertical distance between the arrival line and the

departure line is work that has arrived but not yet departed the software development

workflow—the instantaneous size of the queue (Reinertsen, 2009). Thus, the height of CFD

bands, each of which represents a software development phase, can be used to determine

WIP levels at any point in time as shown in Figure 53 (Norton, 2020):

Figure 53. Determining WIP Levels in a CFD. Source: Norton (2020).

Additionally, the horizontal distance between the arrival and departure lines

indicates the processing time for a work item (Reinertsen, 2009). Thus, when viewing a

process or subprocess along the x-axis, CFDs also show the lead time and cycle time,

respectively, for completing stories, as shown in Figure 54 (Norton, 2020).

Figure 54. Determining Cycle Time and Lead Time in a CFD. Source: Norton

(2020).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

91

By showing differences in lead time and cycle time, CFDs provide context clues

for how long each subprocess takes relative to the overall software development process,

which is critical to detect and manage bottlenecks via targeted intervention (Norton, 2020).

Furthermore, CFDs alert one to scope changes, specifically through a rise (addition) or fall

(removal) in the arrival line as shown in Figure 55 (Norton, 2020):

Figure 55. Determining Scope Changes in a CFD. Source: Norton (2020).

Relatively speaking, CFDs are far more robust than burn-down, burn-up, and other

commonly used charts in agile environments. For instance, the burn-down chart in Figure

56 indicates a potential lapse in progress, but it is not clear what the team’s issue could be

(Norton, 2020).

Figure 56. Burn-Down Chart Deviation. Source: Norton (2020).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

92

Similarly, the velocity chart in Figure 57, a chart that simply shows the velocities

of prior iteration/sprints, shows no apparent progress in Iteration/Sprint 6 (Norton, 2020).

Again, however, it is not clear what the team’s issue could be:

Figure 57. Velocity Chart Deviation. Source: Norton (2020).

However, as shown by the CFD in Figure 58, the team gained new scope in

Iteration/Sprint 6, which can help explain their dip in throughput (Norton, 2020).

Figure 58. CFD Showing Two Scope Additions. Source: Norton (2020).

CFDs can also be used to determine demand and capacity, for the slope of the

arrival line indicates the level of demand feeding into the queue, whereas the slope of the

departure line indicates the capacity of the process emptying the queue (Reinertsen, 2009).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

93

Thus, when a CFD band widens too quickly, the arrival rate of work items (i.e., the

demand) at that subprocess exceeds the departure rate of work items, or capacity

(Reinertsen, 2009). To avoid delays, one would need to focus on completing current tasks

before starting new ones. On the other hand, when a CFD band narrows too quickly,

capacity exceeds demand at the affected subprocess, such that one might consider

reallocating it (Reinertsen, 2009). Overall, given their versatility and holistic view of

software development activities, CFDs are one of the most effective tools to manage work

in agile environments (Reinertsen, 2009).

According to agile best practices, once software has been released to users, the

system of work should always be to identify the total number of escaped defects, the rate

of escaped defects, as well as the rate of work units (i.e., stories) delivered in a software

development process (Norton, 2020). Fortunately, burn-down charts, burn-up charts, and

CFDs each offer unique insights to track the rate of work units delivered. As for escaped

defects, these are defects that somehow escaped preproduction processes and became

detected in production environments, resulting in degraded quality for users (OUSD[A&S],

2020b). Each time a defect is found in production, a ticket (i.e., work item) must be

manually created to track and fix the defect using ALM tools. Once escaped defects are

assigned to tickets, however, ALM tools automatically track the total number and rate of

escaped defects over set time periods. Thus, by enabling the use of burn-down charts, burn-

up charts, and CFDs, as well as the monitoring of the total quantity and trends of escaped

defects, ALM tools facilitate the adoption of agile best practices (Norton, 2020). Excessive

quantities and/or poor trends of escaped defects indicate deficiencies in the software

development process, so DON SWPs are advised to monitor these metrics throughout the

post-MVCR phase, for defects should ideally be contained through automated testing and

other preproduction testing activities (OUSD[A&S], 2020b).

As for managing schedule, agile development teams often believe they must

stabilize their velocity (i.e., iteration/sprint throughput) before using it as a basis to forecast

completion dates of their assigned work (Norton, 2020). However, because software

development workflows are stochastic processes, their schedule outcomes are

probabilistically distributed (Reinertsen, 2009). Thus, regardless of whether an agile

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

94

team’s velocity has stabilized, their commitment to point estimate completion dates is an

inherently flawed approach (Norton, 2020). To account for variability when estimating

completion dates, and thereby improve the quality of conversations with stakeholders

regarding their schedule commitments, agile teams should use Monte Carlo simulation

methods in their velocity-based forecasting techniques (Norton, 2020). One publicly

available automated tool, the Throughput Forecaster, enables agile teams to

probabilistically forecast their completion date (Norton, 2020). To use it, agile teams

specify low and high bounds for the number of remaining stories, level of complexity, low

and high bounds for split rate, and their iteration/sprint length. The tool then simulates 500

trials to complete all required work, outputting a histogram of likely schedule outcomes as

shown in Figure 59 (Magennis, 2017):

Figure 59. Monte Carlo Simulated Schedule Forecast. Source: Magennis

(2017).

Split rate accounts for growth in scope (work units) during development (Norton,

2020). For instance, a split rate of 1.00 for the low bound indicates no split, and a split rate

of 1.18 for the high bound indicates that for every 50 work units started, 59 work units will

result (Norton, 2020). Based on Figure 59, the team is most likely to complete all required

work on or before February 12 (Magennis, 2017). However, the team is also now much

more aware of its distribution of schedule outcomes. Thus, by using Monte Carlo

simulation methods to account for work units remaining, work unit growth rate, and

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

95

velocity, agile software development teams can much more precisely determine the level

of schedule risk and estimate their completion dates.

Overall, the Agile Manifesto demanded a mindset shift and increased capacity to

continually maximize focus on individuals and interactions, working software, customer

collaboration, and responding to change—all new ways of software engineering work. Yet

new engineering practices are enabled and sustained by the appropriately designed

management tools, processes, and governance practices, and the agile software engineering

movement has created a wide variety of tools and techniques to manage progress and

performance in increasingly uncertain, complex, and fast-paced Information Age business

environments (Hayes et al., 2014). Because it is principles-based, the agile movement has

few standardized technical or managerial practices. That said, to enable and sustain agile

ways of work, DON SWP programs must modify and/or substitute the management tools

and methods that rely upon detailed, long-range planning; fixed, large-batch requirements;

one predetermined delivery date; and minimal end user observation and feedback. The next

section includes a discussion of the interactions between EVM and agile software

engineering.

C. AGILE–EVM INTERACTIONS

This section includes an examination of the interactions between EVM and agile

software engineering, an analysis of how and where they conflict, and recommendations

of alternative techniques to manage performance of software-intensive development

projects that practice agile software engineering. EVM is a project control system that

integrates a project’s work scope, schedule, and cost parameters to enable progress tracking

and forecasting, trend analysis, and timely detection and resolution of potential

performance issues (Department of Defense [DOD], 2019). To implement EVM, the PM

must first define and organize all a project or program’s technical work tasks in a hierarchal

WBS; then, they must aggregate work packages and planning packages derived from the

WBS to create a Performance Measurement Baseline (PMB), a comprehensive time-

phased budget used to measure the accomplishment of all authorized work. The PMB

creates the foundation for applying EVM techniques, so projects or programs that have a

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

96

well-defined and well-managed PMB—including its source of work tasks and overall

scope, the WBS—can generate timely, accurate, and useful insight regarding project

progress and performance status (Dibert & Velez, 2006). By measuring progress

“according to the amount of work, or investment, already done, relative to the amount still

to do” (Goldratt, 1997, p. 73), EVM uses many metrics to provide early warning indicators

of potential project issues.

Common EVM metrics include the Budgeted Cost of Work Scheduled or Planned

Value, the Budgeted Cost of Work Performed or Earned Value, the Actual Cost of Work

Performed or Actual Cost, the Schedule Performance Index, the Cost Performance Index,

the Schedule Variance, and the Cost Variance (DOD, 2019). Other common EVM metrics

are Budget at Complete, which is the total cost and schedule parameters authorized for the

project; Estimate to Complete, which captures the remaining work and its costs on the

project; and Estimate at Completion, which is the is the sum of Earned Value and Estimate

to Complete and is used to predict the project’s total cost and total duration upon

completion (Winterowd, 2013).

EVM makes two key assumptions: (a) the technical work content is known in

advance at a level of detail necessary to estimate and build a WBS, and (b) the system

requirements are reasonably stable (DOD, 2019). Thus, EVM applies when projects are

designed with a fixed scope of requirements and pre-allocated cost and schedule resources

(DOD, 2019). Given such project conditions, leveraging EVM techniques to track progress

of planned work, monitor variances, and forecast end results helps the project accomplish

its predetermined scope through efficient use of the resources allotted to it (DOD, 2019).

On the other hand, enabling agile software engineering to be practiced requires structuring

a project into several mini-projects, each of which spans an iteration/sprint, assumes not

predetermined but emergent work scope, has relatively fixed costs, and represents a

microcosm of the SDLC (Ching, 2015). Consequently, unless EVM is made compatible,

implementing it to govern projects designed with a fundamentally different set of

requirements assumptions, planning process, and resource constraints results in distorted

progress and performance metrics.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

97

For instance, in the early 2000s, the F-22 System Program Office (SPO)

implemented EVM to manage iterative development of the fighter aircraft’s integrated

avionics system software (Dibert & Velez, 2006). To cope with the extreme complexity,

uncertainty, and volatility of the engineering work, its PMs practiced rolling wave planning

(i.e., routinely re-baselining the PMB to absorb and account for frequent requirements

changes; Dibert & Velez, 2006). However, as the tempo of software development activity

increased, the ability to maintain the integrity of the PMB decreased, and rolling wave

planning eroded the program office’s confidence in the EVM data and the PMB used to

generate it (Dibert & Velez, 2006). Additionally, the PMs noted that in comparison to

hardware development activities, software development tends to propagate change effects

at a higher rate; its work process and work product are abstract; its design process has far

fewer standardized methods, components, or structures; and it is much more difficult to

determine when software development tasks are completed (Dibert & Velez, 2006).

Overall, practicing iterative development increased the SPO’s capacity to implement

emergent avionic system requirements (Dibert & Velez, 2006). However, the combined

high content of software; the inherently uncertain, complex, and emergent nature of

software development; and the accelerated pace of design changes escalated the potential

cost, schedule, and performance problems reported by EVM to a level that exceeded both

the developer’s and the government’s ability to contain, despite their augmenting EVM

with iterative PMB management (Dibert & Velez, 2006). Given the overwhelming level of

noise, it was unclear whether EVM or the contractor’s implementation of EVM was the

problem.

After independently evaluating this F-22 software-intensive program’s

implementation of EVMS standards, researchers noted that the developer inadequately

controlled LOE activities (Dibert & Velez, 2006). According to the DOD EVMS

Interpretation Guide, LOE is “work defined as having no practical measurable output or

product that can be discretely planned and objectively measured at the work package level”

(DOD, 2019, p. 84). EVMS Guideline 12 requires identifying, segregating, and minimizing

all LOE work because “objective measurement of [LOE] activity is impracticable and

provides little, if any, visibility into actual performance; therefore, [LOE] use must be

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

98

minimized” (National Defense Industrial Association [NDIA], 2018, p. 23). Instead,

EVMS standards require project work tasks to be planned, estimated, and managed using

work packages (WPs), which are “the point at which work is planned, progress is measured,

and earned value is computed” (DOD, 2019, p. 89).

On the other hand, as previously noted, stories are the fundamental unit of work in

agile environments; and agile practitioners use an abstracted measure of relative difficulty,

SPs, to estimate the team effort required to complete each story in upcoming iterations/

sprints (Rawsthorne, 2006). Thus, agile teams use SPs for relative sizing to plan and

manage their capacity, not as an absolute measure of the cost and schedule resources

necessary to implement each story. Moreover, instead of discretely planning and

objectively measuring the tasks to complete each story, agile projects are structured into

several, fixed-time iterations to provide the capacity to complete stories of emergent scope.

Therefore, the most basic unit of work in agile environments—stories—are planned and

managed as an LOE. But since EVMS Guideline 12 requires minimizing LOE use, whereas

practicing agile relies upon LOE use, the methods by which EVM and agile plan work

tasks are incompatible.

Additionally, within EVM, credit for software engineering work is earned in

exchange for piecewise completion of CSCIs in accordance with the WBS and schedule

(Hayes et al., 2020). But given that a CSCI is simply an aggregation of software that

requires configuration management (Thayer, 2003), implementing a CSCI doesn’t

necessarily result in useful software functionality for the customer or end user. On the other

hand, credit for agile software engineering work is earned in exchange for realizing stories,

each of which represents a software system feature that is defined through customer or end

user feedback (Hayes et al., 2020). Consequently, EVM appraises software engineering

work based on implementing CSCIs derived from the WBS, whereas agile appraises

software engineering work based on implementing stories derived from customer or end

user engagements. Thus, the second manner by which EVM and agile conflict is their

valuation method for software engineering work.

The third conflict between EVM and agile is due to the lack of a suitable WBS

model by which to implement EVM in agile environments. The current available WBS

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

99

standard within the DOD, MIL-STD-881F, assumes localized software in all system

hardware modules and was designed for capital-intensive, weapon system acquisition

programs that must successfully pass stage-gate milestone reviews (DOD, 2022).

Consequently, MIL-STD-881F assumes long-range planning, detailed specification, and

large-batch documentation deliverables to meet oversight requirements, and it supports

designing and managing the WBS in a manner that makes engineering changes

progressively costlier as the program and its projects mature (DOD, 2022). The current

WBS standard does not prohibit practicing agile software engineering (DOD, 2022). But

while the standard is 308 pages long, it offers little guidance or consideration for iterative

engineering and/or digital technologies (DOD, 2022). Following this standard for the sake

of implementing EVM poses several challenges for agile.

First, the WBS standard assumes a project design ill-suited for agile development.

While the WBS standard assumes predetermined scope and uncertain cost and schedule

project parameters, an agile project assumes uncertain scope and sequences fixed batches

of cost and schedule resources to enable an iterative development process. This is a vastly

different level of certainty regarding cost, schedule, and scope parameters, both at the

beginning of and throughout a project. Secondly, while the WBS standard assumes one

monolithic project deliverable and predetermined product acceptance criteria, agile

projects are structured into mini-projects to enable incremental delivery of the best

presentable product to the customer, whatever that may be. Finally, the WBS standard

assumes a top-down system engineering approach, whereas agile environments are

intended to enable practicing both top-down and bottom-up system design as needed. Thus,

the current DOD WBS standard assumes a uniform system design process that is

incompatible with agile software engineering.

