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Abstract 

Reading aloud new words requires an ability to generalise linguistic knowledge acquired via 

experience in reading. Yet, the exact cognitive mechanisms by which this happens are still 

unknown. In this PhD project, I investigated generalisation in reading aloud in English, 

focusing on pronunciations assigned to nonwords by skilled readers. This work consisted of 

computational, empirical and methodological investigations.  

Firstly, I developed a new, symbolic model of reading aloud – the Weighted Segments 

Pronunciation (WSP) model. This model converts letter strings into speech sounds based on 

different statistical properties of the writing system, across varying sized print-to-sound 

correspondences. The WSP model simulated central tendencies in human nonword reading 

responses comparably to prominent computational models of reading (the DRC and the 

CDP++ models). Furthermore, the WSP model showed some promise in simulating 

variability in nonword reading, and the present work illustrated some ways to evaluate 

models that produce variable output. Issues in the performance of the WSP model were 

identified and several avenues for improving the model were discussed.  

Secondly, I conducted two empirical studies, aiming to clarify which statistical properties of 

the writing system skilled readers are sensitive to. Both type and token frequency measures of 

print-to-sound correspondences were shown to be influential in nonword processing, with 

likely larger influence of type frequency. 

Thirdly, I compared two methods of collecting information about how skilled readers process 

nonwords: the traditional nonword naming method (where participants read aloud nonwords) 

and a relatively new nonword rating method (where participants give acceptability ratings to 

pronunciations assigned to nonwords). These comparisons revealed that the rating method is 

a feasible alternative to the naming method, and it may reveal aspects about skilled readers' 

knowledge of print-to-sound correspondences that the nonword naming method cannot.  

These findings bear relevance to future empirical investigations and theory development of 

reading aloud. 
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Chapter 1 : General Introduction 
 

Reading requires an ability to connect the written form of a language with its spoken form. In 

complex writing systems, such as English, print-to-sound correspondences (PSCs) do not 

follow a simple pattern – the same orthographic segment can correspond to several different 

phonological segments. As a result, reading aloud new words in such writing systems is 

accompanied with a degree of uncertainty. Nevertheless, literate individuals manage to assign 

pronunciations to unknown words and nonwords (pronounceable letter strings). In doing so, 

not only do they convert text to speech sounds, but they also generalise their experience with 

separate instances of written and spoken words, producing pronunciations to letter strings 

they have never encountered before. The cognitive mechanism behind this ability has 

attracted considerable amount of research interest, and the topic has been approached both via 

empirical investigations and computational modelling.   

Empirical evidence from studies of nonword reading suggest that readers utilise statistical 

properties of the writing system to read aloud new orthographic material (e.g., Andrews & 

Scarratt, 1998; Seidenberg et al., 1994; Siegelman et al., 2020). The kind of information 

readers extract from their experience with reading, however, is yet to be fully determined. 

Computational models of reading offer a way to test mechanisms that might be at play when 

skilled readers assign pronunciations to nonwords. Current computational models of reading 

differ in several ways, for instance, in terms of whether reading words and nonwords are 

considered distinct processes and in terms of the statistical properties of the writing system 

that influence the models’ print-to-sound conversion (e.g., Coltheart et al., 2001; Perry et al., 

2010, Plaut et al., 1996). As a result, each model has different strengths and weaknesses in 

simulating aspects of nonword reading. Comparisons of human nonword reading behaviour 

to output from computational models continue to reveal areas for improvement in the current 

models (e.g., Pritchard et al., 2012, Treiman et al., 2003).  

This chapter provides an overview of the empirical investigations of reading aloud, focusing 

on aspects of nonword reading that have attracted considerable amount of research interest – 

different statistical properties of the PSCs and unit size in nonword reading. Additionally, the 

review of empirical findings covers an aspect of nonword reading that has been relatively 

neglected in the literature until recently – variability in nonword reading. Following this, a 
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brief description of current computational models of reading is provided, specifically 

regarding the aspects of nonword reading covered in the summary of the empirical work. 

This section ends with an overview of recent evaluations of the current computational models 

against human nonword reading responses. Finally, the aims of the current PhD project are 

outlined. 

1.1 Empirical investigations of reading aloud 

This section provides an overview of empirical investigations of nonword reading, 

particularly regarding the type of pronunciations assigned to nonwords by skilled readers. 

First, empirical findings regarding the role of key properties of the PSCs in nonword reading 

are reviewed. Following this, I turn to variability in nonword reading, a ubiquitous finding, 

which has only recently attracted some research interest, and attempts to incorporate this 

aspect of print-to-sound conversion into computational models of reading.  

1.1.1 Regularity 

The English writing system has been described as a quasi-regular domain – a structure that 

consists of systematic relationships between its elements as well as exceptions to these 

regularities (Seidenberg & McClelland, 1989). It would thus seem that generating new 

pronunciations to letter strings in such a system would require either 1) reducing the 

relationships it contains into a set of rules, largely disregarding the exceptions or 2) relying 

on the probabilistic nature of these relationships, so that reading responses broadly reflect the 

frequency of particular relationships in the writing system.  

The former option, the rule-based approach, focuses on the regularity found in the English 

writing system. Although these regularities can be considered at several grain sizes, regularity 

in English PSCs is traditionally defined at the level of a single letter or letter cluster 

(grapheme) that corresponds to a single speech sound (phoneme), referred to as grapheme-

phoneme correspondence rules (GPC-rules). The pronunciation associated with a given 

grapheme in majority of the words in which this grapheme occurs is the regular or standard 

pronunciation for this grapheme, such as ea → /i/ (as in heal)1 and as such, this grapheme-

phoneme pair makes up a GPC-rule. GPC-rules are also position-specific, such that a 

different pronunciation may be the most common for a given grapheme in the word initial 

 
1 Throughout this dissertation, orthographic segments will be formatted in italics and phonological segments 

presented in DISC phonetic character set, preceded and followed by forward slashes, e.g., dog (orthographic), 

/dQg/ (phonological). See Appendix 1, Table 1A for a list of phoneme characters in DISC and IPA, 

accompanied by example words for each phoneme. 
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position than in a middle or final position. Pronunciations deviating from this GPC-rule are 

irregular pronunciations, such as ea → /E/ (as in head). By extension, any word that can be 

pronounced correctly applying these GPC-rules is called regular (e.g., heal) and any word for 

which this is not the case is irregular (e.g., head). Regularity is a key concept underpinning 

processing in the Dual-Route Cascaded model of reading (Coltheart et al., 2001) described in 

Section 1.2.1.  

If skilled readers are aware of and employ GPC-rules when reading aloud new words, this 

should be seen in the type of reading responses generated. Indeed, several studies report 

considerable fidelity to the GPC-rules in nonword reading (e.g., Andrews & Scarratt, 1998; 

Brown & Deavers, 1999; Coltheart & Leahy, 1992; Glushko, 1979; Kay, 1983, cited in 

Patterson & Morton, 1985), as demonstrated by a sizeable proportion of regular 

pronunciations assigned to nonwords for which other, plausible pronunciation options are 

available. However, the very same studies demonstrate that skilled readers also rely on 

information that goes beyond the GPC-rules, as demonstrated by the proportion of irregular 

pronunciations assigned to some of the nonwords. For instance, Coltheart and Leahy (1992) 

investigated the type of nonword naming responses given by developing and skilled readers 

to monosyllabic nonwords with vowel and the following consonant clusters (word bodies) 

that are always pronounced irregularly in existing words (e.g., thild, sharing a body with 

child, wild etc.). If the irregular nonwords2 are pronounced irregularly (e.g., thild pronounced 

as /T2ld/ instead of regularly as /TIld/), this is suggestive of utilisation of word body sized 

segments in reading, either as a word body-rime3 analogy to existing words, or as a PSC rule 

that is based on word body sized segments. Coltheart and Leahy reported that the percentage 

of regular pronunciations assigned to these irregular nonwords by skilled readers was 49%, 

thus demonstrating considerable reliance on GPC-rules in adult print-to-sound conversion. 

Yet, the percentage of irregular pronunciations assigned to the same items was 28%, showing 

that GPC-rules are not the only approach taken. If these irregular pronunciations are to be 

explained by PSC rules based on larger unit size, such as word bodies, it remains unclear how 

the choice between these, at times conflicting rules would be made.  

Thus, while regularity can explain some findings about the types of pronunciations assigned 

to nonwords, it alone cannot capture the pattern of nonword reading responses reported in the 

 
2 While nonwords naturally do not have a correct pronunciation, either regular or irregular, I refer to nonwords 

that share an irregularly pronounced orthographic segment in existing words as ‘irregular nonwords’, for 

brevity. 
3 Rime refers to the phonological counterpart of a word body – e.g. word body ild can have a rime /2ld/ or /Ild/ 



 Chapter 1: General Introduction 

 

4 

 

literature. Further evidence regarding the regularity of PSCs is considered in the following 

section. 

1.1.2 Consistency 

As the regularities found in the English writing system co-exist with exceptions, the 

categorical distinction into regular and irregular PSCs seems insufficient for capturing the 

way in which the orthographic and phonological patterns relate to each other. Another useful 

statistical property of the writing system is consistency, used to quantify how reliably a 

pronunciation is associated with an orthographic segment. Throughout the dissertation, the 

term consistency is used to refer to the association strength of a PSC or a degree of 

consistency of a PSC, as described below (the proportion consistency). It is worth noting, 

however, that the term consistency has also been used to refer to types of words in the 

literature (e.g., Andrews & Scarratt, 1998; Brown & Deavers, 1999; Glushko, 1979) – those 

with only one pronunciation for (typically) the word body (e.g., flame, game, name etc.,) are 

consistent words and those with more than one pronunciation for the word body (e.g., gave, 

save, etc. versus have) are inconsistent. This categorical use of the term consistency should 

be clear from reference to whole words or nonwords rather than PSCs.  

Two definitions of PSC consistency are described next, starting with the definition used 

throughout this dissertation. The proportion consistency of a PSC is the number of words in 

which the relevant orthographic segment is associated with the same pronunciation relative to 

all the words in which the relevant orthographic segment occurs, i.e., the number of friends 

(words that share the spelling and pronunciation of a given segment) relative to the number of 

friends and enemies (words that share the spelling but differ in pronunciation of a given 

segment). For instance, the PSC ould – /Ud/ has a consistency of .75, because out of the four 

monosyllabic words in which the orthographic segment ould occurs, three are pronounced as 

/Ud/ (could, should, would). The PSC ould – /5ld/ has a consistency of .25, as only the word 

mould contains this PSC. This measure of consistency was used in Treiman et al.  (1995, 

Analysis A), and it can be used as is, in which case only the number of words included in the 

calculations matters, or it can be used weighed by the frequency of occurrence of the words 

included in the calculations (these options are considered further in Chapter 2, Section 2.3.1). 

The entropy H consistency of a PSC takes into account the number of different 

pronunciations associated with the given orthographic segment and the similarity of the 
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probabilities (the proportion consistencies) of different pronunciations associated with the 

orthographic segment. The measure can be calculated with the following formula: 

  

where p1 is the probability of the first pronunciation option, p2 the probability for the second 

pronunciation option (if one exists) and so forth up to the number of different pronunciation 

options. Fully consistent PSCs have an H value of 0, which increases the more uncertainty 

there is about a pronunciation for an orthographic segment. For instance, the word body ould 

has an H value of 0.81, with two pronunciation options, with probabilities of 0.75 and 0.25. 

By contrast, another orthographic segment with also two pronunciation options, but 

probabilities of 0.5 and 0.5 would have a higher H value of 1. This is because the options are 

equiprobable, thus increasing the uncertainty associated with choosing between them. The 

entropy H was first introduced in information theory (Shannon, 1948) and has been used as a 

measure of consistency of PSCs and as a measure of variability in nonword reading responses 

(e.g., Andrews & Scarratt, 1998; De Simone et al., 2021; Siegelman et al., 2020; Treiman, et 

al., 1995, Analysis B). As seen in these definitions, consistency of PSCs is a matter of degree, 

unlike regularity, which is categorical measure. Consistency of PSCs is a central feature of 

connectionist models of reading (e.g., Plaut, McClelland, Seidenberg & Patterson, 1996), 

some of which are described below in the Section 1.2.3.  

The idea that skilled readers are sensitive to the consistency of PSCs suggests that skilled 

readers are aware of several, competing pronunciations for the same orthographic segment, 

such as that the letter a is often pronounced as /{/ as in cat but also as /#/ as in fast.  

Evidence supporting the notion that consistency of PSCs plays a role in human print-to-sound 

conversion comes from studies reporting longer naming latencies and more variability in 

nonword responses for inconsistent words and nonwords compared to consistent ones (e.g., 

Andrews & Scarratt, 1998; Glushko, 1979; Seidenberg et al., 1994). Furthermore, 

pronunciations assigned to nonwords tend to be pronunciations that are most consistently 

associated with the orthographic segments of the nonwords – either on a grapheme or a word 

body level (e.g., Andrews & Scarratt, 1998; Brown & Deavers, 1999; Glushko, 1979). For 

instance, Seidenberg et al. (1994) report a nonword naming study in which participants 

assigned non-standard pronunciations to some of the 590 nonwords they read aloud. 

Furthermore, when a nonword received several different pronunciations, the less common 



 Chapter 1: General Introduction 

 

6 

 

options (i.e., pronunciations given by a smaller number of participants) had longer naming 

latencies than the more common options. The naming latencies of nonwords also increased as 

the number of different naming options increased (i.e., when a nonword was pronounced the 

same way by all participants, it was pronounced faster than the most popular pronunciation 

option for a nonword that received several different pronunciations). Seidenberg and 

colleagues interpret this increase in naming latencies as competition between different 

pronunciation options that skilled readers have experience of.  

However, consistency of PSCs alone does not explain the patterns of empirical findings in 

nonword reading. Andrews and Scarratt (1998, experiment 2) also compared regular-

consistent nonwords (nonwords with word bodies that are always pronounced regularly in 

existing words, e.g., beal) to inconsistent nonwords (nonwords with word bodies that are 

sometimes pronounced regularly and sometimes irregularly in existing words e.g., basp), and 

found increased response latencies and response variability for inconsistent items over 

regular-consistent items. However, Andrews and Scarratt also collected naming responses to 

nonwords with word bodies that are consistently pronounced irregularly in several existing 

words (Irregular-many items, e.g., nalm based on palm, calm etc.) or in a single existing word 

(Irregular-single items, e.g., sonth based on month). While these items are also consistent, the 

naming latencies and the variability of the naming responses for these items were higher than 

those to the inconsistent items. A potential explanation for this pattern of findings may be in 

part the regularity-irregularity distinction – skilled readers have a strong tendency to assign 

regular pronunciations to nonwords whenever possible, and when an irregular pronunciation 

is assigned to a nonword, this comes with additional processing cost, reflected in increased 

naming latencies. Another explanation would rely on consistency, but at different grain sizes 

– the regular-consistent nonwords are consistent both at the level of graphemes and at the 

level of word bodies, whereas the irregular-consistent nonwords are inconsistent at the level 

of graphemes and consistent at the level of word bodies. The latter explanation relates to a 

topic that will be discussed in more detail in the Unit size section (Section 1.1.4). Andrews 

and Scarratt also report the incidence of regular and irregular pronunciations assigned to the 

different groups of nonwords. The regular-consistent items and inconsistent items were 

predominantly pronounced according to the GPC-rules or, in other words, the most consistent 

grapheme-sized PSCs (regular-consistent: 93%; inconsistent: 87%), whereas irregular-

consistent nonwords were mostly pronounced according to the most consistent body sized 

PSCs (65% of responses). The only group of items that did not conform to this pattern were 
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the irregular-single items, where the most consistent body sized PSC was used in 40% of the 

responses and most consistent grapheme-sized PSC in 41% of the responses. Thus, 

interpreting these findings as consistency of PSCs considered at different grain sizes also 

leads to the question of how is the grain size chosen? While a large part of these findings 

could be explained in terms of consistency, something else is needed for the full picture. 

The role of regularity and consistency of PSCs has not always been easy to tease apart – 

studies demonstrating longer naming latencies for irregular words than regular words (e.g., 

Baron & Strawson, 1976; Waters & Seidenberg, 1985) do not rule out the possibility that 

these regularity effects are in fact consistency effects. This is because many irregular words 

are also inconsistent. However, evidence from word naming studies with more carefully 

controlled experimental stimuli suggest that these two properties are separate (e.g., Andrews, 

1982; Jared, 2002). For instance, Andrews (1982, Exp. 2A) inspected naming latencies for 

words that were either regular-consistent, regular-inconsistent, irregular-consistent or 

irregular-inconsistent. The most important findings from this factorial design were the main 

effects of regularity and consistency in the naming latency data, such that longer latencies 

were seen for irregular items than regular items, matched in consistency and, similarly, longer 

naming latencies were found for inconsistent items over consistent items, matched in 

regularity. Thus, it appears that both regularity and consistency play a role in word naming.  

In summary, consistency of PSCs clearly has an influence on nonword reading – the type of 

naming responses, the variability of naming responses, and the speed at which naming 

responses are given to nonwords largely reflect the consistency of PSCs. However, some 

findings are difficult to explain solely in terms of consistency (Andrews & Scarratt, 1998, 

Exp. 2). 

1.1.3 Frequency 

The difference in rule and probability-based approaches to reading English can also be seen 

in measures of frequency of PSCs, that is, the prevalence of PSCs in a language. The 

frequency of a given PSC can be quantified based on types – i.e., the number of different 

words that contain the given PSC, or based on tokens – i.e., the number of times the given 

PSC occurs in a corpus, regardless of whether the words that embody this PSC are the same 

or different. Thus, type frequency captures the exposure to a given PSC as it occurs in distinct 

linguistic units, while token frequency captures the overall exposure to a given PSC. The 

rule-based approach would only take into account the most frequent PSCs, whereas the 
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probability-based approach would also consider PSCs with lower (type) frequencies. The 

question of whether type or token frequency would better capture the knowledge skilled 

readers extract from their experience with language is still open – for instance, would a PSC 

ave → /1v/ be a more reliable correspondence for skilled readers, because they have 

encountered it in many words (pave, cave, crave) or would a PSC ave → /{v/ be more 

reliable as skilled readers encounter this correspondence very often in a single word have?  

The importance of token frequency is well documented in visual word recognition and word 

naming studies – words with high token frequency are recognised faster and more accurately 

than words with lower token frequencies (e.g., Balota, et al., 2004; Forster & Chambers, 

1973; Howes & Solomon, 1951). However, attempts at teasing apart the relative importance 

of type and token frequency in consistency4 effects of reading aloud, that is, the finding that 

consistent words are read aloud faster and more accurately than inconsistent words, has 

produced mixed results (Jared, et al., 1990; Treiman et al., 1995).  

In nonword reading, the role of token frequency has been contrasted with that of type 

frequency, and most results point to the importance of type frequency over token frequency 

(Andrews & Scarratt, 1998; Johnson, 1970; Kay, cited in Kay & Marcel, 1981). Perhaps the 

most thorough investigation comparing the role of type frequency with the role of token 

frequency in nonword reading was carried out by Andrews and Scarratt (1998). In their 

second experiment, participants read aloud nonwords with word bodies that were either 

regular-consistent (e.g., beal), inconsistent (e.g., heaf), or irregular-consistent, so that the 

nonword’s body either occurred in only one existing word (irregular-single, e.g., sonth) or in 

several words (irregular-many, e.g., dask). The proportion of regular pronunciations assigned 

to nonwords was regressed with a number of properties, such as the proportion of regularly 

pronounced word body neighbours and consistency of different segments of the nonwords. 

The consistency measure used was entropy H (see Section 1.1.2). Two separate analyses were 

run, where the consistency measures and the proportion of regular neighbours were computed 

either as a type-based metric (number of regularly pronounced neighbours / number of all 

neighbours) or as a token-based metric (where the number of neighbours was multiplied with 

the token frequency of the neighbours). Most importantly, these analyses revealed that the 

best predictor for the proportion of regular pronunciations assigned to nonwords was the 

proportion of regular body neighbours (accounting for 23% of unique variance), followed by 

word body consistency (accounting for 2% of unique variance). Crucially, the overall 

 
4 Here consistency refers to two types of words or nonwords: consistent and inconsistent (see Section 1.1.2)  
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goodness of fit of the regression models was higher when type-based measures of consistency 

and proportion of regular neighbours were used (R2 = .69), compared to the token-based 

measures (R2 = .62). As such, although both types of frequency measures were found useful, 

these results suggest that type frequency is more important in nonword processing than token 

frequency. It is worth noting, however, that only a handful of studies have investigated the 

issue directly. 

1.1.4 Unit size 

As briefly mentioned in Section 1.1.2, the statistical properties of PSCs depend on the unit 

size of PSCs. How a letter string is parsed can change the most consistent pronunciation 

associated with each segment of the letter string. Investigations into the properties of English 

PSCs often emphasise the importance of word body sized segments (Kessler & Treiman, 

2001; Stanback,1992; Treiman et al., 1995). While consonants can typically be pronounced 

utilising a simple one-to-one mapping, most vowels have several alternative pronunciations. 

As the consonants following a vowel often help in determining how the vowel is pronounced, 

word body sized segments can serve as a particularly useful PSC unit in reading. This idea is 

supported by an analysis of monosyllabic words carried out by Treiman et al. (1995, Analysis 

A). The authors analysed a total of 1329 items with a single consonant – vowel – single 

consonant (CVC) phonemic structure. Each item was divided into initial consonant (i.e., 

onset), vowel (i.e., nucleus) and final consonant (i.e., coda) segments, as well as larger 

segments of onset + nucleus (i.e., antibody)5 and nucleus + coda (i.e., the word body). In the 

type-based analysis, the consistency of these segments was calculated as the number of words 

with the given orthographic segment that were pronounced the same way relative to the total 

number of words with the given orthographic segment. This analysis revealed that the mean 

consistency of initial and final consonants was over 90% while the vowel consistency was 

only 62%. This demonstrates how the unpredictable nature of GPCs in English is largely due 

to the vowels. Most importantly, the antibody segment had a mean consistency of 55%, 

whereas the body segment had a mean consistency of 80%. Thus, considering the consonants 

following the vowel provides more consistent PSCs than the vowel alone or considering the 

consonant preceding the vowel. Using conditional consistency measures, Kessler and 

Treiman (2001) investigated how much more consistent the PSCs for an onset, nucleus or 

coda of a monosyllabic word become when other parts of the syllable are taken into account. 

Their first analysis of a total of 3117 words revealed that out of 68 possible vowel letter 

 
5 I borrowed this term from Forster and Taft, 1994 
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strings, 39 were consistent. Of the remaining 29, 23 were significantly more consistent when 

the coda was considered as well. By contrast, only two vowel segments became more 

consistent when the onset was taken into account (w and qu preceding a). Using 

unconditional consistency measures as in Treiman et al. (1995), Kessler and Treiman arrived 

at comparable consistency measures, confirming the finding that word bodies are more 

consistent than antibodies, even though onsets and codas alone are equally consistent. The 

structure of the English writing system would thus encourage adopting a larger grain size 

reading style, where word body sized units are particularly important.  

The importance of word body sized segments has been demonstrated with visual word 

recognition and word naming tasks in skilled readers of English (e.g., Bowey, 1990; Treiman 

et al. 1995). For instance, in their large-scale word naming study, Treiman et al. (1995, Part 

2) found that higher consistency of onset and word body segments was associated with faster 

response times (RTs) and lower error rates, while consistency of other segments, such as the 

vowel alone or the antibody segment did not have as reliable influence on word naming 

performance (although higher consistency of the vowel segment alone was associated with 

lower error rates).  

Larger unit sizes have also been shown to be relevant in nonword naming (Andrews & 

Scarratt, 1998; Johnson & Venezky, 1975; Ryder & Pearson, 1980; Taraban & McClelland, 

1987, Experiment 3; Treiman & Zukowski, 1988). For instance, Taraban and McClelland 

(1987, Experiment 3) demonstrated that pronunciation assigned to a nonword can be primed 

by a preceding word, depending on the type of orthographic overlap the nonword and the 

prime share. The nonwords in the experiment shared an orthographic segment with an 

exception word (e.g., come), so that the overlap between the two items was either the 

antibody (e.g., coze), the body (e.g., zome) or the vowel (e.g., vole) segment. In a speeded 

reading task, these nonwords were preceded by primes that were either irregular (e.g., come) 

or regular (e.g., home). Taraban and McClelland found that the percentage of regular 

pronunciations assigned to the antibody-nonwords preceded by regular and irregular primes 

were 89% and 79%, respectively. For the body-nonwords, these percentages were 96% and 

63%. The vowel-nonwords were not affected by primes. These findings suggest that both 

antibody and word body segments can influence nonword reading, although the latter yields 

larger effects. Similarly, Treiman and Zukowski (1988) created nonwords that overlapped 

with an exception word, such as friend, in the antibody (e.g., frieth), body (e.g., chiend) or 

vowel segment (e.g., chieth). Naming responses to these nonwords showed, most 
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importantly, that more pronunciations congruent with the exception words were assigned to 

body-nonwords than to antibody- or vowel-nonwords (e.g., chiend read as /JEnd/ more often 

than frieth or chieth read as /frEth/ or /JET/). Treiman and Zukowski suggest that one reason 

for the special role of word bodies in nonword reading might be implicit or explicit 

knowledge about how post-vocalic consonants can alter the pronunciation of the vowel, 

whereas pre-vocalic consonants rarely affect the vowel pronunciation.  

However, some evidence for the importance of antibody segments has also been reported 

(e.g., Schmalz et al., 2014; Treiman et al., 2003). For instance, a study by Treiman, et al. 

(2003) found that skilled readers are sensitive to regularities in both antibody and body 

segments of monosyllabic words. Informed by their analysis on statistics of English, their 

nonword stimuli were constructed using only antibody and body segments where the onset or 

coda altered the vowel pronunciation to a non-standard vowel (e.g., the vowel in the antibody 

wa in wasp is pronounced as a non-standard vowel /Q/ as opposed to the standard vowel /{/ 

and the vowel in the body ead in head is pronounced as /E/ as opposed to the standard vowel 

/i/). The critical nonwords (e.g., wasb, clead) were pronounced reliably more often with a 

non-standard vowel compared to control nonwords (e.g., trabs, cleam). The authors suggest 

that previous mixed results for the role of antibody segments is due to the fact that 

regularities between onset and nucleus are rare in English, not because readers are not 

sensitive to them.    

Finally, utilising larger unit size in reading, especially word bodies, seems to become more 

prevalent as reading skills develop: when children with lower reading age read irregular 

nonwords, they produce less word body analogy-based pronunciations than children with 

more developed reading skills or adults do (Coltheart & Leahy, 1992; Brown & Deavers, 

1999; Steacy et al. 2019). Coltheart and Leahy (1992) investigated nonword reading with 

nonwords that shared a word body with regular existing words or irregular words (where 

most words with the given word body are pronounced irregularly)6, referred to as regular and 

irregular nonwords, respectively. The percentage of irregular pronunciations assigned to the 

irregular nonwords by 1st grade children, 3rd grade children and adults were 10%, 23% and 

28%, respectively. Notably, the percentages of regular pronunciations assigned to the 

irregular nonwords were 38% (1st graders), 43% (3rd graders) and 49% (adults). Thus, while 

word body units seem to become more important with increasing reading skills, utilisation of 

 
6 The study also included ambiguous nonwords, with word bodies that are pronounced regularly in some 

existing words and irregularly in others. This was excluded from the description for brevity. 
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grapheme-phoneme sized segments is still quite prevalent even in skilled readers. However, 

as pointed out by Brown and Deavers (1999), the regular nonwords in Coltheart and Leahy’s 

study had significantly more orthographic friends (words with the same word body and 

pronunciation) than the irregular nonwords. As demonstrated by Andrews and Scarratt (1998, 

described in detail in the Section 1.1.3), the number of regularly pronounced neighbours is 

one of the most important predictors of the proportion of regular pronunciations assigned to a 

nonword.  

With this limitation in mind, Brown and Deavers (1999, Experiment 1) investigated how 

children (aged five to nine years) and adults read regular-consistent and irregular-consistent 

nonwords when the number of orthographic friends for these items was controlled. The 

children were divided into skilled readers (mean reading age of 11 years and 6 months) and 

less skilled (mean reading age of 8 years and 8 months) based on their reading ability test 

score. The percentage of reading irregular nonwords as an analogy to the irregular words they 

resembled by children with less developed reading skills, children with more developed 

readings skills and adults were 39% 53% and 58%, respectively. The proportion of regular 

pronunciations for the irregular nonwords by the three groups were 50% (less skilled), 44% 

(more skilled) and 41% (adults). These studies demonstrate two important aspects about 

reading. Firstly, it is quite common for adult skilled readers to utilise grapheme sized 

segments in nonword reading. Secondly, considering larger orthographic segments becomes 

more prevalent as reading skills develop.  

While this pattern of development might show how more experience with different spelling 

patterns in English encourages adopting a reading style that takes into account varied sized 

PSCs, it may also be a reflection of how reading is taught in schools. Indeed, the type of 

reading instruction children are exposed to in school seems to be linked to the way they read 

unknown words: Deavers and colleagues (2000) compared the incidence of reading nonwords 

irregularly (as a word-body analogy to irregular words) between groups of children that had 

received reading instruction focusing on word body sized units (Word Body group) and 

children that had received instruction where grapheme-phoneme sized segments were central 

(Grapheme-Phoneme group). In a task where the nonwords were read aloud in isolation, 

when vocabulary knowledge of the irregular words that the nonwords were based on was 

taken into account, the Word Body group did produce reliably more irregular pronunciations 

(31%) than the Grapheme-Phoneme group (19%). Deavers et al. discuss the benefits of using 

grapheme-phoneme sized segments in early stages of reading, when many words are still 
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unknown, whereas relying on word-body sized segments should be more successful when a 

reader’s vocabulary is large enough to accommodate efficient use of word body-based 

analogies. Interestingly, the influence of reading instruction received in childhood seems to 

also have ramifications to the way individuals continue reading unknown words as adults 

(Thompson et al., 2009). Thompson and colleagues compared nonword reading performance 

of adults who had received reading instruction focusing on grapheme-phoneme 

correspondences in school (phonics group) to that of adults who had not received such 

reading instruction in childhood (non-phonics group). Both groups of participants read aloud 

regular (e.g., beal), regular-inconsistent (e.g., dush, where word the body is either 

pronounced regularly or irregularly in existing words) or irregular-consistent (e.g., bealm) 

nonwords. The phonics group produced fewer irregular pronunciations to regular-inconsistent 

and irregular-consistent nonwords and more regular pronunciations to these items than did 

the non-phonics group.  

In summary, empirical evidence of reading clearly points to the importance of word body 

sized segments and grapheme sized segments in print-to-sound conversion. The role of the 

antibody segments is less clear (Taraban & McClelland, 1987, Experiment 3; cf. Treiman & 

Zukowski, 1988), but likely serves as a useful unit in reading in limited cases (Treiman et al., 

2003). Furthermore, the unit size of print-to-sound conversion seems to be influenced by 

reading instruction in schools, which may have a long-lasting effect on reading behaviour. 

1.1.5 Variability in nonword reading 

Nonword reading task has been widely employed in investigations tapping into print-to-

sound conversion. A robust finding in this line of research is that nonword reading is highly 

variable: the same item can be pronounced in several different ways by different participants 

(Andrews & Scarratt, 1998; Mousikou et al., 2017; Pritchard et al., 2012; Seidenberg et al., 

1994) and the same nonword can be pronounced in different ways by the same participant 

(Ulicheva et al., 2021). Furthermore, the same sub-lexical unit, such as a word body, in 

different nonwords can be pronounced in different ways by the same participant (for instance, 

in Pritchard et al., 2012 data set). As an example of the between-participants variability in 

nonword reading, Pritchard et al. (2012) reported that for their 412 nonwords, read aloud by 

45 participants, the number of different pronunciations for a single nonword ranged from 1 to 

24. Similarly, Mousikou et al. (2017) reported 1-22 different pronunciations assigned to each 

of their 915 disyllabic nonwords. 
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Coltheart and Ulicheva (2018) investigated the potential sources of variability in nonword 

reading using the Pritchard et al. (2012) data set. They concluded that skilled readers differ in 

how they parse a letter string into graphemes as well as how they assign phonemes to the 

graphemes. This analysis was carried out with the assumption that nonwords are parsed into 

grapheme sized segments, and graphemic parsing was assessed based on pronunciations 

produced for each item. However, as discussed in the previous section (1.1.4), skilled readers 

seem to parse letter strings in more varied ways, such as into onset and word body sized 

segments. As such, the unit size of the orthographic parsing can also influence phoneme 

assignment. Considering the studies demonstrating that early reading instruction can 

influence the way nonwords are named in childhood and adulthood (Deavers et al., 2000; 

Thompson et al., 2009, described in Section 1.1.4), it appears that the global tendency for 

parsing letter strings into larger or smaller segments is, at least in part, a systematic source of 

variability in nonword reading. Phoneme assignment, on the other hand, may vary in a less 

systematic fashion. Given that individuals differ in their vocabularies and experience in 

reading, it is likely that individuals also differ in their personal PSC knowledge, an idea 

brought forward by Seidenberg et al. (1994).  

Furthermore, the individual PSC knowledge or tendency to parse letter strings in certain ways 

do not seem to completely determine how nonwords are named by an individual. Instead, 

naming responses may be influenced by the context in which nonwords are named. Several 

studies have demonstrated priming effects in nonword reading (e.g., Taraban & McClelland, 

1987; Rosson, 1983), suggesting that pronunciations assigned to nonwords are susceptible to 

the influence of previous stimuli. For example, Rosson demonstrated how naming ambiguous 

nonwords is influenced by preceding word primes: louch was pronounced more often 

regularly (like couch) when it was preceded by a prime sofa, whereas a preceding prime feel 

would increase the incidence of irregular pronunciation (like touch) of the nonword.  

Additionally, nonword reading responses have been shown to vary by list context, either as 

the type of pronunciations given (Brown & Deavers, 1999; Glushko, 1979) or as differences 

in response times (Rastle & Coltheart, 1999, Exp. 2; Zevin & Balota, 2000). These findings 

are often interpreted as different reading strategies adopted by skilled readers. For instance, 

Brown and Deavers (1999, Exp. 4) showed that skilled adult readers assign irregular 

pronunciations to irregular nonwords more often if these nonwords are presented intermixed 

with exception words (different than the exception words the nonwords were based on) than 

when the same nonwords are read aloud intermixed with other nonwords. However, other 
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studies have failed to find reliable influence of list context on types of pronunciations 

assigned to nonwords (Andrews & Scarratt, 1998). 

These contextual influences on nonword reading responses demonstrate that some of the 

within-participants variability in nonword reading (i.e., the same participant pronouncing the 

same nonword or sub-lexical segment in different ways) may be relatively systematic. 

However, there also appears to be unpredictable within-participants variability, as suggested 

by findings from a recent study by Ulicheva et al. (2021). In this study, 22 participants read 

aloud 50 disyllabic nonwords from Mousikou et al. (2017) materials, in five different testing 

sessions (the same 50 nonwords in each session). It was found that some nonwords elicited 

more varied naming responses than others and that some participants gave more varied 

naming responses than others. Using linear mixed effects regression analysis, Ulicheva and 

colleagues investigated whether characteristics of the items (item variability) and/or 

characteristics of the participants (literacy skill) might explain the variability in the nonword 

reading responses. The variability in nonword naming was operationalised as an entropy H of 

each participants’ response to each nonword, across all five testing sessions. Only item 

consistency measure (averaged entropy H for each grapheme within a syllable) predicted 

naming variability, whereas literacy skill (average spelling and vocabulary test scores) did 

not.  

Ulicheva and colleagues’ analysis focusing on session-to-session changes in nonword naming 

responses revealed that new pronunciations for a given item were less likely in the later 

sessions compared to the earlier sessions. In this analysis, session number and item variability 

were reliable predictors for whether new pronunciations were used or not, whereas literacy 

skill was not. Furthermore, comparing the dissimilarity between naming responses for the 50 

nonwords between each participant pair revealed that the naming responses between 

participants became more similar throughout the sessions.  

Most importantly, Ulicheva et al. (2021) thus demonstrate an association between item 

characteristics and naming variability, but fail to find one for participant characteristics and 

naming variability. Furthermore, the naming responses tended to stabilize across sessions, 

which bears relevance to how one interprets naming responses from single session studies. 

Ulicheva and colleagues suggest that the variability in nonword reading reported in previous 

studies has been taken as between-participants variability, even though some of this 
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variability may be within-participants variability, which cannot be differentiated from 

between-participants variability in single session studies.  

Overall, these studies demonstrate that there is considerable variability in nonword reading. 

Some sources of this variability have been identified, but more research is clearly needed to 

uncover how much of the variability from these – and perhaps additional – sources is 

systematic. As nonwords or sub-lexical segments with multiple plausible pronunciations tend 

to produce more varied reading responses, and the same participant can produce several 

different pronunciations for the same item, there seems to be an element of randomness in 

orthographic parsing and phoneme assignment. These “stochastic processes that occur within 

individuals” (Ulicheva et al., 2021, General Discussion section, para. 4) will be returned to in 

Chapters 2 and 3, where attempts to simulate variability in nonword reading is described 

(Section 2.1.2) and tested (Section 3.3). 

1.2 Computational modelling of reading aloud  

In recent decades, theories of reading have increasingly been implemented as computational 

models (e.g., Coltheart et al., 1993; Coltheart et al., 2001; Harm & Seidenberg, 1999; Norris, 

1994; Perry et al., 2010), which have several benefits compared to verbal theories. Firstly, 

this form of conceptualising the cognitive process of reading requires explicit expression of 

every aspect of the process. Secondly, as computational models simulate human reading 

behaviour, they have the potential to generate new predictions about reading that have not yet 

been considered or tested in human participants. Thirdly, simulations of human reading also 

allow testing and comparing theories more directly.  

Current computational models of reading are typically divided into symbolic and 

connectionist models, which broadly speaking differ in how the linguistic information is 

represented, processed and acquired. Symbolic models contain representations of words or 

sub-lexical units of words, which are processed following explicit principles, such as rules or 

decision trees (e.g., Coltheart, et al., 2001; Norris, 1994). The architecture of symbolic 

models is specified by the modeller, and typically these types of models do not learn from 

experience (cf. Coltheart et al., 1993; Pritchard et al., 2016). Connectionist models represent 

linguistic information as patterns of activation in connections between processing units (e.g., 

Harm & Seidenberg, 1999; Perry et al., 2010). A connectionist model is trained with input 

and desired output pairings (i.e., the spelling of the word and the phonemic transcription of 

the word), during which the weights of the connections between units are adjusted based on 
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the difference between the model’s actual output and the desired output, using, for instance, a 

backpropagation algorithm (e.g., Seidenberg & McClelland, 1989).   

Both symbolic and connectionist approaches to modelling reading can offer valuable insights 

to the topic. For instance, the connectionist models include accounts on developing reading 

skills. However, it is not easy to determine what exactly has been learnt by a connectionist 

model and what exactly is the process of reading aloud in these models, that is, “how the 

trained network has been structured by the learning algorithm so as to be able to perform the 

task it has learned” (Coltheart, et al., 2001, p. 205). By contrast, symbolic models provide a 

clearer account of the exact process involved in reading, yet often lack mechanism for 

learning. 

Most computational models of reading produce both naming responses and reaction times to 

word or nonword stimuli. Numerous effects of naming latency are reported in empirical 

work, such as regularity and consistency effects (e.g., Andrews, 1982; Seidenberg et al., 

1994) and relatively successful simulation of them achieved by different computational 

models (e.g., Coltheart et al., 2001; Perry et al. 2010)7. While these findings are informative 

about the processes of reading, the current work focuses only on the type of naming 

responses given, not on how long it takes for participants or models to produce them.   

Four contemporary computational models of reading aloud are described next, particularly 

regarding how they function in relation to the aspects of nonword reading addressed by 

empirical work in reading aloud research. Two of these models, the dual-route cascaded 

model (Coltheart et al., 2001) and the connectionist dual process model (Perry et al., 2010) 

were chosen because they are widely studied and publicly available. As such, these models’ 

output to different nonwords can be compared to that of human participants and a new model, 

the Weighted Segments Pronunciation (WSP) model, developed as part of the current PhD 

project (described in Chapter 2). The third model described, a parallel distributed processing 

model of reading (Plaut et al., 1996, Simulation 1) is an example of another connectionist 

approach taken to modelling reading. The fourth model, multiple-levels model of reading 

(Norris, 1994) is described due to the similarities the approach taken in this modelling work 

bears to the WSP model. 

 
7 Regularity and consistency effects refer to shorter naming times for regular or consistent words than to 

irregular or inconsistent words. 
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1.2.1 The Dual-Route Cascaded (DRC) model 

At its core, the DRC model (Coltheart et al., 2001) assumes two parallel routes for converting 

letters into speech sounds: the lexical route – based on word specific knowledge, and the 

nonlexical route – based on grapheme-phoneme correspondence rules (GPC-rules). Both 

processing systems receive input from the letter system, and both routes influence activation 

in the phoneme system. The activation in the phoneme system determines the final 

pronunciation the model gives when the activation of all the relevant phonemes reaches a 

pronunciation threshold. The GPC-rules of the nonlexical route are central to the predictions 

the DRC model makes about nonword reading: because for each grapheme only the most 

common, position specific PSC is available, items read via nonlexical route will always be 

pronounced regularly  – i.e., following the standard, mostly context insensitive pronunciation 

for each grapheme. As a result, the DRC model’s prediction about the unit size of PSCs is 

that only grapheme-phoneme sized units are employed in nonword reading. Note, however, 

that some of these graphemes correspond to word body sized segments, e.g. augh pronounced 

as /9/ or igh pronounced as /2/ (See the full set of GPCs in Rastle & Coltheart, 1999, 

Appendix B).  

Regularity of PSCs is an integral part of the model, as the assembly of pronunciations via the 

nonlexical route happens solely based on regular PSCs. By extension, the role of type 

frequency of PSCs is represented in the model in an all-or-nothing fashion: if the given PSC 

is the most common one (i.e., has the highest type frequency), it is the pronunciation the 

model assigns to any nonword with this grapheme. The less common PSCs do not affect the 

pronunciations (e.g., a → /#/ as in bath would not be an option since a → /{/ as in cat has the 

highest type frequency). The same all-or-nothing principle applies to how consistency 

influences nonword reading because the PSC with the highest type frequency is also the PSC 

with the highest consistency value – less consistent PSCs are not available to the model. 

Although token frequency of words affects the DRC’s lexical route, this property does not 

play a role in pronunciations assigned to nonwords. Finally, the same letter string presented 

to the DRC model will always be pronounced the same way – that is, there is no variability in 

the model’s reading output. 

1.2.2 The Connectionist Dual Process (CDP++) model 

The CDP++ is a recent version of the CDP family of connectionist models (Perry et al., 

2010). The model also assumes that reading known and unknown words are two parallel 
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processes. The lexical processing route of the model consists of localist representations of 

known words, almost identical to the one in the DRC model, and the sublexical processing 

route is implemented as a two-layer assembly network. The influence of both lexical and 

sublexical processing come together in the phonological output buffer, where the activation 

of phonemes is the summed activation produced by the two processing routes. The model 

learns statistical relationships between orthography and phonology from exposure to a 

vocabulary that consists of both monosyllabic and disyllabic words and from a pre-training of 

simple PSCs. During training, the connection weights in the network are adjusted according 

to a learning algorithm called the delta rule.  

To summarise which properties of interest (i.e., regularity, consistency, frequency, unit size 

and variability in nonword reading) CDP++ is sensitive to, I consider properties that are 

known due to the network architecture or learning mechanisms specified by the modellers, as 

well as properties that could be inferred from the model’s performance against human data 

sets. Firstly, the emerging PSCs as a result of training are not restricted to the most common 

mappings nor to only grapheme-phoneme sized correspondences. The efficiency with which 

different correspondences are learnt during the training of the network is weighted by the 

normalised log frequency of each word. As such, the relative strength of the learnt PSCs 

should show sensitivity to token frequency. The CDP++ is also sensitive to consistency of 

PSCs (Perry et al., 2010, Appendix D.3), which is demonstrated, for instance, by the 

proportion of regular pronunciations the model gives to Andrews and Scarratt’s (1998, Exp. 

2) regular-consistent items (.90) compared to regular-inconsistent items (.83)8. Sensitivity to 

type frequency of PSCs in the CDP++ model’s print-to-sound conversion is exemplified by 

the model’s performance in naming nonwords with word bodies that are always pronounced 

irregularly (Andrews & Scarratt, 1998, Exp. 2). I categorised the vowel pronunciations as 

regular or irregular following Andrews and Scarratt’s definition (1998, Appendix B). Items 

with several irregularly pronounced word body neighbours were all pronounced irregularly 

by the CDP++ model, whereas only half of the items with word bodies occurring in only a 

single irregularly pronounced word were pronounced irregularly. This sensitivity to type 

frequency also implies at least some sensitivity to regularity, although this feature is not as 

central in the model’s print-to-sound conversion as it is in the DRC model, given that 

 
8 This simulation was run by myself, and I classified the model’s responses following the definition of regularity 

used in Andrews and Scarratt, 1998  



 Chapter 1: General Introduction 

 

20 

 

grapheme-sized PSCs are not the only ones available to the CDP++. Finally, there is no 

variability in the model’s output, as the same nonword is always pronounced the same way. 

1.2.3 The Parallel Distributed Processing (PDP) models of reading aloud 

The PDP models of reading are a group of connectionist models based on the same 

theoretical assumptions put forward by Seidenberg and McClelland (1989). Unlike the DRC 

and the CDP++ models, which are referred to as dual-process models, the PDP models of 

reading do not reflect the notion of two, qualitatively different processes involved in reading 

aloud. Instead, all letter strings, from known regular and exception words to nonwords, are 

read aloud using a single mechanism, supported by the same, inter-connected processing 

units. While the most recent models within the PDP framework for modelling reading include 

orthographic, phonological and semantic levels (e.g., Harm & Seidenberg, 2004), a brief 

summary of an earlier model, focusing on orthography to phonology conversion is provided 

as an example of the PDP models of reading. This model is chosen for two reasons – firstly, it 

is more widely studied than the more recent models and secondly, more direct comparisons to 

other models focusing on print-to-sound conversion can be made.  

