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Abstract 
 
Genetic epidemiological studies have largely focused on SNP mean effects, but variance effects 
may also exist that can indicate the presence of SNP interaction effects. Identification of these 
effects may be useful for improving understanding of disease mechanisms, prediction of 
disease outcomes, and in combination with other data may provide opportunities for 
developments in precision medicine. This thesis aims to develop methodology and software to 
identify and analyse variance loci applied to serum biomarker concentration. To achieve these 
aims, a regression-based Brown-Forsythe variance test was evaluated and implemented in C++ 
and R which enables adjustment of covariates and provides an unbiased variance effect 
estimate for normally distributed traits (Chapter 4). This model was subsequently applied in 
variance genome-wide association studies (vGWAS) of 30 serum biomarkers in UK Biobank 
identifying 468 variance loci of 209 million SNPs tested. These loci were investigated to detect 
82 gene-environment and six gene-gene interactions including three novel epistatic effects 
(Chapter 5). The utility of these vGWAS summary statistics in detecting violation of Mendelian 
randomization homogeneity assumptions was explored through a series of simulation studies. 
This approach was subsequently applied to investigate the impact of homogeneity violation of 
low-density lipoprotein, urate and glucose on cardiovascular disease, gout, and type 2 diabetes, 
respectively. There was no strong evidence of difference in causal estimate after removing 
instruments associated with exposure variance. These findings are consistent with the main 
analysis targeting the population average causal effect (Chapter 6). To facilitate sharing and 
future analyses of vGWAS summary statistics, an efficient and robust storage format was 
developed using the variant call format that can be used for any GWAS analysis along with 
Python packages, web-interface and data processing pipeline which are widely used and 
embedded within the MRC-IEU OpenGWAS infrastructure (Chapter 7).  
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Chapter 1: Introduction 

1.1 Contribution statement 

Parts of the introduction were taken from papers or manuscripts that I wrote but that 

were contributed towards by others.  

Background on genome-wide association studies including sharing of summary statistics 

was taken from Lyon et al, 20211, a paper which I drafted and was edited by Dr Shea Andrews, 

Dr Ben Elsworth, Professor Tom Gaunt, Dr Gibran Hemani and Professor Edoardo Marcora.  

Background on Mendelian randomization and instrumental variable assumptions was 

taken from a manuscript in preparation which I wrote and was edited PhD supervisors and Dr 

Fernando Hartwig (University of Pelotas). 

Background on interaction effects, variance QTLs, and biomarkers forms part of a 

manuscript I wrote that was edited by PhD supervisors available as a preprint on MedRxiv (Lyon 

et al, 2022)2 

1.2 Background 

1.2.1 Complex traits 

Complex traits are phenotypes influenced by many small genetic effects at loci 

throughout the genome (also known as polygenic traits) in combination with environmental 

factors3,4. This is in contrast with Mendelian traits (also known as monogenic traits) which are 

affected by highly penetrant variation in a single or small group of genes3. 

The genetic contribution of a phenotype 𝑃 can be described in terms of heritability 

which is defined as the proportion of phenotype variance 𝜎!𝑃 explained by genetic 

contribution3,5 𝜎!𝐺. Narrow-sense heritability ℎ! concerns only the variance explained by 
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additive genetic effects 𝜎!𝐴 (Equation 1.2.1.1)3,5. Meanwhile, broad-sense heritability 𝐻! is the 

total variance explained by the genetic contribution 𝜎!𝐺 (Equation 1.2.1.2)3,5 which includes 

additive 𝜎!𝐴, dominant 𝜎!𝐷 and interaction 𝜎!𝐼 effects (Equation 1.2.1.3)3,5. In addition, 

phenotypes are affected by environmental factors 𝐸 as well as interaction of genetics 𝐺 and 

environment 𝐺𝐸 (Equation 1.2.1.4)5. 

Equation 1.2.1.1 Narrow-sense heritability 

Narrow-sense heritability ℎ! is defined by: 

ℎ! = 𝜎!𝐴/𝜎!𝑃 

Where 𝜎!𝐴 is the phenotypic variance explained by the additive genetic component and 𝜎!𝑃 is 

the total phenotypic variance3,5. 

Equation 1.2.1.2 Broad-sense heritability 

Broad-sense heritability 𝐻! is defined by: 

𝐻! = 𝜎!𝐺/𝜎!𝑃 

Where 𝜎!𝐺 is the phenotypic variance explained by the genetic contribution and 𝜎!𝑃 is the 

total phenotypic variance3,5. 

Equation 1.2.1.3 Genetic variance components 

Phenotypic variance explained by the genetic contribution 𝜎!𝐺 is the sum of: 

𝜎!𝐺 = 𝜎!𝐴 + 𝜎!𝐷 + 𝜎!𝐼 

Where phenotypic variance explained by additive, dominant and interaction genetic effects are 

denoted by 𝜎!𝐴, 𝜎!𝐷 and 𝜎!𝐼, respectively3,5. 

Equation 1.2.1.4 Phenotype definition 

 The phenotype of an organism is expressed as the sum of: 
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𝑃 = 𝐺 + 𝐸 + 𝐺𝐸 

Where 𝑃 is the phenotype, 𝐺 and 𝐸 are the genetic and environmental contributions and 𝐺𝐸 

are interactions between genotype and environment5. 

1.2.2 Genome-wide association study 

The genome-wide association study (GWAS) is a powerful method for identifying genetic 

loci associated with any trait, including case-control studies for binary disease outcomes and 

quantitative measures such as height and gene expression6,7. A GWAS is performed using a 

statistical test of the relationship between SNP allele count for genetic variants throughout the 

genome and phenotype in the study population7. 

GWAS has implicit assumptions that individuals under study have similar genetic 

ancestry and vary only because of the SNP under investigation7. Violation of this assumption 

may induce spurious associations hence quality control procedures are essential7. 

Some commonly used quality control steps including restricting to high quality SNPs by 

removing variants that depart from Hardy-Weinberg equilibrium (HWE)7, have high 

missingness7, or are poorly imputed7. Secondly, participants with SNP-phenotype sex 

mismatches are removed to avoid sample errors and aneuploidies7. Third, the sample can be 

restricted to a homogeneous and unrelated population (unless performing family-based 

analyses8) using measures of genetic ancestry and relatedness7. Inspection of GWAS test 

statistics compared with the null distribution is important to look for systematic inflation of test 

statistics which may indicate results are unreliable7. 

Since common SNPs that are physically close are often inherited together and highly 

correlated (known as linkage disequilibrium [LD])7, GWAS provides evidence of association for 
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the genetic locus and trait, but the strongest associated SNP may not be causally related to the 

outcome9 (Chapter 1.2.4). 

1.2.3 Population stratification 

Genetic association studies that correlate variant allele count with disease occurrence or 

quantitative trait are especially susceptible to confounding (Chapter 1.3.2) by differences in 

ancestry across the study population, a situation known as population stratification7. This 

occurs because allele frequencies vary between populations regardless of the trait of interest10 

and can bias SNP-trait estimates through confounding (Chapter 1.3.2). However, there are 

several approaches that may be used to mitigate this type of bias including restriction to an 

ethnically homogeneous population10,11, adjustment for self-reported or genetically11 measured 

ancestry, family-based analyses8,10–12 and random polygenic effect13. Secondly, replication 

studies should be performed to increase robustness of findings10. 

1.2.4 Fine mapping of causal loci 

GWAS (Chapter 1.2.2) identifies loci associated with a trait, but the top associated SNP 

(i.e., lead SNP) at a locus may not be causally (Chapter 1.3.4) responsible for the observed 

effect on trait, instead it may just be correlated with the causal SNP9. This is because either the 

causal SNP was not available for testing (i.e., not typed or imputed) or due to low power and 

sampling variability a related but non-causal SNP gave rise to a lower p-value9. The goal of 

identifying causal SNP(s) at a locus is known as fine mapping9.  

Three main approaches to fine mapping have been suggested9. The heuristic approach 

prioritises candidate causal SNPs in high LD with the lead SNP by applying a correlation 

threshold but this approach does not provide any measures of confidence in the candidate 
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causal SNPs9. Penalised regression has been applied to identify potential causal SNPs by 

modelling all SNPs in a joint model and then shrinking or removing weak predictors9. Bayesian 

methods have been proposed that are advantageous because they provide probabilistic 

evidence for each candidate SNP9. 1. Candidate causal SNPs can be further refined using 

functional annotation9. 

1.2.5 Sharing of GWAS results 

Results from GWAS analyses (Chapter 1.2.2) have led to a wide range of secondary 

research applications including causal gene and functional variant prioritisation14, pathway 

analysis6, causal inference15, risk prediction6, genetic correlation16 and heritability estimation17 

among others. To facilitate these applications, development of new methodologies and 

replication of findings it is vital that GWAS results are made freely available for research 

purposes7. This message is widely accepted, with many large consortia providing access to data7 

and large databases such as the MRC-IEU OpenGWAS platform18 and GWAS catalog19 

aggregating and distributing these data. Sharing of data has also become a condition of future 

research funding7. 

European General Data Protection Regulation (GDPR) laws set out strong requirements 

for data sharing to avoid de-identification and ensure appropriate consent is in place which 

make sharing of individual level data challenging7. However, GWAS results are summary 

statistics that describe the association between SNP and trait (i.e., variant, effect size, standard 

error, test p-value etc) without including individual identifiable information7 and may be shared 

freely often without restriction. But there is currently no common agreed format for storing 

and sharing of GWAS summary statistics. 
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1.2.6 Issues with non-standard GWAS summary statistics 

Various processing issues are typically encountered during secondary analysis of GWAS 

summary statistics. First, there is often inconsistency and ambiguity of which allele relates to 

the effect size estimate20 (the “effect” allele). Confusion over the effect allele can have 

disastrous consequences on the interpretation of GWAS findings and the validity of post-GWAS 

analyses20. For example Mendelian randomization (MR; Chapter 1.3.7) studies may provide 

causal estimates with incorrect effect directionality20. Likewise, prediction models based on 

polygenic risk scores21 might predict disease wrongly or suffer reduced power if some of the 

effect directionalities are incorrect. Second, the schema (i.e., which columns/fields are included 

and how they are named) of these tabular formats varies greatly22. Absent fields can limit 

analyses and although approaches exist to estimate the values of some of these missing 

columns (e.g., standard error from P value23) imprecision may be introduced reducing 

subsequent test power. Varying field names are easily addressed in principle, but the process 

can be cumbersome and error prone. Third, data are frequently distributed with no or 

insufficient metadata describing the study, trait(s), and variants (e.g., trait measurement units, 

variant id/annotation sources, etc.) which can lead to errors, impede integration of results from 

different studies and hamper reproducibility22. Fourth, querying unindexed text files is slow and 

memory inefficient24, making some potential applications computationally infeasible (e.g., 

systematic hypothesis-free analyses). 

1.2.7 Existing GWAS summary statistics formats 

Some proposals for a standard tabular format have been made. The NHGRI-EBI GWAS 

Catalog developed a tab-separated values text format with a minimal set of required (and 
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optional) columns along with standardised headings and separate metadata file19,25. The SMR 

tool26 introduced a binary format for rapid querying of quantitative trait loci. These approaches 

are adequate for storing variant level summary statistics but do not enforce allele consistency 

or support embedding of essential metadata within the GWAS file. There is a need to develop a 

GWAS summary statistics file format that can address these limitations. 

1.3 Experimental design 

1.3.1 Observational analysis 

 Observational studies aim to measure the association between an exposure and 

outcome using a study sample of the population27 observed in the data. However, as the 

exposure cannot be controlled during the experiment, observational studies do not provide 

evidence on cause and effect owing to the interplay of many other factors (known as 

confounders Chapter 1.3.2) which may not be known or measured27. 

1.3.2 Confounding 

A confounder is, or represents, a common cause of both exposure and outcome creating 

a pathway between exposure and outcome leading to biased associations28. Accounting for the 

confounder effect either by adjustment or stratification can remove this bias and produce valid 

estimates of the exposure-outcome effect28. However, these procedures require that all 

confounders are hypothesised, measured (without measurement error) and adjusted in the 

model but this is difficult to achieve28. Instead, certain study designs are employed which 

minimise confounding such as the randomised control trial29 (RCT) and MR15 (Chapter 1.3.7). 
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1.3.3 Reverse causation 

Reverse causation is another form of bias that is especially problematic for 

observational studies and is said to occur when the outcome at an earlier timepoint influences 

the exposure under investigation30. For example, early on in the disease process the disease 

itself may influence changes in the exposure30. 

1.3.4 Causal effect 

 In contrast with observation studies (Chapter 1.3.1), experimental studies such as the 

RCT aim to estimate the causal effect of an exposure-outcome relationship27 (Figure 1.3.4.1). 

Since interventions developed to target an outcome will only be successful if they change the 

level of an exposure that is causally related to said outcome27. This requires knowledge of the 

exposure-outcome causal effect which can be obtained through experimental studies in which 

the researchers’ have control over the exposure and can limit confounding variables27.  
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 Figure 1.3.4.1 Confounding causal diagram 

 

Causal diagram of confounded relationship. 

  

Confounder

Exposure Outcome



   
 

 33 

1.3.5 Instrumental variable analyses 

Instrumental variable (IV) analyses provides causal evidence for an exposure-outcome 

effect that is less susceptible to confounding (Chapter 1.3.2) and reverse causation (Chapter 

1.3.3) than conventional observational epidemiological associations15,31,32 (Chapter 1.3.1). IV 

analyses employ a third variable known as an IV or instrument that is not affected by 

confounding of the outcome15,31,32, strongly predicts the exposure15,31,32 and is unrelated to the 

outcome except via the exposure15,31,32. This instrument may then be used to test for a causal 

effect of exposure on outcome. Examples of suitable instruments include changes to and 

regional variation in public policy (e.g., rising of school leaving age33 and variation in prescribing 

policies34) and genetic variants15. 

1.3.6 Instrumental variable assumptions 

Formally, IV analyses require three core assumptions (IV1-IV3)15,31,32 (Figure 1.3.6.1). 

IV1, the instrument is robustly associated with the exposure (relevance assumption)15,31,32. IV2, 

there are no confounders of the instrument-outcome relationship (exchangeability)15,31,32. IV3, 

the instrument only affects the outcome via the exposure (exclusion restriction)15,31,32. 

However, only the relevance assumption (IV1) can be proven to hold true31,32. The plausibility of 

these assumptions must be considered to draw appropriate inference31,32. 
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 Figure 1.3.6.1 Instrumental variable assumptions diagram 
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C 

 

 
Causal diagrams of instrumental variable analysis assumptions. X, exposure. G, instrument, Y, 

outcome. U, unmeasured/unknown confounder. A, Relevance assumption (IV1) showing bold 

edge between genotype and exposure indicating the requirement for a robust association. B, 

exchangeability (IV2) showing dotted line indicating no unmeasured confounders of the 

genotype-outcome relationship. C, exclusion restriction (IV3) and dotted line indicating no 

direct effect of genotype on outcome independent of the exposure. Adapted from Sanderson et 

al31 with permission from Springer Nature (License Number 5367640337820). 
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IV1-3 assumptions are sufficient to test the sharp null hypothesis that the exposure does 

not have an effect on the outcome for any individual in the population31,35. At least one 

additional assumption – these are often collectively referred to as IV4 assumptions – is needed 

to produce a clearly defined causal estimand point estimate and confidence interval31,35,36.  

Several IV4 assumptions have been proposed and the choice of assumption influences 

interpretation of the estimate35,36. The causal estimand of interest is typically the average 

causal effect35 (ACE). For a binary exposure, ACE is the average difference in outcome between 

exposure groups35,37. For a continuous exposure, ACE defines the average difference for a one 

unit increase in exposure38. 

Homogeneity of the IV-exposure39 and/or exposure-outcome40 effect is necessary to 

estimate the population ACE (PACE) which is ACE over the whole population under study. A 

weaker assumption of IV-exposure monotonicity (i.e., “no defiers”) will produce a local ACE 

(LACE), which is the ACE in a subgroup of the population (i.e. “compliers”), but this subgroup 

may be unidentifiable35. This is important since an intervention developed to target a LACE may 

only be effective among the compliers41. Meanwhile, under PACE an intervention will be 

effective across the entire population41. 

Recently, the NO Simultaneous Heterogeneity (NOSH) assumption was proposed35 

which implies PACE can be identified even in the presence of effect modification of either IV 

association with exposure or exposure-outcome association, provided that effect modifiers are 

independent (NOSH assumption one) and the exposure-outcome relationship is additive linear 

(NOSH assumption two). 
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Although IV4 cannot be proven to hold, hypothesised testing of IV-exposure interaction 

effects to evaluate homogeneity assumptions has been suggested34. But this approach may 

miss unanticipated interaction effects, cannot be used if the modifier is unmeasured, and 

potentially incurs a large multiple testing burden4,42. Alternatively, IV association with exposure 

variance has been suggested as an approach to assess IV4 assumptions31,35,43 but to my 

knowledge this has not yet been explored. 

1.3.7 Mendelian randomization 

 Mendelian randomization (MR) is a form of IV analysis that employs genetic variants to 

proxy for an exposure in order to estimate the causal exposure-outcome effect free of 

observational confounding and reverse causation15. MR framework requires the IV three core 

assumptions described above (Chapter 1.3.5; Figure 1.3.6.1)31,32. 

MR can provide causal evidence of the effect of modifiable risk factors on disease31,32 

even when clinical trials are ethically infeasible or impractical. For example MR has been 

applied to study the effects of alcohol consumption on cardiovascular disease31 but an RCT of 

alcohol consumption would not be ethical. MR is less susceptible to confounding (Chapter 

1.3.2) and reverse causation (Chapter 1.3.3) than conventional observational epidemiological 

analyses31,32 (Chapter 1.3.1).  

 MR estimation may be performed using individual level data using two-stage least 

squares provided that the exposure and outcome are available for each observation31,32. 

Alternatively, two-sample MR may be used in which the instrument-exposure and instrument-

outcome associations are estimated from two separate samples derived from the same 
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population31,32. Two-sample MR may be performed using freely available data in the form of 

GWAS summary statistics31,32 (Chapter 1.2.2). 

Violation of IV1 produces weak instrument bias44 (Chapter 1.3.6). Under one-sample 

MR, weak instrument bias produces estimates that are biased in the direction of the 

observational association45. Meanwhile, weak instrument biased with two-sample MR will 

produces estimates closer to the null45 provided there is no sample overlap between exposure 

and outcome datasets45. Where there is sample overlap, weak instruments may produce biased 

estimates towards the observational association45 (Chapter 1.3.1). 

One potential source of error in two-sample MR is poor harmonisation of GWAS data 

(Chapter 1.2.2) that result in mismatching of effect alleles20. This is problematic as, incorrect 

effect alleles between studies will produce an MR estimate with the wrong sign20. 

 One approach to evaluate the plausibility of MR assumptions is through the use of 

positive and negative controls31,46. Controls could be outcomes which are expected (positive) or 

unexpected (negative) to be causally affected by the exposure using evidence from other 

studies or epidemiological domain knowledge31,46. Alternatively, the instrument-outcome 

association may be evaluated in subgroups of the population where the instrument is either 

anticipated (positive control) or not anticipated (negative control; also known as the no-

relevance group47) to associate with the exposure31,46. For example, the MR effect of alcohol 

intake on cardiovascular disease was evaluated in a Chinese population31. In this population, 

women are less likely to consume alcohol, and the negative control was assessed by estimating 

the effect among women only where the instrument-exposure effect is expected to be close to 

the null31.  
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1.4 Effect modification 

1.4.1 Gene-interaction effects 

SNPs may interact with other SNPs (gene-gene interaction, also known as epistasis4; 

GxG) or the environment (gene-environment; GxE). The presence of genetic interaction effects 

may imply perturbation of protein abundance or function that varies by the level of another 

variable known as the modifier4. 

Genetic interaction effects are important to study for several reasons. First, this 

evidence can aid in elucidating disease mechanisms and improving our understanding of 

disease biology by using genetic information to study implicated pathways4,48. Second, to 

improve prediction of disease outcomes using genetic data4,48 and by implication improve our 

understanding of the heritable components of disease3,4. This may help to explain ‘missing 

heritability’3,4 (Chapter 1.2.1). Third, to identify therapeutic targets which may be used to 

develop drugs or preventative advice48,49 supporting developments in precision medicine 

(Chapter 1.4.2). 

1.4.2 Precision medicine 

Precision medicine is a treatment paradigm that aims to develop tailored treatments for 

patients within subgroups defined by characteristics of individual level biology with the aim of 

enhancing efficacy and reducing unwanted side-effects50–52. This approach has been applied to 

improve efficacy of treatment for cystic fibrosis patients with specific sodium channel 

mutations and cancers with certain somatic mutations52. Patient subgroups have also been 

defined by variation in VKORC1 and CYP2C9 which affect warfarin metabolism enabling tailored 

dosing strategies to improve efficacy and reduce side-effects52. 
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1.4.3 Identifying genetic interaction effects 

Genetic interaction effects (Chapter 1.4.1) have traditionally been identified assuming 

linear model using linear or logistic regression for continuous and binary outcomes, 

respectively4. This may be accomplished by comparing a full regression model containing all 

possible interaction terms (GxE: 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 × 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 and 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 × 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡; 

GxG: 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 × 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 and 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 × 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 and 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 × 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 and 

𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 × 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡53) with a restricted model containing only main effects by contrasting 

model fit for example using an F-test53 (Chapter 2.2.6) or likelihood ratio test4. Alternatively, 

when only linear additive interaction effects are anticipated then a single interaction term (GxE: 

𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 × 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡; GxG: 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 × 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒) may be estimated and the coefficient 

taken as evidence for interaction4 (Chapter 2.2.5). The latter consumes fewer degrees of 

freedom and therefore has greater power if only linear additive interaction effects are present4. 

The search space for interaction effects is potentially very large and for example could 

involve exhaustively testing every SNP in the genome against every other SNP yielding 

hundreds of billions of tests4. The same may be potentially true for testing of GxE effects if 

modifiers measured across the entire phenome are considered42. The number of modifiers 

tested in a GxE experiment is usually lower than for GxG analysis but could include high 

dimensional measurements such as continuous monitoring sensors54. This will lead to large 

numbers of tests and consequently elevated type I error rate7. Type I error rate can be 

controlled using multiple testing correction, for example with Bonferroni-correction by dividing 

significance threshold by the number of tests performed7. However, controlling type I error 

rates comes at the cost of reduced power to detect effects (i.e., type II errors)7. Additionally, 
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when statistical power is low, findings that are statistically ‘significant’ are more likely to be 

overestimated compared with the true value55. To reduce multiple testing, pairwise interaction 

analyses of SNPs with moderate main effects can be performed56. However, this approach may 

miss weaker overall (main) effects that are strong in subgroups of the population or opposing 

effect directionality between population subgroups57, yet these may offer the greatest 

potential for precision medicine. 

 Aside from multiple testing correction, testing for an interaction term itself has lower 

power than for main effects57. For example, under an RCT the sample size needed to detect an 

interaction with equal sized subgroups is around four times the size needed to detect the main 

effect of equal magnitude57,58. Before interaction findings may be considered robust it is 

essential for independent replication and an appraisal of biological plausibility by considering 

gene function and affected biological pathway(s)48. 

1.4.4 Previously reported genetic interaction effects 

A search of PubMed (https://pubmed.ncbi.nlm.nih.gov/) with the term "gene-

environment interaction" OR "gene-gene interaction" OR "epistasis" identified a sizable 20,476 

results (retrieved 3rd August 2022). However, the validity of previous gene-interaction studies 

has been questioned59,60. It is thought low replicability is due to low power and increased type I 

error rate as a consequence of multiple testing and publication bias59,60. Following are a small 

subset of gene-interaction findings that have been reported with evidence from more than one 

study and are therefore more likely to be valid48. 

The M1CR locus encodes a melanocortin receptor that controls the level of melanin 

found in skin which affects skin colour61. Melanin has a protective role against skin cancer from 
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UV exposure61. Previously studies have identified a gene-environment interaction effect of 

variation at M1CR, and skin cancer modified by sun light exposure61. Additionally, a second skin 

cancer predisposition gene, CDK2NA involved in cell cycling, has been reported to have a gene-

gene interaction effect with M1CR on melanoma reducing the age of onset by up to 20 

years62,63. 

Low dietary intake of folate and methionine combined with high intake of alcohol is a 

risk factor for colorectal cancer64. The enzyme methylenetetrahydrofolate reductase encoded 

by the MTHFR gene is responsible for metabolism of folate and methionine which are 

substrates for DNA synthesis64. Variation in MTHFR associated with reduced enzyme activity has 

an interaction effect on colorectal cancer risk modified by dietary levels of folate and 

methionine64. 

Circulatory low-density lipoprotein (LDL) concentration is a risk factor for cardiovascular 

disease (CVD)65. Apolipoprotein E (ApoE) activates lipoprotein receptors which leads to LDL 

uptake and removal by the liver65. LDL levels and CVD risk are also affected by dietary intake. 

Effect of dietary intake of LDL on CVD was found to vary by ApoE genotype65 which highlights a 

production and clearance interaction effect. 

Alzheimer’s disease (AD) is associated with chronic inflammation mediated by microglia 

and astrocytes that release inflammatory cytokines such as IL-6 and IL-1066. Variation in the 

genes encoding these cytokines IL6 and IL10, respectively are independently associated with AD 

risk66. Gene-gene interaction effects of IL6 and IL10 were shown to increase AD risk66. 



   
 

 43 

1.4.5 Qualitative interaction effects 

In addition to estimating any genetic interaction effect(s) (Chapter 1.4.1), it is important 

to understand the qualitative nature of the interaction57. Qualitative interactions describe the 

phenomenon where the exposure has opposing effects on the outcome between subgroups 

which may be of equal or differing magnitude57. This could be across groups of a categorical 

modifier or quantiles of a continuous modifier. These can be identified by examining the effect 

of a SNP on outcome across levels of the modifier57. As discussed above, a SNP with an 

interaction effect on an outcome may only have an effect on an outcome within subgroups of 

individuals who are exposed to an environmental factor or possess specific genotypes57. 

Alternatively, a SNP may act in the same direction on an outcome within all subgroups, but with 

different sizes of effect57.   

1.4.6 Interaction effects on trait variance 

Genetic loci with interaction effects (Chapter 1.4.1) on a trait may observed by their 

association with trait variance56. The effect of an interaction on trait variance can be 

demonstrated using simulated data, as shown in Figure 1.4.6.1. Here, series A has a SNP main 

effect only and the outcome is linearly associated with a unit increase in exposure. This 

produces an effect with constant variance (also known as homoscedasticity). Meanwhile, series 

B has a SNP main and interaction effect and consequently the SNP is associated with outcome 

mean and variance (also known as heteroscedasticity).  Loci that associate with trait variance 

are known as variance quantitative trait loci67 (vQTL; Chapter 1.5).   



   
 

 44 

 Figure 1.4.6.1 SNP effect on trait mean and variance under interaction 

 

Illustration of SNP effect on trait median and interquartile range under main effect only (A) or 

main and interaction effect (B). In both cases, the simulated SNP 𝑥 was drawn from 

𝑏𝑖𝑛𝑜𝑚(2,0.33′) and effect modifier 𝑢	from 𝑁(0,1) set to have main effects of one. The 

outcome was simulated to have main effects only (A) with 𝑦 = 𝑥 + 𝑢 + 𝜖 or main and 

interaction effects (B) with 𝑦 = 𝑥 + 𝑢 + 𝑥 × 𝑢 × 2 + 𝜖 where the error term 𝜖 was drawn from 
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the standard Normal distribution. A, SNP has main effect only and homoscedastic error. B, SNP 

has main and interaction effect with heteroscedastic errors. SNP, single nucleotide 

polymorphism allele dosage.  
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1.5 Variance QTL analysis 

1.5.1 Statistical tests for detecting vQTLs 

Whereas GWAS (Chapter 1.2.2) estimates the SNP mean effect on trait outcome typically 

applying linear or logistic regression7, a range of statistical tests have been proposed to detect 

SNP association with trait variance68–70 (henceforth variance GWAS [vGWAS]; Table 1.5.2.1). 

Several popular variance tests applied to GWAS are described as follows and discussed in 

relation to previous studies in Chapter 1.5.2 with summary in Table 1.5.2.1. 

Equation 1.5.1.1 The Brown-Forsythe test 

The Brown-Forsythe test71 evaluates trait variance across categorical groups producing 

test statistic 𝑊 which follows an 𝐹-distribution with 𝑘 − 1 and 𝑁 − 𝑘 degrees of freedom. 

𝑊 =
(𝑁 − 𝑘)
𝑘 − 1 ×

∑ 𝑁"M𝑌O" − 𝑌OP
!#

"$%

∑ ∑ M𝑌"& − 𝑌O"P
!'!

&$%
#
"$%

 

Where 𝑁 is the sample size, 𝑘 is the number of groups, 𝑁"  is the sample size in the 𝑗th 

group. 𝑌"&  is the outcome absolute residual for the 𝑖th observation in the 𝑗th group from within 

group median. 𝑌O"  is the mean of 𝑌"&  for the 𝑗th group and 𝑌O is the mean of 𝑌O"  across groups. 

Since the Brown-Forsythe test compares outcome variability among a categorical exposure, the 

test cannot be applied to imputed genotype data and cannot adjust for covariates (although the 

outcome may be pre-adjusted or stratified to account for confounding). The test also has no 

variance effect estimate and does not assume linearity between exposure and outcome. The 

Brown-Forsythe test is very similar to Levene’s test72, which estimates the outcome residual 

from the outcome mean rather than median as by Brown and Forsythe. 

Equation 1.5.1.2 Bartlett’s test 
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Bartlett’s test73 evaluates the null hypothesis of homoscedasticity of outcome variance 

among categorical groups indexed by 𝑖. 

𝑇 =
(𝑁 − 𝑘)	𝑙𝑛M𝜎T(!P − ∑ (𝑁& − 1)	𝑙𝑛(𝜎&!)#

&$%

1 + 1
3(𝑘 − 1) UΣ&$%

# U 1
𝑁& − 1	

W − 1
𝑁 − 𝑘W

 

Where 𝑁 is the sample size, 𝑘 is the number of groups, 𝜎(! is the population variance and 𝜎&! is 

the within group variance. The test statistic 𝑇 follows the chi-square distribution with 𝑘 − 1 

degrees of freedom. As with the Brown-Forsythe test, Bartlett’s test cannot adjust for 

covariates or be applied to imputed genotype data where the genotype takes a continuous 

value. This test requires no linearity assumptions and does not produce a variance effect 

estimate. 

Equation 1.5.1.3 Fligner-Killeen test 

The Fligner-Killeen test68,74 is a rank score based test of homoscedasticity among 

categorical groups producing a chi-squared statistic with 𝑘 − 1 degrees of freedom. 

𝜒#)%! ~
Σ&$%# 𝑁&(�̅�& − 𝑎O)!

𝑉!  

Where 𝑁&  is the sample size for the 𝑖𝑡ℎ group across 𝑘 number of groups, 𝛼 is a rank score 

obtained using Φ)%, the standard Normal quantile function: Φ)%(
%* !

"#$
!
). Where 𝑗 is the rank of 

the absolute residual of |𝑦&" − 𝑦_&| and 𝑦&"  is the outcome for the 𝑗𝑡ℎ individual belonging to the 

𝑖𝑡ℎ	group and 𝑦_&  is the outcome median for the 𝑖𝑡ℎ group. �̅�&  is the mean of 𝑎 for the 𝑖𝑡ℎ 

group. 𝑎O is the mean of 𝑎 across all groups. As with the Brown-Forsythe test, the Fligner-Killeen 

test cannot be applied to imputed genotypes or adjust for covariates. The test provides no 

variance effect estimate and has no linearity assumptions. 
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Equation 1.5.1.4 Double generalized linear model 

The double generalized linear model75,76 (DGLM) is a regression-based test of the 

exposure effect on trait mean and variance assuming linearity. Given a normally distributed 

outcome vector 𝑌 and single genotype locus vector 𝑋, the DGLM maximises the likelihood to 

solve: 

𝑌 = 𝛽+ + 𝛽%𝑋 + 𝜖 

𝜖	~	𝑁(0, exp	(𝛾+ + 𝛾%𝑋)) 

Where 𝛽+ and 𝛾+ are the mean and variance intercept terms, and 𝛽% and 𝛾% are the estimated 

SNP effects on trait mean and variance. The effect of 𝛾% can be interpreted as the log-linear 

effect of 𝑋 on the variance of 𝑌 and tested using the Wald ratio to produce a chi-squared test 

statistic with one degree of freedom. As the DGLM is set within the regression framework, the 

test can be applied to imputed genotype data and adjust for confounding by providing 

additional covariates in the mean and/or variance portion of the model. As DGLM assumes 

linearity, dominant inheritance could introduce heteroscedasticity, as the effect of 𝑋 on the 

mean of 𝑌 is non-linear producing a vQTL but this does not imply the presence of an 

interaction. 

Equation 1.5.1.5 Heteroskedastic linear model 

The heteroskedastic linear model69 (HLM) extends the DGLM (Equation 1.5.1.4) to test 

linear and non-linear effects of genotype vector 𝑋 on the variance of outcome vector 𝑌. 

𝑌 = 𝛽+ + 𝛽%𝑋 + 𝜖 

𝜖	~	𝑁(0, exp	(𝛾+ + 𝛾%𝑋 + 𝛿(𝑋 − 2𝑓)!)) 
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As above (Equation 1.5.1.4), where 𝑓 is the genotype frequency of 𝑋 and 𝛿 is the quadratic 

effect of 𝑋 on the variance of 𝑌. The HLM test is performed to jointly test for both mean and 

variance effects of 𝑋 on 𝑌 by comparing the model likelihood to a null model using the 

likelihood ratio test.  

 The HLM further extends the DGLM to model the case where 𝑌 is non-normal. First, the 

outcome is inverse-rank normal transformed. As this transformation induces a mean-variance 

relationship (Chapter 1.5.4), SNPs with a mean effect will have an apparent variance effect 

leading false-positive vQTL effects that are not related to interaction effects. Second, the mean-

variance confounding relationship is removed to estimate the genotype variance effect 

independent of the mean-variance relationship as follows: 

𝜙i = 𝛾T% − 𝜌𝛽k%, 𝛾T%𝛽k% 

Where 𝜙i is an estimate of the effect of 𝑋 on the variance of 𝑌 independent of mean-variance 

confounding, and 𝜌𝛽k%, 𝛾T% is the correlation between estimated SNP mean and variance effects 

on the outcome.  

Equation 1.5.1.6 Deviation regression model 

 The deviation regression model (DRM)70 uses a linear model to regress the genotype on 

the absolute deviation of the phenotype from the within-genotype median. For the 𝑖𝑡ℎ 

genotype from the 𝑗𝑡ℎ individual the outcome is denoted with 𝑌&"  and the within-genotype 

outcome median with 𝑌l&. The deviation is estimated using 𝑍&" = |𝑌&" − 𝑌l&| which is regressed on 

the genotype to provide an estimate of the genotype effect 𝛽 on outcome variability with 𝑌& =

𝛽𝑍&" + 𝜖. Covariates are adjusted by regressing 𝑌 on a set of covarites and taking the predicted 

value before applying the DRM. As with DGLM (Equation 1.5.1.4), the DRM assumes additive 
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linearity and produces a variance effect estimate. However, the DRM cannot be applied to 

imputed genotype dosages due to the requirement of a categorical exposure.  

Equation 1.5.1.7 Two-step squared residual 

The two-step squared residual (TSSR) approach77 first adjusts the outcome 𝑌 for 

covariates to estimate the predicted value 𝑌i  which is inverse rank normalised and then squared 

to produce 𝑍!. The value of 𝑍! is regressed on the genotype using a second linear model: 

𝑍! = 𝛽+ + 𝑋𝛽% + 𝜖 

Where 𝛽+ is the intercept, 𝜖 is the residual variance and 𝛽% is the effect of the genotype on trait 

variance. As with the DGLM, the TSSR test can be applied to imputed genotype data, adjust for 

covariates, and produces a variance effect estimate. The test also assumes linearity of the 

effect of 𝑋 on the variance of 𝑌. 

Equation 1.5.1.8 Breusch-Pagan test 

 The Breusch-Pagan test78 (also described as the squared residual value linear modelling 

[SVLM]79 test) is a two-stage regression-based test for heteroscedasticity and may adjust for 

covariates in each model.  

𝑌 = 𝛽+ + 𝛽%𝑋 + 𝑈 

𝑈o! = 𝛾+ + 𝛾%𝑋 + 𝐸 

Where 𝑌 is a continuous outcome vector and 𝑋 is an exposure vector that may be continuous 

or categorical and is suitable for application to imputed dosage genotypes. 𝑈 and 𝐸 denote the 

residual variance of first and second-stage regression models. 𝛽+ and 𝛾+ are the intercept terms 

estimating the mean and variance of 𝑌 when 𝑋 = 0. 𝛽% and 𝛾% are the effects of a one unit 
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increase in 𝑋 on the mean and variance of 𝑌. This test assumes a linear relationship between 

exposure and outcome variance. 

Equation 1.5.1.9 Omnibus likelihood ratio test 

The likelihood ratio test (LRT) first estimates the linear effect of genotype exposure 𝑋 on 

outcome 𝑌: 

𝑌 = 𝛽+ + 𝛽%𝑋% + 𝛽!𝑋! + 𝜖 

Where 𝑋% and 𝑋! are indicator (dummy) variables for the SNP minor allele count taking a value 

of 𝑋% = 1 and 𝑋! = 2.  

Second, the residual variance is parameterised as follows: 

𝜖~𝑁(0, 𝛾%𝑋% + 𝛾!𝑋!) 

The likelihood ratio test evaluates the joint null 𝐻+ effect of: 

𝐻+: 𝛽% = 𝛽! = 𝛾% = 𝛾! = 0 

The LRT employs the regression framework which facilitates adjusting of covariates and 

produces an effect estimate. Since the genotypes are used as dummy variables, the test makes 

no linearity assumptions of 𝑋 on 𝑌 but cannot be applied to imputed dosage values.  

Equation 1.5.1.10 Joint location-scale score test 

 The joint location-scale score test (JLSc)80 simultaneously compares the exposure effect 

on outcome mean and variance using a score test80. The mean and variance models follow a 

similar structure to the Breusch-Pagan test78. 

𝑌 = 𝛽+ + 𝛽%𝑋 + 𝑈 

𝑈o! = 𝛾+ + 𝛾%𝑋 + 𝐸 
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Where 𝑌 is the outcome, 𝑋 is the genotype and 𝛽% is the exposure effect on trait mean and 𝛾%is 

the exposure effect on trait variance. Then, a score test is used to evaluate the joint effect of 𝛽% 

and 𝛾% on the outcome evaluating the null hypothesis of: 

𝐻+: 𝛽% = 𝛾% = 0 

As with the DGLM (Equation 1.5.1.4), the JLSc assumes linearity of 𝑋 on 𝑌, may be applied to 

imputed dosage genotype values, produces an effect estimate on trait mean and variance and 

can be adjusted for covariates. As this is a joint-test, SNPs with mean or variance effect on the 

outcome will reject the null hypothesis. 