While no WBS model suited for agile yet exists, the DOD also lacks a software-

centric WBS standard in general (Winterowd, 2013). Crucially, the purpose of practicing

agile software engineering is to enable a DOD software program to rapidly and iteratively

deliver software capability to the user. However, using a WBS to conduct heavyweight,

hardware-oriented planning reduces software programs’ capacity to gracefully absorb,

create, and deliver digital technology design changes, ultimately compromising the

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

100

purpose of adopting agile methods in the first place (Winterowd, 2013). While beyond the

scope of this research, it is possible that a software-centric WBS standard should start with

new lexicon, for the very name Work Breakdown Structure requires a technology

development paradigm anchored on top-down design and preparing work for a monolithic

solution (Winterowd, 2013). Developing something like a Software Work Structure (SWS)

standard that is designed for software system engineering could provide a technical work

management framework that is aligned to the unique attributes of software and complexity

of software development (Winterowd, 2013). Moreover, a new SWS standard could enable

structuring, planning, and managing software engineering work in a way that enables EVM

to be practiced while remaining robust to frequent change.

EVMS standards require rigorous change management controls—including

documenting traceability, where trade-offs occurred, and evaluation of program impacts—

to preserve the integrity of the EVM data generated from the PMB (Dibert & Velez, 2006).

As noted, however, dynamically controlling the PMB becomes untenable in software

development project environments of persistent requirements uncertainty, complexity, and

rapid change (Dibert & Velez, 2006). That said, improving the PMB’s robustness in such

environments should be done by utilizing an SWS, not by overlaying rolling wave planning

to continually re-baseline the PMB. An SWS could resolve the underlying problem.

However, until such an SWS exists, there is no useful convention for DOD software

programs to organize software engineering work, generate a PMB, and enable effective

EVM implementation (OUSD[A&S], 2020a).

The fourth reason why EVM and agile are incompatible is due to their conflicting

approaches to maximize value. As previously noted, the DOD instituted EVMS standards

to improve cost controls of Cold War–era major defense projects (Abba, 2017). In such

cases, the design of the capitally intensive asset and the design’s value were fixed and

known in advance. Thus, in 1967, the DOD established EVM system standards to help

monitor and control cost and schedule performance on such technology development

projects (Abba, 2017). To maximize the amount of fixed value, EVM requires the

contractor to routinely disclose cost and schedule performance, incentivizing them to

minimize the total amounts of actual resources consumed (DOD, 2019).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

101

On the other hand, agile development projects assume neither the design nor the

design’s value in advance. Instead, the design is iteratively developed, and the design’s

value is incrementally realized by regularly demonstrating and/or delivering the product to

the customer or end user for feedback. Of course, in doing so, agile projects do not forgo

managing cost and schedule resources. But instead of long-range planning and cost

estimating a WBS, agile projects are structured into a series of fixed-time iterations/sprints,

creating a process that enables iterative development and incremental delivery of the most

valuable product possible with all remaining resources. Interestingly, recent research

showed that DOD software development projects practicing agile methods saved at least

15% in total labor costs and 20% in total schedule compared to those that used waterfall

(Patel, 2021). Thus, implementing EVM may not even be necessary to control cost and

schedule growth, for practicing agile alone will contain cost and schedule risks and likely

even result in efficiencies. In the end, however, the agile approach to maximizing value is

fundamentally different.

To inform and enable the behaviors that maximize value, the Agile Manifesto

drives software engineering environments toward a culture of continually developing and

delivering high-priority software to the user. However, EVM drives long-range planning

and heavyweight governance to preserve value, which inevitably constrains the ability to

develop and manifest an agile culture. This is not necessarily a flaw with EVM. But asking

the developer to maximize value by conducting long-range internal planning and

conforming to said plan undermines the process of maximizing value by iteratively

developing and incrementally building the most useful product possible through

continuous market feedback. One cannot assume that value is both predetermined and fixed

while continually revalidating value in the eyes of the customer or end user. As a result,

implementing EVM in agile environments invariably creates ambiguity.

Thus, there are four ways in which agile and EVM conflict: (a) agile plans work

tasks as an LOE, whereas EVM requires minimizing LOE by discretely planning all work;

(b) agile appraises work based on stories derived from customer needs, whereas EVM

appraises work based on CSCIs derived from the WBS; (c) agile has no convention for

structuring, planning, and managing all work tasks, whereas EVM captures all scope in a

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

102

standardized WBS; and (d) agile incentivizes maximizing value through an iterative,

incremental process, whereas EVM incentivizes maximizing value by controlling and

minimizing resource consumption.

While the National Defense Industrial Association (NDIA) has published a guide

that attempts to integrate agile software engineering planning processes and practices with

EVM techniques, its motivation to do so was to address the “demand for responsiveness

and efficiency” (NDIA, 2019, p. 3) of EVMS systems. However, improving EVM system

efficiency is necessary but not sufficient. The purpose of practicing agile software

engineering is to enable a DOD software program to rapidly and iteratively deliver software

capability to the user. Therefore, any attempt to adapt EVM to agile, and implement both

in software acquisition, must enable these intended outcomes.

Agile is based on incremental delivery of to-be-determined scope scheduled into

fixed time boxes, whereas EVM measures efficient completion of a large, fixed set of

predetermined work packages (Park, 2010). Agile project teams commit to delivering

requested capabilities in fixed time intervals, whereas EVM measures project teams by

their completing specific tasks by a specified time (Park, 2010). Agile recognizes value

when capabilities are delivered to the user, whereas EVM recognizes value for completing

planned tasks (Park, 2010). Within agile, the user iteratively defines value, whereas EVM

captures no user feedback (Park, 2010). Thus, for EVM to objectively measure project

progress in an agile environment, the interaction of agile and EVM must support

undetermined work scope, use recurring time intervals (i.e., iterations/sprints) that

represent a microcosm of the SDLC, enable frequent delivery of working software, and

maintain alignment to the customer’s definition of value through routine feedback.

With respect to work planning and management, agile environments typically use

a backlog to identify and prioritize software development work, and they use a roadmap to

show upcoming iterations/sprints, software release events, and longer-term product goals

(OUSD[A&S], 2020a). Both agile engineering’s backlog and roadmap are designed for

frequent change. According to the DOD’s agile and EVM desk guide, the PMB may be

developed using agile planning techniques, but it must capture all work scope to meet the

intent of EVM, whether using a WBS or a WBS substitute (OUSD[A&S], 2020a). Thus,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

103

the backlog could potentially be used to develop and maintain a PMB, which in turn could

be used to calculate EVM metrics.

However, because software system engineering requirements are emergent (i.e.,

new software system requirements become apparent only as their system modules interface

and/or through customer interaction; Pelrine, 2011) the work contained in the backlog will

frequently change and/or be reprioritized. To manage and implement emergent

requirements effectively, agile practitioners treat the software development process as a

queuing system, the backlog as a queue, and plan near-term development work in, at most,

2–4–week iterations/sprints to ensure teams have the latest knowledge of requirements and

their relative priority. Thus, while developing a PMB via long-range initial planning and

forecasting total project parameters is appropriate for waterfall software engineering, agile

environments should develop the PMB using a shorter, less uncertain time horizon (Hayes

et al., 2014). To the extent that the initial backlog enables planning, the PMB should be

developed based on the software development work planned for the first few iterations/

sprints (Hayes et al., 2014). Before the first PMB’s period elapses, a second PMB would

be developed based on the state of the backlog at the time the second PMB is created, a

third PMB would be developed based on the second PMB before the latter reaches its term,

and so on for the entire software development project.

If the backlog is substituted for the WBS and is used to iteratively develop a set of

PMBs that span the entire project, the interaction of agile and EVM could support flexible

work scope; a steady cadence of software delivery; and routine feedback on customer

needs, priorities, and product use. However, without timely access to cost estimates for

stories and actual cost data as each one is implemented, then integrating work scope,

schedule, and cost parameters to enable objective progress measuring will become

impossible. EVM metrics such as Actual Cost of Work Performed and Estimate at

Completion fundamentally require cost data. Furthermore, in comparison with EVM in

waterfall software development projects, implementing EVM in agile environments would

ironically require more frequent generation and reporting of cost data. However, it is not

likely that requiring the developer to frequently generate and report cost data will help the

overall goal in practicing agile software engineering, which is to enable a DOD software

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

104

program to rapidly and iteratively deliver software capability to the user. It is far more

likely that levying cost reporting requirements would work against this goal. Given that

fundamental aspects of EVM are irreconcilable with agile, this begs the question of

whether any EVM-like techniques should be applied within agile software engineering.

EVM enables PMs to measure progress of planned work, assess the value of

completed work products, identify cost and schedule performance trends, and forecast total

cost and schedule at completion (Rawsthorne, 2006). But, regardless of the EVM data,

managers really want to know two things: (a) How much value does the product currently

provide? and (b) What percentage of work is done relative to the remaining resources

necessary to accomplish the business objectives (Rawsthorne, 2006)? Additionally, in

environments of persistent technological and market uncertainty, complexity, and frequent

change, managers know that merely tracking to a plan is not sufficient to manage risk.

Thoughtless allegiance to the original plan could assure failure if market conditions,

mission parameters, or fundamental assumptions made while building the plan have

changed. Thus, to mitigate risks of this work-to-plan trap, managers also have a third

question: How accurate is the development project’s current vector (Hayes et al., 2014)?

Once the agile movement began, the software engineering industry quickly developed

management methods and tools to calculate the cumulative value and percentage

completed of each work product (Rawsthorne, 2006). Furthermore, seeking to establish

and maintain product and market fit through early and frequent feedback is arguably why

the agile movement began in the first place (Rawsthorne, 2006).

Interestingly, once the agile movement began, some Scrum practitioners

repurposed EVM’s formulas for use in agile software engineering environments using the

Scrum framework. After making EVM’s formulas compatible with Scrum’s planning

process, measuring activity with SPs, and conducting trend analysis using velocity, these

software engineers created AgileEVM, a set of EVM metrics that enables Scrum software

development projects to track schedule and cost performance of a product release using a

burn-down approach (Sulaiman et al., 2006). AgileEVM can be used to track cost and

schedule performance for a Scrum team working on one product release comprised of

several sprints, for the Scrum team’s SP estimates and highest-priority stories are not likely

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

105

to substantially change (Hayes et al., 2014). In these circumstances, a PMB is created for

just one product release using stories in the backlog, enabling progress and performance

management using AgileEVM. However, AgileEVM is not an intended substitute for

large-scale EVMS implementation to manage development projects that span multiple

cross-functional teams in a variety of engineering disciplines, such as DOD major defense

acquisition programs (Hayes et al., 2014).

Ultimately, AgileEVM was met with software engineering “industry reluctance to

employ” (Winterowd, 2013, p. 79). AgileEVM’s use of cost metrics, and the resultant

administrative burden these cost controls impose on developers, is likely the most

significant factor contributing to the tool’s poor software engineering industry adoption,

despite Sulaiman et al. (2007) defending their use. In any case, this research notes that

AgileEVM, a modified version of EVM that adapted all formulas, terms, and definitions

to match the work planning and management processes of an agile environment, has been

minimally adopted by agile software engineering practitioners. Thus, implementing

AgileEVM to manage SWP programs is not advisable, for forcing agile software

practitioners to conform to AgileEVM metrics may create the same conflicting incentives

attributable to EVM.

As noted in Chapter III, one method that was developed to track progress in agile

projects is EBV (Rawsthorne, 2006). Unlike AgileEVM, EBV avoids biased use of one-

dimensional units such as dollars or time. Like AgileEVM, however, EBV is only intended

to be used for one software release comprised of several iterations/sprints (Rawsthorne,

2006). Notwithstanding the limitations of AgileEVM and EBV, it is worth noting that both

techniques assess project progress based on implementation of working software to meet

dynamic demand, not the on-time, on-budget completion of activities per internal plans

such as EVM. In the end, however, all development project plans are merely proxies for

their intended product (Perri, 2018). Thus, whether traditional EVM, AgileEVM, or EBV

are used to track and assess project progress, project management progress metrics must

always rely on proxy metrics to assess value, for the true value of the product is not realized

until its users benefit from operational use (Hayes et al., 2014). That said, agile principles

and values always prioritize delivering software capability over exclusively internal

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

106

activities (Beck et al., 2001). Thus, when it comes to tracking and assessing progress, agile

principles and values favor proxy metrics that measure product-oriented work over proxy

metrics that measure the process of work (Hayes et al., 2014).

For example, agile software engineering favors output metrics driven by SPs and

the demonstration of features to customers over process metrics such as Earned Value,

Schedule Performance Index, or Estimate at Completion, because only the former proxy

metrics help the team understand what it is building and will deliver to the customer (Hayes

et al., 2014). Moreover, instead of using both product and process metrics to measure

progress, agile principles and values also call for maximizing the value of work not done

(i.e., minimizing waste; Beck et al., 2001). Thus, as soon as teams are developing and

demonstrating software on a regular cadence, agile practitioners forgo the necessary evil

of earning value on a design document or tracking progress using EBV, for process proxy

metrics will have served their purpose and become non–value added overhead (Packaged

Agile, 2020).

But while agile principles and values favor product- over process-oriented proxy

metrics, all proxy metrics must be utilized with great care and only temporarily. To cope

with increasing complexity, large organizations tend to benchmark against proxy metrics

to get the results they want (Bezos, 2017). Thus, over time, the proxy metric inevitably

becomes equated with success. However, the purpose of a proxy is to create a means to the

end of better serving customers—not to serve the proxy itself, as may unintentionally

happen through bureaucratic inertia (Bezos, 2017). As Goodhart’s Law indicates, when a

measure becomes a target, it ceases to be a good measure because people unconsciously

work to make metrics show a positive result despite problems underneath the hood

(Packaged Agile, 2020). To mitigate the unintended consequences of proxy metrics, some

agile software engineering practitioners have suggested that program performance be

measured via two types of metrics, BV and diagnostics; that only one BV metric should be

used at any time; and that all other software development performance metrics should be

treated as temporary diagnostics to enable improved capacity for BV delivery (Hartmann

& Dymond, 2006). Based on such a strategy, as well as a concerted effort to maintain

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

107

alignment with the Agile Manifesto, it may be beneficial for software acquisition programs

using the SWP to use a phased approach to progress metrics.

As noted, SWP programs are required to accomplish MVCR within 1 year of

funding development work (OUSD[A&S], 2020c). Prior to deploying the MVCR,

however, SWP programs are required to first build and demonstrate an MVP (i.e., a

minimally engineered product that establishes a feedback loop to iteratively inform design

decisions; Ries, 2011). Naturally, to design, develop, and deliver the most useful Type C

custom software in their first release, SWP programs must think of the learning

opportunities created by the MVP demonstration in the mid-to-late pre-MVCR phase as

critical. To make the most of the opportunity, SWP programs should also demonstrate the

MVP in a production-like testing environment. Unlike the MVCR, however, the SWP

prescribed no schedule standard for the MVP.

As noted in Chapter III, DON SWP programs should use velocity-based metrics to

track productivity, the ratio of created defects/completed work items in a set period (e.g.,

each sprint/iteration) to track software development process quality, test coverage to track

code quality, and EBV to track and assess progress towards building the MVP. Once the

MVP is demonstrated in a production-like testing environment, DON SWP programs

should forgo EBV and begin tracking and updating product-oriented progress metrics, such

as the number and percentage of accepted user stories/features (OUSD[A&S], 2020b). At

that point, EBV will have served its purpose, so economic progress measures at that point

should graduate from process-oriented to product-oriented proxy metrics, whereby

completed user stories/features are demonstrated at the end of every iteration/sprint in a

production-like testing environment. Ultimately, this ensures that DON SWP programs

deliver the highest-priority capability in the MVCR.