This model, developed by Plaut et al. (1996, Simulation 1), consists of three layers of 

processing units: the orthographic layer, the hidden layer and the phonological layer. The 

orthographic units represent graphemes, and the phonological units represent phonemes. Both 

the orthographic and the phonological units are arranged into onset, vowel and coda clusters 

of units, and the units within a cluster into ordered sets of units, so that only orthographically 

or phonotactically legal sequences are allowed. This approach allows the model to represent 

the relative positions of graphemes and phonemes. The feedforward connections between 

units in each layer of the network go from each grapheme unit to each hidden unit and from 

each hidden unit to each phoneme unit.  

The model was trained using 2998 monosyllabic, mostly monomorphemic words. During 

training, the weights of the connections were adjusted using the backpropagation algorithm, 

based on how similar the model’s output (the activation pattern in the phoneme layer) was to 

the correct pronunciation of each word. Thus, the weight changes during training aimed to 

optimise the model for correctly pronouncing the training item in question. Words with 

overlapping orthography and phonology (e.g., cave and pave) would activate the same units 

in the network and cause similar weight changes that are beneficial for the correct 

pronunciation of these words. By contrast, a word with similar orthography but different 



 Chapter 1: General Introduction 

 

21 

 

pronunciation (e.g., have) would steer the weight changes away from it and towards weights 

that are beneficial for correct pronunciation of this particular item. Furthermore, words with 

higher token frequency influence the model’s learning more than words with lower token 

frequency. As such, the model is sensitive to consistency and token frequency of PSCs. This 

dynamic would suggest that type frequency is also influential, but to a lesser extent than 

token frequency. Indeed, the tendency for the model to use the most frequent PSCs in 

nonword reading is exemplified by the type of responses the model gave to Glushko’s (1979) 

inconsistent nonwords: “all of the irregular responses to inconsistent nonwords matched some 

other pronunciation in the training corpus for the same body, with half of these being the 

most frequent pronunciation of the body” (Plaut et al., 1996, p. 70). This finding also 

suggests that the unit size of PSCs learnt by the model are not restricted to grapheme-

phoneme sized units, but also exhibit mapping of larger segments, such as word bodies. As 

consistency over varied unit sizes and token frequency have an important influence on the 

model’s print-to-sound conversion, regularity, which is closely linked to type frequency and 

smaller unit sizes, plays less of a role in this model. Finally, variability in reading letter 

strings is not represented in the model, as the model’s output is always the same for the same 

letter string.     

1.2.4 Multiple-levels Model of Reading Aloud 

According to the multiple-levels theory, reading a letter string involves parallel analysis of 

PSCs on multiple levels (i.e., different sized units of the letter string), which each contribute 

to the final reading aloud response by facilitating compatible units and inhibiting conflicting 

units (Shallice & McCarthy, 1985, cited in Norris, 1994). I first describe an implementation 

of this approach as a symbolic model (Norris, 1994), and then briefly as a connectionist 

model. In the symbolic model, the relevant units of analysis for nonword reading are onset, 

nucleus, coda, a combination of onset and nucleus (antibody) and a combination of nucleus 

and coda (body). The model has a set of PSC rules, based on the aforementioned units (e.g., 

vowel cluster ea pronounced as /i/), which were derived from 2897 monosyllabic, mostly 

monomorphemic words (used in Seidenberg & McClelland, 1989). Each orthographic unit 

with multiple corresponding pronunciations is arranged in the model’s rule set by frequency 

(either type or token frequency can be used).  

Reading a letter string starts with parsing it into the units described above and the 

pronunciation rules are then applied based on the following principles: 1) larger units are 
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preferred over smaller ones, and 2) an agreement between two complementary units is sought 

before considering rules based on smaller units. For instance, if antibody and body segments 

agree on the vowel pronunciation, the antibody and body rules are applied in pronouncing the 

letter string. If the vowel pronunciations differ between the two rules, less frequent antibody 

and body rules are searched for a matching vowel pronunciation between them. If none are 

found, a rule based on a smaller unit (onset) and body are then applied to produce the model’s 

pronunciation. As such, the multiple-levels model employs PSCs of varying unit sizes. The 

model is also sensitive to consistency and type (or token) frequency9, but this sensitivity 

depends on the level of agreement between the units of analysis. Regularity is also 

represented in the model’s print-to-sound conversion, when smaller units are involved in the 

output. However, this property appears to play a smaller role given that the larger units are 

favoured over smaller units. Finally, the model does not exhibit variability in nonword 

reading.  

The multiple-levels model has also been implemented as a connectionist network (Norris, 

1994), where the same units of analysis (onset, nucleus, coda, antibody and body) were used 

as orthographic input nodes, connected to three sets of phonological output nodes (onset, 

nucleus and coda) via feedforward, facilitatory connections. The sets of output nodes consist 

of competing, mutually inhibiting pronunciations, if such exist. For instance, since the model 

has two competing rules, i → /I/ (as in hint) and i → /2/ (as in pint), these two pronunciations 

are represented in the set of nucleus output nodes and they receive activation from any 

corresponding input node, that is, orthographic units pi, i and int. The input activation is 

determined by the log frequency of the PSC rules and the connection weights between input 

and output nodes are determined by the unit size.  

1.2.5 Evaluation of Current Computational Models of Reading 

The way in which computational models are evaluated has changed over time. Many of the 

earlier assessments of model performance in nonword naming (e.g., Coltheart et al., 2001; 

Perry et al., 2007; Plaut et al, 1996) have since been judged as too lenient (e.g., Gubian et al., 

2022; Treiman et al., 2003). For instance, Coltheart et al. (2001) scored any nonword 

pronunciation produced by the DRC model as correct if it followed the GPC rules of the 

model. Similarly, Plaut et al. (1996) accepted any nonword pronunciation produced by their 

PDP models (Simulations 2 and 3) that corresponded to any pronunciation of the same word 

 
9 Either type of frequency can be used, but after some initial comparisons, Norris concluded that relying on type 

frequency yields better performance of the model. 
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body segment in the model’s training set (e.g. nonword mave was correct if the pronunciation 

was /m{v/ as in have or /m1v/ as in cave). However, rather than showing that the models 

produce plausible pronunciations relative to PSCs in existing words, the comparisons should 

show whether the models produce the same kind of pronunciations that humans do for a 

specific group of items. Thus, more formal and fine-grained evaluations with unified criteria 

for success have since been employed.  

Andrews and Scarratt (1998) compared an earlier version of the DRC model10 and the PDP 

(Plaut et al., 1996, Simulation 1) model against their human nonword reading data. The main 

empirical findings that bear relevance to their assessment of the models’ performance were as 

follows. Firstly, nonwords with regular or inconsistent bodies are mostly pronounced 

regularly, whereas considerable proportion of nonwords (from 40% to 65%) with irregular 

bodies were pronounced irregularly (i.e., as a word body analogy). Secondly, whether a 

nonword is pronounced regularly or irregularly was better predicted by type-based measures 

of different properties of nonwords (such as consistency or proportion of regular body 

neighbours) than token-based measures. The PDP model would predict irregular 

pronunciations to inconsistent items, especially if these items shared a word body with a 

highly frequent word (the authors give examples of the PDP model’s performance on 

Glushko’s (1970) nonwords: lome pronounced as in come, plove pronounced as in love). This 

kind of influence of token frequency or high incidence of irregular pronunciations assigned to 

inconsistent nonwords was not found in Andrews and Scarratt’s data. In light of these 

findings, the authors argue that the influence of token frequency in PDP models needs to be 

reconsidered and that the continuous effect of inconsistent neighbours on nonword naming 

predicted by PDP models was not supported by the empirical findings.  

The DRC model, on the other hand, produces regular pronunciations to most of the nonword 

items, thus following the general pattern found in the human data. However, almost 20% of 

the items that most participants (60-90%) pronounced irregularly were pronounced regularly 

by the DRC model. Closer inspection of the irregularly pronounced items by the DRC model 

revealed that these are a result of applying a multi-letter rule (e.g., igh → /2/) to the 

nonwords, rather than influence of the lexical route on the model’s pronunciation. 

Nevertheless, the lexical effects can be seen in the model’s naming latencies, which are 

longer for the items pronounced irregularly by the majority of the participants. Thus, the main 

issue of the DRC model’s performance with the Andrews and Scarratt’s data is 

 
10 This version was a further development from the DRC model by Coltheart et al. (1993) 
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overestimation of regular pronunciations for some of the items, which may be alleviated by 

allowing stronger influence from the lexical route. The authors also consider the DRC 

model’s rule extracting algorithm (Coltheart et al., 1993) as an explanation of how PSCs are 

learnt by humans and conclude that the current implementation of the rule learning in the 

DRC model lacks psychological plausibility (such as learning all the single letter rules before 

multi-letter rules).  

Treiman and colleagues (2003) compared several models against their human nonword 

reading data. These models included the DRC (Coltheart et al., 2001), the CDP (Zorzi, et al., 

1998), several PDP models (e.g., Plaut et al., 1996; Harm & Seidenberg, 2004) and the 

Multiple-levels model (the connectionist versions of the model were used here: one optimised 

for words from Waters and Seidenberg (1985), which is referred to as Multiple-levels-WS, 

and one optimised for words from Taraban and McClelland (1987), referred to as Multiple-

levels-TM). The authors designed an experiment to investigate the role of consonantal 

context in vowel pronunciations of nonwords (See Unit Size, Section 1.1.4). Eight groups of 

items were created, where either the onset or the coda is associated with a non-standard (i.e., 

irregular) pronunciation of the vowel in existing English words. Each item group consisted of 

critical (e.g., wasb, clead) and control items (e.g., trabs, cleam). One of the assessment 

methods compared the proportion of items for which a given model’s pronunciation matched 

the most common human pronunciation. While all assessed models performed reasonably 

well on the control items (with the minimum match proportion being .86), the performance of 

the models was considerably weaker on the critical items, where the match proportions 

ranged from .38 (the DRC model) to .68 (Multiple-levels-TM model).  

Treiman and colleagues also inspected the weaknesses of each model included in the 

comparisons. The DRC model produced no irregular pronunciations, and as such, the authors 

point out the weakness of restricting the model to grapheme-phoneme sized segments: the 

model does not show human-like context sensitivity in nonword reading. As Andrews and 

Scarratt (1998), Treiman et al. identify the issue as a too weak (or non-existent) influence of 

the lexical route on nonword naming. While this property of the DRC model could be 

adjusted, it is unclear whether the model would then retain its success in simulating other 

effects in reading (e.g., Coltheart et al., 2001). Moving on to the CDP model, as the role of 

orthographic word body segments are central in this model, Treiman and colleagues see this 

as a hinderance for picking up regularities in the antibody segments (see Chapter 3 for 

assessment of a more recent model, CDP++, on the Treiman et al., 2003 data set). The PDP 
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connectionist models (e.g., Plaut et al., 1996; Harm & Seidenberg, 2004) tended to 

overestimate the influence of consonantal context on vowel pronunciations. The authors 

suggest training the models with simple PSCs, akin to phonics training many children receive 

in school. This, together with the traditional training regime, may allow emergence of a more 

balanced, in other words, human-like nonword reading performance. The Multiple-levels 

model produced some errors that are not part of the English PSCs. The authors suggest 

including a mechanism to remove any illegal phonotactic sequences, as is done in some of the 

other models (e.g., Coltheart et al., 2001; Plaut et al., 1996). The authors conclude that none 

of the evaluated models capture the patterns in human nonword reading when the items 

investigated require consideration of the consonantal context of the vowel segments.  

Pritchard et al. (2012) compared the performance of the DRC model and CDP models 

(CDP++ and different versions of CDP+) against their human nonword naming data set. In 

order to contrast the two models, the nonwords were chosen based on whether the output 

from the DRC and the CDP+ models diverged from one another. Reading aloud responses 

from 45 Australian participants for 412 nonwords were collected. A number of comparisons 

were made. When responses for each nonword were grouped into the most, the second most 

and the third most common pronunciations amongst the human participants, the highest 

percentage of human modal matches (a model producing the most popular human 

pronunciation for an item) was 74% (the DRC model), while the lowest percentage was 12% 

(CDP+). Additionally, the percentage of items for which the models produced pronunciations 

that no human participant produced was at best 2% (DRC) and at worst 49% (CDP+). 

Another type of comparison consisted of the rate of lexicalisations – i.e., giving a 

pronunciation of an existing word in response to a nonword – in the human responses and the 

models outputs. The percentage of lexicalisations in the human data was 9%, which was 

notably different from the DRC model’s 0% or the CDP models’ 20% (CDP+) or 17% 

(CDP++). Overall, the authors conclude that the DRC model outperformed the CDP models, 

yet, none of the models performed particularly well. 

In a recent study, Mousikou, et al. (2017) compared the performance of computational 

models that can read aloud disyllabic letter strings. Both pronunciation and stress assigned to 

disyllabic nonwords were investigated, but I will focus only on the former, as stress is beyond 

the scope of the current PhD project. Mousikou and colleagues collected naming responses 

from 41 participants for 915 disyllabic nonwords. These naming responses were compared to 

the output from the CDP++ model and a rule-based algorithm based on the dual-route 
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framework (Rastle & Coltheart, 2000), referred to as RC00 hereafter.  The participants’ 

responses were categorised by frequency (i.e., the first most common pronunciation, the 

second most common pronunciation etc.) and the output of the CDP++ and RC00 was scored 

as a percentage of matches in each category. Most notably, the human modal responses were 

produced only for 44% (CDP++) and 55% (RC00) of the items and total number of matches 

remained at 76% for CDP++ and 88% for RC00. The success of the models remains 

considerably low even though a match to a model’s output was considered any sequence of 

phonemes produced by at least one human participant, regardless of stress assignment. 

Mousikou and colleagues list the types of errors produced by each model and conclude that 

the models do not provide a good account of the processes involved in disyllabic nonword 

reading. 

Finally, new approaches to evaluating models of reading have been developed in recent 

years, where the model output is not compared to the average or the most common human 

reading responses, but to individual participants (Mousikou et al., 2017; Robidoux & 

Pritchard, 2014). For instance, Mousikou et al. (2017) calculated the proportion of matching 

pronunciations between each participant pair in their sample (similarity values), as well as 

between each participant and a computational model (CDP++ and RC00 described above). 

These similarity values allowed investigating the extent to which the output from the 

computational models was within the range of human responses. Mousikou et al. conclude 

that both CDP++ and RC00 yielded lower similarity to the participants than the participants 

did to each other. However, there was more overlap between the similarity values of RC00 

and humans than between CDP++ and humans, indicating that the performance of the RC00 

corresponds to that of a more typical human participant than the CDP++ (see Chapter 3, 

Section 3.2.3 for application of this approach). Similarly, Robidoux and Pritchard (2014) 

used hierarchical cluster analysis to uncover groups of participants with similar reading 

profiles in the Pritchard et al. (2012) nonword set. The DRC and CDP++ models were also 

used as ‘participants’ to determine how similar the pattern of reading responses from the 

participants was to the output from these models. Robidoux and Pritchard present results 

using the Ward’s method of cluster analysis, using the proportion of items disagreed on by 

two participants as the measure of distance between them (participants or models). In this 

method, the most similar pair in the data is merged into a cluster, then the second most 

similar pair in the data is merged together, and so on. Robidoux and Pritchard showed that the 

DRC model was merged with a participant very early in the process and that the DRC 
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belonged to a final cluster with the largest number of participants. By contrast, the CDP++ 

merged with a small cluster of participants, late in the analysis. As such, the authors conclude 

that the DRC model produces more similar reading responses to the human participants than 

the CDP++ model does. 

In summary, the available evaluations of the current computational models of reading 

demonstrate that pronunciation of nonwords by skilled readers is not fully captured by these 

models. As such, the theoretical accounts and/or computational implementations of these 

accounts regarding generalisation of PSC knowledge need to be refined. 

1.3 Aims of the Thesis  

How do skilled readers generalise their linguistic knowledge when reading aloud new words? 

This question has been explored by inspecting how skilled readers assign pronunciations to 

nonwords. The empirical investigations and the computational modelling of nonword reading 

reviewed above both indicate that more work is needed in this area. In an attempt to 

contribute to our understanding of generalisation in nonword reading, I approached this 

question computationally, empirically and methodologically.  

Firstly, in an attempt to gain further insight into the mechanisms by which print-to-sound 

conversion happens in skilled readers, I developed a new symbolic model of reading, referred 

to as the Weighted Segments Pronunciation (WSP) model. Drawing from previous empirical 

and modelling work, the WSP model combines some of the strengths of the previous models 

and simulates variability in nonword reading, an aspect of skilled reading behaviour which is 

not addressed by nearly any of the previous models (cf. Zevin & Seidenberg, 2006).  

Secondly, two empirical studies were carried out in order to investigate which statistical 

properties of the writing system skilled readers are sensitive to when reading aloud nonwords. 

I focused on the role of type and token frequency in nonword reading, as this question is still 

open, with only a handful of studies directly addressing this question.  

Thirdly, as the PSC knowledge skilled readers have is central to understanding how this 

knowledge is generalised in nonword reading, I evaluated a relatively understudied method of 

assessing skilled readers’ PSC knowledge. This method, referred to as the nonword rating 

method, focuses on acceptability ratings for nonword pronunciations rather than verbal 

naming responses to nonwords.  
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The following research aims are addressed by the current PhD project, with chapters covering 

each aim in parenthesis: 

1. Can the WSP model simulate central tendencies of nonword reading in skilled 

readers? (Chapter 3, Chapter 4, Chapter 5)  

2. Can the WSP model simulate variability in skilled nonword reading? (Chapter 3) 

3. Does token frequency of PSCs influence nonword processing? (Chapter 4) 

4. Does type frequency of PSCs influence nonword processing? (Chapter 5) 

5. Can PSC knowledge of skilled readers be assessed using a nonword rating method 

instead of a nonword naming method? (Chapter 6) 

1.4 Conclusion  

This chapter summarised important empirical findings regarding nonword reading by skilled 

readers. Out of the statistical properties focused on, it appears that both regularity and 

consistency of PSCs are influential in pronunciations assigned to nonwords, as neither alone 

can explain the pattern of findings in the literature. The role of type frequency seems to be 

more important in nonword reading than the role of token frequency. However, more direct 

investigation of the contrast between type and token frequency is needed (see Chapters 4 and 

5). The empirical evidence clearly shows that the nonword reading responses as well as the 

unit size used in nonword reading are variable. Several computational models of reading were 

presented, particularly regarding the properties of the writing system listed above. 

Evaluations of the computational models were outlined, with a clear conclusion that more 

work is needed for the models to fully capture the pattern of reading behaviour found in 

skilled readers. Finally, aims of the current PhD project were listed, which cover 

computational, empirical and methodological investigations in nonword reading.   
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Chapter 2 : The Weighted Segments Pronunciation model  
 

Based on the empirical investigations of nonword reading (Chapter 1), a successful model of 

reading aloud should accommodate variability and flexible unit size in nonword reading. Out 

of the statistical properties described, it appears that consistency and type frequency of print-

to-sound correspondences (PSCs) are particularly important in nonword reading, while token 

frequency may be influential to a lesser extent. Regularity of PSCs also seems to play a role 

in print-to-sound conversion, as skilled readers tend to favour grapheme-phoneme sized PSCs 

in nonword reading, a preference likely stemming from emphasis on grapheme-phoneme-

correspondences (GPCs) in early reading instruction (Thompson et al., 2009). A combination 

of some or all of these properties may be needed for an accurate simulation of human print-

to-sound conversion. Focusing on the flexible unit size in nonword reading, the empirical 

work suggests that grapheme and word body sized segments are clearly utilised by skilled 

readers, whereas antibody sized segments may be limited to only a few cases, namely, the 

vowel a preceded by w or qu (Treiman et al., 2003).  

In response to these findings, I developed the Weighted Segments Pronunciation (WSP) 

model, a symbolic model of reading, which reflects the following view of generalisation of 

PSC knowledge in reading aloud. Skilled readers have knowledge of several, competing 

PSCs. Reading aloud an unknown word is a result of choices regarding how to parse the letter 

string, which heavily influences the pronunciation assigned to each segment in the letter 

string. Exposure to reading equips skilled readers with statistical information about PSCs11, 

making certain pronunciations for a given letter string more likely than others. Exposure to 

reading, as well as other influences, such as reading instruction received in school, result in 

global tendencies to parse letter strings in certain ways.  

As seen in the description of current computational models (Chapter 1, Section 1.2), 

variability in nonword reading is widely neglected: the same nonword will always be 

pronounced the same way by these models. As such, the current models attempt to simulate 

the most popular human responses for nonwords (i.e., the human modal response), but not the 

variability in pronunciations assigned to the same nonwords. While focusing on the human 

 
11 ‘PSC knowledge’ and ‘statistical information about PSCs’ refer to mostly implicit knowledge, although some 

of this knowledge is also explicit (e.g., that the grapheme ch as onset is mostly pronounced as /J/ (as in chat), 

but sometimes as /S/ (as in chef). 
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modal response provides important information about the central tendencies in reading aloud, 

it is also a reductionist approach, as categorisation of naming responses to modal responses 

sometimes disregards a considerable proportion of other pronunciations, produced by a 

considerable number of skilled readers (e.g., Pritchard et al., 2012). Furthermore, extracting 

the most common response is sometimes arbitrary, when the numbers of participants giving 

the most common and the second most common naming responses are almost equal. To 

address this issue, the WSP model operates in two different modes – the deterministic and the 

variable mode. The deterministic mode produces a single, constant output to a letter string, 

comparable to output from other contemporary models. By contrast, the output from the 

variable mode may change each time the same letter string is read aloud by the WSP model. 

The variable mode can thus simulate reading performance of a single participant, and 

multiple simulations of the same data set allows for the generation of output comparable to 

responses from a group of participants. 

2.1 Print-to-sound conversion in the WSP model 

2.1.1 Deterministic mode  

The core of the WSP model relies on parsing a letter string into different sized orthographic 

segments, assigning a pronunciation to these segments (thus forming potentially different 

pronunciation options for the full letter string between different parsing styles), and resolving 

the competition between the parsing styles based on their overall strength. The strength of a 

parsing style is based on two factors: 1), the different statistical properties of the PSCs in 

each parsing style and their relationship to each other (if more than one property is used) and 

2), the weight applied to each parsing style. The output of the model for any letter string is 

the pronunciation corresponding to the strongest parsing style.  

More specifically, any nonword given as input will be parsed into consonant and vowel 

clusters, forming three parsing styles: antibody-coda (e.g., stra-nd), onset-word body (e.g., 

str-and) and onset-nucleus-coda (e.g., str-a-nd). Thus, the final pronunciation of the model 

can be based on PSCs at the level of larger segments (antibody and word body parsing styles) 

or at a smaller, grapheme-sized level12. The pronunciation most consistently associated with a 

given orthographic segment is assigned to each orthographic segment within each parsing 

style. PSCs with a minimum type frequency of 1 are available to the model, which means that 

the model’s pronunciation can be based on a PSC occurring in only a single word. This 

 
12 Note, however, that the consonant clusters in the onset-nucleus-coda parsing style are sometimes a 

combination of several graphemes, e.g., a coda lm would be a single cluster, rather than two separate graphemes. 
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parameter can be changed by the user to include only PSCs occurring in, for instance, at least 

two different words.  

The competition between the parsing styles will be described next, through an example. The 

first factor defining the strength of a parsing style are the statistical properties of the PSCs of 

each segment and how they relate to each other, referred to as the competition criterion 

hereafter. In this example, the competition criterion is the consistency and the type frequency 

of each segment, and their relationship is multiplicative. In order to bring the scales of 

consistency (ranging from 0 to 1) and type frequency (ranging from 1 to several hundreds) 

closer together, the measure of type frequency used will be logarithmic. Additionally, a 

constant 1 is added to each type frequency value to ensure that each value is above 0. Thus, 

the competition criterion is consistency * log10(type frequency +1). Applying this 

competition criterion to each segment results in a strength value for each segment (i.e., the 

higher the consistency and type frequency of the PSC, the higher the strength of the 

segment). The resulting strength values of each segment within a parsing style are then 

averaged together, and finally the weights are applied to the overall strength of each parsing 

style. The weight for each parsing style is constant across items, such that the same weight is 

always applied to the same parsing style.  

The weights are added to reflect a tendency to favour a particular parsing style over others, 

over and beyond the differences the competition criterion might create. As demonstrated by 

empirical investigations of reading, the tendency for parsing a new letter string in a particular 

way can be influenced by, for instance, reading instruction received in school (Deavers, et al., 

2000). As such, the weights for different parsing styles in the WSP model could be adjusted 

to reflect different populations and their parsing preferences. See Figure 2.1 for an example 

of the competition between the parsing styles, for a letter string wask. Note that the three 

parsing styles do not always diverge. For instance, for a letter string sall, both the antibody 

and small segment options would be /s{l/ while the word body option would be /s$l/. As 

another example, all three parsing styles would produce the same pronunciation, /mEst/ for a 

letter string mest.  
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Figure 2.1 

Example of parsing style competition in WSP model with competition criterion Consistency * log10(Type Frequency + 1) 

 

Note. P. style = parsing style; CV-C = antibody-coda; C-VC = onset-word body; C-V-C = onset-nucleus-coda; Orth. = orthographic segments, Phon. = 

phonological segments, Cons. = consistency value, Freq. = type frequency value (note: the value in the figure is log10(type frequency + 1), Seg. strengths = 

segment strengths, Av. strength = average of all the segment strengths within a parsing style. 
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2.1.2 Variable mode  

As mentioned in Chapter 1 (Section 1.1.5), variability in skilled nonword reading is a robust 

finding and reading responses to nonwords vary between and within participants. The type of 

variability in nonword reading that the WSP model’s variable mode aims to simulate is 

within-participants variability. Here the focus is on the randomness of pronunciation 

assignment when a letter string has several plausible pronunciation options, while the 

underlying probabilities for the pronunciation options are based on statistical properties of the 

writing system. However, another method of extracting variable output is also described. 

The assembly and strength of pronunciation options corresponding to the three parsing styles 

described for the deterministic mode also apply to the variable mode. However, while only 

the most consistent pronunciation for any orthographic segment was available in the 

deterministic mode, all the pronunciations associated with a given orthographic segment that 

have a consistency of at least .313 are available in the variable mode. For example, the most 

consistent PSC ear → /7/ (as in clear) and the second most consistent PSC ear → /3/ (as in 

learn) are both available to be combined with the onset and coda of a given nonword. If 

several pronunciations are available for several different segments, all combinations of these 

segments are assembled and included as pronunciation options from the given parsing style. 

For instance, for the letter string gear (let’s assume this is an unknown word for the model), 

the small segment parsing style would have two possible pronunciations for the onset,  /_/ 

and /g/, and two possible pronunciations for the vowel segment , /7/ and /3/, thus resulting in 

four pronunciation options from this parsing style: /_7/, /g7/, /_3/ and /g3/. The strength of 

each pronunciation option for the full letter string (as a product of the competition criterion 

and the weight of each parsing style) is then converted into a probability, so that the strength 

of each unique pronunciation option is relative to the summed strengths of all the options, 

from all three parsing styles.  

The output produced by the variable mode of the model contains two elements: the different 

pronunciation options for a letter string, and the probabilities for each option. This output can 

 
13 The minimum consistency for including PSCs can be adjusted, but as it should reflect the correspondences 

likely to be known by and easily available to a skilled reader: very low consistency thresholds for including a 

PSC can result in unlikely pronunciations (e.g., pronouncing ie as /E/ (consistency of 0.06), as this is the second 

most consistent PSC after ie - /i/, based on only one item, friend, in WSP’s vocabulary. Note, however, that the 

iend - /End/ PSC as a word body unit would still be included in reading items with a word body iend, as the 

consistency for the body unit would be higher than .3).  
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be achieved in two different ways. Firstly, the probabilities for each pronunciation option can 

be used directly as proportions for each pronunciation option (the raw probabilities method), 

in which case these probabilities can be thought of as the proportion of participants assigning 

each pronunciation to the letter string. Alternatively, the final pronunciation for any letter 

string can be chosen at random, weighted by the probabilities for each option. As such, while 

a single reading response of the WSP model can be any of the pronunciation options for a 

letter string, the most probable option will be chosen more often than the less probable 

options, if the same letter string is read aloud several times by the model (the multiple 

simulation runs method). Multiple simulation runs of the same set of nonwords thus result in 

output with similar structure to naming responses from a group of participants – extracting 

the proportions for each pronunciation option for each item summarizes this type of data into 

the form in which the output from the raw probabilities method already is. While both the 

raw probabilities and the multiple simulations methods produce output that can be compared 

to a group of participants (both in terms of the pronunciation options and the proportion of 

participants producing each option), only the multiple simulation runs method produces 

individual reading responses, which allows comparisons to individual participants, for 

instance, by using the methods described in Section 1.2.5 in Chapter 1 (Mousikou et al., 

2017; Robidoux & Pritchard, 2014).  

The weights used in the deterministic mode are not necessarily the same as the ones used in 

the variable mode. This is because the process of producing a representative human modal 

response is different from the process of producing representative proportions for different 

pronunciation options. For instance, let us assume that a letter string rall is pronounced as 

/r$l/ by 44% of participants and as /r{l/ by 42% of participants. In the WSP model, only the 

pronunciation corresponding to the word body parsing style matches the human modal 

response, /r$l/. For the deterministic mode of the WSP to produce the correct human modal 

response, the word body parsing style needs to be advantaged enough to win the competition 

between the three parsing styles (let us only focus on the weights in this example and ignore 

the difference in parsing style strengths). This could be achieved by a significantly large 

weight for the word body parsing style, as the relative strength of the other parsing styles 

does not matter, beyond the requirement that they are smaller than the word body parsing 

style. In the variable mode, by contrast, the word body parsing style should also be the 

strongest (so that the proportion of /r$l/ pronunciations would be the highest), but the relative 

strength of the antibody and small segment parsing styles, both of which produce the 
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pronunciation /r{l/, should be almost equally strong. Thus, the optimal balance between the 

weights in each mode of the WSP is different, depending on whether the aim is to simulate 

the human modal responses only (deterministic mode) or different pronunciation options and 

the relative frequency in which the different options are assigned to a letter string (variable 

mode).  

2.2 Print-to-sound knowledge of WSP model 

If skilled readers base their pronunciation choices for nonwords on statistical properties of the 

writing system, these properties must be extracted from readers’ experience with words that 

they already know how to read. In other words, the vocabulary of each reader serves as the 

repository from which the statistical properties of different PSCs are derived. This idea is 

employed in the WSP model, as the PSC knowledge of the model is based on a vocabulary. 

2.2.1 Vocabulary  

In current computational models, the language experience that print-to-sound conversion is 

based on has traditionally consisted of monosyllabic, often monomorphemic words (Coltheart 

et al., 1993; Coltheart et al., 2001; Seidenberg & McClelland 1989). The same, albeit more 

lenient approach is taken for the WSP model. The vocabulary of the WSP model consists of 

3921 monosyllabic and mostly monomorphemic words. The orthographic and phonological 

forms of the words were retrieved from the web interface of the Celex database (Baayen et 

al., 1995, retrieved at http://celex.mpi.nl/) and a logarithmic token frequency measure (Zipf) 

for each item was extracted from the SUBTLEX-UK database (Van Heuven, Mandera, 

Keuleers & Brysbaert, 2014; retrieved at https://psychology.nottingham.ac.uk/subtlex-uk/). 

Only items found in both databases were included. Items included as monosyllabic were any 

items that had one orthographic or one phonetic syllable only, based on the WebCelex 

database. Thus, items with two orthographic but one phonetic syllable (e.g., fuel) were 

included as well as items with one orthographic but two phonetic syllables (e.g., hour). This 

more lenient criterion for monosyllabic words was adopted to create a more complete set of 

PSCs that skilled readers are likely to be familiar with. Items without a vowel (e.g., shh or 

names of letters) and contractions (e.g., ma’am, ne’er) were removed.  

The items included were monomorphemic, with the exception of irregular past tenses, which 

were included to increase the repertoire of PSCs (e.g., was pronounced as /wQz/ or lead 

pronounced as /lEd/). There is evidence suggesting that lexical items in irregular past tense 

are stored as separate entries in the mental lexicon, while past tense for regularly inflected 

http://celex.mpi.nl/
https://psychology.nottingham.ac.uk/subtlex-uk/
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items are constructed from their base forms, following morphological rules (Ullman, 1999; 

Newman et al., 2007). As such, because WSP’s vocabulary includes items in irregular past 

tense but not items in regular past tense, it should resemble the mental lexicon that skilled 

readers draw from when they utilise the statistical information of PSCs in reading.  

Token frequency information was sensitive to part of speech (PoS) for items with different 

pronunciation based on PoS (e.g., dove – /d5v/ as a verb but dove – /dVv/ as a noun). PoS 

specific Zipfs were calculated for these items where possible. Items with a different 

pronunciation but the same PoS (e.g., read in present and past tense) received the PoS 

specific Zipf (a total of Zipf for all the items with a given orthographic form and PoS). The 

general Zipf (a total of Zipf for all the items with a given orthographic form regardless of 

PoS) was assigned to all other items.  

2.2.2 Statistical properties of PSCs  

In line with the empirical investigations of reading aloud, the PSC knowledge of the WSP 

model contains information about the consistency, type frequency and token frequency of 

PSCs of varying sizes. The different sized PSCs mirror the three parsing styles – i.e., 

consonant and vowel clusters as well as antibody and word body sized segments. The 

consistency of each PSC was calculated as the proportion of words with a given orthographic 

segment that are pronounced the same way (friends), out of all the words with the given 

orthographic segment (friends and enemies). For instance, the PSC ould – /Ud/ has a 

consistency of 0.75, (could, should, would vs mould). The PSC ould – /5ld/ has a consistency 

of 0.25, as only the word mould contains this PSC. This was a consistency measure based on 

types. Token-based consistency measures were also calculated, where summed token 

frequency of friends was divided with the summed token frequency of friends and enemies.   

The type frequency of each PSC was calculated as the number of words in which a given 

PSC occurs. Using the example above, the PSC ould – /Ud/ has a type frequency of 3 and the 

PSC ould – /5ld/ has a type frequency of 1. Token frequency of each PSC was calculated as a 

summed token frequency of all the words in which a given PSC occurs. 

2.2.3 Exceptions 

Although parsing a letter string generally results in consonant only and vowel only clusters 

(or empty clusters for items with no onset or coda, such as art or why), some exceptions were 

introduced due to their special role in PSCs. The same exceptions are part of how a letter 
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string is segmented as input and what kind of PSCs exist in the WSP model’s PSC 

knowledge. Letters a, e, i, o and u are always considered vowels, whereas y is classified as a 

consonant when it is the first letter of the input string (e.g., yeast is parsed as y-ea-st) and 

otherwise as a vowel. The rest of the letters are considered consonants, with the exception of 

r and w following a vowel. In these cases, r and w are attached to the vowel cluster, e.g., st-

ar-t and cr-aw-l. These exceptions are included because the r and w change the pronunciation 

of the preceding vowel. For instance, graphemes ar and aw are most consistently associated 

with pronunciations /#/ and /$/, as in far and straw, as opposed to the most consistent 

pronunciation of a as nucleus (/{/ as in cat).  

Additionally, u is considered a part of the consonants g and q when these consonants precede 

a u in the beginning or the end of a word. This results in the most common pronunciations /g/ 

and /kw/ for graphemes gu and qu in items like guest and quest. Equally, graphemes gue and 

que are pronounced as /g/ and /k/ in items like rogue and casque. Furthermore, vowel e as the 

final letter of a letter string, preceded by a vowel and a consonant cluster (i.e., the silent e), is 

categorised as both part of the preceding consonant cluster and the preceding vowel. This 

categorisation was made to address split vowel graphemes, i.e., a long vowel preceding a 

silent e, such as in huge (compared to hug). As a result, e as part of the coda is silent because 

the most common pronunciation of consonants followed by a single e is the consonant in 

question (e.g., codas ce, ste are pronounced as /s/ and /st/), while the split vowel version of 

any vowel receives the most consistent pronunciation associated with it (e.g., a_e –> /1/ as in 

ace, o_e –> /5/ as in rose).  

Onsets c and g are most often pronounced as /k/ as in cat and /g/ as in golf. However, these 

letters are more often assigned a soft pronunciation (/s/ as in cell and /_/ as in gene) when 

followed by e, i or y. In order to produce this context sensitive pronunciation of c and g, a 

separate onset for c and g when these letters are followed by a letter e, i or y was added to the 

PSC knowledge of the WSP. Statistically, however, g followed by i is most often pronounced 

as /g/ (not as /_/) in monosyllabic words. The PSC knowledge of the WSP model reflects this, 

that is, gi pronounced as /g/ instead of /_/. The soft c pronunciation is also assigned to onset 

clusters where the onset-nucleus boundary is ce, ci or cy such as in scene, science and scythe. 

However, there were no monosyllabic words with sc onset preceding an i in WebCelex. To 

include this PSC, the word scion was included in the WSP’s vocabulary. 
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These exceptions are not solely a feature of the WSP model, but the same or similar 

exceptions can be found in the DRC model as well, where they are classified as context 

sensitive or multiletter rules (see Rastle & Coltheart, 1999, Appendix B). Similarly, some of 

these exceptions are included in the segmentation of letter strings in the Multiple-levels 

model (Norris, 1994). Although it is important to understand why skilled readers seem to 

have at least implicit knowledge of these exceptions and how they are learnt, the overall goal 

of the current modelling work is to test the general principle of the WSP model, and therefore 

these exceptions are included for the time being.  

However, many if not all of these exceptions can be justified empirically – the way in which 

skilled readers seem to parse letter strings corresponds to the exceptions introduced to the 

model. For instance, I extracted all of the items with vowel + r from a set of 412 nonwords, 

named by 45 participants (Pritchard et al., 2012, described in detail in Chapter 3, Section 

3.2.3). There were 30 items with this spelling pattern. On average, 74% of the participants 

(ranging from 20% to 100%) produced a context sensitive pronunciation for these items, 

where the following r modifies the vowel. By contrast, a context insensitive pronunciation, 

where the vowel is pronounced ignoring the r, was produced on average by 0.01% of the 

participants, at most by four participants for any given item. Thus, this nonword reading 

behaviour suggests that skilled readers have a strong tendency to parse the vowel and the 

following r together rather than separately. 

Finally, English accents differ in rhoticity, i.e., whether r is pronounced when it is preceded 

but not followed by a vowel (e.g., star is pronounced /st#r/ in rhotic accents but /st#/ in non-

rhotic accents). Most accents in England – apart from the South-West and a part of 

Lancashire (Trudgill, 1984) – and standard Australian English (Turner, 1994; Trudgill & 

Gordon, 2006) are non-rhotic. The WebCelex database, however, is not fully consistent with 

non-rhotic pronunciations. For instance, items with a word body segment air (based on words 

air, chair, fair, flair, hair, lair, pair and stair) are all pronounced as /8R/ according to 

WebCelex (R denotes a possible linking r) 14. Due to this inconsistency, the PSC knowledge 

of the WSP model was modified so that the rhotic r was removed from the phonemic 

transcription, thus ensuring the pronunciations of WSP are always non-rhotic.  

 
14 Even in rhotic accents, this final r in monosyllabic, monomorphemic items could still be pronounced in 

multisyllabic words if it serves as a linking r, e.g., care pronounced as /k8/ but caring pronounced as /k8RIN/. 
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2.2.4 Assembly of unknown segments 

If the input string contains orthographic segments that are not part of the PSC knowledge of 

the WSP model, a pronunciation for them may be assembled from existing PSCs in limited 

cases. Currently this procedure is available for any unknown coda or onset that can be 

divided into two known elements, for instance sht as an onset would be assembled from the 

most consistent pronunciations associated with sh and t, where any properties included in the 

competition criterion would be calculated as the mean value of the known elements (sh →  

/S/ and t → /t/).  

The assembly of unknown segments is included in the model to increase the model’s ability 

to read aloud letter strings. As the models’ PSC knowledge is only based on monosyllabic 

words, this procedure essentially increases the model’s PSC repertoire. However, this feature 

is also considered an exceptional strategy to be used when normal reading procedures fail to 

produce a full pronunciation for a letter string. As such, if a response time feature was added 

to the WSP model, assembling unknown segments would result in slower responses than 

reading via the normal procedure. 

2.3 Optimisation of WSP model 

The optimisation of the WSP model includes two decisions – firstly, which statistical 

properties of PSCs will determine the strength of each segment – i.e., what is the competition 

criterion – and secondly, what weight will be applied to each parsing style. Optimisation of 

the model involves determining the best set of weights for the parsing styles, based on the 

model’s performance against a set of items. As both the PSC knowledge and the tendency to 

parse letter strings in certain ways are believed to be shaped by reading experience in skilled 

readers, the WSP model’s vocabulary was used for optimisation. In other words, 3921 

monosyllabic words were used as the optimisation set. This way, the weights for each parsing 

style, which reflect the model’s tendency to parse letter strings in certain ways, are based on 

the spelling patterns in existing words that the model ‘knows’. Note, however, that the model 

could be optimised using a human nonword naming data set and the weights would thus be 

adjusted based on which combination of the weights would yield the most ‘human-like’ 

performance, such as the largest number of human modal responses for the item set. This 

approach is explored in Chapter 3, Section 3.4. 
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2.3.1 Choice of competition criterion  

The choice of competition criterion was based on the empirical findings in nonword reading: 

consistency of PSCs is clearly influential, while the role of type and token frequency needs 

further clarification (see also Chapters 4 and 5). Thus, two versions of the WSP model will be 

investigated further via model optimisation – both with consistency and frequency as the 

competition criterion, but these measures are either type or token-based. More formally, the 

competition criterion is presented in (1) for the type-based version of the model and in (2) for 

the token-based version of the model: 

 

(1) 

 

                                                                                                                                                 (2) 

where comp. cri. is the competition criterion a segment strength is based on. Consistency is 

calculated as the number of friends (words with the given orthographic segment and 

pronunciation) relative to the number of friends and enemies (i.e., all the words with the 

given orthographic segment) for the type-based version of the model (WSP-type hereafter). 

For the token-based version of the model (WSP-token hereafter), the consistency measure is 

calculated as summed token frequency of friends relative to the summed token frequency of 

friends and enemies. As the maximum values for the consistency measures in both type and 

token-based equations are 1, but the maximum values of frequencies are in several hundreds, 

it was deemed necessary to logarithmically compress the frequency values. A constant 1 was 

added to the frequency values to ensure that a logarithm of the frequency value is always 

defined. This logarithmic compression was applied so that the competition between parsing 

styles would not be driven by frequency alone, but as a contribution of both consistency and 

frequency.   

While type-based measures of consistency and frequency are relatively straightforward to 

quantify, the token-based measures could be quantified in different ways, for instance, as a 
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summed, maximum or mean token frequency. I opted for the summed token frequency 

because there is empirical evidence suggesting that this specific measure is influential in 

consistency effects in word naming (Jared et al., 1990).  

Finally, another property of PSCs considered in Chapter 1, regularity, is not included in the 

WSP model directly. However, as frequency is part of the competition criterion, the influence 

of regularity can be seen in the pronunciations based on the small segment parsing style, 

particularly in the WSP-type version of the model.  

2.3.2 The optimisation procedure  

The goal of optimising the model is to find a set of weights for each parsing style that would 

result in the largest number of matches between the model’s output and the pronunciations 

associated with items in the optimisation set. As existing words are used as the optimisation 

set, the correct pronunciations of these words serve as the criterion for matches. The 

optimisation was performed as a grid search, where each of the three weights, one for each 

parsing style, ranged from 0.1 to 2 in increments of 0.1 (i.e., 8000 different combinations of 

weights). The combination of weights yielding the best performance was chosen for each 

version of the model (the WSP-type and the WSP-token). The set of weights with the largest 

values was chosen if several combinations of weights resulted in identical performance.15  

The best combination of weights found for the deterministic mode of the WSP model were 

also used for the variable mode of the model. This was because existing words were used as 

the optimisation set: in order to find the best weights that produce ‘human-like’ proportions 

for different pronunciations assigned to a letter string, the optimisation set needs to contain 

different pronunciations for the same item. As there is no variability in the pronunciations to 

existing words (i.e., there is no alternative pronunciation for the word cat in the same way as 

there are alternative, plausible pronunciations for the nonword cearn), the ‘human-likeness’ 

of the proportions of different pronunciation options cannot be assessed. This need not be the 

case if a nonword reading data set was used for optimisation (see Chapter 3, Section 3.4).  

Optimising the WSP model’s type and token versions for the vocabulary of the WSP model 

resulted in the following pattern of weights: the antibody parsing style had a slightly higher 

weight than that of the word body parsing style, while the weight for the small segment 

 
15 In the absence of a better criterion, choosing the largest values was ultimately arbitrary, but this criterion was 

applied consistently. 
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parsing style was approximately half of the weights for the former two parsing styles. Table 

2.1 summarises the weights and other parameters of the two versions of the WSP model.  

Table 2.1 

Parameters of the vocabulary-optimised versions of the WSP model 

Parameter WSP-type WSP-token 

Competition criteriona Consistency-type *    
log(type freq + 1) 

Consistency-token * 
log(token freq + 1) 

Weight: antibody-coda parsing style 2 1.9 
Weight: onset-word body parsing style  1.9 1.8 

Weight: onset-vowel-coda parsing style 0.6 0.7 
min. frequency of PSCs 1 1 
min. consistency of PSCs 0.3 0.3 
 

a refer to (1) and (2) for more detailed calculation of type and token-based consistency and frequency 

measures 

2.4 Conclusion 

In this chapter, I described a new computational model of reading, the Weighted Segments 

Pronunciation (WSP) model, which I have developed as part of the current PhD project. The 

WSP model converts letter strings into speech sounds by considering PSCs of varying sizes. 

Before producing output, several competing pronunciation options, corresponding to different 

parsing styles, can be available to the model. This competition is resolved based on different 

statistical properties of the PSCs within the parsing styles. In addition to the statistical 

properties of the PSCs, the model’s tendency to parse letter strings into larger or smaller 

segments is influenced by weights for each parsing style, which can be optimised for a set of 

words or nonwords. The WSP model can also operate in deterministic or variable modes, 

which aim to simulate central tendencies in human nonword reading (deterministic mode) 

and variability in nonword reading (variable mode). In the following chapters, two versions 

of the WSP model will be evaluated, where the competition of the parsing styles is based on a 

multiplicative relationship of either type-based consistency and frequency of PSCs (WSP-

type) or token-based consistency and frequency of PSCs (WSP-token). These evaluations 

include comparisons of the WSP model against other computational models of reading and 

human nonword reading responses.
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Chapter 3 : Evaluation of the Weighted Segments Pronunciation 

model  
 

In this chapter, the performance of the Weighted Segments Pronunciation (WSP) model will 

be evaluated, both in the model’s deterministic and variable modes, against several data sets 

of human nonword responses. The performance of the WSP model’s deterministic mode is 

also contrasted with two current computational models, the dual-route cascaded model (DRC) 

and the connectionist dual process model (CDP++, see Chapter 1, Sections 1.2.1 and 1.2.2). 