1.5.2 Previous studies of statistical tests for detecting vQTLs 

Two major studies evaluated the performance of several variance tests through 

simulation68,70. One of these, Wang et al68, compared the power and type I error rate of the 

Brown-Forsythe test71 (Equation 1.5.1.1), Bartlett’s test73 (Equation 1.5.1.2), Fligner-Killeen 

test74 (Equation 1.5.1.3) and double generalised linear model75 (Equation 1.5.1.4; DGLM) to 

detect interaction effects68. 

Brown-Forsythe, Bartlett’s, and Fligner-Killeen tests compare trait variance among 

genotypic groups using non-parametric statistical tests. These tests do not allow adjustment for 

covariates, continuous genotypes (i.e., imputed) or provide an effect estimate which are 

limitations when applied to GWAS7. 

Meanwhile, DGLM jointly models the effect of exposure on the mean and dispersion of an 

outcome using the generalised linear model framework75. Mean and variance effects are 

estimated using the maximum likelihood estimation that iterates until convergence to first 

estimate the mean effects and then the variance effects75.  
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Wang et al found the Brown-Forsythe test was most robust to non-normality having no type 

I error inflation even in the presence of trait skew and kurtosis with or without mean effects68. 

This may be because the median is a more robust measure of central tendency in the presence 

of skew or kurtosis81. Meanwhile, Bartlett’s test, DGLM and Fligner-Killeen test had high type I 

error rate when the trait was skewed68. Another study also replicated this finding for Bartlett’s 

test82. 

Since Bartlett’s, DGLM and Fligner-Killeen tests are susceptible to type I error rate under 

non-normality, Wang et al also investigated a range of non-linear scale transformations which 

aimed to mitigate skew and kurtosis. However, non-linear scale transformations are also known 

to induce a relationship between the mean and variance and therefore induce mean-variance 

confounding68 (Chapter 1.5.4). The non-linear scale transformations led to increased type I 

error rate particularly when the SNP had a strong mean effect68 leading the authors to suggest 

that these transformations should be avoided68. 

An alternative strategy uses the heteroskedastic linear model (HLM; Equation 1.5.1.5)69 

which implements a log-linear model using DGLM on inverse-rank normal transformed traits (to 

avoid problems with trait non-normality), and then applies an additional model to remove the 

mean-variance relationship induced by scale transformation and test for the remaining variance 

effect (known as dispersion effect)69. The mean-variance relationship is estimated and removed 

by regressing the genome-wide variance effect on the additive effects69. This approach was 

shown to provide similar type I error rate and power to the Brown-Forsythe test68.  

A second major study conducted by Marderstein et al70 compared the performance of a 

range of tests through simulation including the deviation regression model70 (DRM; Equation 
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1.5.1.6), Brown-Forsythe test, Levene’s test72, regression-based Levene’s test83, two-step 

squared residual (TSSR; Equation 1.5.1.7)84, squared residual value linear modelling (SVLM; 

Equation 1.5.1.8)79, DGLM (Equation 1.5.1.4), Bartlett’s test (Equation 1.5.1.2), and Fligner-

Killeen test (Equation 1.5.1.3). 

DRM is a regression-based implementation of the Brown-Forsythe test which first regresses 

the outcome on covariates using ordinary least squares (OLS) and then takes forward the 

residuals of this fit. The second step involves estimating the within-genotype median absolute 

deviation (MAD) using the first-stage fit residuals which is then regressed on to the SNP to 

estimate the effect of the SNP on outcome variability70. 

TSSR first estimates the 𝑍-score for each individual which is a measure of standard deviation 

units from the mean and then regresses the square 𝑍-score on the SNP using an OLS model to 

estimate the effect of the SNP on trait variance84. 

SVLM79 estimates the effect of a SNP on trait variance by first regressing the trait on the 

SNP and then regressing the SNP on the squared residuals of the first model through a second 

linear model. This model is also known as the Breusch-Pagan test78 and regression-based 

Levene’s test72. 

Marderstein et al70 found Levene’s test72, DGLM, Fligner-Killeen test and Bartlett’s test had 

elevated type I error rate when applied to non-normal outcomes. SVLM was shown to have 

lower power than the Brown-Forsythe and DRM tests70. TSSR had elevated type I error rate 

when the SNP had a mean effect70. This study also found that DGLM and regression based 

Levene’s test had the slowest runtime and may be difficult to scale70. HLM is also based on the 

DGLM which may be difficult to scale genome-wide to multiple traits. 
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Joint location and scale tests have also been proposed (Equation 1.5.1.9 and Equation 

1.5.1.10)80,85 but these could potentially lead to large numbers of variants for downstream 

testing of genetic interaction effects obfuscating any benefits in power obtained compared with 

an exhaustive pairwise analysis of all possible interaction analyses.  

One such example of a joint test, the omnibus likelihood ratio test (LRT; Equation 1.5.1.9)86 

evaluates the SNP joint effect on trait mean and variance through comparison with a null 

model. The authors suggest performing a joint test for mean and variance effects as an 

approach to find SNPs that may be involved in genetic interaction. However, this approach has 

high type I error rate in the presence of non-normality86. 

Of the previously reported tests described in this section, the Brown-Forsythe test, DRM 

and HLM performed best with the lowest type I error rates and highest power. 
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 Table 1.5.2.1 Statistical tests to identify exposure effect on trait variance 

Test Model Assumptions Limitations 
Bartlett’s test73 Non-parametric test for 

variance among genotypic 
groups 

Continuous outcome and 
categorical exposure 

Cannot model covariates or 
imputed genotypes.  
Elevated type I error rate for 
non-normal outcomes68,70,82 

Breusch-Pagan test78 Linear regression Outcome normality. Linear 
additivity of first stage-
model. 

Lower power than the 
Brown-Forsythe and 
deviation regression model 
tests70 

Brown-Forsythe test71 Non-parametric test for 
variance among genotypic 
groups 

Continuous outcome and 
categorical exposure 

Cannot model covariates or 
imputed dosage genotypes. 
No variance effect estimate. 

Deviation regression 
model70 

Linear regression Continuous outcome and 
categorical exposure. Linear 
exposure-outcome effect 

Variance effect estimate 
makes linearity 
assumptions70 

Double generalised linear 
model75 

Generalised linear regression Outcome normality. Linear 
exposure-outcome effect 

Elevated type I error rate for 
non-normal outcomes68,70. 
Slow runtime and may be 
difficult to scale70 

Fligner-Killeen test74 Non-parametric test for 
variance among genotypic 
groups 

Continuous outcome and 
categorical exposure 

Cannot model covariates or 
imputed genotypes. Elevated 
type I error rate for non-
normal outcomes68,70 

Heteroskedastic linear 
model69 

Log-linear regression Assumes linear mean-
variance relationship after 
applying rank normal 
transformation 

Based on double generalised 
linear model which has slow 
runtime and may be difficult 
to scale70 

Joint location-and-scale 
score (JLSsc) test80 

Least absolute deviation 
regression 

Linear exposure-outcome 
effect. Assumes P-values for 

Cannot separate mean and 
variance effects without 
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location and scale test are 
independent 

additional test. May result in 
large numbers of loci for 
follow up 

Levene’s test72 Non-parametric test for 
variance among genotypic 
groups 

Outcome normality and 
categorical exposure 

Cannot model covariates or 
imputed genotypes.  
Elevated type I error rate for 
non-normal outcomes70 

Likelihood ratio test86 Linear regression model Linear exposure-outcome 
effect for variance estimate 

Elevated type I error rate in 
the presence of non-
normailty86 

Regression-based Levene’s 
test83 

Linear regression model Outcome normality. Linear 
exposure-outcome effect 

Slow runtime and may be 
difficult to scale70 

Squared residual value linear 
modelling79 

Linear regression model Outcome normality. Linear 
exposure-outcome effect 

Lower power than the 
Brown-Forsythe and 
deviation regression model 
tests70 

Two-step squared residual 
test84 

Linear regression model Assumes linearity of 
exposure-outcome effect 

Elevated type I error when 
the SNP has main effect70 
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1.5.3 Application of vQTLs 

To my knowledge, the only current application of vQTLs is in the detection of genetic 

interaction effects. This approach involves screening for vQTLs to direct further analyses using 

formal interaction tests using a set of candidate modifiers, and is known as variance 

prioritisation56,70,87 (Figure 1.5.3.1). A vQTL finding is not conclusive evidence for interaction but 

it is consistent with a SNP-interaction effect67 and since detection of vQTLs does not require the 

modifier to be measured or hypothesised67 this approach could lead to unanticipated findings 

and detection of novel biology56. This approach can narrow the search for testing of genetic 

interaction effects, thereby increasing power compared with exhaustive pairwise testing of 

every possible interaction effect87. 

In humans the seminal paper by Yang et al77 identified strong positive effects on body 

mass index (BMI) mean and variance of FTO rs7202116. More recently, Wang et al68 performed 

systematic testing of 13 physical traits in UK Biobank and identified 75 vQTLs. These were 

investigated and led to the detection of 16 GxE effects modified by age, sex, physical activity, 

sedentary behaviour, and smoking68. Among these was an effect of CHRNA5-A3-B4 rs56077333 

on lung function. SNP rs56077333 was strongly associated with smoking heaviness but only 

weakly with smoking initiation88 and is anticipated to adversely affect lung function only among 

those who smoke68. Wang et al also reported vQTL effects of WNT16-CPED1 rs10254825 on 

bone mineral density which interacts with age, and this has been supported by studies in 

mice68. Thirdly, Wang et al reported strong vQTL evidence at the FTO locus on measures of 

adiposity which was shown to interact with physical activity and sedentary behaviour68. 

Variance QTL effects have also been identified for gene expression89, DNA methylation80, 
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Vitamin D90 and facial morphology91. During thesis preparation, a study reported variance 

GWAS of 20 serum biomarkers in UK Biobank identifying 182 vQTLs which were tested for 

interaction with 2,380 candidate modifiers identifying 846 GxE effects42.  
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 Figure 1.5.3.1 Flow diagram for detecting interaction effects using variance prioritisation 

 

Schema for detecting genetic interaction effects from vQTLs. GxE, Gene-environment 

interaction effect. GxG, gene-gene interaction effect. 
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1.5.4 Mean-variance confounding 

Variance QTL effects are susceptible to bias by mean-variance confounding (Chapter 

1.3.2) which can occur when the trait variance is related to its mean and is typical for non-

normally distributed phenotypes69. This implies that a variant that has an effect on the trait 

mean will also appear to have an effect on the variance69. One approach to determine if vQTLs 

are due to mean-variance confounding is to repeat the analysis after applying a scale 

transformation to the trait92. If the effect on variance disappears this could suggest mean-

variance confounding is responsible for the association92. If the effect remains, then the 

association may not be entirely driven by mean-variance confounding92. For example as a 

sensitivity analysis the log-scale transformation may be applied to the outcome (e.g., natural 

logarithm) to consider scale dependency of variance effects, but non-linear transformations 

induce a mean-variance relationship68 and should be avoided for main analyses. 

1.5.5 Phantom effects 

 Phantom effects are another source of bias that can affect genetic testing of variance or 

interaction effects53,68,93,94. Suppose SNP 𝐺1 is causally associated with outcome 𝑌 and 

imperfectly correlated 0 > 𝑅! < 1 with SNP 𝐺2 not having a causal effect on 𝑌, then 𝐺2 will 

have an apparent vQTL effect on 𝑌	even in the absence of interaction effects93. Furthermore, 

another SNP 𝐺3 that also has no causal effect on 𝑌 but is in imperfect LD 0 > 𝑅! < 1 with 𝐺1 

will have an apparent interaction effect with 𝐺2 on 𝑌 even though all effects are purely 

additive93,94. This is because under phantom effects, the residual error of 𝑌 is a mixture of 

normal and binomial distributions causing type I error inflation of parametric tests53. Simply 

testing for correlation between 𝐺2 and 𝐺3 as potential evidence of phantom interaction is 
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insufficient as 𝐺2 and 𝐺3 may both be more strongly correlated with 𝐺1 than each other94. 

Nevertheless, adjusting 𝐺1 in the interaction model will attenuate the interaction effect of 

𝐺2 × 𝐺394. Therefore, one suggested approach to mitigate phantom effects is to adjust for fine 

mapped main effects53,68 (Chapter 1.2.4) of 𝐺2 and 𝐺3 in an attempt to capture 𝐺1 (or a highly 

correlated proxy) which will attenuate phantom effects on 𝑌. However, if there is measurement 

error of 𝐺1 this adjustment will only partially attenuate phantom effects53. Another approach 

to avoid this bias in GxG testing which may be used in combination with adjusting for fine 

mapped effects is to perform testing for GxG effects at least 10Mb apart68 because, in most 

cases, variants at this distance will be in minimal LD95. 

1.5.6 Variance confounding by population stratification 

 Association of SNP and outcome mean may be biased by population stratification which 

describes the situation where ancestry confounds the SNP-outcome relationship (Chapter 

1.2.3). A similar situation could potentially affect the variance association. Suppose the 𝑖th 

individual has SNP 𝐺&  and outcome 𝑌&  which is confounded by ancestry 𝐴&. Further, 𝐴𝑈&  has an 

interaction effect on 𝑌& 	which is the interaction of 𝐴&  and effect modifier 𝑈&. 𝐸%&  and 𝐸!&  are the 

residual variance. Under this situation which I describe as variance confounding by population 

stratification, the SNP is associated with the variance of 𝑌&  without having an interaction effect. 

 Equation 1.5.6.1 Variance confounding by population stratification 

𝐺& = 𝐴& + 𝐸%&  

𝑌& = 𝐴& + 𝑈& + 𝐴𝑈& + 𝐺& + 𝐸!&  



   
 

 63 

1.5.7 Existing variance GWAS software 

The OmicS-data-based Complex trait Analysis (OSCA) software package96 has 

functionality to perform variance GWAS using a range of commonly used variance tests 

providing routines for performing Levene’s test72 (based on the mean or median [Brown-

Forsythe test71]), Bartlett’s test73 and Fligner-Killeen test74.  

As discussed above, the Brown-Forsythe test has among the lowest type I error rate 

when applied to non-normal traits (Chapter 1.5.2). However, the Brown-Forsythe test also has 

some limitations. First, the test requires comparison of trait variability among categorical 

genotype groups71. This prevents adjustment for covariates such as genetic ancestry to remove 

confounding by population stratification (Chapter 1.2.3) or age and sex to reduce unexplained 

variance in order to increase test power67. But this method could be applied to a pre-adjusted 

trait68. Secondly, this approach prevents application to imputed genotypes unless values are 

rounded to a whole number which may result in loss of information67. Third, the Brown-

Forsythe test provides no effect estimate71. The OSCA implementation of the Brown-Forsythe 

test provides an effect estimate derived from the test p-value26,96 but this assumes linearity 

between SNP and trait variance, which may not hold (Chapter 9.1). Fourth, the model cannot 

include a random effect to allow modelling of polygenic effects. To overcome this, the 

phenotype could potentially be pre-adjusted using a model containing a random subsample of 

SNPs that capture genetic ancestry13,67. 

The DRM addresses some of these limitations by providing functionality to adjust for 

covariates and produces an effect estimate but this approach is similar to the effect derived 

from the test p-value using OSCA in that both assume linearity between SNP and outcome 
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variance, which may not hold56 (Chapter 9.1). the DRM model is implemented in R and may not 

easily scale to genome-wide analyses of multiple traits70. 

From my review of the literature, there is a need for a regression-based Brown-Forsythe 

test that produces an unbiased variance effect estimate and is scalable to enable vGWAS 

analyses of multiple traits. 

1.5.8 Limitations of previous vQTL analyses 

 Following identification of a vQTL, current studies apply formal interaction testing using 

a set of candidate modifiers and report on potential genetic interaction effects68,69 (Chapter 

1.5.3). However, an obvious question remains – do other interaction effects exist or have all 

interaction effects been identified (subject to power). One way to investigate this further could 

be to adjust the variance model for the identified interaction effect(s) and measure attenuation 

of the vQTL. If the vQTL only partially attenuates then there could be other interactions that 

remain, but these are currently not identified. 

 A second important question that has received little attention in the literature – does 

adjustment for confounding (Chapter 1.3.2) of the mean effect also control confounding of the 

variance effect. It may be because the variance effect cannot be adjusted using many of the 

proposed variance tests (Table 1.5.2.1). Often variance testing is applied to outcomes that are 

pre-adjusted using linear regression, but this only adjusts the association with outcome mean 

and not also variance. 

 Third, do vQTLs have additional utility beyond the detection of interaction effects. These 

signals provide evidence of the net effect of effect modification at a locus and aside from 

characterising the exact interaction effect, this evidence could be used as a general measure of 
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the presence of effect modification. In RCTs effect modification of the treatment-outcome 

relationship limits generalisability of findings to other populations where the interaction effect 

does not hold97. One area vQTL evidence may be useful is in evaluating instrumental variable 

homogeneity assumptions which affect interpretation of the causal estimate31,35 (Chapter 

1.3.5). 

Finally, previous vQTL studies have largely focused on physical measures such as BMI, 

height, lung function, and bone mineral density68,69. However, variance studies of molecular 

biomarkers may provide findings of increased translational value (Chapter 1.6).  

1.6 Molecular biomarkers 

1.6.1 Background 

Biomarkers (biological markers) describe a group of measures that provide accurate, 

objective and reproducible evidence on biological systems and processes98. Molecular 

biomarkers are a subgroup of these measurements that provide evidence on molecular 

processes and include gene expression levels and metabolite and protein concentration99.  

Biomarker measures are often used as ‘surrogate endpoints’ in clinical studies meaning 

that they provide evidence in place of outcomes of interest that are more difficult to measure 

such as stroke, myocardial infarction, and diabetes98. While many biomarkers are causally 

related to their surrogate outcome they need not be98. Where a biomarker is causally related 

(Chapter 1.3.4) to the outcome, then therapeutic interventions may be developed that target 

the biomarker to reduce incidence or improve prognosis98. Meanwhile, where a biomarker is 

only predictive of the outcome, then interventions will not impact on the outcome98. 
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1.6.2 Application of biomarkers in drug development 

 Studies on the causative nature (Chapter 1.3.4) of biomarkers in disease can provide 

valuable information on disease biology and lead to the identification of risk factors along the 

causal pathway which may be useful for developing interventions99. This approach has led to 

the development of therapies for lipids, glucose, and urate in the treatment of cardiovascular 

disease100, type 2 diabetes101, and gout102, respectively, among others. Usually drugs target the 

abundance of a protein and drug development studies are beginning to incorporate genetic 

evidence99. The aim of which is to identify proteins that modulate risk factors having a causal 

effect on disease (such as blood biomarkers)99. For example, statins act to inhibit HMG-CoA 

reductase lowering serum LDL cholesterol levels which is protective against cardiovascular 

disease99. 

One approach is the use of MR (Chapter 1.3.7) to estimate the causal effect of protein 

concentration on a disease outcome103. To avoid violation of the exclusion restriction 

assumption by horizontal pleiotropy, genetic instruments for protein concentration are 

selected near to the gene coding region (also known as cis-acting instruments)103. These 

instruments are identified through GWAS (Chapter 1.2.2) of protein concentration103. 

1.6.3 Utility of detecting gene-interaction effects on biomarker concentration 

GWAS of mean effects (Chapter 1.2.2) on biomarker concentration have been used to 

identify genes and therefore proteins that may be useful targets for drug development99. 

Identification of loci with biomarker interaction effects may provide evidence of drug targets, 

that upon intervention, produce subgroup effects with individual variation in response to 

treatment dependent on the modifier57. However, evidence of such may be difficult to obtain 
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since gene-interaction effects are generally small and studies are often underpowered for 

detection57. 

1.7 Thesis aims 

Genetic epidemiological studies have largely focused on SNP mean effects while 

comparatively few studies have investigated variance effects (i.e., vQTLs)56. This thesis aims to 

develop methodology and software to improve the discovery, analysis and sharing of vQTL data 

to promote and facilitate usage of this type of genetic evidence in future studies.  

These tools and methods will be applied to studies of 30 serum biomarkers in UK 

Biobank as an exemplar but could be applied to any continuous trait. I chose these outcomes 

because they act as surrogate endpoints for disease outcomes (Chapter 1.6.1), and they are 

continuous which is a requirement for the described variance tests (Chapter 1.5.1). 

First, I aim to implement and evaluate a regression-based implementation of the Brown-

Forsythe test (LAD-BF) for testing variance effects which can estimate the variance effect size 

and adjust for covariates. Second, I aim to apply LAD-BF to identify vQTLs and genetic 

interaction effects on 30 serum biomarkers in UK Biobank. Third, I aim to develop methods to 

use LAD-BF for falsification tests of the assumption of homogeneity in MR (Chapter 1.3.7). 

Fourth, I aim to develop a data sharing standard to facilitate and promote sharing and 

secondary analysis of vQTLs and GWAS summary statistics more widely. 
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Chapter 2: Methods 

2.1 Contribution statement 

The Brown-Forsythe test, LAD-BF test and gene-interaction test forms part of a 

manuscript I wrote that was edited by PhD supervisors available as a preprint on MedRxiv (Lyon 

et al, 2022)2. 

2.2 Statistical analysis 

Unless stated, the threshold for statistical significance was set to 𝛼 = 0.05 throughout. 

2.2.1 Simulation studies 

 Simulation studies are in silico experiments performed using data drawn from known 

probability distributions104. In this thesis I used simulation studies to test assumptions and 

evaluate and characterise the performance and limitations of methodologies including an 

appraisal of when approaches ‘break’ or fail104. Throughout this thesis I evaluated analysis 

methodology using simulation and evaluated several parameters as follows. Power was defined 

as the proportion of tests that rejected the null hypothesis when an alternative hypothesis is 

true55. Type I error rate was defined as the proportion of tests that rejected the null hypothesis 

when the null hypothesis was true55. Coverage was defined as the proportion of confidence 

intervals that contained the true value (which may be theoretically known from the data 

generating mechanism, or may be estimated in the simulation process)104. Absolute bias was 

defined as the residual of the estimate from its expected (true) value104. 

I followed best practise guidance for planning, programming, analysis, and presentation 

of simulation results104. I reported simulation study designs using the aims, data-generating 

mechanism, estimand, methods, performance (ADEMP) structure104. 
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2.2.2 Brown-Forsythe test 

The Brown-Forsythe test71 (also known as the median variant of Levene’s test72; 

Equation 2.2.2.1) refers to the original published non-parametric test and will be used 

throughout. I applied the Brown-Forsythe test to detect differences in outcome variability 

across the three genotypic groups. 

All analyses of the original Brown-Forsythe test were conducted using the OSCA 

software package68,96 which additionally produces a variance effect estimate derived from the 

test P-value26 (Equation 2.2.2.1). This derived estimate assumes linearity between the SNP and 

outcome variance26 although the test itself does not make linearity assumptions. 

Equation 2.2.2.1 The Brown-Forsythe test 

The Brown-Forsythe test evaluates trait variance across genotype groups. 

𝑊 =
(𝑁 − 3)

2 ×
∑ 𝑁,(𝑌O, − 𝑌O)!!
,$+

∑ ∑ (𝑌,& − 𝑌O,)!
'%
&$%

!
,$+

 

Where 𝑁 is the total number of observations. 𝑁,  is the number of observations in the 

𝐺th genotype group where 𝐺	 ∈ {0, 1	,2} is the count of the minor allele. 𝑌,&  is the absolute 

residual of the outcome for the 𝑖th observation in the 𝐺th genotype group from the outcome 

median in that group. 𝑌O,  is the mean of 𝑌,&  for the 𝐺th genotype group and 𝑌O is the mean of 𝑌O,  

across genotype groups. The test statistic 𝑊 is F-distributed 𝐹(2, 𝑁 − 3). 

All analyses of the original Brown-Forsythe test were conducted using the OSCA 

software package68,96 which additionally produces a variance effect estimate derived from the 

test P-value26 (Equation 2.2.2.2). This derived estimate assumes linearity between the SNP and 

outcome variance26 although the test itself does not make linearity assumptions. 
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Equation 2.2.2.2 Brown-Forsythe effect estimate 

First, the Brown-Forsythe test P-value was converted to a 𝑍-score, Z, then the linear effect 𝛽 of 

𝐺 on the variance of 𝑌 was calculated using the following formula along with its standard error. 

𝛽 = 𝑍/x2𝑀𝐴𝐹(1 −𝑀𝐴𝐹)(𝑁 + 𝑍!) 

𝑆𝐸(𝛽) = 1/x2𝑀𝐴𝐹(1 −𝑀𝐴𝐹)(𝑁 + 𝑍!) 

Where 𝑀𝐴𝐹 is the SNP minor allele frequency and 𝑁 is the sample size. 

2.2.3 Breusch-Pagan test 

The Breusch-Pagan test78 (Equation 2.2.3.1) was applied to test for an effect of a SNP on 

the variance of a continuous outcome through the use of two OLS regression models.  

Equation 2.2.3.1 Breusch-Pagan test 

First, the vector of outcomes 𝑌 was regressed on the vector of minor allele counts 𝐺 

adjusting for any covariates to estimate the residuals 𝑈-./ and per minor allele average effect 

𝛽-./% of 𝐺 on 𝑌. The intercept effect was denoted by 𝛽-./+. 

𝑌 = 𝛽-./+ + 𝛽-./%𝐺 + 𝑈-./ 

A second OLS model then regressed the squared residual 𝑈o!-./ of the first-stage model on 𝐺 

and the square of the genotypes 𝐺! including any covariates to estimate the average variance 

effect 𝑔%and 𝑔! of 𝐺 on 𝑌 and second-stage model residual variance 𝐸-./. The intercept effect 

was denoted by 𝑔+. 

𝑈o!-./ = 𝑔+ + 𝑔%𝐺 + 𝑔!𝐺!+𝐸-./ 

Significance testing was performed using a F-test comparing the second-stage residual sum of 

squares to a restricted model lacking 𝐺 and 𝐺!. 
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2.2.4 LAD-BF test 

The least-absolute deviation Brown-Forsythe test (LAD-BF) was proposed by Professor 

Tilling. I implemented and evaluated this test throughout this thesis. The test used the same 

structure as the Breusch-Pagan test78 (Chapter 2.2.3). Briefly, the Breusch-Pagan test estimates 

the variance effect by regressing the outcome on exposure and then regressing the squared 

residuals of this fit back on the exposure through a second model. 

LAD-BF uses least-absolute deviation (LAD) regression105 for the first-stage model which 

estimates the exposure effect on outcome median (rather than mean used in the Breusch-

Pagan test). Therefore LAD-BF measures variability from the median which is more robust to 

non-normality81 and consistent with the Brown-Forsythe test (Equation 2.2.4.1).  

Equation 2.2.4.1. LAD-BF test 

The vector outcome 𝑌 was regressed on vectors of dummy genotypes 𝐺1 and 𝐺2 

representing one or two minor allele counts, respectively. This test used LAD regression 

adjusting for any covariates to estimate the residual 𝑈.01 and average effects 𝛽.01% and 𝛽.01! 

of 𝐺1 and 𝐺2 on the median of 𝑌. The intercept effect was denoted by 𝛽.01+. 

𝑌 = 𝛽.01+ + 𝛽.01%𝐺1 + 𝛽.01!𝐺2 + 𝑈.01 

Using OLS, a second regression model regressed the vector of absolute residuals |𝑈o.01| 

estimated using this first-stage fit on 𝐺1 and 𝐺2 including any covariates. Genotypes were 

coded as dummy variables 𝐺1 and 𝐺2 to accommodate potential non-linearity with first-stage 

model residuals. The per allele effect estimates 𝑔-./% and 𝑔-./! measure the outcome mean 

absolute deviation from the median. The vector of second-stage model residuals was denoted 

with 𝐸-./ and intercept effect denoted with 𝑔-./+. 
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|𝑈o.01| = 𝑔-./+ + 𝑔-./%𝐺1 + 𝑔-./!𝐺2 + 𝐸-./ 

LAD-BF test P-values were estimated using an F-test comparing the second-stage residual sum 

of squares to a restricted model without genotypes to test the joint null hypothesis of outcome 

homogeneity across genotypic groups. 

Each per allele genotype coefficient 𝑔-./ was transformed to variance units 𝑣𝑎𝑟(𝑌|𝐺) 

as follows. First, the sum of covariance between the intercept 𝑔-./+ and coefficient term 𝑔-./ 

and squared coefficient 𝑔-./!  was estimated to produce a per-allele effect on the mean-

absolute deviation of 𝑌. Second, this measure of mean-absolute deviation was transformed to 

variance units. 

𝑣𝑎𝑟(𝑌|𝐺) = 	2 × 𝑔+ + 𝑔 + 𝑔!	/	(2/𝜋) 

Throughout this study the transformation used was specific to the normal distribution 

(i.e., 2/𝜋 is used as the denominator as part of the Normal distribution probability density 

function) but this could potentially be extended to other accommodate other distributions. 

The standard error of 𝑣𝑎𝑟(𝑌|𝐺)	was calculated using the delta method106 from second-

stage model heteroscedastic-consistent standard errors (aka White standard errors)107. 

2.2.5 SNP interaction test 

 To estimate the interaction effect of SNP-by-modifier I used OLS regression including a 

single additive interaction term4 (Equation 2.2.5.1). 

Equation 2.2.5.1 Additive linear interaction test 

 The additive linear interaction effect was estimated using OLS regressing the vector of 

outcomes 𝑌 on vector of minor allele counts 𝐺, modifier vector 𝐸 and interaction of genotype-

by-modifier 𝐺𝐸. The residual variance vector is denoted with 𝑈 and intercept denoted by 𝛽+. 
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𝑌 = 𝛽+ + 𝛽%𝐺 + 𝛽!𝐸 + 𝛽2𝐺𝐸 + 𝑈 

The genotype main effect 𝛽%, modifier main effect 𝛽! and interaction effect 𝛽2	were estimated 

along with their heteroscedastic-consistent standard errors using White et al107 (Chapter 2.2.7). 

The interaction test P-value was obtained from a t-statistic of 𝛽2 using heteroscedastic-

consistent standard errors and compared to the expected null distribution. 

2.2.6 F-test for comparing model fits 

The fit of two nested regression models may be compared using an F-test (Equation 

2.2.6.1) which tests for a difference in the residual sum of squares between models108. The 

residual sum of squares 𝑆𝑆% 𝑆𝑆! of the first and second regression models, respectively, are 

estimated by summing the squared difference between observed 𝑌	and predicted 𝑌i  outcome. 

Since the number of parameters differ between models the degrees of freedom of both models 

𝑑𝑓% and 𝑑𝑓! must be estimated by 𝑑𝑓 = 𝑁 − 𝑉 where 𝑁 is the sample size and 𝑉 is the number 

of parameters in the model. The 𝐹 statistic is estimated by comparing model fits (Equation 

2.2.6.1) and used to obtain a P-value for the difference in model fit. 

Equation 2.2.6.1 F-test for comparing model fit 

𝐹 = (//$)//&)/(67$)67&)
//&/67&

 

2.2.7 Heteroscedastic consistent standard errors 

 A vQTL is a genotype that has an association with trait variance, that is, trait variance is 

non-constant among levels of the genotype67. This implies that regression analyses of the vQTL-

outcome relationship will violate the homoscedasticity assumption of constant trait variance107. 

The exception is where the model correctly defines the term that fully explains the 

heteroscedasticity, but it is not possible to know this in advance. Therefore, it is important to 
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account for potential heteroscedasticity in regression models of vQTL effects. This can be 

achieved using heteroscedastic-consistent standard errors107 (Equation 2.2.7.1). 

Equation 2.2.7.1. Heteroscedastic-consistent standard errors 

 The unbiased effect	𝛽	of exposure vector 𝑋 on outcome vector 𝑌 can be estimated using 

OLS, but under heteroscedasticity the standard error of estimate 𝑆𝐸(𝛽k) will be biased. This bias 

may be attenuated using heteroscedastic consistent standard errors estimated as follows.  

𝑆𝐸(𝛽k&) = ~
1
𝑁 .

1
𝑁∑ (𝑋& − 𝑋O)!𝑢T&!'

&$%

�1𝑁∑ (𝑋 − 𝑋O)!'
&$% �

!  

Where 𝑁 is the sample size and 𝑢8�
! equal the squared residual of 𝑌 regressed on 𝑋. 

2.2.8 Mendelian randomization 

MR was implemented using the two-sample framework20 where instrument-exposure 

and instrument-outcome associations were selected from GWAS summary statistics estimated 

in separate samples from the same population20 (Chapter 3). Causal estimates were obtained 

using Wald ratio or inverse-variance weighting using the TwoSampleMR R-package109. 

2.2.9 Confidence interval 

 All confidence intervals produced in this thesis were estimated using the t.test function 

in R (v.3.6.0)110. 

𝐶𝐼 = 𝑋O ± 𝑍
𝑆
√𝑁

 

Where 𝑋O is the mean of variable 𝑋, 𝑍 is the significance level set to 𝛼 = 0.05 throughout, 𝑆 is 

the standard deviation of 𝑋 and 𝑁 is the sample size of 𝑋. 
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2.3 Software 

The original Brown-Forsythe test used the OSCA software package v0.4668,96. 

Simulations and follow-up UK Biobank analyses were performed using R v3.6.0. 

2.4 Code availability 

The LAD-BF test implemented in C++ is available from 

https://github.com/MRCIEU/varGWAS and R version is available from 

https://github.com/MRCIEU/varGWASR. R code for performing the simulation studies in 

Chapter 4 is available from https://github.com/MRCIEU/varGWAS/tree/master/sim.  

R code for running the UK Biobank analysis in Chapter 5 available from 

https://github.com/MRCIEU/varGWAS-ukbb-biomarkers. 

R code for simulations, MR studies and UK Biobank analyses in Chapter 6 are available 

from https://github.com/MRCIEU/variance-iv4-violation. 

Python code to convert GWAS summary statistics to GWAS-VCF (Chapter 7) is available 

from https://github.com/MRCIEU/gwas2vcf. Python code for reading GWAS-VCF files is 

available from https://github.com/MRCIEU/pygwasvcf. Python code for running the webservice 

to convert GWAS summary statistics to GWAS-VCF is available from 

https://github.com/MRCIEU/gwas2vcfweb. R code for performing the GWAS-VCF simulations is 

available from https://github.com/MRCIEU/gwas-vcf-performance.  
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Chapter 3: Data sources 

3.1 Contribution statement 

Background on UK Biobank (including genetic data, quality control, and biomarkers) 

forms part of a manuscript I wrote that was edited by PhD supervisors available as a preprint on 

MedRxiv (Lyon et al, 2022)2. 

3.2 Introduction 

In Chapter 4, Chapter 5 and Chapter 6 I apply analyses to data from UK Biobank. In 

Chapter 6 I also use GWAS summary data from large consortia that were estimated using non-

overlapping samples from UK Biobank. In Chapter 7 I used publicly available GWAS summary 

statistics from UK Biobank. 

3.3 UK Biobank 

3.3.1 Background 

UK Biobank is a large prospective cohort study of approximately 500,000 UK participants 

recruited between 2006-2010 from across the UK aged 37-73 at recruitment111. Phenotypic 

measures were made available on lifestyle, socio-demographics, health-related factors, and 

physical parameters including blood pressure, lung function, anthropometry, bone density, 

hearing and eye measures and cardiorespiratory fitness among others111. Blood, urine, and 

saliva samples were also collected which have been assayed to quantify metabolite and protein 

concentration and for genetic profiling including genotyping111 and more recently exome112 and 

whole genome sequencing113. Furthermore, participants’ healthcare records are linked so that 

ongoing medical records can be obtained and included for research purposes111. This data 

resource is available to any researcher that wishes to undertake health-related research to 
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improve outcomes for the public111. All analyses were performed under UK Biobank application 

number 15825. 

3.3.2 Genetic data 

Genetic array data were available on n=488,377 consenting participants measured using 

a combination of UK Biobank AxiomTM array (n=438,398) and UK BiLEVE array (n=49,979). 

Genotype imputation was performed by UK Biobank using a reference set combined with 

UK10K haplotypes and HRC reference panels with the IMPUTE2114 software as described in their 

companion paper111. 

I removed the following SNPs from analyses leaving a total of n=6,812,700: multi-allelic 

loci, loci with a minor allele frequency < 5%, Hardy-Weinberg violations (P < 1 x 10-5), genotype 

missing rate >5%, or a low imputation score (INFO < 0.3), and HLA loci (hg19/GRCh37 

chr6:23477797-38448354). 

Forty genetic principal components were estimated by UK Biobank using 407,219 

unrelated participants and 147,604 independent genotypes111. These were prepared using 

fastPCA115. 