Once SWP programs deploy their Type C custom software to operations, their first

VA cycle begins (OUSD[A&S], 2020c). The SWP requires VAs to be conducted at least

annually, and the metric(s) used in the VA are tailored to the software system, mission

needs, and customer priorities (OUSD[A&S]), 2020c). Because each VA is based on actual

product use, not merely the demonstrations of completed user stories/features, VA metrics

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

108

should replace product-oriented metrics to measure and assess value as soon as DON SWP

programs operationalize their software systems.

Moreover, to adopt agile best practices, VA metrics should serve as the only

measures of tracking and steering progress to deliver value, whereas all other metrics—

velocity-based metrics, quality metrics to track and reduce the quantity and/or rate of

escaped defects to production, and so forth—should be treated as temporary diagnostic

measures and used for no other reason than to enhance the ability to accomplish goals of

the current VA cycle. In this manner, the SWP program’s performance and value are

assessed based directly on external stakeholder feedback; each subsequent VA can be

tailored based on product, mission, and/or customer needs; a whole slew of diagnostic

metrics can be tailored and used to enhance capability delivery; and most importantly,

elevating and treating VA metrics as the North Star and subordinating all other measures

to them improves the SWP program’s ability to drive focused, sustained efforts towards

the metrics that matter most.

Thus, SWP programs should refrain from using EVM as the basis for managing

progress and measuring value, as there are several ways in which agile methods and EVM

are fundamentally incompatible. Instead, SWP programs should manage progress and

measure value using a phased metrics approach: (a) measure and manage progress using

EBV to accomplish the MVP, (b) manage progress and measure value using product-

oriented metrics to accomplish the MVCR, and (c) manage progress and measure value

using VA metrics for as long as the Type C custom software is in use. Furthermore, to align

to agile best practices and the vision of the Agile Manifesto, all other metrics should be

treated as diagnostic measures that are only temporarily used to drive improvements

towards these economic measures.

While EVM may be considered the standard for acquisition program performance,

this standard should only apply to development projects where the design to be

implemented and the value of said design are known with sufficient certainty to create a

WBS. Most likely, these development project circumstances will be true for mature,

hardware-intensive development projects. That said, because the design and value of the

design are highly uncertain in cutting-edge, software-intensive acquisitions, governing

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

109

their performance using EVM would be inappropriate. In such development project

circumstances, the ways in which agile methods and EVM plan work tasks, measure value,

define and manage scope, as well incentivize behaviors to maximize value are

incompatible. Consequently, managing agile environments with EVM may reduce the

utility of both the software engineering methodology and management framework. The

proposed phased approach to managing progress and measuring value, tailored to SWP

programs, may be a more effective program assessment framework than EVM.

That said, the incompatibility of agile methods and EVM do not suggest that EVM

is an ineffective tool for acquisition program governance. Fundamentally, the extreme

uncertainty inherent to digital development project environments is what drives agile

software engineering and EVM’s incompatibilities. EVM should continue to be used on

capitally intensive, reasonably well-defined development projects using cost-reimbursable

or incentive-type contract line items. Naturally, given such acquisition circumstances,

these programs will be able to create a WBS; establish and integrate project work scope,

schedule, and cost parameters; establish a PMB; and then proceed to manage progress and

measure value using EVM as the standard tool for program governance (DOD, 2019).

When implemented according to current EVMS standards, EVM will help effectively

detect and contain cost risks, and there is no other tool as comprehensive as EVM to use in

such acquisition circumstances. Since the Cost/Schedule Control Systems Criteria were

implemented in 1967, EVM has been consistently applied any time managing the risk of

major systems acquisition cost growth resided with the government (Fleming &

Koppelman, 1997), and EVM should remain the standard management tool for such

capitally intensive cost and incentive-type contracts.

As for Type C custom software development contracts using the SWP, as noted,

despite beginning over 20 years ago, the agile software engineering movement has still not

converged upon standardized metrics and management tools (Maddox & Walker, 2021).

Thus, a standard for program assessment, equivalent to EVM, is neither available for

commercial software development projects nor for DOD/DON SWP programs. That said,

there are many commonly used and best practice metrics to manage progress and measure

value in agile environments. To adopt them, SWP programs should use a phased approach

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

110

by using EBV to accomplish the MVP and product-oriented metrics to accomplish their

MVCR and then treat VA metrics as their metrics that matter most for as long as their

custom software is in operational use. While this proposed, phased approach was not

intended as a new standard, it may get the job done because it was designed using existing

software engineering industry methods and with the SWP’s purpose in mind: to enable

rapid and iterative delivery of software capability to the user.

D. ADVISORY REPORTS

This section includes an evaluation of the recommendations of advisory reports to

reform DOD software acquisition and/or streamline acquisition practice. In 1987, the DSB

Task Force on Military Software recommended implementing standard software

development project metrics to “help ensure that costs and schedules are being met and

that complete products will be delivered” (Brooks et al., 1987, p. 32). Specifically,

Recommendation 20 suggested using (a) program size, (b) software complexity, (c)

personnel experience, (d) testing progress, and (e) incremental-release content (Brooks et

al., 1987).

In 2000, the DSB Task Force on Defense Software recommended establishing

metrics and measuring techniques for software quality and completeness, the use and

reporting of which would be enforced through contractual provisions (Hansen & Nesbit,

2000). Additionally, it reported that the ineffective use of metrics prevented major defense

software-intensive programs from assessing software development project health and

progress (Hansen & Nesbit, 2000). To account for the unique nature of software on major

defense software-intensive programs, the Task Force on Defense Software recommended

supplementing, not replacing, existing management practices with the following core

metrics:

• Progress: planned value, earned value, cost performance index, schedule

performance index, to complete performance index, aggregate milestone

slippage against plan, and segment completion against plan

• Staffing: key vacancies and turnover

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

111

• Requirements: percentage implemented in design, percentage

implemented in test, and percent change over time

• Quality: number of open defects, number of closed defects, age of

defects, number of planned tests, number of conducted tests, and number

of passed tests

• Product Stability: percent of baselined products inspected and total

amount of corrective effort on baselined product (Hansen & Nesbit, 2000).

In 2018, the DSB noted that the classic acquisition metrics are cost, schedule, and

performance and that the classic acquisition phases are development, production, and

sustainment; however, modern software is in continuous development (OUSD[R&E],

2018). Therefore, designing and managing modern software development projects with

these traditional defense acquisition management practices “creates a misalignment

between the DOD’s processes and the reality of contemporary industry practices”

(OUSD[R&E], 2018, p. 21). Furthermore, while the DSB’s 2018 report acknowledged that

each software-intensive acquisition requires a program-appropriate management

framework, it also recommended the following agile-oriented charts and/or metrics to

estimate delivery status in the Missile Defense Agency’s software-intensive acquisition

programs:

• Sprint Burndown Chart: tracks work completion throughout a sprint

• Epic and Release Burndown Chart: tracks development progress over a

larger body of work than a sprint

• Velocity: the average amount of work items a team completes during a

sprint

• Control Chart: tracks the total time from initiating to completing work

on individual issues

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

112

• CFD: shows whether a team’s workflow is consistent; identifies shortages

and bottlenecks (OUSD[R&E], 2018).

Additionally, the DSB’s 2018 report acknowledged that while there may be short-

term costs in transitioning to agile software development, such as establishing the IT

ecosystem and providing acquisition staff education and training, the net costs of software

acquisition programs “can be expected to decrease after adopting iterative development”

(OUSD[R&E], 2018, p. 25). Thus, in its 2018 report, the DSB recommended treating the

SDLC as an indefinite development process and highlighted some delivery-oriented tools

and methods to manage software development projects. Additionally, while it suggested to

expect long-term cost savings based on commercial industry’s experience, it did not

recommend specifically tracking costs (OUSD[R&E], 2018).

Around this time, however, the congressionally commissioned Advisory Panel on

Streamlining and Codifying Acquisition Regulations—the Section 809 Panel—specifically

recommended exempting EVM and EVM system requirements for software-intensive

acquisition programs using an agile engineering approach (Section 809 Panel, 2018).

Currently, DOD policy mandates EVM implementation for all cost‐ and incentive‐type

contracts valued at $20 million or more, and it requires the contractor to have a certified

EVM system for cost‐ and incentive‐type contracts valued at $100 million or more (Section

809 Panel, 2018).

According to Section 809 Panel Recommendation 19, however, this policy conflicts

with agile software engineering, for agile projects require maximum flexibility to adjust

scope as software development progresses and the product is iteratively built, whereas

EVM requires projects to plan scope in a WBS, create a PMB to begin and govern

development, then carefully control scope changes throughout the project (Section 809

Panel, 2018). Therefore, given the inherently customer-driven and dynamic approach to

identifying and planning software engineering requirements in agile environments,

implementing a static, “batch oriented EVM system has limited value” (Section 809 Panel,

2018, p. 153).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

113

To provide relief from EVM and EVMS requirements, and thereby enable more

effective adoption of agile, Section 809 Panel Recommendation 19 issued the following

recommendations: (a) the Executive Branch should waive EVM/EVM system

requirements for software development or integration contracts at any dollar value when

agile methodologies are used; (b) the Executive Branch should allow the Program

Executive Officer (PEO) to approve appropriate project monitoring and control methods

for agile software development or integration programs; (c) the PEO should ensure agile

software development or integration programs, at a minimum, track schedule

accomplishment versus plan, cost accomplishment versus plan, and estimate to complete

metrics; (d) and the Executive Branch should revise Defense Federal Acquisition

Regulation Supplement (DFARS) 234.201, DODI 5000.02 Table 8, and Office of

Management & Budget (OMB) Circular A-11 to reflect the previously mentioned

recommendations (Section 809 Panel, 2018).

As of November 2022, DFARS 234.201 does not authorize exemptions for

programs using agile methodologies (Defense Federal Acquisition Regulation Supplement

[DFARS], 2022), and OMB Circular A-11 notes that “EVM and agile development are

complementary and can be used on the same project” (Office of Management and Budget,

2022, p. 15 of “Capital Programming Guide”). However, since the latest version of DODI

5000.02 does not mention EVM or EVM system requirements (OUSD[A&S], 2022a), the

Section 809 Panel’s recommended changes to this policy are not applicable. Overall, to

improve capacity to change scope, Section 809 Panel Recommendation 19 has called for

relieving agile software programs from EVM/EVMS requirements. However,

Recommendation 19’s proposal to use, at a minimum, planned versus actual cost, planned

versus actual schedule, and estimate to complete metrics undermines its findings. Without

further guidance, these proposed metrics are ambiguous and could otherwise confused with

EVM’s Actual Cost of Work Performed, Budgeted Cost of Work Scheduled, Budgeted

Cost of Work Performed, and Estimate to Complete metrics. Thus, Section 809 Panel

Recommendation 19’s findings may perpetuate, rather than relieve, the implementation of

EVM and/or EVMS on software acquisition programs practicing agile methods.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

114

In 2019, the DIB SWAP study contained a specific supplement entitled Metrics for

Software Development (DIB, 2019a). This supplement recommended not using source

LOC and programmer productivity metrics because, while they are readily measurable,

they aren’t “necessarily predictive of cost, schedule, or performance” (DIB, 2019a, p. S82).

Instead, it proposed 14 metrics to track software acquisition program performance and

drive improvement in cost, schedule, and performance, as shown in Table 8:

Table 8. Metrics for Software Development. Adapted from DIB (2019a).

Moreover, the supplement established standards for these proposed metrics based

on the type of software and computing infrastructure involved, provided rationale to justify

their use, and included guidance to effectively use and/or tailor them (DIB, 2019a). For

instance, instead of cost-based Nunn–McCurdy thresholds that limit unit and/or total

program cost growth, which may not make sense for continuously developed software

programs, Metrics for Software Development recommended establishing intervention

thresholds based on the number and rate of code commits, number of commenters on pull

requests, number of pull request mergers, average and standard deviation of the number of

Metric Type Metric

Deployment Rate
• time from program launch to deployment of simplest useful functionality
• time to field high priority functionality; find and fix security issue
• time from code committed to code in use

Response Rate • time required for regression testing; cybersecurity audit/penetration testing
• time required to restore service after outage

Code Quality

• automated test coverage of code
• number of bugs caught in testing versus field use
• change failure rate (e.g., required rollback)
• percentage of code available for DOD to inspect/rebuild

Functionality
• number/percentage of functions implemented
• usage and user satisfaction

Program
Management,

Assessment, and
Estimation

• complexity metrics
• development plan/environment metrics

Progam Progress • software development-based Nunn–McCurdy thresholds

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

115

commits per month, and so forth (DIB, 2019a). That way, management attention is based

on deviations in software development activity, and because these metrics are typically

automatically captured, the burden of implementing this metric is minimal for both

engineers and managers (DIB, 2019a).

Overall, Metrics for Software Development incorporates several best practice

metrics from the DevOps movement—such as time from code committed to code in

production, change failure rate, and so forth—to motivate software development speed

with discipline (Kim et al., 2021); and it offers a robust yet lightweight management toolkit

for software acquisition programs. As such, the software acquisition management

framework proposed in Metrics for Software Development has significant utility for SWP

programs.

E. MANAGEMENT PRINCIPLES AND PATTERNS

As noted, managers initially resisted agile software development methodologies

until they became accustomed to designing projects around flexible scope, minimizing

batch sizes, and regularly reprioritizing development tasks. Thus, agile environments

required learning and/or developing new management paradigms, for realizing that

questions such as “Which features must be deferred if we run into unanticipated

problems?” were more effective than “How late will we deliver?” only came with time and

hands-on experience (Hayes et al., 2014, p. 11).

Moreover, because agile software development methods are intended to enhance

organizational capacity to absorb and/or create changes, managers also needed to shift from

static to dynamic business goals (Reinertsen, 2009). This shift in goal-setting practices is

one of the reasons OKRs have been so effective in the high-tech industry: OKRs are

designed to regularly set and iterate against dynamic business goals in software companies

that practice agile engineering (Wodtke, 2016). On the other hand, precisely due to their

intended dynamism, neither agile nor OKR methodologies have standardized tools and

techniques, whether technical or managerial. Naturally, as digital technology continues to

evolve, digital engineering and management know-how will have to evolve, too. To make

the most of the know-how highlighted in this project, this section discusses some

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

116

fundamental digital design and management theories intended to provide the know-why.

There are always several principles and patterns to consider in planning and managing

software acquisitions.

First, managers must be aware that software architecture and organizational

structure are intimately related. In 1968, computer scientist Melvin Conway (1968)

famously observed that, “Organizations which design systems … are constrained to

produce designs which are copies of the communication structures of these organizations”

(p. 31). This principle, now known as Conway’s Law, essentially states that there is a

symmetrical relationship between the design of the IT organization and the design of its

tech stack, for better or worse (Conway, 1968). In other words, the organization chart and

its software system architecture mimic each other, for the system’s structure reinforces the

organizational structure, and the organization’s structure reinforces the system’s structure

(Norton, 2020). One cannot be changed without appropriately changing the other; they

must evolve together (Norton, 2020).