The performance of the WSP’s variable mode is compared to the performance of, to my 

knowledge, the only other model that simulates variability in skilled readers’ nonword 

naming responses (Zevin & Seidenberg, 2006). Finally, performance of the WSP model as 

well as characteristics of the available nonword reading data sets are investigated by 

optimising the model for each of them. The discussion of the results from these comparisons 

focuses on potential avenues for improving the WSP model, as well as providing insights on 

the characteristics of the nonword reading data sets.   

3.1 General considerations in the evaluation of the models 

I start by testing the performance of WSP model’s deterministic mode against three human 

nonword reading data sets, which capture different aspects of nonword reading, as described 

below. The deterministic mode of the WSP model is used in these comparisons, to allow 

contrasting the model’s performance with that of the DRC model (Chapter 1, Section 1.2.1) 

and the CDP++ model (Chapter 1, Section 1.2.2), two dual-process models of reading that 

have been studied widely and that are publicly available. DRC.1.2.3 (retrieved from 

https://maxcoltheart.wordpress.com/drc/) and CDP++.2 (retrieved from 

https://sites.google.com/site/conradperryshome/) were used in the following comparisons, 

and in all comparisons reported in this thesis. The WSP-type and WSP-token versions of the 

WSP model are included in these comparisons. 

The DRC, CDP++ and WSP models all produce output in DISC phonetic alphabet. The PSC 

knowledge of these models is based on the Celex database, i.e., British English. However, the 

DRC model deviates from the CDP++ and WSP model’s transcription in two ways: yod-

pronunciations (e.g., /ju/ in dune → /djun/) correspond to a symbol /W/ and there is no 

difference between the phonemes /9/ and /$/ (as in tour and door, respectively), but rather 

https://maxcoltheart.wordpress.com/drc/
https://sites.google.com/site/conradperryshome/
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any item with either of these phonemes is pronounced as /9/. To unify the transcription 

between different models, I have changed the /W/ into /ju/ and /9/ into /$/ in the DRC’s 

output. The same changes have also been made to the transcription of the participant 

responses in the nonword data set by Pritchard et al. (2012), described below. 

3.2 Evaluation of the WSP model’s deterministic mode  

In the following data sets, the nonwords and the pronunciations assigned to them are referred 

to as regular and irregular, relative to GPC rules. Regular nonwords contain an orthographic 

segment (typically the word body), which is always pronounced regularly in existing words. 

Similarly, irregular nonwords are items that share orthographic segments with existing, 

irregularly pronounced words. This categorisation is used throughout, as the focus in the 

comparisons between different models is mostly in the regular vs irregular – or standard vs 

context sensitive – dimension. This is why the vowel pronunciations of nonwords are the 

primary interest in these comparisons; the vowel pronunciations allow differentiating 

between the regular and irregular pronunciations.    

3.2.1 Andrews and Scarratt set 

This data set consists of 16 nonwords, derived from eight different word bodies that are 

always pronounced irregularly in existing words (Andrews & Scarratt, 1998, Exp. 1)16. The 

naming responses from 24 Australian participants were categorised as irregular, regular or 

other, based on the vowel pronunciation of the items. For instance, the vowel in pould 

pronounced as /6/ (as in loud) was regular, as /U/ (as in could) was irregular and any other 

vowel pronunciation was categorised as other. I categorised the output to these items from the 

DRC, CDP++ and WSP models in the same way, extracted the type of the most common 

pronunciation assigned to each nonword by the participants (i.e., the human modal response) 

and compared these pronunciation types to the pronunciation types of the models’ output. 

Each word body of these nonwords was irregular in existing words and there was 

considerable preference for irregular pronunciations (as word body analogies) in the human 

data for these items: the human modal response was irregular for 62.50% of the items and 

regular for 18.75% of the items. As such, this data set should be best simulated by models 

that utilise larger unit size in print-to-sound conversion.  

 
16 The stimuli in the experiment 1 by Andrews & Scarratt consisted of 216 nonwords, but detailed naming 

responses were only reported for 16 of these.  
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Table 3.1 lists the human modal responses and the output from each computational model for 

these nonwords. The highest proportion of matches with human modal responses was 

produced by the CDP++ (.75), followed by the WSP-token (.56), the DRC (.44) and the 

WSP-type (.38).  

Table 3.1 

Human modal response type and output from computational models to 16 nonwords with 

irregular word bodies from Andrews and Scarratt (1998, Exp. 1) 

item Human modal DRC CDP++ WSP-type WSP-token 

beart irregular (/#/) b7t b3t b8t b#t 
kneart other n7t n3t n#t n#t 
chalt regular (/{/) J{lt J$lt J$lt J$lt 
wralt irregular (/$/) r{lt r$lt r{lt r{lt 
chigh irregular (/2/) J2 J2 J2 J2 
jigh irregular (/2/) _2 _2 _2 _2 

gight irregular (/2/) g2t g2t gIt g2t 
zight irregular (/2/) z2t z2t z2t z2t 
ginth regular (/I/) gInT gInT gInT gInT 
jinth regular (/I/) _InT _InT _2nT _2nT 
vould other v6ld v6ld vUd vUd 
pould other p6ld p6ld pUd pUd 
roup irregular (/u/) rup17 rup rup rup 

moup irregular (/u/) m6p mup m6p mup 
searn irregular (/3/) s7n s3n s3n s3n 
gearn irregular (/3/) _7n g3n g7n g7n 

 

Note. Human modal column shows the type of vowel pronunciation assigned to each item, with the 

DISC transcription of the vowel pronunciation in parenthesis. 

 

Only three of the items (chalt, ginth and jinth) were assigned regular pronunciations in the 

modal responses of human readers. These responses were predicted perfectly by the DRC 

model, the CDP++ matched two out of three of the regularly pronounced items, while WSP-

type and WSP-token matched only one of the regularly pronounced items. Irregular vowel 

pronunciations were assigned to 10 items in the human modal responses. An average of 70% 

 
17 The item roup is not included in the analysis as a match, because its irregular pronunciation is a result of this 

item being part of the DRC model’s vocabulary, read aloud based on the output from the lexical route. Because 

the CDP++ pronounced the nonword moup irregularly, I assume the irregular pronunciation of the item roup 

would also remain even if this item was not part of the CDP++ model’s vocabulary. Thus, this item was retained 

for the CDP++. Note that roup is not part of the WSP’s vocabulary, because even though this item is found in 

WebCelex, it is not found in SUBTLEX-UK (see Chapter 2, Section 2.2.1).  
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of participants (from 32 – 100%) pronounced these items irregularly. The CDP++ matched 

nine of these responses, failing only with the item beart, which received the lowest 

percentage of irregular pronunciations amongst the participants (32%), out of the items with 

irregular human modal response. The WSP-token matched eight of the irregular 

pronunciations, but failed to produce an irregular pronunciation to items wralt and gearn, 

which were pronounced irregularly by 55% and 86% of the participants, respectively. By 

contrast, the WSP-type matched only half of the irregularly pronounced items and the DRC 

matched 40% of the irregularly pronounced items. The average percentage of participants 

assigning an irregular pronunciation to the items that DRC and WSP-type failed to pronounce 

irregularly were 67% and 61%, respectively. As such, the items for which the two models fail 

to produce irregular pronunciations are not items that receive particularly low percentages of 

irregular pronunciations amongst humans. 

All of the irregular pronunciations produced by the DRC model are multiletter-graphemes in 

the model’s GPC rules, namely, igh and ight. The WSP-type performs poorly on this data set, 

which seems to be a result of relatively strong influence of the antibody parsing style in the 

model’s output – six out of 16 responses were based on the antibody parsing style, which 

mostly yields regular word body responses. By contrast, only three responses in the WSP-

token output were based on the antibody parsing style. The rest of the responses in the output 

of both WSP-type and WSP-token were based on the word body sized segments.   

In summary, most of the models that include larger unit size in their PSCs perform better on 

this data set than models that do not. The CDP++ model had the strongest performance, 

followed by the WSP-token, the DRC and the WSP-type. The CDP++ and WSP-token 

models predict regular and irregular pronunciations relatively well, and most failures to do so 

happen with items that are not the clearest exemplars of their pronunciation category amongst 

humans. However, the DRC model predicts regular pronunciations well, but fails on over half 

of the items where irregular pronunciations dominate in the human data. Finally, the WSP-

type performs poorly on this data set, which is likely explained by a relatively strong 

emphasis on the antibody parsing style in the competition between the three parsing styles, 

and as a result, the model’s responses.   

3.2.2 Treiman set 

This data set consists of 158 nonwords with antibody or word body segments that are 

pronounced either irregularly or regularly (relative to GPC rules) in existing words (Treiman 
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et al., 2003, Exp. 1). An additional 20 filler nonwords present in the original study were not 

included in current comparisons. The naming responses from 24 American participants were 

categorised as irregular or regular based on the vowel pronunciation for each item. The data 

set was organised into eight item groups with equal numbers of regular and irregular items. 

For instance, one of the two antibody-item groups (or CV-item groups) consisted of irregular 

items such as wark and regular items such as tark. In the irregular items in this group, the 

onset w modifies the pronunciation of the vowel a in existing words to /Q/ or /$/ (as in watch 

and war) whereas the vowel a preceded by most other onsets would be pronounced regularly 

as /{/ or /#/ (as in cat and car). Similarly, one of the six word body-item groups (or VC-item 

groups) consisted of irregular items (e.g., chead) and regular items (e.g., cheal), where the 

irregular vowel pronunciation /E/ (as in head) is associated with the following coda d in 

existing words, while the regular vowel pronunciation /i/ (as in seal) is linked to most other 

codas.  

In order to perform a fair comparison between the American participants’ responses and the 

output from the computational models, all of which were based on Australian or British 

English, the categorisation of the irregular and regular vowel pronunciations from the models 

were based on the models’ dialect, rather than an exact phonemic match between the 

participants and the models. Two types of comparisons to output from computational models 

were made. Firstly, the human modal responses were matched to the output from each model 

as a total proportion of matches, and as a proportion of matches for the regular and irregular 

items separately. All matches are based on the vowel pronunciation in these comparisons. 

Secondly, for each item group, the proportion of irregular vowel pronunciations was 

calculated for both irregular and regular items and the difference between the proportions was 

computed. These proportion differences can be seen as a measure of context sensitivity – a 

large proportion difference within an item group indicates that the irregular items were 

mostly pronounced irregularly (i.e., considering the context for each vowel) and the regular 

items were mostly pronounced regularly in the given item group. Thus, I refer to the 

proportion differences for each item group as context sensitivity score hereafter. The context 

sensitivity scores could also be calculated for the output from the DRC, CDP++ and WSP 

models. Out of the irregular items, 60.75% received an irregular (context sensitive) 

pronunciation as the human modal response, whereas all regular items were pronounced 

regularly by the majority of the participants. The participant responses reveal considerable 

preference for irregular pronunciations for the irregular items compared to the regular items, 
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and as such this data set, too, should be best simulated by models that accommodate larger 

PSCs in their print-to-sound conversion. 

The comparison between the computational models and the human modal responses revealed 

that the two versions of the WSP model had the highest proportion of total matches, followed 

by the DRC and finally the CDP++ (see Table 3.2 for details). The WSP model’s versions 

also produced the best match for irregular items, followed by the CDP++ and then the DRC. 

However, the DRC matched the human modal responses for regular items perfectly, while the 

other three models reached at most 87% of matches to human modal responses for the regular 

items.   

Table 3.2 

Proportion of matches between Treiman et al. (2003) human modal responses and output 

from DRC, CDP++ and WSP models 

  
Match to human modal 

responses 

Model Regular Irregular Total 

DRC 1.00 .38 .69 

CDP++ .87 .44 .66 

WSP-type .85 .66 .75 

WSP-token .86 .71 .78 
 

For the DRC model, all mismatches for irregular items were a result of regular 

pronunciations produced by the model, except for one item that was pronounced irregularly, 

when the majority of the participants pronounced it regularly (wadge as /wQ_/ by the DRC 

and as /w{_/ by the majority of the participants). As noted by Treiman et al. (2003), this 

single irregular response from the DRC model is because the item wadge is part of the 

model’s vocabulary, and thus it is pronounced using the lexical information about the item’s 

pronunciation rather than assembled via the GPC rule system. This item is thus not included 

in the calculations of context sensitivity scores, reported below. For the CDP++, most 

mismatches were irregular pronunciations (23 items), or regular pronunciations (15 items) 

produced by the model when the majority of the participants gave the opposite type of 

response. However, the model also produced 16 other responses, which were mostly not 

produced by any of the participants (such as wark as /wUk/ or warse as /w8z/ and several 

items with a word body ance pronounced as /#ns/). For the WSP-type, most of the 

mismatches were due to regular responses (13 items) or irregular responses (13 items) when 
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the majority of the participants did not produce that pronunciation. There were also 13 other 

responses, as all the items with a word body ance were pronounced as /#ns/ (like in chance, 

dance etc.), which was a response not given by any of the participants, these items were all 

pronounced with a regular vowel in the human data. Additionally, three items were 

pronounced according to antibody segments – yeab and yead as /j8b/ and /j8d/ / (based on 

yeah) and swean as /swEn/ (based on sweat). WSP-token performed similarly, except that 

there were only 12 mismatches in the other category, nine items with the word body ance and 

the same three antibody-segment based pronunciations as in the WSP-type’s output. The 

WSP-token version also produced slightly more irregular responses (15 items) than regular 

responses (10 items) when the majority of the participants produced the opposite type of 

response.  

Note, however, that the other responses for items with the word body ance in the CDP++, 

WSP-type and WSP-token models’ output are based on the pronunciations corresponding to 

this word body in the Celex data base (Baayen et al., 1995). As such, rather than categorising 

these responses as errors, they are better understood as PSCs appropriately learnt by these 

models, but that are a mismatch to the PSCs utilised by the participants in Treiman et al. 

(2003) data, due to dialect differences.18   

Next, I compared the context sensitivity scores in the human data to those produced by the 

computational models. In the human data, some item groups elicited far more context 

sensitive pronunciations than others. An important question in evaluating the performance of 

a computational model is, then, whether it produces the same pattern of context sensitive 

responses as humans do and whether the model’s context sensitivity scores are of a similar 

magnitude to those found in the human data. To this end, the context sensitivity scores from 

the human participants were correlated with those produced by each model and the root mean 

square error (RMSE) was computed for the context sensitivity scores from each model, 

relative to the human data (see Table 3.3). In addition to comparisons between the DRC, the 

CDP++ and the two versions of the WSP model, Table 3.3 also includes all the models 

evaluated in Treiman et al. (2003). The output from the DRC model in this table is based on 

simulations from the version 1.2.3, which yielded identical results to the earlier version 

 
18 Pronouncing the word body ance as /#ns/ is not a ubiquitous pronunciation in British English, but this 

correspondence is followed unchanged in the WSP and CDP++, whereas the pronunciation for words containing 

this particular correspondence was changed in the vocabulary of the DRC model (as stated in the DRC's 

documentation, retrieved in How DRC 1.2 Differs from DRC 1.0 (wordpress.com), Appendix 1, Derivation of DRC 

1.2ʼs Vocabulary) 

https://maxcoltheart.files.wordpress.com/2019/02/drc-differences.pdf
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reported in Treiman et al., 2003, i.e., context sensitivity values of 0 for all item groups. The 

human context sensitivity scores had the strongest, positive correlation with the context 

sensitivity scores produced by the two versions of the WSP model (WSP-type: r(6) = .68, p = 

.06; WSP-token: r(6) = .72, p = .04). These versions of the WSP model also had the smallest 

RMSE. Apart from the WSP model, only the correlations between human data and Multiple-

levels model (Norris, 1994, WS parameters and Norris, 1994, TM parameters in Table 3.3) 

approached significance (r(6) = .67, p = .07 for WS parameters and r(6) = .65, p = .08 for TM 

parameters).    

In summary, models that include larger unit size PSCs have a better overall performance with 

this data set than models that do not. Furthermore, it seems that models with explicit focus on 

antibody and body segments, such as the WSP and the Multiple-levels model, capture more 

of the patterns in the human naming data than models where the unit size is more flexible, 

emerging as a result of training rather than being a fixed part of the model architecture (i.e., 

connectionist models such as CDP++ or PDP models by Plaut et al., 1996).  

Comparisons between the WSP-type, the WSP-token, the CDP++ and the newest version of 

the DRC model revealed that the two versions of the WSP model have stronger performance 

in four out of five of the assessment criteria used: the WSP outperformed the other models in 

proportion of matches to human modal responses for all the items and the irregular items 

alone, as well as in human-model correlation and RMSE for context sensitivity scores. The 

WSP-token showed stronger performance in almost all of these measures compared to the 

WSP-type, except for the RMSE, which indicated that the WSP-type produced slightly more 

similar absolute values to the human context sensitivity scores than the WSP-token did. The 

DRC model outperformed the other models in proportion of matches to human modal 

responses for regular items, but its ability to account for naming responses for irregular items 

was considerably weaker than that of the other models. Even though the CDP++ model 

produces context sensitive responses to some of the items in this data set, the pattern of 

context sensitivity scores for each item set tended to be opposite to the pattern found in the 

human data, as indicated by a (statistically non-significant) negative human-model 

correlations of the context sensitivity scores. The CDP++ did not have the strongest 

performance in any of the assessment criteria used, although it produced a higher proportion 

of matches to irregularly pronounced items than the DRC model did.
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Table 3.3 

Context sensitivity scores by computational models and participants for Treiman et al. (2003) data set 

  Item group Human-model 
correlation 

Human-
model RMSE   CV1 CV2 VC1 VC2 VC3 VC4 VC5 VC6 

Human data .58 .16 .55 .86 .12 .33 .83 .70   

DRC .00 .00 .00 .00 .00 .00 .00 .00              -             - 

CDP++ .56 .60 .90 .40 .70 .80 1.00 .40 -.11 0.39 
WSP-type .33 .50 1.00 .80 .20 .40 .90 .60 .68 0.23 

WSP-token .33 .50 1.00 .90 .20 .20 .80 1.00 .72 * 0.25 
Zorzi et al., 1998 .00 .60 .90 .20 .00 1.00 1.00 .20 .06 0.48 

Plaut et al., 1996, Simulation 2 .33 .50 1.00 .30 .60 .50 .90 .80 .15 0.35 
Plaut et al., 1996, Simulation 3 .89 .80 .90 .20 .40 .70 .80 .70 -.08 0.40 
Plaut et al., 1996, Simulation 4 .44 .00 .60 .10 .20 .50 1.00 .60 .51 0.30 

Plaut & McClelland, 1993 .56 .50 1.00 .70 .00 .90 1.00 .70 .61 0.30 

Powell et al., 2001 .56 .60 .70 .30 .10 .70 1.00 .80 .42 0.30 
Harm & Seidenberg, 2003 .56 .70 .90 .70 .40 1.00 1.00 .80 .41 0.35 

Norris, 1994, WS parameters .00 .10 1.00 .90 .30 .50 .90 1.00 .67 0.30 
Norris, 1994, TM parameters .00 .20 1.00 .90 .30 .40 .80 1.00 .65 0.29 

 

Note. Item groups CV1 and CV2 are antibody-items (e.g., wark, tark) and item groups VC1-VC6 are word body-items (e.g., chead, cheal). Human-model 

correlation = correlation between each model’s and human participants’ context sensitivity scores, calculated as a proportion difference of irregular 

pronunciations between irregular and regular items within each of the eight item groups. Human-model RMSE = the root mean squared error of each model’s 

context sensitivity scores, relative to those in the human data. The human data and output from all other computational models except for DRC, CDP++, 

WSP-type and WSP-token are taken from Treiman et al. (2003). * denotes statistical significance at alpha level .05.
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3.2.3 Pritchard set  

This data set consists of 412 nonwords for which the output from the DRC and CDP+ (Perry 

et al., 2007) models differed (Pritchard et al., 2012). The nonwords were read aloud by 45 

Australian participants. The resulting naming responses were categorised as the first, second, 

third and fourth or lower most popular pronunciations. I investigated the incidence of 

irregular word bodies in this data set by using the PSC knowledge of the WSP model: any 

word bodies with a matching vowel pronunciation between the vowel segment alone and the 

word body segment were considered regular, while mismatch in the vowel pronunciations 

between these two segments were considered irregular. After removing 18 items that did not 

have a word body segment in the WSP model’s PSC knowledge (e.g., deche or floz) and thus 

could not yield different pronunciations between the vowel and body segments, a total of 302 

items (76.65% of the considered items) had regular bodies, and 92 items (23.35% of the 

considered items) had irregular bodies. Furthermore, comparing the vowel pronunciations of 

the human modal responses to the context insensitive vowel pronunciations from the WSP 

model revealed that 86.89% of the items received a regular vowel pronunciation as a human 

modal response. By contract, 8.98% of the items received an irregular pronunciation as the 

human modal response (this included both antibody and word body analogies)19. As such, 

successful simulation of a large proportion of this data set does not require the use of larger 

PSCs. 

As most of the nonwords received several different pronunciations in this data set, the human 

modal response, the second most common response, the third most common response and the 

fourth or lower most common responses were extracted from the data set. The proportion of 

items for which the first, second, third and fourth most common human responses agreed 

with a model’s output were then calculated. Additionally, the proportion of mismatches were 

calculated, i.e., items for which a model’s pronunciation was not produced by any of the 

participants. Table 3.4 summarises the proportion of matches for each model. As seen in this 

table, the DRC model outperforms the other models both in terms of the proportion of human 

modal responses and the total proportion of items regardless of their frequency category (1st, 

2nd, 3rd or 4th). The proportion of mismatches is also the lowest for the DRC model. The 

 
19 These calculations differ from the categorisation of participant responses in Pritchard et al. (2012), because I 

only considered vowel pronunciations and the human modal responses and because I categorised regularity 

based on the WSP model’s PSCs, whereas Pritchard et al. considered the whole pronunciation of nonwords from 

all participants and based their regularity on the output from the DRC model. Thus, multi-letter graphemes such 

as igh pronounced to rhyme with sigh was a regular response in Pritchard et al., but irregular in the current 

analysis. 
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performance of the WSP-type was the second strongest, closely followed by the WSP-token, 

and finally the CDP++. The performance of the CDP++ model was considerably lower than 

that of the other models.   

Table 3.4 

Proportion of matching naming responses between human participants and the DRC, 

CDP++ and WSP models for Pritchard et al. (2012) data set 

Model First Second Third Fourth Total Mismatch 

DRC .74 .15 .05 .05 .99 .01 
CDP .38 .18 .10 .09 .74 .26 

WSP-type .68 .16 .05 .06 .95 .05 
WSP-token .66 .16 .06 .06 .94 .06 
 

A model’s pronunciations that no human participant agrees with are the most concerning 

ones and a closer inspection of these mismatches may provide valuable insight into the 

aspects of the model’s print-to-sound conversion that need adjustment. I identified several 

classes of pronunciations in the output from the two versions of the WSP model. Similar 

investigations for the DRC and CDP++ models are reported in Pritchard et al. (2012). For the 

WSP model, the largest group of items with mismatches were nonwords with the onset th. 

The WSP’s pronunciation for several of these items was /D/ (as in this), based on the 

antibody parsing style. For instance, both WSP-type and WSP-token pronounced nonwords 

thaque and thet as /D{k/ and /DEt/, respectively. By contrast, the most typical pronunciation 

assigned to items with th-onset amongst human participants was /T/ (as in think). Campbell 

and Besner (1981) also report human tendency to pronounce the onset th as /T/ rather than as 

/D/ in nonwords. The PSC th → /D/ in existing words is mostly found in function words (e.g., 

the, that, these), which tend to have higher token frequency than content words. Thus, it is 

not surprising that the WSP-token produced more mismatches of this category (for 12 items) 

than the WSP-type (for 7 items).  

Another category of mismatches was irregularly pronounced word bodies, such as dauche 

pronounced as /d5S/ (based on gauche), or scrolk pronounced as /skr5k/ (based on folk and 

yolk). With these items, WSP’s pronunciations are driven by the most consistent word body 

sized segments, even when only a single exemplar is available (such as gauche, as the word 

bodies in these items have a perfect consistency). Human participants were not this sensitive 

to word body consistency, which resulted in mismatches for six items for both versions of the 
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WSP model. The third category of mismatches was onset g followed by the vowel e. There 

were three items for which both versions of the WSP model gave a soft pronunciation, such 

as geech pronounced as /_iJ/, whereas no human did this. Considering the statistical 

properties of English monosyllabic words, the soft pronunciation of g is expected when it 

precedes certain vowels (e or y). However, skilled readers do not seem to show similar 

sensitivity to it, a finding also reported by Treiman, Kessler and Evans (2007). There were 

also a handful of items without a clear category. Finally, it is worth noting that four out of the 

six items that were mismatches for the DRC model (frymph, geech, gert, and que) were also 

mismatches for both versions of the WSP model, as the two models pronounced these items 

the same way. 

As unusual responses to nonwords are given not only by computational models, but also by 

skilled readers, another way of quantifying a models’ performance against human data is to 

treat each model as a ‘participant’ and compare the similarity of the model’s responses to 

each of the participants’ responses. To gauge what kind of similarity would be acceptable for 

a computational model, these human-model measures of similarity can be compared to the 

similarity of each participant’s responses with that of other participants (an approach taken by 

Mousikou et al., 2017). Thus, I calculated the number of matching pronunciations each 

participant shared with each of the other participants in the Pritchard data set. The matches 

between any human participant and each of the models were then calculated separately for 

each model, in order to exclude potential model-model matches. Table 3.5 summarises the 

similarity between participants and the models calculated this way. Most importantly, the 

minimum, maximum or mean proportion of matches between any two human participants 

were very similar to the proportions of matches between any human participant and the DRC 

or the WSP models. By contrast, the proportion of matches between any participant and the 

CDP++ model was below that of human participants in all of these measures. As such, while 

the performance of the DRC and the WSP models (both type and token versions) were well 

within the range of an individual participant according to this analysis, the performance of the 

CDP++ model fell below it. Given that the minimum and the mean proportion of matches to 

participants was generally higher for the DRC and the WSP models than for the human-

human matches, these results can also be interpreted as the DRC and the WSP models being 

more likely to match a randomly chosen participant than a randomly chosen participant 

would be. 
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Table 3.5 

Proportion of matching human-human pronunciations and human-model pronunciations for 

each participant in Pritchard et al. (2012) data set 

  Human DRC CDP++ WSP-type WSP-token 

min .24 .29 .17 .28 .26 
max .68 .68 .38 .64 .56 
mean .44 .52 .30 .48 .44 
 

Finally, as WSP model’s output is a result of competition between different parsing styles, it 

is important to ask whether this competition results in the kind of pronunciations humans 

produce. This was investigated by contrasting the model’s final output with the different 

pronunciations (corresponding to different parsing styles) available for the model. As the 

Pritchard set consisted of a large number of nonwords with regular bodies, there is a 

considerable overlap between responses based on small or large segment parsing styles in the 

WSP model (i.e., all parsing styles result in the same pronunciation). At the same time, this 

data set still has a sizeable sample of irregular items, where the word body parsing style 

results in a different pronunciation compared to the small segment or antibody parsing styles. 

As such, the Pritchard set lends itself well to investigations of whether the WSP model uses 

the same reading style that humans do for different nonwords. To answer this question, the 

responses from the WSP model (both type and token versions) were categorised as helpful or 

harmful, based on whether the model’s response to each item matched the response produced 

by the highest number of human participants, compared to other pronunciations based on 

other parsing styles available for the WSP model. Only items where the pronunciation 

corresponding to the winning parsing style differed from those corresponding to the other 

parsing styles were considered, as these items would show the unique contribution each 

parsing style had in increasing or decreasing the model’s performance (See Figure 3.1 for a 

summary).  
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Figure 3.1 

Unique contribution of parsing styles by two versions of the WSP model (deterministic mode) 

with Pritchard et al. (2012) data set  

 

Note. CV-C = antibody-coda parsing style, C-VC = onset-word body parsing style, C-V-C = onset-

vowel-coda parsing style. Y-axis depicts the number of items that either increased (helpful) or 

decreased (harmful) the number of participants agreeing with the WSP model’s output, compared to 

other pronunciation options (based on other parsing styles) available for the WSP model.  

 

The overall pattern of results from both WSP-type and WSP-token was very similar, and 

therefore the following description of the findings applies to both versions of the model. The 

analysis revealed that the word body parsing style won most often, followed by the antibody 

parsing style, whereas the small segment parsing style won only a few times. The word body 

parsing style resulted in clearly higher number of uniquely helpful pronunciations compared 

to the other two parsing styles. However, the number of harmful pronunciations produced by 

the word body parsing style were almost twice the number of helpful pronunciations. When 

the antibody parsing style won, it produced harmful pronunciations four times as often as it 

produced helpful pronunciations. By contrast, the small segment parsing style did not 

produce harmful pronunciations at all, but the number of helpful pronunciations was also 

low. Overall, each parsing style was uniquely beneficial for the WSP’s performance, but the 

model also overestimated the incidence of pronunciations based on word body and antibody 

parsing styles in this data set. See the Discussion (Section 3.5.1) for further consideration of 

these findings.  
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3.3 Evaluation of WSP model’s variable mode   

As described in Chapter 2 (Section 2.1.2), two methods can be used for extracting 

proportions of different pronunciation options for a nonword from the variable mode of the 

WSP model – the raw probabilities method and the multiple simulation runs method. The 

proportions from the raw probabilities method can be thought of as the probabilities that are 

expected from an infinite number of participants, if the participants’ knowledge of PSCs is 

extracted from English monosyllabic words. The benefit of this method is that a stable 

estimate of the proportions is achieved, as the same nonword will always receive the same 

proportions of pronunciation options. However, the disadvantage of this approach is that the 

proportions do not vary – an unrealistic feature, considering the variability in nonword 

reading demonstrated by empirical studies (e.g., Coltheart & Ulicheva, 2018; Ulicheva et al., 

2021). The proportions for pronunciation options obtained from the multiple simulation runs 

method, by contrast, will be different every time output is generated using this method. While 

this approach allows more realistic production of responses from a ‘group of participants’, the 

weakness of this approach is the variability of the proportions achieved – namely, how will 

the model’s performance be assessed against human data, when the simulation data can be 

very different from one set of simulation runs to the next? While the available data from 

human participants might be very different from a particular set of simulation runs, there 

might be a group of human participants that would produce comparable proportions. In order 

to gain some idea about the range of performance using the multiple simulation runs method, 

five sets of simulation runs were generated for each data set the WSP model was tested on.  

 

The performance of the WSP’s variable mode on the three data sets used for testing the 

WSP’s deterministic mode will be described next, using both raw probabilities and multiple 

simulation runs methods. For the Andrews and Scarratt set, proportions of regular 

pronunciations and proportions of irregular pronunciations for each item in the human data 

and those in the model output were compared separately. Additionally, the proportion 

differences between irregular and regular pronunciations for each item were also compared, 

as this measure should capture more about the relative preference for either pronunciation 

type in the human data (given that the responses for each item consisted of a proportion of 

regular, irregular and other responses). For the Treiman set, the correlation of the context 

sensitivity scores in human data and model output were used. For the Pritchard set, the 

comparisons between human and model pronunciations were made separately for the 1st, 2nd 
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and 3rd most frequent human responses for each item, if such were available (some items only 

had one or two pronunciation options in the human data). For instance, if the model had 

produced a matching pronunciation for an item in the 1st response group (e.g., brask 

pronounced as /br{sk/), this pronunciation would count as a match and the proportion 

associated with this pronunciation option in the model’s output would be compared to the 

proportion of human participants that had produced this pronunciation. Similarly, if the 

model had produced a matching pronunciation for an item in the 2nd response group (e.g., 

brask pronounced as /br#sk/), this pronunciation would count as a match in the 2nd response 

analysis and the proportion associated with this pronunciation option in the model’s output 

would be compared to the proportion of human participants that had produced this 

pronunciation. For this analysis of the Pritchard set, only responses given by at least three 

participants were included. This stricter criterion for valid responses was chosen in order to 

gain more reliable response options and proportions for them, as responses given by only one 

or two participants may be a result of pronunciation or transcription errors.   

3.3.1 Evaluation of the WSP model’s variable mode against three data sets  

3.3.1.1 Raw probabilities method. The performance of the WSP model’s variable mode 

using the raw probabilities method was compared against the naming responses from 

Andrews and Scarratt set, Treiman set and Pritchard set. The outcomes of these comparisons 

are summarised in Table 3.6, for both WSP-type and WSP-token versions.  As seen in the 

table, the two versions produce very similar results.    
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Table 3.6 

Comparison of WSP model (variable mode – raw probabilities) against three data sets of 

human nonword reading 

Data set Item group 
Human-model 

correlation 
RMSE Match proportion 

  

WSP-
type 

WSP-
token 

WSP-
type 

WSP-
token 

WSP-
type 

WSP-
token 

Andrews & 
Scarratt set 

regular .57 * .58 * 0.33 0.32 1.00 1.00 
irregular .32 .35 0.31 0.30 1.00 1.00 

reg-irreg diff. .45 .48 0.60 0.58 1.00 1.00 
Treiman set  .77 * .74 * 0.26 0.27  -  - 

Pritchard 
set 

1st response .37 * .37 * 0.28 0.28 0.92 0.92 
2nd response .21 * .21 * 0.33 0.33 0.40 0.40 
3rd response .24 .23 0.37 0.37 0.26 0.26 

 

Note. Match proportion for Andrews and Scarratt set is 1.00 as the WSP always produced the regular 

and the irregular pronunciation options found in the human data. Match proportion for Treiman set is 

not calculated because the proportion differences of irregular pronunciations for the regular and 

irregular items within each item group were of interest in this analysis, not whether the human modal 

response or less frequent human responses were found as the WSP’s pronunciation options. * denotes 

statistically significant correlation at alpha level of .05. RMSE = the root mean squared error of each 

model’s proportion for a given pronunciation option, relative to those in the human data. 

 

In the Andrews and Scarratt set, the proportions of regular responses as well as the proportion 

differences between irregular and regular responses were fairly similar to the corresponding 

proportions produced by the WSP model, as demonstrated by moderate, positive human-

model correlations. For instance, the two items that were pronounced regularly by all the 

participants (ginth and jinth), also received the highest proportion of regular pronunciations 

by the WSP-token (.81 and .72, respectively) and amongst the highest proportions of regular 

pronunciations by the WSP-type (.81 and .70, respectively). However, the human-model 

correlations for the irregular responses were somewhat lower. For instance, the two items that 

were pronounced irregularly by over 99% of the participants (zight and searn) received much 

lower proportions of irregular responses from the two versions of the model: WSP-token (.41 

and .65, respectively) and WSP-type (.39 and .64, respectively). Closer inspection of the 

proportions of regular and irregular responses revealed that the model tended to overestimate 

the proportions for regular responses: for 13 out of 16 items in the output from both versions 

of the model the regular proportions were larger than the irregular proportions. By contrast, 

this was the case for only three items in the human data.  
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In the Treiman set, the human-model correlations of context sensitivity scores were strong for 

both versions of the WSP model. The six word body item groups were particularly well 

matched: the largest context sensitivity scores found in the human data tended to also be the 

largest in the model’s output, and the smallest sensitivity scores in the human data were the 

smallest in the model’s output. However, the model’s context sensitivity scores for the two 

antibody item groups were less similar to those from humans: the larger score in human data 

for these items (.58) was the smaller in the model output (WSP-type: .36, WSP-token: .35) 

and the smaller score in the human data (.16) was larger in the model output (WSP-type: .37, 

WSP-token: .36). In other words, the model produced more context sensitive vowel 

pronunciations to items for which humans showed less context sensitivity, and vice versa. 

Finally, the absolute values of the context sensitivity scores varied less in the model output 

(WSP-type: .27-.46; WSP-token: .29-.48) compared to the range of values in the human data 

(.12-.86).  

In the Pritchard set, the human-model correlations for the proportions of naming responses 

were modest. Firstly, the proportion of items that the WSP model pronounces the same as 

humans do declines as the pronunciation options amongst humans become less common – 

while 1st responses by humans are matched by the WSP for 92% of the items, only 40% of 

the items are matched for the 2nd most common human pronunciations. Secondly, the human-

model correlations for the 1st responses remain just under .4 for both versions of the WSP, 

with even weaker correlations to the 2nd and 3rd pronunciations.  

To provide an estimate of the strength of human-model correlations that should be expected 

from a successful model, I extracted human-human correlations from two groups of 

participants, in the following way: I split the participants in the Pritchard data set into two 

groups – participants with an odd participant number (n = 27) and participants with an even 

participant number (n = 26). Then, I calculated the proportions of participants in each group 

that produced the 1st pronunciation option for each item, the proportions for the 2nd 

pronunciation option for each item, from both groups, and so on for the 3rd pronunciation 

option. As some items only received one or two different pronunciation options, the number 

of items to be correlated in these comparisons were 412 for the 1st pronunciation options, 407 

for the 2nd option and 393 for the 3rd option. The correlations for the proportions of the 

pronunciation options between the two groups of participants decreased from the 1st 

pronunciation option (r(410) = .83, p < .001) to the 2nd pronunciation option (r(405) = .52, p 
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< .001) and the 3rd option (r(391) = .22, p < .001). Compared to these human-human 

correlations, the WSP model is clearly below adequate levels of performance.  

Closer inspection of the type of items for which the human-model correlations were 

particularly low may shed light on how to improve the model. There were 30 items (for 

WSP-token, 28 for WSP-type) in the 1st response category for which the difference between 

the human and the model proportions was over .5. Nearly two thirds of these items received 

such different proportions between humans and the WSP model because the WSP produced 

less pronunciation options for them than humans did. Both versions of the WSP model 

produced only one pronunciation option for 19 of these items, thus resulting in a proportion 

of 1, which was much higher than the proportion of participants producing the corresponding 

pronunciation for these items. While no clear, dominant categories were found for these 19 

items, three types of pronunciations are worth noting. Firstly, there were four items with the 

vowel au (e.g., wauce, shrauk) for which the second most popular human response was /6/. 

The PSC au → /6/ does not exist in the WSP’s repertoire, and it is not a common PSC in 

English in general (cf. ablaut, degauss, Gaussian, Nauru, Saudi Arabia, and a few loan words 

such as sauerkraut). Secondly, for a handful of items, the second most common human 

responses showed context sensitivity in the antibody segment, such as wa pronounced as 

/wQ/ in items thwalc and thwazz or yod20 included in the pronunciations for items bune or 

gneuth (i.e., pronounced as /bjun/ and /njuT/). The thwa antibody segment is part of the 

WSP’s PSC knowledge, but it only occurs in one word, thwack, which does not reflect the 

context sensitive vowel pronunciation. Yod, on the other hand, only exists as a less frequent 

option for onsets, and as such it is not mapped onto the following vowel phoneme 

consistently enough to produce pronunciations with yod21. Thirdly, there were items that 

elicited so many different naming responses in humans that the proportion for any one 

pronunciation option was very small (e.g., tuise, with the 1st response proportion of .16).  

Apart from the items for which the WSP model produced far less pronunciation options than 

humans did, there were seven (WSP-type) and nine (WSP-token) items for which the 

participants gave nearly unanimous naming responses (and thus close to 1 as a proportion for 

these pronunciations), whereas the model produced more pronunciation options and thus 

smaller proportions for each of them. Five of the items in this category were due to the word 

 
20 E.g., the /j/ in the pronunciation of dune → /djun/ 
21 The yod pronunciations could be added into the WSP output as phonotactic constraints, as they precede the 

vowel sound /u/ in the presence of certain onsets (e.g., /d/ as in dune or /t/ as in tune) but not others (e.g., /J/ as 

in chew or /r/ as in rude). 



 Chapter 3: Evaluation of the WSP model 

 

62 

 

body olk receiving almost exclusively the regular pronunciation /Qlk/ from the participants. 

By contrast, the proportions for this pronunciation option from the model was at most .34 (by 

both versions of the model), while the irregular pronunciation /5k/ for items with this word 

body tended to get higher proportions than the regular options. There were also a handful of 

items for which the onset of the nonword received a nearly unanimous pronunciation 

amongst the participants (e.g., th as /T/ or g as /g/) whereas the model's proportions for these 

items reflected the two competing options (/T/ or /D/ and /g/ or /_/), thus producing much 

lower proportions for these items. 

Human nonword reading responses as phonemic transcriptions naturally reflect not only the 

type of PSC knowledge skilled readers have, but also fatigue, mispronunciations and 

transcription errors. Thus, it is not surprising that proportions for different pronunciation 

options in the human data should often be smaller than those produced by a computational 

model, due to a larger number of different pronunciations generated by skilled readers. This 

is demonstrated in Table 3.7, which depicts statistics for the number of pronunciation options 

produced by the participants and the WSP model for the Pritchard set, as well as the number 

of items in the Pritchard set that received more, less or the same number of pronunciation 

options by the humans compared to the number of pronunciation options by the WSP model. 

The same number of pronunciation options was produced for each item by the WSP-type and 

WSP-token versions of the model. 

As seen in this table, skilled readers produce more pronunciation options for a vast majority 

of the items than the model does. However, there are some items for which the model 

produces more options. The proportions from participants and the WSP model could be 

brought closer together for the former category of items, where the human proportions for 

different pronunciation options are lowered partly due to human error, by introducing sources 

of error also in the model’s output (e.g., a non-zero probability for making letter confusions).    
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Table 3.7 

Number of pronunciation options produced for Pritchard et al. (2012) nonword set by human 

participants and the WSP model (variable mode)  

  Human – full Human – min. 3 WSP 

Mean (SD) 8.39 (4.5) 2.59 (1.22) 1.9 (0.78) 
Range 1 - 24 1 - 7 1 – 5 
H > M 395 237 - 
H < M 4 54 - 
H = M 13 121 - 
 

Note. Human – full = all the human responses are included; human – min.3 = only responses 

produced by at least three participants are included; (H > M) = number of items for which humans 

produce more pronunciation options than the model; (H < M) = number of items for which humans 

produce less options than the model; (H = M) = number of items for which humans and the model 

produce the same number of options.  

 

Increasing the performance of the model for the latter category of items – where the model 

generates pronunciation options that are not present in the human responses – requires some 

consideration of why these differences in the number of pronunciation options occur. As the 

model’s pronunciation options are combinations of all the pronunciations that are associated 

with a given orthographic segment consistently enough (in the current models, the threshold 

is consistency of .3), sometimes this generates pronunciation options that are not produced by 

humans, such as brolk pronounced as /brQlk/, /br5k/ and /brQk/. The last option is not a 

likely response from skilled readers (although there was one participant producing this 

response in the Pritchard set), but it is produced by the WSP model because the coda lk is 

associated with the pronunciation /k/, due to items like folk and yolk etc. in the WSP’s 

vocabulary, which makes this correspondence consistent enough to be included in the 

assembly of pronunciation options. On the other hand, this procedure allows inclusion of 

important pronunciation options that do exist in human responses, such as ces pronounced as 

/kEs/, /sEs/, /kEz/ and /sEz/ (all of which were also produced by human participants in the 

Pritchard set). Additionally, for some items this procedure produces both likely and unlikely 

pronunciation options, such as for the nonword thelm. The pronunciation options for this item 

produced by the model are /TElm/, /DElm/, /TEm/ and /DEm/. As already discussed above 

(Section 3.2.3), the existence of pronunciation options /T/ and /D/22 for an onset segment th is 

 
22 Pronunciation options /D/ and /T/ for the onset th are due to the antibody parsing style (particularly for 

segments the and tha), the onset th - /D/ in isolation does not have high enough consistency to be included when 

the threshold for including a PSC in assembling pronunciation options is .3. 
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problematic, as humans rarely produce the latter option when reading nonwords in isolation. 

However, the coda options /m/ and /lm/ are important, because the former is the default 

pronunciation for lm, due to there being slightly more words like calm, palm etc., where the l 

is silent than words like film, realm etc. where the l is pronounced in the WSP’s vocabulary. 

Thus, inclusion of less consistent PSCs is beneficial for the coda in this case.  

This brings us to an important consideration about the small segment options in the WSP 

model, namely, that PSCs for onset and coda clusters are treated as a single unit, rather than 

as graphemes. Some of the unlikely pronunciation options in the WSP’s variable mode could 

be avoided by increasing the threshold for PSCs included in the assembly of pronunciation 

options. If the onset and coda segments were based on graphemes, some of the likely 

pronunciation options, such as lm → /lm/ would be included while less likely options (lm → 

/m/) would be left out. However, before modifying the model, it should be ensured that the 

proportions and pronunciation options in the human data are indeed representative of what 

different samples of skilled readers produce. This question will be addressed in the 

Discussion section.  

3.3.1.2 Multiple simulation runs method. Out of the five sets of simulation runs for each of 

the three data sets, Table 3.8 summarises the results for the sets of simulation runs that 

showed the best and the poorest performance. The choice of the best and the poorest 

performance was based on the human-model correlations for the 1st responses in the Pritchard 

set, the proportion difference between regular and irregular items in the Andrews and Scarratt 

set and the human-model correlation of context sensitivity scores in the Treiman set. Each set 

of simulation runs was matched with the sample size of the relevant nonword naming data set 

(i.e., 45 runs for Pritchard set and 24 for Andrews and Scarratt set and Treiman set each).   

What can be seen in Table 3.8, is that there is considerable variability in the level of 

performance different sets of simulation runs have. However, the performance in the 

Pritchard set does not vary as much as the performance in the other two, smaller data sets. 

For the Andrews and Scarratt set, the correlations of proportions of regular, irregular and the 

difference between regular and irregular items from the best performing set of simulation 

runs (both versions of the model) tended to be slightly higher than those obtained with the 

raw probabilities method. For the Treiman set, the best performing set of simulation runs 

produced slightly lower correlation to the human context sensitivity scores from WSP-type, 

but higher correlation from WSP-token, compared to the correlations from the raw 
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probabilities method. Finally, the best performing set of simulation runs from both versions 

of the model produced higher human-model correlations for the Pritchard set than those 

obtained with the raw probabilities method. 