3.3.3 Quality control 

I applied standard exclusion criteria (Figure 3.3.3.1) using pre-calculated variables 

created by the MRC Integrative Epidemiology Unit to remove SNP-phenotype sex mismatches, 

aneuploidies, and outliers for missingness or heterozygosity as described in the published 

protocol116 leaving n=486,565 participants. To ensure data independence, I removed closely 

related subjects using pre-calculated variables by the MRC Integrative Epidemiology Unit as 

described116 leaving n=407,176 participants. Finally, I excluded ‘non-white British’ participants 
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defined by the MRC Integrative Epidemiology Unit using published methodology116 to minimise 

confounding by population stratification providing a final sample size of n=337,076.  
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Figure 3.3.3.1. UK Biobank participant inclusion criteria 

 

Flowchart of UK Biobank participant quality control procedure applied to all UK Biobank 

analyses  

UK Biobank 
n=502,528

Exclude missing
genotype data &

withdrawn participants
n=488,377

Exclude sex
mismatch, aneuploidy,
excess heterozygosity

and high genotype
missing rates 
 n=486,565

Exclude related participants 
n=407,176

Exclude non-white British 
n=337,076
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3.3.4 Serum biomarkers 

 This thesis applied vQTL methods to 30 serum biomarkers measured in UK Biobank 

participants using a single serum sample collected at baseline without fasting117 (Table 3.3.4.1; 

Figure 3.2.4.1). These measures were chosen by UK Biobank117 to include disease risk factors 

(such as lipids, glycaemic measures and urate), diagnostic measures (such as cystatin C, 

alanine/aspartate aminotransferase and gamma glutamyltransferase) and measures of 

phenotypes that are less well assessed using other means (such as rheumatoid factor, 

oestradiol and testosterone)117. After restricting to a white British subset and performing 

sample quality control (Chapter 3.3.3), measures without missing data were available on up to 

321,260 participants (see Table 3.3.4.1 for sample size for each measure). Oestradiol and 

rheumatoid factor had high levels of missingness due to values reported below the assay limit 

of detection118. 
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Table 3.3.4.1. UK Biobank serum biochemistry biomarkers and sample size with measures 

UK 
Biobank 
Field ID 

Biomarker Abbreviation N Mean SD 

30620 Alanine aminotransferase ALT   319,817  23.55 14.18 
30600 Albumin ALB   294,114  45.21 2.63 
30610 Alkaline phosphatase ALP   320,661  83.67 26.46 
30630 Apolipoprotein A ApoA   292,384  1.54 0.27 
30640 Apolipoprotein B ApoB   319,725  1.03 0.24 
30650 Aspartate aminotransferase AST   318,847  26.23 10.66 
30710 C-reactive protein CRP   318,256  2.60 4.36 
30680 Calcium Calcium   293,851  2.38 0.09 
30690 Total cholesterol TC   321,260  5.69 1.14 
30700 Creatinine Creatinine   320,650  72.31 18.55 
30720 Cystatin C Cystatin C   320,423  0.91 0.18 
30660 Direct bilirubin Direct BR   272,719  1.83 0.85 
30730 Gamma glutamyltransferase GGT   319,210  37.39 42.09 
30740 Random glucose Glucose   291,579  5.12 1.24 
30750 Glycated haemoglobin HbA1c   318,931  36.13 6.78 
30760 HDL cholesterol HDL   293,951  1.45 0.38 
30770 IGF-1 IGF-1   319,365  21.40 5.70 
30780 LDL cholesterol LDL   320,678  3.56 0.87 
30790 Lipoprotein A LipoA   255,575  44.65 49.21 
30800 Oestradiol Oestradiol     50,380  461.17 431.16 
30810 Phosphate Phosphate   293,580  1.16 0.16 
30820 Rheumatoid factor RF     28,680  24.56 19.86 
30830 Sex hormone binding globulin SHBG   290,600  51.63 27.78 
30850 Testosterone Testosterone   291,163  6.56 6.05 
30840 Total bilirubin Total BR   318,577  9.13 4.43 
30860 Total protein Protein   293,758  72.51 4.12 
30870 Triglycerides TG   320,016  1.75 1.03 
30880 Urate Urate   320,848  309.21 80.43 
30670 Urea Urea   320,479  5.40 1.40 
30890 Vitamin D Vitamin D   307,091  48.61 21.11 

Table of 30 serum biomarkers measured in UK Biobank under study in this thesis. ID, UK 

Biobank biomarker identifier.  
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Figure 3.3.4.1. Biomarker distributions 
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UK Biobank serum biomarker distribution. ALB, albumin. ALP, alkaline phosphatase. ALT, 

alanine aminotransferase. AST, aspartate aminotransferase. ApoA, Apolipoprotein A. ApoB, 

apolipoprotein B. CRP, C-reactive protein. Direct BR, direct bilirubin. GGT, Gamma 

glutamyltransferase. HDL, high-density lipoprotein. HbA1C, glycated haemoglobin. IGF-1, insulin 

growth factor. LDL, low-density lipoprotein. LipoA, lipoprotein A. RF, rheumatic factor. SHBG, 

sex-hormone binding globulin. TC, total cholesterol. TG, triglycerides. Total BR, total bilirubin. 

SD units. Biomarker outliers with Z-score > 5SD from the mean were removed. 
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3.3.5 Ethical approval and consent 

 Ethical approval for the UK Biobank study was granted (date 17/06/2011) by the 

National Research Ethics Service Committee Northwest (ref 11/NW/0382). Informed consent 

was obtained from all subjects to prior to participation in the UK Biobank study111. All analyses 

were performed under approved UK Biobank project 15825 (dataset ID 33352). 

3.3.6 Strengths and limitations 

 The UK Biobank data resource is large and contains rich and diverse measures of 

individual genetic and phenotypic characteristics as described above. However, UK Biobank also 

has some limitations. As with all cohort studies, participants may not be representative of the 

population from which they are sampled119.  

Nine million individuals were invited to take part in the UK Biobank study but only 

500,000 participants were recruited, representing at 5.5% response rate119. These individuals 

differ from the wider UK population in several ways, for example, compared to the national 

average, smoking status is low, educational attainment is high, and mortality is low119 which are 

features of higher socio-economic status119. Study selection bias is known to induce biased 

estimates119. Evidence for a selected sample may also be observed in the finding that 30.3% of 

UK Biobank participants are related to one or more individuals in the study which is double that 

expected due to chance111. Selection bias may also be exacerbated by attrition which is unlikely 

to be random and may be related to socioeconomic factors119 resulting in a study population 

that becomes less representative over time119 and also by restricting future investigations to 

participants with complete data119. 
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3.4 Secondary data sources 

3.4.1 Background 

 In this thesis I used GWAS summary statistics to perform MR of selected biomarkers on 

disease outcomes (Chapter 6) and for evaluating the performance of a new GWAS summary 

statistics format (Chapter 7). 

3.4.2 Measurements 

Summary statistics were obtained from large case-control GWAS (Table 3.4.2.1) of type 

2 diabetes120, gout121 and cardiovascular disease122 using samples not thought to overlap with 

UK Biobank. I also used mean and variance GWAS summary statistics of LDL2,123, glucose2,123 

and urate2,123 estimated in UK Biobank. These data were extracted from the MRC-IEU 

OpenGWAS platform18. I obtained GWAS summary statistics of BMI estimated in UK Biobank 

from Neale et al123. 

3.4.3 Ethical approval and consent 

 Ethical approval for research involving GWAS summary statistics was not required as the 

data were publicly available. 

3.4.4 Strengths and limitations 

 Use of GWAS summary statistics circumvents the need to share individual level data 

which is problematic due to privacy and consent laws7 (Chapter 1.2.5). However, analyses with 

GWAS summary statistics can be more limited than using individual level data. For example, 

using summary statistics the researcher has no control over the model used to estimate the 

SNP-trait association or which covariates were adjusted. 
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Table 3.4.2.1. Sources and characteristics of GWAS summary statistics 

Outcome Source Sex Population N Cases Controls 
Type 2 diabetes DIAGRAMplusMetabochip120 Males and 

females 
Mostly 
European 

149,821 34,840 114,981 

Coronary heart 
disease 

CARDIoGRAMplusC4D122 Males and 
females 

Mostly 
European 

184,305 60,801 123,504 

Gout Global Urate Genetics Consortium121 Males and 
females 

European 69,374 2,115 67,259 

LDL cholesterol 
(mean) 

Neale et al (UK Biobank)123 Males and 
females 

White British 343,621 - - 

Random glucose 
(mean) 

Neale et al (UK Biobank)123 Males and 
females 

White British 314,916 - - 

Urate (mean) Neale et al (UK Biobank)123 Males and 
females 

White British 343,836 - - 

LDL cholesterol 
(variance) 

Lyon et al (UK Biobank)2 Males and 
females 

White British 320,678 - - 

Random glucose 
(variance) 

Lyon et al (UK Biobank)2 Males and 
females 

White British 291,579 - - 

Urate (variance) Lyon et al (UK Biobank)2 Males and 
females 

White British 320,848 - - 

Body mass index 
(mean) 

Neale et al (UK Biobank)123 Males and 
females 

White British 359,983 - - 

Table of GWAS summary statistics under study in this thesis. MRC-IEU, Medical Research Council Integrative Epidemiology Unit. LDL, 

low-density lipoprotein cholesterol.
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3.5 Data availability 

Variance GWAS summary statistics produced in Chapter 5 are available from the MRC-

IEU OpenGWAS platform (https://gwas.mrcieu.ac.uk)18. Top vQTLs (Table 9.2.1) and GxG/GxE 

(Table 9.2.2) summary statistics produced in Chapter 5 are available in the appendix (Chapter 

9). GWAS summary statistics of BMI used in Chapter 7 are available from: https://broad-ukb-

sumstats-us-east-1.s3.amazonaws.com/round2/additive-

tsvs/21001_raw.gwas.imputed_v3.both_sexes.tsv.bgz. 

UK Biobank data are available from https://www.ukbiobank.ac.uk.  
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Chapter 4: Evaluation of LAD-BF for estimating SNP effects on trait variance and 

implementation in variance GWAS software 

4.1 Overview 

The presence of genetic interaction effects may be detected by testing for association 

between the locus and trait variance56 (Chapter 1.5.3). Of the multitude of variance tests that 

have been proposed (Chapter 1.5.1), the Brown-Forsythe test provides among the best type I 

error rate and power68,70. However, the Brown-Forsythe test has limitations when applied to 

GWAS (Chapter 1.5.7). Here, I implemented a regression-based Brown-Forsythe test (LAD-BF) 

proposed by Professor Tilling and evaluated the test through a series of simulation studies and 

application to positive and negative controls in UK Biobank to detect loci with variance effects. 

In contrast with existing implementations of the Brown-Forsythe test, LAD-BF provides an 

unbiased variance effect estimate when the trait is normally distributed. This can be useful for 

determining if a variance effect is driven by an interaction through adjusting for the interaction 

and considering attenuation of the variance effect size. Additionally, LAD-BF enables 

adjustment for genetic confounding (Chapter 1.3.2) of the variance model which can be useful 

to avoid bias by population stratification (Chapter 1.2.3). I developed fast open-source software 

(varGWAS) for scalable genome-wide association analysis of SNP-variance effects 

(https://github.com/MRCIEU/varGWAS) and an R-package for smaller scale analyses 

(https://github.com/MRCIEU/varGWASR) to facilitate future research. 

4.2 Contribution statement 

Work in Chapter 4 forms part of a manuscript I wrote that was edited by PhD 

supervisors available as a preprint on MedRxiv (Lyon et al, 2022)2. I also contributed type I error 
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simulations of the Brown-Forsythe test presented here to a journal article published in 

European Journal of Epidemiology (Staley et al, 2021)80. 

Professor Tilling proposed the LAD-BF test and derived an expression for the 

relationship between exposure and outcome variance under interaction effect and the formula 

for calculating variance from mean-absolute deviation in this context (Chapter 9.1). Professor 

Davey Smith proposed the positive and negative controls. I performed the simulation studies, 

implemented the model in C++ and R and tested the approach using positive and negative 

controls (Chapter 1.3.7) with data from UK Biobank. 

4.3 Introduction 

 Genetic interaction effects can provide valuable information on disease mechanisms4,48, 

improve prediction of disease outcomes4,48, and identify drug targets for precision medicines48 

(Chapter 1.4.1). However, detection of these effects may incur large multiple testing burden4. 

One approach to reduce multiple testing is through prioritisation of loci with effects on trait 

variance56 which would be anticipated under an interaction effect (Chapter 1.4.6). Previous 

studies68,70 have evaluated a number of statistical tests for detecting variance effects and have 

suggested the Brown-Forsythe test71 due to low type I error rate and comparable power with 

other methods (Chapter 1.5.2). 

4.3.1 Limitations of the Brown-Forsythe test 

The original implementation of the Brown-Forsythe test71 does not estimate the size of 

the variance association (Chapter 1.5.1). This feature could be useful for enabling comparisons 

of association magnitude with and without adjustment for a candidate interaction to determine 

the extent to which the included interaction drives the observed effect on outcome variance. 
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The Brown-Forsythe test also cannot adjust for covariates, and, while it is possible to pre-adjust 

outcomes68, it is unclear if this strategy can account for confounding of the variance association 

or just the mean association. 

4.3.2 Regression-based implementation of the Brown-Forsythe test 

Levene’s test has been reformulated using the regression framework83 (Chapter 1.5.1) 

which provides greater flexibility to overcome the aforementioned limitations. This approach 

uses the same structure as the Breusch-Pagan test78,83 (Chapter 1.5.1) which estimates the 

exposure-outcome variance effect through two independent regression models. The first model 

regresses the outcome on exposure. The second regresses the squared residuals of the first-

stage model on the exposure providing an estimate of the exposure on outcome variance. 

However, as Levene’s test detects variability from the mean it is susceptible to elevated type I 

error rate in the presence of non-normality.  

The deviation regression model (DRM)70 was proposed as a regression-based 

implementation of the Brown-Forsythe test. The DRM pre-adjusts an outcome using OLS and 

then estimates the absolute deviation from the outcome median within each SNP group. This 

deviation is then regressed on the SNP in a second OLS model and has near identical 

performance to the Brown-Forsythe test in terms of power and type I error rate. However, the 

DRM implies linearity of the SNP effect on outcome variability which may not hold56 (Chapter 

9.1). 

4.3.3 Aims 

In this chapter I aim to implement and evaluate the least-absolute deviation (LAD) 

regression Brown-Forsythe test (LAD-BF) proposed by Professor Tilling. This approach uses the 
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same structure as the Breusch-Pagan test. However, the first-stage regression model uses least-

absolute deviation (LAD) regression105 in instead of OLS and takes the absolute rather than 

squared residuals as in the case of Breusch and Pagan. LAD regression estimates the mean 

exposure effect on outcome median (rather than mean as with OLS) providing robustness to 

trait non-normality. The LAD-BF test can adjust for covariates and provides a variance effect 

estimate that does not make linearity assumptions.  

I aim to compare LAD-BF with Brown-Forsythe and Breusch-Pagan tests through 

simulation to detect SNP-interaction effects. I also aim to develop scalable open-source 

software for performing variance GWAS using LAD-BF and an R-package for evaluation and 

smaller scale analyses. 

4.4 Materials and methods 

4.4.1 Software implementation 

 The LAD-BF test was implemented in varGWAS available in C++ v1.2.3 

(https://github.com/MRCIEU/varGWAS) and R v1.0.0 (https://github.com/MRCIEU/varGWASR). 

As GWAS studies are highly computationally intensive, I decided to use C++ which is a 

performant language designed for efficiency124. Many existing GWAS tools are also developed 

in C++ including BOLT-LMM125, PLINK126 and SAIGE127. To enable parallel processing of genetic 

loci I used the OpenMP multithreading library128. 

Both implementations used LAD regression model from the cqrReg R-package105 

(https://cran.r-project.org/web/packages/cqrReg/index.html). The C++ implementation also 

used Eigen v3.4.0129 and BGEN library130 v1.1.6 for general matrix functionality and BGEN file 

processing, respectively.  
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4.4.2 Simulation study overview 

 The following section describes a comprehensive range of simulation studies (Chapter 

2.2.1) undertaken throughout Chapter 4 which aim to evaluate the LAD-BF test (Table 4.4.2.1). 

First, I verified the relationship between exposure and outcome variance under interaction 

effect (Simulation 4.4.3). Professor Tilling derived an algebraic expression for this relationship 

(Chapter 9.1) indicating outcome variance was conditional on the exposure and the square of 

the exposure. Second, I evaluated LAD-BF, Brown-Forsythe and Breusch-Pagan tests based on 

this expression for type I error rate under a range of outcome distributions (Simulation 4.4.4). 

Third, I performed simulations for LAD-BF and Brown-Forsythe tests for power (Simulation 

4.4.5) and bias and coverage (Simulation 4.4.6). Fourth, I explored the consequences of 

confounding by population stratification on the variance effect with various covariate 

adjustment strategies (Simulation 4.4.7). Fifth, I compared variance test P-value distributions 

under interaction effect with/without adjustment for the interaction (Simulation 4.4.8). Sixth, I 

compared the power of detecting an interaction effect using linear regression and a series of 

candidate modifiers against testing for an effect on outcome variance (Simulation 4.4.9). 

Finally, I compared the runtime performance of LAD-BF and the Brown-Forsythe test 

implemented in the OSCA96 software package with increasing CPU thread count (Simulation 

4.4.10). 
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Table 4.4.2.1. Simulation study summary 

Simulation  Description  
4.4.3 Verify the relationship between SNP and outcome variance when the SNP has 

an interaction effect on the outcome 

4.4.4 Measure the LAD-BF, Brown-Forsythe, and Breusch-Pagan test type I error rate 
under a range of outcome distributions 

4.4.5 Estimate the power of LAD-BF and Brown-Forsythe tests under interaction 
effect of SNP on outcome 

4.4.6 Estimate bias and coverage of variance effect estimate and confidence interval 
for LAD-BF and Brown-Forsythe test 

4.4.7 Estimate the null hypothesis rejection rate for LAD-BF and Brown-Forsythe tests 
under variance confounding with and without adjustment 

4.4.8 Compare LAD-BF and Brown-Forsythe test P-value distributions with and 
without adjustment for a simulated interaction effect 

4.4.9 Compare the power of exhaustive testing using a set of simulated modifiers 
with LAD-BF to detect the presence of an interaction effect 

4.4.10 Comparison of runtime performance for LAD-BF and Brown-Forsythe tests with 
increasing CPU threads 

SNP, single nucleotide polymorphism. LAD-BF, least-absolute deviation regression Brown-

Forsythe test. CPU, central processing unit.  
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4.4.3 Simulation to verify the relationship between SNP and outcome variance under SNP 

interaction effect 

Aim: To verify algebraic expression derived by Professor Tilling for the relationship 

between SNP and outcome variance when the SNP has an interaction effect on the outcome 

(Chapter 9.1). 

Data-generating mechanisms: Data were simulated for N=1000 independent 

observations within each simulated dataset. For the 𝑖th observation, I simulated a SNP 𝐺&  in 

HWE with a MAF of 0.4 and standard Normal modifier 𝑈&. I used the approach of Brookes et al57 

to set the effect sizes, defined as follows: the outcome 𝑌&  was simulated to have main effects of 

𝐺&  and modifier 𝑈&  detectable with 80% power. The interaction effect 𝐺𝑈&  of 𝐺&  and 𝑈&  was set 

𝜖{0, 0.5, 1, 1.5. .6} times the size of the main effect of 𝐺&. 

𝑌& = 𝛽%𝐺& + 𝛽!𝑈& + 𝛽2𝐺𝑈& + 𝐸&  

Where 𝐸&  is the residual variance of 𝑌&  drawn from the standard Normal distribution. 

 Estimand: The outcome variance conditional on SNP. 

Methods: The outcome variance was estimated within each SNP group. 

Performance measures: Bias of estimated variance compared with calculated variance 

with N=1000 replications. This value was chosen to ensure confidence intervals derived from 

Monte Carlo standard errors were sufficiently precise while optimising computing resources. 

Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim19.R 

4.4.4 Simulation to estimate type I error rate of variance tests under the null hypothesis 

Aim: To compare type I error rate of LAD-BF, Brown-Forsythe, and Breusch-Pagan tests 

under the null of no SNP effect on continuous outcomes. This was performed using a range of 
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outcome distributions to determine how deviation from Normality affect the test type I error 

rate. 

Data-generating mechanisms: Data were simulated for N=100,000 independent 

observations within each simulated dataset. For the 𝑖th observation, I simulated a SNP 𝐺&  in 

HWE with MAF of 0.05. This sample size was selected to simulate the real-world application to 

biobank data. This large sample and low MAF were chosen, as previous research indicated a 

high false-positive rate at lower MAF with non-normal outcomes68 and I aim for the findings to 

inform applied analyses. The outcome 𝑌&  was randomly generated from either standard 

Normal, t (df=4), log standard Normal or mixed Normal 0.9	𝑁(0,1), 0.1	𝑁(5,1) distributions. 

These distributions were chosen to evaluate type I error rate for distributions with skew (log 

Normal) and kurtosis (t and mixed Normal). 

𝑌& = 𝛽%𝐺& + 𝐸&  

Where the effect 𝛽% of 𝐺&  on 𝑌&  was set to null and 𝐸&  was the residual variance drawn from a 

range of distributions.  

Estimand: The test statistic for the null hypothesis of variance homogeneity. 

Methods: The effect of the SNP on outcome variance was tested using the Brown-

Forsythe test, LAD-BF (Chapter 2.2.2; Chapter 2.2.4) and Breusch-Pagan test (Chapter 2.2.3). 

Performance measures: Type I error rate compared with the expected null with N=1000 

replications. 

Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim2b.R 
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4.4.5 Simulation to estimate the power of Brown-Forsythe tests to detect interaction effects 

Aim: To estimate and compare statistical power of LAD-BF and Brown-Forsythe tests to 

detect variance effects produced by a simulated SNP interaction effect on continuous outcome. 

Data-generating mechanisms: Data were simulated for N=200, N=2000, N=200,000 and 

N=2,000,000 independent observations within each simulated dataset. I chose these large 

sample sizes to ensure high power across all methods and parameters. For the 𝑖th observation, 

I simulated a SNP 𝐺&  in HWE with a MAF of 0.4, a standard Normal modifier 𝑈&  and outcome 𝑌&  

with residual drawn from either standard Normal, t (df=4) or log standard Normal distributions. 

I used the approach of Brookes et al57 to set the effect sizes. The main effects 𝛽% and 𝛽! of 𝐺&  

and 𝑈&, respectively were set to have 80% power when then sample size was N=200 (assuming 

normally distributed residuals). The interaction effect 𝛽2 of 𝐺&  and 𝑈&  denoted by 𝐺𝑈&  was 

varied 𝜖{0, 0.5, 1, 1.5. .6} times the size of the main effect of 𝐺&. 

𝑌& = 𝛽%𝐺& + 𝛽!𝑈& + 𝛽2𝐺𝑈& + 𝐸&  

Estimand: Test statistic for the null hypothesis of variance homogeneity. 

Methods: The effect of 𝐺&  on the variance of 𝑌&  was tested using LAD-BF and Brown-

Forsythe tests (Chapter 2.2.2; Chapter 2.2.4).  

Performance measures: Power was defined as the percentage of tests with P < 0.05. 

Each configuration of parameters was evaluated using N=200 replications. This value was 

chosen to ensure confidence intervals derived from Monte Carlo standard errors were 

sufficiently precise while optimising computing resources. 

Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim1.R 
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4.4.6 Simulation to estimate bias of the variance effect and confidence interval coverage 

Aim: To evaluate the bias of variance effect estimates for LAD-BF and Brown-Forsythe 

tests (using effect estimate derived by Zhu et al26). This was performed using a linear 

association of exposure with outcome variance or interaction effect. 

Data-generating mechanisms: Data were simulated for N=10,000 independent 

observations within each simulated dataset. For the 𝑖th observation, I simulated a SNP 𝐺&  in 

HWE with a MAF of 0.4 and standard Normal modifier 𝑈&. 𝐺&  was set to either have linear effect 

𝛽9 on the variance of outcome 𝑌&  or an interaction effect 𝛽2 on 𝑌&. I adapted the approach of 

Brookes et al57 to set the effect sizes. The main effects 𝛽% and 𝛽! of 𝐺&  and 𝑈&  on 𝑌&  were fixed 

across all simulations and set to have 95% power. Where the variance was generated by the 

interaction effect, the magnitude of the interaction effect size 𝛽2 was varied and set relative to 

the main effect 𝛽% of 𝑋&  ranging from 𝜖{0,1. .12} while 𝛽9 = 0. Where the variance effect of 𝐺&  

was linear 𝛽2 = 0 and instead 𝛽9 was varied and set relative to the main effect 𝛽% of 𝑋&  ranging 

from 𝜖{0,1. .12}. Finally, 𝑌&  was scaled to have zero mean and unit variance so that variance 

effect estimates were on the same scale. 

𝑌& = 𝛽%𝐺& + 𝛽!𝑈& + 𝛽2𝐺𝑈& + 𝐸&  

𝐸& 	~	𝑁(0, 1 + 𝛽9𝐺&) 

Where 𝐸&  is the residual variane of 𝑌&  drawn from the Normal distribution. I chose a large 

sample size to avoid asymptotic bias104. 

Estimand: Variance effect. 

Methods: The difference in variance between SNP dosage zero and one and one and 

two was estimated using LAD-BF and Brown-Forsythe tests. For Brown-Forsythe the additive 
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variance effect size was estimated using Zhu et al26 and multiplied to obtain the estimate for 

one or two allele increases in variance. Bias was estimated using the difference between the 

expected and observed variance effect estimate. Coverage was estimated using the proportion 

of replicates where the estimate 95% confidence included the true difference in outcome 

variance.  

Performance measures: Bias of variance effect size estimates. Coverage of variance 

estimate 95% confidence intervals. Each configuration of parameters was evaluated using 

N=1000 replications. This value was chosen to ensure confidence intervals derived from Monte 

Carlo standard errors were sufficiently precise while optimising computing resources. 

Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim12.R 

4.4.7 Simulation to compare the rejection rate of the null hypothesis under ancestry variance 

confounding and strategies for adjustment of population stratification  

Aim: To explore the null hypothesis rejection rate of LAD-BF and Brown-Forsythe tests in 

the presence of variance confounding by population stratification (i.e., a main effect of ancestry 

on genotype frequencies and interaction of ancestry on outcome; Chapter 1.2.3). Additionally, I 

explored different adjustment strategies to control confounding by population stratification. 

Data-generating mechanisms: Data were simulated for N=1000 independent 

observations within each simulated dataset. I assigned the 𝑖th observation to a simulated 

ancestral group 𝐴&  with 𝜖{1,2,3,4,5} levels, within each 𝐴&  I simulated a SNP 𝐺&  in HWE with 

varying minor allele frequency (which were selected randomly from the uniform distribution) 

for each 𝐴&  group with values of 𝜖{0.14, 0.39, 0.20, 0.44, 0.47}. I also simulated two modifiers 

𝑈%&  and 𝑈!&  drawn from the standard Normal distribution which interacted with 𝐴&  and 𝐺&, 
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respectively denoted by 𝐴𝑈%&  and 𝐺𝑈!&. The outcome 𝑌&  was simulated to have main effects 𝛽% 

𝛽! 𝛽2 𝛽9 for 𝐴&  𝑈%&  𝐺&  and 𝑈!&  and interaction effects 𝛽: and 𝛽; for 𝐴𝑈%&  and 𝐺𝑈!&. The residual 

variance of 𝑌&  was drawn from the standard Normal distribution.  

𝑌& = 𝛽%𝐴 + 𝛽!𝑈%& + 𝛽2𝐺& + 𝛽9𝑈!& + 𝛽:𝐴𝑈%& + 𝛽;𝐺𝑈!& + 𝐸&  

The main effects of 𝐴&  and 𝑈%&  were set to explain 25% and 10% of the variance of 𝑌&, 

respectively. The main effects of 𝐺&  and 𝑈!&  were set to explain 5% and 10% of the variance of 

𝑌&, respectively. The interaction effects 𝛽: and 𝛽; were varied to explain 0-20% and 0-2% of the 

variance of 𝑌&  respectively. Under this simulation, both 𝐴&  and 𝐺&  are expected to associate with 

the variance of 𝑌&. 

Estimand: The test statistic for the null hypothesis of variance homogeneity. 

Methods: The effect of 𝐺&  on variance of 𝑌&  was tested under varying conditions: 

• Brown-Forsythe test applied to unadjusted outcome (BF_1)  

• Brown-Forsythe test applied to pre-adjusted outcome for 𝐴&  using OLS (BF_2) 

• LAD-BF unadjusted (LAD-BF_1) 

• LAD-BF adjusted for 𝐴&  in the first-stage regression model (LAD-BF_2) 

• LAD-BF adjusted for 𝐴&  in the first and second-stage regression models (LAD-BF_3) 

• LAD-BF adjusted for 𝐴&  in the first-stage model and 𝐴&! in the second-stage model (LAD-

BF_4) 

• LAD-BF adjusted for 𝐴&  in the first-stage regression model and 𝐴& + 𝐴&! in the second-stage 

model (LAD-BF_5) 

Performance measures: Null hypothesis rejection rate 𝛼 = 0.05 with N=1000 

replications.  
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Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim16.R 

4.4.8 Simulation to compare the rejection rate of the null hypothesis under interaction effect 

with/without adjustment of the interaction effect 

Aim: To compare the variance test null hypothesis rejection rate under simulated SNP 

with interaction effect on outcome with/without adjustment for interaction effect. 

Data-generating mechanisms: Data were simulated for N=1000 independent 

observations within each simulated dataset. For the 𝑖th observation, I simulated a SNP 𝐺&  in 

HWE with MAF of 0.4 and standard Normal modifier 𝑈& . 𝐺&  was simulated to have a main 𝛽% and 

interaction 𝛽2 effect of 𝐺&  and 𝑈&  explaining 6.5% and 20% of the variance of the outcome, 

respectively. The main effect 𝛽! of 𝑈&  was set to null. The outcome 𝑌&  residual variance 𝐸&  was 

drawn from standard Normal distribution. I chose these large effect sizes so that the simulation 

would clearly show that adjusting for the interaction led to strong change in LAD-BF test p-

value distribution. 

𝑌& = 𝛽%𝐺& + 𝛽!𝑈& + 𝛽2𝐺𝑈& + 𝐸&  

Estimand: The test statistic for the null hypothesis of variance homogeneity. 

Methods: LAD-BF with/without adjustment for 𝑈&  and 𝐺𝑈&  in the first-stage regression 

model. 

Performance measures: Null hypothesis rejection rate with N=1000 replications. 

Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim13.R 
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4.4.9 Comparison of statistical power to detect the presence of an interaction with LAD-BF and 

linear regression applied to multiple hypothesised modifiers 

Aim: To compare the power of exhaustive interaction effect testing using linear 

regression in comparison with variance testing to detect the presence of effect modification. 

Data-generating mechanisms: Data were simulated for N=1000, N=5000, N=25,000 

independent observations selected empirically to achieve full power using each testing 

approach. For the 𝑖th observation I simulated a SNP 𝐺&  in HWE with a MAF of 0.4 and five 

modifiers 𝑈%::& 	drawn from the standard Normal distribution. The outcome 𝑌&  was simulated 

with main effects 𝛽% and 𝛽! of 𝑋&  and 𝑈%&  and interaction effect 𝛽2	of 𝑋𝑈%&  each detectable 

with 80% power using linear regression when the sample size was set to N=1000. Modifiers 

𝑈!::&  had no effect on 𝑌&. The residual variance 𝐸&  of 𝑌&  was drawn from the standard Normal 

distribution. 

𝑌& = 𝛽%𝐺& + 𝛽!𝑈%& + 𝛽2𝐺𝑈%& + 𝐸&  

Estimand: The test statistic for the null hypothesis of variance homogeneity or for the 

null hypothesis of linear regression interaction effect. 

Methods: The effect of 𝐺&  on the variance of 𝑌&  was tested using LAD-BF test (without 

requiring any modifier). Between one and five interaction effects 𝐺𝑈%::&  of 𝐺&  and 𝑈%::&  were 

tested using linear regression within each simulation (only one of which was non-null). 

Performance measures: Power estimates of LAD-BF and up to five linear regression 

interaction term(s) with N=200 replications. 

Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim20.R 
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4.4.10 Simulation to estimate runtime performance of variance tests with increasing CPU 

threads 

Aim: To estimate and compare runtime performance of LAD-BF and Brown-Forsythe 

tests across increasing numbers of CPU threads. 

Data-generating mechanisms: Data were simulated for N=100,000 independent 

observations within each simulated dataset. I chose this large sample size to simulate analysis 

from large biobank datasets. For the 𝑖th observation, I simulated 1000 independent SNPs in 

HWE with a MAF of 0.4 and random outcome 𝑌&  drawn from standard Normal distribution. 

Estimand: Test runtime. 

Methods: The effect of the SNP on outcome variance was tested using LAD-BF and 

Brown-Forsythe tests with increasing CPU threads 𝜖{1,2,4,8} using an InteI Xeon CPU E5-2680 

v4 @ 2.40GHz. 

Performance measures: Difference in runtime between methods with N=200 

replications. 

Open-source code: https://github.com/MRCIEU/varGWAS/blob/master/sim/sim4.R 

4.4.11 Positive and negative control in UK Biobank 

 Following comprehensive characterisation of the LAD-BF test through simulation, I 

aimed to apply LAD-BF to positive and negative controls using real data from UK Biobank. These 

controls were proposed by Professor Davey Smith. 

SNP CHRNA3 rs1051730-A has a strong positive effect on smoking heaviness but weak 

effect on smoking initiation88,131. It follows that rs1051730-A will strongly affect lung function 

only among current/former smokers implying a rs1051730-by-smoking status interaction 
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(Figure 4.5.8.1). This interaction effect would be expected to increase the variance of lung 

function measures. SNP rs1051730 would not be expected to influence adult height (Figure 

4.5.8.1) and therefore have no variance effect. 

I tested for a variance effect of rs1051730 using LAD-BF (Chapter 2.2.4) on adult 

standing height (negative control), forced expiratory volume in 1-second (FEV1; positive 

control) and forced vital capacity (FVC; positive control) in 337k unrelated white British UK 

Biobank participants (Chapter 3.3). These models were adjusted for age at recruitment, sex, 

and top ten genetic principal components. The imputed variant dosage was rounded to the 

nearest whole number so that it could be included as a dummy variable. The variance effect of 

the variant on these outcomes was reported as an average difference in variance standardised 

to SD units for an increase of one or two alleles compared with no alleles.  
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Figure 4.4.11.1. Causal diagram of interaction positive and negative controls 

 
 

Causal diagram of UK Biobank positive and negative controls.  Z, genetic variant. X, exposure. 

XU, interaction effect of exposure on outcome. U, modifier. Y, outcome. A, the effect of 

smoking heaviness on lung function which only acts in those who smoke. B, the effect of 

smoking heaviness on adult standing height which is anticipated to have no effect in either 

smokers or non-smokers.  
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4.5 Results 

4.5.1 Verifying the relationship between exposure and outcome variance under an interaction 

effect (Simulation 4.4.3) 

Under an interaction effect of SNP on outcome, outcome variance was proportional to 

the SNP and its square (Figure 4.5.1.1). This finding confirms the formula derived by Professor 

Tilling (Chapter 9.1).  
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Figure 4.5.1.1. Variance of outcome across levels of SNP, under an interaction effect 

 

Outcome variance among genotype groups for a SNP with an interaction effect against 

calculated variance using formula derived by Professor Tilling (Chapter 9.1). Confidence 

intervals were produced from 1000 simulation replications using the Monte Carlo standard 

errors. The SNP and continuous modifier were set to have 80% power. The SNP-by-modifier 

interaction effect was set 0-6x the size of the SNP main effect. CI, confidence interval.  
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4.5.2 Simulated type I error rate and power to detect interaction effects by difference in trait 

variance under a range of outcome distributions (Simulation 4.4.4 and Simulation 4.4.5) 

The LAD-BF and Brown-Forsythe tests were equally well controlled for type I error rate 

in comparison with the Breusch-Pagan test which was adversely affected by log-normal and t-

distributions (Figure 4.5.2.1) and not considered further. 

The power to detect a difference in trait variance due to an interaction effect was low 

and equal for LAD-BF and Brown-Forsythe tests (Figure 4.5.2.2). However, the approach 

showed utility to detect larger effects when applied to biobank scale sample sizes such as UK 

Biobank. For example, 78% power (95% CI 0.71, 0.83) was obtained for a normally distributed 

outcome when the SNP main and interaction effects explained 5% variance of the outcome, 

and the sample size was n=500,000. However, a SNP explaining 5% trait variance is unlikely for 

complex traits but could be applicable for molecular phenotypes such as protein expression 

where cis-SNPs explain on average 5.8% trait variance132. Compared with normally distributed 

outcomes, non-normal outcomes with positive skew (mixed-normal and log-normal 

distributions) and kurtosis (t-distribution) had lower power (Figure 4.5.2.2).   
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Figure 4.5.2.1. Type I error rate of tests for effect on outcome variance, across simulation 

repetitions 

 
Variance test P-value distributions under the null hypothesis of no effect on outcomes 

simulated from the: Normal, standard Normal distribution. Lognormal, standard log Normal 

distribution. T-dist, distribution with 4 degrees of freedom. Mixed normal, distribution 

produced with 0.9	𝑁(0,1), 0.1	𝑁(5,1). A, Brown-Forsythe test. B, Breusch-Pagan test. C, LAD-BF 

test. Simulations were produced with 1000 repetitions and 100,000 observations.   
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Figure 4.5.2.2. Power to detect SNP-interaction effects using variance testing under 

simulation 

 
Power to detect interaction effects using SNP association with trait variance using LAD-BF and 

Brown-Forsythe tests and a range of outcome distributions. Phi, interaction effect size relative 

to main effect. Inflation factor, sample size relative to the size required to detect the main 

effect with 80% power. Normal, distribution with mean of 0 and variance of 1. Mixed normal, 

● ● ● ●
●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●●
●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●● ● ● ●● ● ● ●● ● ● ●

●
● ● ●● ●

●

●

●

●

● ●

●

●

● ●

●

●
● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●
●

● ● ●

● ●
● ●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●

●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

● ● ● ●●
●

●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●● ● ● ●● ● ● ●● ● ● ●

●
● ● ●●
●

●

●

●

●

● ●

●

●

● ●

●

●
● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●
●

● ● ●
●

● ● ●

● ●
● ●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●

●

● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●

Brown−Forsythe Brown−Forsythe (LAD)
N

orm
al

M
ixed norm

al
Lognorm

al
T−dist

1 10 100 1000 1 10 100 1000

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Sample size inflation factor

Po
we

r (
al

ph
a=

0.
05

)

0
1
2
3
4
5
6

φ



   
 

 109 

distribution with 90% Normal with mean of 0 and variance of 1 and 10% Normal with mean of 5 

and variance of 1. Lognormal, distribution with mean of 0 and variance of 1. T-dist, distribution 

with 4 degrees of freedom. SNP, single-nucleotide polymorphism simulated with minor allele 

frequency of 0.4 in Hardy-Weinberg equilibrium. All simulations had a fixed main effect 

detectable with 80% power when the sample size inflation factor was equal to 1. Simulation 

was performed with 200 repetitions. Sample size inflation factor of 1 was set to 200 

observations. Error bars represent the 95% confidence interval. LAD, least absolute deviation.  
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4.5.3 Bias and confidence interval coverage of simulated variance effect estimate (Simulation 

4.4.6) 

Under a simulated linear effect of SNP dosage on outcome variance LAD-BF and Brown-

Forsythe tests gave the correct effect estimate and 95% confidence interval coverage (Figure 

4.5.3.1). However, when the difference in variance was a consequence of an interaction effect, 

the relationship between the SNP and outcome variance was non-linear, dependent on the 

modifier. Under these conditions, the variance effect estimate produced by Brown-Forsythe 

from test P-value26,96 gave the incorrect effect size while LAD-BF produced the correct estimate.  
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Figure 4.5.3.1. Variance effect estimate accuracy and confidence interval coverage 

 
Comparison of variance effect estimate accuracy and confidence interval coverage for LAD-BF 

and OSCA tests with one (SNP=1) or two (SNP=2) copies of the minor allele when the SNP is 

simulated to have a linear effect on trait variance or variance effect produced through 

interaction effect on outcome. In each plot the dotted line shows expected value. Variance 

effect estimate accuracy (A, B) and 95% confidence interval coverage (C, D) of simulated SNPs 
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(G) with proportional (linear) effect on outcome variance (A, C) or interaction effect (B, D). LAD-

BF, least-absolute deviation regression Brown-Forsythe. OSCA-BF, Brown-Forsythe test 

implemented in OSCA96 including effect estimate derived from the test P-value26. CI, confidence 

interval.  
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4.5.4 Simulating the effect of variance confounding by population stratification and adjustment 

of Brown-Forsythe and LAD-BF tests (Simulation 4.4.7) 

Ancestry may influence both genotype frequencies and outcome in which case it is a 

confounder (Chapter 1.3.2), and association studies are susceptible to bias by population 

stratification (Chapter 1.2.3). Suppose ancestry also interacts with another variable to influence 

an outcome. If it does, the variance effect may be susceptible to population stratification as 

well as the mean association. Here, I explored this situation using simulation to consider the 

scenarios where adjustment for ancestry correctly controlled type I error rate from population 

stratification. I also explored the possibility of adjustment for variance confounding leading to 

gains in power to detect gene-interaction effects not biased by population stratification (Figure 

4.5.4.1).  