Consequently, in planning and staffing software development projects, managers

must maintain an abstract awareness of organizational dynamics and how they inform both

organizational and tech stack design. Furthermore, because metrics and management

practices often induce behaviors which require changing the tech stack, managers must be

mindful in how organizational structures and development team topologies either enable

or inhibit the optimal flow of software engineering work. Specifically, Conway’s Law

implies that software delivery teams must be separated from those who support software

delivery teams (e.g., contracting, finance, and other acquisition staff members), for only

the former directly change the codebase. Thus, DON SWP programs should seek to

organize software delivery teams in the most optimal way to facilitate rapid and iterative

software delivery, especially throughout the post-MVCR phase. As for the MVCR, given

the complex communication channels involved in obtaining ATO and other necessary

accreditations, Conway’s Law also explains why deploying a new software system for the

first time can take so long within the DOD, as shown in Figure 60:

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

117

Figure 60. The DOD Software Acquisition Ecosystem. Source: DIB (2019b).

Thus, how the organization chart helps or hurts software capability delivery is

critical. As for optimizing software architecture, new software programs are generally

designed utilizing a monolithic software architecture, meaning that all software shares the

same logical structure, is compiled together, and is deployed through a single process

(Hering, 2018). The simplicity of monolithic software architectures works very well in the

early life of new software programs, despite their tightly coupled code base. However, as

software programs evolve to incorporate new functionalities, their logical structure and

deployment process inevitably become increasingly complex—including the

communication structures of the teams that do and/or manage the software development

work. As software programs mature, they must evolve from a monolithic to a service-

oriented architecture (SOA), a software architecture explicitly designed to enable the

independent design and deployment of domain-specific services (Hering, 2018). Given the

DOD’s adoption of cloud-native software technology, SWP programs are equipped with

the tools to independently design and deploy new software functionality rather quickly,

such that transitioning to an SOA has become much more feasible. However, as long as

the organizational structure and/or software architecture are inadequately designed, SWP

programs’ ability to create and deliver value quickly, through as many economical channels

as possible, will be constrained. Clearly, maintaining a monolithic IT ecosystem in the

long-term is self-limiting.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

118

Put simply, Conway’s Law states that systems reflect the organizational structure

in which they were built (Hering, 2018). Therefore, to make Conway’s Law work for them,

managers must create the organizational structure that they’d like to have reflected in the

system architecture (Hering, 2018). For containerized software technology, the most

effective organizational models are those where the application container is fully owned

by one, balanced product team (Hering, 2018). In such environments, product teams can

quickly develop, deploy, manage, and continually improve their own application. If the

applications are relatively small, then one team can optimally own multiple (Hering, 2018).

However, if the application container is too large for one team, then it’s likely too large in

general and should be broken down further (Hering, 2018). Intuitively, managers

understand that both organizational structure and system architecture must be optimized;

however, they may not be aware that the two are intimately related in technology

organizations. In the end, managers must make Conway’s Law work for them by

continually refining organizational and system architecture to facilitate the mission

outcomes necessary.

Second, while agile software engineering accelerates feedback cycles to inform

design decisions, it’s important to understand why such fast, actionable feedback is

psychologically important. For example, Reinertsen (2009) taught that people are generally

wired to make attributions of causality when there is a short, elapsed time between cause

and effect. For instance, if we push a button and a light quickly goes on, we subconsciously

assume that our pushing the button made the light go on. That said, we do not make this

association if the switch takes 5 seconds. Furthermore, when people see patterns in the

consequences of their actions, they become motivated to gain even more control, such that

fast feedback loops become regenerative. Instead of seeming to drift about in a vast,

monolithic system, they discover a unique subdomain where they have clear autonomy and

can exercise it. Unfortunately, victims often remain victims because they assume they lack

control over outcomes, so they may have a steering wheel but can remain reluctant to turn

it. On the other hand, when people learn that they can steer the car, they start steering the

car and move towards better outcomes. Thus, fast feedback enables people to gain a sense

of control, and it motivates purposive action that reinforces their sense of control.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

119

Naturally, the most effective agile software engineering metrics are simple,

relevant, and leading performance indicators—they inform clear, purposeful business

decisions (Reinertsen, 2009). That said, to foster intrinsic motivation, each team should

define the metrics that govern their progress and performance, for, “Psychologists have

found that participation in defining goals always results in greater commitment to these

goals by those who have to carry them out” (Reinertsen, 1997, p. 176). Thus, to leverage

software engineering best practices while tapping into creative knowledge workers’

intrinsic motivation for autonomy, mastery, and purpose (Hering, 2018), the best metrics

are simple, relevant, based on leading indicators, and chosen by the team to be measured

by them. These same principles apply to leveraging the OKR framework in SWP programs’

VA process—ideally, the SWP program should define its own success in each VA/OKR

cycle.

Third, managers should exercise caution when adding developers to ongoing

development projects, for doing so often increases complexity far more than it scales

productivity. In 1987, computer scientist Frederick Brooks observed that IBM’s adding

new programmers to a software development team did not immediately increase the

capacity of said team (Hering, 2018). Rather, instead of aiding a troubled project by making

it go faster, adding more people only delayed the project further: “The bearing of a child

takes nine months, no matter how many women are assigned” (Hering, 2018, p. 217). This

principle is now known as Brook’s Law (Hering, 2018). Generally, scaling in creative

knowledge work such as software engineering increases complexity significantly more

than in manufacturing work, because far more parties need to communicate, information

needs to be disseminated more widely, and common context needs to be created across

more communication boundaries (Hering, 2018). Whether by increased context switching,

cognitive overload, or some other cause, the cost of this additional complexity can be quite

significant (Hering, 2018). Thus, simply adding people to linearly scale productivity, as if

people were production inputs, is ineffective and often backfires. A far more effective,

sustainable way to accelerate software development performance is to continually reduce

underlying work system complexity by practicing DevOps (Hering, 2018).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

120

Fourth, to improve process performance, managers should manage queues, not

capacity. Within software development, each work item is generally characterized as

follows: (a) highly uncertain arrival time, (b) unique tasks, (c) highly uncertain duration,

and (d) unique delay costs (Reinertsen, 2009). Every software development work item

invariably has highly uncertain, unique capacity requirements. Thus, attempting to monitor

and control capacity is ill-advised because it leads to a game of whack-a-mole (Reinertsen,

2009). That said, because software development workflows are queuing systems, managers

can exercise queuing discipline to manage their performance effectively (Reinertsen,

2009).

One of the most famous principles of queuing theory, Little’s Law, proved that, on

average, the more work there is in a stable queuing system, the longer it will take to

complete each unit of work (Reinertsen, 2009). Furthermore, it proved the following

relationship between three process performance parameters:

L = λ * W

L: Average number of work items inside the queuing system (Queue Size/WIP)

λ: Average number of work items completed in a set period (Throughput)

W: Average time a work item spends in the queuing system (Lead or Cycle Time)

(Reinertsen, 2009).

Thus, when certain conditions are met, Little’s Law can be used to provide insight

into and fine-tune the software development process performance, even when only two of

three process parameters are known (Diaz et al., 2017). For example, if work items spend

an average of 30 days in the process and average Throughput is about 1 work item/5 days,

then the average Queue Size/WIP = 1 work item/5 days * 30 days = 6 work items (Diaz et

al., 2017). Little’s Law applies to both an entire process and its subprocesses (Reinertsen,

2009). Thus, there are many ways to apply Little’s Law to the queuing system shown in

Figure 61 (Reinertsen, 2009):

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

121

Figure 61. Generic Model of a Process Workflow. Source: Liu (2006).

As for SWP programs, each SWP program’s software development process can be

thought of as a queuing system: requests are work items (e.g., stories, defects, and so forth);

servers are software developers; arrival rate, or demand, is the average rate at which work

items enter the workflow; departure rate, or capacity, is the average rate at which work

items exit the workflow; Queue Size/WIP is the average number of work items in the

workflow; completed requests are implemented work items that resulted in deployed code;

and Throughput is the average number of work items completed in a set period (Liu, 2006).

Additionally, depending on where one defines the starting point, Lead Time and Cycle

Time are the average time a work item spends in the software development process or

specific subprocess(es), respectively (Liu, 2006). Typically, the starting point for Lead

Time is defined as the date a new customer request is identified; the starting point for Cycle

Time is defined as the date the work to complete said request begins; and the finishing

points for both Lead Time and Cycle Time are defined as the date the product is delivered

to the customer, as shown in Figure 62 (DeGrandis, 2017):

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

122

Figure 62. Cycle Time Versus Lead Time. Source: DeGrandis (2017).

Generally, as the requesters of products and/or product features, customers care

about Lead Time, whereas internal teams care about the efficiency of their own

subprocesses (i.e., Cycle Time; DeGrandis, 2017). But because managers must understand

and optimize both Lead Time and Cycle Time, this is where Little’s Law helps (DeGrandis,

2017). To be applied, Little’s Law makes five assumptions, which are shown in Figure 63:

Figure 63. Little’s Law Assumptions. Source: DeGrandis (2017).

Thus, Little’s Law applies only when the queuing system is stable, meaning that

average arrival rate approximately equals average departure rate (Reinertsen, 2009).

Little’s Law doesn’t account for sharp increases in work item arrival rate; when demand

spikes there must already be available capacity to handle the Queue Size/WIP growth (Diaz

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

123

et al., 2017). Consequently, because it is a law of averages, Little’s Law is not intended to

be used for near-term planning (Diaz et al., 2017). That said, to stabilize software

development workflows and to keep them as stable as possible, Little’s Law implies the

need to match average demand and capacity (Reinertsen, 2009). In other words, Little’s

Law implies to not initiate new projects or even begin new work items until current projects

or work items are completed (Inthapichai, 2020). Additionally, to reduce average Lead or

Cycle Time, one must increase average Throughput and/or reduce average Queue Size/

WIP (Dennis, 2010).

Generally, increasing average Throughput involves significant time, effort, and/or

money, for it requires allocating capital to purchase production technology and tooling,

creating incremental gains through continuous process improvement initiatives, investing

in education and training programs, and so forth (Inthapichai, 2020). On the other hand,

reducing Queue Size/WIP can be accomplished by modifying planning policies and

procedures, which can immediately affect Lead or Cycle Time at minimal cost

(Inthapichai, 2020). Naturally, SWP programs should continually pursue both options. But

given the dynamic nature of agile software development workflows, reducing Queue Size/

WIP requires some careful considerations.

Within SWP programs, new work item arrival rate (e.g., demand) may not be

entirely predictable and/or within local PMO control. Additionally, as noted, each software

development work item has highly uncertain, unique capacity requirements (Reinertsen,

2009). Thus, attempting to predict and control both software development demand and

capacity is impractical, if not impossible. That said, managers can reduce average Queue

Size/WIP by always maintaining some marginal capacity, setting Queue Size/WIP limits,

and throttling demand once Queue Size/WIP limits are reached (Kim et al., 2021). For

instance, in the Kanban board shown in Figure 64, there are four In Progress work items

(DeGrandis, 2017):

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

124

Figure 64. Kanban Board Example. Source: DeGrandis (2017).

In other words, the current Queue Size/WIP for this phase is four work items

(DeGrandis, 2017). Assuming the Queue Size/WIP limit is six work items, then once there

are six cards within In Progress, no new work items may be started until an In Progress

card is completed and moved to done, signaling available capacity to pull a new card into

development (DeGrandis, 2017). Thus, work items flow through the software development

process based on the Queue Size/WIP limits and pull policies established by managers

(DeGrandis, 2017).

When managers set and enforce Queue Size/WIP limits appropriately, they prevent

the queuing system from becoming overloaded and enable development teams to optimally

focus on completing and deploying current work (DeGrandis, 2017). Thus, managers play

a critical role in balancing the flow of work with current demand, as well as enabling

software developers to build and maintain flow in practicing their craft, both of which are

essential to strong, sustainable software development performance outcomes (DeGrandis,

2017).

There is no formula for Queue Size/WIP limits; managers must continually monitor

and assess development team needs, process performance, and so forth, to define, refine,

and enforce Queue Size/WIP limits over the life of an SWP program—all of which are

actions within PMO purview (Diaz et al., 2017). But while managing Queue Size/WIP

limits is entirely within each SWP program’s control, the most difficult aspects of reducing

average Lead Time and/or Cycle Time through queueing discipline may be cultural.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

125

In manufacturing queuing systems, work items are generally characterized as

follows: (a) predictable arrival times, (b) repetitive tasks, (c) homogenous task durations,

and (d) homogenous delay costs (Reinertsen, 2009). Because capacity requirements were

reasonably predictable and homogenous, managers managed Lead and/or Cycle Time

performance by monitoring and controlling capacity (Reinertsen, 2009). Over time, the

assumptions regarding the relationship between capacity utilization and processing times

have become deep-seated in management thinking and practice (Reinertsen, 2009).

Within software development queuing systems, however, controlling capacity is

impractical given the highly uncertain, unique capacity requirements for each work item.

Additionally, as noted, the relationship between capacity utilization and processing time

(e.g., Lead Time or Cycle Time) in software engineering is nonlinear, as shown in Figure

65 (DeGrandis, 2017).

Figure 65. Processing Time Versus Capacity Utilization. Source: DeGrandis

(2017).

Therefore, capacity utilization is almost a useless metric for real-time software

development Lead or Cycle Time control (Thomke & Reinertsen, 2012). That said, given

that Little’s Law provides that Queue Size/WIP and Lead/Cycle Time are proportional,

managers must shift from using capacity utilization to Queue Size/WIP as their control

variable (Reinertsen, 2009). Fortunately, Queue Size/WIP are leading indicators of Lead/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

126

Cycle Time, so monitoring Queue Size/WIP growth enables managers to detect and assess

processing time risk quickly enough to intervene (Reinertsen, 2009). On the other hand,

Lead/Cycle Time are lagging indicators: one cannot measure Lead or Cycle Time until

work items exit the system, and the respective process or subprocess is completed

(Reinertsen, 2009).

Additionally, by regularly screening new stories and grooming their Program

Backlogs, SWP programs can avoid situations where they simply accumulate work items

and hope it all works out during design and development. Excessive software development

queues increase processing time, expenses, and risk (Reinertsen, 2009). Additionally, they

slow feedback, reduce quality, and decrease motivation (Reinertsen, 2009). On the other

hand, well-conditioned queues are the key to enabling and sustaining healthy software

development performance (Reinertsen, 2009). Thus, to improve process performance,

managers should manage queues, not capacity, primarily by limiting Queue Size/WIP and

building a culture of queueing discipline.

Fifth, managers must understand the subtle yet quite significant behavioral impact

of metrics. Consider the following quotes: (a) “Tell me how you will measure me, and I

will tell you how I will behave” (Goldratt, 1990, p. 26); (b) “What we choose to measure

is a window into our values, and into what we value. … Because if you measure something,

you’re telling people it matters” (Doerr, 2018, p. 220). Clearly, metrics are an incentive.

Thus, how metrics are defined and utilized is critical. For instance, a common management

aphorism is that “what gets measured gets done.” Yet once aware their efforts are being

observed and measured, people become motivated to improve—even if that entails the

appearance of improvements. For instance, if someone is challenged to lose 5 lb, they could

abstain from eating or drinking for several days. The person will quickly lose 5 lb this way,

and fasting for this period will not be so bad due to their excitement of attaining the goal.