Table 3.8 

Comparison of WSP model (variable mode – multiple simulation runs) against three data sets 

of human nonword reading 

Data set Item group 
Human-model 

correlation 
RMSE Match proportion 

    
WSP-
type 

WSP-
token 

WSP-
type 

WSP-
token 

WSP-
type 

WSP-
token 

Best performing set of simulation runs 

Andrews & 
Scarratt set 

regular .57 * .78 * 0.34 0.31 1.00 1.00 
irregular .41 .53 * 0.30 0.28 1.00 1.00 

reg-irreg diff. .50 * .68 * 0.61 0.55 1.00 1.00 
Treiman set  .74 * .86 * 0.28 0.28  -  - 

Pritchard 
set 

1st response .45 * .45 * 0.30 0.30 .92 .92 
2nd response .44 * .44 * 0.23 0.23 .34 .34 
3rd response .25 * .25 * 0.17 0.17 .15 .15 

Worst performing set of simulation runs 

Andrews & 
Scarratt set 

regular .32 .36 0.34 0.35 1.00 1.00 
irregular .12 .11 0.33 0.33 1.00 1.00 

reg-irreg diff. .19 .22 0.64 0.65 1.00 1.00 
Treiman set  .49 .33 0.27 0.28  -  - 

Pritchard 
set 

1st response .43 * .44 * 0.30 0.30 .92 .92 
2nd response .43 * .44 * 0.23 0.23 .34 .34 
3rd response .24 * .24 * 0.17 0.17 .15 .15 

 

Note. Match proportion for Andrews and Scarratt set is 1.00 as the WSP always produced the regular 

and the irregular pronunciation options found in the human data. Match proportion for Treiman set is 

not calculated because the proportion differences of irregular pronunciations for the regular and 

irregular items within each item group were of interest in this analysis, not whether the human modal 

response or less frequent human responses were found as the WSP’s pronunciation options. * denotes 

statistically significant correlation at alpha level of .05. RMSE = the root mean squared error of each 

model’s proportion for a given pronunciation option, relative to those in the human data. 

 

Overall, it might be difficult to see the benefit of using the multiple simulation runs method at 

all, since the output from one set of simulation runs to the next can be so variable (especially 

for small data sets). However, the next sections demonstrate the value of the multiple 

simulation runs method in more detail.     
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3.3.2 Comparison of the WSP model and Zevin and Seidenberg (2006) model  

The variable mode of WSP model was an attempt to address a gap in the current modelling 

work, which mostly neglects variability in nonword reading – both within and between 

participants. Exceptions to this pattern are a handful of modelling studies used in 

investigations of dyslexia (Perry et al., 2019; Rueckl, Zevin & Wolf VII, cited in Compton et 

al., 2019; Welbourne et al., 2011; Ziegler et al., 2008). For instance, in the studies by Perry et 

al. (2019) and Ziegler et al. (2008) the performance on different components of reading (such 

as access to orthographic lexicon or phoneme processing) from normally developing or 

dyslexic children were simulated by adding noise to the corresponding components in a 

computational model or by hindering learning in these components, such that the impairment 

of the different components were proportional to the level of deficits in the individual child’s 

performance in these components. Reading aloud output from these individualised models 

were very similar to the reading performance from the group of developing or dyslexic 

children.  

However, to my knowledge, only the work by Zevin and Seidenberg (2006) covers 

simulating individual differences in skilled readers. As the current PhD project focuses on 

non-pathological reading performance, the model developed in Zevin and Seidenberg (2006) 

is compared to the variable mode of the WSP model. Zevin and Seidenberg used a modified 

version of the model by Harm and Seidenberg (1999), a connectionist model with 

orthographic and hidden units, as well as a phonological attractor network, which allows 

noisy input to gravitate towards phonotactically legal patterns. Zevin and Seidenberg’s model 

(Z&S model from now on) consisted of 133 orthographic, 200 phonological and 100 hidden 

units. Additionally, 20 clean-up units mediated connections from a phonological unit 

(corresponding to a set of phonemic features) to itself and to other phonological units. This 

model was trained multiple times, so that each version of the model was exposed to a slightly 

different set of words. The same 5870 monosyllabic words were used for training each 

version of the model, but the number of times each word occurred was random, although 

based on token frequency of the words. Due to differences in the model’s dialect and that of 

the test sets (Andrews & Scarratt, 1998; Treiman et al. 2003)23, some items were removed 

(such as the case 2 CV from Treiman set). As such, I only report the comparisons between 

Z&S model and the WSP model on the Andrews and Scarratt data set (experiment 2). This 

 
23 Comparisons to Glushko’s (1979) data set were reported as well, but as only response times are available in 

this data set, it cannot be included in comparisons for WSP, which, in its current form, does not produce 

response times   
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data set consists of nonwords with either regular, consistent word bodies (RCB items, e.g., 

beal, pronounced regularly in all words), regular, inconsistent bodies (RIB items, e.g., heaf; 

pronounced regularly in some words such as leaf and irregularly in others such as deaf), no 

regular analogy word bodies with many neighbours (NRAM items, e.g., nalm; the word body 

occurs in many irregularly pronounced words) and no regular analogy word bodies that are 

unique (NRAU items, e.g., donth; a word body only occurs in a single, irregularly 

pronounced word).  

The pattern of naming responses from the human participants was compared to the output 

from the WSP model’s variable mode and versions of Z&S model in terms of the proportion 

of regular pronunciations to each item group and variability in pronunciations assigned to 

items in each item group. The variability was quantified as H measure of entropy (see 

Chapter 1, Section 1.1.2). The proportion of regularly pronounced items was calculated based 

on vowel pronunciation only, using Andrews and Scarratt’s definition of regularity (Andrews 

& Scarratt, 1998, Appendix B). The multiple simulation runs method was used for obtaining 

variable output from the WSP model and five different sets of simulation runs were generated 

for both type and token versions of the model. Each set consisted of 24 simulation runs, 

corresponding to the number of participants in the human data set. As all sets of simulation 

runs from both WSP-type and WSP-token versions produced the same pattern of results and 

the same statistically significant results, only the poorest performing group of simulation runs 

with the lowest human-model correlation across all items in the data set are reported, thus 

providing a conservative estimate of the WSP’s performance.    

The analysis of the proportion of regular pronunciations to different item groups revealed that 

in the human data the proportion of regular pronunciations decreased from one item group to 

the other, in the following order: RCB > RIB > NRAU > NRAM. (See Figure 3.2). This 

pattern is expected, given that the number of regular word body neighbours decreases in a 

graded fashion in these item groups. The difference between the RCB and RIB items was 

marginally significant in the human data (t(73.76) = 1.61, p = .11)24, while the RIB-NRAU 

difference (t(29.81) = 6.10, p < .001) and NRAU-NRAM difference (t(30.83) = 2.49, p = .02) 

were both statistically significant. Numerically, the simulation runs with WSP-type and 

WSP-token versions of the WSP model produced the same pattern (See Figure 3.2). 

Statistically, both WSP-type and WSP-token versions produced reliable RCB-RIB 

 
24 Welch t-test (2-tailed) is used in all the analyses reported in this section, due to unequal sample sizes of the 

item groups compared 
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differences (WSP-type: t(61.57) = 2.85, p = .006; WSP-token: t(66.65) = 2.57, p = .01) and 

RIB-NRAU differences (WSP-type: t(40.51) = 5.43, p < .001; WSP-token: t(43.16) = 5.46, p 

< .001), but non-significant NRAU-NRAM differences (WSP-type: t(46.00) = 1.11, p = .27; 

WSP-token: t(45.98) = 0.81, p = .42). Like the human data, the Z&S model’s output also 

yielded statistically significant RIB-NRAU and NRAU-NRAM differences, but unlike human 

data, the model also produced a significant RCB-RIB difference. Thus, while both the WSP 

and the Z&S models reflect the general pattern found in the human data, both models 

overestimate the proportion of regular pronunciations assigned to items with no regular word 

body neighbours. Overall, the Z&S model is a closer fit to the human data than the WSP 

model.  

Figure 3.2 

Percentage of regular pronunciations assigned to the Andrews and Scarratt nonwords (1998, 

Exp. 2) by human participants and computational models 

 

Note. reg. pron. % = percentage of regular pronunciations assigned to different item groups; RCB = 

nonwords with regular and consistent bodies; RIB = nonwords with inconsistent bodies; NRAU = 

nonwords with unique, irregular bodies; NRAM = nonwords with irregular bodies occurring in 

several words; Z&S, 2006 = approximate re-creation of the plot of simulation data from Zevin & 

Seidenberg’s model (2006).  

 

Turning to the variability in Andrews and Scarratt set, the variability of pronunciations 

assigned to different item groups (as measured by H-value) increased from RCB to RIB to 

NRAU. The NRAM items had slightly lower mean H than NRAU items, but both of the ‘no 

regular analogy’ item groups had significantly higher H than the RCB or RIB items (see 



 Chapter 3: Evaluation of the WSP model 

 

69 

 

Figure 3.3). In the human data, there was just significant RIB-RCB difference (t(76.20) = 

2.03, p = .05), reliable NRAU-RIB difference (t(31.43) = 4.34, p < .001) and no reliable 

difference between NRAM and NRAU items (t(37.55) = -0.29, p = .77).  

Figure 3.3 

 H-values as measures of pronunciation variability in the Andrews and Scarratt nonwords 

(1998, Exp. 2) by human participants and computational models 

 

Note. H-value = entropy H-value, a measure of pronunciation variability in different item groups; 

RCB = nonwords with regular and consistent bodies; RIB = nonwords with inconsistent bodies; 

NRAU = nonwords with unique, irregular bodies; NRAM = nonwords with irregular bodies occurring 

in several words; Z&S, 2006 = approximate re-creation of the plot of simulation data from Zevin & 

Seidenberg’s model (2006).  

 

Numerically, both versions of the WSP model produced the same pattern of mean H-values 

than that found in the human data, except that the NRAU items had a slightly lower mean H-

value than the NRAM items. Statistically, both versions of the WSP model produced the 

same pattern of results as found in the human data: reliable RIB-RCB differences (WSP-type: 

t(63.47) = 3.25, p  .002; WSP-token: t(64.21) = 3.07, p = .003) and NRAU-RIB differences 

(WSP-type: t(57.68) = 4.39, p < .001; WSP-token: t(55.06) = 4.58, p < .001), but no reliable 

differences between NRAM and NRAU items (WSP-type: t(44.52) = 0.41, p = .68; WSP-

token: t(45.31) = 0.49, p = .63). The Z&S model produced numerically similar pattern of 

mean H-values as that found in the human data, although the absolute value for the NRAM 

items was considerably lower in the model output. Statistically, the Z&S model produced a 

non-significant difference between RIB and RCB items, a significant difference between the 

items with regular analogies and those with only irregular analogies and a significant NRAM-
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NRAU difference25. As such, the general pattern of response variability found in the human 

data is also produced by the WSP and the Z&S models. However, both models underestimate 

the variability in each of the item categories. Both versions of the WSP model are a closer 

match to human data than the Z&S model, which is mostly due to a notably lower variability 

in the NRAM items produced by the Z&S model.  

In summary, both Z&S and WSP model produce the same general pattern of regular 

responses and response variability as found in the Andrews and Scarratt’s data (experiment 

2). However, the Z&S model is a closer match to human data for proportions of regular 

pronunciations in different items sets, while the WSP model simulates response variability 

better. These results will be considered further in the Discussion. 

3.3.3 Comparing individual participants to individual simulation runs 

The Pritchard et al. (2012) data set provides detailed information about skilled naming 

responses, as every participant’s naming response for every item is available. This level of 

detail allows further comparisons between these human responses and the output from the 

WSP model’s variable mode, using the multiple simulation runs method.   

One potentially useful benchmark against which to evaluate the performance of the WSP 

model’s variable mode is how well individual participants match the human modal responses 

and less frequent response categories and, importantly, for how many items individual 

participants assign pronunciations that are not produced by any other participant. To produce 

this type of benchmark, the proportion of naming responses that matched the human modal 

response, less frequent responses and responses not produced by other participants in the 

Pritchard set were calculated for each individual human participant. The same proportions 

were then calculated for each simulation run in the WSP model’s output, which consisted of 

45 simulation runs, corresponding to the number of participants in the Pritchard set. To use a 

conservative estimate of the model’s performance, the poorest performing sets of simulation 

runs (out of the five sets generated) were chosen from both the WSP-type and the WSP-token 

models, based on the mean proportion of human modal responses in the Pritchard set. 

However, the performance from all five sets of simulation runs from each version of the 

model were very similar with each other.  

 
25 I am constrained by the level of detail provided in the Zevin and Seidenberg (2006) – their simulation data is 

no longer easily accessible (J. Zevin, personal communication, January 26, 2022), and as such the analyses and 

plots in this section for the human and WSP data were also left without further detail (e.g., confidence intervals 

in the Figures 3.2 and 3.3).  
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These comparisons are summarised in Figure 3.4, which depicts the proportion of matches to 

each response category for each individual participant and each individual simulation run.  

Figure 3.4 

Proportion of matches to different response categories in the Pritchard et al. (2012) set by 

individual human participants and individual WSP model simulation runs 

 

Note. Each dot in the graph represents the proportion of responses from a single human participant or 

a single simulation run that correspond to a specific response category (e.g., human modal response, 

second most popular response, etc.). 
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Both versions of the WSP model produced nearly identical proportions in each response 

category. The results described here thus apply to both versions of the model. Most 

importantly, the mean proportion of matches to the human modal, the second and the third 

most common responses produced by the WSP model were almost identical to those 

produced by human participants, although the average human participant matched the human 

modal responses slightly better (mean proportion of matches was .61 for humans and .58 for 

the model). By contrast, the model simulation runs had a higher mean proportion of matches 

to the fourth or lower response category (humans mean proportion: .05; WSP mean 

proportion: .21) and higher proportion of mismatches (humans mean proportion: .10; WSP 

mean proportion: .15). This suggests that the WSP model produces more uncommon 

pronunciations, on average, than humans do, which is likely related to some of the 

pronunciation options available to the model (see Section 3.3.1.1 for similar findings and 

discussion). Overall, however, the model’s performance is mostly within the range of skilled 

readers’ performance. 

3.4 Evaluation of WSP model optimised for nonword reading data sets   

Optimising the WSP model for a nonword reading data set serves two purposes. Firstly, it 

allows further demonstration of the model’s behaviour. This should be particularly beneficial 

for the performance of the variable mode, where optimisation with a nonword data set may 

yield more human-like proportions than simply using the same weights that were used for the 

deterministic mode (as was the case when optimising the model with its vocabulary). 

Secondly, it may provide insights about the type of reading behaviour the composition of the 

nonword sets in question might encourage.  

The WSP-type and the WSP-token versions of the WSP model were optimised using each of 

the three nonword reading data sets described above, separately. The performance of the 

model when optimised for each of these data sets was then compared against all three data 

sets. The optimisation was performed as described in Chapter 2 (Section 2.3.2), except that 

this time the success of the output from the model’s deterministic version was compared 

against the number of matches to the human modal response in each data set. Because there 

were three items with unknown pronunciation (categorised as ‘other’) as the modal response 

in the Andrews and Scarratt set, I used the second most common response for these items. 

The success of the variable output was assessed based on the human-model proportion 

correlations for the difference in irregular and regular pronunciations in the Andrews and 

Scarratt set, the context sensitivity scores in the Treiman set and the 1st responses in the 
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Pritchard set. The weights for the resulting final versions of the model are listed in Table 3.9, 

for both WSP-type and WSP-token.  

Table 3.9 

Parsing style weights of the two versions of the WSP model optimised for nonword data sets 

Version Optimisation set 
Deterministic mode 

weights 
Variable mode weights 

    cv-c c-vc c-v-c cv-c c-vc c-v-c 

WSP-type 
Andrews & Scarratt 1.90 2.00 1.30 0.10 2.00 1.10 

Treiman 1.70 2.00 1.40 1.80 2.00 0.10 
Pritchard 1.80 1.60 1.50 0.60 1.00 1.90 

WSP-token 
Andrews & Scarratt 1.90 1.90 1.30 0.10 2.00 1.30 

Treiman 1.80 1.90 1.50 1.80 2.00 0.10 
Pritchard 1.80 1.60 1.80 0.40 0.90 2.00 

 

Note. cv-c = antibody-coda parsing style (e.g., wa-sk); c-vc = onset-word body parsing style 

(e.g., w-ask); c-v-c = small segment parsing style (e.g., w-a-sk). 

 

As seen in this table, the word body sized parsing style is generally the most advantaged in 

versions of the model that were optimised for the Andrews and Scarratt or Treiman sets. By 

contrast, the small segment parsing style tended to be advantaged in the versions of the model 

optimised with Pritchard set. These patterns of weights fit with the general characterisation of 

the three data sets, namely, that consideration of larger segments is beneficial for the 

Andrews and Scarratt and Treiman sets, whereas smaller segment reading style is more 

important for good performance in the Pritchard set. Additionally, as the Treiman set was the 

only one that also focused on items with irregularly pronounced antibody segments, the 

considerably larger weights for the antibody parsing style would be expected in the versions 

of the model that were optimised for the Treiman set compared to the other versions, where 

this parsing style should generally be less important. However, this was only true for the 

variable mode of the model, whereas the advantage of the antibody parsing style in the 

deterministic mode was surprisingly large regardless of the nonword set used for 

optimisation.   
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3.4.1 Deterministic mode 

The performance of the different versions of the WSP model on the three data sets is 

summarised in Table 3.10. The vocabulary-optimised versions of the model are also included 

for ease of comparison.  

Table 3.10 

Performance of versions of WSP model (deterministic mode) optimised for different nonword 

reading data sets  

 Data set 

 

Andrews & 
Scarratt 1998 

Treiman et al. 2003 Pritchard et al. 2012 

Model version 
1st Human 
pron match 

1st Human 
pron match 

Human-
Model 

correlation 

1st Human 
pron match 

Total 
match 

WSP-type-AS .69 .77 .70 .71 .96 
WSP-token-AS .69 .77 .68 .68 .94 

WSP-type-T .63 .82 .73* .73 .97 
WSP-token-T .69 .85 .79* .71 .96 
WSP-type-P .19 .70            - .79 .98 

WSP-token-P .19 .70            - .78 .98 
WSP-type-vocab .38 .75 .68 .68 .95 

WSP-token-vocab .56 .78 .72 .66 .94 
 

Note. Model’s optimised for AS = Andrews & Scarratt set, T = Treiman set, P = Pritchard set, vocab 

= WSP’s vocabulary. Human-model correlation = correlation between human and model sensitivity 

scores (difference in proportion of irregular pronunciations for irregular and regular items within each 

of the eight item groups in Treiman et al., 2003). Human-model correlation for WSP-type-P and 

WSP-token-P versions of the WSP model could not be computed as these models always produced a 

regular response to items, thus resulting in a 0 difference between proportions of irregular 

pronunciations for regular and irregular items in each item group. * denotes statistically significant 

correlation at an alpha level of .05. 

 

Unsurprisingly, the versions of the model optimised for a given nonword reading data set had 

the strongest performance on this data set. The versions optimised for Andrews and Scarratt 

set or Treiman set maintained a relatively strong performance across the three data sets. For 

instance, the performance on Pritchard set was still generally higher than that of the 

vocabulary-optimised versions of the WSP, the performance on the Andrews and Scarratt set 

for Treiman-optimised versions was higher than it was for the vocabulary-optimised versions 

and the performance on the Treiman set for the Andrews and Scarratt-optimised versions was 
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generally at least as good as it was for the vocabulary optimised versions. By contrast, while 

the Pritchard-optimised versions of the model performed very well on the Pritchard set – both 

WSP-type and WSP-token exceeded the DRC model’s proportion of matches for human 

modal responses – the performance on the other data sets suffered noticeably. For instance, 

no human-model correlations could be computed for the context sensitivity scores for the 

Treiman set, as every item was pronounced regularly by the Pritchard-optimised versions of 

the model, and the proportion of matches for the Andrews and Scarratt set was lower than 

those for the DRC or CDP++.  Comparing the WSP-type and the WSP-token versions of the 

WSP model as they were optimised for the different nonword data sets, the WSP-token 

version tended to outperform the WSP-type on the Andrews and Scarratt and Treiman sets, 

but the WSP-type performed better than the WSP-token on the Pritchard set.  

3.4.2 Variable mode  

Only the proportions for pronunciation options from the raw probabilities method are 

reported here for brevity. The performance of difference versions of the model on the three 

data sets is summarised in Table 3.11. As can be seen in this table, the Andrews and Scarratt-

optimised and Treiman-optimised versions of the model do not complement each other the 

same way they did in the deterministic mode – the Treiman-optimised versions produce 

worse correlations to proportions of regular, irregular and irregular-regular difference in 

Andrews and Scarratt set than what was found for the vocabulary-optimised versions. 

Similarly, the Andrews and Scarratt-optimised versions produce poorer human-model 

correlations of the context sensitivity scores in the Treiman set than the vocabulary-optimised 

versions did. By contrast, the Pritchard-optimised versions produce mostly better 

performance in the Andrews and Scarratt set than the vocabulary-optimised version did. 

Overall, even when the model is optimised for Treiman or Pritchard set, the model’s 

performance on these data sets is only slightly increased compared to the vocabulary-

optimised versions of the model. The only data set for which data set specific optimisation 

seems to yield larger benefits is the Andrews and Scarratt set. Finally, the WSP-type and 

WSP-token versions of the model produce very similar results for all data sets, which was 

also the case with the vocabulary-optimised versions of the WSP model in the variable mode 

(see Table 3.6).   

 

 



 Chapter 3: Evaluation of the WSP model 

 

76 

 

Table 3.11 

Performance of versions of WSP model (variable mode) optimised for different nonword 

reading data sets  

data set item group 
human-model 

correlation 
RMSE match proportion 

optimised for Andrews and Scarratt set 

  WSP-type WSP-token WSP-type WSP-token WSP-type WSP-token 

Andrews & 
Scarratt set 

regular .85 * .85 * 0.25 0.25 1.00 1.00 
irregular .74 * .75 * 0.23 0.23 1.00 1.00 

reg-irreg diff. .84 * .85 * 0.44 0.44 1.00 1.00 
Treiman set  .55 .53 0.27 0.27  -  - 

Pritchard 
set 

1st response .37 * .37 * 0.29 0.29 .92 .92 

2nd response .18 * .18 * 0.35 0.35 .40 .40 

3rd response .10 .09 0.36 0.36 .26 .26 

optimised for Treiman set 

  WSP-type WSP-token WSP-type WSP-token WSP-type WSP-token 

Andrews & 
Scarratt set 

regular .53 * .55 * 0.28 0.27 1.00 1.00 
irregular .12 .14 0.34 0.34 1.00 1.00 

reg-irreg diff. .33 .35 0.57 0.56 1.00 1.00 
Treiman set  .82 * .78 * 0.21 0.21  -  - 

Pritchard 
set 

1st response .31 * .30 * 0.32 0.32 .92 .92 

2nd response .15 .15 0.38 0.38 .40 .40 

3rd response .21 .19 0.43 0.44 .26 .26 

optimised for Pritchard set 

  WSP-type WSP-token WSP-type WSP-token WSP-type WSP-token 

Andrews & 
Scarratt set 

regular .55 * .56 * 0.45 0.44 1.00 1.00 
irregular .63 * .65 * 0.36 0.35 1.00 1.00 

reg-irreg diff. .61 * .62 * 0.78 0.77 1.00 1.00 
Treiman set  .62 .55 0.40 0.40  -  - 

Pritchard 
set 

1st response .42 * .42 * 0.28 0.28 .92 .92 
2nd response .19 * .19 * 0.34 0.35 .40 .40 
3rd response .13 .11 0.36 0.37 .26 .26 

 

Note. Match proportion for Andrews and Scarratt set is 1.00 as the WSP always produced the regular 

and the irregular pronunciation options found in the human data. Match proportion for Treiman set is 

not calculated because the proportion differences of irregular pronunciations for the regular and 

irregular items within each item group were of interest in this analysis, not whether the human modal 

response or less frequent human responses were found as the WSP’s pronunciation options. * denotes 

statistically significant correlation at alpha level of .05. RMSE = the root mean squared error of each 

model’s proportion for a given pronunciation option, relative to those in the human data. 
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Due to the little or no improvements in the WSP model’s performance when it was optimised 

for different data sets, it was also tested whether the range of weights in the optimisation 

procedure were too restricted. To test this possibility, the variable mode (WSP-type) was 

optimised with weights ranging from 1 to 50, in increments of 5 for all three data sets. The 

performance of the model did not improve noticeably for any of the data sets (see Appendix 

2). 

3.5 Discussion  

In this chapter, I evaluated a new computational model of reading aloud, the WSP model, 

against different human nonword reading data sets and other computational models of 

reading. In the simulations reported in this chapter, two versions of the WSP model were 

considered in parallel – these were the WSP-type, where the strength of the competing 

pronunciation options was determined by consistency and type frequency of the PSCs, and 

WSP-token, where the competition was determined by consistency and frequency measures 

based on summed token frequency. The model’s tendency to parse letter strings into larger or 

smaller segments is also influenced by weights for each parsing style, which can be optimised 

for a set of words or nonwords. The model was optimised first with existing monosyllabic 

words (vocabulary-optimised WSP, Section 3.2) to allow fair comparisons between the WSP, 

the DRC and the CDP++ models on three human nonword reading data sets. The WSP was 

also optimised specifically for these nonword reading data sets (Section 3.4), which allowed 

further inspection of the model’s performance as well as gaining more information about the 

data sets themselves, as discussed below. Finally, the model can produce invariable responses 

to nonwords, aiming to simulate central tendencies in human nonword reading (deterministic 

mode), and it can produce variable pronunciations to nonwords, aiming to simulate naming 

behaviour from a group of participants (variable mode). These two modes of operation were 

tested against the three nonword reading data sets and the performance of the variable mode 

of the model was also compared to a model that also produces variable output (Zevin & 

Seidenberg, 2006). 

3.5.1 The WSP model optimised for its vocabulary 

The performance of the vocabulary-optimised WSP model in the deterministic mode 

compared favourably to the DRC and CDP++ models. While each of the three models 

outperformed the other two models on one of the three data sets, both versions of the WSP 

model were never the poorest performing models (only the WSP-type version performed 
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poorly on the Andrews and Scarratt set). However, none of the models tested in this chapter 

captured the pattern of responses in the three human data sets adequately. This is exemplified, 

for instance, as the maximum percentage of matches between a model output and the human 

modal responses out of the four models and across the three data sets, which was 78% (WSP-

token model’s performance on the Treiman set).   

The usefulness of different parsing styles available for the vocabulary-optimised WSP model 

(deterministic mode) when reading aloud the Pritchard set nonwords was assessed by 

categorising the model’s responses as helpful or harmful. This analysis revealed that although 

all parsing styles were uniquely beneficial for the model’s performance, there was 

considerable overestimation of the antibody and word body sized parsing styles. Two 

important points are to be made from this finding.  

Firstly, the overestimation of responses based on the antibody parsing style seemed to be 

more severe than the overestimation of the word body parsing style, as the former had far 

more harmful wins than the latter. This is likely related to the WSP’s vocabulary used as an 

optimisation set. Inspection of the spelling patterns found in the WSP’s vocabulary may help 

explaining why vocabulary-optimised WSP model emphasises the larger segment reading 

styles over the smaller segments. Firstly, out of 3921 items in the WSP’s vocabulary, all three 

parsing styles produce the same, correct pronunciation for 76.6% of the items. The number of 

items that are pronounced correctly by only one of the parsing styles is 187 for the antibody 

parsing style, 315 for the word body parsing style and only three items for the small segment 

parsing style. Furthermore, there were 109 items for which both of the large segment parsing 

styles produce the correct pronunciation, 71 items for which both the antibody and small 

segment parsing styles produce the correct pronunciation and 69 items for which both the 

word body and the small segment parsing styles produce the correct pronunciation. As such, 

the maximal number of matches between the WSP’s output and the correct pronunciation for 

the monosyllabic words in the model’s vocabulary clearly requires an advantage for the 

larger PSCs. These characteristics still do not explain why the antibody parsing style was so 

advantaged compared to the word body parsing style. I do not have a satisfying explanation 

for this. However, it is worth noting that even though there are 315 items for which the 

correct pronunciation can only be obtained via the word body parsing style, this does not 

mean that a set of weights exists which would result the word body parsing style winning 

only for these items and not others, where this parsing style would lead to an incorrect 

pronunciation of a word.  
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I now turn to the second point regarding the finding that the WSP model seemed to 

overestimate the incidence of large segment reading style on the Pritchard set. This finding 

can partly be explained by the possibility that the composition of the Pritchard set encourages 

applying small segment reading style in skilled readers. This explanation is supported by 

aspects of the data set itself and the WSP model’s simulations on this data set. Firstly, as 

noted in the description of this data set (Section 3.2.3), the majority of the items had regular 

word bodies and only less than a quarter of the items had irregular bodies. Thus, a large 

proportion of these items had only a single plausible pronunciation of the vowel. Secondly, 

inspection of the vowel pronunciations in the human modal responses revealed that 87% of 

the items received a regular vowel pronunciation as a human modal response, while only 9% 

were classified as irregular. Thirdly, when the WSP model (deterministic mode) was 

optimised for the Prichard set, over 95% of the model responses to the Pritchard set were 

based on the small segment reading style (for both type and token versions). Furthermore, the 

results of the WSP that was optimised to fit the Pritchard set showed that the model 

performed well on the Pritchard set items, but notably worse on other nonword data sets, 

where the incidence of irregular pronunciations (i.e., responses reliant on larger segment 

PSCs) was considerably higher amongst participants. The same, although less extreme 

pattern of performance was seen for the DRC model, which produces almost exclusively 

regular pronunciations. Thus, two models that mostly apply small segment reading style have 

the strongest performance on the Pritchard data set while simultaneously showing poor 

performance on data sets where large segment reading style is beneficial. Finally, Perry 

(2018) conducted an analysis of the Pritchard set and concluded that many of the items in this 

set are ‘orthographically strange’, lacking significant overlap with existing words (for 

instance, 60% of the nonwords had one or no orthographic neighbours), and thus potentially 

encouraging different reading strategies to the ones employed in reading more typical 

nonwords. Perry (2018) suggests that a grapheme-by-grapheme reading strategy might 

become more widely used when reading style based on larger orthographic segments fails. 

Together these findings point to the conclusion that the small unit reading style is likely 

overrepresented in the human naming responses to the Pritchard set.  

The performance of the vocabulary-optimised WSP model in the variable mode was assessed 

by comparing the proportions of different pronunciation options for nonwords produced by 

the model to the proportion of participants producing the same pronunciations. The human-

model correlations were relatively strong for some data sets (e.g., the Treiman set, and 
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regular responses for the Andrews and Scarratt set), but considerably weaker for others, such 

as the Pritchard set and irregular responses in the Andrews and Scarratt set. Several issues in 

the model’s performance were identified. Most importantly, the model's proportions for 

regular and irregular body responses to nonwords did not always converge with those from 

human participants – the model overestimated the incidence of regular-body pronunciations 

in the Andrews and Scarratt set but overestimated the incidence of irregular-body responses 

in the Pritchard set. As shown with the data set specific optimisation of the model, some of 

these issues are not resolved with adjusting the pronunciation option weights - which is seen 

particularly clearly in the performance on the Pritchard set. The suggestion that the 

compositions of the Pritchard set may encourage small segment reading style argued above 

also bears relevance to the question of whether the proportions of participants producing a 

certain naming response in the Pritchard set are representative enough to demand 

modifications to the WSP model, so that the model would better reflect the patterns of 

responses found in this data set.  

While some of the shortcomings of the WSP model are worth focusing on (see below), some 

of the differences between the human and model proportions may need to be considered more 

carefully – namely, the pattern of naming responses for the Pritchard set can be seen as an 

example of list context effects in nonword reading, which have also been reported in previous 

studies (e.g., Brown & Deavers, 1999, Exp. 4; Rastle & Coltheart, 1999, Exp. 2). It is thus 

difficult to determine what exactly would count as ‘standard reading behaviour’ and what 

would be considered influence from the context in which nonwords are presented. If 

computational models aim to capture the general principles by which skilled readers name 

letter strings, list context effects may be considered as noise. However, if skilled readers are 

influenced by the context in which they name letter strings, an accurate account of skilled 

reading should also include this feature (for instance, by advantaging certain types of 

pronunciations for items based on recently presented items to simulate priming effects). On 

the other hand, list context effects, as well as other influences such as priming effects in 

nonword reading are likely a result of complex interactions of several factors, including 

semantic involvement in print-to-sound conversion (e.g., Rosson, 1983). As such, it may be 

wise to aim to model reading behaviour without these influences first.  

Yet, this simplified goal brings us back to the question: what is considered ‘standard reading 

behaviour’? If some nonword reading data sets encourage certain kind of reading behaviour, 

what kind of nonword data set would be as free from these influences as possible? 
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Considering that most nonword data sets to date were constructed for a specific purpose – 

i.e., manipulating certain properties of the nonwords in order to discover their influence on 

nonword reading (e.g., Andrews & Scarratt, 1998; Treiman et al., 2003) or selecting items 

based on maximal contrast between computational models (Pritchard et al., 2012), it may be 

beneficial to construct a nonword naming data set that is a representative sample of the PSCs 

found in English. While this approach still does not remove all influences of context (e.g., 

nonwords named in isolation vs. intermixed with words), it may still be informative in search 

for the ‘standard reading behaviour’ current computational models aim to simulate.  

Comparison of the WSP model’s variable mode to the model by Zevin and Seidenberg (2006) 

showed that, overall, both models capture the general pattern of human naming responses in 

terms of the proportion of regular pronunciations and pronunciation variability for different 

nonword groups in the test set (Andrews & Scarrat, 1998, Exp. 2). Focusing on the individual 

differences in nonword reading, Zevin and Seidenberg (2006) suggest that these differences 

could arise from different exposure to words and PSCs within them. As such, they suggest 

that models which include a mechanism for learning PSCs is needed, and multiple runs of 

these types of models can represent nonword reading responses from participants with 

varying experience with reading. While there is no such learning mechanism in the WSP 

model, and the underlying probabilities for each pronunciation option remain the same across 

simulation runs (or ‘participants’), the WSP model can produce reading responses that are 

variable, reflecting the choice of pronunciations skilled readers make for ambiguous stimuli. 

Thus, the WSP model’s variable mode can be seen as a reflection of the variability found 

within subjects, on a trial-by-trial basis, even when the model does not capture individual 

differences in longer-term tendencies skilled readers might have when reading aloud 

nonwords (e.g., due to their personal PSCs, or reading style adopted as a result of reading 

instruction in school). By contrast, Zevin and Seidenberg’s model simulates the variability in 

global tendencies of reading aloud, i.e., between subjects, but not the within-subjects 

variability, as the same item would always be pronounced the same way by the same version 

of the model that represents a single participant.  

As both models showed a relative strength in one of the measures investigated, Zevin and 

Seidenberg’s model in the proportion of regular responses and the WSP in the response 

variability, it seems that a model simulating either between-subjects or within-subjects 

variability in nonword reading is sufficient for capturing the general pattern in the human 

data. Yet, this level of analysis is not sufficient for differentiating between the two types of 
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variability; as pointed out by Ulicheva et al. (2021), nonword naming studies based on single 

testing sessions do not allow differentiating between within and between-subjects variability. 

I therefore suggest that more detailed data sets with naming responses to all the items from all 

the participants (such as the one from Pritchard et al., 2012) are necessary for further 

investigations on variability in human nonword reading. With such data sets, the relative 

success of Zevin and Seidenberg’s model and the WSP model could be teased apart, as 

similarity to patterns of both between-subjects and within-subjects variability could be tested. 

This would be the case especially with data sets that contain repeating sub-lexical patterns or 

that are collected during multiple testing sessions with repeating items across sessions. 

An idea of how to evaluate the performance of a model that produces variable output with a 

more detailed data set was presented in Section 3.3.3. Comparison of individual participant’s 

performance or an individual WSP model’s simulation run against the group tendencies in the 

Pritchard set showed that an average simulation run performed comparably to an average 

human participant. However, the WSP model produced more uncommon pronunciations than 

an average human participant did.  

3.5.2 The WSP model optimised for nonword data sets 

When the WSP model was optimised for specific nonword data sets, the performance of the 

deterministic mode of the model was generally higher than that of the vocabulary-optimised 

model. This was particularly true when the model was optimised for the Andrews and 

Scarratt or Treiman sets, which produced considerably high performance across data sets. As 

mentioned above, optimisation of the WSP model for the Pritchard set produced a less 

balanced performance, where high incidence of small segment reading style hindered the 

model’s fidelity to human-like naming responses in two of the data sets.  

The most important finding about the data set specific optimisation in the variable mode was 

that the model’s performance was not increased noticeably in the Pritchard and Treiman sets, 

when the model was optimised specifically for these data sets. Only the performance on the 

Andrews and Scarratt set benefitted considerably from the model optimisation for this data 

set. This finding suggests that something else than the relative strength of the weights in the 

WSP model prevents it from reaching higher convergence with the pattern of proportions for 

different pronunciation options found in the human data.  



 Chapter 3: Evaluation of the WSP model 

 

83 

 

3.5.3 Limitations and future directions 

The finding that skilled readers do not produce context sensitive or irregular pronunciations 

as often as might be expected based on the PSCs found in existing words (Treiman et al., 

2003; Treiman, et al., 2007) is problematic for the WSP model. In the deterministic mode, the 

context sensitive responses tended to be too frequent compared to human responses (e.g., all 

the items with an onset g followed by e received a soft pronunciation by the model) and in the 

variable mode, the proportions of context sensitive and insensitive responses did not always 

correspond to those found in the human data. While more human-like proportions of context 

sensitive responses could be achieved by applying a disadvantage for context sensitive 

pronunciation options in the model’s variable mode, this would only be an ad hoc 

modification that would not inform us about the mechanisms by which this lower context 

sensitivity happens in human nonword reading. Thus, a more general solution is needed.  

A related issue for the WSP model was briefly discussed in Section 3.3.1, namely, that the 

model’s assembly of pronunciation options in the variable mode sometimes produces 

responses that are rarely or never produced by humans. This is partly because onsets and 

codas in the WSP’s PSC knowledge and the procedure for naming a letter string are treated as 

single units regardless of the number of graphemes in them. A potential way forward would 

thus be to modify the representation of the onset and coda segments so that they correspond 

to graphemes and to increase the threshold for inclusion of less frequent PSCs in the 

assembly of pronunciation options. However, it remains to be seen whether this modification 

would result in reduced performance on other aspects of nonword reading that the model 

currently simulates well. For instance, the issue of context sensitive onsets involving a soft g 

pronunciation would still remain without a solution: pronunciation associated with a g 

followed by e is currently represented in the WSP model as a ge segment for all parsing 

styles with an onset segment (i.e., word body and small segment parsing styles) and in the 

antibody parsing style whenever the full vowel segment is found in the WSP’s vocabulary. 

Thus, most items with a ge-segment would receive a context sensitive pronunciation by all 

three parsing styles. In the variable mode of the WSP, the same way of representing the ge-

segments would still result in considerably higher proportion of context sensitive 

pronunciations than context insensitive pronunciations. Removing this way of representing 

the context sensitive pronunciations for g would require an alternative solution so that these 

types of pronunciations could be produced at all by the model.   
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Similarly, the issue of pronunciations assigned to the th-onsets by the WSP’s variable mode 

is not solved with higher threshold for inclusion of PSCs for the assembly of pronunciation 

options. This is because the pronunciation most consistently associated with the antibody 

segment the is /DE/, with a consistency value of .75. Thus, this pronunciation, which is rarely 

produced by human participants, would have to be included as a pronunciation option. One 

way to avoid these problematic th-onset pronunciations would be to include part of speech 

information in the PSC knowledge of the WSP model, for instance, such that only the PSCs 

occurring in content words would be included.   

As noted above regarding the nonword data set specific optimisation of the WSP’s variable 

mode, adjusting weights for the different pronunciation options does not increase the model’s 

performance considerably for all data sets. As such, the source of the model’s imperfect 

correspondence to human proportions for different pronunciation options needs to be found 

elsewhere. One such source may be the vocabulary which the WSP’s PSC knowledge is 

based on. Unlike the model, skilled readers naturally base their PSC knowledge on more than 

just monosyllabic words. Thus, inclusion of disyllabic and multisyllabic words in the WSP’s 

vocabulary may produce more human-like PSCs. On the other hand, the current vocabulary 

of the WSP model, on which the PSCs available to the model are based on, contains words 

that are likely not known by an average reader. More realistic vocabulary for the model could 

be achieved by using a frequency threshold for inclusion of items, for instance, only items 

with a Zipf frequency of 4. However, as the frequency of the word does not always predict 

whether the word is generally known by skilled readers (Brysbaert et al., 2019) a word 

prevalence measure, the proportion of participants indicating they know a given word 

(Brysbaert et al., 2019), may be a better criterion for inclusion of words in the WSP model’s 

vocabulary.  

Additionally, as pointed out in the comparisons to the Zevin and Seidenberg’s model, the fact 

that the same PSC knowledge is available to each simulation run (‘participant’) of the WSP 

model is unrealistic. For the WSP model’s variable mode to simulate personal PSCs for each 

participant, the model’s PSC knowledge should be based on slightly different sets of words. 

Additionally, or alternatively, the weights for each parsing style should vary between 

simulation runs (‘participants’), to allow simulation of the global tendency to parse letter 

strings into larger or smaller segments that skilled readers appear to differ in. 
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Inspection of the WSP model’s performance as it was optimised for different nonword data 

sets was informative, particularly in terms of the composition of these data sets. However, the 

issue of what kind of psychologically plausible data set should be used for optimising the 

WSP model is still open. This data set should be representative of skilled readers’ experience 

with reading. However, exposure to the WSP’s vocabulary reported in this chapter (i.e., the 

vocabulary-optimised model) demonstrated that using this optimisation set may result in the 

model over-emphasizing certain aspects in reading, such as the antibody parsing style, which 

is not the most widely used parsing style amongst skilled readers (e.g., Andrews & Scarratt, 

1998, Exp. 1; Kessler & Treiman, 2001; Treiman et al. 1995).  

By contrast, optimising the WSP model for the Treiman set appeared to result in a balanced, 

well performing model across data sets. There are two potential reasons for why the Treiman 

data set produced such an optimal balance between the three parsing styles in the WSP 

model. Firstly, this data set consisted of an even number of regular and irregular items, where 

the irregular items tended to elicit a high proportion of context sensitive pronunciations in 

skilled readers. Thus, only combinations of weights that produce both irregular and regular 

pronunciations will result in a strong performance on this data set. For instance, the small 

segment parsing style needs to override the antibody parsing style for items with regular word 

bodies (as the antibody parsing style is the only one that might produce a different 

pronunciation than the other two parsing styles for these items). Secondly, for the purposes of 

optimising the WSP model, the Treiman et al. data set may have an appropriate proportion of 

items requiring an antibody analogy (two item groups) compared to items requiring a word 

body analogy (six item groups). Thus, for the model to produce a maximal number of human 

modal responses in this data set, the antibody parsing style needs to be strong enough to win 

for a relatively small number of items, while the word body parsing style needs to win for a 

substantial proportion of the items. This type of balance between the two large segment 

parsing styles should be particularly beneficial for the model’s performance, because the use 

of antibody analogies by skilled readers appears to be restricted to a few cases, the qua and 

wa antibody segments (e.g., Treiman et al., 2003), while word body analogies are used in 

reading aloud a wider range of nonword spelling patterns (e.g., Andrews & Scarratt, 1998; 

Brown & Deavers, 1999; Treiman et al., 2003). To investigate the performance of the WSP 

model optimised for Treiman set further, the versions of the WSP model optimised for this 

data set will be included in model comparisons in Chapters 4 and 5, where computational 

models are compared to new nonword reading data sets.  
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Finally, the two versions of the WSP model, the WSP-type and the WSP-token, do not seem 

to differ noticeably in their capacity to capture human data – though some data sets under 

some optimisation conditions were better simulated by the token version, others were better 

fit by the type version. As such, these investigations have not provided a definite answer to 

whether type or token frequency is better suited for capturing the kind of PSC knowledge 

skilled readers might utilise when reading aloud. Thus, as described below, this issue will be 

approached empirically in the following chapters. 

3.5.4 Conclusion 

To conclude, the WSP model provides a flexible approach to investigating print-to-sound 

conversion in skilled readers. The model can also be used for gaining further insight to 

characteristics of different nonword reading data sets. Compared to the DRC and CDP++ 

models, the deterministic mode of the WSP model has an overall, strong performance in 

simulating nonword reading behaviour of skilled readers, across data sets. However, none of 

the models compared in this chapter fully captured the pattern of naming responses in the 

human data. The performance of the variable mode of the WSP model was somewhat 

promising, but clearly below what could be considered as successful simulation of variability 

in nonword reading. Yet, when different ways of evaluating the variable output of the model 

were considered, it was found that the individual simulation runs of the model perform 

almost as well as individual participants do. Several ways to improve the model’s variable 

mode were discussed, such as improvements to the PSC knowledge of the model (e.g., basing 

the PSC knowledge on content words only) or modifications on how onset and coda segments 

are represented in the model (e.g., graphemes rather than consonant clusters). The 

investigations conducted in this chapter also highlight the potential issues one ought to 

consider when evaluating a model’s performance against nonword naming data sets, namely, 

other influences that may shape the nonword reading responses besides the PSC knowledge 

of skilled readers. While the performance of the WSP model on the available data sets was 

informative, it is important to see how well the performance seen so far would generalise to 

different types of data and, indeed, whether some of the shortcomings identified with the 

available data sets would also be as problematic in other data sets. As such, Chapters 4 and 5 

present new human nonword reading data and comparisons to WSP and other computational 

models are made. Furthermore, as the WSP’s type and token frequency versions performed 

very similarly in the three data sets used thus far, the experiments reported in the following 
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chapters were designed to investigate the difference between the role of type and token 

frequency in nonword reading empirically.  

 

 

 

 



 Chapter 4: Token frequency in nonword processing 

 

88 

 

 

Chapter 4 : Token frequency in nonword processing 
 

4.1 Introduction 

When skilled readers assign pronunciations to nonwords, they are likely to employ 

knowledge of several statistical properties of the writing system, such as consistency and 

frequency of print-to-sound correspondences (PSCs; e.g., Andrews & Scarratt, 1998; 

Seidenberg et al., 1994, see also Section 1.1 in Chapter 1). However, agreement has not been 

reached about which statistical properties skilled readers are sensitive to when reading aloud 

nonwords. One of the remaining questions is whether nonword reading is influenced more by 

type frequency, that is, the number of words embodying a given PSC than by token 

frequency, that is, the frequency of the words embodying a given PSC. For instance, are 

skilled readers more likely to name a nonword strave to rhyme with words like brave, cave 

and pave (using the PSC ave → /1v/) because this PSC occurs in several words? Or would 

skilled readers pronounce this nonword to rhyme with have (using PSC ave → /{v/) as this 

PSC is encountered often, although in only a single word. Only a few studies provide direct 

empirical evidence on the topic and due to limitations of this previous research, more 

conclusive evidence is still needed.  