Figure 4.5.4.1 shows the null hypothesis rejection rate for variance homogeneity using 

LAD-BF and Brown-Forsythe tests. This was performed across a range of testing scenarios with 

increasing variance explained by the SNP-interaction effect (top) and ancestry-interaction effect 

(right). When the ancestry-interaction effect variance explained was zero, I found no 

differences in null hypothesis rejection rate between formal modelling of covariates in the first-

stage LAD-BF model (LAD-BF_2) compared with applying the Brown-Forsythe test to pre-

adjusted outcomes (BF_2). Meanwhile, under ancestry confounding, LAD-BF adjusted for 

ancestry in both regression models (LAD-BF_3) produced correctly controlled type I error rate 

with slight reduction in power due to reduced degrees of freedom. In contrast, the Brown-

Forsythe test (BF_2) applied to pre-adjusted outcomes using OLS regression could not control 
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for this type of confounding and had elevated type I error rate despite the null SNP interaction 

effect.  
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Figure 4.5.4.1. Effect of adjustment for variance confounding by ancestry on test type I error 

rate 

 
Type I error rate (first column) and statistical power (second and third columns) of original and 

LAD-regression based Brown-Forsythe tests under genetic confounding by ancestry and range 

of confounding adjustment approaches. BF 1, Brown-Forsythe test without adjustment. BF_2, 

Brown-Forsythe test on preadjusted outcome for main effect of ancestry. LAD-BF_1, LAD-BF 
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model unadjusted. LAD-BF_2, LAD-BF model adjusted for ancestry in the first-stage model. LAD-

BF_3, LAD-BF model adjusted for ancestry in both models. LAD-BF_4, LAD-BF model adjusted 

for ancestry in the first-stage model and squared ancestry in the second-stage model. LAD-

BF_5, LAD-BF adjusted for ancestry in both models and squared ancestry in the second-stage 

model. CI, confidence interval. 
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4.5.5 LAD-BF null hypothesis rejection-rate under interaction effect when adjusting for an 

interaction effect through simulation (Simulation 4.4.8) 

I simulated an interaction effect and compared the LAD-BF test P-value distributions 

with and without adjusting for the simulated interaction (Figure 4.5.5.1). Including the main 

effect of the modifier and SNP-by-modifier interaction term in the first-stage regression model 

completely attenuated the SNP effect on outcome variance test statistic. 
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Figure 4.5.5.1. Effect of adjustment for the interaction effect on variance test P-value 

distribution 

A 

 

B 

 
Distribution of LAD-BF test P-values under interaction effect with and without adjustment for 

interaction. A, No adjustment. B, Adjustment for interaction in the first-stage regression model. 

The SNP was simulated to have main and interaction effects explaining 6.5% and 20% of the 

variance of a standard Normal outcome, respectively.   
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4.5.6 Effect of exhaustive interaction analyses compared with variance prioritisation approach on 

power to detect an interaction effect when the modifier is unknown (Simulation 4.4.9) 

When the sample size was N=1000 and a single interaction effect was tested (i.e., the 

interaction was known), linear regression had 83% power (95% CI 77%-88%) while LAD-BF had 

only 13% power (95% CI 9%-19%) at the same sample size. However, as the sample size 

increased so did power. For linear regression this was 100% power (95% CI 98%-100%) with 

N=5000 and 99% power (95% CI 96%-100%) for LAD-BF with N=25,000.  

LAD-BF was better powered than exhaustive pairwise interaction analyses when the 

modifier was unknown (Figure 4.5.6.1). For example, under the conditions of a single true 

interaction and four null interactions (i.e., five tests), statistical power at N=25,000 for linear 

regression was 24% (95% CI 21%-26%). Under the same conditions LAD-BF power remained at 

99% power (95% CI 96%-100%) as only one test was performed. 
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 Figure 4.5.6.1. Power of linear regression and LAD-BF to detect the presence of effect 

modification 

 

Power simulation to detect the presence of an interaction effect when the modifier is unknown 

using either linear regression or LAD-BF test with an increasing number of modifiers evaluated. 

All simulations contained a single true interaction effect detectable with 80% power using linear 
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regression when the sample size was N=1000 and up to four modifiers which had no effect. All 

simulations had n=200 repetitions. CI, confidence interval.   
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4.5.7 Runtime performance (Simulation 4.4.10) 

Increasing the number of CPU threads reduced the total runtime of both methods to 

process 1000 SNPs (Figure 4.5.7.1). For the C++ implementation of LAD-BF in varGWAS, the 

lowest average runtime was 13.6 second (95% CI 13.5, 13.7) using four threads of an Intel Xeon 

CPU E5-2680 v4 @ 2.40GHz. Under the same conditions, the original Brown-Forsythe test 

implemented in OSCA was 1.78x faster (7.61 seconds [95% CI 7.60, 7.63]). For LAD-BF, runtime 

performance was slightly worse with eight threads than with four threads, this may be due to 

the overhead of creating and producing thread with the program. These results suggest the 

LAD-BF performance may be optimal with four threads. 
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Table 4.5.7.1. Runtime performance of varGWAS and OSCA 

Threads Duration 95% CI Test 
1 29.18 28.92 29.43 LAD-BF (varGWAS) 
2 23.75 23.26 24.24 LAD-BF (varGWAS) 
4 13.56 13.47 13.65 LAD-BF (varGWAS) 
8 14.61 14.56 14.67 LAD-BF (varGWAS) 
1 9.18 9.13 9.23 Brown-Forsythe (OSCA) 
2 8.87 8.75 8.99 Brown-Forsythe (OSCA) 
4 7.61 7.60 7.63 Brown-Forsythe (OSCA) 
8 7.35 7.34 7.36 Brown-Forsythe (OSCA) 

 
Average runtime for effect of 1000 SNPs tested on outcome variance using LAD-BF 

implemented in varGWAS and original Brown-Forsythe implemented in OSCA with increasing 

CPU threads. CI, confidence interval. 
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4.5.8 Positive and negative controls using data from UK Biobank 

CHRNA3 rs1051730 was strongly associated (Figure 4.5.8.1) with a 0.015 SD (95% CI 

0.008, 0.021) increase in FEV1 variance for one SNP dosage increase and 0.017 SD for two SNP 

dosage increase (95% CI 0.006, 0.028). SNP rs1051730 was less strongly associated with FVC 

variance; one SNP dosage increase of 0.009 SD (95% CI 0.003, 0.016) and two SNP dosage 

increase 0.008 SD (95% CI -0.002, 0.019) in FVC variance. SNP rs1051730 was not strongly 

associated with adult standing height variance (one SNP dosage increase of 0.001 SD [95% CI -

0.004, 0.006] and two SNP dosage increase of 0.002 SD [95% CI -0.006, 0.011]). These results 

are consistent with the expected causal diagram shown in Figure 4.4.11.1, highlighting a 

pathway between CHRNA3 rs1051730 and lung function modified by smoking status but no 

effect on adult standing height. Adjusting the variance effects for the interaction of CHRNA3 

rs1051730 × smoking status led to complete attenuation of the effects on FEV1 (one SNP 

dosage increase of 0.005 SD [95% CI -0.002, 0.013] and two SNP dosage increase of -0.001 [95% 

CI -0.014, 0.011]) and FVC (0.006 SD [95% CI -0.002, 0.013] and two SNP dosage increase of 

0.001 SD [95% CI -0.012, 0.014]). 
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Figure 4.5.8.1. Per allele effect of CHRNA3 rs1051730 on variance of lung function and adult 
standing height 

 
Effect of smoking heaviness variant (CHRNA3 rs1051730) on variance of standardized lung 

function (FEV1 and FVC) and standardised adult standing height adjusted for age, sex and top 

ten genetic principal components estimated using LAD-BF. Unadjusted, the effect of rs1051730 

on trait variance without adjustment for interaction effect. Adjusted, LAD-BF variance effect 

adjusted for interaction of rs1051730 × smoking status. FEV1, forced expiratory volume in 1-

second. FVC, forced vital capacity. CI, confidence interval.   
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4.6 Discussion 

I implemented and evaluated the LAD-BF test, a LAD regression-based105 Brown-

Forsythe test71 with functionality to estimate an unbiased variance effect (under trait 

normality) and control for ancestry confounding of the variance effect. I compared this test 

with the Brown-Forsythe test implemented in OSCA68,96 through a series of simulations and 

evaluated the test using positive and negative controls with data from UK Biobank. I provided 

C++ and R implementations of LAD-BF available in varGWAS and R-package, that are open-

source and freely available for other researchers to use. 

I obtained high correlation between the per-genotype estimated variance and expected 

variance. The association between the SNP and outcome variance under an interaction effect 

was proportional to the exposure and its square. This finding confirms the expression derived 

by Professor Tilling (Chapter 9.1) and is consistent with a previous study56.  

I compared the type I error rate of LAD-BF, Brown-Forsythe, Breusch-Pagan tests. The 

Brown-Forsythe and LAD-BF tests were robust to non-normality giving a null hypothesis 

rejection rate close to the expected error rate. But the Breusch-Pagan test showed elevated 

type I error rate when applied to non-normal outcomes consistent with previous research133 

and was not considered further. This is in line with previous studies which demonstrated the 

Brown-Forsythe test has lower type I error rate compared with other tests when applied to 

non-normal outcomes68,70. This is because the median is a more robust measure of central 

tendency in the presence of skew or kurtosis81.  

The power to detect genetic interaction effects using variance prioritisation was low but 

comparable for LAD-BF and Brown-Forsythe test. However, when applied to a large sample size 
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such as UK Biobank strong evidence for association of larger effects can be identified as 

demonstrated in Chapter 5 and by Wang et al68.  

LAD-BF provides an unbiased variance effect estimate of the SNP on outcome when 

there is a SNP interaction effect unlike the variance estimate from OSCA and DRM which 

incorrectly assume linear association between SNP and outcome variance. I showed how this 

estimate can be adjusted for an interaction to determine if the interaction is responsible for the 

variance signal and if additional interactions are likely to exist and could potentially be applied 

using stepwise regression until all interaction effects are discovered, subject to sufficient 

power. I also demonstrated through simulation that adjusting the variance effect for ancestry 

can reduce confounding by population stratification when ancestry has main and interaction 

effects on the outcome. These results suggest that ancestry covariates should be included in 

both regression models to mitigate bias from population stratification (Chapter 1.2.3) of either 

mean or variance effects. However, this is not possible using the Brown-Forsythe test which 

must be applied to pre-adjusted outcomes and this approach does not control for population 

stratification of the variance effect. 

Through simulation I also compared the value of variance prioritisation in comparison 

with exhaustive pairwise interaction testing to detect the presence of effect modification. 

Variance prioritisation had greater power than exhaustive pairwise interaction testing of 

hypothesised modifiers when considering five or more modifiers. However, the interaction test 

provides evidence on the exact interaction while variance testing can only indicate the 

presence of effect modification. But variance testing does not require a hypothesised or 

measured modifier which may lead to the detection of unanticipated findings. 
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In addition to extensive simulation studies, I also evaluated positive and negative 

controls using data from UK Biobank (Chapter 1.3.7). I was advised to use the known 

association of CHRNA3 rs1051730 with smoking heaviness88 to evaluate the genotypic effects 

on variance of lung function and adult standing height. CHRNA3 rs1051730 is strongly 

associated with smoking heaviness and therefore would be anticipated to have an effect on 

lung function only among those who smoke131. Meanwhile, CHRNA3 rs1051730 is anticipated to 

have no strong effect on adult standing height, although it is possible the variant may have a 

weak effect as CHRNA3 rs1051730 status is predictive of parental SNPs whose smoking 

heaviness could influence exposure to smoke during development leading to growth 

restriction134. However, CHRNA3 rs1051730 did not show strong association with adult standing 

height variance but did have a strong effect on FEV1 variance and weaker association with FVC 

variance. Adjusting the lung function effects for interaction with own smoking status led to 

complete attenuation of variance effects suggesting this interaction was driving the association 

of CHRNA3 rs1051730 with lung function variance. These results validate the analysis approach 

and are consistent with findings of the simulation study. 

4.7 Limitations 

First, the test cannot be applied to imputed genotype dosage values without rounding. 

This is needed for modelling non-linearities in the second-stage model between SNP and 

outcome variance. Second, the runtime of LAD-BF was 75% longer than the Brown-Forsythe 

test implemented in OSCA but was still fast enough to allow large-scale analyses such as 

application to UK Biobank. Third, the effect estimate (but not test P-value) is based on 

normality assumptions which may be violated in practice. Fourth, the LAD-BF approach does 
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not account for imprecision in first-stage regression model residuals in the variance effect 

estimate standard error. However, when applied to large sample sizes such as UK Biobank, 

residuals may be reliably estimated67.  

4.8 Conclusions 

Through extensive simulation studies and application to positive and negative controls 

in UK Biobank I evaluated the LAD-BF test for detection of interaction effects. To facilitate 

variance GWAS analyses I implemented the LAD-BF test in C++ and R. 
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Chapter 5: Genome-wide detection of gene-interaction effects on 30 serum biomarkers 

in UK Biobank using variance prioritisation 

5.1 Overview 

Variance prioritisation is an approach to identify genetic loci with interaction effects by 

estimating their association with trait variance, even where the modifier is unknown or 

unmeasured56. In Chapter 5 I applied LAD-BF software evaluated and implemented in Chapter 4 

to 30 serum biomarkers in UK Biobank and found evidence for 468 variance quantitative trait 

loci across 24 biomarkers and followed up findings to detect 82 gene-environment and six 

gene-gene interactions independent of strong scale or phantom effects. Among these results 

include replication of existing findings and identify novel epistatic effects of TREH rs12225548 × 

FUT2 rs281379 and TREH rs12225548 × ABO rs635634 on alkaline phosphatase and ZNF827 

rs4835265 × NEDD4L rs4503880 on gamma glutamyltransferase. These findings may help to 

improve our understanding of biological mechanisms underpinning biomarker concentration, 

weakly increase prediction of disease outcomes and in combination with other evidence 

support the identification of therapeutic targets for drug development48. 

5.2 Contribution statement 

Work in Chapter 5 forms part of a manuscript I wrote that was edited by PhD 

supervisors available as a preprint on MedRxiv (Lyon et al, 2022)2. I performed the variance 

GWAS and quality control analyses, tested for interaction effects of vQTLs, and performed 

subgroup analyses and sensitivity analyses. 
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5.3 Introduction 

5.3.1 Variance prioritisation 

Variance prioritisation56,68,70,87 is an approach to select SNPs for GxG/GxE testing which 

identifies differences in outcome variance across SNP levels (variance quantitative trait loci, 

vQTL; Chapter 1.5.3). Variance QTLs arise as a consequence of heterogeneous mean effects 

that could occur from differences in environment or background genetic profile67 (Chapter 

1.4.6). Although detection of a vQTL is not conclusive evidence for interaction (Chapter 1.5.3), 

this observation is consistent with SNP-interaction effects67 and detection of vQTLs does not 

require the modifier to be measured67. 

5.3.2 LAD-BF 

In Chapter 4 I implemented and evaluated the least-absolute deviation regression105 

Brown-Forsythe test71 (LAD-BF) which provides greater flexibility to enable adjustment of 

covariates and provide an unbiased variance effect estimate. This model used the same 

structure as the Breusch-Pagan test78 (Chapter 2.2.3) which evaluates the presence of 

heteroscedasticity through two independent regression models but using least-absolute 

deviation105 (LAD) regression in the first-stage instead of OLS. LAD regression estimates the 

mean exposure effect on outcome median (rather than mean as with OLS) providing robustness 

to trait non-normality105.  

5.3.3 Aims 

This chapter aims to apply the LAD-BF model evaluated in Chapter 4 to estimate SNP 

effects on the variance of 30 serum biomarkers in approximately 300K UK Biobank participants 
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and follow up vQTLs with formal interaction tests to detect GxG/GxE interactions as well as 

adjusting vQTL signals for these interactions to consider impact on variance effect attenuation. 

5.4 Materials and methods 

5.4.1 Phenotypes 

All 30 serum biomarkers measured in UK Biobank were evaluated in this study as 

described in the documentation117 (Table 3.3.4.1; Chapter 1.6; Chapter 3.3.4). For each GWAS 

and follow up analysis participants with missing data were excluded. All continuous outcomes 

were placed on the same scale by dividing each outcome by its standard deviation irrespective 

of distribution shape. 

5.4.2 Variance genome-wide association studies (vGWAS) 

Biomarker vGWAS was performed using the LAD-BF test (Chapter 2.2.4) evaluated in 

Chapter 4 adjusted for age, sex, and the first ten genetic principal components in both 

regression models. I removed outlier biomarker values with a 𝑍-score > 5 SD from the mean 

and restricted the analysis to MAF > 5% to control type I error inflation as previously 

described68. Qualitative quality control was undertaken using Q-Q plots of each GWAS to check 

for a departure of P-value distribution from that expected under the null. Independent vQTLs 

were identified by clumping GWAS loci that passed the experiment-wise genome-wide 

evidence threshold P < 1.67  x 10-9 (Bonferroni correction of standard GWAS threshold: p = 5 x 

10-8 / 30) using the OpenGWAS API18 with default R2 threshold of 0.001 and the 1000 genomes 

phase 3 European ancestry reference panel135. 
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5.4.3 Gene-interaction tests 

Independent vQTLs were tested for interaction effects on additive and multiplicative 

scales using heteroscedasticity-consistent standard errors107 adjusted for age, sex, and first ten 

genetic principal components (Chapter 2.2.5). To ensure effects were robust to phantom 

effects53,68, I performed sensitivity analyses adjusting for fine-mapped main effects identified 

using SuSiE-RSS136 (Chapter 1.2.4). Interactions surpassing genome-wide association 

significance (P < 5 x 10-8) on both scales that did not attenuate to null with adjustment for fine-

mapped main effects were prioritised for subgroup analyses. GxG effects were identified 

through interaction testing with independent (R2 < 0.001) vQTLs excluding pairwise 

combinations of vQTLs within a 10Mb window as previously described68. GxE testing was 

performed using a set of candidate modifiers: age (SD), sex (SD), BMI (SD), alcohol intake (SD), 

smoking status (SD), total physical activity (SD), daily sugar intake (SD), and daily fat intake (SD). 

These were chosen to include the modifiers evaluated in Wang et al68 (sex, age, physical 

activity, and smoking) supplemented with additional related phenotypes (BMI, alcohol intake, 

daily sugar and fat intake). Total physical activity was calculated by summing self-reported 

duration of walking, moderate and vigorous activity collected using the International Physical 

Activity Questionnaire as described137. Alcohol intake was self-reported from the question 

“About how often do you drink alcohol?” with six possible responses ranging from never to 

daily. Smoking status was derived by UK Biobank from several questions with possible values of 

“never”, “current” and “previous”. 
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5.4.4 Subgroup analyses 

To determine if top interaction effects have a qualitative interaction effect (Chapter 

1.4.5), I performed subgroup analyses estimating the SNP-outcome mean effect across levels of 

the modifier (dichotomising continuous measures). The aim of this analysis was to determine if 

the SNP had opposing effects between subgroups or no effect in one subgroup which may be of 

clinical relevance57. These stratified estimates were adjusted for age, sex and top ten genetic 

principal components (except for age and sex modifiers where these covariates were removed) 

and used heteroscedasticity-consistent standard errors107.  

For GxG analysis, categorical modifiers were rounded genetic dosage values. GxE 

subgroup analyses were performed using dichotomous modifier groups 𝑘1 and 𝑘2 as follows: 

below or above the median value for continuous variables (𝑘1 below median; 𝑘2 median or 

greater), ever (𝑘1) vs never (𝑘2) smoker, alcohol intake once a week or more (𝑘1) vs less than 

once a week on average (𝑘2), males (𝑘1) vs females (𝑘2). Subgroup effects are presented along 

with the SNP-variance estimates adjusted for age, sex and first ten genetic principal 

components with and without adjustment for the interaction term in both models. 

5.4.5 Gene annotation 

Variance QTLs were annotated with the nearest gene using the closest function of 

bedtools138 (v2.3.0) and gene coordinates from Ensembl139 v104 (GRCh37) protein-coding 

features which were filtered to retain HUGO140 valid identifiers. For the top interactions 

reported, I recoded the gene annotation using expression QTL evidence in blood141,142: 

rs4530622 SLC2A9, rs11244061 ABO, rs71633359 HSD17B13, rs28413939 TREH, rs281379 FUT2, 

rs635634 ABO, rs964184 APOA5. 
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5.4.6 Fine mapping of main effect SNPs 

Fine-mapping was performed between natural linkage disequilibrium break points 

identified in European populations95 containing the interacting variant using SuSiE-RSS136 

assuming at most 10 causal variants. The data were processed using gwasglue R-package18. 

Summary statistics for the SNP-biomarker main effects were obtained from Neale et al18,123. 

European 1000 genomes135 phase 3 linkage disequilibrium matrices were obtained from 

OpenGWAS containing bi-allelic SNPs with MAF > 0.0118. This methodology was obtained from 

the gwasglue R-package18 documentation. 

5.5 Results 

5.5.1 GWAS of variance effects in UK Biobank 

In UK Biobank, biomarkers have different levels of missingness with sample sizes ranging 

from 28,680 (rheumatoid factor) to 321,260 (total cholesterol) (Table 3.3.4.1). There was also 

considerable departure from normality for many biomarkers. Both sample size and non-

normality were shown to contribute to lower power in my simulation study (Chapter 4). Non-

normality was also associated with elevated type I error rate (Chapter 4) and vQTL findings of 

non-Normal outcomes are likely to include false positives. However, as this approach is a 

screening method to prioritise loci for further analysis some false positives are acceptable. I 

found evidence of 468 independent (R2 < 0.001) vQTLs influencing 24 biomarkers (Figure 

5.5.1.1; Figure 5.5.1.2) below the experiment-wise P-value threshold (1.67 x 10-9) and no 

variance effects for albumin, calcium, oestradiol, phosphate, rheumatoid factor, or total 

protein. Oestradiol and rheumatoid factor were only available on a small subset of 50,380 and 

28,680 participant, respectively resulting in lower power. Of the identified vQTLs, 183 (39.1%) 
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had evidence for a variance effect on the multiplicative scale (P < 5 x 10-8) and 453 (96.8%) had 

a mean effect (P < 5 x 10-8). The low concordance between additive and multiplicative scales 

and high concordance between mean and variance effects suggests the presence of mean-

variance relationships which is a likely consequence of extreme non-normality for some of the 

trait distributions (Figure 3.3.4.1). GGT and TG had very strong evidence for variance 

association across the genome (Figure 5.5.1.1) but were left-skewed (Figure 3.3.4.1) implying 

elevated type I error rate rather than findings of biological significance. Nevertheless, I found 

evidence for GxE on GGT and TG at these variance loci (Chapter 5.5.2). During thesis 

development, another study reported vQTL analyses of 20 serum biomarkers in UK Biobank42. 

Of the top vQTLs reported here, N=293 (68.5%) were also identified by this study42. 

Additionally, another study performed a vGWAS for serum vitamin D90 also in UK Biobank which 

detected 11 of the 15 vQTLs reported here (73.3%).  
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Figure 5.5.1.1. Manhattan plots of biomarker variance GWAS using regression-based Brown-

Forsythe test 

 
Manhattan plots for GWAS of SNP effects on biomarker variance in UK Biobank using the LAD-

BF test adjusted for age, sex, and top ten genetic principal components. ALB, albumin. ALP, 

alkaline phosphatase. ALT, alanine aminotransferase. AST, aspartate aminotransferase. ApoA, 

Apolipoprotein A. ApoB, apolipoprotein B. CRP, C-reactive protein. Direct BR, direct bilirubin. 
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GGT, Gamma glutamyltransferase. HDL, high-density lipoprotein. HbA1C, glycated 

haemoglobin. IGF-1, insulin growth factor 1. LDL, low-density lipoprotein. LipoA, lipoprotein A. 

RF, rheumatic factor. SHBG, sex-hormone binding globulin. TC, total cholesterol. TG, 

triglycerides. Total BR, total bilirubin. Biomarker outliers with Z-score > 5SD from the mean 

were removed to control type I error rate. Y axis is capped at Y=50. Horizontal dashed line 

marks experiment-wide P-value threshold (P < 1.67 x 10-9).   
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Figure 5.5.1.2. Q-Q plots of biomarker variance GWAS using LAD regression-based Brown-

Forsythe test 

 
Q-Q plots for GWAS of SNP effects on biomarker variance in UK Biobank using the LAD-BF test 

adjusted for age, sex, and top ten genetic principal components. ALB, albumin. ALP, alkaline 

phosphatase. ALT, alanine aminotransferase. AST, aspartate aminotransferase. ApoA, 

Apolipoprotein A. ApoB, apolipoprotein B. CRP, C-reactive protein. Direct BR, direct bilirubin. 
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GGT, Gamma glutamyltransferase. HDL, high-density lipoprotein. HbA1C, glycated 

haemoglobin. IGF-1, insulin growth factor. LDL, low-density lipoprotein. LipoA, lipoprotein A. 

RF, rheumatic factor. SHBG, sex-hormone binding globulin. TC, total cholesterol. TG, 

triglycerides. Total BR, total bilirubin. Biomarker outliers with Z-score > 5SD from the mean 

were removed to control type I error rate. Y axis is capped at Y=50.  
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5.5.2 Gene-environment interaction effects (GxE) 

I detected 139 additive and 104 multiplicative GxE effects (i.e., using natural and log 

scales) using the standard genome-wide significance threshold (P < 5 x 10-8; Figure 5.5.2.1; 

Figure 5.5.2.2; Figure 9.2.1). This threshold was chosen to prioritise effects for further analysis 

while acknowledging that far fewer SNP-interaction tests have been performed than would be 

required under a Bonferroni corrected P-value at this threshold. These findings include 

evidence of effect modification by all phenotypes except physical activity and sugar/fat intake. 

Self-reported diet143 and exercise144 phenotypes have high measurement error leading to lower 

power which may explain the lack of association. Adjusting the additive effects for fine-mapped 

main effects (Figure 9.2.2) led to a small increase in effect of UGT1A8 rs2741047 × sex on 

direct bilirubin to 0.037 SD (95% CI 0.032, 0.042) from 0.028 SD (95% CI 0.023, 0.033) and minor 

attenuation of MAP3K4 rs1247295 × sex on lipoprotein a to -0.011 SD (95% CI -0.015, -0.007) 

from -0.016 SD (95% CI -0.021, -0.010). These findings could reflect the presence of large main 

effects in imperfect linkage disequilibrium (R2 < 1) with the index SNP (i.e., phantom effects) 

which is known to elevate type I error rate53,68,93.  
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Figure 5.5.2.1. UK Biobank analysis flowchart 

 

Flow diagram of variance GWAS study investigated in Chapter 5 and numbers of 

interaction/vQTL effects obtained. 
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Figure 5.5.2.2. Top gene-by-environment interaction effects (P < 5 x 10-8) on biomarker 

concentration using additive scale 
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GxE effects using additive scale and heteroscedasticity consistent standard errors107 (P < 5 x 10-

8). ALP, alkaline phosphatase. ALT, alanine aminotransferase. AST, aspartate aminotransferase. 

ApoA, Apolipoprotein A. ApoB, apolipoprotein B. CRP, C-reactive protein. Direct BR, direct 

bilirubin. GGT, Gamma glutamyltransferase. HDL, high-density lipoprotein. HbA1c, glycated 

haemoglobin. IGF-1, insulin-like growth factor 1. LDL, low-density lipoprotein. LipoA, lipoprotein 

A. SHBG, sex-hormone binding globulin. TC, total cholesterol. TG, triglycerides. Total BR, total 

bilirubin. BMI, body mass index. Smoking, smoking status. Alcohol, intake. PA, physical activity. 

All measures reported on SD scale. All estimates were adjusted for the main effect, age, sex, 

and top ten genetic principal components. Gene name is the nearest protein coding gene HGNC 

name by chromosomal position. Vertical dashed lines are present at -0.05, 0 and 0.05 SD. The 

legend indicates if effect estimates were also strong on the multiplicative i.e., log scale. SD, 

standard deviation. CI, confidence interval.  
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I prioritised 82 GxE effects with evidence on both scales (P < 5 x 10-8) to avoid spurious 

interactions dependent on scale (Figure 5.5.2.1). Of these, BMI (n=35), sex (n=27) and age 

(n=17) were responsible for modification of most effects while smoking status (n=2) and alcohol 

intake (n=1) modified fewer effects. This could be because smoking and alcohol measures were 

self-reported and categorical and therefore having high measurement error leading to lower 

power to detect effects143. The largest interaction effects (Figure 5.5.2.3) were: PNPLA3 

rs738409 × BMI on alanine aminotransferase (ALT; 0.08 SD [95% CI 0.08, 0.09]), SLC2A9 

rs938555 × sex on urate (-0.08 SD [95% CI -0.09, -0.08]), APOE rs1065853 × sex on low-density 

lipoprotein (LDL; 0.06 SD [95% CI 0.05, 0.07]), SHBG rs1799941 × sex on testosterone (0.06 SD 

[95% CI 0.06, 0.06]) and TM6SF2 rs58542926 × BMI on ALT (0.05 SD [95% CI 0.04, 0.06]). 

Adjusting the variance effect for the interaction term (Figure 5.5.2.3) led to attenuation of 

PNPLA3 rs738409 and TM6SF2 rs58542926 on ALT and SHBG rs1799941 on testosterone but 

strong variance effects on ALT remained at PNPLA3 rs738409 (LAD-BF P_adjust = 1.0 x 10-73) 

and TM6SF2 rs58542926 (LAD-BF P_adjust = 1.84 x 10-8). There was no strong variance 

attenuation of APOE rs1065853 on LDL or SLC2A9 rs938555 on urate following adjustment for 

the interaction (Figure 5.5.2.3).  
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Figure 5.5.2.3. Effect of top gene-environment interaction loci on trait mean and variance  
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Effect of SNP stratified by modifier on outcome mean (per-allele) estimated with 

heteroscedastic-consistent standard errors107 and unstratified effect of SNP on variance 

estimated using LAD-BF (SNP dosage 0 vs 1 and 0 vs 2) with or without adjustment for the 

interaction term. All estimates were adjusted for age, sex (except for rs1065853, rs1799941 and 

rs938555 on variance as the modifier was sex) and top ten genetic principal components. 

Horizontal dashed line marks null association. These estimates were selected as the largest five 

interaction effect sizes. SD, standard deviation. CI, confidence interval. ALT, alanine 

aminotransferase. LDL, low-density lipoprotein. BMI, body mass index. Low BMI, <= 26.7 kg/m2. 

High BMI, > 26.7 kg/m2.  



   
 

 148 

5.5.3 Gene-gene interaction effects (GxG) 

I detected eight GxG effects on the additive scale (Figure 5.5.3.1), six of which were also 

associated on the multiplicative scale (Figure 9.2.3) using standard genome-wide significance 

threshold to prioritise effects (P < 5 x 10-8). There was no strong attenuation following 

adjustment for fine-mapped main effects (Figure 9.2.4) which does not support but cannot 

exclude phantom epistasis53,68,93 as a major source of bias. ZNF827 rs4835265 × NEDD4L 

rs4503880 was associated with -0.04 SD (95% CI -0.05, -0.03) gamma glutamyltransferase 

(GGT), ABO rs635634 × FUT2 rs281379, ABO rs635634 × TREH rs12225548, and TREH 

rs12225548 × FUT2 rs281379 were associated with 0.08 SD (95% CI 0.07, 0.09), 0.04 SD (95% CI 

0.03, 0.05) and 0.02 SD (95% CI 0.02, 0.03) increase in alkaline phosphatase (ALP) respectively, 

HSD17B13 rs71633359 x PNPLA3 rs738409 and HSD17B13 rs71633359 × PNPLA3 rs3747207 

were associated with -0.04 SD (95% CI -0.05, -0.03) and -0.04 SD (95% CI -0.05, -0.03) decrease 

in ALT and aspartate aminotransferase (AST) respectively (Figure 5.5.3.2). Adjusting the 

variance effects for the interaction term had no strong impact on the variance estimate (Figure 

5.5.3.2).  
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Figure 5.5.3.1. Top gene-by-gene interaction effects (P < 5 x 10-8) on biomarker concentration 

using additive scale 

 
GxG effects using additive scale and heteroscedasticity consistent standard errors107 (P < 5 x 10-

8) adjusted for the main effect, age, sex, and top ten genetic principal components. ALP, alkaline 

phosphatase. ALT, alanine aminotransferase. AST, Aspartate aminotransferase. CRP, C-reactive 

protein. GGT, Gamma glutamyltransferase. TG, triglycerides. All measures reported on SD scale. 

Gene name is the nearest protein coding gene HGNC name by chromosomal position. Vertical 

dashed line marks null association. SD, standard deviation. CI, confidence interval.  
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Figure 5.5.3.2. Effect of top gene-gene interaction loci on trait mean and variance 
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Effect of SNP stratified by genetic modifier on outcome mean (per-allele) estimated with 

heteroscedastic-consistent standard errors107 and unstratified effect of SNP on variance 

estimated using LAD-BF (SNP dosage 0 vs 1 and 0 vs 2) with or without adjustment for the 

interaction term (indicated by the legend). All estimates were adjusted for age, sex, and top ten 

genetic principal components. SD, standard deviation. CI, confidence interval. ALP, alkaline 

phosphatase. ALT, alanine aminotransferase. AST, aspartate aminotransferase. GGT, gamma 

glutamyltransferase. Horizontal dashed line marks null association.   
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5.5.4 Replication 

 The largest GxE and GxG effects overlapped with previously reported interaction effects 

(Table 5.5.4.1). 
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 Table 5.5.4.1. Replication of top gene-interaction effects 

Association Sign P Studies 

PNPLA3 rs738409 × 

BMI on ALT 

+++++ 3.37 x 10-119; 6 x 10-

5; 3 x 10-10; 7 x 10-15; 

0.02 

UK Biobank; Dallas Heart study145; 

Dallas Biobank145; Copenhagen 

cohort145; PANIC study146 

SLC2A9 rs938555 × sex 

on urate 

----- 1.05 x10-232; 3.93 x 

10-10; 8.79 x 10-31; 

5.56 x 10-18; 3.51 x 

10-6 

UK Biobank; KORA F3 500K147*; KORA 

S4147*; SAPHIR147*; FHS147**, 

ARIC148**, CARDIA148**, CHS148** 

TM6SF2 rs58542926 × 

BMI on ALT 

+??+ 4.52 x 10-21; 0.14; 

0.39; 1 x 10-4 

UK Biobank; Dallas Heart study145; 

Dallas Biobank145; Copenhagen 

cohort145 

HSD17B13 rs71633359 

× PNPLA3 rs738409 on 

ALT 

-- 2.57 x 10-19; 0.002 UK Biobank; DiscovEHR***149 

HSD17B13 rs71633359 

× PNPLA3 rs3747207 

on AST 

-- 3.03 x 10-12; 0.004 UK Biobank; DiscovEHR***149 

BMI, body mass index. ALT, alanine aminotransferase. LDL, low-density lipoprotein. ALP, 

alkaline phosphatase. AST, aspartate aminotransferase. PANIC, Physical Activity and Nutrition in 

Children. KORA, Kooperative Gesundheitsforschung in der Region Augsburg. SAPHIR, Salzburg 

Atherosclerosis Prevention Program in Subjects at High Individual Risk. ARIC, Atherosclerosis 
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Risk in Communities study. FHS, Framingham Heart Study. CARDIA, Coronary Artery Risk 

Development in Young Adults study. CHS, Cardiovascular Health Study. *Used proxy SNP 

rs6855911. **Used proxy rs6449173. ***Used proxy rs72613567 and rs738409. 
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5.6 Discussion 

I demonstrated the value of variance GWAS (Chapter 1.2.2; Chapter 1.5.3) in identifying 

468 independent vQTLs implying potential evidence of interaction on 24 serum biomarkers in 

UK Biobank and subsequently identified evidence for 82 GxE and six GxG scale-independent 

effects. 

Of the vQTL effects, 15 influenced vitamin D in comparison with 25 identified in a 

previous study90 using OSCA and UK Biobank but the authors stratified analyses by self-

reported vitamin supplement intake which may reduce residual variance increasing power to 

detect effects. A second study42 performed variance GWAS of 20 biomarkers and detected 182 

vQTLs (in contrast with 468 vQTLs I found) for 30 biomarkers presented in this analysis. An 

important difference is that the authors of this study42 performed analyses on the log-scale 

while I chose to use the natural scale. Use of the log-scale introduces mean-variance 

confounding and should be avoided68 (unless the natural scale is the log-scale) but may be 

useful for sensitivity studies to confirm the associations are not scale dependent92. 

The largest GxE effects replicated existing findings: PNPLA3 rs738409 × BMI on ALT 

levels146,150, SLC2A9 rs938555 × sex on urate147,148, and TM6SF2 rs58542926 × BMI on ALT150. 

Association of SHBG rs1799941 × sex on testosterone151 was also consistent with previous work 

performed in UK Biobank. Adjusting the variance effect for the identified interaction led to 

attenuation of PNPLA3 rs738409 and TM6SF2 rs58542926 on ALT and SHBG rs1799941 on 

testosterone suggesting no further interaction effects exist at these loci, but the test may be 

underpowered to detect such effects. Strong evidence of variance effects remained for ALT at 



   
 

 156 

PNPLA3 rs738409 and TM6SF2 rs58542926 suggesting other interaction effects may exist at 

these loci. 

I replicated previous GxG effects HSD17B13 rs71633359 × PNPLA3 rs738409/rs3747207 

on ALT and AST149,152 and found no strong evidence of ‘phantom epistasis’53,68,93 as a potential 

explanation but cannot exclude its presence. Additionally, I identified novel effects of TREH 

rs12225548 × FUT2 rs281379 and ABO rs635634 × TREH rs12225548 on ALP and ZNF827 

rs4835265 × NEDD4L rs4503880 on GGT. ABO blood group antigens and secretion status are 

thought to influence ALP clearance153,154.  TREH rs12225548 was previously reported to have a 

strong main effect on ALP18,123,155 and interactions of these loci may be explained by interplay of 

ALP production and clearance mechanisms. ZNF827 and NEDD4L loci have previously been 

reported to influence GGT levels in independent populations but the mechanism remains 

unclear156,157. 

None of the GxG variance effects strongly attenuated after adjusting for the interaction 

term. This is likely a consequence of low power since the GxG effects explained a very small 

amount of the trait variance but could also indicate the presence of other interaction effects 

involving the same SNP not included in the variance model. Indeed, I found strong GxE evidence 

at some of these loci: ABO rs635634 × sex on ALP, HSD17B13 rs71633359 × BMI and PNPLA3 

rs738409/rs3747207 × BMI on ALT and AST. 