However, what was measured did not get done—the person will have mostly reduced water

weight, only to regain it after seemingly accomplishing the goal and ending their fast. This

phenomenon is known as the Hawthorne Effect, which states that “that which gets

measured will appear to improve” (Norton, 2020, p. 41). In other words, once people

become aware they are being measured, they become motivated to attend to improvements,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

127

including the appearance of improvements. Thus, what gets measured does not necessarily

get done; simply declaring a metric is insufficient. Sixth, metrics must not serve as the end

but the means to the end, with clear context as to how they enable reaching a goal. As

noted, the purpose of a metric is to drive decision-making towards intended business

outcomes. Originally, EVM was intended to inform and enable defense acquisition

decision-making. Over time, however, EVM’s metrics became equated with defense

acquisition program success (Patel, 2021). Consequently, both DOD PMs and defense

contractors became incentivized to make EVM metrics look acceptable rather than use

EVM to make good business decisions (Packaged Agile, 2020). This phenomenon is

known as Goodhart’s Law, which states that “when a measure becomes a target, it ceases

to be a good measure. ... And the target therefore no longer means what you think it does”

(Norton, 2020, p. 42). In other words, when a metric is treated not as the means but as the

end, its incentives are distorted, resulting in unintended consequences. Again, the purpose

of a metric is to “induce the departments to do what is good for the company as a whole”

(Goldratt, 1997, p. 107). Additionally, this research noted that the most effective metrics

focus teams on business goals; they focus teams on outcomes, not just outputs; and they

define value in the eyes of the customer. Generally, OKRs are effective because they do

all these things. Moreover, because objectives are well-defined, qualitative goals, whereas

KRs are quantitative success criteria, OKRs do not violate Goodhart’s Law—KRs are the

means, not the end. Furthermore, because teams usually contribute to the OKR goal-setting

process, the Hawthorne Effect is neutralized. Thus, while OKRs are a Silicon Valley

management best practice, the strongest reason why SWP programs should use OKRs is

because they are a fundamentally sound goal-setting framework. Adopting agile software

engineering requires entirely new behaviors, and the most effective means to incentivize

the focused, right ones for the mission are by using the OKR goal-setting framework.

Finally, because agile software engineering is principles-based, the process and

practices of agile environments are predominantly shaped by the mindset, values, and

principles espoused by its practitioners, as shown in Figure 66.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

128

Figure 66. The Cultural Factors of an Agile Environment. Source: Coyne

(2020).

As noted, the Agile Manifesto itself did not prescribe a new approach to the SDLC,

for its signatories acknowledged that there will always be a wide variety of technical and

management practices in fast-paced, creative knowledge work such as software

engineering. Instead, the Agile Manifesto envisioned better ways of work through its

principles and values, empowering creative knowledge workers to reform existing and/or

develop new practices as shown in Figure 67:

Figure 67. Traditional to Agile Practices. Source: Carpenter and Carrigan

(2022).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

129

Thus, agile teams progressively moved away from waterfall approaches and

converged upon concurrent software engineering practices, progressively smaller batch

sizes, and so forth, all independently. Moreover, while the DevOps movement—and the

DevSecOps movement in security-focused organizations such as the DOD—was primarily

driven by technological breakthroughs that enabled integrating the IT ecosystem, its key

tenets are nonetheless driven by the Agile Manifesto as shown in Figure 68:

Figure 68. Key Tenets of DevSecOps Practices. Source: Carpenter and

Carrigan (2022).

Thus, culture is the most critical determinant of successfully practicing agile

methods. Used the wrong way, the Agile Manifesto could just as easily be used to reinforce

dogmatic attitudes. When used with the right intentions to intentionally develop culture,

however, the Agile Manifesto is the most powerful tool in any DON SWP program’s

toolbox. To make the most of this tool, DON SWP programs should continually design and

refine their process and practices with the Agile Manifesto’s values and principles in mind.

F. SUMMARY

This chapter included a discussion of several methods and tools to manage

software-intensive acquisition programs, all of which are tailored to manage the emergent

requirements, iterative development and incremental delivery processes, and continuous

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

130

user feedback practices of agile environments. To use these methods and tools effectively,

managers need to adopt fundamentally new ways of thinking about development project

progress and performance. Agile environments do not conduct long-range, detailed

planning; they do not comprehensively estimate and pre-allocate all necessary resource

requirements; and both the design and value of the design remain emergent. Thus, program

managers cannot rely upon plan-driven oversight methods and tools that were designed to

maximize conformance and efficiency of all planned technical work.

Within agile environments, short-term planning is conducted only to the extent

necessary to initiate the first software development cycle; estimation and budgeting are

performed just-in-time for the sake of allocating iteration capacity; and both the design and

value of the design are continually validated and refined throughout the development

project. By rapidly and iteratively delivering software and capturing continuous feedback,

agile environments are fundamentally structured around a process that enables building the

most valuable product possible through all remaining development cycles of a project.

Therefore, to monitor and manage progress and performance in agile environments

effectively, program managers need to adopt methods and tools that span not necessarily

the plan, but the software development process. As noted, development project plans are

merely a proxy for the intended product, whereas agile environments iteratively develop

and incrementally expose the emergent product.

Accordingly, the agile movement has created a wide variety of management tools

and methods to capture the health of the software development process and to assess the

value of the product as it is being built. Fortunately, there are many commercially available

ALM and software engineering tools that automatically generate progress and performance

information. The most common charts used to monitor software development productivity

and progress are burn-down charts, burn-up charts, and CFDs. Additionally, agile

environments commonly track the rate and count of escaped defects to production as well

as the level of test coverage to detect and contain quality issues, continuously build quality

into the development process, and ensure the codebase is architected in a manner that

enables automated testing to the greatest extent practicable. To reliably forecast and

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

131

commit to delivery dates, the agile movement has also created forecasting tools that enable

probabilistically determining schedule outcomes based on their rate of implementation.

This chapter also included an analysis of the interactions between EVM and agile

software engineering, showing that they fundamentally conflict in four ways. Agile

environments plan work tasks as an LOE; they continually validate the value of work

through customer engagement; they do not comprehensively identify, estimate, and

organize all work using a WBS; and they maximize value by building the best product

possible using all remaining development cycles. While many have attempted to truncate

planning horizons and adapt EVM to agile planning processes and practices, agile

environments and EVM fundamentally incentivize maximizing value in a manner that is

irreconcilable. Therefore, SWP programs should not use EVM to monitor acquisition

program progress and manage performance.

The researcher also evaluated the metrics and performance management–related

recommendations of all prior DOD software acquisition studies, which gradually evolved

from assuming one large-batch custom software delivery to an iterative, incremental

process that explicitly acknowledges that software development is never done. The metrics

recommended in the DIB SWAP study’s Metrics for Software Development supplement

are aligned to leading commercial software development practices and establish several

useful performance standards for DOD SWP programs. In evaluating recommendations to

streamline acquisition, the researcher also noted that the Section 809 Panel proposed

exempting EVM and EVMS requirements for all software-intensive acquisition programs

that use agile methods, but it also proposed EVM-like planned versus actual cost and

schedule metrics that could potentially undermine its findings.

Finally, to make the most of the software engineering management know-how

highlighted in this project, this chapter included a discussion of several principles and

patterns to provide some of the supporting know-why. Because organizational structure

and software architecture are intimately related, SWP programs must continually ensure

that they organize themselves and design their tech stack in a manner that enables, rather

than constrains, optimal flow of valuable software. Additionally, instead of seeking to

linearly scale productivity by adding more developers, managers should continually

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

132

improve software development performance by progressively building a more resilient and

responsive system of technology work through DevOps and by balancing average demand

and capacity via strictly enforced Queue Size/WIP limits. In doing so, managers have a

direct role in creating a culture that values finishing and delivering current work before

committing to a new workload. Additionally, because metrics function as incentives, they

produce the strongest intended effects when they clearly define a means to accomplish

desired goals and are designed, even if in part, by the teams that will be measured by them.

Most importantly, the agile movement has few standardized technical or

managerial practices, so how SWP programs internalize the Agile Manifesto and leverage

it to co-create a high-performance culture of empowerment, continuous learning, and

continuous improvement is a critical determinant of performance. For instance, when

misused, SWP programs could opportunistically cite select Agile Manifesto phrases such

as “maximizing the amount of work not done” (Beck et al., 2001, para. 10) to avoid existing

governance methods and tools altogether and continually seek shortcuts. On the other hand,

a truly agile culture may set aside time to regularly refactor existing governance, risk, and

compliance processes and practices, treating it as no less essential than reducing technical

debt in the codebase to improve engineering performance. Overall, DON SWP program

managers can lead by example by both enabling developers to continuously deliver high-

quality software to operations, as well as motivating everyone in the agile environment to

continually build a highly agile, secure, and reliable system of technology work.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

133

V. CONCLUSION

This chapter includes a synopsis of the research project’s findings, limitations with

respect to its conclusions, and final recommendations to potentially advance the

management practices of DON SWP custom application programs where necessary.

A. SYNOPSIS

The software engineering process—the continuous process of planning, designing,

developing, integrating, testing, deploying, and operating software—has become the most

critical means of creating and delivering value in the Information Age economy (Kersten,

2018). Despite its industrial preeminence, however, the profession of software engineering

is ironically still a very young field (Forsgren & Kersten, 2018).

Unlike the manufacturing domain, for which managers have developed highly

refined performance management methods, metrics, and operational data collection tools

over the past century, the software engineering industry lacks clear consensus on how to

measure the software engineering process (Forsgen & Kersten, 2018). Furthermore, the

most effective software practices are fundamentally context-dependent and temporary, as

new breakthroughs in digital technology will inevitably necessitate new ways of software

practice. As such, few standardized software practices exist, and just as state-of-the-art

digital technology evolves, the software practices that enable effective digital technology

adoption must also continually evolve.

Given that the DON primarily buys, not builds, software, this is predominantly a

managerial challenge. The DON already recognized that software acquisition is a dynamic,

indefinite process, and it implemented the DOD SWP to enable rapid and iterative delivery

of custom software. However, the SWP merely provides the policy framework to acquire

custom software. To effectively develop and deliver cutting-edge custom software

capability, each DON SWP program still needs to experientially learn and adopt the

management principles, methods, and tools suited to modern software practice. Moreover,

overcoming this challenge requires DON SWP programs to integrate management beliefs,

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

134

methods, and tools that, for the most part, neither the DOD nor the DON created or

influenced. Unfortunately, this is a very heavy lift for each DON SWP program.

The explicit intent of the DOD SWP is to facilitate rapid and iterative delivery of

software capability the user, so it clearly directs what DON SWP programs should do. But

because software engineering is creative knowledge work and the modern management

principles, methods, and tools to practice it have predominantly originated outside the

defense industry, this research questioned why and how DON SWP programs could

successfully adopt an agile approach. Specifically, to enable DON SWP programs to adopt

agile methods as effectively as possible, the researcher investigated the currently most

effective agile metrics; management tools; and software engineering and digital product

development practices. Additionally, to reconcile these commercially driven management

practices with defense acquisition program governance, the researcher also evaluated the

utility of EVM and the recommendations of prior DOD software acquisition reform studies.

In the end, development project plans have always functioned as a proxy for the

intended product (Perri, 2018). Thus, prior to the agile movement, both DOD and

commercial industry developed and delivered software via waterfall projects, and they used

proxy metrics to measure conformance and efficiency against the development project

plan. Generally, these proxy metrics were backward facing.

In agile environments, however, the product is iteratively developed and

incrementally delivered and refined through continuous customer and/or end user

feedback. Thus, to measure and steer progress and performance, agile environments tend

to use forward facing, not backward facing, metrics. Furthermore, instead of proxy metrics,

agile environments monitor and manage performance using product-based metrics that

measure the functional and nonfunctional attributes of the emergent product, as well as

process-based metrics that capture the health of the end-to-end software development

process.

Overall, based on the conclusions of this research, DON SWP programs should

rapidly and iteratively deliver cutting-edge custom software by using a combination of

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

135

project, product, and process metrics and a phased approach to measure their progress and

performance.

B. RESEARCH FINDINGS

The primary goal of this research was to propose a management framework for

DON SWP custom application programs by answering the following four questions:

1. What metrics should the DON use to assess agile/incremental program

performance?

2. What are the leading management tools, monitoring and control methods,

and practices to track and review progress and performance of a software

acquisition program?

3. Should EVM be replaced or augmented as the standard for program

performance?

4. What are the metrics being recommended by the DSB, DIB Software

Acquisition and Practices Study, and Section 809 Panel?

To establish the scope of the software acquisition management framework, the

research project made three assumptions: (1) an approved DON SWP custom application

program is beginning its Execution Phase; (2) the DON SWP program is acquiring custom

application software running on commercial hardware/operating system platform (i.e.,

Type C software); and (3) the DON SWP program’s software development, assurance,

deployment, and operations activities are primarily performed by contractors. Now, the

research project’s questions are answered in order.

(1) What metrics should the DON use to assess agile/incremental program
performance?

DON SWP programs should implement a phased approach using balanced metrics

to assess their performance. When software development activities begin, the DON SWP

program should use EBV to track and assess progress towards the MVP, velocity-based

metrics to track team productivity, and automated test coverage to track quality of the

codebase.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

136

Once MVP is built and its features are demonstrated to intended users in a testing

environment, the DON SWP should use product-based metrics to track and assess progress

against features planned for the MVCR, velocity-based metrics to track team productivity,

automated test coverage to track quality of the codebase, and the rate and count of defects

to track quality of the software development process. To the greatest extent practicable, the

DON SWP should demonstrate newly completed features to customers and/or users in

production-like testing environments at the end of each iteration/sprint, noting and

incorporating feedback on new functionality to ensure that the MVCR delivers the highest

priority software capability to operations.

Once the MVCR is deployed, the DON SWP should use VA metrics to track and

assess value in each VA cycle, the four DORA metrics—Lead Time for Changes,

Deployment Frequency, Change Failure Rate, and MTTR—to holistically track and assess

software delivery performance health, automated test coverage to track quality of the

codebase, and the rate and count of escaped defects to production to track and assess quality

of the software development process.

To drive and sustain mission focus, DON SWP programs should always treat value-

based metrics as the most important measures of program progress and performance. Thus,

EBV progress metrics in the pre-MVP phase, product-based metrics in the pre-MVCR

phase, and VA metrics in the post-MVCR phase should always be prioritized over all other

progress and performance indicators. DON SWP programs are advised to use special titles

or phrases (e.g., North Star metric, One Metric That Matters, and so forth; Ries, 2017) to

create cultural norms around this practice.

Finally, to implement clear, consistent performance standards based on software

acquisition best practices, DON SWP programs should use the metric standards for Type

C software established in the DIB SWAP study’s Metrics for Software Development

supplement (DIB, 2019a).

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

137

(2) What are the leading tools, monitoring and control methods, and
management practices to track and review software acquisition
program progress and performance?

Instead of comparing planned versus actual work activities and resource

expenditures to conduct program governance, agile environments use automated ALMs

tools to visualize and dynamically track the flow of work in the software development

process. The most common agile charts used to do this are burn-down charts, burn-up

charts, and CFDs. DON SWP programs should use burn-down charts to track productivity,

burn-up charts to track progress, and CFDs to understand and manage the health of the

software development process.

Due to the stochastic nature of the software development process, DON SWP

programs must also understand the statistical distribution of potential schedule outcomes

to reliably forecast and make delivery date commitments. To do so, the DON SWP should

use the Throughput Forecaster or other Monte Carlo simulation-based agile forecasting

tools to probabilistically estimate their schedule outcomes.