In this chapter, I report results from an experiment designed to investigate the role of token 

frequency in nonword processing, specifically regarding pronunciations assigned to 

nonwords. Apart from the relative importance of type and token frequency of PSCs, it is also 

valuable to discover whether token frequency has any influence in nonword processing and if 

so, how large this effect is. Implications of these findings bear relevance to theory 

development of reading aloud. Additionally, due to the type of stimuli used in the 

experiment, a secondary goal of the study was to investigate the relationship of consistency 

and type frequency in nonword reading. The secondary goal of the study can be seen as an 

edge case which might be particularly problematic for computational models of reading with 

strong reliance on consistency of PSCs. The empirical findings from the study are compared 

with the output from some current computational models of reading. Empirical evidence from 

investigations of the relative importance of type and token frequency is outlined first, 

followed by an overview of the role of type and token frequency in computational models of 

reading, after which the current study is described.  
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4.1.1 Token frequency in human nonword reading 

The question of whether type or token frequency of PSCs better characterises human 

nonword reading has been addressed in only a handful of studies (Andrews & Scarratt, 1998; 

Johnson, 1970; Kay, cited in Kay & Marcel, 1981; Norris, 1994; Treiman, Goswami and 

Bruck, 1990). While some evidence for the role of token frequency is reported (Andrews & 

Scarratt, 1998), the findings from these studies mostly suggest that type frequency of PSCs is 

more influential in nonword reading. However, characteristics of these studies do not always 

allow strong conclusions to be drawn. Some of the issues in these studies are outlined below. 

 

Johnson (1970) investigated pronunciations assigned to vowel clusters in nonwords by 

developing readers (second, fourth and sixth graders). The participants chose a pronunciation 

from four options (four existing words in which the critical vowel cluster was pronounced in 

different ways). One of the aims of the study was to determine whether the children’s 

pronunciations of the vowel clusters would be associated more closely to type or token 

frequency-based measures of most common PSCs. Johnson extracted the type and token 

frequencies from different corpora – the type-based measures came from a 20,000-word 

corpus, originally compiled by Thorndike as the most frequent English words and updated by 

Venezky (1963). The token corpus consisted of 1000 most frequent English words, as they 

occur in written American English (by Kucera and Francis, 1967). The proportions of 

different pronunciations for each vowel cluster were thus calculated either as the number of 

words in which a given pronunciation occurred (type-measure) or as the number of words 

with the given pronunciation, multiplied by their token frequency (token-measure). For 

example, a PSC ou → /U/ proportion was 0.01 in type-based measures, but 0.26 in token-

based measures (due to highly frequent items could, should and would). Pronunciation 

preferences to nine vowel clusters were investigated such that 10 nonwords for each cluster 

were created. Via descriptive comparisons, Johnson concluded that type frequency predicts 

human nonword pronunciations better than token frequency. For instance, the most common 

human pronunciation matched the most common pronunciation for eight out of nine vowel 

clusters based on type frequency and seven out of nine vowel clusters based on token 

frequency. Some issues to point out from this study are that the type and token frequency 

measures were derived from two different corpora, which may lead to inconsistencies 

between the two measures. Additionally, the participants’ reading ability varied considerably. 

In principle, sensitivity to either type or token frequency of PSCs may change as reading 
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skills develop. Most importantly, the pronunciations were investigated on a grapheme level, 

thus ignoring contextual effects to the vowel pronunciations26. While this level of analysis is 

not necessarily a problem for comparing type and token frequency-based PSCs, it demands 

more careful selection of stimuli. This is because the most common pronunciations for 

graphemes based on type counts, by definition, reflect the PSCs that occur in the largest 

number of words. By contrast, the non-standard, or irregular pronunciations for vowel 

clusters tend to be exemplified by highly frequent words. For example, the most common 

pronunciation for vowel clusters ea or oo depend on the coda, such that ea followed by d and 

oo followed by k are mostly pronounced irregularly in existing words (e.g., head and book), 

while these vowel clusters combined with most other codas are associated with a regular 

pronunciation (e.g., heal and boost). If the test items mostly included orthographic segments 

without the codas that would elicit an irregular pronunciation, the test set would be biased 

towards type-based PSCs. For some vowel clusters, this was indeed the case, such as oo, for 

which only two out of the ten nonwords used would encourage irregular pronunciations as 

they had a coda k. As such, while Johnson’s study does provide some indication of the 

importance of type frequency over token frequency, this finding needs to be confirmed by 

investigations with stricter control of the stimuli, bearing in mind other properties of the 

PSCs, such as the vowel context, demonstrated by later research (e.g., Brown & Deavers, 

1999; Treiman et al., 2003).     

 

Another study investigating the role of type and token frequency was conducted by Andrews 

and Scarratt (1998, see Chapter 1, Section 1.1.3). Their two experiments showed that when 

skilled readers name regular-consistent, inconsistent and irregular-consistent nonwords, the 

likelihood of pronouncing a nonword regularly is best predicted by a type-based measure of 

the proportion of regular body neighbours. Importantly, token-based measures also served as 

significant predictors, but the overall fit of the regression models based on type-metrics was 

higher (R2 = .69) than those based on token-metrics (R2 = .62). It is worth noting that the 

results reported by Andrews and Scarratt were based on summed token frequencies, rather 

than, for instance, maximum token frequencies. However, the authors note that they also 

considered maximum token frequency, which was not a significant predictor for the 

dependent variables (Andrews & Scarratt, 1998, footnote 11, p. 1071). This is important, 

because summed token frequency is correlated with type frequency. This is because summed 

 
26 While some qualitative observations about contextual effects of the vowel pronunciations are provided in this 

study, these are not considered in terms of the main analysis. 
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token frequency also includes information about the number of items included in the final 

summed value, not only the token frequency of these items. As a demonstration of this 

relationship, the Weighted Segments Pronunciation (WSP) model’s PSC knowledge is a 

collection of PSCs of varied sizes for which consistency and different measures of frequency 

were then calculated. Calculated across all the PSCs in this data base, type frequency and 

summed token frequency had a strong positive correlation (r(3211) = .93, p < .001). By 

contrast, maximum token frequency correlated with type frequency to a far lesser extent 

(r(3211) = .3, p < .001). Bearing this in mind, it is possible that token-based measures in 

Andrews and Scarratt’s experiments were significant predictors because they also contain 

type frequency information, not because token frequency per se predicts nonword reading 

behaviour. Thus, quantifying token frequency in a different way, for instance, as maximum 

token frequency, may be more informative in investigations aimed at teasing apart the 

influence of type and token frequency.  

 

Additionally, a study by Treiman et al. (1990) bears some relevance to the question of token 

versus type frequency, although this study was designed to answer different questions. In 

three experiments, adults and 1st and 3rd graders named 48 regular and consistent nonwords 

which were classified as either high or low. The word body segments in high nonwords were 

more prevalent in the language based on three measures: 1) type frequency, that is, the 

number of monosyllabic words in which the word body segment was pronounced the same 

way), 2) the number of these words also occurring in a list of words in reading materials for 

children and 3) the summed token frequency of these words. The high and low words 

contained the same graphemes (e.g., high: tain, goach and low: taich, goan) and the antibody 

segments in the nonwords were similar in frequency. Thus, differences in pronunciations 

assigned to high and low items can be attributed to the word body segments, rather than 

graphemes or antibody segments. Correct pronunciations for nonwords were those following 

GPC rules (as defined by Venezky, 1970). Both children and adults made more errors in 

naming the low items compared to the high items and lexicalisation errors were made more 

often for high items than for low items. Separate regression analyses on error proportions 

from the adult data with each of the three measures of prevalence showed that the first two – 

type frequency of word body segments and the number of words containing the word body 

segment found in children’s reading materials – were significant predictors (explaining .14 

and .13 of the variance in naming errors, respectively), whereas summed frequency of words 

with the word body segment just missed statistical significance and explained slightly less 



 Chapter 4: Token frequency in nonword processing 

 

92 

 

variance in naming errors (.11). In terms of conclusions about the role of token frequency in 

nonword reading, the same issue mentioned above for Andrews and Scarratt’s study, namely, 

that using summed token frequency makes the distinction between type and token frequency 

less clear, also applies to the study by Treiman et al. (1990).  

 

As an extension to Treiman et al. (1990) study, Bowey and Hansen (1994) also investigated 

the rime frequency effect, that is, more accurate naming of nonwords for high than low items, 

in developing readers. However, the high items in this study also had higher type and token 

frequency, and thus cannot answer the question about the relative importance of type and 

token frequency in print-to-sound conversion.  

 

Additionally, in a set of experiments by Jared et al. (1990) the role of type and token 

frequency was investigated in word naming, with carefully controlled stimuli characteristics. 

Most importantly, the consistency effect in word naming, that is, faster and more accurate 

naming of consistent words (words with no enemies) compared to inconsistent words (words 

with friends and enemies), was found to depend on the relative frequencies of the friends and 

enemies rather than the number of friends and enemies. For instance, in Experiment 2, four 

groups of inconsistent words with crossed factors of frequency of friends (low or high) and 

frequency of enemies (low or high) were matched with four groups of consistent words in 

terms of important factors such as mean frequency of friends, length and frequency. The 

consistency effect (naming latencies and accuracies of the inconsistent items versus the 

matched consistent items) was found to vary based on the relative frequencies of friends and 

enemies, such that the largest effect was found for inconsistent items with low frequency 

friends and high frequency enemies (significant in both by-items and by-subjects analyses) 

and the smallest effect for inconsistent items with high frequency friends and low frequency 

enemies (ns. both in by-items and by-subjects analyses). 

Furthermore, in Experiment 3, naming latencies to two types of inconsistent words were 

compared: words with higher number of friends than enemies (more-friends items) and words 

with higher number of enemies than friends (more-enemies items). Importantly, the two 

groups of words were matched in terms of their mean summed frequency of friends and 

enemies (and the mean summed frequency of enemies was larger than the mean summed 

frequency of friends in both groups). The frequencies of the words in each group were also 

matched. With these characteristics of the stimuli, if type frequency plays a role in 
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consistency effects, the more-friends group of words should yield a smaller consistency effect 

than the more-enemies group of words. If token-frequency is driving the consistency effect, 

then no differences should be found between the consistency effects produced by these two 

groups of items. 24 participants gave speeded naming responses to these items. The results 

for the latency data showed an overall consistency effect – inconsistent words were named 

more slowly than consistent words. No effect of the inconsistent word type (more-friends or 

more-enemies) was found, although the more-friends items showed a numerically larger 

consistency effect (42 ms) than the more-enemies items (34 ms). The error data showed a 

significant effect of inconsistent word type, such that more errors were made for more-

enemies items (7.1%) than for more-friends items (3.6%). Jared et al. conclude that the 

latency and error data showing opposite numerical trends is suggestive of no reliable effect of 

type frequency in consistency effects. While these results provide evidence for the 

importance of token frequency in word reading, more direct evidence regarding the type of 

naming responses assigned to nonwords is still needed.   

 

Finally, Norris (1994) compared the performance of his multiple-levels model (see Chapter 1, 

Section 1.2.4) against Glushko’s (1979) nonwords when the frequency of the model’s PSC 

rules were either based on type or token counts. Compared to the incidence of ‘correct’ 

responses (defined by Glushko) to inconsistent nonwords in the human data (78%), the type-

based rules produced a more human-like performance (74%) than the token-based rules 

(56%). However, it is not clear whether the same nonwords were pronounced correctly by 

humans and by either type or token-based version of the model.  

 

Overall, the available empirical evidence for the relative importance of type and token 

frequency and particularly compelling evidence for the role of token frequency in nonword 

reading is scarce. Some of the limitations pointed out in the abovementioned studies suggest 

that more research is needed.  

 

4.1.2 Frequency measures in computational models 

In addition to the models considered in Chapter 3, namely, the dual-route cascaded (DRC) 

model, the dual process connectionist (CDP++) model and the WSP model, another model of 

reading, a PDP model by Plaut et al. (1996, Simulation 1) is also included in the model 

comparisons in this chapter. This model is included due to the nature of the stimuli used 



 Chapter 4: Token frequency in nonword processing 

 

94 

 

(described below in Section 4.1.3), which may prove particularly problematic for models 

with strong emphasis on consistency of PSCs. Therefore, a larger variety of these types of 

models may be informative27.     

The DRC model (see description of the model in Chapter 1, Section 1.2.1) assigns 

pronunciations to nonwords based on grapheme-phoneme correspondence rules, that is, 

grapheme sized PSCs with the highest type frequency. Thus, the model’s reading behaviour 

reflects type frequency in a categorical manner, such that the PSCs with the highest type 

frequency will always be employed. Token frequency, on the other hand, is not influential in 

the DRC model’s nonword reading.  

The CDP++ model (see description in Chapter 1, Section 1.2.2) names nonwords based on 

PSCs of varying sizes, which are learnt via training on existing words. As the learning rate of 

the model during training is weighted by a token frequency value of each word, the 

correspondences in more frequent words should have a greater influence on the model’s 

reading behaviour than those in less frequent words. However, correspondences in larger 

number of items would also influence the final reading performance more than 

correspondences occurring in fewer words. As such, the CDP++ model should show 

sensitivity to both type and token frequency of PSCs.      

The PDP model by Plaut et al. (1996, Simulation 1, see description in Chapter 1, Section 

1.2.3), which I will refer to as Psim1, also names nonwords based on different sized PSCs, 

learnt from exposure to existing words and their pronunciations. This model is also sensitive 

to both type and token frequencies of PSCs.  

The WSP model (Chapter 2) also produces nonword pronunciations based on PSCs of 

varying sizes. The statistical properties that determine which pronunciation the model assigns 

to a letter string can be chosen by the user. Two versions of the WSP evaluated in Chapter 3 

were WSP-type, where type frequency of the PSCs influences the final pronunciation the 

model gives, and WSP-token, where token frequency is influential instead. Note, however, 

that these versions of the WSP do not offer the clearest distinction between type and token 

frequencies, because the token measures in the WSP-token are based on summed token 

frequencies, which, as pointed out above (Section 4.1.1), also contain information about type 

frequencies. Three versions of the WSP model were considered in the current study: the 

 
27 I thank David Plaut for providing me with the simulation output from his model for the stimuli used in this 

chapter and Chapter 5. 
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vocabulary-optimised type and token versions of the model and the WSP-token version 

optimised for a nonword data set by Treiman et al. (2003), referred to as WSP-token-T, as 

this version of the model had a particularly strong performance across all three data sets 

considered in Chapter 3 and as it is also sensitive to token frequency of PSCs.  

4.1.3 The current study 

In Chapter 3, I compared the type and token versions of the WSP model against human 

nonword reading data sets and concluded that the two versions of the model perform 

similarly. The differences found were not systematic – sometimes the WSP-type produced a 

closer match to human reading behaviour and sometimes the output from the WSP-token was 

more similar to the human naming responses. Thus, these comparisons did not inform us 

about the relative importance of type and token frequency in nonword reading. However, the 

available data sets do not allow direct comparison of the two properties. In the current study, 

I took the following approach to investigating the role of token frequency in nonword 

reading. The experimental stimuli consisted of nonwords that were based on words (base 

words) with unique and irregular word bodies. This allowed detecting the incidence of 

pronunciations that were congruent with the pronunciation of the base word – so as to infer 

when the particular PSC embodied by the unique base word influenced nonword naming in 

skilled readers. As the nonwords in this experiment had only one word body neighbour (the 

unique base word), the type frequency and consistency of the experimental items was kept 

constant, while the token frequency of the items was manipulated by choosing base words 

with either high or low token frequency. Thus, using this nonword set, I asked whether 

nonwords with high-frequency word bodies elicited more base word congruent responses 

(i.e., irregular vowel pronunciations) than nonwords with low-frequency word bodies. If so, 

this would suggest that token frequency influences nonword naming in skilled readers. The 

same question was also investigated with nonwords with regular base words, but the 

conclusions from these items may not be as clear due to two reasons: 1) the base word 

congruent pronunciations could be arrived at by using grapheme-phoneme sized PSCs rather 

than word body sized PSCs (or word body analogies), 2) the incidence of regular 

pronunciations for the regular items was likely at ceiling regardless of the token frequency of 

the base words. For these reasons, the regular items were not included in the rating task 

described below (Section 4.2.3.2). 
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Additionally, this set of irregular nonwords lends well to another question. Namely, how are 

nonwords with high consistency but low type frequency named? This is because the 

consistency of the word bodies in these nonwords were perfect (with proportion 1 for each 

word body sized PSC), but the type frequency of these items is low, at 1 (the word body sized 

PSC only occurs in one existing word). As such, the incidence of irregular pronunciations 

assigned to these singleton nonwords can reveal more about the relative influence of 

consistency and type frequency of PSCs in nonword naming.  

While Andrews and Scarratt (1998, Experiment 2) showed that even unique irregular word 

bodies can elicit irregular pronunciations, a closer inspection of their stimuli raises a question 

about how accurate the reported incidence of irregular pronunciations is in this case. My 

inspection of these items revealed that the word bodies in the irregular-unique set were not all 

unique: 41.7% (5 out of 12) of them occurred in other monosyllabic or disyllabic words and 

25% occurred in other monosyllabic words. Some of these nonwords had more than one 

irregularly pronounced neighbour (e.g., word body ign also occurs in benign and design, in 

addition to sign), some had regularly pronounced neighbours or both. This might explain 

some of the patterns in irregular pronunciations to these items. For instance, the word body 

inth is pronounced irregularly in one word (ninth)28 and regularly in four other words it 

occurs in (plinth, absinth, hyacinth, labyrinth), most of which should be known by university 

students (the participants in the study). As a probable reflection of this, the proportion of 

regular pronunciations assigned to nonwords with this word body was the highest in the 

irregular-unique category (97.9% and 100%). Thus, the accuracy of the incidence of irregular 

pronunciations assigned to irregular singleton items in Andrews and Scarratt’s second 

experiment may be compromised. The choice of the stimuli was presumably due to an 

assumption that the student participants would only know one of the words with a given word 

body. However, some of the additional neighbours are relatively frequent and thus likely to 

be known.  

An additional complication for an accurate estimate of irregular pronunciations assigned to 

nonwords comes from the fact that participants differ in the number of words they know. 

Because irregular pronunciation of nonwords crucially depends on whether the words in 

which these irregular word bodies occur (i.e., base words) are known, a formal assessment of 

vocabulary knowledge of the base words would be beneficial. This way individual lexical 

 
28 The word body inth in ninth also has a morphological structure, derived from nine, which might make the 

influence of the irregular pronunciation of inth less likely.  
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knowledge can be taken into account when calculating the incidence of irregular nonword 

pronunciations. Therefore, the current study aimed to expand on Andrews and Scarratt’s 

findings by using strictly unique irregular items (considering both mono- and multisyllabic 

words) and by taking the readers’ knowledge of the unique base words into account. The 

latter point is particularly important given that some of the base words in the current study 

have a considerably low token frequency.  

These two questions, the role of token frequency in nonword reading and the influence of 

consistency relative to type frequency in nonword processing were investigated by collecting 

two types of responses to the experimental nonword items – naming responses and rating 

responses. The rating responses were acceptability ratings the participants gave to the 

experimental items when these items were paired with regular or irregular pronunciations. In 

order to ensure that the preceding nonword naming task did not influence the rating 

behaviour in the rating task, two groups of participants were included – one group completed 

the naming task, followed by the rating task (Naming-Rating group) and a second group only 

completed the rating task (Rating-Only group). 

Both questions were also addressed by comparing computational models of reading against 

the human responses to the experimental items. Firstly, I asked whether models that are 

sensitive to token frequency of PSCs (the CDP++, WSP-token, WSP-token-T and Psim1) 

simulated the human responses in this experiment better than models that are not (the DRC). 

Secondly, I asked how closely the overall incidence of irregular responses to the experimental 

items matched the output from the models. This question was particularly important for 

models where consistency plays a central role, such as the Psim1 model and the WSP model.  

The hypotheses of the current study were as follows. 

The role of token frequency in nonword processing.  

1. The incidence of base word congruent pronunciations assigned to nonwords with 

high token frequency will be higher than that to items with lower token frequency. 

Irregularly pronounced nonwords with high token frequency will also receive higher 

acceptability ratings than irregularly pronounced nonwords with lower token 

frequency. 

2. Computational models that are sensitive to token frequency will be a closer match 

to the human data than models that are not.   
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The influence of consistency and type frequency in nonword reading. In these 

exploratory investigations, the incidence of irregular pronunciations to the experimental items 

was expected to be higher than that found in Andrews and Scarratt’s study (1998, Exp. 2). 

Additionally, comparisons of human responses and model output were made with focus on 

the role of consistency and type frequency of these items, regardless of their token frequency.   

4.2 Methods 

4.2.1 Participants  

Participants were undergraduates in Psychological Science in the University of Bristol. They 

completed the study online as a course requirement. Inclusion criteria for the study were that 

participants be native speakers of British English with normal or corrected-to-normal vision 

and no diagnosed or experienced reading difficulties. Participants were randomly assigned to 

one of two versions of the study. The Naming-Rating version consisted of three tasks: 

nonword naming, nonword rating and vocabulary task; the Rating-Only version consisted of 

only the latter two tasks. A total of 144 participants completed the experiment. Three 

participants were excluded due to failed audio recordings in the vocabulary task (i.e., no 

recordings at all or under 20% usable responses). By comparison, the average percentage of 

failed recordings in the vocabulary task for the retained participants was 4.5%, with 

maximum at 35.7% of trials lost for a single participant. Additionally, three participants were 

excluded due to their age. This was not an exclusion criterion originally, but as all 

participants that were 40 years old or older fell into the same group (Rating-Only) and as 

reading experience and vocabulary size correlate positively with age (e.g., Brysbaert, et al., 

2016 for vocabulary size), it was deemed necessary to exclude these participants to ensure the 

two groups were as closely matched as possible. After excluding participants due to 

eligibility or other issues described above, the final sample size was 138, with 69 participants 

in each group (see Table 4.1).  

Ethics approval for the present study was granted by the School of Psychological Science 

Research Ethics Committee in University of Bristol (ethics approval code: 170220100902). 

Table 4.1 

Demographics of the Naming-Rating and Rating-Only groups 

Group Mean Age (SD) Age range Sample size  Females Males 

Naming-Rating 20 (2.1) 18-29 69 54 15 
Rating-Only 19.8 (2.3) 18-30 69 60 9 
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4.2.2 Materials 

4.2.2.1 Naming task. The experimental items in the naming task consisted of monosyllabic 

nonwords that each shared a word body with a single existing English word (i.e., base word). 

The nonwords were created by adding a single or two-letter onset to the word body of the 

base words. Two different onsets were combined with each word body in order to create two 

nonwords (e.g., hauge and snauge) from each base word (e.g., gauge). These onsets did not 

contain any of the letters in the onset of the base word and the number of two-letter onsets 

was 16 or 17 in each of the four nonword categories described below. The resulting nonwords 

were not homophones to any existing words when they were pronounced either regularly 

(i.e., according to the most frequent pronunciation associated with each onset, vowel and 

coda sized PSCs) or irregularly, i.e., as a word body analogy (e.g., dwonge pronounced either 

as dwQn_ or dwVn_). Each nonword had only one orthographic neighbour: the base word of 

the nonword. The number of homophones and the number of orthographic neighbours29 were 

assessed against the WebCelex database (retrieved from http://celex.mpi.nl/). These 

nonwords were categorised as regular or irregular and as high or low (token) frequency, 

according to the characteristics of their base words. This resulted in four categories: Irregular-

low, Irregular-high, Regular-low and Regular-high, with 28 items in each category. A Zipf 

scale was used as a measure of token frequency of the base words (Van Heuven et al., 2014). 

The values on this logarithmic scale vary mostly from 1 to 6 with the boundary for low and 

high frequency words between 3 and 4. Reasonably well in line with this, the medians for 

regular and irregular items were 3.15 and 3.61, respectively. The mean frequency of the base 

words for Regular-low and Irregular-low items were 2.68 (SD = 0.36) and 2.69 (SD = 0.59), 

respectively. For the high frequency items, the mean frequency was 3.74 (SD = 0.44) for 

Regular items and 4.58 (SD = 0.71) for Irregular items. The uniqueness of the nonwords was 

assessed against all items in the WebCelex database, excluding inflected forms of words or 

the same letter string in a different position. Thus, sponge was unique, even though 

prolonged or congest contain the letter string onge. Although efforts were made to include 

only base words with unquestionably unique word bodies, some exceptions remained. These 

were all compound words that shared a stem with the base word (e.g., kilowatt and unleash 

share a stem with watt and leash, respectively). However, these “questionably unique” items 

were a clear minority, and the number of these items was spread across the item categories in 

a reasonably even fashion (see Appendix 3, Table 3A). 

 
29 Defined as any letter string that differed from the nonword by one letter 
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Another set of experimental items was a subset of nonwords from Treiman et al. (2007). 

These items allowed investigation of context sensitive pronunciations assigned to letter 

strings beginning with C or G, used in evaluating the rating method (see Chapter 6 for full 

description). 

Finally, there was a total of 130 filler nonwords. Approximately half of the fillers were 

generated using the ARC nonword database (Rastle et al., 2002). These items were 2-5 letters 

long and consisted of only orthographically existing onsets and word bodies. The other half 

of the fillers were selected from Pritchard et al. (2012) nonwords, a data set that consisted of 

items that the DRC and the CDP+ disagreed on. Table 4.2 summarises the number and type 

of nonwords used in the naming task (see Appendix 3, Tables 3B and 3C for full list of 

stimuli). 

Table 4.2 

Types of stimuli used in the naming and rating tasks 

Nonword Naming Task   Nonword Rating Task 

Item Type Example In a Block Total 
  Example In a Block Total 

  text audio     

Irregular-low lusque 14 28   lusque lVsk/lusk 28 56 
Irregular-high hauge 14 28   hauge h1_/h$_ 28 56 

Regular-low heint 14 28    -  -  -  - 
Regular-high foathe 14 28    -  -  -  - 

Error  -  -  -   dwal jEsts 5 10 
Odd  -  -  -   gloost glEst 5 10 

C-critical cepth 3 6   cepth kEpT/sEpT 6 12 
C-control cupth 2 4   cupth kVpT/sVpT 4 8 
G-critical gilsh 3 6   gilsh gIlS/_IlS 6 12 
G-control galsh 2 4   galsh g{lS/_{lS 4 8 

Fillers wholt 65 130   wholt wQlt/w5lt 65 130 

Critical trials     132         152 
Filler trials     130         150 

Total no. of trials     262         302 
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4.2.2.2 Rating task. For the rating task, different pronunciations of the experimental 

nonwords and a subset of the fillers used in the naming task were recorded30. Additionally, 10 

Error items (nonwords associated with an implausible pronunciation) and 10 Odd items 

(nonwords associated with an unusual pronunciation) were included; analysis of the 

responses to these items are reported in Chapter 6. The audio files of the pronunciations were 

recorded in a silent room, spoken by a male, native speaker of English. The intensity of the 

resulting recordings was equalized to 70 dB. With a 100 ms silence at the beginning and end 

of each sound file, the mean duration of the sound files was 807.5 ms (SD = 124.2). See 

Table 4.2 for a summary of the item types used in the rating task and Appendix 3 (Tables 3D 

and 3E) for a full list of stimuli. 

4.2.2.3 Vocabulary task. Items used in the vocabulary task were all the base words for the 

Irregular items (28 words). These words were presented with four definitions, the correct one 

and three foils (see Appendix 3, Table 3F for full list of stimuli).  

4.2.3 Procedure 

The two versions of the experiment, the Naming-Rating version and the Rating-Only version 

were run using Gorilla Experiment Builder (Anwyl-Irvine, et al., 2019). Participants 

completed all tasks online, on a computer. The order of the tasks was the same for each 

participant, starting with the nonword naming task (for Naming-Rating group only), followed 

by the nonword rating task and the vocabulary task. Each participant was randomly assigned 

to a version of the experiment. The stimuli in the nonword naming task and the nonword 

rating task were presented in two blocks, separated by a break, whereas the vocabulary task 

consisted of only one block of stimuli. The order of the blocks was randomised across 

participants and the presentation of the stimuli within a block in all three tasks was 

randomised for each participant. There were five practice trials for each task before the actual 

task began. The nonwords or words in each task were presented centrally on the computer 

screen, in capital letters and black font, against a white background.  

4.2.3.1 Naming task. Participants were instructed to read aloud nonwords presented on the 

screen and they were told they had 3 seconds to pronounce each nonword before the next trial 

began. They were also instructed to pronounce the nonword again if they thought they had 

 
30 The experimental items in the rating task had otherwise identical orthographic form to the experimental items 

in the naming task, except for DWONGE and PHOUTE in the naming task corresponded to PHONGE and 

DWOUTE in the rating task, due to an error in stimuli creation (i.e., the onsets were swapped between these 

items).  
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mispronounced the item. Each nonword was shown for 3000 ms, followed by a 200 ms blank 

screen before the next trial started. Each experimental nonword (132 items) and filler (130 

items) was presented once. Nonwords that shared a base word (e.g., hauge and snauge, based 

on gauge) were presented in different blocks.  

4.2.3.2 Rating task. Participants were instructed to assess how well the written forms of 

nonwords presented on the screen matched the pronunciation assigned to them. In each trial, 

below the nonword, there was a Play/Replay button, which participants would click to listen 

to the pronunciation for the nonword. Participants could listen to the same pronunciation up 

to five times. Under the Play/Replay button, there was a 6-point Likert scale with options 

VERY BAD, BAD, PROBABLY NOT OK, PROBABLY OK, GOOD, VERY GOOD. 

Participants would click one of the options and advance to the next trial (See Figure 4.1 for 

an example trial). The Irregular-low and Irregular-high nonwords were presented twice 

during the task, once associated with a regular and once with an irregular pronunciation (e.g., 

snauge would be pronounced as /sn$_/ in block 1 and as /sn1_/ in block 2 or vice versa). 

Approximately half of each item category was presented with a regular pronunciation in the 

first block and with irregular pronunciation in the second block. For nonwords that shared a 

word body (e.g., hauge and snauge), both items were presented in each block, so that the 

vowel pronunciation associated with each nonword was different than that associated with the 

other nonword within a block (e.g., pronunciations /h1_/ and /sn$_/ in block 1 and 

pronunciations /h$_/ and /sn1_/ in block 2 or vice versa).  

4.2.3.3 Vocabulary task. Participants were instructed to read aloud words that appeared on 

the screen and choose the best definition for each word out of four options. They had three 

seconds to read aloud each word, before a 1000 ms blank screen appeared, followed by four 

definitions below the word. Participants clicked the definition that best corresponded to the 

meaning of the word on top of the screen (see Figure 4.1). The next trial started automatically 

after a 1000 ms blank screen. The items in the vocabulary task were presented in a 

randomised order and the correct definition was the 1st, 2nd, 3rd and the 4th option seven times 

each. The length of the definitions varied from one to 12 words, with each definition for a 

given word being approximately the same length. 
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Figure 4.1 

Example trials of the naming, rating and vocabulary tasks 

 

 

Note. Example trial of the nonword naming task (A), the nonword rating task (B), vocabulary task (C: 

a word to be read aloud; D: definition options for the word). 

 

4.2.4 Data processing 

Pre-processing of the data and analyses were conducted using R 4.0.3 (R Core Team, 2020). 

4.2.4.1 Naming data. The verbal nonword naming responses were transcribed independently 

by four native English speakers, who had received training in the task but were naive to the 

critical manipulations of the study. The transcription happened in two waves such that two of 

the transcribers processed all of the items for each participant (first wave), re-processing 

items with discrepant transcriptions. Items for which the first wave did not reach a consensus 

on were transcribed by the other two transcribers (second wave). The second wave also re-

processed any items with remaining discrepancies, that is, if the four transcribers each 

produced a different transcription for an item or if there was a tie between two different 

transcriptions for the same item. Finally, in order to maximise the number of items included 

in the analyses, any remaining items with discrepant transcriptions were included if the 

critical phoneme in the transcriptions for these items was agreed on amongst the transcribers 
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– i.e., the vowel in the Irregular items and the onset in the C/G items. If a participant gave 

more than one response to an item, the last complete response was transcribed. If the only 

response available was incomplete, this was transcribed. The first wave agreed on 90 % of 

the items and the second wave resolved the remaining discrepancies, reaching consensus for 

96% of the items, at least regarding the critical phoneme. Taking into account other sources 

of data loss (see Exclusion of trials below), 0.3% of the items were lost due to inconsistencies 

in transcription.  

For the analyses, the naming responses for the Irregular and Regular items were categorised 

as regular, irregular or other based on the critical vowel pronunciation (only regular or other 

categories were used for Regular items). Proportions of irregular and regular pronunciations 

were calculated for each participant and for each item. The by-subjects proportions were used 

in the analyses investigating the role of token frequency in nonword naming (Section 4.3.1), 

and the by-items proportions were used in comparisons to those found in Andrews and 

Scarratt (1998, Exp. 2, see Section 4.3.2). Two Irregular-low items (crauche and jauche) 

were excluded from the analyses as no participant had correctly defined or pronounced the 

base word (gauche) for these items. For comparisons of human data with the output from 

computational models, a human modal response was extracted from the naming data for the 

Irregular items as the most popular human naming response that was either regular or 

irregular (there were five items for which ‘other’ was the modal response, in which case the 

second most popular response (regular or irregular) was used). After excluding two items 

with no valid responses (crauche and jauche) and four items with a tie for a modal response, 

the remaining sample size was 23 for Irregular-low items and 27 for Irregular-high items. The 

number of items for each computational model depended on how many items were 

pronounced regularly or irregularly (i.e., ‘other’ responses were removed). The final number 

of items included in the analyses for each model can be seen in Table 4.4 (Section 4.3.3).  

4.2.4.2 Rating data. The labels of the rating scale were re-coded as follows: 1 = VERY 

BAD, 2 = BAD, 3 = PROBABLY NOT OK, 4 = PROBABLY OK, 5 = GOOD and 6 = 

VERY GOOD. Mean ratings from each participant were then calculated, for each item group 

(e.g., irregular and regular pronunciations paired with Irregular-low and Irregular-high items), 

thus allowing the use of parametric hypothesis tests (Carifio & Perla, 2007).   

4.2.4.3 Vocabulary data. Verbal responses in the vocabulary task were transcribed by two 

transcribers (the second wave transcribers). Overall, the transcribers agreed on 87% 
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(Naming-Rating group) and 86% (Rating-Only group) of the items. When discrepancies 

occurred, a strict inclusion criterion was used, such that an item was considered incorrect if 

even one of the transcribers deemed it incorrect. If both transcribers deemed a pronunciation 

of an item correct but did not agree on how this item was pronounced, it was excluded.  

4.2.4.4 Exclusion of trials. Following the pre-registered data processing plan 

(https://osf.io/znpyf), for each participant, trials in the nonword naming and rating tasks for 

Irregular items were excluded from the analyses if a nonword in a given trial was based on a 

word the participant mispronounced or chose an incorrect definition for in the vocabulary 

task (e.g., hauge and snauge would be excluded if the participant pronounced or defined the 

word gauge incorrectly). As stated in the data processing plan, both strict and lenient scoring 

criteria for pronunciations given in the vocabulary task were used. As such, pronunciations 

with all the phonemes (strict) or only the vowel pronunciation (lenient) matching the 

pronunciation of the vocabulary item were deemed correct. However, due to already large 

number of lost trials, the analyses reported below were all based on the lenient criterion. 

Other sources of data loss were audio recording issues in the vocabulary and naming tasks, 

the former affecting both naming and rating data and the latter affecting only the naming 

data. (See Table 4.3 for summary of lost data). 

Table 4.3 

Percentage of lost trials in the Naming and Rating tasks 

Data set 
Vocab. 

Semantic 
Vocab. 

Pronunciation 
Vocab. 

Recording 
Naming 

Recording 
Unresolved 

transcription 
Total 

Naming data 16.82 14.39 (16.56) 2.28 0.91 0.28 34.68 (36.85) 

Rating (NR) 16.82 14.39 (16.56) 2.28  -   -  33.49 (35.66) 
Rating (RO) 18.37 15.32 (16.68) 2.23  -   -  35.92 (37.58) 

 

Note. NR = Naming-Rating group, RO = Rating-Only group. The percentage lost trials based on the 

strict criterion in parenthesis for pronunciations of the vocabulary items (Vocab. Pronunciation) and 

the total percentage of lost trials (Total). The percentage of data loss is based on maximum total 

number of trials, 3864 (69 participants * 56 trials) for the naming data and 7728 (69 participants * 112 

trials) for the rating data.  

 

4.2.4.5 Statistical power. Sensitivity power analyses were computed using GPower (Faul, et 

al., 2007) for each hypothesis test and the resulting minimum, reliably detectable effect sizes 

for each analysis are reported along with the observed effect sizes from the analyses.  

https://osf.io/znpyf
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4.2.4.6 Transcription of output from computational models. The phonemic transcription 

of the output from the DRC, CDP++ and WSP models is based on the DISC phonemic 

alphabet. However, as described in Chapter 3 (Section 3.1), two changes were made to the 

output from the DRC model (namely, yod-pronunciations were changed from /W/ to /ju/ and 

phoneme /9/ was changed to the phoneme /$/). Unifying the transcription between the 

aforementioned models and the Psim1 model was more difficult, because the dialect of this 

model is based on North American English. The phonemic transcription used in Plaut et al. 

(1996) was changed into DISC, which was relatively straightforward for most phonemes. 

However, the vowel phonemes /Q/ (as in pot in British English) and /$/ (as in door in British 

English) were not perfectly matched with the vowel phonemes of the transcription used for 

the Psim1 model. In Plaut et al. (1996, Appendix C, p. 115), phoneme /o/ was linked with 

words dog, broad and wash and phoneme /a/ with words pot, want and watch. I thus equated 

the phoneme /o/ with /$/ and phoneme /a/ with /Q/. Additionally, transcription of /Or/ was 

equated with /$/ (as this phoneme was used for transcribing words like swarm). However, I 

acknowledge that the dialect differences between the British participants in the current study 

and the output from the Psim1 model may result in discrepancies that should not be 

considered a weakness of the Psim1 model (see Appendix 4).  

4.3 Results 

4.3.1 Effects of token frequency in nonword processing 

I expected higher proportion of base word congruent responses to items with high token 

frequency compared to items with low token frequency. I also predicted higher acceptability 

ratings for irregularly pronounced Irregular-high items compared to Irregular-low items. Due 

to these directional hypotheses, the comparisons are conducted as one-tailed tests.  

4.3.1.1 Naming responses. Paired samples t-tests were conducted for the Irregular and 

Regular items separately. For the Irregular items, the proportion of irregular pronunciations 

was higher for the Irregular-high items (M = .29, SD = .01) than for Irregular-low items (M = 

.25, SD = .16), and this difference was statistically significant (t(68) = 1.98, p = .03, dz = 

0.24). For the Regular items, the proportion of regular pronunciations was higher for the 

Regular-high items (M = .91, SD = .08) than for the Regular-low items (M = .83, SD = .08), 

and this difference was also statistically reliable (t(68) = 7.43, p < .001, dz = 0.89). 31 See 

 
31 Sensitivity analyses was computed for a 1-tailed, paired samples t-test with an alpha level of .05, power of .8 

and sample of 69, which yielded a minimum, reliably detectable effect size as Cohen’s dz = 0.3.  
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Further investigation of human naming responses (Section 4.3.4) for additional 

considerations of these findings. 

4.3.1.2 Rating responses. The mean acceptability ratings for irregularly pronounced 

Irregular-low and Irregular-high items were compared with a paired sample t-test (1-tailed) 

for Naming-Rating and the Rating-Only groups. The Naming-Rating group gave slightly 

higher ratings to Irregular-low items (M = 4.84, SD = 0.51) than to Irregular-high items (M = 

4.79, SD = 0.52), but this difference was not statistically reliable (t(68) = -1.24, p = .89, dz = -

0.15). By contrast, the Rating-Only group gave reliably higher ratings to the irregularly 

pronounced Irregular-high items (M = 4.49, SD = 0.53) compared to the Irregular-low items 

(M = 4.32, SD = 0.53, t(68) = 3.18, p = .001, dz = 0.38). 32 

Due to a considerable data loss described in Data processing (Section 4.2.4.4), the number of 

valid trials within a condition remained low for some participants. As such, the analyses of 

both naming and rating data were also run with more reliable individual means, where only 

participants with at least 10 valid trials within each condition were included. These analyses 

resulted in a comparable pattern of results (See Appendix 5), although the analyses were 

underpowered due to reduced sample sizes.  

Importantly, as a demonstration of the importance of taking the vocabulary knowledge of the 

base words into account in the analyses reported thus far, when the rating analyses were run 

with the full set of data, that is, ignoring the vocabulary knowledge of the base words, both 

groups showed a statistically significant effect of token frequency (Naming-Rating group: 

t(68) = 2.19, p = .02, dz = 0.26; Rating-Only group: t(68) = 3.7, p < .001, dz = 0.45, 1-tailed). 

However, this difference in acceptability ratings was very likely the result of fewer items in 

the Irregular-low group for which the irregular word body PSC was known by the 

participants, which lead to lower acceptability ratings for irregularly pronounced Irregular-

low items.  

4.3.2 Influence of consistency and type frequency in nonword reading 

I had predicted that the incidence of irregular pronunciations to the experimental items would 

be higher in my study compared to the study by Andrews and Scarratt (1998, Exp. 2), 

because the vocabulary knowledge of the base words was taken into account in the current 

 
32 Sensitivity analysis was computed for a 1-tailed, paired samples t-test with an alpha level of .05, power of .8 

and sample of 69, which yielded a minimum, reliably detectable effect size as Cohen’s dz = 0.3. This applies for 

both Naming-Rating and Rating-Only groups. 
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study, thus avoiding the potential underestimation of the proportion of irregular 

pronunciations. However, this was not the case, as the incidence of irregular pronunciations 

in my study was much lower (.28) than that reported by Andrews and Scarratt (.4). Both of 

these proportions are based on by-items calculations. The lower proportion found in my study 

was not due to the Irregular-low items dragging the average down, as the proportions for both 

types of items were very close to the overall average (Irregular-low: .26, Irregular-high: .28). 

These by-items proportions of irregular pronunciations in the current study were predicted 

most closely by the CDP++ (.25) and Psim1 (.3) models, followed by the WSP-token-T (.50), 

DRC (.04), WSP-type (.91) and WSP-token (.93).  

4.3.3 Comparison of computational models in reading irregular singleton items 

A chi-squared test for independence (with Yate’s correction where required) was conducted 

to test whether there was an association between the type of response given (regular or 

irregular pronunciation) and the type of item (Irregular-low and Irregular-high) in the human 

modal responses and in the output from each computational model (Table 4.4). No reliable 

associations were found. To put this finding in terms of my research question, the proportion 

of irregular pronunciations for low and high Irregular items did not differ from one another in 

human responses or in the output from the computational models. Note that the proportions 

of irregular vowel pronunciations depicted in Table 4.4 for the human data are based on 

human modal responses relative to all the items with a clear irregular or regular modal 

response in the human data (i.e., ties and other responses were excluded). Therefore, these 

proportions differ from the ones reported in Sections 4.3.2 and from the by-subjects based 

proportions in Section 4.3.1. 
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Table 4.4 

Comparison of the proportion of irregular pronunciations assigned to Irregular-low and 

Irregular-high items by humans and computational models  

Source Item type Chi-squared test for Irregular-low vs. Irregular-high 

 Irregular-
low 

Irregular-
high 

Irregular 
total 

X2 df n p-value Yate's correction 

Humans .30 .44 .38 1.03 1 50 .31 no 
DRC .08 .00 .04 0.52 1 52 .47 yes 

CDP++ .27 .22 .25 0.16 1 53 .69 no 
Psim1 .28 .32 .30 0.08 1 47 .78 no 

WSP-type .93 .89 .91 0.00 1 56 1.00 yes 
WSP-token .93 .93 .93 < 0.001 1 55 1.00 yes 

WSP-token-T .50 .50 .50 0.00 1 56 1.00 no 
 

Considering the absolute values of proportions of irregular pronunciations, the Psim1 model’s 

output was the closest match to the human responses, followed by that of CDP++ and the 

WSP-token-T. The vocabulary-optimised versions of the WSP model clearly overestimated 

the incidence of irregular pronunciations to both types of items, which suggest that the 

consistency of PSCs has too strong of an effect in the competition of pronunciation options. 

By contrast, the DRC model underestimated the incidence of irregular pronunciations, which 

was largely due to the model’s inability to produce irregular pronunciations (two items with 

the word body ugue were pronounced irregularly, presumably due to a word body rule for 

this orthographic segment in the newer versions of the model). The pattern of the proportions 

of irregular pronunciations to Irregular-low and Irregular-high items in the human data was 

best reflected in the output from Psim1, which, like humans, produced a numerically larger 

proportion of irregular pronunciations for the Irregular-high items compared to the Irregular-

low items. Surprisingly, the versions of the WSP sensitive to token frequency did not show 

this pattern, which was likely due to the consistency of the word body sized PSCs dominating 

in the competition between parsing styles: for the WSP-token, the proportion of irregular 

pronunciations was at ceiling, regardless of token frequency and 91% of the items were 

pronounced based on the word body parsing style. However, for the WSP-token-T, the word 

body PSCs were not as dominant – 48% of the items were pronounced according to this 

parsing style. It is unclear why this version of the model also failed to produce the expected 

pattern of naming responses (further discussion on a similar finding is discussed in Chapter 5, 
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Section 5.4). Furthermore, the CDP++ produced an opposite pattern to that in the human 

data, even though this model should be sensitive to token frequency of PSCs.  

The comparisons described above do not tell us whether the models with similar proportions 

of irregular responses to those found in human data named the same items irregularly or 

regularly as humans did. To answer this question, I calculated the proportion of items for 

which each model matched the type of human modal response (regular or irregular, based on 

vowel pronunciation), across all items and for items with irregular or regular human modal 

response separately (see Table 4.5). 

Table 4.5 

Proportion of matching pronunciation types between human modal responses and output 

from computational models for Irregular items 

Human pron. type DRC CDP++ Psim1 WSP-type WSP-token WSP-token-T 

total (n = 50) .66 .56 .46 .44 .42 .52 
regular (n = 31) 1.00 .74 .68 .13 .10 .55 
irregular (n = 19) .11 .26 .11 .95 .95 .47 

 

Note. Human pron. type = subsets of Irregular items based on the type of human modal response 

(regular or irregular).  