These interaction findings may help to improve our understanding of disease 

mechanisms and biology influencing biomarker concentration4,48. This evidence may also 

contribute towards developing prediction models for biomarker concentration from genetic 

and environmental factors and may help to predict disease outcomes4, although the size of 



   
 

 157 

these interaction effects are small and may only weakly increase explained variance. Finally, 

interaction loci may be used in combination with other evidence to characterise patient 

subgroups in whom therapies have a differential effect which is important for developments in 

precision medicine48,57. 

5.7 Limitations 

There are other explanations for these potential vQTLs that are not biological. First, loci 

that are weakly correlated with a SNP having a strong main effect can introduce a phantom 

vQTL53,68,93 (Chapter 1.54). In this situation variance is introduced through variability in LD 

between the supposed vQTL and QTL. Second, I assumed homogeneity of variance within each 

SNP group which could be violated by the mean-variance relationship68 (Chapter 1.5.4) and 

observed low concordance of vQTL effects on the multiplicative and additive scales are 

evidence for this. Additionally, these interactions could be explained by non-linear relationships 

between the exposure and outcome or scale artefacts158 (Chapter 1.5.4). I sought to reduce the 

latter by replicating effects on additive and multiplicative scales. Finally, novel interaction 

effects require independent replication studies for confirmation48. 

5.8 Conclusions 

Through this work I performed a genome-wide screen for genetic interaction effects on 

30 serum biomarkers in UK Biobank using variance prioritisation56 and found evidence for 88 

interaction effects. Many of the top findings replicated previously reported associations, but I 

also reported first evidence of TREH rs12225548 × FUT2 rs281379 and TREH rs12225548 × ABO 

rs635634 on ALP and ZNF827 rs4835265 × NEDD4L rs4503880 on GGT. Additionally, I showed 

variance attenuation of PNPLA3 rs738409 and TM6SF2 rs58542926 on ALT and SHBG rs1799941 
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on testosterone after adjusting for the interaction indicating these effects were contributing to 

the variance association, but the ALT effects were still strong suggesting additional interactions 

may exist at these loci. These data may add to existing knowledge in understanding of disease 

biology48, weakly improve disease prediction48 and in combination with other data, help to 

identify opportunities for drug development48.  
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Chapter 6: Examining the evidence for Mendelian randomization homogeneity 

assumption violation using instrument association with exposure variance 

6.1 Overview 

Mendelian randomization is an instrumental variable (IV) technique for evaluating the 

causal effect of an exposure on an outcome using genetic variants15 and requires three core 

assumptions of relevance (IV1), exchangeability (IV2), and exclusion restriction (IV3; Chapter 

1.3.5; Chapter 1.3.6). Identification of a well-defined causal point estimate requires additional 

assumptions of homogeneity for the IV-exposure and/or exposure-outcome relationships35. 

While it is not possible to verify if homogeneity assumptions hold, empirical evidence against 

this assumption may be observed in the data34. Previous research has suggested testing for IV 

interaction effects on exposure using a set of effect modifiers34. However, this requires that 

modifiers are hypothesised and measured34. In this chapter, I evaluate the utility of testing for 

IV-exposure variance effects to provide evidence against homogeneity assumptions35. Secondly, 

I evaluate the utility of removing IVs from the MR analysis that show strong association with 

exposure variance (hence are likely to have heterogeneous effects). I apply these approaches to 

investigate the effects of LDL, urate and glucose on cardiovascular disease, gout, and type 2 

diabetes, respectively finding no strong evidence of violation of the IV-exposure homogeneity 

assumption. These approaches could be applied in the future when larger sample sizes are 

available to gain improved understanding of the MR causal estimand. 
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6.2 Contribution statement 

Work in Chapter 6 is from a manuscript in preparation I wrote and was edited by PhD 

supervisors and Dr Fernando Hartwig (University of Pelotas). I performed the simulation studies 

and applied analyses described in this chapter. 

6.3 Introduction 

6.3.1 Background 

Testing for IV-exposure effect modification may be used as an empirical approach to 

detect violation of the IV homogeneity assumption34. The NO Simultaneous Heterogeneity35 

(NOSH) assumption implies the population average causal effect (PACE) can be identified if 

there is effect modification of either the instrumental variable (IV) effect on the exposure or 

exposure effect on the outcome, provided that effect modifiers for the IV-exposure and 

exposure-outcome relationships are independent (NOSH assumption one) and the exposure-

outcome relationship is additive linear (NOSH assumption two). 

Hypothesised testing of candidate IV-exposure interaction effects to evaluate 

homogeneity assumptions has been suggested34 but this approach may miss unanticipated 

interaction effects, cannot be used if the modifier is unmeasured, and potentially incurs a large 

multiple testing burden4,42. Alternatively, the presence of effect modification can be identified 

by testing the association of the IV with exposure variance provided that the exposure is 

continuous2,43,68. This evidence could be used to evaluate homogeneity assumptions to draw 

conclusions on departure from PACE. Secondly, in a multi-IV setting such as MR15 (Chapter 

1.3.6), IVs with strong exposure variance effects could be removed from the analysis to produce 

a causal estimate closer to PACE. 
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6.3.2 Aims 

In this study I explore the utility of testing for IV-exposure variance effects to provide 

empirical evidence of IV-exposure homogeneity violation using simulation studies. Secondly, I 

apply this approach to MR and examples with data from UK Biobank and large GWAS consortia. 

First, I propose a falsification strategy where IV-exposure variance effects are used to provide 

evidence against homogeneity. Second, I demonstrate that evidence of IV-exposure variance 

effects can be used in sensitivity analyses that remove instruments with the strongest variance 

effects from MR estimation. 

6.4 Methods 

6.4.1 Summary of simulation studies 

The following section describes a series of simulation studies (Table 6.4.1.1) undertaken 

throughout Chapter 6 which aim to evaluate the utility of testing IV-exposure variance effects 

in estimating the PACE. First, I varied the IV-exposure and exposure-outcome interaction effect 

size to determine the consequences of NOSH assumption one violation on PACE bias (Chapter 

6.4.2). I also tested the IV-exposure variance effect to determine the conditions under which 

this evidence can provide information against targeting PACE. Second, I extended this 

simulation to estimate the relative bias of PACE and related the magnitude of this bias to 

estimates for the strength of the IV-exposure variance effect (Chapter 6.4.3). Third, I explored 

the utility of removing instruments with evidence for IV-exposure variance effects from the IVW 

analysis on PACE bias and IVW causal test efficiency (Chapter 6.4.4). 
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Table 6.4.1.1. Simulation study summary 

Simulation  Aim Description  
6.4.2 Estimate bias of PACE under 

NOSH assumption one violation 
Simulating NOSH assumption one violation 
and estimating the causal effect. Determine if 
the IV-exposure variance test can detect 
NOSH assumption violation. 

6.4.3 Estimate relative bias of PACE 
for increasing interaction effect 
size and compare this with IV-
exposure variance test power 

Estimate relative bias of PACE for increasing 
IV-exposure interaction effect size and fixed 
exposure-outcome interaction effect. Relate 
the magnitude of this bias to IV-exposure 
variance testing. 

6.4.4 Determine if removing 
instruments with interaction 
effects on exposure can 
attenuate IVW bias 

Estimate the IVW effect using instruments 
with/without IV-exposure interaction effects. 
Apply IV-exposure variance test to remove 
instruments with interaction effects from the 
MR estimate. 

NOSH, NO Simultaneous Heterogeneity. IV, instrumental variable. MR, Mendelian 

randomization. PACE, Population average causal effect. 
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6.4.2 Simulated bias of PACE under NOSH assumption one violation and rejection rate of IV-

exposure variance test null hypothesis 

Aim: To estimate PACE bias under interaction effect of IV-exposure and exposure-

outcome by a common modifier (thus violating NOSH assumption one) and relate PACE bias to 

IV-exposure variance test null hypothesis rejection rate. The effect of exposure on outcome was 

additive linear (satisfying NOSH assumption two). 

Data-generating mechanisms: Data were simulated for N=10,000 independent 

observations. For the 𝑖th observation, I simulated a SNP 𝐺&  in Hardy-Weinberg equilibrium 

(HWE) with a minor allele frequency (MAF) of 0.25 scaled to have mean of zero and unit 

variance. I also simulated a modifier 𝑈&  using the standard Normal distribution. A standard 

Normal exposure 𝑋&  was simulated with SNP main effect 𝛼% and modifier main effect 𝛼!	each 

explaining 5% of the exposure variance and SNP-by-modifier 𝐺𝑈&  interaction effect 𝛼2 

explaining 𝜖{0, 0.02, 0.04, 0.06, 0.08, 0.1} of exposure variance. The outcome 𝑌&  was simulated 

to have main effects of the exposure 𝛽% and modifier 𝛽! both explaining 5% variance, and 0-

10% variance explained by the interaction effect 𝛽2 and residual drawn from the standard 

Normal distribution. Note that the 𝐺𝑈&  and 𝑋𝑈&  varied by the same modifier 𝑈&  violating the 

first NOSH assumption35. The residual variance for 𝑋&  and 𝑌&  was denoted with 𝐸%&  and 𝐸!&, 

respectively. 

𝑋& = 𝛼%𝐺& + 𝛼!𝑈& + 𝛼2𝐺𝑈& + 𝐸%&  

𝑌& = 𝛽%𝑋& + 𝛽!𝑈& + 𝛽2𝑋𝑈& + 𝐸!&  

Estimand: The IV PACE of 𝑋&  on 𝑌&. 
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Methods: The effect of 𝐺&  on 𝑣𝑎𝑟(𝑋) was tested using the least-absolute deviation 

regression based Brown-Forsythe test (LAD-BF)2 (Chapter 2.2.4). The causal effect of 𝑋&  on 𝑌&  

was estimated using the Wald ratio109.  

Performance measures: LAD-BF null hypothesis rejection rate was defined as the 

percentage of repetitions with P < 0.05. PACE bias was defined as the difference between Wald 

ratio estimate and simulated causal effect i.e., 𝛽%�− 𝛽%. Each configuration of parameters was 

evaluated using N=500 repetitions. 

Open-source code: https://github.com/MRCIEU/variance-iv4-

violation/blob/master/sim7.R 

6.4.3 Simulated relative bias of PACE under NOSH assumption one violation and rejection rate of 

IV-exposure variance test null hypothesis 

Aim: To estimate the relative bias of the PACE from violation of the first NOSH 

assumption and the IV-exposure variance test null hypothesis rejection rate. This simulation 

fixed the exposure-outcome interaction effect and varied the IV-exposure interaction effect. 

Both interactions were varied by the same modifier thus violating the first NOSH assumption35. 

The effect of exposure on outcome was additive linear satisfying NOSH assumption two35. This 

is distinct from Chapter 6.4.2 in that relative bias is used instead of absolute bias. This decision 

was made to inform future studies by enabling lookups of expected PACE bias and IV-exposure 

variance test power given known IV-exposure association and anticipated interaction effect 

sizes. Relative bias was chosen so that all estimates are on the same scale. 

Data-generating mechanisms: Data were simulated for N=500, N=1000, N=2000 and 

N=4000 independent observations for continuous outcomes and N=1000, N=2000, N=4000 and 
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N=6000 independent observations for binary outcomes. These sample sizes were chosen to 

show a range of relative biases across the IV-exposure and exposure-outcome variance 

explained. For the 𝑖th observation, I simulated a SNP 𝐺&  in HWE with a MAF of 0.25 scaled to 

have mean of zero and unit variance and standard Normal modifier 𝑈&. The standard Normal 

exposure 𝑋&  was simulated with 𝐺&  main effect 𝛼% explaining 1-5% of the variance, 𝑈&  main 

effect 𝛼!	explaining 20% variance, and SNP-by-modifier 𝐺𝑈&  interaction effect 𝛼2 0-2x the size 

of 𝛼%. Exposures with sample size of N=500 and 1% SNP main effect variance explained were 

not presented as these were susceptible to weak instrument bias (F-statistic less than 10). For 

the continuous outcome, a standard Normal outcome 𝑌%&  was simulated to have 20% variance 

explained by	𝑋&  and 20% variance explained by 𝑈&  and 10% variance explained by the 

interaction effect 𝛽2 of exposure-by-modifier 𝑋𝑈&. For the binary outcome 𝑌!&, the intercept 𝛾+ 

was set to logOR	(1.1) and the main effects of 𝑋&  and 𝑈&  were set to logOR	(1.1) per 1 SD 

increase denoted by 𝛾% and 𝛾!. The exposure-by-modifier 𝑋𝑈&  interaction effect 𝛾2 was set to 

half the size of 𝛾%. Note that 𝐺𝑈&  and 𝑋𝑈& 	interaction effects vary by 𝑈&  violating NOSH 

assumption one35. 

𝑋& = 𝛼%𝐺& + 𝛼!𝑈= + 𝛼2𝐺𝑈& + 𝐸%&  

𝑌%& = 𝛽%𝑋& + 𝛽!𝑈& + 𝛽2𝑋𝑈& + 𝐸!&  

𝑙𝑜𝑔𝑖𝑡(𝑌!&) = 𝛾+ + 𝛾%𝑋& + 𝛾!𝑈& + 𝛾2𝑋𝑈&  

Estimand: Relative PACE bias of 𝑋& 	on 𝑌%&  or 𝑌!&. 

Methods: The effect of 𝐺&  on 𝑣𝑎𝑟(𝑋&)	was tested using LAD-BF2 (Chapter 2.2.4). The 

causal effect of 𝑋&  on 𝑌%&  and 𝑌!&  was estimated using the Wald ratio109.  
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Performance measures: LAD-BF test null rejection rate was defined as the percentage of 

tests with P < 0.05. PACE relative bias was defined as the simulated Wald ratio109 divided by the 

true causal effect for binary and continuous outcomes, respectively. Each configuration of 

parameters was evaluated using N=500 replications. 

Open-source code: https://github.com/MRCIEU/variance-iv4-

violation/blob/master/sim9.R and https://github.com/MRCIEU/variance-iv4-

violation/blob/master/sim11.R 

6.4.4 Simulated PACE and IVW test efficiency under NOSH assumption one violation using subsets 

of instruments ranked by exposure-variance association 

Aim: To estimate PACE and IVW109 causal test efficiency under violation of the first 

NOSH assumption for only a subset of instruments. I explored the consequences of 

progressively removing instruments from the IVW analysis on PACE bias and IVW test efficiency 

by ranking instruments by their association with exposure variance. The effect of exposure on 

outcome was additive linear holding NOSH assumption two35. 

Data-generating mechanisms: Data were simulated for N=100,000 independent 

observations within each simulated dataset. This large sample size was chosen to obtain precise 

causal estimates with small numbers of instruments. For the 𝑖th observation, I simulated six 

uncorrelated SNPs 𝐺"  indexed by 𝑗, each in HWE and with a MAF of 0.25 scaled to have mean of 

zero and unit variance. I simulated a single modifier 𝑈&  drawn from the standard Normal 

distribution. The standard Normal exposure 𝑋&  was simulated to have 𝐺&,"  𝛼%,"  main effects 

drawn from the uniform distribution with sizes of 𝑢(0.02, 0.06) which varied across simulation 

repetitions. These values were chosen to represent typical GWAS effect sizes. Half of the 
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instruments 𝐺𝑈&,"$%:2 had an interaction effect half the size of the main effect 𝛼2,"$%:2 on 𝑋&  

while the remaining instruments 𝐺𝑈&,"$9:; had no interaction effect 𝛼2,"$9:; = 0	on  𝑋&. The 

main effect of 𝑈&  and 𝑋& 	on 𝑌&  explained 20% of the total variance. The interaction effect of 𝑋𝑈&  

explaining 10% of the variance 𝑌&. The residual error of 𝑋&  and 𝑌&  were drawn from the standard 

Normal distribution denoted by 𝐸%&  and 𝐸!&, respectively. Note that 𝑈&  modified the 

instrument-exposure and exposure-outcome relationships violating NOSH assumption one. 

𝑋& = � 𝛼%"𝐺&"
"$%:;

+ 𝛼!𝑈& + � 𝛼2"𝐺𝑈&"
"$%:;

+ 𝐸%&  

𝑌& = 𝛽%𝑋& + 𝛽!𝑈& + 𝛽2𝑋𝑈& + 𝐸!&  

Estimand: PACE of exposure-outcome relationship. 

Methods: The PACE was estimated using IVW first using all instruments and then by 

progressively removing 5%, 10%, 25%, 50%, and 75% of instruments with strongest evidence 

for IV-exposure variance effect by the LAD-BF test p-value2. This was compared to the ‘oracle’ 

method which removed all the instruments with a known interaction effect on exposure (i.e., 

without using the IV-exposure variance test statistic). I anticipated the oracle method to differ 

only when the IV-exposure interaction effect is incorrectly identified using variance analysis. 

Performance measures: PACE for the exposure-outcome effect. IVW test efficiency, this 

was estimated using the mean of the IVW standard error between replicates. Each 

configuration of parameters was evaluated using N=500 replications. 

Open-source code: https://github.com/MRCIEU/variance-iv4-

violation/blob/master/sim12.R 
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6.4.5 Effect of serum metabolites on disease outcomes 

Genetic instruments for mean and variance of randomly sampled urate, glucose and 

low-density lipoprotein (LDL) cholesterol were extracted from the MRC-IEU OpenGWAS 

platform18 estimated in UK Biobank (Table 3.4.2.1). These were applied in a two-sample MR 

framework109 to estimate the causal effect of these traits on gout, type 2 diabetes mellitus 

(T2DM) and coronary heart disease (CHD), respectively using outcome datasets from large 

consortia (Table 3.4.2.1) with non-overlapping samples. The main analysis used all available 

instruments. Sensitivity analyses were performed by removing 5%, 10%, 25%, 50% and 75% 

instruments with the strongest IV-exposure variance effects estimated using LAD-BF as 

potential evidence for NOSH assumption one violation. IV-exposure variance associations were 

estimated in UK Biobank (Chapter 5). To ensure any differences in causal estimate between 

sensitivity analyses was not produced by selecting for weaker instruments (since mean and 

variance may be correlated; Chapter 1.5.4; Chapter 1.3.6), I estimated the mean instrument 

strength (F-statistic) for each subset of instruments calculated independently and compared 

this with the complete set of instruments. This was accomplished by comparing the mean IV-

exposure F-statistic for each subset with the mean of all instruments using the Mann-Whitney 

U test to determine if IVW estimates were affected by differing instrument strength. 

6.4.6 Estimation of SNP variance explained and F-statistic from GWAS summary data 

 The F-statistic was used as a measure of IV strength and was estimated from GWAS 

summary statistics (Equation 6.4.6.1) as previously described159. 

Equation 6.4.6.1. Estimation of the F-statistic from R2 

𝐹 = 𝑅! 	× 	(𝑁 − 1 − 𝑘)/((1 − 𝑅!) × 𝑘) 
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Where 𝑁 is the sample size, 𝑘 is the number of SNPs included in the model (𝑘 = 1 in this 

analysis), and 𝑅! is the variance explained by the SNP which may be estimated using Equation 

6.4.6.2159. 

Equation 6.4.6.2. Estimation of R2 from GWAS summary statistics 

𝑅! = 2𝛽! × (𝑀𝐴𝐹) × (1 −𝑀𝐴𝐹)/(2𝛽! × (𝑀𝐴𝐹) × (1 −𝑀𝐴𝐹)

+ M𝑠𝑒(𝛽)P! × 2𝑁 ×𝑀𝐴𝐹 × (1 −𝑀𝐴𝐹)) 

Where 𝛽 is the average effect of the SNP on the trait, 𝑀𝐴𝐹 is the minor allele frequency and 𝑠𝑒 

is the standard error of 𝛽. 

6.4.7 Software 

All MR estimates were produced using the TwoSampleMR R-package109 (v0.5.5). Variant 

association with trait variance was estimated using the varGWAS R-package developed in 

Chapter 4 (v1.0.0). All analyses and simulation studies were conducted using R (v3.6.0). 

6.5 Results 

6.5.1 Simulated evidence for NOSH assumption one violation using IV-exposure variance test 

statistics 

The PACE of continuous exposure on a continuous outcome was unbiased when either 

IV-exposure or exposure-outcome interaction effects were null (Figure 6.5.1.1). Increasing the 

IV-exposure and exposure-outcome interaction effect size was associated with increased bias of 

estimated PACE when both relationships were modified by a single variable. This is consistent 

with violation of the first NOSH assumption35. Increasing IV-exposure interaction effect size was 

also associated with increased strength of IV-exposure variance association (Figure 6.5.1.1). 
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Figure 6.5.1.1. PACE bias under homogeneity assumption violation 

 

Effect of NOSH assumption on violation on PACE bias. Dashed line is expected PACE effect. 

Interactions of Z-X and X-Y are modified by the same binary variable (violating NOSH 

assumption one) but exposure-outcome effect is additive linear (NOSH assumption two holds). 

Z, instrumental variable. X, exposure. Y, outcome. CI, confidence interval.  

0 0.02 0.04 0.06 0.08 0.1

0
0.

02
0.

04
0.

06
0.

08 0.
1 0

0.
02

0.
04

0.
06

0.
08 0.
1 0

0.
02

0.
04

0.
06

0.
08 0.
1 0

0.
02

0.
04

0.
06

0.
08 0.
1 0

0.
02

0.
04

0.
06

0.
08 0.
1 0

0.
02

0.
04

0.
06

0.
08 0.
1

0.2

0.3

0.4

0.5

0.6

Z−X interaction explained variance

W
al

d 
es

tim
at

e 
(9

5%
 C

I)

10 20 30
−log10(P_variance) Z−X

X−Y interaction explained variance



   
 

 171 

Next, I explored the relative bias of PACE and related the magnitude of this bias to 

evidence for IV-exposure variance effects. The strength of IV-exposure variance association was 

used to indicate potential NOSH assumption one violation. Fixing the continuous exposure-

outcome variance explained to 20%, under IV-exposure main and interaction effects of 2% and 

1% variance explained respectively, the PACE was on average 1.50x the size of the expected 

effect and the IV-exposure variance test rejected the null in 96% of repetitions (95% CI 93%, 

97%) with a sample size of N=4000 (Figure 6.5.1.2). Fixing the continuous exposure binary 

outcome effect of 1.1 OR per 1 SD, the magnitude of PACE bias was on average 1.28x times the 

size of the expected effect and the IV-exposure variance test null was rejected in 96% of 

repetitions (95% CI 94%, 98%) given a sample size of N=4000 (Figure 6.5.1.3). 
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Figure 6.5.1.2. Simulated power to detect IV-exposure variance effect and relative PACE bias 

under NOSH assumption one violation 

 

Power, proportion of repetitions where the IV-exposure variance test P < 0.05. Fold-change, 

relative bias of PACE compared with simulated causal effect. IV-exposure main and interaction 

effects were varied. Exposure-outcome main and interaction effects were fixed to 20% and 10% 

variance explained, respectively. Simulations with N=500 with 1% variance explained by the IV-
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exposure relationship produced an F-statistic less than 10 and were not shown. Dashed lines 

represent 80% power.  
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Figure 6.5.1.3. Power to detect IV-exposure variance effect and relative PACE bias of binary 

outcomes from NOSH assumption one violation 

 

Power, proportion of repetitions where the IV-exposure variance test P < 0.05. Fold-change, 

relative bias of PACE compared with simulated causal effect on the log-odds scale. IV-exposure 

main and interaction effects were varied. Exposure-outcome main and interaction effects were 

fixed to 1.1 OR. Dashed lines represent 80% power.  
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6.5.2 Simulated effects on PACE bias and statistical efficiency of removing instruments by 

strength of association with exposure variance 

Under simulation, I explored the consequences on PACE bias and statistical efficiency of 

IVW by removing instruments from analysis which were associated with exposure variance 

(Figure 6.5.2.1). Half of the instruments were simulated to have an interaction effect on the 

exposure and the exposure was simulated to have an interaction effect on the outcome. All 

interaction effects had the same single modifier, violating NOSH assumption one. Instruments 

were progressively removed from the IVW analysis using IV-exposure variance test strength by 

P-value estimated with LAD-BF (Chapter 3 and Chapter 4). IVW estimates were less biased 

when instruments with exposure variance effects were removed but this also led to larger IVW 

standard errors. For example, using all the instruments including 50% simulated with an 

interaction effect on the exposure, the PACE estimate was 0.53 SD (95% CI of 0.52-0.54) per 1 

SD exposure in contrast to the simulated effect of 0.447 SD. Removing the top 50% of 

instrument-exposure variance effects produced a PACE estimate of 0.45 SD (95% CI 0.44-0.46) 

in line with the simulated effect. This estimate was also consistent with the oracle method 

which removed instruments simulated to have non-zero exposure interaction effect (0.45 SD 

[95% CI 0.44-0.47]). The oracle results may differ if the IV-exposure variance test incorrectly 

removed/retained SNPs from the model. However, fewer instruments led to reduced statistical 

efficiency of IVW (Figure 6.5.2.1). When all instruments were employed the average standard 

error for the causal effect estimate was 0.05 (95% CI 0.04-0.05) but this increased to 0.07 (95% 

CI 0.07-0.07) after removing 75% of instruments with variance effects. 
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Figure 6.5.2.1. Simulated effect of removing instruments with exposure variance effects on 

PACE bias and statistical efficiency 

 

IVW effect of simulated exposure on outcome using subsets of instruments by instrument-

exposure variance effect strength and mean of IVW effect standard error. The effect estimate 

subplot provides the mean causal estimate for each analysis. The effect standard error subplot 
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shows the mean standard error for each analysis. SD, standard deviation. CI, confidence 

interval. SE, mean IVW standard error of 500 replicates.  
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6.5.3 IV-exposure variance testing to detect potential NOSH assumption one and attenuate IV 

estimate bias on disease outcomes 

IVW effect estimates of serum metabolites on disease outcomes were produced using 

instruments stratified by instrument-exposure variance effect strength (Figure 6.5.3.1). Starting 

with the complete set of instruments, the per SD exposure causal effect estimates were: 3.33 

OR (95% CI 1.44-7.66) for glucose effect on T2DM, 1.78 OR (95% CI 1.52-2.09) LDL on CHD and 

3.26 OR (95% CI 3.00-3.54) urate on gout. As instruments were removed from the analysis, 

causal estimates attenuated towards the null. This was most extreme for LDL-CHD which 

reversed sign giving evidence for a protective effect of 0.58 OR (95% CI 0.29-1.20) after 

removing the top 75% of instruments ranked by instrument-exposure variance strength. 

However, this group of instruments was also weaker (F-statistic mean of 40.56 [95% CI 35.50-

46.73]) compared with the full set (F-statistic mean of 71.62 [95% CI 59.69-88.91]) suggesting 

weaker instruments may be responsible for biasing these effects44.  Where there was little 

evidence of weaker instruments, I detected little attenuation of point estimates compared with 

the full set of instruments and overlapping confidence intervals suggested no strong difference. 

For example, the effect of LDL-CHD excluding the top 10% of instrument-variance effects gave a 

causal estimate of 1.44 OR (95% CI 1.22-1.84) and removing the top 75% of instruments led to 

estimates of 3.17 OR (95% CI 1.71-5.87) and 2.56 OR (95% CI 2.10-3.14) for glucose on T2DM 

and urate on gout, respectively. As these estimates were consistent with the full set of 

instruments, there was no strong evidence for violation of NOSH suggesting the estimand is 

targeting PACE. However, it is also possible that instruments with the weakest evidence for 



   
 

 179 

exposure variance effect have an interaction effect on the exposure, but the LAD-BF test power 

was too low to detect an effect.  
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Figure 6.5.3.1. IVW sensitivity analysis removing instruments with exposure variance effects 

 

Inverse-variance weighted effect of serum metabolite concentration on binary outcomes. OR, 

odds ratio. CI, confidence interval. LDL, low-density lipoprotein. CAD, coronary artery disease. 

T2DM, type II diabetes mellitus. Mann-Whitney U test is for the comparison of instrument-

exposure F-statistic mean effect for all instruments vs the subset as a measure for conditioning 

on instrument strength.  
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6.6 Discussion 

Under NOSH the IV estimand targets PACE35, but the two NOSH assumptions cannot be 

completely assessed using the observed data. Here I demonstrated via simulation the potential 

in testing of IV-exposure variance effects for continuous exposures as an empirical approach to 

evaluate NOSH assumption one. Testing of IV-exposure variance effects cannot prove that 

NOSH assumption one holds as power may be too low to detect a variance effect of IV-

exposure where a true interaction exists. Further, even if there is an interaction effect of IV-

exposure then NOSH assumption one is only violated if the exposure-outcome effect is 

modified by this same variable35. Secondly, I show how this evidence could be used to mitigate 

bias from PACE by removing instruments with strong exposure variance effects. This 

methodology was applied to GWAS summary statistics generated in UK Biobank and non-

overlapping large consortia. 

Simulations showed that the approach was well powered to detect PACE bias using IV-

exposure variance effects when using the large sample sizes which are now readily available 

from biobanks. However, IV-exposure variance association cannot specifically identify NOSH 

violation. The first NOSH assumption requires effect modification of the exposure-outcome and 

IV-exposure relationships to be independent35 but this scenario is not specifically evaluated 

using measures of IV effect on exposure variance. Lack of an IV-exposure variance effect could 

suggest that the IV estimand targets PACE subject to sufficient power to detect an effect. 

Identification of IV-exposure variance effects could enable follow up studies to identify the 

precise exposure-modifier interaction effect as has been shown in Chapter 5. This could be 

useful to consider if this variable also modifies the exposure-outcome effect which would then 
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imply NOSH assumption one is violated. Conversely, NOSH violation may occur without IV-

exposure variance association through non-linearity of the exposure-outcome relationship 

(NOSH assumption two)35.  

This approach of testing for violation of homogeneity is similar in principle with 

Brookhart et al34 who suggest testing for IV-exposure interaction effects. However, Brookhart et 

al require effect modifiers to be hypothesised and measured while the approach outlined here 

is based on IV-exposure variance association and does not. 

I explored the utility of eliminating IVs based on their association with exposure variance 

to determine if the IV estimate returns to PACE through simulation studies. I observed reduced 

departure from PACE but also wider confidence intervals which is anticipated because fewer 

instruments were included in the causal model. Nevertheless, this approach could be useful as 

a sensitivity analysis to determine if the main analysis (i.e., using all instruments) produces an 

estimate strongly different from a subset of instruments with the least exposure variance 

association. While I used the strength of association between IV and exposure variance, future 

studies could explore the magnitude of effect (i.e., using the variance effect size) but with LAD-

BF two coefficients are produced for each allele copy and are difficult to rank. 

This approach was applied to evaluate the effects of serum LDL, glucose, and urate on 

CHD, T2DM, and gout, respectively. IVW estimates did not robustly differ after removing IV-

exposure variance for glucose-T2DM and urate-gout suggesting no strong evidence for violation 

of the first NOSH assumption. Meanwhile, the effect directionally of LDL-CHD was reversed 

when the top IV-exposure variance effects were removed. Two possibilities may explain this 

finding.  
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First, instruments may be acting via distinct causal pathways, for example a previous 

study found a cluster of instruments for BMI that had protective effects on cardiovascular 

disease160 whereas the remaining instruments were associated with adverse effects. 

Furthermore, evidence for IV-exposure variance association could arise under horizontal 

pleiotropy161, for example if the instrument is acting on the exposure through several pathways 

and some of these are influenced by effect modification. This is in contrast with, for example, 

an instrument within the cis region of a protein coding gene which is less likely to be affected 

by horizontal pleiotropy103. 

Second, weak instrument bias may be introduced by conditioning on weaker IV-

exposure variance effects (since both mean and variance effects can be correlated69,92). While 

the mean F-statistic was above the rule of thumb of ten44 these estimates could be inflated due 

to chance which is known to introduce bias to causal estimates44. In the two-sample MR 

framework weak instrument bias causes estimates to attenuate towards the null in contrast 

with two-stage least squares approach which introduces bias towards the observational 

association162. One way to avoid this is to use two-sample MR with second-order weights which 

incorporate imprecision in the IV-exposure relationship into the causal estimate163. 

Testing for IV-exposure variance effects could be applied to future MR studies as a 

sensitivity analysis to determine if effects deviate from PACE. However, this strategy would 

require larger sample sizes than are available today to have sufficient power to detect a 

variance effect of the IV on exposure. This approach could be developed further using meta-

regression164 techniques to add less weight to IVs that have strong variance effects rather than 

simply removing these IVs and may preserve statistical efficiency. 
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6.7 Limitations 

However, this work also has some limitations. First, identification of a variance effect of 

the IV on exposure has low power and would require larger sample size than are currently 

available before routine implementation could be considered. Secondly, non-normality of the 

exposure may reduce power and increase type I error rate of the IV-exposure variance 

association68 (Chapter 4). Third, removing instruments from IV analyses (e.g., by the association 

of IV with exposure mean or variance) may bias the causal estimate standard errors leading to 

type I error rate inflation161. This could also lead to conditioning on instruments that exhibit 

horizontal pleiotropy introducing bias into the estimate161. 

6.8 Conclusions 

Through this work I evaluated the strength of the IV-exposure variance association as an 

empirical approach to evaluate IV-exposure homogeneity assumptions which may be used in 

falsification studies to determine if the causal estimand departs from PACE, and for sensitivity 

analyses to provide evidence against PACE as the target estimand. I applied these methods to 

evaluate the effects of LDL-CHD, urate-gout and glucose-T2DM but found no strong evidence 

for departure from PACE. This approach could be applied to future IV studies when sample sizes 

are much larger to improve the interpretability of causal estimates.  
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Chapter 7: Developing a robust and efficient file format for sharing GWAS summary 

statistics 

7.1 Overview 

Genome-wide association study summary statistics are an important resource for a 

variety of secondary research applications (Chapter 1.2.5). Yet despite their widespread utility, 

no common storage format has been widely adopted hindering tool development and data 

sharing (Chapter 1.2.6). Existing tabular formats lack approaches for robustly storing variants 

and essential metadata increasing the possibility of errors in data interpretation22. Additionally, 

data are typically provided unindexed requiring the file be read line-by-line to extract specific 

SNP-trait associations which is slow and computationally inefficient24. To address these issues, 

this chapter proposes storing GWAS summary statistics using the variant call format165 (VCF) 

known as GWAS-VCF and introduces open-source tools for producing and reading these data. 

Simulations of query performance using Tabix24 and standard UNIX tools suggested VCF is 8.6-

45.5x faster to extract variant(s) by genomic position. I converted variance GWAS data 

produced in Chapter 5 using LAD-BF developed in Chapter 4 to GWAS-VCF for sharing, 

downstream analysis, and rapid querying. This format has also been used by colleagues at the 

MRC-IEU to provide open access to >10,000 complete GWAS summary statistics as part of the 

OpenGWAS platform18 (gwas.mrcieu.ac.uk). 

7.2 Contribution statement 

Work in Chapter 7 was published in Genome Biology (Lyon et al, 20211), a paper which I 

drafted and was edited by Dr Shea Andrews (Mount Sinai), Dr Ben Elsworth, Professor Tom 

Gaunt, Dr Gibran Hemani and Professor Edoardo Marcora (Mount Sinai). The gwas2vcf and 
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pygwasvcf software I developed in present here was also included in a manuscript available as a 

preprint on BioRxiv (Elsworth et al, 202018). I produced Figure 7.5.4.1 which was included in 

Elsworth et al. 

I and researchers at the School of Medicine at Mount Sinai separately proposed a VCF 

file specification for storing and distributing GWAS summary statistics. Dr Hemani (MRC-IEU), 

Professor Tom Gaunt (MRC-IEU) and Professor Marcora (Mount Sinai) agreed to collaborate to 

agree a single consistent format (as VCF is flexible in how data are stored).  

All co-authors had input on the user requirements and final file format. I developed the 

first version of the gwas2vcf Python software to harmonise GWAS summary statistics and 

automate file conversion processes. This codebase was subsequently developed further by Dr 

Gibran Hemani and members of the community. I performed the simulations and converted 

variance GWAS summary statistics produced in Chapter 5 into GWAS-VCF available from the 

MRC-IEU OpenGWAS database18. 

7.3 Introduction 

7.3.1 Background 

 In Chapter 5 I estimated the variance effect of 290M loci on biomarker concentration in 

UK Biobank and used these data to perform follow up interaction analyses. In Chapter 6 I also 

applied these variance GWAS summary statistics to evaluate MR homogeneity assumptions. 

Variance GWAS (vGWAS) may have other uses for secondary research application (Chapter 5 

and Chapter 6). Therefore, it is vital that these data are shared to support re-analysis and 

development of new analysis methodology (Chapter 1.2.5). However, the utility of GWAS 

summary statistics is hampered by the absence of a universally adopted storage format and 
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associated tools166. Historic lack of a common standard has resulted in GWAS analysis tools 

outputting summary statistics in different tabular formats (e.g. plink126, BOLT-LMM125, and 

METAL167). The VCF165 is easily adapted for storing a range of genomic data but there is 

flexibility in how this information is stored which can impact on file size and read/write 

performance. The VCF is also capable of storing GWAS data from multiple traits (samples)165 in 

a single file which may be advantageous for distributing summary statistics on a collection of 

closely related traits such as biomarkers168, gene expression141, and protein169 concentration. 

7.3.2 Aims 

The aims of this chapter are to develop a set of requirements for a suitable universal 

format, adapt the variant call format (VCF)165 for storing GWAS summary statistics, 

demonstrate how the VCF meets these requirements, showcase the capabilities of this 

medium, and introduce tools and resources for working with this format. Finally, I prepare 

variance GWAS summary statistics from Chapter 5 in GWAS-VCF. 

7.4 Materials and methods 

7.4.1 File indexing 

 Two file indexing approaches were used to support a range of different queries. First, 

the VCF file was indexed using chromosome position by Tabix24 which is a karyotypically sorted 

list of chromosome intervals including their offset file position. Second, a custom SQLite 

(www.sqlite.org) database was created for each GWAS-VCF that contained a unique list of 

dbSNP rsIDs170 and their corresponding chromosomal position so that records could be 

retrieved using the Tabix24 index. The dbSNP (SQLite) index was adapted from a previous 

project (rsidx)171. 



   
 

 188 

7.4.2 Query performance simulation 

Aim: To compare the query runtime performance of tab-separated value (TSV) and 

GWAS-VCF file formats to extract GWAS results under a range of conditions. 

Data-generating mechanisms: Densely imputed GWAS summary statistics 

(N=13,791,467 variants) of BMI using data from UK Biobank were obtained from Neale et al123. 

From this data, two sets of GWAS-VCF files were produced containing either one or five trait(s) 

and with varying number of SNPs by combining randomly subsampled summary statistics with 

either 𝜖{0.5, 2.5, 10} million rows. TSV files were prepared from the GWAS-VCF to replicate a 

typical storage medium currently used for distributing summary statistics22. 