Next, because software development work items have highly uncertain, unique

capacity requirements, managers should not attempt to monitor and control capacity

utilization, for it is highly impractical. Instead, managers should monitor and control

queues. Given that software development is an indefinite process, it is a queueing system

to which Little’s Law applies. Little’s Law proved that, on average, the more work there is

in a stable queuing system, the longer it will take to complete each unit of work. Thus, to

match the average flow of demand with that of capacity, Little’s Law implies that DON

SWP programs should establish a culture of not initiating new work items until a current

one is completed—hence the attitude to stop starting and start finishing within the high-

tech industry (Kim, 2019). Additionally, because Little’s Law proved that Queue Size/WIP

and Lead or Cycle Time are proportional, DON SWP programs should establish Queue

Size/WIP limits that temporarily throttle demand once they’re reached. There are no set

formulas for determining these limits. Each DON SWP program will have to continually

set, monitor, and recalibrate its Queue Size/WIP limits to maintain optimal software

development flow throughout the life of the DON SWP program.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

138

Finally, to manage longer-term software acquisition outcomes, DON SWP

programs should use the Flow Framework,® for it provides a MECE governance structure

to holistically monitor and manage all functional, nonfunctional, quality, and noncritical

yet important software development requirements that impact DON SWP outcomes.

Without a comprehensive tool such as the Flow Framework,® DON SWP programs will

neither be able to plan software architecture upgrades, technical debt reduction, and so

forth, nor trade off between capability development and internal process improvement

work effectively.

(3) Should EVM be replaced or augmented as the standard for program
performance?

The software engineering industry has not yet converged upon the most effective

performance metrics for iterative, incremental development (i.e., agile methodologies;

Maddox & Walker, 2021). Thus, a standardized tool for managing cost and schedule

performance in agile environments, which could potentially replace EVM as the standard

for acquisition program governance, is not available. Nevertheless, DON SWP programs

should refrain from using EVM, for agile software engineering methods and EVM

fundamentally conflict in four ways: (a) agile environments plan all work tasks as a LOE,

whereas EVM requires minimizing LOE use; (b) agile environments valuate work product

based on stories derived through customer engagement, whereas EVM valuates work

product based on CSCIs derived from the WBS; (c) agile environments have no universal

framework to identify and organize all technical work content, whereas EVM uses a

standardized WBS to delineate and control all work scope; and (d) agile environments

motivate building and maximizing value via an iterative, incremental process, whereas

EVM motivates maximizing value by minimizing resource consumption en route to a

predetermined design.

These four conflicts do not suggest that EVM itself is an ineffective acquisition

program management tool; rather, they are attributable to the extreme uncertainties of the

design and value of the design in cutting-edge software development projects which make

EVM implementations intractable. Therefore, DON SWP programs should not use EVM

because it is not feasible. Fortunately, recent research has shown that simply practicing

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

139

agile methods has enabled DOD software development programs to save at least 15% in

total labor costs and 20% in total schedule compared to those practicing waterfall methods

(Patel, 2021). As a result, DON SWP programs may not even need to implement EVM to

control cost and schedule growth. To track schedule performance using alternative

methods, DON SWP programs should use Monte Carlo simulation-based forecasting tools

noted in this project to probabilistically estimate and manage schedule performance. As for

tracking cost performance for its own sake, development effort (i.e., labor) is generally the

largest cost element associated with developing custom software (Nichols et al., 2022).

Thus, development labor is the best variable by which DON SWP programs can estimate

cost (Nichols et al., 2022). Since agile environments plan all work tasks as an LOE, DON

SWP programs can estimate their cost performance by calculating total development labor

expenses multiplied by elapsed time duration (Nichols et al., 2022).

Overall, EVM can neither be replaced nor augmented as the standard management

framework for defense acquisition program performance. EVM should continue to be used

to contain and control cost growth, particularly in capital-intensive weapon system

acquisition programs where the risk of cost growth resides with the government. That said,

EVM is incompatible with DON SWP programs, and EVM techniques are not necessary

to monitor their cost and schedule performance. DON SWP programs should manage

performance using the agile metrics, tools, and methods highlighted in this project and

utilize ad hoc techniques to monitor cost and schedule performance only as needed.

(4) What are the metrics being recommended by the Defense Science
Board, Defense Innovation Board Software Acquisition and Practices
Study, and Section 809 Panel?

In 2018, DSB issued a software acquisition report acknowledging that designing

and managing DOD software acquisition programs with waterfall-oriented and acquisition

life cycle–based metrics created “a misalignment between the DOD’s processes and the

reality of contemporary industry practices” (OUSD[R&E], 2018, p. 21). Instead, the DSB’s

2018 report recommended customizing the governance framework for each software

acquisition program, and it highlighted commonly used agile metrics such as velocity to

track productivity of individual software development teams, as well as agile management

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

140

tools such as iteration/sprint burn-down charts and CFDs to track the health of the software

development process (OUSD[R&E], 2018). The 2018 DSB report also suggested that

adopting agile methods would lead to long-term cost savings, and none of its highlighted

metrics and management methods included tracking costs (OUSD[R&E], 2018).

To provide the flexibility necessary for iterative, incremental development, the

Section 809 Panel (2018) recommended updating DFARS 234.201 and OMB Circular A-

11 to exempt all DOD custom software development and integration contracts practicing

agile methods from EVM and EVMS requirements, regardless of contract type or total

dollar value. Instead of EVM/EVMS, the Section 809 Panel (2018) recommended

authorizing PEOs to approve the appropriate project monitoring and control methods for

such contracts. However, the Section 809 Panel (2018) also recommended using, at a

minimum, planned versus actual schedule, planned versus actual cost, and estimate to

complete metrics without providing non-EVM techniques to implement them. As a result,

the Section 809 Panel’s (2018) recommended metrics are ambiguous and potentially

undermine its overall findings regarding the incompatibility of agile methods and EVM/

EVMS. Indeed, EVM and EVMS requirements should be waived for all DOD custom

software development and integration contracts practicing agile methods, because neither

EVM nor EVMS can be reliably implemented in cutting-edge software development

projects where both the design and value of the design are extremely uncertain. But to

avoid the use of EVM techniques altogether, DON SWP programs should use Monte Carlo

simulation techniques and software development labor costs multiplied by total elapsed

time to, respectively, track and forecast schedule and cost performance on an ad hoc basis.

Finally, in 2019, the DIB released its SWAP study, the DOD’s most comprehensive

software acquisition reform effort to date. The DIB SWAP study explicitly assumes that

software development is a continuous process, and its Metrics for Software Development

supplement proposed 14 state-of-the-art metrics to manage software acquisition programs

and drive improvement in cost, schedule, and performance. Crucially, the Metrics for

Software Development (DIB, 2019a) supplement also proposed several performance

standards based on the type of software and computing infrastructure utilized. To align to

current best practices, DON SWP custom application programs running on commercial

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

141

computing infrastructure and operating systems (i.e., Type C software) should adopt the

metrics and performance standards shown in Table 9:

Table 9. Metrics for DON SWP Custom Application Programs. Adapted
from DIB (2019a).

The time required to restore service after an outage is the same as MTTR.
The number of bugs caught in testing versus field use is the same as the number of escaped defects
to production.

By adopting these metrics and performance standards to the greatest extent

practicable, DON SWP custom application programs will maximize their abilities to make

clear, consistent software engineering decisions; rapidly adopt commercially driven digital

technology innovation; continuously improve cost, schedule, and performance; and

continuously deliver high-priority software capability at the speed of relevance.

C. RECOMMENDATIONS

Based on the findings of this research, there are several ways the DOD, DON, and/

or DON SWP programs could potentially improve their software acquisition practices.

Metric Type Metric
Performance

 Standard

Deployment Rate
• time from program launch to deployment of simplest useful functionality
• time to field high priority functionality; find and fix security issue
• time from code committed to code in use

• ≤ 6 months
• ≤ 3 months; ≤ 1 week
• ≤ 1 day

Response Rate • time required for regression testing; cybersecurity audit/penetration testing
• time required to restore service after outage

• ≤ 1 day; ≤ 1 month
• ≤ 1 day

Code Quality

• automated test coverage of code
• number of bugs caught in testing versus field use
• change failure rate (e.g., required rollback)
• percentage of code available for DOD to inspect/rebuild

• > 90%
• > 75%
• ≤ 10%
• 100%

Functionality
• number/percentage of functions implemented
• usage and user satisfaction

• 70%
• N/A

Program
Management,

Assessment, and
Estimation

• complexity metrics
• development plan/environment metrics

• N/A
• N/A

Progam Progress • software development-based Nunn–McCurdy thresholds • 1.5X

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

142

First, to effectively manage uncertainty in agile environments, motivate superior

performance, and reinforce cultural norms around agile methods, DON SWP programs

should formulate and assess their objective goals using the OKR goal-setting framework.

As shown in Chapter III, integrating OKRs into the VA process only requires slight

adjustments to the VA template. Furthermore, as several leading high-tech companies have

shown, OKRs and agile software engineering complement each other by focusing teams

on mission outcomes and continually driving improvements and growth (Wodtke, 2016).

Second, the AAF guidance for the DOD SWP should be updated to clarify when its

required metrics are applicable. Presently, SWP programs are required to track and

semiannually report the following 12 metrics as soon as they enter the DOD SWP: (a)

Average Lead Time for ATO, (b) Continuous ATO In-Place, (c) Mean Time to Resolve

Experienced Cyber Incident or CVE, (d) Mean Time to Detect Cyber Incident, (e) Average

Deployment Frequency, (f) Average Cycle Time, (g) Average Lead Time for Change, (h)

Minimum Lead Time for Change, (i) Maximum Lead Time for Change, (j) Change Fail

Rate, (k) MTTR, and (l) VA Rating (OUSD[A&S], n.d.-g).

However, metrics e–k are inspired by the benchmark DORA metrics used to assess

technology organizations, which DORA has specifically defined as software delivery

performance metrics in its literature (Forsgren et al., 2018). Naturally, software delivery

performance metrics do not apply until after SWP programs have initially delivered their

software to operations. Furthermore, the AAF guidance for the DOD SWP should be

updated to clarify that VA Rating reporting is not required until after SWP programs have

completed their first VA cycle. Given that SWP programs have up to one year after MVCR

to complete their first VA, this could potentially take up to two years from the date software

development activities are funded. Thus, tracking and reporting VA Ratings at the very

onset of SWP programs is impractical.

Third, the DON SWP should be updated to rescind its mandatory performance

metrics. Presently, DON SWP programs are required to track the following software

delivery performance metrics: “(1) Average Deployment Frequency; (2) Average and

Minimum/Maximum Lead Time to commit code to production; (3) Average Cycle Time;

(4) Change Failure Rate” (ASN[RD&A]), 2022, pp. 6–7). However, because these metrics

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

143

overlap with metrics e–j that are already required by the DOD SWP, the DON SWP’s

metrics are redundant.

Fourth, the DOD SWP guidance should be updated to clarify that the DORA

metrics—Lead Time for Changes, Deployment Frequency, Change Failure Rate, and

MTTR—are intended to be used holistically, not individually. As noted in Chapter II, the

purpose of the DORA metrics is to unify the goals and incentives of software developers

(i.e., Dev), who are charged with delivering new features, and IT operations engineers (i.e.,

Ops), who support existing service offerings and infrastructure (Kim et al., 2021). The first

two DORA metrics, Lead Time for Changes and Deployment Frequency, provide insight

into the velocity of the software development process and how responsive it is to users’

evolving needs, whereas the last two DORA metrics, Change Failure Rate and MTTR,

indicate how stable the provided services and responsive the technology organization are

to production incidents (Forsgren et al., 2018). By measuring these four metrics together

and widely radiating current performance levels, the DORA metrics eliminate the false

choice between velocity and stability in the software delivery process, specifically by

motivating a run what you build mentality (Kim et al., 2021). When used together and

visibly measured, the DORA metrics also rally the entire technology organization around

continuous improvement of its culture, architecture, and technical practices, as envisioned

by the DevOps movement (Kim et al., 2021). Clearly, to facilitate these behavior outcomes,

the DORA metrics must be used holistically, but the DOD SWP does not indicate that these

software delivery performance metrics must be tracked and assessed together.

Fifth, DON SWP programs should consider incorporating the Flow Framework® to

adopt a MECE management framework to measure and manage all types of software

development work: features, defects, risks, and debt (Kersten, 2018). Presently, the DOD

SWP only alludes to the importance of planning work to reduce technical debt and/or

upgrade software architecture. However, the DOD SWP does not provide metrics to track

nonfunctional requirements and/or work items to refactor the codebase. Moreover, neither

the DOD SWP nor the DON SWP provide management methods to trade off between

capability development and internal process improvement work. Without such

management tools and methods, DON SWP programs will be ill-equipped to responsibly

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

144

manage longer-term software acquisition outcomes. The SWP was issued with the intent

to facilitate continuous software acquisition and rapid and iterative delivery of software

capability to the user. To do so effectively and sustainably, DON SWP programs should

adopt the software engineering framework that was specifically designed for continuous

software product development, the Flow Framework®.

Six, DON SWP programs should consider implementing release management

strategies to help optimally manage risk via smaller, more frequent, and/or more controlled

timing of feature releases. For example, instead of deploying new features to their entire

userbase, DON SWP programs may replicate their production environment, direct all

traffic to one server via a load balancer, deploy new features to the other server, and then

can incrementally shift user sub-groups to the newer software version via a technique called

canary deployments (Harrison & Lively, 2019). Canary deployments reduce risk by

adopting a phased approach to software deployment and enabling rapid rollback if initial

user sub-groups report critical errors for new features. Additionally, by decoupling the

software deployment process from software releases, DON SWP programs can implement

dark launching, whereby new features are deployed to real production environments and

released to targeted user sub-groups via feature flags (Harrison & Lively, 2019). Dark

launching substantially reduces risk by remotely enabling or disabling new features almost

immediately without having to redeploy code. These are just some release management

strategies that can enable DON SWP programs to avoid large-scale software deployment

failures, such as a bad MVCR. Simply put, not every software deployment must result in

software release, and not every software release must be made to the entire userbase.

Finally, the AAF guidance for the DOD SWP should be updated to clarify define

and distinguish between a program manager, product manager, and product owner with

respect to planning and executing SWP programs. Within the commercial software

engineering industry, a product manager is typically a member of the development

organization primarily responsible for specifying, testing, shipping, and optimizing a

product within specified budget, schedule, and performance constraints (Moore, 2014),

whereas a product owner is a team-level PMO leader within the Scrum agile software

development framework (Perri, 2018). Thus, product managers tend to focus more on

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

145

creating and managing a product roadmap to meet strategic business goals, whereas

product owners tend to focus more on creating and managing a product backlog in direct

coordination with developers. However, according to the AAF, the product owner is a

member of the operational or requirements organization (OUSD[A&S], n.d.-h), works with

the PMO to develop and manage the product roadmap (OUSD[A&S], n.d.-d), and works

with the PMO to develop and manage the program backlogs (OUSD[A&S], n.d.-d).