 

As is evident in Table 4.5, the highest proportion of matches to the human modal responses 

was produced by the DRC model, followed by CDP++, WSP-token-T, Psim1 and the two 

vocabulary-optimised versions of the WSP model. Looking at the items for which most 

participants assigned a regular pronunciation, it is clear that the high proportion of overall 

matches by the DRC, CDP++ and Psim1 models was mostly due to a high incidence of 

regular pronunciations assigned to the Irregular items – most items pronounced regularly by 

the participants were also pronounced regularly by these models. By contrast, the total 

proportion of matches produced by the vocabulary-optimised versions of the WSP model are 

mostly driven by a high incidence of irregular pronunciations – most items pronounced 

irregularly by participants were also pronounced irregularly by the versions of WSP model. 

The models that produce the most balanced output, i.e., relatively high proportion of matches 

in both regular and irregular categories, are the WSP-token-T, followed by the CDP++.  

Finally, a finer grained inspection of the models’ performance was carried out, in which each 

model’s output was compared to the human naming responses by considering the whole 



 Chapter 4: Token frequency in nonword processing 

 

111 

 

nonword pronunciation, rather than just the vowel. The participants’ naming responses to 54 

irregular nonwords for which at least one valid response was available were categorised by 

response frequency and any matching responses from each model were categorised 

accordingly into the first, second, third and fourth or lower most popular human responses. 

Number of mismatches, that is, items where a model’s output was not produced by any 

participant, were also calculated (see Figure 4.2 for summary and Appendix 6 for full list of 

output to the stimuli and mismatches by the models). 

Figure 4.2 

Proportions of human-model matches to irregular nonwords arranged by human response 

frequency 

 

Note. Proportion of matches was calculated for all 54 Irregular nonwords that had at least one valid 

response in the human data.  

 

The DRC model matched the largest proportion of human modal responses (.44), and it also 

produced the lowest proportion of mismatches (.2). The second best performing model was 

the WSP-token-T, with .41 of the items matching human modal responses and .24 as 

mismatches. The output from the CDP++ and the vocabulary-optimised versions of the WSP 

model were similar regarding the proportion of first matches (from .33 to .35) and 

mismatches (.33) to the human data. However, the Psim1 model did not match any 

participants’ response for over half of the items and the proportion of human modal responses 

from this model was also the lowest (.26).  
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Inspection of the mismatches produced by each model was carried out next. For the DRC 

model, the 11 mismatches were due to either vowel pronunciations not found in the human 

data (e.g., /6si/ for word body ousse and /V1v/ for word body uave) or minor differences such 

as yod pronunciation for ghuede and shugue, which were not produced by the participants. 

For the CDP++ model, the largest number of the 18 mismatches were due to an unusual or 

illegal coda (e.g., /z{tt/ for zacht or /fl3zJ/ for flirsch). There were also three items for which 

the model assigned a pronunciation /p/ to the onset ps, unlike any of the participants. Finally, 

two unusual vowel pronunciations were identified (e.g., /br$lt/ for broult and /dwuv/ for 

duave), along with two instances of irregular vowel pronunciations not produced by any of 

the participants (e.g., /stVnT/ for stonth). For the Psim1 model, most of the 28 mismatches 

were due to an unusual vowel pronunciation (e.g., duave as /dQv/ and gleart as /gl$t/) or a 

vowel pronounced regularly or irregularly when no participant did this. Seven nonwords also 

received an unusual coda or no coda at all (e.g., shoung as /SV/ and lusque as /lus/) and five 

mismatches were a result of a missing or unusual onset (e.g., phealm as /ilm/ and zacht as 

/QJ/). Turning to the three versions of the WSP model, nearly all of the 18 mismatches of 

WSP-type and WSP-token and the 13 mismatches of the WSP-token-T, were due to an 

irregular vowel pronunciation not produced by any of the participants (e.g., neanse as /nEnz/ 

and snauge as /sn1_/). Finally, all six models failed to match three to four out of four items 

that were named by only one participant (flirsch, dwurgh, mirsch and wurgh). Although the 

responses to these items are highly varied, based on a single participant, they were 

nevertheless retained in the analysis so that no more data would be lost, and because each 

model would be equally disadvantaged at trying to match these single responses. 

Overall, no model performed particularly well on this data set – even the best performing 

model (the DRC) still failed to match 20% of the items, and only produced the most common 

human response for 44% of the items. The general issue for all the models compared above 

was producing a regular or irregular vowel pronunciation when they were not produced by 

participants – this was the main weakness of the DRC and especially the two vocabulary-

optimised versions of the WSP. Apart from the vowel pronunciations, the CDP++ and Psim1 

models also struggled with onsets and codas in this data set, producing illegal pronunciations 

or omitting these segments altogether. Note, that while the mismatches in vowel 

pronunciations between human responses and the Psim1 output may be partly due to dialect 

differences (or, indeed, the choices made in converting the original phonemic transcription 
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into DISC), the same explanation does not apply to issues with onsets and codas produced by 

Psim1.  

4.3.4 Further investigation of human naming responses 

Overall, skilled readers tended to pronounce most of the Irregular items regularly. Yet, some 

items received a relatively high proportion of irregular pronunciations (e.g., fousse: .78, 

meird: .75). We are thus left with the question, what is it about the irregularly pronounced 

items that elicit an irregular pronunciation? How are they different from the items that do 

not? As consistency and type frequency of the word body segment in these items is the same, 

but the difference was not solely based on token frequency of the body segments, the answer 

to this question must be elsewhere, such as in the properties of the vowel segment. I therefore 

investigated the properties of the items that received a regular human modal response 

(regular-modal items) and items with irregular human modal response (irregular-modal 

items) with the aid of the statistical properties in the WSP model’s PSC knowledge.  

4.3.4.1 Embedded regularly pronounced words. A potential influence on nonword 

pronunciations are existing words that are embedded within the nonword. Several studies 

have demonstrated the influence of embedded words in visual word recognition (e.g., Bowers 

et al., 2005; Nation & Cocksey, 2009; Snell et al., 2018). Since activation of the embedded 

words appears highly automatic during reading, access to the phonological forms of the 

words may affect the pronunciations assigned to nonwords. Inspection of the experimental 

nonwords revealed that some of them did contain existing words. Due to the limited number 

of items available for the experimental manipulations of the study, this issue was not taken 

into account during stimuli construction. Out of the 31 regular-modal items, 15 had an 

embedded, regularly pronounced existing word, such as or in nonwords based on world, worl 

or worst. Furthermore, all of these words had a higher token frequency than the base words 

they were embedded in. By contrast, out of the 19 irregular-modal items, seven contained 

regularly pronounced existing words, such as ear in nonwords based on heart. Here the token 

frequencies of the embedded words showed a less clear pattern, as some of them had higher 

and some lower token frequencies than the base words they were embedded in. There were 

four nonwords that contained a regular embedded word with a higher token frequency than 

the base words (e.g., out in nonwords based on route). Although this is a small number of 

items, the fact that these four items were still pronounced irregularly by majority of the 

participants suggests that embedded, regularly pronounced words do not solely dictate the 
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type of pronunciations nonwords receive.  As a comparison, there were only two nonwords 

that had an irregularly pronounced embedded word in regular-modal items (won in dwonge 

and wonge) and only one such nonword in irregular-modal items (we in tweize)33.   

4.3.4.2 Properties of vowel segments. Another potential source of influence on 

pronunciation choices made by skilled readers is the statistical properties of the vowel 

segments in the nonwords. For instance, if the vowel alone is highly consistent and the 

pronunciation assigned to it occurs in several, highly frequent words, skilled readers may be 

less likely to pronounce these vowels based on larger units of PSCs, such as word bodies. By 

contrast, if there is more uncertainty about how to pronounce the vowel, skilled readers may 

be more likely to rely on contextual information and thus base their pronunciations on larger 

units of PSCs. This type of explanation has been suggested (Kessler, 2009) for the 

observation that skilled readers do not utilise context sensitive correspondences as often as 

would be expected based on the statistics of the writing system (Kessler, 2009; Steacy et al., 

2019; Treiman et al., 2003). 

Thus, I tested this idea with the assumption that if the reliability of the vowel-sized PSCs 

influences the unit size adopted in nonword reading, it should be seen in correlations between 

the statistical properties of the vowel sized PSCs and the proportions of irregular and regular 

pronunciations assigned to nonwords that contain these vowel segments. For each nonword 

with at least 10 valid responses (for both Irregular and Regular items), values for the vowel 

consistency, type frequency, summed token frequency and maximum token frequency were 

extracted from the PSC knowledge of the WSP.  These properties are based on monosyllabic, 

mostly monomorphemic words. Split vowels were considered for any item where the first and 

the second part of the split vowel were separated by one letter (e.g., vowel for bleize was 

ei_e) and otherwise only the first part of the split vowel was considered (e.g., vowel for 

steanse was ea). The proportion of base word congruent responses (irregular vowel 

pronunciation for Irregular items and regular pronunciations for Regular items) for each item 

was correlated with each of these properties (see Table 4.6). For the Irregular items, the 

proportion of regular pronunciations was also correlated with the properties of the vowel 

segment. Table 4.6 also shows the mean values for each of the vowel segment properties.  

 
33 Note, the nonword tweize is in fact an orthographic neighbour and a homophone when pronounced irregularly 

to the word tweeze. This word is not found in WebCelex, and such it was missed during stimuli construction. 

While the high proportion of irregular responses to this item (.81) may be due to lexicalisation, the other 

nonword with the same word body, bleize, also received more irregular pronunciations (proportion of .45) than 

regular ones (proportion of .34).  
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Table 4.6 

Correlations between proportions of base word congruent responses and statistical 

properties of the vowel segment of Irregular and Regular nonwords 

  Regular items Irregular items 

Vowel property  BWC prop Mean low Mean high BWC prop reg. prop Mean low Mean high 

Consistency .18 .83 .92 -.13 .24 .81 .71 
Type Freq .29 * 150.07 111.57  -.35 * .5 *** 142.00 115.93 

Sum Token Freq .32 * 392.28 311.10  -.40 ** .55 *** 363.85 315.70 
Max Token Freq .38 ** 6.19 6.23  -.43 ** .50 *** 5.90 6.26 
number of items 56 28 28 50 50 22 28 

  

Note. BWC prop = proportion of base word congruent responses. Mean low and Mean high columns 

depict mean values for each property of the vowel segments for low and high token frequency items, 

respectively. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.  

 

As seen in Table 4.6, each property of the vowel segments was positively associated with the 

proportion of regular pronunciations for both Irregular and Regular items and negatively 

associated with the proportion of base word congruent responses for the Irregular items. In 

other words, the more certainty there was about the context insensitive pronunciation of the 

vowel, based on any of the frequency measures, the higher the proportion of regular 

pronunciations assigned to the nonwords containing this vowel. The summed token frequency 

of the vowel-sized PSC had the strongest correlation with the proportion of regular and 

irregular pronunciations for the Irregular items and the maximum token frequency of the 

vowel-sized PSC was most strongly associated with the proportion of regular pronunciations 

assigned to the Regular items.   

Considering the role of token frequency in nonword naming in light of these additional 

findings (i.e., the potential influence of vowel properties in base word congruent responses), 

the difference of the proportion of base word congruent responses found between low and 

high frequency items could be explained with the properties of the vowel segments if these 

properties differ between low and high items. Indeed, both Irregular-low and Regular-low 

items had numerically more reliable vowel sized PSCs based on two out of three frequency 

measures than the corresponding high items (Table 4.6). However, none of the differences in 

the frequency measures between low and high items were statistically significant (see 

Appendix 7 for the analyses). Furthermore, the numeric trend of higher frequency vowel 
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segments for Regular-low items would still not explain the higher proportion of base word 

congruent responses for Regular-high items than for Regular-low items. As such, even 

though the properties of the vowel segments were not considered during construction of the 

experimental stimuli, the difference in base word congruent pronunciations between low and 

high items in Irregular and Regular item groups cannot be attributed solely to the differences 

in the properties of the vowel segments.   

4.4 Discussion 

 

The current study aimed to answer two questions, using irregular singleton nonwords that 

were named and rated by skilled readers: 1) whether token frequency plays a role in nonword 

processing, 2) whether computational models sensitive to token frequency produce more 

human-like output for irregular singleton nonwords than models that are not. Exploratory 

investigation on the influence of consistency and type frequency in nonword reading was also 

conducted, where the incidence of irregular pronunciations of the experimental items in the 

current study were compared with those from a previous study (Andrews and Scarratt, 1998) 

and to the output from computational models. Finally, additional investigations of the pattern 

of naming responses were conducted to clarify why certain nonwords elicit irregular vowel 

pronunciations while others do not.   

 

To answer the first research question of the current study, the role of token frequency in 

nonword processing was investigated with both nonword naming and nonword rating 

methods. The results from the analyses using both methods pointed to the same conclusion – 

token frequency has a small effect in nonword processing. However, there were issues of 

power in the analysis of the naming data for Irregular items: the observed effect size (dz = 

0.24) was smaller than what the analysis with 69 participants was sensitive to detect (namely, 

effects of dz = 0.3 or larger). The naming responses for the Regular items, by contrast, 

showed a clear effect of token frequency: a higher proportion of regular pronunciations 

assigned to nonwords with high token frequency compared to nonwords with lower token 

frequency (however, see limitations discussed below). The results from the rating data were 

somewhat mixed, as the Rating-Only group showed the expected pattern of rating behaviour 

(higher ratings to irregularly pronounced Irregular-high items than to Irregular-low items, dz 

= 0.38), but the Naming-Rating group showed a statistically non-significant pattern in the 

opposite direction (higher ratings for Irregular-low items). As such, the question of whether 

the rating behaviour of the two groups is comparable, given the differing exposure to the 
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critical nonwords, remains relevant. This question will be addressed in Chapter 6 

(Experiment 2). Nevertheless, considering the parts of the analyses that should not be 

influenced by excessive or different exposure to the critical items (namely, the naming 

responses from the Naming-Rating group and the rating responses from the Rating-Only 

group), the general pattern of the results from the naming and rating data point to the same 

conclusion – token frequency has a small effect on nonword processing.   

My predictions for the second research question, namely, that models sensitive to token 

frequency produce a closer match to human data than models that are not, were partly 

supported: when proportions of pronunciation types were considered, the absolute and 

relative proportions of irregular pronunciations in the human data were matched best by 

models that are sensitive to token frequency (Psim1, and to a lesser extent CDP++ and WSP-

token-T). However, the highest proportion of matching pronunciations for each item, whether 

the match is based on vowel pronunciation or the whole nonword, was produced by a model 

that does not take token frequency or even larger units of PSCs into account – the DRC 

model. The success of the DRC in simulating the current naming data was clearly due to the 

high incidence of regular pronunciations assigned to the experimental items, which is what 

the DRC model does almost exclusively.  

Turning to the exploratory investigations, the influence of consistency and type frequency of 

PSCs in nonword reading was inspected as an incidence of irregular pronunciations to the 

Irregular items. This incidence was expected to be larger in the current study than in the study 

by Andrews and Scarratt (1998), because the vocabulary knowledge of the words the 

experimental items overlapped with was taken into account in the former, but not in the latter. 

However, the incidence of irregular pronunciations for the Irregular nonwords in the current 

study was considerably lower (.28) than that reported previously by Andrews and Scarratt 

(.4). There are several factors which might explain this difference.  

Firstly, in the current study, only items with unique word bodies were chosen (see Section 

4.1.3), based on mono- and disyllabic words, whereas Andrews and Scarratt’s nonwords were 

not all unique. However, as the potential influence of the additional base words in Andrews 

and Scarartt’s study was not always in the same direction (i.e., some items had regular, others 

irregular or both types of base words), this is unlikely the only basis for the difference found.  

Secondly, the frequency of some of the base words in the current study was quite low, as the 

mean of Irregular-low items was 2.69 on Zipf scale, while the mean for Irregular-high items 
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was at 4.6. By comparison, the Zipf frequency of the Andrews and Scarratt’s items was 4.23, 

which is fairly similar to the mean of Irregular-high items in the current study. Yet, even the 

Irregular-high items in the current study did not receive irregular pronunciations as often as 

the items in Andrews and Scarratt’s study. Thus, this explanation is not sufficient.  

Thirdly, Andrews and Scarratt’s nonwords all had a single letter onset, whereas 61% of the 

Irregular items in the current study had a two-letter onset (importantly, as described in 

Section 4.2.2, the low and high items, for both regular and irregular items, had the same 

number of one-letter and two-letter onsets). The large number of more complex onsets in the 

current study was due to avoiding the construction of nonwords with orthographic 

neighbours, which often required using more complex onsets. It is possible that irregular 

nonwords with complex onsets elicit more regular pronunciations than nonwords with 

simpler onsets, for example because single-letter onsets are easier to process and thus reserve 

cognitive resources to searching for available lexical analogies for the remaining word body. 

Currently available nonword reading data sets do not contain enough items with the same 

irregular word body and varied onset complexity to test this idea, but it would be worth 

investigating in the future.  

Regardless of the potential reason for the difference, there are now two nonword reading data 

sets that provide different estimates for the incidence of irregular pronunciations to nonwords 

with highly consistent PSCs but low type frequency. Based on these data sets, it appears that 

the consistency of PSCs has less of an effect on pronunciation choices when type frequency 

of PSCs is low. This is a particularly important finding for models with strong emphasis on 

the influence of consistency – the current data create strong pressure for making changes in 

the WSP model, which clearly overestimated the influence of consistency in print-to-sound 

conversion. However, this is a complex problem, given that the modified WSP model (or any 

computational model of reading) should simulate reading behaviour where certain items with 

these properties are pronounced irregularly, even when majority of these items are 

pronounced regularly. This type of behaviour cannot be achieved in the current form of the 

WSP model. Other models of reading compared in the current study were more successful in 

simulating the human data due to their high incidence of regular pronunciations for the 

experimental items. However, for a considerable proportion of the items, these models also 

failed to produce the same pronunciation type that the participants did. In other words, while 

the need for finding a better balance between regular and irregular pronunciations for high 

consistency-low type frequency items is particularly acute for the WSP model, the current 



 Chapter 4: Token frequency in nonword processing 

 

119 

 

data set poses a problem that none of the current computational models have resolved 

successfully. My preliminary investigations into what other properties of the PSCs might 

influence the choice of pronunciations for the experimental items suggested that the 

reliability of the vowel segment might be important. This idea has been suggested previously 

(Kessler, 2009; Steacy et al., 2019) and modifications to the WSP model based on this idea 

may be beneficial (see Chapter 7, Section 7.5.3).  

I now turn to the limitations of the current study. Firstly, there was considerable loss of data 

in the naming task (35% of trials) and the rating task (34% for Naming-Rating group and 

36% for Rating-Only group), which was mostly due to some of the base words with low 

token frequency being not known well enough by the participants. However, it is important to 

bear in mind that this exclusion of trials was planned before the data processing, and was 

deemed necessary to ensure an accurate comparison between low and high Irregular items. If 

items with unknown base words had been included in the analysis, the difference between the 

Irregular-low and Irregular-high items would have been exaggerated. This is because 

majority of the unknown items were in the Irregular-low group, thus increasing the 

preference of regular pronunciations for these items, when the word body sized PSCs –   

dependent on lexical knowledge – are not available. In other words, the exclusion of items 

with unknown base words makes it more difficult to find support for my hypothesis that 

token frequency plays a role in nonword reading. Importantly, an analysis of the rating data 

supports this argument – when ratings for all items were included, the difference between 

acceptability ratings for irregularly pronounced Irregular-low items and Irregular-high items 

was larger than in the analysis where items with unknown base words were excluded (Section 

4.3.1.2). Nevertheless, it is possible that the requirement for correct definition and 

pronunciation of the base words was too strict, and resulted in some data loss that could have 

been avoided, had only one of these criteria been used. This consideration is particularly 

important given that the vocabulary task was the last task participants completed, and thus 

lapses of concentration may have been more likely.          

Another limitation of the current study became evident when potential other influences on the 

pronunciations for the experimental items were investigated. It was found that the frequency 

measures of the vowel-sized PSCs were negatively associated with the proportion of irregular 

pronunciations assigned to the items and positively associated with the proportion of regular 

pronunciations given to the items. Numerically, the vowel segments in the Irregular-low and 

Regular-low items had higher type frequency and summed token frequency than the 
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corresponding high items, but these differences were not statistically reliable. Nevertheless, 

the finding in support of the role of token frequency, namely, higher proportion of base word 

congruent responses for Irregular-high and Regular-high items compared to their low 

frequency counterparts may need to be considered with this limitation in mind. However, 

while this is the case for the Irregular items (as the critical difference in base word congruent 

responses between low and high items would be increased with higher frequency of the 

vowel segments in the Irregular-low items), the same issue does not apply for the Regular 

items. Here, the base word congruent responses were higher for the high group, even though 

the items in the low group had higher frequency vowel sized PSCs. I thus conclude that the 

findings regarding the properties of the vowel segments do not completely undermine the 

interpretation of the results from the analyses of token frequency effects in nonword reading. 

However, the findings regarding the vowel segment properties are something to consider in 

future studies where the critical naming responses rely on word body sized PSCs.    

Finally, the evidence for the effect of token frequency in nonword naming based on the 

Regular items needs to be re-considered. This is because the base word knowledge for these 

items was not tested. As such, if the higher proportion of regular pronunciations assigned to 

Regular-high items than Regular-low items is interpreted as a result of two influences: the 

GPCs and the word body sized PSCs, both of which lead to or strongly encourage regular 

pronunciations, then unknown base words in the Regular-low group might reduce the 

likelihood of regular pronunciations, as only GPCs could be used in pronunciation 

assignment. This possibility was not fully considered when designing the experiment: the 

vocabulary knowledge of the base words of the Regular items was not tested because the 

proportion of regular pronunciations for both low and high items was expected to be at 

ceiling as GPCs were likely to be enough to elicit regular pronunciations to these items. The 

current study thus focused on the Irregular items. Although there was relatively high 

consensus regarding the vowel pronunciations for the Regular items, some items did receive 

alternative pronunciations, produced by a considerable proportion of the participants. For 

instance, the Regular-low item breint was pronounced as /br1nt/ by 33% of participants, as 

/br2nt/ by 19% and as /brint/ by 19% of participants. With this limitation, I cannot rule out 

the possibility that the difference found between Regular-low and Regular-high items 

actually reflects insufficient knowledge of the base words for Regular-low items, rather than 

effects of token frequency in nonword pronunciation assignment.  
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4.4.1 Conclusion 

In this chapter, I reported a study investigating the role of token frequency of PSCs in 

nonword processing. Previous research has mainly suggested type frequency as a more 

influential property in nonword reading, but limitations in the studies providing this evidence 

leave it open whether token frequency has an effect as well. I therefore tested whether skilled 

readers read aloud nonwords and rate acceptability of nonword pronunciations such that 

PSCs occurring in frequent words are favoured over PSCs in less frequent words. The current 

study provides some evidence in favour of the effect of token frequency in nonword 

processing. However, this effect appears to be small. Furthermore, computational models that 

include token frequency in their print-to-sound conversion did not always outperform models 

without this property, which was likely related to the high incidence of regular pronunciations 

assigned to these items in the human data. Even though these experimental nonwords, with 

highly consistent PSCs exemplified by a single lexical item (i.e., with low type frequency), 

tended to receive regular pronunciations, approximately quarter of the items were still 

pronounced irregularly by majority of the participants. This suggests that the statistical 

properties of PSCs considered in the current study (i.e., consistency, type frequency and 

token frequency of the word body sized segments) are not sufficient for explaining the pattern 

of naming responses found for these types of items. None of the computational models of 

reading considered in the current study simulated the naming responses to these items 

adequately. The investigations in the current study also highlight additional, important factors 

to consider in future research, such as the lexical knowledge of the base words and vowel 

properties of the nonword stimuli. 
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Chapter 5 : Type frequency in nonword processing 
 

5.1 Introduction 

5.1.1 Type frequency in human nonword reading and computational models 

Type frequency of print-to-sound correspondences (PSCs) refers to the number of words in 

which a particular letter cluster is pronounced the same way. When skilled readers assign 

pronunciations to nonwords, they are likely to use pronunciations corresponding to a given 

letter cluster in several existing words, rather than pronunciations associated with a given 

letter cluster in only a single word (e.g., Andrews and Scarratt, 1998, Exp. 2). This measure 

of frequency is different from token frequency, which refers to the frequency at which a 

given word occurs in the language. The idea that type frequency of PSCs influences nonword 

reading is widely accepted, which is demonstrated by the fact that this property is 

incorporated in several computational models of reading (e.g., Coltheart et al., 2001; Norris, 

1994; Perry et al., 2010).    

 

As outlined in Chapter 4, empirical studies investigating the relative importance of type and 

token frequency of PSCs in nonword reading have not always allowed strong conclusions to 

be drawn. This has mostly been due to insufficient contrast between the two measures. For 

instance, Andrews and Scarratt (1998, Exp. 2) demonstrated that irregular pronunciations are 

more common for items that share a word body with several, irregularly pronounced words 

(Irregular-many items, e.g., nonword yight, based on might, night, right etc.) than for 

nonwords sharing a word body with a single irregular word (Irregular-single items, e.g., sonth 

based on month). This finding can be interpreted as an effect of type frequency in nonword 

naming. However, the token frequency of the base words for these items was not controlled 

in this study. I calculated the mean token frequencies using a Zipf value (Van Heuven et al., 

2014)34 for Andrews and Scarratt’s items; as the maximum token frequency of the base words 

for the Irregular-many items and as the token frequency of the base words for the Irregular-

single items. The Irregular-many items had a higher mean token frequency (M = 5.1, SD = 

0.72) than the Irregular-single items (M = 4.23, SD = 0.89) and this difference was 

 
34 I acknowledge that the Zipf values are based on British English, but as the base words are all relatively 

frequent, I believe the general pattern of the token frequencies would also apply to Australian English, and thus 

to the lexical and PSC knowledge of the participants in the Andrews and Scarratt’s study 
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statistically reliable (t(43.96) = 3.72, p < .001, two-tailed). Therefore, Andrews and Scaratt’s 

Irregular-many items may encourage irregular pronunciations not only because of the higher 

type frequency, but also due to higher token frequency compared to the Irregular-single 

items. As demonstrated in Chapter 4, token frequency seems to have a small effect in 

nonword naming, and as such, the effect of type frequency found in Andrews and Scarratt’s 

study cannot be attributed to type frequency alone.  

 

However, Andrews and Scarratt also provide correlational evidence for the relative 

importance of type frequency over token frequency – the proportion of regular pronunciations 

assigned to a nonword were better predicted by properties of the nonwords that were based 

on type rather than token counts (see Chapter 1, Section 1.1.3). This finding does not suffer 

from the fact that the frequency measures used were insufficiently distinguishable, because 

even though the summed token frequency measure contains information about type 

frequency, the pure type frequency measure was still a better predictor. As such, Andrews 

and Scarratt provide evidence for both the role of type frequency in nonword reading and the 

relative importance of type frequency over token frequency in nonword reading.  

 

Similar correlational evidence was provided by Treiman et al. (1990, Exp. 3), where type-

based measures of frequency of PSCs accounted more variance in the proportion of correct 

pronunciations to regular and consistent nonwords, compared to summed token frequency. 

However, these analyses were based on small sample of skilled readers (n = 15).   

 

Other, less direct evidence for the influence of type frequency in nonword reading comes 

from studies focusing on naming latencies: Ziegler and colleagues (2001) report that skilled 

readers are faster at naming words and nonwords with more word body neighbours compared 

to words and nonwords with fewer word body neighbours. By contrast, a large-scale analysis 

of nonword naming data (Schmalz et al., 2017), using linear mixed effects regression models 

and Bayesian analyses, revealed no compelling evidence for effects of word body 

neighbourhood size (i.e., type frequency of word body sized PSCs for consistent bodies) on 

nonword naming latencies in skilled readers. Schmalz and colleagues’ interpretation of the 

findings (the study was designed to test the psycholinguistic grain size theory) was that the 

word body neighbourhood size is not a sensitive measure for reliance on word body sized 

PSCs. They further suggest that whether an item has a word body neighbour or not could 

serve as a better measure. In line with this, the nonwords in these analyses had mostly regular 
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bodies, which I confirmed using the WSP model’s PSC knowledge – only seven out of 218 

items would result in a different pronunciation based on word body sized segment rather than 

the vowel segment alone. Naming latencies for mostly regular nonwords might not differ 

from one another enough to detect a difference as a function of word body neighbourhood 

size. This could be because converging support for a pronunciation from both GPC and body 

sized PSCs is sufficient for facilitating pronunciation decisions, such that additional support 

from more word body friends may be redundant in this context. By contrast, nonwords with 

irregular word bodies would allow a clearer distinction between the different sub-lexical unit 

sizes relied on in nonword reading, as the type of responses (regular or irregular vowel 

pronunciation) indicate whether word body or smaller PSCs were applied (see Chapter 1, 

Section 1.1.4). 

 

Overall, conclusive empirical evidence for the importance of type frequency of PSCs in 

nonword reading is scarce (cf. Andrews and Scarratt, 1998), and thus more direct evidence 

for the importance of this property is needed. 

 

As described in Chapter 4 (Section 4.1.2), all the computational models compared in the 

current PhD project are sensitive to type frequency of PSCs. In the Dual-Route Cascaded 

(DRC) model (Coltheart et al., 2001), this property is categorical, as only grapheme-sized 

PSCs with the highest type frequency are used. In the Connectionist Dual Process model 

(CDP++, Perry et al., 2010) and the connectionist model used in simulation 1 of Plaut et al. 

(1996) (Psim1), type frequency of PSCs has a more graded influence, as the likelihood of the 

model utilising a given PSC increases with the number of words in the training set containing 

this PSC. However, other influences, such as token frequency of the words in the training set, 

are also at play, making it difficult to predict precisely when the PSCs with the higher type 

frequencies would be utilised by these models. In the versions of the Weighted Segments 

Pronunciation (WSP) model considered thus far, type frequency has been a part of the 

competition criterion, in which case its influence is combined with the influence of 

consistency of PSCs (the likelihood of a given pronunciation to be used by the model is the 

product of type frequency and consistency of each PSC segment of a letter string). Three 

versions of the WSP model were included in the current study: two versions where the 

competition of the pronunciation options is based on the product of type frequency and 

consistency of PSCs, one optimised for the WSP model’s vocabulary (WSP-type) and one for 

a nonword naming data set by Treiman and colleagues (2003) (WSP-type-T, see Chapter 3, 
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Section 3.2.2 for details about the data set). The latter version of the model was included due 

to its relatively strong performance in all the data sets it was tested on in Chapter 3 (Section 

2.4.3).  A version of the model with competition based on the product of token frequency and 

consistency of PSCs, optimised for the WSP model’s vocabulary (WSP-token) was also 

included, for comparison. As the WSP-token is based on summed token frequencies, it should 

be also sensitive to type frequencies to some extent, given that the type and summed token 

frequency measures are highly correlated. 

5.1.2 The current study 

The study reported in Chapter 4 investigated the role of token frequency in nonword 

processing. This study provided some evidence for a small effect of token frequency in 

pronunciation assignment to nonwords. Given this finding, the current study set out to 

investigate the role of type frequency in nonword processing, while controlling for the effect 

of token frequency and consistency of PSCs. A group of participants named and then rated 

nonwords that were matched in token frequency and consistency but differed in type 

frequency of the existing words they resembled. This is an important extension to previous 

studies, in which the two frequency measures have not been controlled sufficiently. 

Sensitivity to the influence of type frequency was measured as the incidence of base word 

congruent responses, that is, irregular vowel pronunciations for the nonwords (e.g., 

pronouncing the vowel in a nonword donth as it is pronounced in its base word month). Both 

nonword naming responses and acceptability ratings to base word congruent pronunciations 

were collected. 

Furthermore, output from computational models of reading were compared to the 

pronunciations from human participants.  All the models considered in the current study, 

apart from the DRC model, should exhibit graded influence of type frequency in nonword 

naming, that is, the incidence of base word congruent pronunciations should be higher for 

items with several base words (Irregular-Many) than for items with a single base word 

(Irregular-Single). 

Finally, two additional analyses were carried out to assess potential other influences in the 

main results of the current study. Firstly, the properties of the vowel segments within the 

experimental nonwords were compared between the Irregular-Single and Irregular-Many 

items, as the vowel segment properties were found to be associated with the type of responses 

given to the nonwords in Chapter 4. Secondly, the results from the current study were 
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compared to the findings from the experiment reported in Chapter 4, namely, potential list 

context effects were investigated for items that occurred in both experiments. With relatively 

high token frequency of items and more word body neighbours for some of the items (items 

with higher type frequency in the current study), participants might become more aware of 

the word body segments of the stimuli and thus utilise word body sized PSCs in their 

responses more than participants in the previous experiment (Chapter 4) may have done, 

where all the critical stimuli had a type frequency of 1 and some of the items had a low token 

frequency. Finally, the effects of type and token frequency were compared. 

The hypotheses of the current study were as follows. 

1. The incidence of base word congruent pronunciations (irregular vowel pronunciations) 

assigned to nonwords with high type frequency will be higher than that to items with lower 

type frequency. Irregularly pronounced nonwords with high type frequency will also receive 

higher acceptability ratings than irregularly pronounced nonwords with lower type frequency. 

2. Computational models with graded sensitivity to type frequency will be a closer match to 

the human data than models without this property.   

Additionally, investigation on the potential influence of the nonwords’ vowel segment 

properties and the influence of list context on nonword naming were considered, and the 

effects of type and token frequency were compared.  

5.2 Methods 

5.2.1 Participants  

Participants were undergraduates in Psychological Science at the University of Bristol. They 

completed the study online as a course requirement. Inclusion criteria for the study were that 

participants were native speakers of British English with normal or corrected-to-normal 

vision, no diagnosed or experienced reading difficulties and who had not participated in the 

study reported in Chapter 4. After removing four participants due to corrupt audio files, the 

final sample size was 55 (13 males), with a mean age of 19.8 years (SD = 2.9), ranging from 

18 to 30.  

Ethics approval for the current study was granted by the School of Psychological Science 

Research Ethics Committee in University of Bristol (ethics approval code: 0229). 
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5.2.2 Materials 

5.2.2.1 Naming task. The nonwords in the naming task consisted of items with word bodies 

that are always pronounced irregularly in existing words (base words). Two groups of items 

were created: nonwords with word bodies that occur in a single existing word (e.g., nonwords 

donth and stonth based on a word month), referred to as Irregular-Single items, and nonwords 

with word bodies that occur in several words (e.g., zalk and glalk based on walk, talk, chalk, 

etc.), referred to as Irregular-Many items. Two nonwords were created for each base word. 

The onsets for each nonword did not contain letters from the onsets of its base words. The 

resulting nonwords were not homophones to existing words when the vowel pronunciation of 

these items was regular or irregular. Whenever possible, the nonwords did not have 

orthographic neighbours other than their base words35. Three word bodies in the Irregular-

Many items were not completely consistent, but all the words going against the irregular 

pronunciation of these items had low token frequency (maximum frequency of these items 

was 2.97 (range 1.30-2.97), except for coup, which was 3.59, but shared the critical, irregular 

vowel pronunciation with the rest of its item group). Thus, the exceptions to consistency were 

likely not very influential.  

Both Irregular-Many and Irregular-Single item groups consisted of 30 nonwords, based on 15 

word bodies. The mean token frequency of the item groups was matched as closely as 

possible, while the type frequency (i.e., the number of words in which the given word body 

occurs in) was naturally higher in the Irregular-Many group than in the Irregular-Single 

group. The token frequency of each Irregular-Many item was quantified as the highest token 

frequency amongst the base words of the Irregular-Many item. The Irregular-Single items 

were selected from the experimental items in the experiment reported in Chapter 4. This 

selection process was predominantly based on the token frequency of these items, as finding 

equally high token frequencies with those of the Irregular-Many items was a challenge. 

However, two other considerations regarding the Irregular-Single items were made to ensure 

fair comparison between the Irregular-Many and Irregular-Single items. Firstly, it was 

ensured that the base words for Irregular-Single items were all relatively well known by the 

student population recruited as participants in the previous experiment in Chapter 4 (the 

sample of the current experiment was drawn from the same student population). Secondly, it 

was ensured that at least half of the Irregular-Single items had received a reasonably high 

proportion of irregular pronunciations in the previous experiment (Chapter 4).  

 
35 east and oast were neighbours for a nonword yast, in addition to the original, base word neighbours 
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After the initial stimuli construction, two additional analyses were performed to investigate 

the token frequencies of the nonword items (i.e., the token frequencies of the base words of 

these nonwords) and the nonwords’ vowel segment properties. These investigations were 

important to ensure the final stimuli set was optimal for the current purposes, as these aspects 

of the stimuli were not considered during the original stimuli construction due to the limited 

number of items that satisfied other criteria for the stimuli (e.g., consistent and irregular word 

bodies). 

Comparison of the token frequencies of the Irregular-Many and Irregular-Single items 

revealed that the Irregular-Many items had higher mean token frequency than Irregular-

Single items, and this difference was statistically reliable (t(56.33) = 2.31, p = 0.01, 1-tailed). 

Because matching token frequency between the critical item groups is important in the 

current study, the initial, full set of items was reduced to a subset with more comparable 

token frequencies. This subset of 26 nonwords in each item group was achieved by removing 

four nonwords from the Irregular-Many group with the highest token frequency (nonwords 

bralf, plalf, snast and yast) and four nonwords from the Irregular-Single group with the 

lowest token frequency (nonwords bealm, phealm, hauge and snauge). The difference in 

token frequency between Irregular-Many and Irregular-Single items was not reliable for this 

subset (t(47.5) = 0.76, p = 0.23). Thus, all subsequent analyses were conducted with this 

subset of items. However, the initial, full set of items was presented to the participants, to 

have the maximum number of experimental items available (see Appendix 8 for the full set of 

stimuli and Appendix 9 for the analyses performed with the initial, full set of nonwords).  

In the final sample of nonwords (n = 26 in each item group), the token frequencies, quantified 

as the maximum Zipf value (Van Heuven et al., 2014), were on average (4.77, SD = 0.53)36 

for the Irregular-Many items and 4.65 (SD = 0.67) for the Irregular-Single items. The mean 

type frequency (i.e., number of base words) for the Irregular-Many items was 4.92 (SD = 

2.81), whereas the mean type frequency for the Irregular-Single items was 1 (SD = 0). 

Finally, based on the data reported in Chapter 4, the mean proportion of base words for the 

Irregular-Single items that were known by the participants was .92 (SD = 0.08) and the 

 
36 Quantifying the Irregular-Many items’ token frequency based on means for each word body group yields a 

significantly lower mean token frequency value (3.52). However, for the purposes of matching the mean token 

frequency of the base words between the Irregular-Many and Irregular-Single items, I deemed it fairer to 

calculate the mean frequency for the Irregular-Many items based on the maximum token frequencies of each 

word body group. This was to avoid underestimating the token frequencies of the Irregular-Many items, and 

thus ensuring that any potential differences between the two groups of items would be due to differences in type 

frequency, rather than a higher token frequency in the Irregular-Many items compared to Irregular-Single items. 
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proportion of irregular pronunciation assigned to the Irregular-Single items was on average 

.29 (SD = 0.29). As such, it is highly likely that most participants in the current study know 

the base words for the Irregular-Single items. Furthermore, based on the word prevalence 

measures from Brysbaert et al. (2019), that is, the proportion of participants that correctly 

identified a given word as a word, the minimum prevalence value for the two most prevalent 

base words for each Irregular-Many item was .98. As such, at least two base words were very 

likely known by the participants in the current study, thus ensuring that the Irregular-Many 

items were indeed different from the Irregular-Single items for each participant. This is why 

vocabulary knowledge of the base words was not tested in this study. 

Due to the finding that frequency measures of the vowel segment are associated with the 

proportion of regular pronunciations of the nonwords in the previous experiment (Chapter 4), 

the properties of the vowel segments in the experimental stimuli of the current study were 

also compared between Irregular-Many and Irregular-Single items, with independent samples 

t-tests (1-tailed). The mean type frequency of the vowel segments was higher in the Irregular-

Many items (M = 255.7, SD = 151.56) compared to the Irregular-Single items (M = 124.46, 

SD = 131.36), and this difference was statistically significant (t(49) = 3.34, p < .001). The 

mean summed token frequency of the Irregular-Many items (M = 620.64, SD = 334.64) was 

higher than that of the Irregular-Single items (M = 338.46, SD = 305.33), also a statistically 

reliable difference (t(49.59) = 3.18, p = .001). Finally, the mean maximum token frequency 

of the Irregular-Many items (M = 6.84, SD = 0.79) was also higher than that of the Irregular-

Single items (M = 6.37, SD = 1.13), and this difference was statistically reliable (t(44.77) = 

1.77, p = .04). Thus, the Irregular-Many items have significantly more reliable vowel 

segments, which might reduce the likelihood of irregular pronunciations assigned to these 

items. As such, the vowel properties of the Irregular-Many items work against my hypothesis, 

according to which the proportion of irregular pronunciations for the Irregular-Many items 

would be higher than that for Irregular-Single items.  

In addition to the original 60 nonwords (30 Irregular-Many and 30 Irregular-Single items), 

the participants also named 202 filler nonwords. The results of the naming responses to some 

of these filler items (including items with C or G onset) will be reported in Chapter 6. 

5.2.2.2 Rating task. The Irregular-Single and Irregular-Many items were also included in the 

rating task, where they were presented along with a regular or irregular pronunciation 

assigned to them (e.g., nonword donth pronounced irregularly as /dVnT/ or regularly as 
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/dQnT/). The Irregular-Single and Irregular-Many items were presented intermixed with 132 

filler nonwords (including 20 C or G onset nonwords, 10 error nonwords and 10 odd 

nonwords, the rating responses to which will be reported in Chapter 6). See Appendix 8, 

Tables 8C and 8D for the full set of stimuli.  

5.2.3 Procedure 

Each participant completed a nonword naming task, followed by a nonword rating task. The 

procedure for these tasks was identical to that in the previous experiment reported in Chapter 

4 (Section 4.2.3). As in this previous experiment, the nonwords sharing a word body were 

presented in a different block in the naming task, and each nonword was presented twice in 

the rating task, paired with a regular pronunciation in one block and irregular pronunciation 

in the other block.  

5.2.4 Data processing 

Pre-processing of the data and analyses were conducted using R 4.0.3 (R Core Team, 2020). 

Data processing in the current study was very similar to that in the study reported in Chapter 

4. 

5.2.4.1 Naming data. Failed audio recording resulted in loss of 1.8% of the nonword naming 

responses. The remaining responses were transcribed independently by two transcribers, who 

received training for the task, but were naive to the critical manipulations of the study. Any 

discrepancies in the transcriptions were processed again by the two transcribers. The 

transcription from the slightly more experienced transcriber were followed for the remaining 

4% of items for which consensus could not be reached.  

For investigations of the role of type frequency in nonword naming, the naming responses 

were categorised as regular or irregular (based on the vowel pronunciation) and proportions 

of irregular responses for each item group were calculated for each participant. For 

comparisons of human data with the output from computational models, a human modal 

response was extracted from the naming data as the most popular human naming response 

that was either regular or irregular (there were three items for which ‘other’ was the modal 

response, in which case the second most popular response (regular or irregular) was used). 

The final sample size for the models depended on the number of regular and irregular vowel 

pronunciations each model produced; these are depicted in Table 5.2. 
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5.2.4.2 Rating data. The labels of the rating scale were re-coded as follows: 1 = VERY 

BAD, 2 = BAD, 3 = PROBABLY NOT OK, 4 = PROBABLY OK, 5 = GOOD and 6 = 

VERY GOOD. Mean ratings from each participant were then calculated, for each item group 

(e.g., irregularly pronounced Irregular-Many and Irregular-Single items).   

5.2.4.3 Statistical power. Sensitivity power analyses were computed using GPower (Faul, 

Erdfelder, Lang & Buchner, 2007) for each hypothesis test and the resulting minimum, 

reliably detectable effect sizes for each analysis will be reported along with the observed 

effect sizes from the analyses.  

5.2.4.4 Transcription of output from computational models. The transcription of the 

output from computational models was identical to that reported in Chapter 4 (Section 

4.2.4.6). 

5.3 Results 

5.3.1 Effects of type frequency in nonword processing 

I expected higher proportion of base word congruent responses to items with higher type 

frequency (Irregular-Many items) compared to items with low type frequency (Irregular-

Single items). I also predicted higher acceptability ratings for irregularly pronounced 

Irregular-Many items compared to Irregular-Single items. Due to these directional 

hypotheses, the comparisons are conducted as one-tailed tests. Both comparisons were 

conducted as by-subjects analyses. 

5.3.1.1 Naming responses. The mean proportion of irregular vowel pronunciations for 

Irregular-Many items were compared to those of Irregular-Single items with a paired samples 

t-test. The Irregular-Many items were pronounced irregularly more often (M = .44, SD = .12) 

than the Irregular-Single items (M = .30, SD = .11), and this difference was statistically 

reliable: t(54) = 7.96, p <. 001, dz = 1.0737.  

To compare the proportions of the irregular responses for the two item groups in the current 

study with those reported in previous studies (i.e., Andrews & Scarratt, 1998, Exp. 2), by-

items means were also computed. The proportion of irregular responses was .43 for the 

Irregular-Many items and .31 for the Irregular-Single items in the current data set. By 

contrast, Andrews and Scarratt report a higher incidence of irregular responses, namely, .65 

 
37 Sensitivity analysis with an alpha level of .05, power of .8 and sample size of 55 yielded a minimum, reliably 

detectable effect size of dz = 0.34 
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for Irregular-Many items and .40 for Irregular-Single items, when all the named items were 

nonwords (however, very similar proportions were obtained for the same items when they 

were named intermixed with words). This comparison will be considered further in the 

Discussion.     

5.3.1.2 Rating responses. The mean acceptability ratings for irregularly pronounced 

Irregular-Many items and Irregular-Single items were compared with a paired samples t-test. 

The Irregular-Many items received higher acceptability ratings (M = 5.37, SD = 0.42) than 

the Irregular-Single items (M = 4.63, SD = 0.46), and this difference was confirmed 

statistically: t(54) = 13.21, p <. 001, dz = 1.7838.  

The same analyses of the naming and rating responses were also performed with the original, 

full set of items (30 Irregular-Many items and 30 Irregular-Single items). These analyses 

yielded comparable results (see Appendix 9). 