Estimand: Result retrieval performance 

Methods: GWAS summary statistics were mapped to GWAS-VCF using gwas2vcf v1.1.1 

(Chapter 7.5.4) and processed using bcftools v1.10172 to remove multiallelic variants or records 

with missing dbSNP170 identifiers. Query runtime performance was compared between Tabix 

v1.10.224 (using file index) with bcftools172 and rsidx171 and standard Ubuntu v18.04 UNIX 

commands (which read line-by-line) using AWK and grep for the following queries: single 

variant selection using dbSNP identifier170 or chromosome position, multi-variant selection by 

association P value (thresholds: P < 5 x 10-8, P < 0.2, P < 0.4, P < 0.6, P < 0.8) or 1Mb genomic 

interval. 

Performance measures: Queries were performed with 100 repetitions using BGZIP172 

GWAS-VCF or unindexed TSV with and without GZIP compression on an Ubuntu v18.04 server 

with Intel Xeon® 2.0 Ghz processor. All comparisons were performed using single thread 
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operations and therefore differences in runtime performance were due to query software 

and/or file index usage. 

Open-source code: https://github.com/MRCIEU/gwas-vcf-performance 

7.5 Results 

7.5.1 Requirements 

Requirements for a universal GWAS summary statistics format specification were 

developed through collaboration between the MRC-IEU and Ronald M. Loeb Center for 

Alzheimer’s Disease (Table 7.5.1.1). These features place emphasis on consistency and 

robustness, capacity for metadata to provide a full audit trail, efficient querying, and file 

storage, ensuring data integrity, interoperability with existing open-source tools and across 

multiple datasets to support data sharing and integration.
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Table 7.5.1.1. Requirements for a summary statistics storage format and solutions offered by the VCF 
Requirement Solution using the variant call format 
Human readable Read with any text viewer 
Easy to parse Mature open-source parsing libraries are available (HTSLIB173 and HTSJDK173) and implemented in most 

modern programming languages, for example: VariantAnnotation174 R-package is available from 
Bioconductor175,176 and python package pysam173,177. Bcftools172, GATK178, bedtools138 and others 
provides user-friendly functionality from the command line. 

Unambiguous interpretation of the 
data 

Data field descriptions, value types and number of values are required and defined in the file 
header165. File validity is enforced during each read/write173. 

Unambiguous representation of bi-
allelic, multi-allelic and insertion-
deletion variants 

Every variant substitution is represented by reference and alternative allele haplotypes defining the 
exact base change on the forward strand165. The reference allele is required to match genome 
sequences defined in the file header165. The alternative allele is always the effect allele allowing 
consistency between studies for ease of comparison165. 

Genomic information can be 
validated 

The file header contains information about reference genome assembly and chromosomes165. 
Reference alleles must match the sequence in the referenced genome build165 (in FASTA format). 
GATK178 ValidateVariants can be used to verify file format validity and compare reference allele 
information against the corresponding genome reference sequence. 

Flexibility on which GWAS fields are 
recorded and enforcement of 
essential fields 

All fields are defined in the file header and can be set optional or required as desired165. The 
specification contains essential fields and their reserved names165. 

Capacity to store metadata about 
the study and trait(s) 

The file header contains information about the source and date of summary statistics, study IDs (e.g., 
PMID/DOI of publication describing the study, or accession number and repository of individual-level 
data), description of the trait(s) studied (e.g., type, association test used, and measurement unit) as 
well as the source and version of trait IDs (e.g., MRC-IEU OpenGWAS database18, Experimental Factor 
Ontology179, Human Phenotyping Ontology180, Medical Subject Headings181 IDs for clinical and other 
traits, Ensembl139 Gene IDs for eQTL datasets, or any other ontology to describe the data). 

Allows multiple traits to be stored 
together 

The SAMPLE column165 was chosen to store variant-trait association data to allow for storage of 
multiple traits in a single VCF file, or as individual files if desired. 

Rapid querying by variant identifier, 
genomic position interval or GWAS 

The file is sorted karyotypically and indexed by chromosome position using Tabix24 to enable fast 
queries by genomic position. Secondary indexing on dbSNP170 identifier is also provided using rsidx171. 
Refer to performance comparisons of indexed VCF files and standard UNIX tools. 
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summary statistics value (range or 
exact value) 
File compression VCF files may be compressed with block GZIP (BGZIP)172 or converted to a binary call file which is a 

binary VCF companion format172. 
Readable by existing open-source 
tools 

A large number of tools support VCF files including: GATK178, Picard182, bcftools172, bedtools138, 
vcftools165 and plink126. Bcftools172 can also provide a tabular extract for use with non-compatible 
tools. 

Amenable to cloud-based streaming 
and database storage 

Genomic intervals may be extracted over a network using a range-request which extracts file segments 
without transferring the whole file165. This enables rapid streaming of queries over the internet. For 
high-throughput and distributed storage and querying, VCF165 files can be easily imported into 
GenomicsDB183. 

GWAS, genome-wide association study. dbSNP, database of single-nucleotide polymorphisms. HTSLIB, high-throughput sequencing 

data library. HTSJDK, high-throughput sequencing data Java development kit. GATK, genome-analysis toolkit. dbSNP, single 

nucleotide polymorphism database.  eQTL, expression quantitative trait loci. 
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7.5.2 File format 

The VCF is organised into three components165: a flexible file header containing 

metadata (lines beginning with ‘#’), and a file body containing variant- (one locus per row with 

one or more alternative alleles/variants) and sample-level information (one sample per 

column). The VCF was adapted to include GWAS-specific metadata and utilise the sample 

column (one per GWAS trait) to store variant-trait association data (Figure 7.5.2.1; Table 

7.5.2.1). 
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Figure 7.5.2.1. VCF format adapted to store GWAS summary statistics (GWAS-VCF) 

 

The GWAS-VCF file contains study and trait(s) metadata, variant-level data, and variant-trait 

association summary statistics. Each field is defined in the file header including variable type 

and number of values. The format can store the GWAS results of one or more traits in a single 

file. 

  

Variants Trait one 
Association statistics

Trait two
Association statistics

Metadata
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Table 7.5.2.1. Data fields in the GWAS-VCF 
Field Description 

VCF Header 
Study 

ID* Study identifier e.g., publication or data repository 
identifier e.g., 12345678 (PubMed 
https://pubmed.ncbi.nlm.nih.gov/) or phs001997.v1.p1 
(dbGaP184) 

Source* Source of study identifier e.g., PubMed or dbGaP184 
Version Version of study ID source used to describe study 
Description Study description 
URL Web link to study 

Trait 
ID* Trait identifier e.g., an ontology or metadata repository 

identifier e.g., EFO0004340 (EFO179), ieu-a-835 (MRC 
IEU OpenGWAS database18) or any other ontology 

Source* Source of trait identifier e.g. EFO179 or MRC IEU 
OpenGWAS database18 

Description* Trait description e.g., Body mass index 
Version Version of trait ID source used to describe trait 
Type Outcome variable type (continuous or binary) 
Test Statistical test for association data e.g., linear 

regression 
Unit Phenotype units e.g., kg/m2 or SD 
Population Participant ancestry (or mixed ancestry) using the 

standardised framework185 
FileUrl URL of GWAS summary statistics file 
FileDate Date GWAS summary statistics were produced 
TotalSamples Total number of samples/individuals in the study 
TotalCases Total number of cases in the study (if case-control) 
TotalVariants Total number of variants tested in the study 
VariantsNotRead Number of variants that could not be read 
VariantsHarmonised Number of harmonised variants 
VariantsNotHarmonised Number of variants that could not be harmonised 
SwitchedAlleles Number of variants strand switched 

VCF Body 
Per trait variant-level information 

NS Variant-specific number of samples/individuals with 
called genotypes used to test association with specified 
trait 
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EZ 𝑍-score provided if it was used to derive the ES and SE 
fields 

SI Accuracy score of association statistics imputation 
NC Variant-specific number of cases used to estimate 

genetic effect (binary traits only) 
ES* Effect size estimate relative to the alternative allele 
SE* Standard error of effect size estimate 
LP* -log10 p-value for effect estimate 
AF Alternative allele frequency for the trait GWAS 
AC Alternative allele count for the trait GWAS 

ID, identifier. EFO, Experimental Factor Ontology. VCF, variant call format. * Required fields.  
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According to the VCF specification165, the file header consists of metadata lines 

containing 1) the specification version number, 2) information about the reference genome 

assembly and contigs, and 3) information (ID, number, type, description, source, and version) 

about the fields used to describe variants and samples (or variant-trait associations in the case 

of GWAS-VCF) in the file body. The VCF file header is used to store additional information about 

the GWAS including 1) source and date of summary statistics, 2) study IDs (e.g., PMID/DOI of 

publication describing the study, or accession number and repository of individual-level data), 

3) description of the trait(s) studied (e.g., type, association test used, sample size, ancestry and 

measurement unit) as well as the source and version of trait IDs (e.g., Experimental Factor 

Ontology179, Human Phenotyping Ontology180, Medical Subject Headings181 IDs for clinical and 

other traits, Ensembl139 Gene IDs for expression quantitative trait loci (eQTL) datasets, or any 

other ontology or identifier). 

While VCF can contain information about multiple alternative alleles in a single row 

observed at the same site/locus165, the GWAS-VCF specification requires that each variant is 

stored in a separate row of the file body. Each row contains eight mandatory fields: 

chromosome name (CHROM), base-pair position (POS), unique variant identifier (ID), 

reference/non-effect allele (REF), alternative/effect allele (ALT), quality (QUAL), filter (FILTER) 

and variant information (INFO). The ID, QUAL and FILTER fields can contain a null value 

(represented by a dot). Importantly, the ID value (unless null) should not be present in more 

than one row. The FILTER field may be used to flag poor quality variants for exclusion in 

downstream analyses. The INFO field is a flexible data store for additional variant-level key-

value pairs (fields) and may be used to store for example: allele frequency for the entire 
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population AF), genomic annotations and variant functional effects. The INFO field is used to 

store the dbSNP170 locus identifier (rsid; instead of ID field) for the site at which the variant 

resides. This is because (despite their common usage as variant identifiers) rsids170 uniquely 

identify loci and thus cannot be used in the ID field which is required to contain a unique 

identifier for each row as per VCF165 specification. Following the INFO column is a format field 

(FORMAT) and one or more sample columns which were used to store variant-trait association 

data, with values for the fields listed in the FORMAT column for example: effect size (ES), 

standard error (SE) and -log10 P-value (LP). 

7.5.3 Query performance 

Simulations of query performance demonstrate compressed GWAS-VCF is substantially 

quicker than unindexed and uncompressed TSV format for querying by genomic position when 

the GWAS is densely imputed (Figure 7.5.3.1). The greatest improvements were seen when the 

GWAS-VCF contained a single trait with 10 million variants where on average GWAS-VCF was 

15x faster to extract a single variant using chromosome position (mean query duration of 

GWAS-VCF was 0.09 seconds [95% CI 0.08, 0.09] vs mean 1.35 seconds [95% CI 1.34, 1.37] for 

TSV) and 8x quicker using the rsid (0.1 seconds [95% CI 0.1, 0.1] vs 0.76 seconds [95% 0.75, 

0.78]). Extracting a 1Mb window of variants GWAS-VCF was 44x quicker (0.1 seconds [95% CI 

0.1, 0.11] vs 4.43 seconds [95% CI 4.36, 4.5]). However, querying on association P value was 

over 5x faster using TSV (mean query duration in TSV 6.48 seconds [95% CI 6.38, 6.57] vs mean 

query duration in GWAS-VCF 35.11 seconds [95% CI 34.35, 35.86]). When the number of 

variants stored in the GWAS-VCF was 0.5 million, uncompressed text was faster for single 

position and rsid lookups but not interval queries (Figure 7.5.3.1). Additionally, storing multiple 
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traits in a single GWAS-VCF reduced the P value query performance but had little impact on the 

positional queries (Figure 7.5.3.1).  
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Figure 7.5.3.1. Performance comparison for querying summary statistics in plain text and 

GWAS-VCF 

 
Mean query time (seconds, lower is quicker; repetitions n=100) to extract either: a single 

variant using the chromosome position or dbSNP170 identifier or multiple variants using a 1 Mb 

interval or association P value. AWK, grep, bcftools172 and rsidx171 were evaluated using 

uncompressed/GZIP compressed TSV and BGZIP172 compressed VCF. The summary statistics 

files contained one (single) or five (multiple) GWAS studies which were prepared by 

subsampling variants (n=0.5M, 2.5M, 10M) obtain from Neale et al123. Error bars represent the 

95% confidence interval. 
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7.5.4 Software 

To automate the conversion and harmonisation of existing summary statistics files to 

the GWAS-VCF format I developed gwas2vcf software. This software reads in metadata and 

SNP-trait association data using a user-defined schema requiring the chromosome base-

position to start at one. During processing, variants are harmonised using a supplied reference 

genome file to ensure the non-effect allele matches the reference sequence enabling 

consistent directionality of allelic effects across studies. Insertion-deletion variants are left-

aligned and trimmed for consistent representation using the vgraph library186 (Figure 7.5.4.1). 

Finally, the GWAS-VCF is indexed using Tabix24 and rsidx171 which enable rapid queries by 

genomic position and rsid170, respectively. I developed a freely available web application 

providing a user-friendly interface for this implementation 

(https://github.com/MRCIEU/gwas2vcfweb).  
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 Figure 7.5.4.1. Workflow for gwas2vcf 

 

Flow diagram of gwas2vcf theory of operation. GWAS, genome-wide association study. VCF, 

variant call format. 
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Once stored in a GWAS-VCF file, summary statistics can be read and queried using R 

(developed by Dr Gibran Hemani, MRC-IEU), Python (which I developed; 

https://github.com/MRCIEU/pygwasvcf), or from the command line using for example: 

bcftools172, GATK178 or bedtools138. These tools also enable variant annotation and filtering (e.g. 

allele frequency, functional effect, gene and pathway), mapping between reference genome 

assemblies, file validation and converting to any other tabular format including the NHGRI-EBI 

GWAS Catalog format19. I have provided tutorials on how to perform downstream analysis of 

GWAS-VCF files (https://mrcieu.github.io/gwas2vcf/downstream).  

7.5.5 Variance GWAS summary statistics in GWAS-VCF 

I converted 30 complete variance GWAS summary statistics prepared in Chapter 5 to 

GWAS-VCF and made these available for download through the MRC IEU OpenGWAS 

database18. 

7.6 Discussion 

The GWAS-VCF format has several advantages over existing solutions. First, the VCF165 

provides a consistent and robust approach to storing genetic variants, annotations and 

metadata enabling interoperability and reusability consistent with the FAIR principles187. 

Furthermore, variable type and number requirements165 reduce parsing errors and missing 

data, preventing unexpected program operation. Second, the VCF is well established and 

scalable to support GWAS of whole-genome sequencing studies165. Many mature tools have 

been developed providing a range of functions for querying, annotating, transforming, and 

analysing genetic data in VCF (Table 7.5.1.1). Third, the GWAS-VCF file header stores 

comprehensive metadata about the GWAS including necessary information to understand the 
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analysis and interpret the data (Table 7.5.2.1). Fourth, a GWAS-VCF file can store individual or 

multiple traits (in one or more sample columns) in a single file which is beneficial for the 

distribution of GWAS datasets where genotypes of each sample/individual have been tested for 

association with multiple traits (e.g., QTL datasets141). 

The simulation studies demonstrated GWAS-VCF was substantially quicker when the 

GWAS was densely imputed (8-44x) than TSV using standard UNIX tools for extracting records 

by genomic position. Although the GWAS-VCF was slower for extracting records by association 

P value this could be improved by using variant flags (i.e., in the INFO field) to highlight records 

below prespecified thresholds. For example, all variants below genome-wide significance (P < 5 

x 10-8) or a more relaxed threshold (e.g., P < 5 x 10-5). 

7.7 Limitations 

A limitation of GWAS-VCF is the lack of a widely adopted and stable representation of 

variants that can be used as a universal unique identifier. Published summary statistics often 

use rsids170 to identify the variant substitution but this practice is inappropriate because rsids 

are locus identifiers and do not distinguish between multiple alternative alleles observed at the 

same site188. Moreover, rsids are not stable as they can be merged and retired over time170. The 

reason this is a problem is that in GWAS summary statistics every record represents the effect 

of a specific allele on one or more traits (Chapter 1.2.5), and if a record identifier is used that is 

not unique for each allelic substitution, then the association statistics cannot be correctly 

interpreted for a specific allele. An alternative approach is to concatenate chromosome, base 

position, reference, and alternative allele field values into a single string22, but this is non-

standardised, genome build specific and unwieldy for long insertion-deletion variants. In the 
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current version of the GWAS-VCF specification it is suggested to query variants by chromosome 

and base-position and filtering the output to retain the target substitution, but this approach 

can be cumbersome and difficult to interoperate with other software. The ideal solution would 

be for the community to adopt universally accepted variant identifiers that can then be used in 

the ID column of GWAS-VCF files. 

7.8 Conclusions 

The VCF specification for GWAS summary statistics (GWAS-VCF) was defined to be 

amenable to high-throughput analyses and robust data sharing and integration. I implemented 

open-source Python tools to convert existing summary statistics formats into this format and to 

query the file to extract subsets of data. I also produced examples of integrating these data 

with existing analysis tools. Finally, I provided 30 variance GWAS summary statistics datasets 

from Chapter 5 in GWAS-VCF. These resources enable convenient and efficient secondary 

analyses of GWAS summary statistics and support future tool development. 
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Chapter 8: Discussion  

8.1 Overview 

Variance QTLs are genetic loci that associate with the variance of a trait and can indicate the 

presence of gene-interaction effects56,68 (Chapter 1.5.3). Previous research has used vQTL 

evidence to prioritise loci for interaction testing using a series of candidate modifiers68,69. While 

many variance tests exist, few tools are available for GWAS identification69,70,96 (Chapter 1.5.7) 

and analysis of vQTLs. In addition, efficient, and robust downstream analysis of GWAS summary 

statistics including variance GWAS requires adoption of a common data format22,166. 

Furthermore, vQTL evidence may have other applications not previously explored for example 

in testing of MR15 homogeneity assumptions35 (Chapter 6). The aims of this thesis were to 

develop software tools and methodology to support the discovery, analysis and sharing of 

vQTLs. As an exemplar these methods were applied to study serum biomarker concentration in 

UK Biobank which include causal modifiable risk factors for disease99 with the aim of producing 

findings of translational value (Chapter 1.4.1; Chapter 1.6). The key methodology advances and 

findings of this thesis are presented in Table 8.1.1. 

 I implemented a regression-based Brown-Forsythe test for robustly detecting vQTLs with 

equal power and type I error rate to the original method. Although the power of this approach 

was low and may only be suitable in cases where variants explain a large proportion of trait 

variance such as with molecular QTLs132. A second limitation of LAD-BF was the inability to use 

imputed dosage values directly, instead these should be rounded to whole numbers which is 

necessary for detecting non-linear effects on trait variance in the second-stage regression 

model. Through simulation, I demonstrated the ability to estimate an unbiased variance effect 
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and to adjust this effect for confounding. I showed how these features are useful to determine 

if an interaction term is contributing to a variance effect by using the novel approach of 

adjusting the model for candidate interactions and measuring attenuation of variance effects 

under simulation. Secondly, I demonstrated that when ancestry has an interaction effect on an 

outcome adjusting both LAD-BF regression models for ancestry can reduce bias due to 

population stratification (Chapter 1.2.3). I implemented the LAD-BF model in R 

(github.com/MRCIEU/varGWASR) and scalable C++ GWAS software 

(github.com/MRCIEU/varGWAS) available open-source for future research at scale. Type I error 

rate simulations produced in Chapter 4 were included in a publication in the European Journal 

of Epidemiology (2021)80, on which I am a co-author. 

I applied methodology developed in Chapter 4 to identify vQTLs influencing 30 serum 

biomarkers in UK Biobank (Chapter 5). These results included association for 290 million SNPs 

which I have made freely available for download through the MRC-IEU OpenGWAS platform18 

to support secondary research applications such as in Chapter 5 and Chapter 6. Among these 

vGWAS I identified 468 loci robustly associated with the variance of serum biomarker 

concentrations which I further investigated by testing for interaction effects leading to the 

identification of six gene-gene and 82 gene-environment interaction effects. I prepared a 

manuscript containing findings from Chapter 4 and Chapter 52. Expertise gained through this 

work was also employed to contribute to another study investigating effect modification of C-

reactive protein variants in cardiometabolic disease, which is under review with Human 

Molecular Genetics189, on which I am a co-author. 
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I used simulations to show how instrument-exposure variance effects estimated using LAD-

BF developed in Chapter 4 may be used to assess instrumental variable homogeneity 

assumptions (Chapter 6). This approach could be applied as a sensitivity analysis to remove 

instruments with strong exposure variance effects to minimise bias of the population average 

causal effect35 or as a falsification strategy to test if homogeneity assumptions are violated. 

However, this approach requires detection of instrument-exposure variance effect which is low 

powered and may challenging to implement with current sample sizes. While applied in an MR 

(Chapter 1.3.7) setting this methodology could have wider utility for any instrumental variable 

analysis applied, for example, in health15, economics190, and social science191. I used this 

approach to investigate the effects of LDL, glucose and urate on cardiovascular disease, type 2 

diabetes, and gout, respectively using variance GWAS summary statistics produced in Chapter 

5. Although some instruments for these exposures had variance effects on the exposure, 

removing these instruments had little impact on causal estimates. These findings suggest NOSH 

assumption one35 was not violated which could imply either the variance effect was not a 

consequence of an interaction of the instrument-exposure relationship, or the exposure-

outcome relationship was not modified by the same variable as the instrument-exposure. I am 

currently preparing a manuscript for publication of this work. 

The variant call format165 (VCF) was extended in collaboration with researchers at the MRC-

IEU and School of Medicine at Mount Sinai, New York to develop a robust and efficient file 

format for storing and sharing of GWAS summary statistics (GWAS-VCF) including vQTLs 

(Chapter 7). This format facilitates downstream analyses and has already been used widely with 

the paper amassing 34 citations to date. I published the full variance GWAS summary statistics 
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produced in Chapter 5 using this format through the MRC-IEU OpenGWAS platform18. I found 

GWAS-VCF was 8.6-45.5x faster to extract GWAS results by chromosome position than 

extracting records by reading the file line-by-line which can be used to improve the 

performance of downstream analyses supporting large-scale hypothesis-free analyses. I 

produced open-source Python software to convert GWAS summary statistics to GWAS-VCF 

(github.com/MRCIEU/gwas2vcf) and web interface to automate this process 

(https://github.com/MRCIEU/gwas2vcfweb). I also developed an open-source Python library for 

reading these files (github.com/MRCIEU/pygwasvcf). The GitHub repository has received 25 

stars and between 18th June - 1st July 2022 was visited and downloaded by 60 and 16 unique 

users, respectively. This work was published in Genome Biology (2021)1. Following expertise 

gained through this project, I participated in the NHGRI-EBI GWAS Catalog data format and 

content working group (2021) which has led to the development of another GWAS summary 

statistics standard and preprint on which I am a co-author25. This work was also used in the 

development of the MRC-IEU OpenGWAS platform18 currently under review with eLife, and in 

producing MR estimates for the EpigraphDB platform192 published in Bioinformatics (2020). I 

contributed towards development of these manuscripts on which I was included as co-author.  
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Table 8.1.1. Summary of results and methodological advances 

Section Findings 
Chapter 4 

4.5.3 Implemented LAD-BF in C++ and R which produces an unbiased variance effect 
estimate 

4.5.4 vQTL confounding by ancestry can be controlled using LAD-BF but not with the 
Brown-Forsythe test 

4.5.5 Adjusting LAD-BF for the interaction effect will attenuate the variance effect 
4.5.6 LAD-BF has greater power to detect the presence of an interaction effect compared 

with exhaustive testing of linear regression and a series of candidate modifiers 
Chapter 5 

5.5.1 Detected 468 independent vQTLs influencing 30 serum biomarkers in UK Biobank 
5.5.2 Detected 82 scale-independent gene-environment interaction effects 
5.5.3 Detected 6 scale-independent gene-gene interaction effects including possible 

novel effects of TREH rs12225548 x FUT2 rs281379 and ABO rs635634 x TREH 
rs12225548 on ALP and ZNF827 rs4835265 x NEDD4L rs4503880 on GGT 

Chapter 6 
6.5.1 Instrument-exposure variance effects may be used to partially assess NOSH 

assumption one violation35 
6.5.2 Removing instruments with strong exposure variance effect may reduce bias of the 

population average causal effect.  
6.5.3 No strong evidence for departure from the population average causal effect for the 

effects of low-density lipoprotein on coronary heart disease, random glucose on 
type 2 diabetes or urate on gout. There may exist a pathway of low-density 
lipoprotein on coronary heart disease that is protective 

Chapter 7 
7.5.1 GWAS-VCF is a robust solution for distributing GWAS summary statistics 
7.5.3 GWAS-VCF is up to 46x faster to query plain text files used  
7.5.4 I developed gwas2vcf software to support cataloguing of GWAS summary statistics 
7.5.5 Deposited variance GWAS summary statistics for 30 biomarkers in MRC-IEU 

OpenGWAS 
LAD, least absolute deviation. vQTL, variance quantitative trait loci. GWAS, genome-wide 

association study. NOSH, NO Simultaneous Heterogeneity. VCF, variant call format. 
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8.2 Contribution statement 

Chapter 8.3 contains future work from a manuscript I wrote that was edited by PhD 

supervisors available as a preprint on MedRxiv (Lyon et al, 2022)2. 

8.3 Future work 

8.3.1 Variance GWAS studies of protein measurements 

Throughout this thesis I have focused on variance studies of serum biomarker 

concentration in UK Biobank as an exemplar (Chapter 1.6). There were two key reasons for 

selecting these traits. First, these measures are continuous surrogate endpoints for disease 

outcomes that are easier to measure and apply to variance QTL studies98 and findings may 

extend to disease outcomes. Secondly, serum biomarkers include causal risk factors for disease 

that are potential intervention targets99 and interaction findings in combination with other 

evidence may be useful for drug development (Chapter 8.3.2). This is in contrast with previous 

studies that have largely investigated physical measures such as BMI, height, lung function, and 

bone mineral density68,69.  

One key limitation of this work is low power to detect vQTLs, this is because individual 

variants explain only a small amount of biomarker variance168. Future studies should not apply 

these methods to polygenic traits because power to detect vQTLs is too low to reliably identify 

such loci. The simulation in Chapter 4.5.2 suggests a SNP explaining 5% of trait variance is 

needed to obtain approximately 80% power to detect the vQTL given samples sizes available in 

biobanks today. 

Meanwhile, plasma proteins (as well as other molecular phenotypes such as gene 

expression) are strongly affected by SNPs in the cis-coding region that explain on average 5.8% 
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of trait variance132. Future vQTL studies could be extended to investigate these molecular 

phenotypes (e.g. in UK Biobank protein concentration measurements are due to be made 

available this year as part of the UK Biobank Pharma Proteomics Project193) which are 

adequately powered and may lead to the identification of novel biology or drug targets with 

interaction effects on disease outcomes. 

8.3.2 Drug target prioritisation 

It is not normally possible to intervene on biomarker concentration directly99. Instead, 

drugs may be developed to modulate proteins that regulate biomarker synthesis or 

metabolism99, for example, statins act to inhibit HMG-CoA reductase lowering serum LDL 

cholesterol levels99. GWAS of mean biomarker concentration and follow up analyses can help 

identify protein targets for drug development99.  However, as biomarkers are complex traits99, 

they are affected by genetic and environmental factors which may interact producing gene-

gene or gene-environment interaction effects48 (Chapter 1.4.1). Identification of loci with 

interaction effects on biomarker concentration may provide evidence of drug targets that, 

when intervened produce subgroup effects with individual variation in response to treatment 

dependent on the modifier57. However, this approach is likely to be limited by low power, 

requiring a large sample size and SNPs explaining a large proportion of trait variance such as 

with protein or gene expression traits as discussed above. 

The results in Chapter 5 could be combined with other available evidence to identify 

drug targets with potential subgroup effects on a given biomarker during preclinical drug 

development. Intervention on such targets may produce differential effects on the indication194 

that could have low, no or opposing efficacy in some subgroups57. Variance QTLs may have a 
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potential role in preclinical drug development to identify subgroups where efficacy is higher, 

although their detection is low powered and complicated by the presence of mean-variance 

confounding (Chapter 1.5.4). As an example of this, consider the effect of SLC2A9 rs938555 x 

sex on urate (Chapter 5), suppose rs938555 is acting on urate concentration via the SLC2A9 

protein abundance (and not by horizontal pleiotropy161). Then a drug developed to target 

SLC2A9 protein abundance may also show differing effects by sex on urate and by extension 

gout. 

8.3.3 Use of joint test to identify loci involved in genetic interaction 

 I applied the LAD-BF model to detect effects on trait variance with follow up studies to 

identify genetic interaction effects (Chapter 4). Among these findings were the observation that 

almost all SNPs with interaction effects also affected the mean and prioritisation of either mean 

or variance effects may be fruitful in detecting interactions. Therefore, future studies could use 

a joint test for mean and variance effects, using for example JLSsc80 or LRTmv86 in order to 

prioritise loci for interaction testing which may have greater power than just screening for 

variance effects only. 

8.3.4 Improved control for population stratification 

 GWAS are susceptible to genetic confounding (Chapter 1.3.2; Chapter 1.2.3) which may 

produce spurious results7. Family-based designs are advantageous in that they can attenuate 

bias from population stratification, as well as dynastic effects and assortative mating8,12. 

Another approach to reduce effects of population stratification (Chapter 1.2.3) is the use of a 

population random effect. In future work I aim to implement a population random effect in the 

LAD-BF model, which could be achieved using the GRAMMAR approach13. This method first 
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estimates the population random effect13 which can be included in the LAD-BF model as a 

covariate. 

8.3.5 Estimating the causal effect of an exposure on the variance of an outcome 

 I showed a limitation of the variance GWAS approach is low power to detect vQTLs and 

consequently low power to detect interaction effects operating at a locus (Chapter 4). One way 

this could be improved is to combine multiple SNPs using for example polygenic risk scores7 

(PRS). The PRS could serve as a genetic instrument to proxy for an exposure195 such as complex 

trait or molecular phenotype to test for a variance effect of exposure on an outcome which may 

imply the presence of an interaction between exposure and outcome. An alternative strategy is 

to estimate the effect of each instrument on outcome variance separately and then meta-

analyse the effects196. The use of dummy SNPs in the second-stage LAD-BF model means that 

two coefficients are produced and would require the use of bivariate meta-analysis197. 

8.3.6 Comparison of vQTL evidence with randomised control trials 

Studies of variance effects have also been investigated using RCTs43,50 where outcome 

variance was compared between trial arms as evidence for interaction. For example, Cortés et 

al50 systematically reviewed 208 trials and found 7.2% had evidence of increased variance in the 

treatment group which is consistent with effect modification. Other studies have used trial data 

to investigate variance effects on brain volume198, biomarker concentration199 pain200, 

depression43 and schizophrenia201. This evidence could be integrated with genetic variance 

effects in order to triangulate findings202, although the latter is low powered which may make 

this approach challenging.   
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8.3.7 Variance QTL evidence for fine mapping of causal loci 

 Phantom vQTL effects (Chapter 1.5.5) occur when a SNP is in imperfect linkage 

disequilibrium with the causal SNP having a strong mean effect but no interaction effect53,94. 

The strength of the phantom vQTL effect is a function of the effect size and allele frequency of 

the causal SNP effect, correlation between SNPs, and allele frequency of the non-causal SNP68. 

Thus, vQTL evidence may have a role in fine mapping of causal loci (Chapter 1.2.4) by 

prioritising SNPs with the largest mean effect and smallest variance effect. However, in 

situations where a true interaction effect exists this approach may instead deprioritise the 

causal SNP. This evidence could be integrated in existing Bayesian models9 to strengthen 

evidence and improve resolution for causal SNP prioritisation applied to continuous traits. 

8.3.8 Colocalization of vQTL and QTL 

Colocalization is a method to determine if shared causal variant(s) exist between two 

traits at a single genetic locus which would be anticipated if one trait has a causal effect on the 

other203. 

Colocalization of vQTLs with GWAS of other traits including molecular phenotypes could 

provide insight into the causal mechanisms underlying the association with trait variance. For 

example, suppose a vQTL is a consequence of an interaction effect, then colocalization with 

other traits could be used to identify interacting exposures which could then be tested using a 

formal genetic interaction test. 

Colocalization of vQTLs with other GWAS traits has already been performed using FTO 

locus vQTL to check for shared causal variant68 and Westerman et al42 but these analyses were 

conducted using the OSCA effect estimate which is biased under an interaction effect (Chapter 
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4) and may reduce colocalization performance. Further studies should be conducted to explore 

colocalization of vQTLs using a model that makes no linearity assumptions, for example using 

LAD-BF (Chapter 4). How to do this given two coefficients are provided is left to future work. 

8.3.9 Systematic testing of homogeneity assumptions in Mendelian randomization 

 I developed methodology to detect violation of instrumental variable homogeneity 

assumptions (Chapter 6). As an exemplar this work was applied to investigate the effects of 

selected biomarker traits (Chapter 1.6) on disease outcomes where findings may yield high 

translational value. Future studies could apply this methodology systematically to determine if 

there are causal effects where homogeneity assumptions are strongly violated and to estimate 

effects without vQTL instruments. For example, this could be applied using all continuous 

exposures in UK Biobank on all outcomes in the MRC-IEU OpenGWAS platform18 as has been 

done for systematic MR analyses of ‘everything against everything’161. These results could be 

used to populate a database that researchers are able to inspect and would aid in widespread 

adoption of this evidence. For effects where homogeneity assumptions are violated a 

statement could be included in the report to suggest the population average causal effect may 

not be targeted which would aid interpretation. Additionally, an effect estimate produced 

without vQTL instruments could be provided which may be closer to the population average 

causal effect. 

8.3.10 Runtime performance improvements for varGWAS 

I developed variance GWAS software (varGWAS) to implement the LAD-BF model 

(Chapter 4). I used C++ and multithreading to improve scalability which enabled successful 

application to 30 traits in over 300k UK Biobank participants (Chapter 5). However, this analysis 
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was very computationally demanding taking around 2,400 CPU hours per trait which would cost 

approximately £160 (ex VAT) per GWAS to perform using Microsoft Azure 

(azure.microsoft.com) cloud computing (pricing February 2022). These computational 

requirements represent a barrier to adoption for future studies applied to large numbers of 

traits. There are several performance improvements that could be applied to reduce runtime 

requirements. First, specialist computing hardware such as the Graphics Processing Unit (GPU) 

which are widely available and could be employed to improve the number of simultaneous loci 

tested for a variance effect reducing computing time and resources. GPUs have already been 

applied to genetic epidemiology with success. For example, epiGPU204 was developed to 

perform exhaustive testing for gene-gene interaction effects and was 92x faster than using a 

single CPU core204. Second, a low-density coverage first pass could be performed which would 

involve testing a random subsample of the directly genotyped SNPs and then performing 

focused testing around associated loci to identify lead SNPs. Alternatively, a genome-wide pre-

screen could be applied using a less computationally intensive model to identify loci which may 

be associated with trait variance for analysis by LAD-BF. For example, one of the first variance 

GWAS used a standard GWAS linear model applied to the square of the standardised trait77 but 

this approach assumes linearity between SNP and trait variance which I show (Chapter 4) does 

not hold under an interaction effect. Although this approach could be followed up by LAD-BF. 

8.3.11 Developing binary format for storing of GWAS summary statistics 

While the GWAS-VCF format1 (Chapter 7) solves a range of issues working with these 

data such as ensuring consistency of metadata and allele and effect orientation it is 

uncompressed hence inefficient for large numbers of GWAS in terms of storage requirements. 
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One way this might be addressed is to develop a binary format which enables storage of fields 

using the smallest number of bytes possible as has been done with other formats such as 

BGEN130, BCF165 and BAM173. Secondly, these data could be stored along with file indexes based 

on chromosome position or RS identifier in a single file using the HDF5 format205 to avoid the 

need to distribute multiple files. 

8.4 Summary 

In this thesis I discovered vQTL effects on serum biomarker concentration in UK Biobank, 

performed comprehensive analyses to identify potential gene-interaction effects and applied 

these data to test instrumental variable homogeneity assumptions. I also developed a robust 

and performant format to share these data to support secondary research applications. To 

facilitate these analyses, I produced open-source software that may be valuable in future 

research studies. 
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Chapter 9: Appendix 

9.1 Algebraic expression of exposure interaction effect on outcome variance 

Professor Tilling derived the following expression to calculate the expected variance of 

an outcome conditional on an exposure under an interaction effect on the outcome. 

Equation 9.1.1 Variance of outcome conditional on genotype with interaction effect 

For the 𝑖th observation suppose exposure 𝑋&  and modifier 𝑈&  interact 𝑋𝑈&  on outcome 𝑌&  such 

that: 

𝑌& = 𝛽+ + 𝛽%𝑋& + 𝛽!𝑈& + 𝛽2𝑋𝑈& + 𝐸&  

Where 𝐸&  is the residual variance following Normal distribution with mean of zero and unit 

variance. Then the relationship between 𝑋&  and 𝑌&  variance can be calculated as: 

𝑣𝑎𝑟(𝑌|𝑋) = 𝛾+ + 𝛾%𝑋& + 𝛾!𝑋&! 