Consequently, the AAF guidance defines the product owner as a key external stakeholder

for each SWP program, not as a team-level PMO leader ala the Scrum framework. This is

a significant cultural difference and may be very confusing to Scrum and other agile

practitioners partnering with the DOD. Given that commercial product managers are much

more externally focused than commercial product owners, the AAF guidance for the DOD

SWP should redefine the product owner role as a product manager to both reduce

ambiguity and better align SWP programs to commercial software industry practices.

D. LIMITATIONS

This research project and its conclusions have some limitations. First, the researcher

did not investigate whether new software estimation methodologies have been developed

specifically for agile project estimation. Accordingly, the results of this research are not

necessarily applicable for estimating a software acquisition program. Second, the results

of this research are limited to the acquisition of custom software running on commercial

hardware/operating systems under the DON’s implementation of the DOD SWP (i.e., Type

C software as defined by the DIB SWAP study). The results of this research are not

necessarily applicable to DON embedded system software development programs or to

other DOD component SWP programs. Third, because the DON SWP was issued in April

2022, there were limited opportunities to research the management practices of current

Type C DON SWP programs. To strengthen the findings of this research project, and

potentially generate greater benefit for the DON, the researcher recommends conducting a

case study on a current Type C DON SWP program so that the metrics and management

practices recommended herein can be tested, validated, and potentially refined. Finally,

while not necessarily a limitation, all identification of commercial companies, and the

specific technologies developed by such commercial companies, throughout this research

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

146

project occurred strictly for academic purposes. No DOD or DON endorsement of these

private entities or their technologies is intended whatsoever.

E. SUMMARY

The DOD helped invent the digital computer and the Internet, and it influenced the

early development of the software engineering profession (Mahoney, 1990). However, the

DOD neither created nor influenced the agile software engineering movement, whereas

since the agile movement started, software has become the most critical element of

Information Age technology and technology development processes (DIB, 2019b). Just as

the most successful businesses deliberately adapted their operations and management

practices around software development, each DON SWP program must now lead digital

transformation (i.e., increase its PMO’s adoption of software technology and modern

software practices) by adapting agile principles, values, and practices throughout all

aspects of project management, digital NPD, and software acquisition program governance

to exploit the full potential of the SWP. Naturally, given that the SWP’s vision is

continuous software acquisition, no research could provide all the answers. Fortunately,

however, agility is already ingrained in the military’s DNA, and the researcher aimed to

highlight how and why DON SWP programs can begin leveraging modern software

engineering management practices to potentially increase their business agility effectively.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

147

APPENDIX. MISCELLANEOUS

The Flow Framework® is a framework created by Mik Kersten, CEO of Tasktop

Technologies Incorporated (“Tasktop”). The Flow Framework® diagrams, images,

graphics and other materials referenced herein in relation to the Flow Framework® is

protected by copyright laws and may not be copied, modified or distributed without the

express written permission of Tasktop. Tasktop® and the Flow Framework®, Flow

Efficiency®, Flow Velocity®, Flow Distribution® and Flow Load® are trademarks of

Tasktop Technologies Incorporated.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

148

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

149

LIST OF REFERENCES

Abba, W. F. (2017, March 1). The evolution of earned value management. Defense
Acquisition University. https://www.dau.edu/library/defense-atl/blog/Defense-
ATandL--March%E2%80%93April-2017-2-The-Evolution-of-Earned-Value-
Management

Anderson, R. E. (1993). Can stage-gate systems deliver the goods? Financial Executive,
9(6), 34–38.

Andreessen, M. (2011). Why software is eating the world. The Wall Street Journal, C2.

Assistant Secretary of the Navy for Research, Development, and Acquisition. (2022,
April 8). Department of the Navy implementation of the defense acquisition
system and the adaptive acquisition framework (SECNAVINST 5000.2G).
Department of the Navy.

Bahcall, S. (2019). Loonshots: How to nurture the crazy ideas that win wars, cure
diseases, and transform industries. St. Martin’s Press.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.
C., Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D. (2001). Manifesto for
agile software development. https://agilemanifesto.org/

Bell, T. E., & Thayer, T. A. (1976, October). Software requirements: Are they really a
problem? In Proceedings of the 2nd International Conference on Software
Engineering (pp. 61–68).

Bezos, J. (2017, April 17). 2016 letter to shareholders. Amazon.

Blank, S. (2013). Why the lean start-up changes everything. Harvard Business Review,
91(5), 63–72.

Brooks, F., Basili, V., Boehm, B., Bond, E., & Eastman, N. (1987). Report of the Defense
Science Board Task Force on military software. Office of the Under Secretary of
Defense for Acquisition.

Burns, K. 2017. Story writing & mapping [PowerPoint slides].
https://www.slideshare.net/KevinBurns66/story-writing-and-mapping

Carpenter, T., Jr., & Carrigan, C. (2022, March 2). Let’s talk agile webinar: Defense
Counterintelligence and Security Agency—Using agile to protect our nation’s
critical assets. Defense Acquisition University. https://www.dau.edu/event/
Let%27s-Talk-Agile-Webinar-DCSA-Using-Agile-to-Protect-Our-Nations-
Critical-Assets

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

150

Ching, C. (2015). Rolling rocks downhill.

Conway, M. E. (1968). How do committees invent. Datamation, 14(4), 28–31.

Cooper, R. G. (1990). Stage-gate systems: A new tool for managing new products.
Business Horizons, 33(3), 44–54.

Coyne, J. (2020). An agile mindset—Use these simple statements to challenge yourself.
https://medium.com/@justincoyne.nemean/an-agile-mindset-use-these-simple-
statements-to-challenge-yourself-8bc166ede32

Defense Federal Acquisition Regulation Supplement, 48 C.F.R. ch. 2 (2022).

Defense Innovation Board. (2019a). Defense Innovation Board metrics for software
development (SWAP Study Concept Paper, S82). https://media.defense.gov/2019/
May/02/2002127284/-1/-1/0/
defenseinnovationboardmetricsforsoftwaredevelopment.pdf

Defense Innovation Board. (2019b). Software is never done: Refactoring the acquisition
code for competitive advantage. https://media.defense.gov/2019/Apr/30/
2002124828/-1/-1/0/softwareisneverdone_refactoringtheacquisitioncode
forcompetitiveadvantage_final.swap.report.pdf

Defense Science Board. (2009). Report of the Defense Science Board Task Force on
Department of Defense policies and procedures for the acquisition of information
technology. https://www.hsdl.org/?abstract&did=36935

DeGrandis, D. (2017). Making work visible: Exposing time theft to optimize work & flow.
IT Revolution.

Dennis, P. (2010). The remedy: Bringing lean thinking out of the factory to transform the
entire organization. John Wiley and Sons.

Department of Defense. (1985, June 4). Defense system software development (DOD-
STD-2167). https://quicksearch.dla.mil/Transient/
0ECB39822A1A4608B38E21894394BCB0.pdf

Department of Defense. (2019, March 14). Earned value management system
interpretation guide. https://www.acq.osd.mil/asda/ae/ada/ipm/docs/
dod_evmsig_14mar2019.pdf

Department of Defense (2022, May 13). Work breakdown structures for defense materiel
items (MIL-STD-881F). https://quicksearch.dla.mil/Transient/
E4BEE79439224B728BCF48C31F7FA6CE.pdf

Diaz, E., Kumar, S., & Wali, A. (2017). Clojure: High performance JVM programming.
Packt Publishing.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

151

Dibert, J. C., & Velez, J. C. (2006). An analysis of earned value management
implementation within the F-22 system program office’s software development
[Master’s thesis, Naval Postgraduate School]. NPS Archive: Calhoun.
https://calhoun.nps.edu/handle/10945/34233

Doerr, J. (2018). Measure what matters: How Google, Bono, and the Gates Foundation
rock the world with OKRs. Penguin.

Efe, P., & Demirörs, O. (2013, September). Applying EVM in a software company:
Benefits and difficulties. In 2013 39th Euromicro Conference on Software
Engineering and Advanced Applications (pp. 333–340). IEEE.

Fleming, Q. W., & Koppelman, J. M. (1997). Earned value project management. Cost
Engineering, 39(2), 13.

Flow Framework. (2022). What is the flow framework? https://flowframework.org/about/

Forsgren, N., Humble, J., & Kim, G. (2018). Accelerate. IT Revolution.

Forsgren, N., & Kersten, M. (2018). DevOps metrics. Communications of the ACM,
61(4), 44–48.

Fox, M. R. (2020). IT governance in a DevOps World. IT Professional, 22(5), 54–61.

Gansler, J. S., & Lucyshyn, W. (2013). Using leading indicators to improve DOD
acquisitions (UMD-AM-13-102). Center for Public Policy and Private Enterprise,
University of Maryland School of Public Policy.

Garrison, G. (2022). Let’s talk agile: Operational test for agile software programs—What
you need to know about what you need to test. Defense Acquisition University.
https://www.dau.edu/event/Lets-Talk-Agile-Webinar-Operational-Test-for-Agile-
Software-Programs-What-You-Need-to-Know-About-What-You-Need-to-Test

Gavrilovic, V. (2013). Outcomes and outputs. Renaissance Planning.
https://www.citiesthatwork.com/blog/2013/10/outcomes-and-outputs

Goldratt, E. M. (1990). The haystack syndrome: Sifting information out of the data ocean.
North River Press.

Goldratt, E. M. (1997). Critical chain. North River Press.

Hansen, M., & Nesbit, R. F. (2000). Report of the Defense Science Board Task Force on
defense software. Defense Science Board.

Harrison, D., & Lively, K. (2019). Achieving DevOps. Springer Books.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

152

Hartmann, D., & Dymond, R. (2006, July). Appropriate agile measurement: Using
metrics and diagnostics to deliver business value. In AGILE 2006 (AGILE’06)
(pp. 6–134). https://doi.org/10.1109/AGILE.2006.17

Hayes, W., Miller, S., Lapham, M. A., Wrubel, E., & Chick, T. (2014). Agile metrics:
Progress monitoring of agile contractors (CMU/SEI-2013-TN-029). Carnegie
Mellon University Software Engineering Institute. https://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=77747

Hayes, W., Place, P., Cohen, J., Brown, N., Korzec, K., & Miller, C. (2020). F-35 JPO
software metrics white paper. Carnegie Mellon University. https://apps.dtic.mil/
sti/citations/AD1121518

Hering, M. (2018). DevOps for the modern enterprise: Winning practices to transform
legacy IT organizations. IT Revolution.

Hodson, E. G. (2016). Earned value reporting on agile software development programs
within the Department of Defense [Master’s thesis, Air Force Institute of
Technology]. AFIT Archive: Scholar. https://scholar.afit.edu/etd/397/

Hughes, G. D., & Chafin, D. C. (1998). Turning new product development into a
continuous learning process. IEEE Engineering Management Review, 26, 32–45.

Imai, K., Nonaka, I., & Takeuchi, H. (1984). Managing the new product development
process: How Japanese companies learn and unlearn. Harvard Business School.

Inthapichai, L. (2020). Little’s law applied in agile & knowledge work—Part 1 of 2.
https://medium.com/swlh/littles-law-applied-in-agile-knowledge-work-part-1-
81c0c1f217ec

Kahn, K. B. (1996). Interdepartmental integration: A definition with implications for
product development performance. Journal of Product Innovation Management,
13(2), 137–151.

Kahneman, D., Sibony, O., & Sunstein, C. R. (2021). Noise: A flaw in human judgment.
Little, Brown.

Karlström, D., & Runeson, P. (2005). Combining agile methods with stage-gate project
management. IEEE Software, 22(3), 43–49.

Karlström, D., & Runeson, P. (2006). Integrating agile software development into stage-
gate managed product development. Empirical Software Engineering, 11(2), 203–
225.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

153

Kenney, C. (2021). Agile methods for project controls. In IIE Annual Conference.
Proceedings (pp. 638–643). Institute of Industrial and Systems Engineers.
https://www.proquest.com/scholarly-journals/agile-methods-project-controls/
docview/2560891376/se-2

Kersten, M. (2018). Project to product: How to survive and thrive in the age of digital
disruption with the flow framework. IT Revolution.

Kim, G. (2019). The unicorn project: A novel about developers, digital disruption, and
thriving in the age of data. IT Revolution.

Kim, G., Humble, J., Debois, P., Willis, J., & Forsgren, N. (2021). The DevOps
handbook: How to create world-class agility, reliability, & security in technology
organizations. IT Revolution.

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From metaphor to theory
and practice. IEEE Software, 29(6), 18–21.

Lapham, M. A., Miller, S., Adams, L., Brown, N., Hackemack, B., Hammons, C.,
Levine, L., & Schenker, A. (2011). Agile methods: Selected DOD management
and acquisition concerns (CMU/SEI-2011-TN-002).
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=9769

Liu, H. H. (2006). Applying queuing theory to optimizing the performance of enterprise
software applications. In Int. CMG Conference (pp. 457–468).
https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.94.3040&rep=rep1&type=pdf

Maddox, M., & Walker, S. (2021, November). Agile software quality metrics. In 2021
IEEE MetroCon (pp. 1–3). IEEE. https://doi.org/10.1109/
MetroCon54219.2021.9666049

Magennis, T. (2017). TL;DR. Chapter summaries. Medium. https://medium.com/
forecasting-using-data/tl-dr-chapter-summaries-65c7c0ab8962

Mahoney, M. S. (1990). The roots of software engineering. CWI Quarterly, 3(4), 325–
334. https://www.princeton.edu/~hos/Mahoney/articles/sweroots/sweroots.htm

Mihalache, A. (2017). Project management tools for agile teams. Informatica Economica,
21(4), 85–93.

Miller, S. (2020). Virtual learning package 9: Agile and measurement. Carnegie Mellon
University. https://apps.dtic.mil/sti/citations/AD1110339

Moore, G. A. (2014). Crossing the chasm: Marketing and selling disruptive products to
mainstream customers. Harper Business.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

154

National Defense Industrial Association. (2018). Earned value management systems EIA-
748-D intent guide. https://www.ndia.org/-/media/sites/ndia/divisions/ipmd/
division-guides-and-resources/ndia_ipmd_intent_guide_ver_d_aug282018.ashx

National Defense Industrial Association. (2019). An industry practice guide for agile on
earned value management programs (Version 1.3) [Handbook].
https://www.ndia.org/-/media/sites/ndia/divisions/ipmd/division-guides-and-
resources/ndia_ipmd_agileandevmguide_version_1-3_may302019.ashx

Naur, P., & Randell, B. (1969). Software engineering: Report of a conference sponsored
by the NATO Science Committee [Paper presentation]. Software Engineering,
Garmisch, Germany. http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
nato1968.PDF

Nichols, W. R., Yasar, H., Antunes, L., Miller, C. L., & McCarthy, R. (2022). Automated
data for DevSecOps programs. In Proceedings of the 19th Annual Acquisition
Research Symposium, 2, 163–179. https://dair.nps.edu/handle/123456789/4542

Nicolette, D. (2015). Software development metrics. Simon and Schuster.

Norton, D. (2020). Escape velocity. OnBelay Consulting.