5.3.1.3 Vowel segment properties. In Chapter 4, it was found that the proportion of regular 

and irregular pronunciations assigned to nonwords was associated with frequency measures 

of the vowel segments within these nonwords, that is, the higher the frequency and number of 

words in which a regular vowel-sized PSC occurred, the higher the likelihood of this vowel 

being pronounced regularly in nonwords and the lower the likelihood of this vowel being 

pronounced irregularly in nonwords. It was therefore investigated whether a similar 

relationship existed in the nonword set used in the current study. The proportion of regular 

and irregular responses (based on the vowel pronunciation) assigned to each nonword were 

correlated with the statistical properties of the vowel-sized PSC that corresponded to the 

orthographic vowel segment within each nonword. The results of the correlations are 

depicted in Table 5.1. 

 

 

 

 

 

 
38 Sensitivity analysis with an alpha level of .05, power of .8 and sample size of 55 yielded a minimum, reliably 

detectable effect size of dz = 0.34 
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Table 5.1 

Correlations between proportions of regular and irregular responses and statistical 

properties of the vowel segment of Irregular-Single and Irregular-Many items 

  Irregular-Single items Irregular-Many items 

 Vowel property reg. prop irreg. prop Mean reg. prop irreg. prop Mean 

Consistency .76 ***  -.56 ** .71 -.24 .19 .74 
Type Freq .74 ***  -.6 ** 124.46 .5 **  -.52 ** 255.77 
Sum Token Freq .78 ***  -.66 *** 338.46 .54 **  -.56 ** 620.64 
Max Token Freq .69 ***  -.64 *** 6.37 .65 ***  -.61 *** 6.84 

 

Note. reg. prop = proportion of regular vowel pronunciations, irreg. prop = proportion of irregular 

vowel pronunciations. Mean columns depict mean values for each property of the vowel segments for 

Irregular-Single and Irregular-Many items. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.     

 

Each property of the vowel segments was positively correlated with the proportion of regular 

pronunciations and negatively correlated with the proportion of irregular pronunciations 

assigned to the nonwords. This pattern was true for both Irregular-Single and Irregular-Many 

items, although the consistency of the vowel segments was not reliably associated with the 

type of responses given for the Irregular-Many items. Summed token frequency had the 

strongest correlation to the proportion of regular and irregular pronunciations assigned to the 

Irregular-Single items, whereas the maximum token frequency was the most strongly 

associated property with the proportion of regular and irregular pronunciations assigned to 

the Irregular-Many items. Thus, a similar relationship between the properties of the vowel 

segments of nonwords and the proportion of different types of pronunciations assigned to 

them found in Chapter 4 was also found in the current data set. When a vowel is pronounced 

regularly in highly frequent words, the same vowel is more likely to be pronounced regularly 

in nonwords than when the vowel is pronounced regularly in less frequent words. Table 5.1 

also shows the mean values for the properties of the vowel segments, demonstrating that the 

difference between Irregular-Single and Irregular-Many items goes against the hypothesis 

regarding the role of type frequency in nonword reading: the properties of the vowel 

segments should decrease the likelihood of irregular pronunciations assigned to the Irregular-

Many items compared to the Irregular-Single items. As such, the higher incidence of irregular 

pronunciations assigned to the Irregular-Many items than Irregular-Single items cannot be 

explained by a difference in the vowel segment properties. 
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5.3.1.4 List context effects. There were 28 nonwords in the Irregular-Single item group that 

were also named in the previous experiment, reported in Chapter 4. Using this subset of items 

that overlapped between the previous study and the current study, I tested whether the 

incidence of irregular responses for these items was higher in the current study, potentially 

indicating list context effects as the source of the difference. The incidence of irregular 

pronunciations assigned to these 28 items in each experiment were compared with an 

independent samples t-test (1-tailed) for both by-items and by-subjects means. In the by-

items data, the mean proportion of irregular pronunciations was slightly higher in the current 

study (M = 0.30, SD = 0.30) than in the previous study (M = 0.28, SD = 0.28). However, this 

difference was not statistically reliable (t(53.63) = 0.26, p = .40). Considering the by-subjects 

means, the proportion of irregular pronunciations was also numerically higher in the current 

study (M = 0.30, SD = 0.10) compared to the previous study (M = 0.29, SD = 0.10), but this 

difference was not statistically reliable (t(114.88) = 0.63, p = .26). Thus, based on this subset 

of items, the nonword naming responses were not based on word body sized PSCs more often 

in the current study than in the previous study reported in Chapter 4.  

5.3.1.5 Effect of type frequency compared to token frequency. To inspect the relative 

importance of type and token frequencies of PSCs in nonword processing, the effects of type 

frequency (current study) and token frequency (Chapter 4) were compared. The nonword 

naming and rating responses from the current study were compared to the nonword naming 

responses from the Naming-Rating group and nonword rating responses from the Rating-

Only group from the study reported in Chapter 4. Cohen’s dz was used as an estimate of 

effect size, which expresses the standardized mean difference between two measures (e.g., 

the difference in proportion of irregular vowel pronunciations for Irregular-Many and 

Irregular-Single items). In the naming responses, the effect of type frequency was 1.07 

(Cohen’s dz), and the effect of token frequency was 0.24 (Cohen’s dz, but this analysis was 

underpowered). In the rating responses, the effect of type frequency was 1.78 (Cohen’s dz) 

and the effect of token frequency was 0.38 (Cohen’s dz). It thus appears that the type 

frequency has a larger effect in both nonword naming and rating. This will be considered 

further in the discussion (Section 5.4). 

5.3.2 Comparison of computational models in reading irregular nonwords 

The human modal responses to each experimental item were extracted and compared to the 

output from the computational models in several ways. Firstly, a Chi-squared test for 
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independence was carried out to test whether there was an association between the type of 

response given (regular or irregular vowel pronunciation) and the type of item (Irregular-

Single and Irregular-Many) in the human modal responses and in the output from each 

computational model. These results are summarised in Table 5.2.  

Table 5.2 

Comparison of the proportion of irregular pronunciations assigned to Irregular-Single and 

Irregular-Many items by humans and computational models  

Source Item type Chi-squared test for Irregular-Single vs Irregular-Many 

 Irregular-
Single 

Irregular-
Many 

Total X2 df n p-value Yate's correction 

Humans .42 .54 .48 0.69 1 52 0.41 no 
DRC .00 .15 .08 1.95 1 48 0.16 yes 

CDP++ .28 .76 .52 11.54 1 50 < .001 no 
Psim1 .30 .59 .45 3.58 1 42 0.06 no 

WSP-type .88 .88 .88 0.00 1 52 1.00 yes 
WSP-token .92 .92 .92 0.00 1 52 1.00 yes 
WSP-type-T .42 .38 .40 0.08 1 52 0.78 no 

 

The human data and output from most of the computational models did not show reliably 

more irregular responses for the Irregular-Many items than the Irregular-Single items, except 

for the CDP++ model and (marginally) Psim1 model. Numerically, the absolute values of the 

proportions of irregular pronunciations for Irregular-Single and Irregular-Many items in the 

human data were most closely matched by the output from the Psim1, WSP-type-T and 

CDP++. The DRC model produced noticeably lower proportions and the WSP-type and 

WSP-token models produced clearly higher proportions of irregular pronunciations to the 

nonwords than humans did. Like in the human data, the Irregular-Many items received a 

higher proportion of irregular pronunciations than the Irregular-Single items in the output 

from DRC39, CDP++ and Psim1 models. However, the three versions of the WSP model did 

not produce this pattern, even though the WSP-type and WSP-type-T are sensitive to type 

frequency of PSCs. These findings will be considered further in the Discussion.  

Next, to compare the types of responses given to each nonword between the model and the 

human data, I calculated the proportion of items for which each model matched the type of 

 
39 These were due to multi-letter graphemes igh and a split vowel y_e (in word body yme) 
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human modal response (regular or irregular, based on vowel pronunciation), across all items 

and for items with irregular or regular human modal response separately (see Table 5.3). 

Table 5.3 

Proportion of matching pronunciation types between human modal responses and output 

from computational models for nonwords 

  DRC CDP++ Psim1 WSP-type WSP-token WSP-type-T 

total (n = 52) .60 .54 .48 .60 .56 .54 
regular (n = 27) 1.00 .52 .56 .22 .15 .63 
irregular (n = 25) .16 .56 .40 1.00 1.00 .44 

 

As seen in Table 5.3, the highest proportion of matches to the human modal responses was 

produced by the DRC and the WSP-type models, followed by WSP-token, CDP++ and WSP-

type-T models, and finally Psim1. The high proportion of overall matches of the WSP’s type 

and token versions stemmed from a high incidence of irregular pronunciations – all items 

pronounced irregularly by the participants were also pronounced irregularly by these versions 

of the WSP model. By contrast, the overall performance of the DRC model was mostly 

driven by matching all the items the participants pronounced regularly. Finally, the CDP++, 

Psim1 and WSP-type-T had more balanced performance across the items receiving a regular 

or irregular human modal response.  

Finally, for a more detailed comparison of the human and model naming responses, the 

human naming responses were arranged according to the frequency of different responses 

(first, second, third and fourth or lower most common responses). The proportion of items 

each model matched were then extracted (considering the whole nonword pronunciation, not 

only the vowel pronunciation), as well as the proportion of items for which the model output 

was not produced by any of the participants. Figure 5.1 summarises the performance of each 

model.  
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Figure 5.1 

Proportions of human-model matches to nonwords arranged by human response frequency 

 

Note. Proportion of matches was calculated for 52 nonwords that had at least one valid response in the 

human data.  

 

The three versions of the WSP model and the DRC model produced similar proportions of 

matches to the human modal response – from .48 (WSP-type-T) to .58 (WSP-type). These 

models also produced comparable, low proportions of mismatches – from .10 (DRC and 

WSP-type) to .12 (WSP-token and WSP-type-T). the CDP++ model had somewhat poorer 

performance, with proportion of human modal responses at .40 and mismatches at .19. 

Finally, the Psim1 had the weakest performance in both the proportion of human modal 

responses (.29) and the proportion of mismatches (.40).  

There were different types of mismatches produced by each model. For the WSP-type and 

WSP-token versions, all of the five (WSP-type) and seven (WSP-token) mismatches were a 

result of irregular vowel pronunciations (e.g., tilst as /t2lst/ or gnolk as /n5k/). In addition to 

irregular vowel pronunciations, the WSP-type-T also produced a handful of other types of 

mismatches (e.g., onset in gealth pronounced as /_/). For the DRC model, four of the five 

mismatches were due to an odd vowel pronunciation (e.g., fousse as /f6si/ or meird as 

/m1rd/). For the CDP++, half of the 10 mismatches were because of an irregular vowel 

pronunciation (e.g., nalt as /n$lt/) and the remaining mismatches were a result of odd or 
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phonotactically illegal onset or coda (e.g., psorld as /p$ld/ or zalk as /z$kk/). For the Psim1 

model, 12 of the 21 mismatches were because of odd or missing onset or coda (e.g., phoup as 

/up/ or shoung as /SV/), along with eight odd or irregular vowel pronunciations (e.g., gleart 

as /gl$t/ or nalm as /nQm/). See Appendix 10 for full list of model output and mismatches 

produced by each model.  

5.4 Discussion 

The current study investigated the role of type frequency of PSCs in nonword processing. 

Naming responses to nonwords and acceptability ratings for pronunciations assigned to 

nonwords were collected for two types of items – nonwords that overlapped with a single, 

irregularly pronounced base word (Irregular-Single items) and nonwords that overlapped with 

several, irregularly pronounced base words (Irregular-Many items).  

The first hypothesis of the current study was that the Irregular-Many items would receive 

more base word congruent naming responses (i.e., irregular vowel pronunciations) than the 

Irregular-Single items and that irregularly pronounced Irregular-Many items would be rated 

as more acceptable than irregularly pronounced Irregular-Single items. Both naming and 

rating data clearly indicated that this was the case – the Irregular-Many items received more 

base word congruent responses than the Irregular-Single items and the Irregular-Many items 

were rated as more acceptable when they received a base word congruent pronunciation than 

the Irregular-Single items. The same conclusion can be drawn from the analyses with the 

original, full set of items for both naming and rating data (Appendix 9). However, the 

reduced set reported in the main text benefits from more comparable mean token frequencies 

of the Irregular-Many and Irregular-Single items, thus ruling out the possibility that the token 

frequency drove the differences in the naming and rating responses.   

Comparing the mean proportions of the base word congruent responses for the Irregular-

Many and Irregular-Single items to those reported in previous studies (i.e., Andrews & 

Scarratt, 1998, Exp. 2), the proportions for both item groups were lower in the present study 

compared to Andrews and Scarratt’s results. A similar observation was made in Chapter 4, 

and one potential explanation of this difference may be the onset complexity of the 

nonwords. Whereas Andrews and Scarratt used nonwords with a single letter onset, 62% of 

the experimental items in the present study contained two-letter onsets. These more complex 

onsets were distributed evenly between the Irregular-Many and Irregular-Single items. As 

suggested in the Discussion of Chapter 4, irregular word bodies may be more difficult to 
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recognise after a complex onset compared to a simple one and thus using word body 

analogies in nonword naming may become less likely, an idea left for future research to test. 

Additionally, most of the nonwords in Andrews and Scarratt’s study had orthographic 

neighbours – the words they were based on (unless the base word had a complex onset, such 

as chalk or sleigh). A potential reason for more base word congruent pronunciations for items 

with orthographic neighbours is that when a nonword differs from an existing word by only 

one letter, the existing words (or base words) may be more salient and their pronunciations 

more influential in assigning pronunciations to the nonwords they resemble. The current 

study does not answer the question of whether the mechanism behind base word congruent 

pronunciations is best characterised as a lexical or word body analogy (i.e., recognising the 

base word of a nonword and imitating the pronunciation of the base word in nonword 

naming, particularly regarding the overlapping segment – the word body) or as easier access 

to PSCs of different sizes from memory (i.e., easier retrieval of PSCs with high consistency, 

frequency or other statistical properties that would advantage retrieval of pronunciations for 

word body sized segments). Nevertheless, the current study demonstrates that the incidence 

of base word congruent responses for nonwords is considerable even when these items do not 

have many or any orthographic neighbours.     

The second hypothesis of the current study was that computational models in which the 

influence of type frequency of PSCs is graded would simulate human naming responses more 

accurately than models without this property. Considering the different criteria for model 

performance, there was some evidence supporting this hypothesis, but equally some evidence 

against it. Absolute values of proportions of irregular pronunciations to the critical items in 

the human data were best matched by models with graded influence of type frequency 

(Psim1, WSP-type-T and CDP++), but the pattern of these proportions was most accurately 

reflected in the output from the DRC model, a model without this property. Proportions of 

matching pronunciation types to the human modal responses, considering the critical vowel 

pronunciation only, were best simulated by the WSP-type and the DRC, each with a 

particular strength in matching either regular or irregular vowel pronunciations. Finally, the 

highest number of matches to the human modal responses, considering the whole nonword 

pronunciation, were produced by the WSP-type and WSP-token, yet, the WSP-type’s and the 

DRC’s output matched the highest number of items altogether (i.e., the models produced the 

smallest number of pronunciations not produced by a single participant). Taken together, 

although graded influence of type frequency appears to be beneficial in simulating the current 
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human naming data, it does not appear to be absolutely necessary, as a model without this 

property (the DRC) had a consistently strong performance on this data set. It should also be 

noted that the performance of each model considered in these comparisons remained at a 

modest level, for instance, as the highest percentage of matching pronunciations to the human 

modal responses was as best 58% for whole nonwords and 60% for matching vowel 

pronunciation types. 

The comparisons of the output from the computational models and the human modal 

responses also revealed that although the CDP++ and Psim1 models showed the same general 

pattern of proportions of irregular pronunciations assigned to the Irregular-Single and 

Irregular-Many items, the difference was more pronounced in the output from these models 

compared to the human data, as seen in the Chi-squared test outcomes. Namely, the 

association between pronunciation type (irregular or regular) and item type (Irregular-Single 

or Irregular-Many items) was statistically reliable for the CDP++ and marginally significant 

for the Psim1 model’s output, unlike for the human data. Given the clear results from the 

human naming and rating data regarding the role of type frequency in nonword processing 

when mean proportions of base word congruent responses were considered (Section 5.3.1), it 

is somewhat surprising that the same outcome was not found in the human data using the 

Chi-squared test. However, this can be understood in terms of differences in statistical power 

between the two analyses. Firstly, the Chi-squared test is non-parametric and as such has less 

statistical power to detect relationships between variables. Secondly, the comparison of 

proportion of irregular responses to the two item types were by-items comparisons in the Chi-

squared tests (and based on human-modal responses only), whereas the comparisons reported 

in Section 5.3.1 were based on by-subjects means, and as such, the larger sample size in the 

by-subjects analyses corresponds to higher statistical power.   

Another surprising finding in the model output comparisons was that none of the versions of 

the WSP model produced the expected numeric trend (higher proportion of irregular 

pronunciations for Irregular-Many than Irregular-Single items). For WSP-type and WSP-

token versions of the model, this is likely because the proportions of irregular pronunciations 

in the model’s output were very high, regardless of the item type. Because the word bodies of 

the experimental items were all perfectly consistent but varied in type frequency, and because 

the small segment parsing style is considerably disadvantaged in these versions of the model, 

it appears that the consistency of the word body sized PSCs was too influential in the WSP 

model’s pronunciations. A similar issue was seen in the model’s performance in the 
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experiment investigating the role of token frequency in nonword processing (Chapter 4). As 

such, the current study further confirms that these versions of the WSP model suffer from too 

great an influence of the consistency of PSCs, particularly in the larger segment parsing 

styles. This issue will be considered in Chapter 7.  

However, this explanation is not sufficient for the performance of the WSP-type-T, as the 

proportions of irregular pronunciations produced by this version of the model were not at 

ceiling. It is therefore unclear why the WSP-type-T did not produce more irregular 

pronunciation to the Irregular-Many items compared to the Irregular-Single items. There 

appear to be several factors that contribute to this pattern of output from the WSP-type-T. 

Most importantly, the strength of the onset and the coda segments in the competition between 

the three parsing styles can have a considerable influence on the final output from the model. 

For instance, the item psask was pronounced regularly by the WSP-type-T, mostly because 

the strength of the word body parsing style relied on a relatively uncommon onset ps 

(segment strength = 0.10) and a moderately frequent and entirely consistent word body ask 

(segment strength = 0.85). By contrast, the small segment parsing style included the onset ps 

(segment strength = 0.10), a highly frequent vowel a (segment strength = 1.74) and a 

considerably frequent and entirely consistent coda sk (segment strength = 1.26). The vowel 

and the coda in the small segment parsing style thus resulted in a mean strength that could not 

be exceeded even with a slightly higher weight applied to the mean strength of the word body 

parsing style. To demonstrate that this difference is mostly related to the weak onset and 

strong coda, rather than a considerably strong vowel segment, the model’s output is based on 

the word body parsing style when this word body is combined with any single-letter onset. 

Thus, there were instances where the small segment parsing style won based on onset or coda 

segments, even though each parsing style produced the same pronunciations for these 

segments. This explanation is likely relevant also for the similar findings in Chapter 4 

(section 4.3.3), where WSP-token-T did not show sensitivity to token frequency of nonwords. 

The issue of the strength of the onset and coda segments will also be considered in Chapter 7. 

Moving on to the two additional analyses, it was confirmed that the same type of relationship 

between vowel segment properties of the nonwords and the type of pronunciations assigned 

to the nonwords found in the previous study (Chapter 4) was also present in the current study 

– vowel segments pronounced regularly in several or highly frequent words were more likely 

pronounced regularly when these vowels occurred in nonwords. Importantly, the frequency 

measures of the vowel segments were higher in the Irregular-Many items than in the 
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Irregular-Single items, thus ruling out the possibility that the difference in the proportion of 

base word congruent pronunciations between Irregular-Many and Irregular-Single items 

could be explained by the vowel segment properties of these items. 

Additionally, potential list context effects were investigated by comparing the naming 

responses to a subset of items that were used in both the current study and a previous study 

investigating the role of token frequency in nonword processing (Chapter 4). The comparison 

of interest here was whether the incidence of base word congruent pronunciations would be 

higher for this subset of items in the current study compared to the previous study. Both by-

items and by-subjects analyses pointed to the same conclusion – the incidence of base word 

congruent pronunciations for the items did not differ between the two studies. As such, it 

seems unlikely that the clear effect of type frequency found in the current study would be 

attributable to list context effects, such as salience of the base words in the current study 

leading to stronger reliance on word body sized reading approach, compared to those in the 

previous study.   

Turning to the limitations of the current study, the clearest shortcoming for the empirical 

findings in the present study was that the rating responses were collected from the same 

participant group that had already named the same nonwords. As such, it is possible that the 

rating behaviour was influenced by the preceding exposure to the nonwords. Further 

consideration of the relationship of naming and rating responses will be covered in Chapter 6. 

Finally, comparing the effect sizes from the study investigating the role of token frequency in 

nonword processing (Chapter 4) and the evidence for the role of type frequency in the current 

study, it was found that type frequency of PSCs appears to have a larger effect on nonword 

processing, both in nonword naming and rating responses. However, while the designs used 

to investigate the role of these two properties in nonword processing were identical, the 

strength of the experimental manipulations were likely different. I am not aware of a way to 

compare the strength of manipulation between these two measures. With this limitation, the 

evidence regarding the relative importance of type and token frequency in nonword 

processing should only be considered tentative.     

5.4.1 Conclusion 

In this chapter, I reported investigations of the role of type frequency of PSCs in nonword 

processing. Although some empirical evidence suggests that this property is influential in 

nonword reading, only a handful of studies provide compelling evidence for the role of type 



 Chapter 5: Type frequency in nonword processing 

 

143 

 

frequency. Therefore, I aimed to discover whether skilled readers read aloud nonwords and 

rate acceptability of nonword pronunciations such that PSCs occurring in several words are 

favoured over PSCs occurring in a single word. Importantly, the mean token frequencies of 

the stimuli and consistency of the critical PSC segments in the nonwords were comparable in 

the current study, thus allowing stronger conclusions to be drawn regarding the role of type 

frequency alone. The current study provides clear evidence for the influence of type 

frequency of PSCs in nonword processing, both in patterns of nonword naming and rating 

responses. Several comparisons between the participants’ nonword naming responses and 

output from computational models were also made. The computational models with graded 

influence of type frequency in their print-to-sound conversion (i.e., the connectionist models 

and the WSP model) were not clearly superior to the performance of the DRC model, which 

only considers grapheme sized PSCs with the highest type frequency. Although each model 

had their strengths in simulating particular aspects of the human naming responses, none of 

the models clearly outperformed the other models, and none of the models simulated the 

naming responses at a sufficiently high level of accuracy.  
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Chapter 6 : Evaluation of the Nonword rating method 
 

6.1 Introduction 

Nonword reading studies have traditionally relied on phonemic transcription to convert 

participants’ verbal reading responses into a written form. These phonemic transcriptions are 

then used as the data for the subsequent analyses (e.g., Andrews & Scarratt, 1998; Pritchard 

et al., 2012; Mousikou et al., 2017). The inherent assumption in this approach is that these 

transcriptions reflect the print-to-sound correspondence (PSC) knowledge of skilled readers. 

However, this approach has two obvious sources of human error – pronunciation errors made 

by the participants, that is, mispronouncing what one intended to say (participants often name 

hundreds of nonwords (e.g., Pritchard et al., 2012; Mousikou et al., 2017)), and transcription 

errors made by the transcribers. Transcription of nonword naming responses is also time 

consuming and particularly prone to errors when transcribing large data sets. One approach 

for reducing the number of errors in phonemic transcriptions is having at least two 

individuals transcribe the verbal responses and comparing the similarity of the transcriptions 

produced. However, the inter-rater agreement for nonword transcriptions may remain 

relatively low, as exemplified by a recent study (De Simone et al., 2021, Experiment 1), 

where the agreement between two scorers of English nonword responses was only moderate 

(Cohen’s kappa = 0.57).  

As an alternative to transcribing nonword reading responses, a handful of studies have 

employed a multiple-choice method, where each nonword is presented with a choice of 

existing words and the participants’ task is to circle the option containing the (typically 

vowel) pronunciation they would assign to the given nonword. The nonword processing 

responses obtained using this method have been compared to nonword reading responses in 

developing readers (Johnson, 1970, Pilot Study B) and adult skilled readers (Ryder & 

Pearson, 1980; Treiman, Kessler & Bick, 2003). Johnson (1970) found that the nonword 

naming and multiple-choice responses by second, fourth and sixth grade students differed 

from one another, however, the responses from the two tasks were more similar amongst 

students with higher reading skills and students on higher grades. Ryder and Pearson, on the 

other hand, did not find a difference between the naming method and the multiple-choice 

method, using a between-subjects design. Treiman et al. (2003, Exp. 2) also compared 
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nonword naming responses to multiple choice responses as a between-subjects design. The 

response options in the multiple-choice task were two words, associated with different vowel 

pronunciations, and ‘neither’ for trials where neither of the provided options corresponded to 

the pronunciation a participant would give to the nonword. While the main pattern of results 

from both the nonword naming group and the multiple-choice group were similar, the 

multiple-choice group gave more ‘neither’ responses compared to the proportion of responses 

that were classified as ‘other’ in the nonword naming group. Treiman and colleagues 

conclude that ensuring participant engagement in the task and removing a neutral response 

option would improve the multiple-choice method. In its current form, it was deemed less 

reliable than the traditional nonword naming method. 

While the multiple-choice method may indeed serve as a way to avoid collecting and 

transcribing nonword naming responses, it might not provide the benefits that other 

alternatives to a nonword naming task may offer. Namely, choosing a pronunciation out of 

options involves choosing the most acceptable option, compared to the alternatives. As such, 

the responses from both nonword naming and the multiple-choice methods may only reflect 

the human modal responses, or each participant’s ‘first choice’, although participants may 

find other pronunciations almost as plausible as their first choice. Another way to avoid the 

issues associated with nonword naming transcriptions is to obtain acceptability ratings for a 

pronunciation assigned to a nonword. The same nonword can be paired with several 

alternative pronunciations, as separate trials, thus providing assessments of each alternative 

pronunciation for a given nonword in isolation, rather than relative to other pronunciations. 

This approach, the nonword rating method, may reveal more about the PSC knowledge that 

skilled readers have, beyond a single naming response per item and beyond the best option 

out of alternatives.  

Treiman and Zukowski (1988) used a nonword rating method where participants judged the 

acceptability of pronunciations assigned to nonwords on a scale from 1 (not a possible 

pronunciation) to 4 (possible pronunciation). The same items rated in this task (Experiment 2) 

were also named by a different group of participants (Experiment 1), thus allowing 

comparison of the two methods. The nonword stimuli in both experiments overlapped with 

exception words in antibody, body or only the vowel segment (e.g., for an exception word 

friend, a nonword with overlapping antibody was frieth, a nonword with overlapping word 

body was chiend and a nonword with an overlapping vowel was chieth). In the naming 

responses, there were more vowel pronunciations congruent with the exception words (i.e., 
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analogy pronunciations) for the nonwords overlapping in word body than the other two types 

of nonwords, i.e., chiend was pronounced more often as /JEnd/ than frieth or chieth were 

pronounced as /frET/ or /JET/. Similarly, in the rating task, when the experimenter 

pronounced these items as an analogy to the exception words they overlapped with, the word 

body nonwords received reliably higher acceptability ratings than the antibody or vowel 

nonwords did. However, no alternative pronunciations were provided for the same nonword 

(as separate trials), such as pronunciations following the GPC-rules, which might have 

provided further insights into the PSC knowledge of participants in this study.  

The nonword rating method has recently been used in evaluating computational models of 

reading (Gubian, et al. 2022). Gubian and colleagues compared two methods of model 

evaluation – a naming method and a rating method. In the naming method, participants’ 

nonword naming responses were collected and phonemically transcribed to produce a 

nonword naming data set – Gubian and colleagues used the nonword naming data set from 

Mousikou et al. (2017). The naming responses were then compared to the output from 

computational models, so that the output of the models was considered acceptable if at least 

one human participant produced the same pronunciation and unacceptable if no human 

participant produced the same pronunciation. In the nonword rating method, Gubian et al. 

used a speech synthesiser to produce aural versions of the computational models’ output for 

the Mousikou and colleague’s nonwords. These pronunciations were then paired with the 

written form of the nonwords, and skilled readers rated the acceptability of these 

pronunciation-nonword pairs on a scale from 1 (very bad) to 6 (very good). Using this 

method, a model’s output for a given nonword was acceptable if it received a median rating 

of at least 4 (‘probably ok’) and unacceptable if it received a median rating of 3 (‘probably 

not ok’) or lower.  

Gubian and colleagues compared the performance of three computational models or 

algorithms that can name the disyllabic nonwords. To investigate potential false positives and 

false negatives of the naming method, Gubian and colleagues included all the pronunciations 

from these models/algorithms that matched a single participant's naming response in the 

Mousikou et al. data set or that was not matched by any participant's naming response. This 

was because a single matching pronunciation may turn out to be a naming or transcription 

error rather than a deliberate naming response (i.e., a false positive) and a pronunciation not 

produced by a limited sample of 41 participants may still be a generally accepted 

pronunciation amongst skilled readers (i.e., a false negative). This comparison revealed that 
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19% of the items could be classified as false positives, as these items were deemed 

unacceptable by the rating method but acceptable by the naming method. Notably, 58% of the 

items could be classified as false negatives, as these items were deemed acceptable by the 

rating method but unacceptable by the naming method. That is, the rating method can identify 

naming responses that are deemed acceptable by skilled readers, despite not being the naming 

responses the readers might produce themselves. 

Another important finding by Gubian et al. was that the ratings of nonword pronunciations 

also converged with the naming data for human modal responses. These results, among other 

evaluations of the two methods reported by Gubian et al., suggest that the rating method is a 

feasible alternative to the naming method in evaluations of computational models.  

Taken together, attempts to explore alternatives to the traditional nonword naming method 

have been scarce. The similarities in the pattern of results between the naming method and 

the alternative multiple choice or rating methods (Ryder & Pearson, 1980; Treiman & 

Zukowski, 1988) are promising and suggest that more work is needed to discover whether 

and under which circumstances the nonword naming method could be replaced with an 

alternative method.  

6.2 Experiment 1 

The aim of the present experiment was to provide a detailed comparison of the nonword 

naming and nonword rating methods. All the studies outlined above, except for Johnson 

(1970), have used between-subjects designs. Therefore, one cannot rule out the possibility of 

between-group differences in nonword naming and rating responses. A more stringent 

comparison of the two methods should include both types of responses from the same group 

of participants. Thus, in the present experiment, a group of participants read aloud nonwords 

and subsequently rated the acceptability of different ways of pronouncing these nonwords on 

a six-point scale, ranging from ‘very bad’ to ‘very good’. This procedure allowed the 

collection of data about the participants’ knowledge of PSCs beyond the responses they 

arrived at in the naming task – the same participant might deem several alternative 

pronunciations for the same item as acceptable. However, exposure to the same nonwords in 

two different tasks may also result in atypical or non-representative nonword processing 

responses, which was also addressed in the current experiment by including a between-

subjects comparison of the rating responses: another group of participants only rated the 

different pronunciations paired with the nonwords, without naming them beforehand. As 
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such, comparing the rating responses from these two groups of participants allowed 

determination of whether the previous nonword naming task for one of the groups influenced 

their rating behaviour in the rating task.  

The rating method was assessed in three different ways: 1) inspecting rating responses to 

items that no participant should deem acceptable, based on the PSCs the relevant 

experimental items contained (e.g., dwal pronounced as /jEsts/), these items were used in 

evaluating the specificity of the rating method; 2) comparing rating responses to nonwords 

for which previous studies have shown a clear pattern of naming responses (Treiman et al., 

2007, Experiment 1); and 3) comparing naming and rating responses to nonwords that shared 

a word body with irregularly pronounced words, with varying token frequencies. These items 

were used for evaluating the sensitivity of the rating method. The groups of experimental 

stimuli and their purpose in the experiment are described in more detail in Section 6.3.2. 

The pattern of rating responses was generally expected to converge with the pattern of 

naming responses. This convergence means high acceptability ratings for pronunciations 

produced by the majority of the participants (i.e., human modal responses) and low 

acceptability ratings for pronunciations no participant would produce or very few or no 

participant produced in previous studies. As a six-point rating scale was used, a pronunciation 

for a nonword was considered accepted by a participant if the pronunciation received a rating 

‘probably ok’, ‘good’ or ‘very good’, and a pronunciation was considered rejected if it 

received a rating ‘probably not ok’, ‘bad’ or ‘very bad’. Thus, if the rating method has high 

sensitivity, human modal responses should be accepted in the rating task and if the rating 

method has high specificity, implausible pronunciations (e.g., dwal pronounced as /jEsts/) 

should be rejected in the rating task.  

The hypotheses for the present experiment are listed next, for each of the three item types 

used in the evaluation of the rating method. 

Mean ratings for 10 Error items (e.g., dwal pronounced as /jEsts/) and 10 Odd items (e.g., 

gloost pronounced as /glEst/) in the rating task were expected to show the following pattern: 

1) The mean ratings for the Error items and for the Odd items would be clearly in the 

‘unacceptable’ range, i.e. significantly below 4 (‘probably ok’). 

2)  The mean ratings for the Odd items would be significantly higher than the ratings for 

the Error items. 
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The second set of hypotheses are based on naming responses from previous experiments. 

These are experiments by Treiman et al. (2007) and Treiman and Kessler (2019, Exp. 1), in 

which participants read aloud nonwords that either had an onset c or g, followed by the vowel 

e or i (critical items, e.g., C-critical: cepth or G-critical: gipth) or items that had an onset c or 

g, followed by vowels a, o or u (control items, e.g., C-control: capth or G-control: gupth). In 

the English writing system, onset c can receive a soft pronunciation /s/ (as in cell) after 

vowels e and i and g can receive a soft pronunciation /_/ (as in gene) after these vowels. 

However, the standard or hard pronunciation of c as /k/ (as in cat) and g as /g/ (as in game) 

occurs when these onsets are followed by vowels a, o or u. Based on the pattern of naming 

responses reported in previous studies, the following predictions were made about the relative 

and absolute values of the ratings for the C and G-initial items: 

1) Relative ratings. For control items, hard pronunciations would be favoured over soft 

pronunciations (i.e., hard pronunciations would receive higher ratings than soft 

pronunciations). For C-critical items, soft pronunciations would be favoured over hard 

pronunciations. For G-critical items, hard pronunciations would be favoured over soft 

pronunciations. 

2) Absolute ratings.  Soft pronunciations for control items would be rated as 

unacceptable, with mean ratings below 4 (‘probably ok’). Soft pronunciations for 

critical items would be rated as acceptable, with mean ratings above 3 (‘probably not 

ok’). 

Finally, the aim of the analyses of the naming and rating responses to the Irregular items with 

varied token frequency was to directly compare the two types of responses as a within-

subjects design. The excepted pattern of results from the comparison of the naming and rating 

data for the irregular items was as follows:  

1) Irregularly pronounced items in the naming task would be rated as more acceptable 

when they are paired with an irregular pronunciation in the rating task compared to 

when they are paired with a regular pronunciation. 

2) Regularly pronounced items in the naming task would be rated as more acceptable 

when they are paired with a regular pronunciation in the rating task compared to when 

they are paired with an irregular pronunciation. 

 

 



 Chapter 6: Nonword rating method 

 

150 

 

6.3 Experiment 1 Method 

6.3.1 Participants  

Two groups of participants were included in the current experiment – a group that first named 

the experimental items and then rated the acceptability of different pronunciations assigned to 

the same items (Naming-Rating group), and a group that only rated the acceptability of the 

pronunciations assigned to the items (Rating-Only group). The participant characteristics, 

stimuli and procedure for these two groups are described in detail in Chapter 4 (Section 4.2).  

6.3.2 Materials 

The materials of the current experiment were divided into three categories, each serving a 

distinct function in the evaluation of the rating method.  

6.3.2.1 Error and Odd items. These items served a dual-purpose in the evaluation of the 

rating method. Firstly, participants’ engagement in the rating task was assessed via responses 

to nonwords with implausible pronunciations (Error items), such as dwal pronounced as 

/jEsts/. As the orthographic and phonological forms of these items did not contain any (or 

almost any) PSCs found in English, no participant should find these pronunciations 

acceptable. Secondly, an estimate of the method’s specificity was calculated using the ratings 

for the Error items mentioned above and items with odd pronunciations (Odd items), such as 

gloost pronounced as /glEst/. As the vowel pronunciations for the Odd items represented 

PSCs typically not found in English, nearly no human participant should intentionally 

produce these pronunciations and as such should not accept these pronunciations either. As 

such, the Error and Odd items should not be accepted in the rating task. However, as the Odd 

items contained some PSCs found in English (e.g., the onsets and codas in each item), the 

acceptability ratings for these items should be higher than those for the Error items. See 

Appendix 11, Table 11A for full list of stimuli. 

6.3.2.2 Items with context sensitive onset C or G. A subset of C-initial and G-initial items 

from a nonword naming experiment by Treiman and colleagues (2007, Exp. 1) and additional 

two items (gerd and gord) were used to evaluate the rating method. In principle, this method 

should show a converging pattern of results with that of the naming data from the previous 

studies. The expected pattern of results from the rating method was based on naming 

responses from adult skilled readers in experiments conducted by Treiman and colleagues 

(2007, Exp. 1) and Treiman and Kessler (2019, Exp. 1). The proportion of context sensitive 

pronunciations for the experimental items were calculated as the proportion of soft 
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pronunciations relative to the total of soft and hard pronunciations for each item group. The 

findings from the two studies show that the proportion of soft pronunciations for critical 

items with c or g onset were approximately .8 and .15, respectively40. The proportion of soft 

pronunciation for control items with c or g onset were .01 at most. The proportions of soft 

pronunciations thus reflect the statistics of the English language in the sense that the critical 

items received soft pronunciations, while the control items did not.  

In the rating task, each item was presented twice – once paired with a soft pronunciation (e.g., 

cilsh pronounced as /sIlS/) and once paired with a hard pronunciation (e.g., cilsh pronounced 

as /kIlS/). In line with the findings from the nonword naming experiments described above, 

the rating responses for critical and control items, when they were paired with a soft or hard 

pronunciation, were expected to show a similar pattern, that is, rejecting pronunciations that 

were produced by nearly no participant in the naming task and accepting pronunciations that 

were produced often enough to be considered deliberate in the naming task (i.e., proportion 

of .15 is considered high enough to reflect deliberate naming responses). Additionally, the 

previous naming data suggests certain relative patterns of ratings, such as higher acceptability 

ratings for C-critical items paired with soft pronunciations than C-critical items paired with 

hard pronunciation, as a clear majority of the participants in the naming task produced soft 

pronunciations for these items. See Appendix 11, Table 11B for a full list of stimuli. 

6.3.2.3 Irregular items with low and high token frequency. Naming and rating responses 

to nonwords with irregular word bodies were compared directly, as a within-subjects design. 

Each nonword was presented twice in the rating task – once paired with an irregular vowel 

pronunciation (e.g., bealm pronounced as /bElm/) and once paired with a regular 

pronunciation (e.g., bealm pronounced as /bilm/). The acceptability ratings in the rating task 

were expected to reflect the naming responses in the naming task for each subject, that is, the 

items a given participant pronounced irregularly should also receive higher ratings from that 

participant in the rating task, when these items are paired with an irregular compared to a 

regular pronunciation. These items were also used for evaluating sensitivity of the rating 

method, by extracting the human modal response for each item in the naming task. For a full 

list of stimuli, see Appendix 3, Tables 3B and 3D.  

 

 
40 These figures are based on the proportions of soft pronunciations for the critical items produced by university 

students (Treiman & Kessler, 2019, Exp. 1), which were reasonably similar to the ones reported in Treiman et 

al. (2007), separately for items beginning with ce (.84) and ci (.87) and for items beginning with ge (.16) and gi 

(.04).  
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6.3.3 Procedure 

The procedure is described in detail in Chapter 4, Section 4.2.3. In summary, the Naming-

Rating group completed a nonword naming task, nonword rating task and a vocabulary task, 

whereas the Rating-Only group completed the last two tasks. Each trial in the rating task 

consisted of presentation of the nonword’s written form and pronunciation, the acceptability 

of which the participants rated on a six-point scale from VERY BAD to VERY GOOD. The 

vocabulary task consisted of pronouncing a word and choosing the best definition for it from 

four options. 

6.3.4 Data processing 

6.3.4.1 Exclusion of trials. The procedure for trial exclusion reported in Chapter 4 was also 

followed in the current study – i.e., any nonwords that were based on a word that was 

pronounced or defined incorrectly by a participant in the vocabulary task were removed from 

that participant’s data. See Chapter 4 (Section 4.2.4) for further details about trial exclusion.  

6.3.4.2 Naming data. Apart from the data loss for the Irregular nonwords with low and high 

token frequency (reported in detail in Chapter 4, Section 4.2.4.4), very few trials were lost for 

the C and G-initial items. Due to audio recording issues, transcriber disagreement or a 

participant not responding on time, 0.65 % of the trials for C and G-initial items were lost.  

6.3.4.3 Rating data. The labels of the rating scale were re-coded as follows: 1 = VERY 

BAD, 2 = BAD, 3 = PROBABLY NOT OK, 4 = PROBABLY OK, 5 = GOOD and 6 = 

VERY GOOD. Mean ratings for each item group from each participant were then calculated. 

The means from each participant were treated as continuous data and thus parametric 

hypotheses tests were used except for the analyses of the Error and Odd items (see below). 

Despite ongoing debate on which statistical tests are appropriate for data from Likert-type 

response formats (Carifio & Perla, 2007), parametric tests have been shown to be remarkably 

robust against assumption violations, such as scale of measurement (Norman, 2010). 

Participants with extreme outliers (defined as values that were more than three times the 

interquartile range below the 1st quartile or above the 3rd quartile) in any of the relevant item 

groups for a given analysis were removed. For the C and G-initial items, only one participant 

in the Rating-Only group was excluded due to outliers (remaining n = 68). Due to notably 

skewed ratings for the Error items (the mean rating was the minimum value of 1 (‘very bad’) 

for 80% of the participants in the Naming-Rating group and 72% of the participants in the 



 Chapter 6: Nonword rating method 

 

153 

 

Rating-Only group), a non-parametric binomial sign test was used for the analyses of the 

Error and Odd items, which required no outlier removal. 

6.3.4.4 Statistical power. Sensitivity power analyses were computed using GPower (Faul et 

al., 2007) for each hypothesis test and the resulting minimum, reliably detectable effect sizes 

for each analysis will be reported along with the observed effect sizes from the analyses. For 

C and G-initial items, where several hypothesis tests were performed on the same data set, 

Bonferroni correction was applied so that each test after the global 2x2x2 ANOVA was 

included in what was considered a family of tests for each participant group (Naming-Rating 

or Rating-Only groups) separately. Therefore, the corrected alpha level for all the hypotheses 

tests for C and G-initial items was .05/14 = .004.  

6.4 Experiment 1 Results 

6.4.1 Error and Odd items 

The Error and Odd items were expected to receive ratings in the ‘unacceptable’ range (i.e., 

below 4 (‘probably ok’) and the Odd items were expected to receive higher ratings than the 

Error items. 

Additionally, a measure of specificity of the rating method was calculated as the percentage 

of trials that were rejected (i.e., that received a rating 3, ‘probably not ok’, or lower), out of 

all the trials in the rating task. 

These predictions were tested for both the Naming-Rating and the Rating-Only group. A 

binomial sign test was used due to notably skewed ratings for the Error items, which violated 

assumptions for both t-tests and Wilcoxon signed-rank test.  

The median rating of 1 for Error items and 2.6 for Odd items both differed reliably from the 

critical value 4 (‘probably ok’) in Naming-Rating group (both p < .001). Similarly, the 

median rating of 1 for Error items and 2.3 for Odd items were both significantly different 

from 4 (both p < .001) in the Rating-Only group. Furthermore, the median difference in 

acceptability ratings for Error and Odd items was 1.6 (p < .001) for the Naming-Rating group 

and 1.3 (p < .001) for the Rating-Only group. 

The specificity of the rating method, calculated for both groups of participants separately, 

was 90.43% in the Naming-Rating group and 92.61% in the Rating-Only group. 
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The findings suggest that the participants in both groups paid attention to the task and that the 

rating method has a high level of specificity – unlikely pronunciations for nonwords were 

rated as unacceptable.  Furthermore, items that embody some PSCs of English (Odd items) 

were deemed more acceptable than items with virtually no PSCs of English (Error items).    

6.4.2 Items with context sensitive onset C or G 

The acceptability ratings to the C and G-initial items were expected to reflect the general 

pattern of naming responses found in previous studies (Treiman et al., 2007; Treiman & 

Kessler, 2019). This resulted in a number of predictions, both in terms of the relative ratings 

(e.g., that hard pronunciations are favoured over soft pronunciations for control items) and 

the absolute ratings (e.g., soft pronunciations for control items would be rated as 

unacceptable). See the last paragraphs of Section 6.2 for the full list of predictions. 

This pattern of results was expected to be found in both Naming-Rating and Rating-Only 

group. The predictions regarding the relative ratings were tested with a 2x2x2 repeated 

measures ANOVA, inspecting the effects of Onset (C, G), Condition (Control, Critical) and 

Pronunciation (Hard, Soft) on mean acceptability ratings, for each participant group 

separately. 

Most importantly, the analyses revealed a significant three-way interaction between Onset, 

Condition and Pronunciation in both groups (see Appendix 12, Table 12A). All lower order 

interactions and main effects were also statistically significant, apart from Onset x Condition 

interaction (ns. in both groups) and the main effect of Onset in the Naming-Rating group 

only. In the presence of the three-way interaction, simple two-way interactions at each level 

of Onset were inspected next. For both groups, there was a reliable interaction between 

Condition and Pronunciation, along with significant main effects of the two (see Appendix 

12, Table 12B). Finally, simple main effect of Pronunciation was computed for each Onset-

Condition combination, for both groups41. These comparisons revealed that the simple main 

effects of Pronunciation were significant for all other Onset-Condition combinations except 

for the C-critical items, in both groups (Table 6.1). Descriptive statistics for both groups are 

presented in Table 6.2.  