Where: 

𝛾+ = 𝛽2!𝑣𝑎𝑟(𝑈&) + 𝑣𝑎𝑟(𝐸&) 

𝛾% = 2𝛽!𝛽2𝑣𝑎𝑟(𝑈&) 

𝛾! = 𝛽2!𝑣𝑎𝑟(𝑈&) 

9.2 Supplemental tables 
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Table 9.2.1. Effect of top vQTLs on standardised biomarker variance in UK Biobank  

SNP Outcome Gene phi_x1 95% CI phi_x2 95% CI PLyon PWesterman 

rs4654970 ALP ALPL -0.093 -0.102 -0.085 -0.153 -0.179 -0.127 6.04E-109 1.93E-45 
rs12449427 ALP CLDN7 0.048 0.04 0.056 0.094 0.077 0.111 1.81E-52 1.43E-11 
rs9987289 ALP PPP1R3B -0.08 -0.125 -0.034 -0.141 -0.183 -0.099 2.67E-40 1.95E-04 
rs10740131 ALP REEP3 0.027 0.019 0.036 0.065 0.054 0.076 3.16E-33 - 
rs167537 ALP ASGR2 0.043 0.034 0.052 0.095 0.068 0.122 2.68E-32 3.51E-21 
rs112875651 ALP TRIB1 -0.032 -0.04 -0.024 -0.064 -0.075 -0.054 1.21E-31 6.74E-03 
rs281379 ALP FUT2 -0.023 -0.032 -0.014 -0.056 -0.066 -0.046 2.15E-26 6.51E-05 
rs4654748 ALP NBPF3 -0.029 -0.037 -0.02 -0.057 -0.067 -0.047 2.38E-26 - 
rs635634 ALP ABO -0.041 -0.049 -0.034 -0.001 -0.023 0.021 4.18E-24 1.44E-68 
rs1169312 ALP C12orf43 0.025 0.017 0.032 0.051 0.038 0.063 1.96E-18 - 
rs1058935 ALP IFITM2 0.014 0.005 0.023 0.041 0.03 0.051 3.29E-14 - 
rs12225548 ALP TREH -0.022 -0.029 -0.014 -0.054 -0.07 -0.038 9.06E-14 1.81E-06 
rs1154416 ALP ADH5 -0.014 -0.024 -0.003 -0.037 -0.047 -0.026 5.74E-12 - 
rs74697591 ALP TXNL4B|HP|HPR 0.023 0.014 0.031 0.071 0.043 0.099 1.36E-11 5.10E-03 
rs12825673 ALP B4GALNT3 0.024 0.014 0.034 0.039 0.028 0.05 1.86E-11 - 
rs174570 ALP FADS2 0.02 0.011 0.029 0.088 0.056 0.12 2.94E-11 1.19E-03 
rs4940697 ALP NEDD4L -0.032 -0.048 -0.017 -0.047 -0.062 -0.032 4.60E-10 4.19E-04 
rs2576452 ALP TMC4 0.017 0.009 0.025 0.035 0.024 0.046 8.68E-10 - 
rs738409 ALT PNPLA3 0.133 0.124 0.143 0.396 0.365 0.427 0 1.78E-257 
rs58542926 ALT TM6SF2 0.123 0.109 0.137 0.283 0.203 0.363 4.57E-94 6.72E-40 
rs2862954 ALT ERLIN1 -0.058 -0.068 -0.047 -0.123 -0.134 -0.111 8.95E-88 5.28E-35 
rs71633359 ALT HSD17B13 -0.07 -0.078 -0.061 -0.104 -0.118 -0.091 3.98E-71 3.22E-45 
rs429358 ALT APOE -0.068 -0.077 -0.058 -0.085 -0.11 -0.06 1.45E-46 3.45E-24 
rs2954021 ALT TRIB1 -0.053 -0.064 -0.042 -0.087 -0.099 -0.075 7.30E-44 1.77E-15 
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rs4979371 ALT AKNA -0.04 -0.05 -0.029 -0.086 -0.097 -0.074 1.48E-42 4.89E-20 
rs10787429 ALT GPAM -0.046 -0.064 -0.028 -0.079 -0.096 -0.062 6.97E-25 5.60E-14 
rs2642438 ALT MARC1 0.041 0.026 0.056 0.073 0.058 0.088 2.61E-24 4.56E-08 
rs4841133 ALT PPP1R3B -0.05 -0.103 0.003 -0.106 -0.156 -0.055 2.98E-23 1.70E-06 
rs1262002 ALT DLG5 0.021 0.008 0.034 0.055 0.042 0.068 3.76E-19 4.50E-09 
rs4503880 ALT NEDD4L -0.039 -0.063 -0.016 -0.073 -0.096 -0.051 2.08E-18 4.78E-05 
rs4835265 ALT ZNF827 0.036 0.026 0.046 0.081 0.05 0.111 1.24E-17 2.07E-06 
rs1801282 ALT PPARG -0.039 -0.05 -0.029 -0.085 -0.116 -0.053 1.13E-16 9.76E-12 
rs4782568 ALT OSGIN1 -0.025 -0.035 -0.015 -0.053 -0.065 -0.041 2.66E-16 1.92E-11 
rs57562692 ALT PANX1 -0.035 -0.045 -0.025 -0.102 -0.134 -0.069 9.53E-16 9.02E-07 
rs35348663 ALT TBL2 0.028 0.019 0.037 0.057 0.04 0.073 1.31E-15 2.15E-12 
rs13423088 ALT NYAP2 -0.023 -0.032 -0.014 -0.056 -0.07 -0.042 1.45E-14 2.61E-03 
rs132639 ALT APOL3 0.048 0.025 0.072 0.075 0.052 0.098 4.50E-14 - 
rs36086195 ALT ARHGEF19 0.017 0.005 0.029 0.044 0.031 0.057 1.72E-12 7.24E-03 
rs1169288 ALT HNF1A 0.02 0.011 0.029 0.053 0.037 0.069 2.55E-12 5.23E-08 
rs72731415 ALT SRP14 -0.023 -0.032 -0.014 -0.046 -0.059 -0.032 2.00E-11 1.46E-04 
rs7029757 ALT TOR1B -0.038 -0.049 -0.027 -0.055 -0.098 -0.012 2.20E-11 7.72E-07 
rs4973550 ALT EFHD1 0.03 0.017 0.042 0.045 0.032 0.058 8.16E-11 2.07E-04 
rs3816873 ALT MTTP -0.022 -0.031 -0.013 -0.051 -0.068 -0.034 1.01E-10 3.05E-05 
rs339969 ALT RORA 0.011 -0.001 0.023 0.038 0.025 0.051 1.65E-10 2.37E-05 
rs641738 ALT TMC4 0.018 0.009 0.028 0.042 0.029 0.055 2.69E-10 2.00E-04 
rs4810880 ALT PREX1 -0.028 -0.038 -0.019 -0.034 -0.046 -0.021 5.33E-10 2.21E-04 
rs10075805 ALT CDH6 -0.024 -0.033 -0.015 -0.041 -0.057 -0.025 9.03E-10 5.51E-03 
rs1477066 ALT SOX9 0.009 -0.005 0.023 0.035 0.02 0.049 9.40E-10 5.16E-05 
rs28413626 ALT SETD8 -0.026 -0.035 -0.017 -0.043 -0.063 -0.024 9.91E-10 1.71E-03 
rs247616 ApoA CETP 0.056 0.046 0.065 0.125 0.108 0.141 1.02E-68 3.09E-04 
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rs1077835 ApoA ALDH1A2|LIPC 0.043 0.034 0.053 0.131 0.107 0.155 1.10E-42 7.72E-05 
rs13284054 ApoA ABCA1 -0.047 -0.057 -0.036 -0.114 -0.146 -0.083 2.08E-24 5.42E-06 
rs2043085 ApoA ALDH1A2 -0.033 -0.046 -0.02 -0.061 -0.075 -0.048 9.15E-19 - 
rs1943973 ApoA LIPG 0.037 0.007 0.066 0.078 0.048 0.107 1.39E-18 3.67E-04 
rs12721030 ApoA APOA1 0.034 0.025 0.044 0.064 0.039 0.089 2.62E-15 - 
rs174528 ApoA MYRF|TMEM258 -0.022 -0.032 -0.012 -0.046 -0.059 -0.033 4.05E-11 1.31E-04 
rs1042034 ApoA APOB -0.025 -0.049 -0.001 -0.053 -0.076 -0.03 5.93E-11 - 
rs112310696 ApoA DUS2 0.033 0.022 0.044 0.066 0.028 0.104 1.46E-10 - 
rs5167 ApoA APOC4|APOC4-APOC2 0.018 0.009 0.028 0.047 0.032 0.062 3.11E-10 5.78E-03 
rs72654473 ApoA APOE 0.037 0.026 0.049 0.038 -0.004 0.08 3.49E-10 3.36E-03 
rs438811 ApoB APOC1 0.115 0.105 0.124 0.309 0.284 0.333 1.74E-294 8.68E-10 
rs12740374 ApoB CELSR2 -0.07 -0.078 -0.061 -0.124 -0.141 -0.107 1.47E-78 6.04E-04 
rs6511720 ApoB LDLR -0.084 -0.093 -0.074 -0.143 -0.171 -0.115 1.71E-72 - 
rs562338 ApoB APOB 0.039 0.017 0.061 0.102 0.079 0.125 1.34E-52 2.86E-03 
rs964184 ApoB APOA5 -0.051 -0.087 -0.016 -0.112 -0.145 -0.079 9.10E-39 - 
rs28601761 ApoB TRIB1 -0.042 -0.051 -0.032 -0.077 -0.088 -0.065 7.14E-37 - 
rs3208305 ApoB LPL -0.036 -0.045 -0.027 -0.06 -0.074 -0.045 6.46E-22 7.99E-04 
rs369599 ApoB PVRL2 -0.028 -0.037 -0.019 -0.057 -0.071 -0.042 4.74E-17 3.34E-43 
rs780093 ApoB GCKR -0.025 -0.038 -0.013 -0.052 -0.065 -0.04 1.11E-16 5.42E-03 
rs626787 ApoB USP1 -0.025 -0.034 -0.016 -0.053 -0.066 -0.041 4.57E-16 - 
rs4245791 ApoB ABCG8 -0.025 -0.04 -0.011 -0.05 -0.064 -0.036 1.73E-13 - 
rs174576 ApoB FADS2 -0.015 -0.024 -0.006 -0.05 -0.063 -0.037 1.12E-12 2.06E-03 
rs56228609 ApoB CETP -0.015 -0.024 -0.007 -0.053 -0.067 -0.039 1.44E-12 - 
rs56174528 ApoB ANKRD31 0.027 0.017 0.036 0.072 0.043 0.1 2.77E-12 - 
rs2569550 ApoB LDLR 0.024 0.013 0.036 0.041 0.029 0.054 2.84E-10 - 
rs2618566 ApoB SNX5 -0.003 -0.017 0.011 -0.03 -0.044 -0.016 1.45E-09 - 
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rs3747207 AST PNPLA3 0.055 0.05 0.061 0.165 0.148 0.183 5.82E-208 4.02E-92 
rs71633359 AST HSD17B13 -0.035 -0.04 -0.03 -0.044 -0.051 -0.036 6.45E-49 6.44E-23 
rs2862954 AST ERLIN1 -0.02 -0.026 -0.014 -0.045 -0.051 -0.039 5.86E-38 7.53E-20 
rs58542926 AST TM6SF2 0.042 0.034 0.05 0.107 0.065 0.149 8.37E-37 1.63E-16 
rs56278466 AST TMEM236 0.024 0.016 0.031 0.044 0.036 0.052 1.50E-31 - 
rs555045010 AST TMEM236 0.023 0.018 0.028 0.041 0.03 0.051 7.23E-27 - 
rs1260326 AST GCKR -0.026 -0.033 -0.018 -0.038 -0.045 -0.031 6.97E-23 4.24E-21 
rs2954038 AST TRIB1 -0.019 -0.028 -0.009 -0.033 -0.042 -0.024 1.14E-15 6.19E-10 
rs4979371 AST AKNA -0.012 -0.018 -0.006 -0.028 -0.035 -0.021 4.51E-15 1.23E-08 
rs7682289 AST ZNF827 0.016 0.011 0.022 0.042 0.026 0.059 1.76E-13 1.44E-07 
rs754465 AST DLG5 0.012 0.005 0.018 0.026 0.019 0.033 5.37E-13 5.91E-07 
rs4245267 AST NEDD4L -0.031 -0.044 -0.018 -0.04 -0.052 -0.027 6.83E-11 7.80E-06 
rs2126259 AST PPP1R3B -0.004 -0.029 0.022 -0.025 -0.049 0 1.40E-10 3.27E-04 
rs429358 AST APOE -0.018 -0.023 -0.013 -0.017 -0.032 -0.002 2.76E-10 6.99E-09 
rs2701175 AST HNF1A -0.016 -0.024 -0.008 -0.026 -0.034 -0.018 4.41E-10 2.49E-04 
rs10787429 AST GPAM -0.009 -0.019 0.001 -0.023 -0.033 -0.014 7.07E-10 2.82E-05 
rs77924615 Creatinine PDILT -0.007 -0.009 -0.005 -0.014 -0.018 -0.01 1.23E-20 6.10E-03 
rs1288775 Creatinine GATM 0.005 0.004 0.007 0.01 0.006 0.013 1.08E-12 - 
rs10254101 Creatinine PRKAG2 0.005 0.003 0.006 0.01 0.006 0.013 1.40E-11 - 
rs429358 CRP APOE -0.057 -0.06 -0.054 -0.095 -0.099 -0.09 6.72E-307 - 
rs7553007 CRP CRP -0.039 -0.042 -0.036 -0.07 -0.074 -0.066 5.19E-207 7.56E-03 
rs7310409 CRP HNF1A 0.034 0.03 0.038 0.071 0.065 0.076 2.36E-206 - 
rs61812598 CRP IL6R -0.021 -0.025 -0.018 -0.046 -0.05 -0.042 2.04E-85 - 
rs17616063 CRP SALL1 -0.032 -0.036 -0.028 -0.069 -0.08 -0.059 4.61E-57 - 
rs13409371 CRP IL1F10 0.014 0.01 0.017 0.041 0.035 0.046 3.87E-56 1.80E-10 
rs1260326 CRP GCKR -0.02 -0.025 -0.015 -0.038 -0.043 -0.033 3.45E-55 - 
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rs111307268 CRP NLRP3 0.011 0.008 0.015 0.027 0.021 0.032 4.79E-27 1.70E-06 
rs2972558 CRP PVRL2 -0.014 -0.02 -0.009 -0.026 -0.031 -0.021 2.36E-24 - 
rs7012637 CRP PPP1R3B 0.007 0.003 0.011 0.023 0.018 0.028 1.83E-22 - 
rs2836883 CRP PSMG1 -0.015 -0.018 -0.012 -0.019 -0.025 -0.013 4.36E-21 1.37E-05 
rs3811452 CRP ATP8B2 -0.013 -0.017 -0.01 -0.035 -0.043 -0.026 3.49E-20 - 
rs4655537 CRP LEPR -0.011 -0.016 -0.006 -0.022 -0.027 -0.018 1.26E-19 6.41E-70 
rs2246941 CRP LIPA 0.011 0.008 0.014 0.021 0.015 0.027 2.13E-17 4.37E-08 
rs11868378 CRP SOCS3 0.002 -0.008 0.011 -0.012 -0.021 -0.004 3.04E-14 - 
rs1037171 CRP RAB37|CD300LF 0.01 0.004 0.016 0.02 0.014 0.026 2.63E-13 - 
rs2269434 CRP MYBPC3 -0.012 -0.015 -0.008 -0.015 -0.02 -0.01 2.94E-13 - 
rs56189574 CRP MS4A6A -0.008 -0.012 -0.004 -0.018 -0.022 -0.013 5.94E-13 - 
rs3027063 CRP DARC 0.011 0.007 0.014 0.016 0.01 0.021 1.93E-12 1.76E-03 
rs2393794 CRP SPPL3 0.011 0.008 0.015 0.021 0.011 0.031 2.28E-12 - 
rs728538 CRP SALL1 0.009 0.005 0.013 0.031 0.019 0.042 3.13E-12 - 
rs2700938 CRP EEPD1 0.008 0.005 0.012 0.017 0.012 0.022 1.10E-11 - 
rs72959041 CRP RSPO3 -0.018 -0.023 -0.013 -0.035 -0.061 -0.009 1.28E-11 - 
rs11983782 CRP TOMM7 -0.008 -0.012 -0.005 -0.016 -0.02 -0.012 2.96E-11 - 
rs61781391 CRP HEYL 0.011 0.008 0.015 0.015 0.007 0.023 2.97E-11 - 
rs7828742 CRP TRPS1 0.011 0.006 0.015 0.017 0.012 0.021 6.15E-11 - 
rs2283371 CRP RGS6 0.008 0.004 0.011 0.018 0.012 0.023 7.19E-11 - 
rs2280406 CRP MST1R 0.007 0.003 0.011 0.015 0.011 0.02 3.00E-10 - 
rs340005 CRP RORA 0.009 0.004 0.014 0.016 0.011 0.021 4.02E-10 - 
rs10783792 CRP RBMS2 0.004 -0.006 0.013 0.015 0.005 0.025 6.92E-10 - 
rs75777234 CRP PRKG1 0.01 0.004 0.015 0.092 0.043 0.14 1.17E-09 5.73E-04 
rs10410651 CRP PVR 0.007 0.004 0.011 0.019 0.012 0.026 1.25E-09 - 
rs11668719 CRP LRRC25 0.005 0.001 0.009 0.015 0.01 0.02 1.31E-09 - 
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rs11145763 CRP CARD9 0.008 0.004 0.011 0.015 0.01 0.02 1.60E-09 1.33E-03 
rs67567111 Cystatin C CST3 -0.004 -0.005 -0.004 -0.007 -0.007 -0.006 2.84E-68 - 
rs77924615 Cystatin C PDILT -0.004 -0.004 -0.003 -0.005 -0.007 -0.004 2.49E-20 6.72E-05 
rs73102387 Cystatin C CST3 0.002 0.002 0.003 0.005 0.002 0.007 3.33E-10 - 
rs7310615 Cystatin C SH2B3 -0.002 -0.003 -0.001 -0.003 -0.004 -0.003 1.03E-09 - 
rs62192912 Direct BR ATG16L1 -0.189 -0.199 -0.18 -0.298 -0.311 -0.285 0 1.00E-300 
rs2741047 Direct BR UGT1A8|UGT1A10|UGT1A9 0.133 0.124 0.141 0.697 0.682 0.712 0 3.27E-19 
rs6712540 Direct BR TRPM8 -0.13 -0.14 -0.12 -0.186 -0.22 -0.151 1.68E-113 9.48E-70 
rs11045864 Direct BR SLCO1B1 0.083 0.072 0.094 0.185 0.151 0.22 1.87E-74 3.25E-20 
rs474242 Direct BR MROH2A -0.059 -0.07 -0.048 -0.105 -0.118 -0.092 1.93E-52 2.04E-34 
rs9750891 Direct BR INPP5D 0.089 0.072 0.107 0.236 0.124 0.348 5.46E-32 7.25E-27 
rs76820150 Direct BR SLCO1C1 -0.053 -0.068 -0.038 -0.082 -0.096 -0.067 1.01E-26 7.11E-07 
rs10761737 Direct BR JMJD1C -0.025 -0.036 -0.014 -0.066 -0.079 -0.053 2.24E-19 3.21E-11 
rs1070232 Direct BR STAG1 -0.019 -0.039 0.001 -0.056 -0.075 -0.036 1.55E-15 1.23E-07 
rs10774624 Direct BR SH2B3 -0.036 -0.048 -0.024 -0.055 -0.069 -0.042 6.15E-15 3.73E-05 
rs2068888 Direct BR CYP26A1 0.033 0.022 0.044 0.052 0.038 0.066 2.20E-14 1.79E-05 
rs80284120 Direct BR NGEF -0.035 -0.045 -0.024 -0.05 -0.075 -0.026 6.62E-12 4.95E-09 
rs450244 Direct BR SLC22A18 -0.158 -0.217 -0.098 -0.18 -0.237 -0.122 2.30E-11 8.16E-06 
rs113041162 Direct BR HK1 0.03 0.019 0.041 0.077 0.041 0.113 1.12E-10 4.29E-05 
rs7412 Direct BR APOE 0.038 0.025 0.052 0.107 0.039 0.174 7.93E-10 2.49E-07 
rs6479336 Direct BR AUH 0.028 0.017 0.038 0.059 0.031 0.088 1.46E-09 1.28E-05 
rs2006227 GGT SNRPD3|GGT1 0.035 0.032 0.038 0.08 0.074 0.087 1.34E-283 4.83E-58 
rs4835265 GGT ZNF827 0.039 0.035 0.042 0.085 0.071 0.099 5.94E-169 7.53E-107 
rs4503880 GGT NEDD4L -0.047 -0.056 -0.038 -0.074 -0.082 -0.067 5.92E-129 6.48E-85 
rs1497406 GGT ARHGEF19 0.02 0.016 0.023 0.046 0.042 0.05 4.20E-124 3.41E-72 
rs11624282 GGT EXOC3L4 0.031 0.028 0.034 0.047 0.04 0.054 5.87E-124 5.29E-42 
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rs754466 GGT DLG5 0.02 0.017 0.023 0.06 0.052 0.068 1.10E-103 1.92E-82 
rs10075805 GGT CDH6 -0.025 -0.028 -0.022 -0.035 -0.04 -0.031 5.32E-86 1.05E-69 
rs10908456 GGT EFNA1 -0.02 -0.023 -0.016 -0.036 -0.039 -0.033 4.91E-76 3.67E-50 
rs28650012 GGT DYNLRB2 -0.021 -0.027 -0.015 -0.036 -0.041 -0.031 1.29E-49 4.89E-34 
rs35645198 GGT MICAL3 -0.017 -0.02 -0.014 -0.03 -0.034 -0.025 5.80E-47 3.00E-20 
rs7310409 GGT HNF1A 0.015 0.011 0.018 0.029 0.025 0.033 1.30E-46 - 
rs339969 GGT RORA 0.012 0.008 0.016 0.027 0.023 0.032 5.18E-44 2.26E-14 
rs12190285 GGT SOX4 -0.013 -0.016 -0.011 -0.028 -0.032 -0.023 3.59E-37 5.70E-23 
rs1260326 GGT GCKR -0.01 -0.014 -0.006 -0.023 -0.027 -0.019 5.85E-33 2.96E-12 
rs6879279 GGT EFNA5 -0.017 -0.019 -0.014 -0.028 -0.035 -0.021 1.48E-32 5.19E-23 
rs601338 GGT FUT2 0.006 0.002 0.009 0.022 0.018 0.026 6.73E-31 1.17E-15 
rs28601761 GGT TRIB1 -0.012 -0.015 -0.009 -0.022 -0.026 -0.019 3.26E-29 1.04E-10 
rs9913936 GGT SOX9 0.008 0.004 0.013 0.022 0.017 0.026 7.57E-29 7.66E-29 
rs35596292 GGT MYO1B 0.013 0.01 0.016 0.023 0.017 0.028 2.74E-28 3.63E-17 
rs3811468 GGT LPHN2 -0.011 -0.014 -0.008 -0.025 -0.03 -0.02 1.15E-26 6.29E-24 
rs7780562 GGT NFE2L3 0.005 -0.002 0.011 0.019 0.012 0.026 5.08E-25 1.38E-14 
rs1778793 GGT PDX1 -0.01 -0.014 -0.007 -0.02 -0.024 -0.017 1.15E-23 2.20E-21 
rs5402 GGT SLC2A2 0.017 0.013 0.02 0.021 0.008 0.034 2.74E-23 2.11E-07 
rs4795218 GGT HNF1B 0.01 0.007 0.013 0.029 0.021 0.037 9.17E-23 1.80E-13 
rs4074793 GGT ITGA1 0.018 0.014 0.023 0.054 0.029 0.078 1.01E-22 2.49E-09 
rs900776 GGT DMTN 0.013 0.01 0.016 0.025 0.016 0.034 2.27E-21 1.69E-12 
rs7247349 GGT PEPD -0.009 -0.013 -0.006 -0.019 -0.022 -0.015 6.42E-21 5.08E-11 
rs10424333 GGT RHPN2 0.016 0.012 0.02 0.036 0.017 0.055 2.72E-19 1.32E-08 
rs33951980 GGT MLXIPL -0.012 -0.015 -0.009 -0.028 -0.036 -0.02 3.64E-19 5.09E-04 
rs62375243 GGT HSPA4 -0.008 -0.011 -0.006 -0.022 -0.026 -0.017 3.33E-18 5.17E-09 
rs115478735 GGT SURF6 0.013 0.01 0.016 0.013 0.005 0.022 5.10E-18 - 
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rs7551732 GGT PKN2 0.01 0.007 0.014 0.018 0.014 0.022 7.64E-18 5.97E-10 
rs35149321 GGT CD276 0.008 0.005 0.011 0.017 0.013 0.021 1.84E-17 6.92E-07 
rs17358295 GGT EHF -0.014 -0.017 -0.011 -0.025 -0.036 -0.015 2.26E-17 9.76E-11 
rs12979186 GGT MAP1S 0.008 0.004 0.011 0.017 0.013 0.021 2.60E-17 2.61E-12 
rs2641352 GGT ADAM30 0.011 0.007 0.014 0.046 0.029 0.064 3.93E-17 3.74E-11 
rs4973550 GGT EFHD1 0.011 0.007 0.015 0.018 0.013 0.022 7.91E-17 1.54E-15 
rs4822983 GGT CHEK2 -0.01 -0.013 -0.007 -0.016 -0.02 -0.012 1.94E-16 2.10E-08 
rs6855886 GGT KLB -0.009 -0.012 -0.006 -0.017 -0.021 -0.013 2.27E-16 5.06E-07 
rs1649079 GGT BICC1 -0.009 -0.012 -0.005 -0.017 -0.02 -0.013 2.88E-16 2.20E-11 
rs7314285 GGT CUX2 0.017 0.013 0.022 0.025 0.001 0.048 7.48E-16 8.28E-09 
rs4921915 GGT NAT2 -0.011 -0.018 -0.004 -0.021 -0.027 -0.014 1.18E-15 1.70E-12 
rs4242221 GGT TENM2 -0.01 -0.016 -0.005 -0.019 -0.024 -0.014 1.31E-15 3.06E-07 
rs625899 GGT MLIP -0.012 -0.017 -0.007 -0.019 -0.024 -0.014 1.63E-15 2.17E-10 
rs3861491 GGT C14orf182 0.005 0.001 0.009 0.015 0.011 0.02 2.06E-15 1.50E-10 
rs72655725 GGT COL4A1 -0.01 -0.012 -0.007 -0.02 -0.026 -0.014 3.08E-15 1.68E-07 
rs11022131 GGT DKK3 -0.007 -0.01 -0.004 -0.02 -0.025 -0.015 3.80E-15 1.35E-07 
rs93075 GGT SEPT9 0.013 0.008 0.017 0.019 0.014 0.024 5.71E-15 9.12E-06 
rs10994838 GGT A1CF 0.007 0.004 0.01 0.017 0.012 0.021 5.85E-15 2.55E-09 
rs17145884 GGT AHNAK -0.01 -0.013 -0.007 -0.021 -0.028 -0.014 1.28E-14 2.13E-05 
rs10936201 GGT SMC4 0.007 0.004 0.01 0.02 0.014 0.027 2.71E-14 9.31E-09 
rs2904889 GGT NDUFAF6|TP53INP1 0.009 0.006 0.012 0.026 0.016 0.036 3.43E-14 3.25E-11 
rs9456946 GGT SYNJ2 0.009 0.006 0.012 0.019 0.012 0.026 6.18E-14 4.31E-06 
rs72840109 GGT DNMBP -0.016 -0.02 -0.012 -0.036 -0.054 -0.018 6.44E-14 1.28E-07 
rs77666400 GGT S1PR1 0.008 0.005 0.011 0.019 0.013 0.025 6.61E-14 3.22E-07 
rs4850046 GGT RPS7 -0.028 -0.04 -0.016 -0.036 -0.048 -0.025 6.67E-14 5.15E-06 
rs62030794 GGT TMEM8A 0.016 0.011 0.02 0.027 0.003 0.051 1.92E-13 6.91E-11 
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rs55931203 GGT BPTF 0.011 0.008 0.014 0.012 0.005 0.02 2.48E-13 9.79E-08 
rs10104003 GGT SOX17 0.007 0.004 0.01 0.023 0.015 0.03 4.33E-13 2.29E-06 
rs123698 GGT PTBP1 0.009 0.005 0.013 0.015 0.011 0.019 4.83E-13 7.26E-11 
rs13026184 GGT SERTAD2 -0.008 -0.011 -0.005 -0.017 -0.022 -0.012 5.14E-13 1.86E-08 
rs73220641 GGT KLF5 -0.01 -0.013 -0.008 -0.011 -0.015 -0.006 7.14E-13 1.99E-08 
rs12928392 GGT MMP15 -0.009 -0.012 -0.006 -0.016 -0.022 -0.011 7.60E-13 2.08E-05 
rs2024924 GGT MACROD2 0.007 0.002 0.011 0.015 0.01 0.02 9.49E-13 5.45E-08 
rs636672 GGT TENM4 0.009 0.006 0.012 0.013 0.008 0.018 1.69E-12 1.52E-10 
rs11114042 GGT CORO1C -0.006 -0.009 -0.003 -0.015 -0.018 -0.011 1.79E-12 3.56E-08 
rs5757252 GGT GTPBP1 0.007 0.004 0.01 0.016 0.011 0.02 2.31E-12 1.02E-06 
rs909537 GGT ASAP3 0.01 -0.003 0.022 0.021 0.008 0.034 2.56E-12 1.67E-07 
rs11644920 GGT LITAF 0.007 0.004 0.01 0.016 0.011 0.021 3.72E-12 4.54E-04 
rs7260785 GGT DDRGK1 0.008 0.005 0.011 0.023 0.014 0.033 4.06E-12 2.34E-08 
rs4816700 GGT DSCAM -0.01 -0.012 -0.007 -0.012 -0.017 -0.006 4.11E-12 9.20E-08 
rs38849 GGT MET -0.007 -0.013 -0.001 -0.016 -0.021 -0.01 1.07E-11 1.70E-03 
rs62241682 GGT RBMS3 0.008 0.005 0.011 0.016 0.01 0.022 1.28E-11 1.74E-06 
rs10450314 GGT PARD3 -0.009 -0.011 -0.006 -0.013 -0.018 -0.008 1.49E-11 2.68E-06 
rs13089831 GGT TM4SF4 0.005 -0.001 0.012 0.014 0.008 0.021 1.54E-11 1.08E-09 
rs11709077 GGT PPARG -0.009 -0.013 -0.006 -0.024 -0.033 -0.015 2.21E-11 1.17E-06 
rs67588707 GGT SLCO1B3|SLCO1B7 0.01 0.007 0.013 0.02 0.009 0.031 2.71E-11 1.32E-05 
rs56013261 GGT SETD2 -0.006 -0.009 -0.003 -0.014 -0.018 -0.01 2.95E-11 1.05E-05 
rs273506 GGT MAST3 0.006 0.003 0.009 0.014 0.01 0.018 4.36E-11 9.26E-04 
rs11635675 GGT USP3 0.006 0.003 0.009 0.015 0.01 0.02 5.24E-11 2.24E-07 
rs9980195 GGT PTTG1IP -0.007 -0.011 -0.004 -0.013 -0.017 -0.01 6.37E-11 2.07E-08 
rs11543269 GGT ATP8B1 -0.011 -0.014 -0.008 -0.013 -0.023 -0.002 8.93E-11 7.82E-06 
rs6072249 GGT TOP1 0.006 0.003 0.01 0.013 0.009 0.017 9.46E-11 - 
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rs112375685 GGT LPP 0.008 0.004 0.011 0.013 0.009 0.017 1.02E-10 6.21E-06 
rs9379084 GGT RREB1 0.012 0.008 0.015 0.009 -0.002 0.021 1.08E-10 6.37E-08 
rs11753995 GGT SLC22A1 -0.007 -0.01 -0.005 -0.02 -0.027 -0.014 1.18E-10 2.78E-04 
rs73620883 GGT TBC1D13 -0.01 -0.013 -0.007 -0.014 -0.024 -0.004 2.12E-10 2.27E-04 
rs530939 GGT TENM4 -0.008 -0.012 -0.004 -0.014 -0.018 -0.01 2.47E-10 9.71E-08 
rs2811290 GGT C1orf220 -0.004 -0.007 0 -0.013 -0.016 -0.009 2.59E-10 3.98E-05 
rs11114664 GGT ACSS3 -0.006 -0.012 -0.001 -0.014 -0.019 -0.009 2.59E-10 7.34E-05 
rs2941465 GGT HNF4G -0.005 -0.009 -0.002 -0.013 -0.017 -0.009 4.02E-10 8.83E-06 
rs13112099 GGT UGT2B15 -0.007 -0.011 -0.004 -0.013 -0.016 -0.009 4.34E-10 6.48E-03 
rs2059988 GGT TM4SF1 0.004 0 0.009 0.012 0.007 0.017 4.46E-10 3.59E-08 
rs12243124 GGT FFAR4 -0.008 -0.011 -0.006 -0.013 -0.019 -0.007 5.74E-10 1.49E-06 
rs3102990 GGT EZR -0.007 -0.011 -0.003 -0.013 -0.017 -0.009 6.19E-10 3.65E-05 
rs34346558 GGT PROSER2 0.009 0.006 0.012 0.012 0.005 0.019 1.02E-09 1.12E-04 
rs114484444 GGT TNFSF10 0.016 0.01 0.021 0.013 -0.015 0.041 1.14E-09 4.28E-06 
rs2981451 GGT FGFR2 -0.008 -0.012 -0.005 -0.012 -0.016 -0.008 1.20E-09 3.88E-05 
rs112038040 GGT ARIH1 0.004 0 0.008 0.012 0.007 0.016 1.25E-09 5.88E-04 
rs12480190 GGT ZBTB46 0.009 0.006 0.012 0.022 0.009 0.034 1.58E-09 1.43E-05 
rs4911256 GGT DNMT3B 0.007 0.004 0.011 0.012 0.008 0.016 1.62E-09 7.80E-06 
rs35198068 Glucose TCF7L2 0.015 0.012 0.017 0.035 0.03 0.04 3.36E-81 1.54E-17 
rs7756992 Glucose CDKAL1 0.006 0.004 0.008 0.021 0.016 0.027 2.88E-23 2.36E-09 
rs11187138 Glucose HHEX -0.006 -0.009 -0.004 -0.013 -0.016 -0.01 5.79E-17 6.23E-10 
rs7928810 Glucose NCR3LG1 -0.009 -0.012 -0.006 -0.014 -0.017 -0.011 7.38E-17 8.82E-11 
rs77684335 Glucose GPSM1 0.009 0.005 0.012 0.015 0.011 0.018 2.63E-16 1.21E-09 
rs11558471 Glucose SLC30A8 -0.007 -0.009 -0.005 -0.013 -0.016 -0.01 4.99E-16 6.20E-03 
rs113042771 Glucose DGKB 0.005 0.003 0.008 0.011 0.008 0.014 1.17E-13 3.45E-03 
rs35658696 Glucose PAM 0.011 0.007 0.015 0.051 0.014 0.088 1.18E-12 2.66E-06 
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rs10811660 Glucose CDKN2B -0.008 -0.01 -0.006 -0.01 -0.015 -0.005 1.69E-12 4.69E-03 
rs11651755 Glucose HNF1B -0.007 -0.01 -0.005 -0.011 -0.013 -0.008 3.09E-12 - 
rs2237895 Glucose KCNQ1 0.005 0.003 0.008 0.01 0.007 0.013 4.32E-11 1.83E-03 
rs74889068 Glucose QPCTL 0.006 0.003 0.008 0.021 0.012 0.031 7.25E-11 9.63E-10 
rs2396316 Glucose IRS1 0.008 0.005 0.011 0.011 0.008 0.014 7.71E-11 7.80E-05 
rs9859406 Glucose IGF2BP2 0.006 0.003 0.008 0.011 0.007 0.015 1.13E-10 3.79E-03 
rs11603349 Glucose ARAP1 -0.007 -0.009 -0.005 -0.012 -0.018 -0.007 2.57E-10 2.88E-03 
rs491443 Glucose SPC25 -0.005 -0.007 -0.002 -0.01 -0.012 -0.007 4.83E-10 2.54E-20 
rs849138 Glucose JAZF1 -0.005 -0.008 -0.003 -0.01 -0.012 -0.007 6.56E-10 - 
rs4234731 Glucose WFS1 0.003 0 0.006 0.009 0.006 0.012 6.86E-10 7.99E-03 
rs7903146 HbA1C TCF7L2 0.02 0.017 0.022 0.048 0.042 0.054 4.00E-107 2.42E-17 
rs9368222 HbA1C CDKAL1 0.005 0.003 0.008 0.023 0.017 0.029 1.35E-18 8.56E-05 
rs5015480 HbA1C HHEX -0.006 -0.009 -0.004 -0.015 -0.018 -0.012 1.28E-16 6.22E-06 
rs1421085 HbA1C FTO 0.007 0.004 0.01 0.015 0.011 0.019 1.50E-15 - 
rs10823346 HbA1C HK1 0.005 0.002 0.007 0.021 0.015 0.027 2.45E-15 1.27E-73 
rs1470580 HbA1C IGF2BP2 0.007 0.005 0.01 0.016 0.011 0.02 3.99E-15 - 
rs10965250 HbA1C CDKN2B -0.009 -0.012 -0.007 -0.013 -0.019 -0.007 7.98E-13 - 
rs11263763 HbA1C HNF1B -0.008 -0.011 -0.005 -0.013 -0.016 -0.009 3.68E-12 - 
rs703978 HbA1C ZMIZ1 -0.008 -0.012 -0.005 -0.013 -0.017 -0.01 7.68E-12 4.44E-03 
rs849134 HbA1C JAZF1 -0.009 -0.011 -0.006 -0.012 -0.015 -0.008 2.50E-11 - 
rs881796 HbA1C WFS1 0.003 -0.001 0.006 0.011 0.007 0.014 9.25E-11 - 
rs5398 HbA1C SLC2A2 -0.005 -0.008 -0.003 -0.013 -0.017 -0.009 3.62E-10 - 
rs2972144 HbA1C IRS1 0.005 0.002 0.009 0.012 0.008 0.015 4.97E-10 4.03E-04 
rs7895525 HbA1C CDC123 0.007 0.004 0.01 0.012 0.006 0.018 6.52E-10 - 
rs72964564 HbA1C ADCY5 -0.006 -0.009 -0.004 -0.013 -0.017 -0.008 6.59E-10 2.50E-03 
rs74567345 HbA1C PAM 0.013 0.008 0.017 0.03 0 0.06 9.48E-10 - 
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rs35859536 HbA1C SLC30A8 -0.004 -0.007 -0.002 -0.013 -0.017 -0.009 1.24E-09 - 
rs247616 HDL CETP 0.085 0.076 0.093 0.214 0.198 0.231 6.98E-217 8.69E-06 
rs1077835 HDL ALDH1A2|LIPC 0.047 0.038 0.056 0.141 0.118 0.163 1.21E-55 9.44E-04 
rs2740488 HDL ABCA1 -0.054 -0.063 -0.046 -0.092 -0.108 -0.077 1.80E-48 5.33E-13 
rs1065853 HDL APOE 0.081 0.068 0.094 0.15 0.087 0.212 1.16E-44 2.44E-22 
rs112180569 HDL PCIF1 -0.053 -0.061 -0.044 -0.101 -0.121 -0.081 5.21E-41 2.89E-14 
rs2043085 HDL ALDH1A2 -0.039 -0.052 -0.027 -0.068 -0.08 -0.055 2.25E-25 - 
rs1943973 HDL LIPG 0.041 0.014 0.069 0.086 0.058 0.113 3.19E-25 2.70E-03 
rs4922118 HDL LPL 0.025 0.016 0.034 0.059 0.046 0.071 1.11E-20 - 
rs174560 HDL FADS2|FADS1 -0.019 -0.028 -0.011 -0.065 -0.079 -0.052 7.27E-19 - 
rs10779836 HDL GALNT2 0.046 0.025 0.067 0.076 0.056 0.097 1.23E-18 - 
rs686030 HDL TTC39B 0.012 -0.017 0.041 0.052 0.022 0.081 2.24E-16 5.70E-07 
rs11789603 HDL ABCA1 0.04 0.029 0.051 0.096 0.052 0.14 2.41E-16 - 
rs1132899 HDL APOC4|APOC4-APOC2 0.021 0.011 0.031 0.05 0.038 0.062 6.70E-16 7.16E-04 
rs13338063 HDL NUP93 0.028 0.019 0.038 0.048 0.035 0.06 3.45E-15 - 
rs964184 HDL APOA5 0.039 0.009 0.069 0.073 0.043 0.103 1.47E-14 - 
rs6544366 HDL APOB 0.029 0.02 0.038 0.05 0.03 0.07 6.77E-13 - 
rs2954031 HDL TRIB1 0.016 0.006 0.025 0.045 0.033 0.058 1.22E-12 1.54E-03 
rs7105282 HDL NUP160 -0.02 -0.029 -0.011 -0.048 -0.061 -0.035 3.18E-12 - 
rs4490856 HDL LPL 0.02 0.009 0.031 0.043 0.03 0.055 1.05E-11 - 
rs13107325 HDL SLC39A8 -0.035 -0.046 -0.023 -0.098 -0.149 -0.047 2.81E-10 - 
rs112310696 HDL DUS2 0.031 0.021 0.042 0.042 0.008 0.077 1.45E-09 - 
rs344352 IGF-1 HAGH 0.056 0.037 0.075 0.094 0.075 0.113 1.91E-25 - 
rs700753 IGF-1 TNS3 0.046 0.03 0.063 0.084 0.067 0.101 1.16E-24 - 
rs1260326 IGF-1 GCKR 0.041 0.026 0.055 0.066 0.051 0.082 4.30E-16 - 
rs112166936 IGF-1 CENPW 0.018 0.006 0.03 0.051 0.035 0.066 2.02E-10 - 
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rs35766 IGF-1 IGF1 -0.032 -0.068 0.005 -0.065 -0.1 -0.031 9.51E-10 - 
rs1065853 LDL APOE -0.104 -0.111 -0.097 0.026 -0.015 0.068 9.75E-141 4.48E-254 
rs10402112 LDL LDLR -0.084 -0.091 -0.077 -0.151 -0.171 -0.13 4.68E-118 - 
rs12740374 LDL CELSR2 -0.05 -0.057 -0.043 -0.093 -0.107 -0.079 5.78E-64 - 
rs581411 LDL APOB 0.031 0.013 0.049 0.082 0.064 0.101 9.44E-53 2.98E-04 
rs28601761 LDL TRIB1 -0.036 -0.044 -0.029 -0.061 -0.07 -0.052 1.94E-37 - 
rs4299376 LDL ABCG8 -0.034 -0.046 -0.022 -0.059 -0.071 -0.048 2.30E-26 - 
rs964184 LDL APOA5 -0.034 -0.062 -0.005 -0.07 -0.097 -0.044 1.38E-22 - 
rs2738447 LDL LDLR 0.024 0.015 0.034 0.045 0.035 0.055 8.04E-19 - 
rs10045497 LDL HMGCR 0.017 0.009 0.024 0.047 0.036 0.058 8.38E-18 - 
rs1168114 LDL DOCK7 0.016 0.005 0.027 0.04 0.029 0.051 1.38E-15 - 
rs1535 LDL FADS2 -0.012 -0.019 -0.005 -0.044 -0.054 -0.033 1.60E-14 7.16E-03 
rs3208305 LDL LPL -0.022 -0.029 -0.015 -0.037 -0.049 -0.025 2.26E-13 - 
rs2495477 LDL PCSK9 -0.018 -0.026 -0.011 -0.035 -0.045 -0.025 7.26E-12 - 
rs4704727 LDL TIMD4 0.016 0.005 0.027 0.035 0.024 0.046 1.17E-11 - 
rs58542926 LDL TM6SF2 -0.032 -0.042 -0.023 -0.051 -0.091 -0.012 2.29E-11 3.49E-06 
rs406315 LDL PVRL2 -0.018 -0.028 -0.007 -0.035 -0.045 -0.024 5.31E-11 - 
rs113120414 LDL ABCA8 0.033 0.022 0.045 0.123 0.05 0.196 6.23E-11 - 
rs2000999 LDL TXNL4B|HPR 0.015 0.008 0.023 0.056 0.036 0.076 9.39E-11 - 
rs2618566 LDL SNX5 -0.009 -0.02 0.003 -0.03 -0.041 -0.019 9.56E-11 - 
rs532436 LDL SURF6 0.023 0.015 0.03 0.037 0.017 0.056 1.01E-10 2.48E-03 
rs2072183 LDL NPC1L1 0.015 0.008 0.022 0.049 0.032 0.066 1.06E-10 - 
rs7746081 LDL MYLIP -0.014 -0.021 -0.007 -0.037 -0.048 -0.025 7.73E-10 9.38E-03 
rs12209724 LipoA MAS1 0.26 0.244 0.275 0.516 0.468 0.564 0 3.23E-146 
rs688359 LipoA IGF2R -0.238 -0.258 -0.219 -0.513 -0.529 -0.497 0 1.62E-246 
rs402219 LipoA SLC22A3 -0.218 -0.23 -0.206 -0.426 -0.443 -0.408 0 1.43E-23 
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rs1247295 LipoA MAP3K4 -0.264 -0.278 -0.25 -0.489 -0.503 -0.475 0 - 
rs1247336 LipoA MAP3K4 0.123 0.11 0.137 0.255 0.225 0.284 1.85E-127 9.56E-99 
rs9458188 LipoA AGPAT4 -0.073 -0.097 -0.049 -0.159 -0.181 -0.136 2.52E-60 2.78E-37 
rs911844 LipoA SOD2 -0.05 -0.064 -0.037 -0.112 -0.13 -0.095 4.77E-34 5.83E-13 
rs687183 LipoA HS3ST3B1 -0.033 -0.046 -0.02 -0.064 -0.083 -0.045 2.82E-11 2.29E-04 
rs66987859 LipoA MTRNR2L12 0.049 0.033 0.065 0.051 -0.002 0.103 9.49E-10 2.48E-05 
rs1799941 SHBG SHBG 0.154 0.142 0.167 0.334 0.307 0.361 6.38E-240 - 
rs113056032 SHBG ZNF652 0.093 0.076 0.11 0.215 0.134 0.295 2.96E-34 - 
rs56332871 SHBG NR2F2 0.048 0.035 0.06 0.111 0.086 0.135 2.34E-26 - 
rs8067286 SHBG NPEPPS 0.037 0.023 0.051 0.081 0.064 0.098 1.48E-20 - 
rs10822145 SHBG JMJD1C 0.036 0.022 0.049 0.081 0.064 0.098 2.80E-20 - 
rs13108218 SHBG HGFAC -0.037 -0.055 -0.019 -0.081 -0.099 -0.063 3.67E-20 - 
rs13232861 SHBG BRI3|BAIAP2L1 0.016 -0.016 0.048 0.073 0.041 0.105 1.84E-19 - 
rs2537856 SHBG ZNF554 0.05 0.038 0.063 0.073 0.05 0.096 6.83E-19 - 
rs7979473 SHBG HNF1A 0.044 0.027 0.062 0.072 0.054 0.09 1.74E-14 - 
rs62062620 SHBG DNAH2 0.032 0.018 0.045 0.067 0.051 0.084 2.39E-14 - 
rs10864086 SHBG PROX1 -0.002 -0.027 0.024 -0.046 -0.07 -0.021 2.06E-12 - 
rs7149605 SHBG SERPINA1 0.049 0.033 0.065 0.122 0.047 0.196 2.87E-11 - 
rs61557287 SHBG ZBTB10 0.043 0.029 0.056 0.07 0.03 0.109 3.61E-11 - 
rs687339 SHBG MSL2 0.004 -0.023 0.032 -0.036 -0.063 -0.009 5.09E-10 - 
rs1065853 TC APOE -0.089 -0.096 -0.082 0.096 0.047 0.146 1.63E-114 7.51E-95 
rs73015020 TC LDLR -0.073 -0.08 -0.066 -0.125 -0.145 -0.105 2.83E-96 1.13E-03 
rs629301 TC CELSR2 0.035 0.021 0.049 0.079 0.064 0.094 7.07E-54 - 
rs28601761 TC TRIB1 -0.038 -0.045 -0.031 -0.062 -0.071 -0.053 1.16E-43 2.15E-03 
rs581411 TC APOB 0.024 0.007 0.041 0.068 0.051 0.086 1.28E-43 5.07E-05 
rs964184 TC APOA5 -0.054 -0.082 -0.027 -0.1 -0.125 -0.074 4.76E-40 1.17E-06 
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rs4299376 TC ABCG8 -0.026 -0.037 -0.015 -0.048 -0.058 -0.037 8.31E-20 - 
rs2131925 TC DOCK7 0.019 0.009 0.029 0.042 0.031 0.052 4.80E-18 - 
rs3208305 TC LPL -0.025 -0.031 -0.018 -0.041 -0.052 -0.03 8.73E-18 3.07E-07 
rs2569550 TC LDLR 0.024 0.015 0.033 0.04 0.031 0.05 3.09E-16 - 
rs58542926 TC TM6SF2 -0.032 -0.041 -0.024 -0.057 -0.094 -0.02 8.38E-13 1.68E-03 
rs10045497 TC HMGCR 0.011 0.004 0.018 0.037 0.027 0.047 2.31E-12 - 
rs1535 TC FADS2 -0.009 -0.016 -0.002 -0.037 -0.047 -0.028 7.37E-12 7.32E-04 
rs35853021 TC ALDH1A2 0.014 0.007 0.021 0.036 0.025 0.046 1.65E-11 - 
rs406315 TC PVRL2 -0.017 -0.027 -0.007 -0.033 -0.043 -0.023 3.58E-11 - 
rs140798831 TC APOB -0.017 -0.027 -0.006 -0.033 -0.043 -0.023 7.59E-11 - 
rs780093 TC GCKR -0.017 -0.026 -0.007 -0.032 -0.042 -0.023 8.92E-11 - 
rs2000999 TC TXNL4B|HPR 0.013 0.006 0.02 0.052 0.033 0.071 6.37E-10 - 
rs1799941 Testosterone SHBG 0.004 0.003 0.005 0.013 0.011 0.014 1.75E-98 - 
rs10822145 Testosterone JMJD1C 0.001 0.001 0.002 0.004 0.003 0.005 7.93E-21 - 
rs72798735 Testosterone YIPF4 0.003 0.002 0.004 0.008 0.001 0.015 1.52E-12 - 
rs964184 TG APOA5 -0.296 -0.34 -0.252 -0.511 -0.547 -0.476 0 7.96E-77 
rs17482753 TG LPL -0.145 -0.154 -0.137 -0.251 -0.275 -0.227 1.47E-221 8.10E-33 
rs1260326 TG GCKR -0.087 -0.099 -0.075 -0.168 -0.18 -0.157 8.58E-179 6.16E-38 
rs28601761 TG TRIB1 -0.081 -0.09 -0.072 -0.139 -0.15 -0.129 1.24E-137 9.16E-19 
rs438811 TG APOC1 0.079 0.071 0.088 0.173 0.152 0.194 1.89E-129 4.86E-26 
rs71556736 TG MLXIPL -0.089 -0.097 -0.08 -0.187 -0.209 -0.165 2.33E-107 1.67E-15 
rs6657050 TG DOCK7 -0.053 -0.061 -0.044 -0.121 -0.132 -0.11 3.50E-87 1.48E-11 
rs102275 TG TMEM258 0.046 0.038 0.055 0.106 0.092 0.12 2.77E-63 2.13E-21 
rs5112 TG APOC1 0.04 0.03 0.05 0.082 0.07 0.093 8.59E-45 2.05E-05 
rs58542926 TG TM6SF2 -0.073 -0.083 -0.063 -0.158 -0.195 -0.121 1.06E-44 1.26E-08 
rs998584 TG VEGFA 0.034 0.025 0.043 0.073 0.062 0.085 1.72E-36 5.18E-15 
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rs673548 TG APOB -0.044 -0.053 -0.036 -0.079 -0.097 -0.062 3.67E-33 - 
rs12443634 TG CMIP -0.031 -0.047 -0.015 -0.07 -0.085 -0.055 7.22E-30 9.56E-07 
rs2222018 TG IRS1 0.033 0.021 0.045 0.066 0.053 0.079 1.19E-27 - 
rs738408 TG PNPLA3 -0.028 -0.037 -0.02 -0.082 -0.099 -0.066 1.06E-23 2.57E-22 
rs34282904 TG KLF14 -0.023 -0.032 -0.013 -0.056 -0.067 -0.045 3.27E-22 3.30E-03 
rs632057 TG CITED2 -0.028 -0.04 -0.015 -0.056 -0.068 -0.044 2.17E-20 1.70E-06 
rs4846914 TG GALNT2 -0.032 -0.044 -0.02 -0.056 -0.067 -0.044 3.34E-19 - 
rs13389219 TG COBLL1 -0.025 -0.034 -0.017 -0.053 -0.065 -0.042 8.52E-19 - 
rs6073958 TG PLTP 0.034 0.026 0.043 0.06 0.038 0.082 1.06E-18 - 
rs948690 TG BUD13 -0.021 -0.03 -0.013 -0.056 -0.069 -0.044 7.58E-18 1.30E-05 
rs1390357 TG NAT2 -0.027 -0.057 0.003 -0.064 -0.092 -0.036 9.40E-18 3.61E-04 
rs7005978 TG UBXN2B -0.033 -0.047 -0.02 -0.056 -0.069 -0.043 4.56E-17 7.26E-03 
rs2068888 TG CYP26A1 -0.025 -0.034 -0.016 -0.047 -0.058 -0.036 1.73E-15 4.02E-03 
rs55829990 TG USP3 0.024 0.016 0.033 0.05 0.037 0.064 1.73E-15 3.97E-04 
rs851057 TG SOST -0.023 -0.057 0.011 -0.059 -0.091 -0.028 4.09E-15 2.66E-04 
rs11134475 TG TIMD4 0.03 0.018 0.042 0.049 0.037 0.062 1.36E-14 - 
rs3775228 TG AFF1 0.018 0.009 0.027 0.048 0.036 0.061 1.41E-14 - 
rs40270 TG ANKRD55 0.036 0.018 0.054 0.06 0.042 0.077 2.36E-14 2.52E-03 
rs2945247 TG ZNF705B -0.017 -0.026 -0.008 -0.045 -0.056 -0.034 3.43E-14 9.22E-04 
rs7924036 TG JMJD1C -0.02 -0.03 -0.011 -0.045 -0.056 -0.034 4.17E-14 - 
rs78058190 TG PRKAG3 0.055 0.04 0.07 0.078 -0.016 0.172 8.05E-14 - 
rs1045242 TG TNFAIP8 -0.028 -0.036 -0.019 -0.044 -0.058 -0.029 8.74E-14 1.32E-06 
rs9757777 TG STAG1 0.03 0.014 0.045 0.052 0.036 0.067 1.99E-13 1.00E-03 
rs12928099 TG PDXDC1 -0.021 -0.029 -0.013 -0.05 -0.064 -0.037 2.59E-13 - 
rs4821767 TG TMEM184B 0.029 0.018 0.039 0.042 0.031 0.054 1.43E-12 - 
rs114484444 TG TNFSF10 0.047 0.033 0.062 0.117 0.02 0.215 2.39E-12 2.73E-03 
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rs7826687 TG TRIB1 0.022 0.013 0.03 0.048 0.033 0.064 2.66E-12 - 
rs11751347 TG LPA 0.035 0.024 0.045 0.065 0.023 0.106 5.21E-12 - 
rs4784741 TG CETP -0.019 -0.028 -0.01 -0.041 -0.052 -0.03 1.27E-11 - 
rs4722551 TG NFE2L3 -0.026 -0.035 -0.018 -0.058 -0.081 -0.035 1.32E-11 - 
rs2902745 TG ZNF579 0.028 0.018 0.038 0.082 0.043 0.121 1.85E-11 3.28E-03 
rs34682685 TG TXNL4B|HPR 0.021 0.01 0.031 0.117 0.072 0.161 4.74E-11 - 
rs1417066 TG SLC30A10 0.016 0.005 0.026 0.038 0.027 0.05 5.69E-11 1.68E-04 
rs13179413 TG MAP3K1 0.02 0.012 0.028 0.046 0.03 0.062 6.33E-11 2.21E-03 
rs141783576 TG RSPO3 0.036 0.024 0.048 0.095 0.032 0.158 8.97E-11 2.01E-03 
rs62020701 TG UBR1 0.036 0.025 0.047 0.02 -0.02 0.061 1.37E-10 2.83E-04 
rs13108218 TG HGFAC -0.024 -0.036 -0.012 -0.041 -0.053 -0.029 1.58E-10 - 
rs1178982 TG FZD9 -0.037 -0.048 -0.026 -0.038 -0.088 0.013 4.76E-10 - 
rs9817452 TG LEKR1 -0.018 -0.027 -0.009 -0.039 -0.05 -0.027 5.17E-10 8.72E-03 
rs28446899 TG EYA1 0.032 0.021 0.044 0.093 0.034 0.152 1.03E-09 - 
rs2908806 TG TP53 -0.036 -0.062 -0.01 -0.059 -0.084 -0.033 1.05E-09 - 
rs12808829 TG EML3 0.021 0.013 0.03 0.036 0.023 0.048 1.24E-09 6.13E-04 
rs62192912 Total BR ATG16L1 -0.233 -0.242 -0.223 -0.357 -0.369 -0.344 0 3.76E-03 
rs2741047 Total BR UGT1A8|UGT1A10|UGT1A9 0.14 0.133 0.147 0.841 0.826 0.856 0 8.11E-32 
rs6712540 Total BR TRPM8 -0.145 -0.155 -0.134 -0.212 -0.246 -0.179 3.07E-136 1.34E-73 
rs11045864 Total BR SLCO1B1 0.085 0.073 0.096 0.161 0.125 0.196 1.52E-64 1.12E-04 
rs474242 Total BR MROH2A -0.067 -0.078 -0.056 -0.113 -0.126 -0.1 7.67E-59 7.70E-39 
rs9750891 Total BR INPP5D 0.11 0.093 0.128 0.29 0.168 0.411 1.93E-45 9.44E-25 
rs9414801 Total BR JMJD1C 0.038 0.026 0.051 0.07 0.056 0.084 3.43E-22 6.30E-12 
rs76820150 Total BR SLCO1C1 -0.044 -0.059 -0.029 -0.072 -0.087 -0.057 4.16E-20 - 
rs450244 Total BR SLC22A18 -0.194 -0.261 -0.128 -0.224 -0.289 -0.159 3.18E-16 4.68E-05 
rs687339 Total BR MSL2 -0.009 -0.033 0.015 -0.047 -0.07 -0.025 7.31E-14 1.91E-06 
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rs13031505 Total BR EFHD1 -0.02 -0.031 -0.01 -0.055 -0.069 -0.041 1.29E-12 1.08E-07 
rs10774624 Total BR SH2B3 -0.03 -0.042 -0.017 -0.05 -0.064 -0.037 9.43E-12 - 
rs2068888 Total BR CYP26A1 0.028 0.016 0.039 0.047 0.032 0.061 1.01E-10 - 
rs11635675 Total BR USP3 0.025 0.015 0.036 0.047 0.031 0.064 6.47E-10 1.57E-05 
rs6479336 Total BR AUH 0.026 0.016 0.037 0.068 0.039 0.097 9.27E-10 1.73E-04 
rs74904971 Urate ABCG2 0.053 0.046 0.06 0.11 0.082 0.138 1.45E-69 - 
rs938555 Urate SLC2A9 0.029 0.019 0.04 0.067 0.056 0.077 4.46E-65 - 
rs1260326 Urate GCKR -0.02 -0.027 -0.012 -0.036 -0.044 -0.028 2.82E-19 - 
rs4530622 Urate SLC2A9 -0.023 -0.028 -0.018 -0.032 -0.042 -0.021 3.03E-19 - 
rs12056034 Urate BAZ1B -0.018 -0.024 -0.012 -0.037 -0.056 -0.017 1.11E-09 - 
rs11956741 Urea PTGER4 -0.029 -0.035 -0.023 -0.053 -0.078 -0.029 7.10E-22 - 
rs9880162 Urea LPP -0.011 -0.015 -0.006 -0.022 -0.029 -0.014 4.92E-10 - 
rs2138733 Urea HNF1B -0.005 -0.012 0.001 -0.018 -0.024 -0.011 1.28E-09 - 
rs11023212 Vitamin D COPB1 -0.191 -0.202 -0.179 -0.377 -0.392 -0.361 0 - 
rs11723621 Vitamin D GC -0.162 -0.173 -0.151 -0.326 -0.343 -0.309 3.30E-301 - 
rs146128209 Vitamin D PDE3B -0.129 -0.144 -0.113 -0.345 -0.401 -0.289 4.02E-69 - 
rs8022510 Vitamin D SEC23A -0.096 -0.132 -0.06 -0.19 -0.224 -0.156 5.25E-66 - 
rs4757226 Vitamin D RRAS2 -0.072 -0.084 -0.06 -0.139 -0.157 -0.122 2.92E-59 - 
rs1057868 Vitamin D POR 0.064 0.052 0.076 0.115 0.092 0.137 5.93E-39 - 
rs10426201 Vitamin D SULT2A1 -0.091 -0.13 -0.052 -0.161 -0.198 -0.124 6.42E-39 - 
rs732934 Vitamin D NADSYN1 0.035 0.008 0.063 0.09 0.063 0.118 1.33E-23 - 
rs6685829 Vitamin D RER1 -0.025 -0.039 -0.011 -0.07 -0.086 -0.054 3.95E-17 - 
rs58542926 Vitamin D TM6SF2 0.036 0.02 0.053 0.273 0.183 0.364 2.08E-14 - 
rs56287450 Vitamin D PDE3B 0.072 0.053 0.091 0.115 0.015 0.216 3.39E-14 - 
rs261290 Vitamin D ALDH1A2 0.044 0.026 0.063 0.069 0.051 0.088 5.83E-13 - 
rs11933459 Vitamin D UGT2B7 -0.027 -0.04 -0.014 -0.059 -0.075 -0.043 9.32E-12 - 
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rs12574800 Vitamin D FAR1 -0.055 -0.071 -0.038 -0.105 -0.186 -0.025 1.27E-10 - 
rs12494636 Vitamin D PAK2 0.004 -0.008 0.016 -0.078 -0.102 -0.055 5.05E-10 - 