Office of Management and Budget. (2022). Circular no. A–11: Preparation, submission,
and execution of the budget. Executive Office of the President.
https://www.whitehouse.gov/wp-content/uploads/2018/06/a11.pdf

Office of the Under Secretary for Defense for Acquisition and Sustainment. (n.d.-a).
Capabilities needs statement (CNS). Retrieved November 7, 2022, from
https://aaf.dau.edu/aaf/software/cns/

Office of the Under Secretary for Defense for Acquisition and Sustainment. (n.d.-b).
Define capability needs. Retrieved November 7, 2022, from https://aaf.dau.edu/
aaf/software/define-capability-needs/

Office of the Under Secretary for Defense for Acquisition and Sustainment. (n.d.-c).
Execution phase. Retrieved November 7, 2022, from https://aaf.dau.edu/aaf/
software/execution-phase/

Office of the Under Secretary for Defense for Acquisition and Sustainment. (n.d.-d).
FAQs. Retrieved November 7, 2022, from https://aaf.dau.edu/aaf/software/faqs/

Office of the Under Secretary of Defense for Acquisition and Sustainment. (n.d.-e). MVP,
MVCR, and deployment frequency. Retrieved November 7, 2022, from
https://aaf.dau.edu/aaf/software/mvp-mvcr/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

155

Office of the Under Secretary of Defense for Acquisition and Sustainment. (n.d.-f).
Software acquisition. Retrieved November 7, 2022, from https://aaf.dau.edu/aaf/
software/

Office of the Under Secretary of Defense for Acquisition and Sustainment. (n.d.-g). SWP
semi-annual reporting sheet. Retrieved November 7, 2022, from
https://www.milsuite.mil/book/docs/DOC-954816

Office of the Under Secretary of Defense for Acquisition and Sustainment. (n.d.-h). User
agreement (UA). Retrieved November 7, 2022, from https://aaf.dau.edu/aaf/
software/user-agreement/

Office of the Under Secretary of Defense for Acquisition and Sustainment (n.d.-i). Value
assessment2. Retrieved November 7, 2022, from https://aaf.dau.edu/aaf/software/
value-assessment2/

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2019,
November 18). Contracting considerations for agile solutions: Key agile concepts
and sample work statement language [Handbook]. https://www.dau.edu/cop/it/
DAU%20Sponsored%20Documents/Contracting%20Considerations%20for%
20Agile%20Solutions%20v1.0.pdf

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020a,
November 17). Agile and earned value management: A program manager’s desk
guide [Handbook]. https://www.acq.osd.mil/asda/ae/ada/ipm/docs/
AAP%20Agile%20and%20EVM%20PM%20Desk%20Guide%20Update%20Ap
proved%20for%20Nov%202020_FINAL.pdf

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020b,
November 11). Agile metrics guide: Strategy considerations and sample metrics
for agile development solutions [Handbook]. https://aaf.dau.edu/wp-content/
uploads/2022/08/Agile-Metrics-Guide.pdf

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2020c,
October 2). Operation of the software acquisition pathway (DODI 5000.87).
Department of Defense.

Office of the Under Secretary of Defense for Acquisition and Sustainment. (2022a, June
8). Operation of the adaptive acquisition framework (DODI 5000.02).
Department of Defense.

Office of the Under Secretary for Defense for Acquisition and Sustainment. (2022b, July
27). DOD’s software acquisition pathway: Digital delivery at the speed of
relevance [Brief]. https://www.dau.edu/Lists/Events/Attachments/617/
SWP%20Take%20Three%20-%20Lets%20Talk%20Agile%20-
%2027%20Jul%202022b.pdf

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

156

Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics.
(2015). Performance of the defense acquisition system: 2015 annual report.

Office of the Under Secretary of Defense for Research and Engineering. (2018). Design
and acquisition of software for defense systems. Defense Science Board.
https://apps.dtic.mil/sti/citations/AD1048883

O’Hearn, B. (2022). Lean, agile, and DevSecOps for AFLCMC/WIU engineering.
Carnegie Mellon University.

Oza, N., & Korkala, M. (2012). Lessons learned in implementing agile software
development metrics. In UK Academy for Information Systems Conference
Proceedings (p. 38). https://aisel.aisnet.org/ukais2012/38/

Özkan, D., & Mishra, A. (2019). Agile project management tools: A brief comparative
view. Cybernetics and Information Technologies, 19(4), 17–25.

Packaged Agile. (2020, December 13). GAO and DOD say earned value management
(EVM) makes sense on agile programs. But is it a good fit?
https://packagedagile.com/gao-and-dod-say-earned-value-management-evm-
makes-sense-on-agile-programs-but-is-it-a-good-fit/

Park, J. M. (2010). Agile EVM. Northop Grumman.

Patel, S. (2021). Dynamic modeling of the effectiveness of software development methods
on DOD programs [Doctoral dissertation, The George Washington University].
GWU Archive: ProQuest. https://www.proquest.com/dissertations-theses/
dynamic-modeling-effectiveness-software/docview/2572595494/se-2

Patton, J., & Economy, P. (2014). User story mapping: Discover the whole story, build
the right product. O’Reilly Media.

Pelrine, J. (2011). On understanding software agility: A social complexity point of view.
Emergence: Complexity & Organization, 13.

Perri, M. (2018). Escaping the build trap: How effective product management creates
real value. O’Reilly Media.

Poppendieck, M. (2011). Principles of lean thinking. IT Management Select, 18(2011), 1–
7.

Rawsthorne, D. (2006). Calculating earned business value for an agile project.
CollabNet. https://www.agileleanhouse.com/lib/lib/Organizations/_CollabNet/
CalculatingEarnedBusinessValueforAgileProject.pdf

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

157

Rawsthorne, D. (2008). Monitoring scrum projects with AgileEVM and earned business
value (EBV) metrics. CollabNet. https://1library.net/document/y6o7k3gy-
monitoring-scrum-projects-agileevm-earned-business-value-metrics.html

Reinertsen, D. G. (1997). Managing the design factory. Simon and Schuster.

Reinertsen, D. G. (2009). The principles of product development flow: Second generation
lean product development. Celeritas.

Reinertsen, D. G. (2011). Towards developing accelerators in half the time. In
Proceedings of the Second International Particle Accelerator Conference (pp.
1978–1980).

Ries, E. (2011). The lean startup: How today’s entrepreneurs use continuous innovation
to create radically successful businesses. Currency.

Ries, E. (2017). The startup way: How modern companies use entrepreneurial
management to transform culture and drive long-term growth. Currency.

Rigby, D. K., Sutherland, J., & Takeuchi, H. (2016). The secret history of agile
innovation. Harvard Business Review.

Rossberg, J. (2019). Agile project management with azure DevOps: Concepts, templates,
and metrics. Apress.

Royce, W. (1970). Managing the development of large software systems. In Technical
Papers of Western Electronic Show and Convention (WesCon) (pp. 328–338).
http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf

Schwartz, M. (2020). The delicate art of bureaucracy: Digital transformation with the
monkey, the razor, and the sumo wrestler. IT Revolution.

Section 809 Panel. (2018). Report of the Advisory Panel on Streamlining and Codifying
Acquisition Regulations: Volume 1 of 3. https://discover.dtic.mil/section-809-
panel/

Singer, P. W., Friedman, A. (2014). Cybersecurity and cyberwar: What everyone needs
to know. Oxford University Press.

Smith, P. G., Reinertsen, D. G. (1997). Developing products in half the time: New tools,
new rules. Wiley.

Stretton, A. (2007). A short history of modern project management. PM World Today,
9(10), 1–18.

Sulaiman, T. (2007). AgileEVM: Measuring cost efficiency across the product life cycle.
InfoQ. https://www.infoq.com/articles/agile-evm/

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

158

Sulaiman, T., Barton, B., & Blackburn, T. (2006). AgileEVM—Earned value
management in scrum projects. In AGILE ‘06: Proceedings of the Conference on
AGILE 2006 (pp. 10–16).

Surbiryala, J., & Rong, C. (2019, August). Cloud computing: History and overview. In
2019 IEEE Cloud Summit (pp. 1–7). IEEE.

Takeuchi, H., & Nonaka, I. (1986). The new product development game. Harvard
Business Review, 64(1), 137–146.

Tate, D., & Bailey, J. (2022). When is it feasible (or desirable) to use the software
acquisition pathway? In Proceedings of the 19th Annual Acquisition Research
Symposium, 1, 367–381. https://dair.nps.edu/handle/123456789/4541

Thayer, R. H. (2003). Software engineering glossary. IEEE Software, 20(4), c3.

Thomke, S., & Reinertsen, D. (2012). Six myths of product development. Harvard
Business Review, 90(5), 84–94.

Wind, J., & Mahajan, V. (1997). Issues and opportunities in new product development:
An introduction to the special issue. Journal of Marketing Research, 34(1), 1–12.

Winterowd, R. (2013). Agile and EVM for the DOD: A review of the challenges and a
new approach to solve them [Master’s thesis, Regis University]. Regis Archive:
ePublications. https://epublications.regis.edu/theses/233/

Wodtke, C. R. (2016). Radical focus: Achieving your most important goals with
objectives and key results. Boxes and Arrows.

Workman, J. P., Jr. (1993). Marketing’s limited role in new product development in one
computer systems firm. Journal of Marketing Research, 30(4), 405–421.

Wrubel, E., Miller, S., Lapham, M. A., Chick, T. A., Brey, D., Nidiffer, K., Boardman,
R., Carlson, R., Crowe, P., Walker, J. C., Matuzic, P., & Molin, C. (2014). Agile
software teams: How they engage with systems engineering on DOD acquisition
programs (CMU/SEI-2014-TN-013). Carnegie Mellon University Software
Engineering Institute. https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=295943

Yeo, K. T. (1991). Forging new project value chain—Paradigm shift. Journal of
Management in Engineering, 7(2), 203–212.

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

159

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

NAVAL POSTGRADUATE SCHOOL | MONTEREY, CALIFORNIA | WWW.NPS.EDU

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL

WWW . N P S . E D U

W H E R E S C I E N C E M E E T S T H E A R T O F W A R F A R E

	I. INTRODUCTION
	A. BACKGROUND
	B. PURPOSE AND SIGNIFICANCE OF STUDY
	C. RESEARCH QUESTIONS
	D. METHODOLOGY
	E. FRAMEWORK
	F. SUMMARY

	II. LITERATURE REVIEW
	A. EARLY SOFTWARE ENGINEERING
	B. DEFENSE PROJECT MANAGEMENT
	C. LEAN PRODUCTION
	D. THE INTERNET ERA
	E. FROM WATERFALL TO AGILE
	F. AGILE PROJECT MANAGEMENT
	G. LEAN DEVELOPMENT
	H. ENTREPRENEURIAL MANAGEMENT
	I. THE CLOUD ERA
	J. MODERN SOFTWARE ENGINEERING
	K. SOFTWARE ACQUISITION REFORM
	L. CHALLENGES IN SOFTWARE ENGINEERING
	M. SUMMARY

	III. AGILE SOFTWARE ENGINEERING METRICS
	A. BACKGROUND
	B. PRE–MINIMUM VIABLE CAPABILITY RELEASE
	C. POST–MINIMUM VIABLE CAPABILITY RELEASE
	D. METRICS PRINCIPLES AND PATTERNS
	E. SUMMARY

	IV. AGILE SOFTWARE ENGINEERING MANAGEMENT
	A. BACKGROUND
	B. TODAY’S PROGRAM MANAGEMENT TOOL KIT
	C. AGILE–EVM INTERACTIONS
	D. ADVISORY REPORTS
	E. MANAGEMENT PRINCIPLES AND PATTERNS
	F. SUMMARY

	V. CONCLUSION
	A. SYNOPSIS
	B. RESEARCH FINDINGS
	(1) What metrics should the DON use to assess agile/​incremental program performance?
	(2) What are the leading tools, monitoring and control methods, and management practices to track and review software acquisition program progress and performance?
	(3) Should EVM be replaced or augmented as the standard for program performance?
	(4) What are the metrics being recommended by the Defense Science Board, Defense Innovation Board Software Acquisition and Practices Study, and Section 809 Panel?

	C. RECOMMENDATIONS
	D. LIMITATIONS
	E. SUMMARY

	APPENDIX. MISCELLANEOUS
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST
	BACK COVER.pdf
	22Sep_Mitchell_Justin_First8
	22Sep_Mitchell_Justin
	22Jun_Mitchell_Justin
	Introduction
	Problem Statement
	Background
	Equipment and Network Setup
	Overview of Results
	Conclusions and Contributions

	Background
	Origin of Research Network
	Open-Source Network Implementation
	Open Source SMSC Options

	Equipment and Network Setup
	Open Stack Network
	Open Stack Network Configuration
	SMS Integration into the OAI Open Stack
	Testbed UE Configuration

	Results
	Devices that Could not Connect to Network
	Testbed Network Speed Tests
	Network Link Budget Analysis

	Conclusions, Contributions, and Future Work
	Conclusions
	Contributions
	Future Work

	USRP B200 Datasheet
	KERNEL AND SOFTWARE CONFIGURATION
	RAN Kernel Configuration
	CN Kernel Configuration
	Software Configuration
	Prerequisites and Initial Docker Set-up
	Build Images
	Create and Configure Containers
	Start Network Functions
	Stopping Network Functions

	EC20 NETWORK OPERATORS LIST
	List of References
	Initial Distribution List

	2 Footer JRL no border.pdf
	22Sep_Ong_Eunice Xing Fang_First8
	22Sep_Ong_Eunice Xing Fang
	I. introduction
	A. Background
	B. Military Communication Network
	C. Problem Statement
	D. Thesis objectives

	II. Literature Review
	A. Wireless ad hoc Networks
	1. Mobile Ad-hoc Networks
	2. Wireless Mesh Networks

	B. network connected UAVs
	1. Ad-hoc Routing Protocol
	2. ISM Bands Regulation
	3. Free Space Path Lost
	4. Antenna Type and Antenna Gain

	III. Exploratory Research
	A. Current Operations COMMUNICATION planning
	B. Need Statement
	C. value Hierarchy
	D. requirements analysis
	E. identification of possible unmanned Aerial Systems
	1. Tactical Drones
	a. DJI Matrice 300 RTK
	b. DeltaQuad Pro VTOL UAV
	c. JTI F160 Inspection and Fighting Drone

	2. Aerostats
	a. SKYSTAR 180
	b. SKYSTAR 300
	c. Desert Star Helikite

	F. Functional Mapping

	IV. Conceptual design
	A. Conceptual Design
	B. Operational Scenario and assumptions
	1. Phase 1: Advancement of Troops along Pre-planned Route
	2. Phase 2: Conduct of Battle and Securing Key Area of Interest
	3. Phase 3: Conduct Battle Damage Assessment
	4. Data Exchange and Average Bit Rate

	V. Feasibility Analysis
	1. Maximum Communication Range
	B. Effective Application throughput
	1. Received Signal Strength as a Function of Distance
	2. Analysis of IEEE 802.11ax Standard
	a. Comparing the Performance between 2.4 GHz and 5.0 GHz

	3. Analysis of IEEE 802.11n Standard

	C. Proposed number of assets required
	1. Simulation of Operational Environment
	2. Communication Coverage
	3. Number of Assets Required

	D. Summary

	VI. Conclusion
	1. Thesis Contributions and Achievements
	2. Future Work

	appendix. Simulation Model
	A. Model layout between two WLAN Nodes
	B. Model layout within a WLAn Node

	List of References
	initial distribution list

	THESIS template-2022.pdf
	Blank Page