Phi, SNP effect on standardised trait variance. X1, effect of one SNP dosage increase. X2, effect of two SNP dosage increase. PLyon, 

test for effect on trait variance using LAD-BF. PWesterman test for effect on trait variance from Westerman et al42.  



   
 

 238 

Table 9.2.2 Top GxG/GxE effects on biomarker concentration in UK Biobank 

SNP Modifier Outcome Beta 95% CI P 
ABO(rs635634) FUT2(rs281379) ALP 0.078 0.070 0.087 1.62E-72 
ALPL(rs4654970) BMI ALP -0.029 -0.037 -0.022 8.54E-16 
ABO(rs635634) TREH(rs12225548) ALP 0.035 0.025 0.045 1.17E-11 
ALPL(rs4654970) Age ALP -0.024 -0.031 -0.017 1.27E-11 
ABO(rs635634) Sex ALP -0.017 -0.023 -0.011 2.44E-08 
TREH(rs12225548) FUT2(rs281379) ALP 0.023 0.015 0.031 3.50E-08 
PNPLA3(rs738409) BMI ALT 0.082 0.075 0.089 3.37E-119 
TM6SF2(rs58542926) BMI ALT 0.051 0.040 0.062 4.52E-21 
HSD17B13(rs71633359) BMI ALT -0.026 -0.032 -0.021 7.57E-21 
HSD17B13(rs71633359) PNPLA3(rs738409) ALT -0.044 -0.053 -0.034 2.57E-19 
TRIB1(rs2954021) BMI ALT -0.023 -0.028 -0.018 1.09E-17 
MARC1(rs2642438) BMI ALT 0.023 0.018 0.028 1.12E-16 
APOE(rs429358) BMI ALT -0.026 -0.033 -0.020 4.14E-14 
ERLIN1(rs2862954) BMI ALT -0.020 -0.025 -0.015 4.93E-14 
TRIB1(rs2954021) Sex ALT -0.017 -0.022 -0.013 2.95E-12 
TOR1B(rs7029757) BMI ALT -0.026 -0.034 -0.017 2.98E-09 
CETP(rs247616) BMI ApoA -0.021 -0.026 -0.016 2.77E-17 
LDLR(rs6511720) Age ApoB 0.029 0.022 0.037 1.23E-15 
CELSR2(rs12740374) BMI ApoB -0.022 -0.028 -0.016 2.51E-13 
CELSR2(rs12740374) Sex ApoB -0.018 -0.024 -0.013 4.50E-10 
CELSR2(rs12740374) Age ApoB 0.017 0.011 0.023 6.82E-09 
PNPLA3(rs3747207) BMI AST 0.072 0.065 0.080 1.95E-82 
GCKR(rs1260326) BMI AST -0.024 -0.030 -0.019 1.42E-18 
HSD17B13(rs71633359) BMI AST -0.024 -0.029 -0.018 8.62E-16 
HSD17B13(rs71633359) PNPLA3(rs3747207) AST -0.036 -0.047 -0.026 3.03E-12 
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TM6SF2(rs58542926) BMI AST 0.040 0.028 0.052 5.79E-11 
ERLIN1(rs2862954) BMI AST -0.017 -0.022 -0.011 1.02E-08 
APOE(rs429358) BMI AST -0.022 -0.029 -0.014 1.91E-08 
PDILT(rs77924615) Age Creatinine -0.028 -0.033 -0.022 5.44E-22 
GATM(rs1288775) Sex Creatinine 0.021 0.016 0.027 3.12E-16 
IL6R(rs61812598) BMI CRP -0.031 -0.037 -0.025 1.51E-25 
IL1F10(rs13409371) BMI CRP 0.028 0.021 0.034 1.97E-18 
PDILT(rs77924615) Age Cystatin C -0.031 -0.037 -0.025 3.00E-26 
UGT1A8(rs2741047) BMI Direct BR -0.041 -0.046 -0.036 1.37E-51 
UGT1A8(rs2741047) Smoking Direct BR -0.035 -0.040 -0.030 5.56E-41 
SLCO1B1(rs11045864) Sex Direct BR 0.030 0.022 0.037 1.15E-15 
SLCO1C1(rs76820150) Sex Direct BR -0.019 -0.024 -0.014 1.76E-12 
SNRPD3(rs2006227) BMI GGT 0.026 0.020 0.031 6.18E-20 
SNRPD3(rs2006227) Sex GGT 0.022 0.016 0.027 7.79E-15 
TRIB1(rs28601761) Sex GGT -0.019 -0.025 -0.014 2.98E-14 
GCKR(rs1260326) BMI GGT -0.016 -0.022 -0.011 1.80E-09 
ZNF827(rs4835265) NEDD4L(rs4503880) GGT -0.040 -0.053 -0.027 3.41E-09 
SNRPD3(rs2006227) Age GGT 0.015 0.010 0.020 6.92E-09 
TCF7L2(rs35198068) BMI Glucose 0.034 0.026 0.042 1.64E-16 
TCF7L2(rs7903146) BMI HbA1C 0.045 0.038 0.052 9.70E-35 
TCF7L2(rs7903146) Age HbA1C 0.018 0.013 0.023 2.87E-11 
TCF7L2(rs7903146) Sex HbA1C 0.018 0.013 0.024 1.06E-10 
TCF7L2(rs7903146) Alcohol HbA1C 0.019 0.013 0.025 7.44E-10 
CETP(rs247616) BMI HDL -0.035 -0.040 -0.030 8.52E-47 
ALDH1A2(rs1077835) BMI HDL -0.026 -0.031 -0.020 1.42E-19 
APOE(rs1065853) Sex HDL -0.039 -0.048 -0.030 7.67E-18 
PCIF1(rs112180569) Sex HDL 0.024 0.019 0.030 1.44E-16 
HAGH(rs344352) BMI IGF-1 -0.016 -0.021 -0.010 7.14E-09 
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APOE(rs1065853) Sex LDL 0.062 0.054 0.071 3.34E-48 
APOE(rs1065853) Age LDL 0.051 0.043 0.059 4.25E-33 
LDLR(rs10402112) Age LDL 0.031 0.024 0.038 2.53E-17 
TM6SF2(rs58542926) Sex LDL -0.037 -0.046 -0.028 6.52E-16 
APOE(rs1065853) BMI LDL 0.035 0.026 0.043 6.98E-16 
CELSR2(rs12740374) Age LDL 0.021 0.015 0.026 1.24E-12 
APOA5(rs964184) Sex LDL 0.026 0.018 0.033 5.70E-12 
APOA5(rs964184) BMI LDL 0.023 0.016 0.030 1.06E-09 
TRIB1(rs28601761) Age LDL 0.015 0.010 0.020 6.83E-09 
APOB(rs581411) Age LDL -0.018 -0.024 -0.012 1.46E-08 
MAP3K4(rs1247295) Sex LipoA -0.016 -0.021 -0.010 1.19E-08 
SHBG(rs1799941) Sex SHBG -0.019 -0.024 -0.014 1.25E-12 
APOE(rs1065853) Sex TC 0.052 0.044 0.061 6.48E-33 
APOE(rs1065853) Age TC 0.046 0.038 0.055 3.19E-26 
TM6SF2(rs58542926) Sex TC -0.038 -0.047 -0.029 4.43E-17 
LDLR(rs73015020) Age TC 0.030 0.023 0.037 1.27E-16 
APOE(rs1065853) BMI TC 0.033 0.024 0.041 2.33E-13 
CELSR2(rs629301) Age TC -0.021 -0.026 -0.015 6.92E-13 
TM6SF2(rs58542926) BMI TC -0.032 -0.041 -0.023 5.70E-12 
TRIB1(rs28601761) Age TC 0.014 0.009 0.019 1.20E-08 
SHBG(rs1799941) Sex Testosterone 0.060 0.057 0.062 0 
JMJD1C(rs10822145) Sex Testosterone 0.032 0.029 0.034 6.11E-169 
YIPF4(rs72798735) Sex Testosterone 0.037 0.032 0.042 1.74E-45 
APOC1(rs438811) BMI TG 0.033 0.027 0.040 6.28E-27 
APOC1(rs438811) Sex TG 0.032 0.026 0.038 1.33E-25 
TM6SF2(rs58542926) Sex TG -0.039 -0.047 -0.030 7.44E-19 
TM6SF2(rs58542926) BMI TG -0.039 -0.047 -0.030 1.19E-17 
PNPLA3(rs738408) BMI TG -0.025 -0.031 -0.019 3.34E-17 
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CMIP(rs12443634) Sex TG 0.017 0.011 0.022 2.11E-09 
UGT1A8(rs2741047) BMI Total BR -0.040 -0.044 -0.035 1.18E-66 
UGT1A8(rs2741047) Smoking Total BR -0.037 -0.042 -0.033 2.52E-60 
UGT1A8(rs2741047) Age Total BR -0.021 -0.026 -0.016 5.64E-17 
SLC2A9(rs938555) Sex Urate -0.080 -0.085 -0.076 1.05E-232 
SLC2A9(rs4530622) Sex Urate -0.029 -0.033 -0.024 8.01E-31 
NADSYN1(rs732934) Sex Vitamin D 0.019 0.013 0.025 6.22E-10 

Beta, interaction effect of SNP on outcome. CI, confidence interval. P, p-value for interaction slope. 
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Figure 9.2.1. Top gene-by-environment interaction effects (P < 5 x 10-8) on biomarker 

concentration using multiplicative scale 
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GxE effects using multiplicative scale and heteroscedasticity consistent standard errors107 (P < 5 

x 10-8). ALP, alkaline phosphatase. ALT, alanine aminotransferase. AST, aspartate 

aminotransferase.  ApoA, Apolipoprotein A. ApoB, apolipoprotein B. CRP, C-reactive protein. 

Direct BR, direct bilirubin. GGT, Gamma glutamyltransferase. HDL, high-density lipoprotein. 

HbA1c, glycated haemoglobin. LDL, low-density lipoprotein. LipoA, lipoprotein A. IGF-1, insulin-

like growth factor 1. SHBG, sex-hormone binding globulin. TC, total cholesterol. TG, 

triglycerides. Total BR, total bilirubin.  BMI, body mass index. Smoking, smoking status. Alcohol, 

intake. PA, physical activity. All measures reported on SD scale. All estimates were adjusted for 

the main effect, age, sex, and top ten genetic principal components. Vertical dashed lines are 

present at -0.05, 0 and 0.05 SD. Gene name Is the nearest protein coding gene HGNC name by 

chromosomal position.  SD, standard deviation. CI, confidence interval. 
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Figure 9.2.2. Top gene-by-environment interaction effects (P < 5 x 10-8) on biomarker 

concentration using additive scale adjusted for fine-mapped main effect 

 
GxE effects using additive scale and heteroscedasticity consistent standard errors107 (P < 5 x 10-

8) adjusted for fine-mapped main effects. ALP, alkaline phosphatase. ALT, alanine 

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Age Sex BMI Alcohol Smoking

ALP

ALT

AST

ApoA

ApoB

CRP

Creatinine

Cystatin C

Direct BR

GGT

Glucose

HDL

HbA1C
IGF−1

LDL

LipoA

SHBG

TC

TG

Testosterone

Total BR

Urate

Vitamin D

−0.1 0.0 0.1−0.1 0.0 0.1−0.1 0.0 0.1−0.1 0.0 0.1−0.1 0.0 0.1

SURF6 (rs635634)
ALPL (rs4654970)

TRIB1 (rs2954021)
TOR1B (rs7029757)

TM6SF2 (rs58542926)
PNPLA3 (rs738409)
MARC1 (rs2642438)

HSD17B13 (rs71633359)
GPAM (rs10787429)
ERLIN1 (rs2862954)

APOE (rs429358)
AKNA (rs4979371)

TM6SF2 (rs58542926)
PNPLA3 (rs3747207)

HSD17B13 (rs71633359)
GCKR (rs1260326)

ERLIN1 (rs2862954)
APOE (rs429358)

CETP (rs247616)
APOA1 (rs12721030)

ALDH1A2 (rs1077835)

LDLR (rs6511720)
CELSR2 (rs12740374)

SALL1 (rs17616063)
NLRP3 (rs111307268)

LIPA (rs2246941)
IL6R (rs61812598)

IL1F10 (rs13409371)
HNF1A (rs7310409)
GCKR (rs1260326)

CRP (rs7553007)
APOE (rs429358)

PDILT (rs77924615)
GATM (rs1288775)

PDILT (rs77924615)
CST3 (rs67567111)

UGT1A8 (rs2741047)
SLCO1C1 (rs76820150)
SLCO1B1 (rs11045864)
ATG16L1 (rs62192912)

TRIB1 (rs28601761)
SNRPD3 (rs2006227)

GCKR (rs1260326)
FUT2 (rs601338)

TCF7L2 (rs35198068)

TTC39B (rs686030)
PCIF1 (rs112180569)

CETP (rs247616)
APOE (rs1065853)

ALDH1A2 (rs1077835)
ABCA1 (rs2740488)

TCF7L2 (rs7903146)
IRS1 (rs2972144)

HAGH (rs344352)

TRIB1 (rs28601761)
TM6SF2 (rs58542926)

LDLR (rs10402112)
CELSR2 (rs12740374)

APOE (rs1065853)
APOB (rs581411)

APOA5 (rs964184)

MAP3K4 (rs1247295)

ZNF652 (rs113056032)
SHBG (rs1799941)

NR2F2 (rs56332871)
NPEPPS (rs8067286)

MSL2 (rs687339)
BRI3 (rs13232861)

TRIB1 (rs28601761)
TM6SF2 (rs58542926)

LDLR (rs73015020)
CELSR2 (rs629301)
APOE (rs1065853)

VEGFA (rs998584)
TRIB1 (rs28601761)

TMEM258 (rs102275)
TM6SF2 (rs58542926)

PNPLA3 (rs738408)
MLXIPL (rs71556736)

LPL (rs17482753)
GCKR (rs1260326)

DOCK7 (rs6657050)
CMIP (rs12443634)
APOC1 (rs438811)
APOA5 (rs964184)

YIPF4 (rs72798735)
SHBG (rs1799941)

JMJD1C (rs10822145)

UGT1A8 (rs2741047)
ATG16L1 (rs62192912)

SLC2A9 (rs938555)
SLC2A9 (rs4530622)

GCKR (rs1260326)
ABCG2 (rs74904971)

NADSYN1 (rs732934)
GC (rs11723621)

Genotype (dosage) * modifier (SD) interaction effect estimate, SD (95% CI)

● TRUE



   
 

 245 

aminotransferase. AST, aspartate aminotransferase.  ApoA, Apolipoprotein A. ApoB, 

apolipoprotein B. CRP, C-reactive protein. Direct BR, direct bilirubin. GGT, Gamma 

glutamyltransferase. HDL, high-density lipoprotein. HbA1c, glycated haemoglobin. LDL, low-

density lipoprotein. LipoA, lipoprotein A. IGF-1, insulin-like growth factor 1. SHBG, sex-hormone 

binding globulin. TC, total cholesterol. TG, triglycerides. Total BR, total bilirubin.  BMI, body 

mass index. Smoking, smoking status. Alcohol, intake. PA, physical activity. All measures 

reported on SD scale. All estimates were adjusted for the main effect, age, sex, and top ten 

genetic principal components. Vertical dashed lines are present at -0.05, 0 and 0.05 SD. Gene 

name is the nearest protein coding gene HGNC name by chromosomal position.  SD, standard 

deviation. CI, confidence interval. 
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Figure 9.2.3. Top gene-by-gene interaction effects (P < 5 x 10-8) on biomarker concentration 

using multiplicative scale 

 
GxG effects using multiplicative scale and heteroscedasticity consistent standard errors107 (P < 5 

x 10-8) adjusted for the main effect, age, sex, and top ten genetic principal components. ALP, 

alkaline phosphatase. ALT, alanine aminotransferase. AST, Aspartate aminotransferase. GGT, 

Gamma glutamyltransferase. All measures reported on SD scale. Gene name is the nearest 

protein coding gene HGNC name by chromosomal position. Vertical dashed line marks null 

association. SD, standard deviation. CI, confidence interval.  
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Figure 9.2.4. Top gene-by-gene interaction effects (P < 5 x 10-8) on biomarker concentration 

using additive scale adjusted for fine-mapped main effects 

 
GxG effects using additive scale and heteroscedasticity consistent standard errors107 (P < 5 x 10-

8) adjusted for the main effect, age, sex, top ten genetic principal components and fine-mapped 

main effects. ALP, alkaline phosphatase. ALT, alanine aminotransferase. AST, Aspartate 

aminotransferase. CRP, C-reactive protein. GGT, Gamma glutamyltransferase. TG, triglycerides. 

All measures reported on SD scale. Gene name is the nearest protein coding gene HGNC name 

by chromosomal position. Vertical dashed line marks null association. SD, standard deviation. 

CI, confidence interval.  
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