 

 

 
41 The minimum detectable effect size for this effect of interest was f(V) = 0.47, for Bonferroni corrected alpha 

level of .004, power of .8 and the smallest sample size of 68 in these analyses, see Table 6.1.   
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Table 6.1 

Effect of Pronunciation (hard or soft) on acceptability ratings of C and G-initial items at 

each level of Onset and Condition  

Onset Condition df F p-value Cohen's f 

Naming-Rating group (n = 69) 

C Control 1, 68 187 < .001 1.66 
C Critical 1, 68 5 0.03 0.27 

G Control 1, 68 329 < .001 2.20 

G Critical 1, 68 148 < .001 1.47 

Rating-Only group (n = 68) 

C Control 1, 67 264 < .001 1.98 
C Critical 1, 67 0.58 0.45 0.10 

G Control 1, 67 276 < .001 2.03 

G Critical 1, 67 135 < .001 1.42 
 

Table 6.2 

Mean ratings for C and G-initial items paired with soft and hard pronunciations 

Condition Pronunciation Group 

Naming-Rating ( n = 69) Rating-Only (n = 68) 

    M SD M SD 

C-control Hard 5.37 0.60 5.08 0.58 

Soft 3.68 1.03 3.06 0.97 

G-control 
Hard 5.54 0.52 5.31 0.55 

Soft 3.85 0.86 3.46 0.87 

C-critical 
Hard 4.83 0.82 4.52 0.75 

Soft 5.12 0.71 4.62 0.71 

G-critical 
Hard 5.61 0.45 5.39 0.51 

Soft 4.39 0.85 4.12 0.89 
 

Figure 6.1 depicts the pattern of mean ratings for the C and G-initial items. As can be seen, in 

both groups, hard pronunciations for control items received higher ratings than soft 

pronunciations for these items. The ratings for the C-critical items do not differ based on 

pronunciation type. Hard pronunciations for the G-critical items received higher ratings than 

soft pronunciations for the same items.  The initial three-way interactions found between 

Onset, Condition and Pronunciation can be interpreted as Condition modulating the effect of 

Pronunciation on acceptability ratings only for the C-initial items, but not for G-initial items.  
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Figure 6.1 

Mean ratings of C-onset and G-onset nonwords by Naming-Rating and Rating-Only groups 

 

 

Note. Error bars are 95% confidence intervals of the mean ratings. Naming-Rating group (n = 69), 

Rating-Only group (n = 68).  

 

Next, the predictions regarding the absolute ratings were tested with one-sample t-tests (see 

Table 6.3 for detailed results). These tests confirmed that ratings for critical items with soft 

pronunciations were reliably above 3 (‘probably not ok’) for both C and G-initial items, in 

both Naming-Rating and Rating-Only groups. However, C and G-initial control items with 

soft pronunciation were rated reliably below 4 (‘probably ok’) only by the Rating-Only 

group, whereas the ratings given by the Naming-Rating group were not significantly different 

from the critical value. 42 

 

 

 
42 Bonferroni-adjusted alpha level of .004 was used for each group of participants. As such, the minimum 

detectable effect size for a two-tailed, one-sample t-test with power of .8 and n = 68 was Cohen’s d = 0.47. 
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Table 6.3 

Results of one-sample t-tests comparing mean ratings for C and G-initial items to critical 

values of 4 (‘probably ok’) and 3 (‘probably not ok’) 

Item type 
Mean vs 

crit. value 
95 % CI of 

mean 
df t-value p-value Cohen's d 

Naming-Rating group (n = 69) 

C-control soft 3.68 vs 4 3.43 – 3.93 68 -2.59 0.012 -0.31 

G-control soft 3.85 vs 4 3.64 – 4.05 68 -1.48 0.14 -0.18 

C-critical soft 5.12 vs 3 4.95 – 5.29 68 24.97 < .001 3.01 

G-critical soft 4.39 vs 3 4.19 – 4.60 68 13.67 < .001 1.65 

Rating-Only group (n = 68) 

C-control soft 3.06 vs 4 2.83 – 3.3 67 -8.00 < .001 -0.97 

G-control soft 3.46 vs 4 3.25 – 3.67 67 -5.12 < .001 -0.62 

C-critical soft 4.62 vs 3 4.44 – 4.79 67 18.89 < .001 2.29 

G-critical soft 4.12 vs 3 3.90 – 4.34 67 10.34 < .001 1.25 
 

In summary, both groups favoured hard pronunciations for control items over soft 

pronunciations, as expected. However, only the Rating-Only group judged control items with 

soft pronunciations as unacceptable, while the Naming-Rating group was more lenient for 

these items, with mean ratings approximately at ‘probably ok’. Furthermore, against my 

predictions, C-critical items with soft pronunciations were not favoured over C-critical items 

with hard pronunciations by either group, although both groups rated C-critical items with 

soft pronunciations as acceptable. Finally, hard pronunciations assigned to G-critical items 

were favoured over their soft-pronunciation counter parts, and G-critical items with soft 

pronunciations were judged as acceptable by both groups, in line with my predictions.  

The results from the rating method thus converge with the pattern of results previously found 

via the naming method in some ways (hard pronunciations for all control items and G-critical 

items were favoured, while soft pronunciations for G-critical items were still accepted), but 

not others (the preference for soft pronunciations for C-critical items was not evident in the 

rating data, nor was rejection of soft pronunciations assigned to control items in the Naming-

Rating group).  

6.4.2.1 Naming responses. The C and G items were also named by the Naming-Rating 

group. The proportion of soft pronunciations was .46 for the C-critical items, .02 for the G-

critical items, .004 for the C-control items and 0.00 for the G-control items. The incidence of 

context sensitive pronunciations was thus considerably lower in this sample compared to the 
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previously reported findings of .8 for C-initial and .15 for G-initial items (Treiman & Kessler, 

2019). This discrepancy will be considered further in the Discussion.  

6.4.3 Irregular items with low and high token frequency 

This direct comparison of the naming and rating responses to the Irregular items was 

expected to show a converging pattern of responses, such that the same pronunciations 

produced in the naming task would also be favoured in the rating task.  

The irregular items were also used to arrive at a sensitivity measure for the rating method. 

The naming responses to the Irregular items (regardless of their token frequency) from each 

participant in the Naming-Rating group were categorised as regular or irregular, based on the 

critical vowel pronunciation (‘other’ responses were excluded as these were not represented 

in the rating task). Out of the valid naming responses, 51% were pronounced regularly, 28% 

irregularly and 21% were lost as ‘other’ responses. The set of regularly and irregularly named 

items was unique for each participant, based on the types of responses they gave. The mean 

acceptability ratings were then calculated for both sets of items for each participant (see 

Table 6.4 for summary).  

Table 6.4 

Mean acceptability ratings to regularly and irregularly named Irregular items 

  Regularly named Irregularly named 

 

Rating – Regular 
pronunciation 

Rating – Irregular 
pronunciation 

Rating – Regular 
pronunciation 

Rating – Irregular 
pronunciation 

Mean 5.35 4.42 4.66 5.38 
SD 0.45 0.59 0.61 0.48 

 

Note. Regularly/Irregularly named = items that received a regular/irregular pronunciation in the 

naming task. Rating – Regular/Irregular pronunciation = mean ratings for nonwords that were paired 

with a regular/irregular pronunciation in the rating task. 

 

For the regularly named item set, when these items were paired with regular pronunciations 

in the rating task, they received reliably higher ratings than when they were paired with 

irregular pronunciations (t(68) = 13.65, p < .001, dz = 1.64). Similarly for the irregularly 

named item set, irregularly pronounced items in the rating task received higher acceptability 
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ratings than when they were pronounced regularly (t(68) = 10.04, p < .001, dz = 1.22).43 

Thus, the participants’ naming behaviour converged with their subsequent rating behaviour of 

the same items.  

Furthermore, mean ratings to irregularly and regularly pronounced Irregular items in the 

rating task (regardless of token frequency) given by both groups of participants also 

converged with the overall pattern of the naming responses from the naming task given by 

the Naming-Rating group. The naming responses from the Naming-Rating group showed 

overall preference for regular pronunciations: the mean proportion of regular pronunciations, 

out of all valid responses (M = .51, SD = 0.1) was higher than the proportion of irregular 

pronunciations (M = .28, SD = 0.08), t(68) = 11.45, p < .001, dz = 1.38. The overall ratings to 

Irregular items from the Naming-Rating group also showed preference for regular 

pronunciations (M = 5.06, SD = 0.47) over irregular ones (M = 4.82, SD = 0.49), t(68) = 4.97, 

p < .001, dz = 0.6. Similarly, the overall ratings from the Rating-Only group were higher for 

the regularly pronounced items (M = 4.69, SD = 0.47) than for the irregularly pronounced 

items (M = 4.43, SD = 0.49), t(68) = 6.50, p < .001, dz = 0.7843. 

Additionally, a sensitivity measure of the rating method was computed in the following way: 

only trials where a nonword was paired with the pronunciation corresponding to the human 

modal response (regular or irregular vowel pronunciation) for each item in the naming task 

were retained. Percentage of trials in the rating task that were higher than 4 (‘probably ok’) 

out of all the trials were then calculated. There were 48 items with a clear human modal 

response (i.e., no ties between the proportion of regular and irregular responses44). The total 

number of trials was thus (48 items * 69 participants) minus missing trials (trials in the rating 

task were classified as missing if a participant did not know the word that a given nonword 

was based on). The sensitivity of the rating method was 94.05% in the Naming-Rating group 

and 87.65% in the Rating-Only group.  

However, the human modal responses in this full set of data were sometimes arbitrary, as the 

percentage of participants giving the modal response was low for some items (e.g., only 21% 

pronounced the nonword choung regularly as /J6N/). Furthermore, due to the considerable 

 
43 Minimum effect size of 0.34 was computed for a 2-tailed, paired samples t-test with alpha level of .05, power 

of .8 and sample size of 69. 
44 Additional two items were excluded due to an error in stimuli construction: the onsets for the items were 

swapped between the naming and the rating tasks (phoute and dwonge in the naming task, but dwoute and 

phonge in the rating task). 
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data loss (see Chapter 4, Section 4.2.4), the number of participants with valid responses in the 

naming task was low for some items (e.g., only one participant correctly defined the word 

kirsch, and as such, only one participant’s naming response determined the human modal 

response for the nonwords flirsch and mirsch, and only one participant provided a rating for 

these items). These factors cast doubt on whether some of the human modal responses should 

be considered common enough to expect clear acceptance of these pronunciations in the 

rating task. To consider this possibility, a stricter criterion for a human modal response was 

also applied, such that only items with at least 35 valid responses (half of the original sample 

size of 69) and at least 50% of the participants giving this response were retained. This 

resulted in a sample of 25 items. This stricter analysis showed that the sensitivity of the rating 

method was 95.46% in the Naming-Rating group and 90.13% in the Rating-Only group.   

6.5 Experiment 1 Discussion 

The evaluation of the nonword rating method revealed that overall, this method seems to 

capture nonword processing in the expected way. Firstly, implausible pronunciations 

assigned to nonwords (Error and Odd items) were rated as unacceptable. These acceptability 

judgements were also fine-grained enough to differentiate between items with no PSCs of 

English (Error items) and those with some PSCs of English (Odd items). The specificity of 

the rating method was also high, ranging from 90% to 93%.  

Secondly, the pattern of results from the rating task matched reasonably well with the pattern 

found in previous naming studies (Treiman et al., 2007; Treiman & Kessler, 2019): soft 

pronunciations assigned to C and G-critical items were rated as acceptable, hard 

pronunciations to C and G-control items were rated more acceptable than soft pronunciations 

to these items, and ratings for G-critical items with soft pronunciations were rated less 

acceptable than G-critical items with hard pronunciations by both groups of participants. 

However, there were two findings that were not expected. The first one was that neither 

group preferred soft pronunciations assigned to C-critical items over hard pronunciations for 

these items. However, the Naming-Rating group’s naming responses to these items in the 

naming task should give some context to this finding: the proportion of soft pronunciations 

produced by the Naming-Rating group was .46 for C-critical items and .02 for G-critical 

items, both of which are lower than the proportions reported in previous studies (.8 and .15, 

respectively). This might be because only a small subset of the items was used in the current 

study. Nevertheless, this lower incidence of context sensitive pronunciations for C-critical 

items bridges the gap between the results from the naming and rating methods – if only less 
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than half of the C-critical items were assigned a soft pronunciation, then not favouring the 

soft pronunciation for these items in the rating task may not be that surprising. The second 

unexpected finding was that, unlike the Rating-Only group, the Naming-Rating group did not 

reject soft pronunciations assigned to C and G control items. However, the mean ratings for 

these items remained at the border of acceptable and unacceptable. A potential reason for this 

lenient rating, evident throughout the Naming-Rating group’s responses, is fatigue or practice 

effects for rating the nonwords after the preceding naming task. These potential explanations 

will be addressed in Experiment 2.  

Finally, direct comparison of the Naming-Rating group’s naming responses to their 

subsequent rating responses of the same items revealed that the naming behaviour converged 

with the rating behaviour: the type of pronunciation assigned to a nonword in the naming task 

(regular or irregular) was also favoured in the rating task. The overall ratings for regularly 

and irregularly pronounced items by both groups were also in line with the overall naming 

responses from the Naming-Rating group: higher proportion of regularly named Irregular 

items was reflected in the higher acceptability ratings for regularly named Irregular items in 

the rating task. The sensitivity measures of the rating task were also high, ranging from 88% 

to 94%. 

Limitations of the current study will be covered in the General Discussion (Section 6.9). 

To conclude, the assessment of the nonword rating method revealed high sensitivity and 

specificity of the method and promising convergence between the pattern of results from the 

naming and rating methods. However, the current study raises questions about the preceding 

exposure to the items that will be rated, and some differences found between the pattern of 

ratings from the two groups of participants in the present experiment will be addressed in the 

next experiment.  

6.6 Experiment 2 

The comparisons between nonword naming and rating responses have so far been promising, 

as demonstrated by the mostly expected pattern of acceptability ratings in Experiment 1 of 

the current chapter. However, some unexpected results were also obtained, as the group of 

participants that had previously named the same nonwords (Naming-Rating group), produced 

a different pattern of acceptability ratings for these nonwords than another group of 

participants that had only rated the nonwords (Rating-Only group). More specifically, the 

Naming-Rating group did not show the expected pattern of acceptability ratings for Irregular 
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nonwords, when these nonwords were divided based on the token frequency of the words 

they shared a word body with (reported in Chapter 4, Section 4.3.1) or for the C and G-initial 

items (Experiment 1, current chapter), while the Rating-Only group did.  

Experiment 2 set out to clarify whether this difference in the groups’ rating behaviour was 

due to fatigue or practice effects. To test this, a new group of participants first named 

unrelated nonwords that were comparable in difficulty to the nonwords in Experiment 1 and 

then rated the same nonwords that were used in Experiment 1. This way, if fatigue was the 

main reason for the unexpected rating responses from the Naming-Rating group, the new 

group of participants (Unrelated-Rating group) should show similar pattern of ratings with 

the Naming-Rating group, for the Irregular nonwords with low and high token frequency and 

C and G-initial nonwords. If, on the other hand, the pattern of rating responses from the 

Naming-Rating group were a result of practice effects due to more extensive exposure to 

experimental items, the new Unrelated-Rating group should show more similar rating 

behaviour to that of the Rating-Only group. 

Additionally, to complement the available rating data for the C and G-onset items from 

Experiment 1, the current experiment added rating responses for these items from two more 

groups of participants. Together these four groups of participants formed a combination of 

conditions that allowed a closer inspection of the potential influence of previous tasks on the 

subsequent rating behaviour – when the same items have been named before rating them 

(Naming-Rating group in Experiment 1 and Naming-Rating-type group in the current 

experiment), when unrelated nonwords have been named beforehand (Unrelated-Rating 

group in the current experiment) and when no nonwords were named before the rating task 

(Rating-Only group in Experiment 1).  

A secondary goal of the current experiment was to complement the findings from Experiment 

1 by directly comparing naming and rating responses to another set of irregular nonwords, 

from another group of participants (Naming-Rating-type group, reported in Chapter 5). This 

comparison served as a conceptual replication of the findings reported in Experiment 1 

(Section 6.4.3) – namely, that skilled readers tended to favour the type of pronunciations in 

the rating task that they themselves had produced previously in the naming task. The naming 

and rating responses from this group also served as another measure of sensitivity of the 

rating method.  
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Finally, a replication of the pattern of ratings for the Error and Odd items in Experiment 1 

was carried out with two additional groups of participants (the Unrelated-Rating and the 

Naming-Rating-type groups). None of these groups named these items before rating them.   

6.7 Experiment 2 Method 

6.7.1 Participants  

The first group of participants named nonwords that were unrelated to the upcoming 

nonwords in the rating task (Unrelated-Rating group), the second group of participants named 

nonwords and subsequently rated the same nonwords (Naming-Rating-type group, Chapter 5, 

see Section 5.2.1 for participant characteristics). The sample size for the Unrelated-Rating 

group was 64 (13 males), with mean age of 19.86 years (SD = 3.23). The two groups of 

participants in the current experiment were from the same student population as the 

participants in Experiment 1, recruited based on the same eligibility criteria and an additional 

requirement that they had not participated in the Experiment 1. See Table 6.5 for a summary 

of the tasks completed by each of the four groups of participants. 

Table 6.5 

Tasks completed by groups of participants in Experiment 1 and Experiment 2 

Group Experiment Naming task items Rating task items 

Naming-Rating Experiment 1 C & G initial, Irregular-token Error & Odd, C & G initial, Irregular-token 
Rating-Only Experiment 1  -  Error & Odd, C & G initial, Irregular-token 

Unrelated-Rating Experiment 2 Unrelated items Error & Odd, C & G initial, Irregular-token 
Naming-Rating-type Experiment 2 C & G initial, Irregular-type Error & Odd, C & G initial, Irregular-type 

 

Note. Irregular-token = nonwords with irregular word bodies that are shared with words with low or 

high token frequency (items from Chapter 4). Irregular-type = nonwords with irregular word bodies 

that are shared with a single or several existing words (items from Chapter 5). 

 

Ethics approval for the current experiments was granted by the School of Psychological 

Science Research Ethics Committee in University of Bristol (ethics approval code: 0229). 

 

6.7.2 Materials  

The nonwords named by the Unrelated-Rating group should be different but comparable in 

difficulty to the items in Experiment 1, so that the naming task would be equally taxing for 
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both groups of participants – the Naming-Rating group in Experiment 1 and the Unrelated-

Rating group in the present experiment. To this end, it was ensured that the number of 

nonwords that are likely more difficult to name, that is, nonwords with several plausible 

pronunciations (nonwords sharing a word body with an irregularly pronounced word/words 

and nonwords with context sensitive onsets C or G) was the same for both groups of 

participants. The rest of the items were fillers. See Appendix 3, Tables 3B and 3C for the full 

list of nonwords named by the Naming-Rating group (Experiment 1) and Appendix 11, Table 

11C for the nonwords named by the Unrelated-Rating group. The nonwords rated by the 

Unrelated-Rating group were identical to the ones rated by the two groups in Experiment 1. 

The nonwords named by the Naming-Rating-type group included the C and G-initial items 

also named by the Naming-Rating group in Experiment 1, nonwords with irregular word 

bodies that either occurred in several existing words (Irregular-Many items) or only in a 

single word (Irregular-Single items) and filler items. These items were used in the experiment 

reported in Chapter 5, which includes some of the naming and rating results from the 

Naming-Rating-type group (see Appendix 8, Tables 8A and 8B for full list of items named by 

the Naming-Rating-type group). The nonwords rated by the Naming-Rating-type group were 

the Error and Odd items and C and G-initial items, identical to the ones used in Experiment 1. 

Additionally, the Naming-Rating-type group rated the Irregular-Many and Irregular-Single 

items (see Appendix 8, Tables 8C and 8D for the full list of items rated by the Naming-

Rating-type group). 

6.7.3 Data processing 

6.7.3.1 Exclusion of participants. The pre-registered data processing plan 

(https://osf.io/znpyf) for the experiment reported in Chapter 4 was also followed in the 

current experiment. According to this plan, any participant who rated four or more of the 

Error items as ‘probably ok’ or higher, would be excluded. This is because such lenient rating 

behaviour is suggestive of insufficient attention for the task. One participant in the Unrelated-

Rating group was excluded due to this criterion, leaving the sample size for this group at 63. 

6.7.3.2 Exclusion of trials. The procedure for trial exclusion reported in Chapter 4 was also 

followed in the current study. Two native speakers of English transcribed the Unrelated-

Rating group’s naming responses in the vocabulary task, agreeing on 95% of the items. Due 

to an error in pre-processing of the vocabulary responses, the item heart was marked as 

unknown for all the participants. This error was later corrected, but the correctness of the 

https://osf.io/znpyf
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pronunciations of this item was assessed by myself, a non-native English speaker with full 

awareness of the purpose this study. However, as the word heart is a highly frequent word 

and there was little variation in how this item was pronounced, I believe this had little impact 

on the assessment accuracy of the participants’ vocabulary knowledge for this item. Overall, 

29.59% of the rating trials were lost due to insufficient vocabulary knowledge. See Table 6.6 

for a summary of the data loss for all three groups that rated the Irregular items with low and 

high token frequency (the Unrelated-Rating group reported in the present experiment and the 

Naming-Rating and Rating-Only groups from Experiment 1).  

Table 6.6 

Percentage of items excluded in the rating task of Irregular nonwords 

Group Semantic Pronunciation Total 

Rating-Only (n = 69) 18.37 17.55 35.92 
Naming-Rating (n = 69) 16.82 16.67 33.49 
Unrelated-Rating (n = 63) 17.23 12.36 29.59 

 

Note. Semantic = percentage of items lost due to incorrect definition of the base word; Pronunciation 

= percentage of items lost due to incorrect vowel pronunciation of the base word, lost recordings and 

discrepancies in the phonemic transcription. 

 

6.7.3.3 Naming data. Only naming responses from the Naming-Rating-type group will be 

reported. The percentage of lost trials due to failed audio recording was 1.8% for the 

Irregular-Many and Irregular-Single nonwords and 0.64% for the C and G-initial items.   

6.7.3.4 Rating data. As in Experiment 1, the labels of the rating scale were re-coded as 

numeric, mean ratings for each item group from each participant were then calculated and 

participants with extreme outliers in any of the relevant item groups for a given analysis were 

removed. For the analyses of the C and G onset items, one participant was excluded from the 

Unrelated-Rating group, the remaining sample size for this group was thus 62. Due to skewed 

ratings for the Error items (the mean rating was the minimum value of 1 (‘very bad’) for 81% 

of the participants in the Unrelated-Rating group and 89% of the participants in the Naming-

Rating-type group), a non-parametric binomial sign test was used for the analyses of the 

Error and Odd ratings data and therefore no outliers were removed. 
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6.8 Experiment 2 Results and Discussion 

6.8.1 Irregular items with low and high token frequency 

The purpose of the current analysis was to clarify the source of discrepant rating responses 

found in Chapter 4, namely, that ratings for Irregular nonwords with low and high token 

frequency did not differ from one another in the Naming-Rating group, but the ratings from 

the Rating-Only group showed the expected pattern (i.e., higher ratings for Irregular-high 

than for Irregular-low items). The Unrelated-Rating group rated the Irregular nonwords, but 

had not named these items before. Additionally, to supplement the findings from Experiment 

1, the general preference for regular or irregular pronunciations for the Irregular items was 

investigated in the Unrelated-Rating group’s rating responses. Finally, another measure of 

sensitivity of the rating method was computed from the ratings of the Unrelated-Rating 

group. 

The Unrelated-Rating group gave slightly higher ratings to Irregular-high items (M = 4.73, 

SD = 0.58) than to Irregular-low items (M = 4.66, SD = 0.61), but this difference was not 

statistically reliable: t(62) = 1.42, p = 0.08, dz = 0.18. 45 

Due to a considerable loss of trials (because of insufficient vocabulary knowledge of the 

words the nonwords were based on), the same analysis was also run excluding any 

participants with less than 10 valid responses in each condition. The outcome of this analysis 

was similar: the Irregular-high items received higher ratings (M = 4.76, SD = 0.53) than the 

Irregular-low items (M = 4.67, SD = 0.59), a difference that was confirmed statistically (t(53) 

= 1.86, p = .03, dz = 0.25).46  

The rating responses to the Irregular-high and Irregular-low items showed the expected 

pattern (i.e., higher ratings for Irregular-high than for Irregular-low items), but this difference 

did not reach statistical significance when the minimum effect size for the analyses was taken 

into account (observed effect size at most dz = 0.25 vs minimum effect size dz = 0.34). Thus, 

the current experiment showed a numerical trend in the expected direction and a difference 

between acceptability ratings for the Irregular items that approached significance. By 

contrast, the difference in the acceptability ratings from the Naming-Rating group in Chapter 

4 was numerically in the opposite direction and far from statistical significance (see the 

results in detail in Chapter 4, Section 4.3.1). The Rating-Only group in Chapter 4 was 

 
45 The minimum detectable effect size with alpha level of .05, power of .8 and sample size of 64 was dz = 0.31 
46 The minimum detectable effect size with alpha level of .05, power of .8 and sample size of 55 was dz = 0.34 
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therefore the only group that showed a reliable difference in the acceptability ratings in the 

expected direction. With these patterns of rating responses from the three groups, it is 

concluded that the two groups who did not name the critical items before rating them showed 

the expected rating behaviour at least as a numerical trend. As such, the question of why the 

rating behaviour of the Naming-Rating group differed from that of the Rating-Only group in 

Chapter 4 appears to be related to practice effects rather than fatigue.  

Another comparison between the naming and rating responses between mean ratings for the 

Irregular items when they were paired with an irregular pronunciation in the rating task and 

when they were paired with a regular pronunciation was conducted. As the naming responses 

indicated an overall preference for regular pronunciations in the Naming-Rating group in 

Experiment 1 (Section 6.4.3), the same preference was expected to be found in the ratings of 

the Unrelated-Rating group for the same items. The overall ratings to Irregular items from the 

Unrelated-Rating group showed higher acceptability ratings for regular pronunciations (M = 

5.02, SD = 0.48) over irregular ones (M = 4.70, SD = 0.56), t(62) = 6.63, p < .001, dz = 

0.8447.  

Finally, a sensitivity measure of the rating method was computed using the rating trials that 

included a clear human modal pronunciation for a given nonword (48 items). The sensitivity 

of the rating method was 91.59%. Thus, the high level of sensitivity of the rating method 

found in Experiment 1 (Section 6.4.3) was replicated with a group of participants that had not 

named the critical items beforehand (the Unrelated-Rating group). 

6.8.2 Items with context sensitive onset C or G 

The aim of the present analyses was to clarify why the pattern of ratings for these items 

differed between the Naming-Rating and Rating-Only groups in Experiment 1.  

The C and G-initial nonwords were rated by the Unrelated-Rating and Naming-Rating-type 

groups. A 2x2x2 repeated measures ANOVA, inspecting the effects of Onset (C, G), 

Condition (Control, Critical) and Pronunciation (Hard, Soft) on mean acceptability ratings 

were run, for each group separately. These analyses were conducted to test the same 

hypotheses as in Experiment 1, namely, that hard pronunciations are favoured over soft 

pronunciations for control items, that soft pronunciations are favoured over hard 

pronunciations for C-critical items and that hard pronunciations are favoured over soft 

pronunciations for G-critical items.   

 
47 The minimum detectable effect size with alpha level of .05, power of .8 and sample size of 63 was dz = 0.36 
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The most important findings were a significant three-way interaction between Onset, 

Condition and Pronunciation in both groups (Appendix 13, Table 13A). All lower order 

interactions and main effects were also statistically significant, apart from Onset x Condition 

interaction (ns. in both groups) and the main effect of Onset for Naming-Rating-type group. 

Due to the significant three-way interaction, simple two-way interactions at each level of 

Onset were inspected next. This analysis showed a reliable interaction between Condition and 

Pronunciation, along with significant main effects of the two for both groups (Appendix 13, 

Table 13B). Finally, simple main effect of Pronunciation was computed for each Onset-

Condition combination48. These comparisons revealed that the simple main effects of 

Pronunciation were significant for all other Onset-Condition combinations except for C-

critical items (Table 6.7). See Table 6.8 for descriptive statistics. 

 

Table 6.7 

Effect of Pronunciation (hard or soft) on acceptability ratings of C and G-initial items at 

each level of Onset and Condition 

Onset Condition df F p-value Cohen's f 

Unrelated-Rating group (n = 62) 

C Control 1,61 278.00 < .001 1.43 

C Critical 1,61 2.14 0.15 0.03 

G Control 1,61 188.00 < .001 1.15 

G Critical 1,61 92.00 < .001 0.75 

Naming-Rating-type group (n = 55) 

C Control 1,54 210.00 < .001 1.32 

C Critical 1,54 1.27 0.27 0.02 

G Control 1,54 207.00 < .001 1.30 

G Critical 1,54 202.00 < .001 1.28 
 

 

 

 

 

 
48 The minimum detectable effect size for this effect of interest was f(V) = 0.52 for Bonferroni corrected alpha 

level of .004, power of .8 and the smallest sample size of 55 in this analysis, see Table 8.   
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Table 6.8 

Mean ratings for C and G-initial items paired with soft and hard pronunciations 

Condition Pronunciation Group 

Unrelated-Rating (n = 62) Naming-Rating-type ( n = 55) 

    M SD M SD 

C-control Hard 5.30 0.59 5.37 0.53 

Soft 3.47 0.86 3.45 0.83 

G-control 
Hard 5.42 0.55 5.52 0.50 

Soft 3.89 0.99 3.56 0.98 

C-critical 
Hard 4.82 0.88 4.97 0.76 

Soft 5.01 0.60 4.78 0.90 

G-critical 
Hard 5.59 0.42 5.63 0.37 

Soft 4.56 0.83 4.14 0.73 
 

 

 

The results from these analyses are also depicted in Figure 6.2, which shows that soft 

pronunciations for the G-critical, G-control and C-control items received reliably lower 

acceptability ratings from both groups compared to ratings for these items when they were 

assigned a hard pronunciation. The initial three-way interactions found between Onset, 

Condition and Pronunciation can be interpreted as Condition modulating the effect of 

Pronunciation on acceptability ratings only for the C-initial items, but not for G-initial items. 

For C-initial items, effects of Pronunciation are only seen in control items, where items with 

hard pronunciation receive higher ratings than items with soft pronunciation. There is no 

reliable effect of Pronunciation on C-initial critical items. For G-initial items, items with hard 

pronunciation are rated as more acceptable than items with soft pronunciation, regardless of 

the Condition.  
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Figure 6.2 

Mean ratings of C-onset and G-onset nonwords by Unrelated-Rating and Naming-Rating-

type groups 

 

Note. Error bars are 95% confidence intervals of the mean ratings. Unrelated-Rating group (n = 62), 

Naming-Rating-type group (n = 55).  

 

To summarise these findings in terms of the three hypotheses, the pattern of results from both 

groups of participants supported two out of the three hypotheses:  

Hard pronunciations were preferred for control items and G-critical items. However, C-

critical items with soft pronunciation did not receive reliably higher ratings than C-critical 

items with hard pronunciation, which goes against my prediction. Nevertheless, the 

Unrelated-Rating group showed a numerical trend in line with this prediction. 

Next, the predictions regarding the absolute values of the acceptability ratings were tested 

with one sample t-tests. The C and G-critical items with soft pronunciations were expected to 
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receive reliably higher ratings than 3 (‘probably not ok’), and the C and G-control items with 

soft pronunciations were expected to receive reliably lower ratings than 4 (‘probably ok’). 

These predictions were confirmed (see Table 6.9)49, except that G-control items with soft 

pronunciation did not receive ratings reliably below 4 from the Unrelated-Rating group 

(when no correction for multiple comparisons was applied) or by either of the groups (when 

Bonferroni-correction and the corresponding smallest, reliably detectable effect size was 

considered). Due to different interpretations associated with these two possible results (that 

either Unrelated-Rating group or both groups failed to reject soft pronunciations assigned to 

G-control items), both results are considered in the Discussion.   

Table 6.9 

Results of one-sample t-tests comparing mean ratings for C and G-initial items to critical 

values of 4 (‘probably ok’) and 3 (‘probably not ok’) 

Item type 
Mean vs 

crit. value 
95 % CI of 

mean df t-value p-value Cohen's d 

Unrelated-Rating group (n = 62) 

C-control soft 3.47 vs 4 3.25 – 3.69 61 -4.83 < .001 -0.61 
G-control soft 3.89 vs 4 3.63 – 4.14 61 -0.90 0.37 -0.12 
C-critical soft 5.01 vs 3 4.86 – 5.16 61 26.30 < .001 3.34 
G-critical soft 4.56 vs 3 4.35 – 4.77 61 14.79 < .001 1.88 

Naming-Rating-type group (n = 55) 

C-control soft 3.45 vs 4 3.23 – 3.68 54 -4.86 < .001 -0.66 

G-control soft 3.56 vs 4 3.30 – 3.82 54 -3.35 0.001 -0.45 

C-critical soft 4.78 vs 3 4.53 – 5.02 54 14.58 < .001 1.97 

G-critical soft 4.14 vs 3 3.94 – 4.34 54 11.50 < .001 1.55 
 

Finally, the Naming-Rating-type group also named the C and G-onset items before rating 

them. The proportion of soft pronunciations was .35 for the C-critical items, .01 for the G-

critical items, .01 for the C-control items and 0.00 for the G-control items. These proportions 

are similar to the ones found in Experiment 1 for the Naming-Rating group, although the 

incidence of soft pronunciations for C-critical items was somewhat lower in the current study 

(.35 compared to .45 in Experiment 1). The pattern of these naming responses also help 

understanding some of the findings in the rating responses: as the C-critical items were 

pronounced with a soft c less than half the time, the ratings for these items with a soft 

 
49 The smallest detectable effect size for a 2-tailed, 1-sample t-test with alpha level of .004, power of .8 was 

Cohen’s d = 0.49 (for a sample of 62) and 0.52 (for a sample of 55) 
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pronunciation were not favoured over the same items with a hard pronunciation (e.g., Figure 

6.2).  

Taken together, the pattern of ratings for the C and G-initial items in the current experiment 

was very similar to the one reported in Experiment 1. Most of the predictions were 

confirmed, and the unexpected findings in the current experiment revolved around the same 

item groups as those in Experiment 1, namely, that neither group favoured soft 

pronunciations for C-critical items over hard pronunciations and that one or both groups 

failed to reject soft pronunciations assigned to G-control items. See General Discussion 

(Section 6.9) for further consideration of these findings.  

 

6.8.3 Irregular items with low and high type frequency 

The Naming-Rating-type group named and then rated nonword items with irregular word 

bodies that varied in type frequency (i.e., the number of words the nonwords shared a word 

body with, see Chapter 5). This allows another direct comparison between the naming and 

rating responses to the same items, from the same participants. I tested whether the type of 

naming responses given in the naming task would also be favoured in the rating task, e.g., 

whether items that were named regularly in the naming task would receive higher 

acceptability ratings in the rating task when they are paired with regular pronunciations 

compared to when they are paired with irregular pronunciations (and vice versa for the 

irregular items). First, naming responses to each item (n = 60) were categorised as regular, 

irregular or other based on the vowel pronunciation. Out of all the trials in the naming task, 

49% resulted in a regular vowel pronunciation, 34% in an irregular vowel pronunciation and 

17% of the trials were lost as ‘other’ responses. For each item retained for a given participant 

in the naming data, the ratings for the corresponding items were also retained from the rating 

task. Paired-samples t-tests were then run on mean ratings for the items that were named 

regularly in the naming task and separately for the items that were named irregularly in the 

naming task. Table 6.10 summarises the mean ratings for the regularly and irregularly named 

items, when they are paired with regular and irregular pronunciations in the rating task.  
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Table 6.10 

Mean acceptability ratings to regularly and irregularly named Irregular items by Naming-

Rating-type group 

  Regularly named Irregularly named 

 Rating – Regular 
pronunciation 

Rating – Irregular 
pronunciation 

Rating – Regular 
pronunciation 

Rating – Irregular 
pronunciation 

Mean 5.37 4.57 4.38 5.58 
SD 0.39 0.43 0.54 0.37 

 

Note. Regularly/Irregularly named = items that received a regular/irregular pronunciation in the 

naming task. Rating – Regular/Irregular pronunciation = mean ratings for nonwords that were paired 

with a regular/irregular pronunciation in the rating task. 

 

For the regularly named item set, these items received reliably higher ratings in the rating 

task when they were paired with regular pronunciations compared to when they were paired 

with irregular pronunciations (t(54) = 12.42, p < .001, dz = 1.67). Similarly for the irregularly 

named item set, irregularly pronounced items in the rating task received higher acceptability 

ratings than when they were pronounced regularly (t(54) = 15.92, p < .001, dz = 2.15).50 

These results show that the participants’ naming behaviour converged with their subsequent 

rating behaviour of the same items.  

These results thus replicate the findings reported in Experiment 1 (Section 6.4.3), where a 

different group of participants named and rated a different set of nonwords. These findings 

are considered further in the General Discussion (Section 6.9). 

Finally, a measure of sensitivity was calculated as the number of items paired with the human 

modal naming response that were rated as acceptable in the rating task. For 57 items with a 

clear human modal response, and rating responses from 55 participants, the sensitivity 

measure was 94.23%. 

 

 
50 The sensitivity analyses for a two-tailed, paired samples t-test with alpha level of .05, power of .8 and sample 

size of 55 yielded a minimum effect size of 0.38. 
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6.8.4 Error and Odd items 

To replicate the findings reported in Experiment 1 (Section 6.4.1), the Error and Odd items 

were rated by the Unrelated-Rating and Naming-Rating-type groups. The predicted pattern of 

results was that these items would receive ratings below 4 (‘probably ok’) and that the Odd 

items would receive higher ratings than the Error items.   

A binomial sign test was used due to notably skewed ratings for the Error items. The median 

rating of 1 for Error items and 2.5 for Odd items both differed reliably from the critical value 

4 (‘probably ok’) in Unrelated-Rating group (both p < .001). Similarly, the median rating of 1 

for Error items and 2.2 for Odd items were both significantly different from 4 (both p < .001) 

in the Naming-Rating-type group. Furthermore, the median difference in acceptability ratings 

for Error and Odd items was 1.5 (p < .001) for the Unrelated-Rating group and 1.2 (p < .001) 

for the Naming-Rating-type group. 

The specificity of the rating method was calculated for both groups of participants separately, 

as a percentage of trials that were rejected (i.e., that received a rating 3, ‘probably not ok’, or 

lower), out of all the Error and Odd item trials in the rating task. The specificity of the rating 

method was at 91.75% in the Unrelated-Rating group and 94.45% in the Naming-Rating-type 

group. 

A pooled measure of specificity was also computed, from all four groups of participants 

(from Experiment 1 and Experiment 2) combined, which showed that out of 5120 trials (20 

items * 256 participants), 92.21% were rated as unacceptable, demonstrating a high level of 

specificity for the rating method. 

Thus, a total of four groups of participants rated these items similarly, and in line with the 

predictions. This was the case regardless of whether these participants have named nonwords 

before completing the rating task (three of the groups) or not (one group).  

6.9 General Discussion 

In two Experiments, four different groups of participants gave acceptability ratings for 

pronunciations assigned to nonwords. The first experiment aimed to answer the following 

questions 1) whether the ratings show clear rejection of implausible pronunciations of 

nonwords and a preference for pronunciations containing some PSCs of English (Odd items) 

rather than none (Error items), 2) whether the ratings show a comparable pattern to that from 

previously reported naming responses (C and G-initial items), and 3) whether naming 
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responses are comparable to the rating responses from the same participants (nonwords with 

irregular word bodies). Due to unexpected findings in Experiment 1, namely, different 

patterns of ratings from two groups of participants, Experiment 2 aimed to discover the 

source of these differences, with fatigue or practice effects as potential reasons for the 

differences. Additionally, Experiment 2 was also designed to replicate findings from 

Experiment 1.  

My first aim of the study was to inspect the acceptability ratings to Error items (e.g., dwal 

pronounced as /jEsts/) and Odd items (e.g., gloost pronounced as /glEst/). As expected, both 

types of items were rejected and the Odd items, which contained some PSCs of English, were 

rated as more acceptable than the Error items, which contained virtually no PSCs of English. 

This pattern of ratings was obtained from four different groups of participants, none of which 

had named these items beforehand. However, three of the groups had named other nonwords 

before the rating task, while one of the groups only completed the rating task. As such, the 

preceding nonword naming task does not seem to influence the pattern of rating behaviour for 

these items. The specificity of the rating method was high (92%), quantified as the percentage 

of Error and Odd item trials receiving ‘probably not ok’ or worse ratings from the four groups 

of participants combined. These findings speak to the usefulness of the rating method, as it 

provides fine-grained information about pronunciation preferences in skilled readers. 

The second aim of the study was to compare rating responses to the pattern of naming 

responses obtained from previous studies (Treiman, et al., 2007, Exp. 1; Treiman & Kessler, 

2019, Exp. 1). As expected, all four groups of participants favoured hard pronunciations over 

soft pronunciations for control items (regardless of onset) and for G-critical items. All groups 

of participants also deemed soft pronunciations for critical items as acceptable (regardless of 

onset) and rejected soft pronunciations assigned to C-control items (except for Naming-

Rating group, Exp. 1). These findings fit well with the pattern of naming responses to a larger 

set of C and G-initial items reported in previous studies (Treiman et al., 2007; Treiman & 

Kessler, 2019), where virtually no participant produced a soft pronunciation for the control 

items and the proportion of soft pronunciations for the C-critical and G-critical items were 

approximately .8 and .15, respectively. 

However, there were some unexpected findings. Firstly, the soft pronunciation for C-critical 

items was not favoured over the hard pronunciation for C-critical items in the rating task, by 

any of the four groups of participants. However, the proportion of soft pronunciations for the 
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C-critical items in the naming task was not above .50 from either of the two groups of 

participants that named these items. As such, it appears that the small subset of C-critical 

items used in the present experiments did not elicit soft pronunciations as often as in previous 

studies with larger sets of items (Treiman, et al., 2007; Treiman & Kessler, 2019). As such, 

no reliable preference of soft pronunciations for C-critical items in the rating task agrees with 

the naming responses for the subset of items used in the current experiments.  

Secondly, the Naming-Rating group (Experiment 1), the Unrelated-Rating and the Naming-

Rating-type groups (Experiment 2) failed to reject G-control items with soft pronunciation. 

Therefore, naming the C and G-initial items before rating them does not seem to explain the 

unexpected rating behaviour of the Naming-Rating group, because the Unrelated-Rating 

group did not name these items but still showed the same, unexpected pattern of ratings. Only 

one group of participants in the current study (the Rating-Only group, Experiment 1) showed 

the expected pattern of ratings for these items, suggesting that fatigue may explain the 

difference – the expected pattern of ratings was only obtained from a group of participants 

that had not named any nonwords before rating them. However, without Bonferroni 

correction for multiple comparisons, the Naming-Rating-type group would show the expected 

pattern, in which case, fatigue would not serve as a likely explanation for the differences in 

ratings found in the different groups, since a group that had named nonwords before rating 

them also showed the expected pattern of ratings. If this is the case, both fatigue and practice 

effects can be ruled out as explanations. Another potential reason for the pattern of results is 

that many skilled readers are not completely clear about which contexts are associated with a 

soft pronunciation of g. This could be because the relationship between preceding vowels and 

a soft pronunciation of g is not highly consistent: for instance, in the word initial position, the 

proportion of soft pronunciations for g followed by e is .67 in monosyllabic words and g 

followed by i is .25 in monosyllabic words (Treiman et al., 2007)51. Thus, the unexpected 

pattern of ratings in some of the groups in the current study may simply be due to a sample of 

participants who are not particularly familiar with the nature of the context-dependent 

pronunciations in words beginning with a g. Alternatively, in an attempt to combine the two 

explanations suggested so far, having completed another task before the rating task may be 

enough to impair the tenuous knowledge of when context sensitive pronunciation of g is 

appropriate in many skilled readers. 

 
51 However, Treiman and colleagues show that some groups of words, such as G-initial polysyllabic words with 

a Latinate suffix, followed by e or i have very high proportions of soft pronunciations – at 1.00.  
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Finally, only the Naming-Rating group in Experiment 1 failed to reject C-control items with 

soft pronunciation as well. While the mean ratings for these items (3.68) were below the 

critical value of 4 (‘probably ok’), it was not sufficiently low to be statistically reliable (even 

without Bonferroni correction, the observed effect size of 0.31 would still be below the 

minimum, reliably detectable effect size of 0.34). Given that three groups successfully 

rejected soft pronunciations assigned to the C-critical items, one of which had also named 

these items before rating them (the Naming-Rating-type group), it appears that the Naming-

Rating group in Experiment 1 happened to consist of participants that either did not know the 

nature of context-sensitivity in pronouncing c onsets well enough or tended to give 

particularly lenient ratings overall. The latter idea is supported by the numerical trend of the 

Naming-Rating group accepting the largest percentage of pronunciations and rejecting the 

lowest percentage of pronunciations, as reflected in the highest sensitivity value and the 

lowest specificity value of the rating method from the Naming-Rating group, compared to the 

other participant groups.  

Overall, considering the results from the C and G-initial items, the data from the four groups 

of participants suggest that the results from the rating task are relatively robust. Importantly, 

the deviations from the expected results may reveal something valuable about the two 

methods: the rating method might tap into the ‘certainty’ of participants’ PSC knowledge in a 

more detailed manner than the naming method does. Most participants’ first choice of 

pronunciation (i.e., the naming response they gave) was consistent with the regularities 

regarding context sensitive c and g pronunciations, as virtually no participant assigned soft c 

and g pronunciations to the control items. Therefore, the results from the naming method 

suggest that skilled readers know in which contexts the soft pronunciation of c and g do and 

do not occur. However, when participants were given options (i.e., alternative pronunciations 

in the rating task), they appeared to not be as certain about which pronunciations are 

acceptable, as pronunciations not produced by virtually any participant in the naming task52 

were still rated as acceptable in the rating task. Thus, the results from the rating method 

suggest there is more uncertainty about the contexts in which the soft pronunciation of c and 

g occur in existing words. Of course, an alternative interpretation of the findings is that the 

rating method is not reliable (see also limitations below). However, the few instances in 

which discrepancies between the naming and the rating methods were found are outweighed 

 
52 Note that even though the current study only used a subset of C and G-initial items from Treiman et al. 

(2007), the naming responses from the two groups in the current experiments also showed a very low proportion 

of soft pronunciations assigned to the control items – at most at .01. 
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by the amount of evidence supporting the idea that the two methods capture something 

similar about the PSC knowledge of skilled readers.  

The third aim of the current study was to compare nonword naming and rating responses 

using a within-subjects design. These direct comparisons of the naming and rating responses 

in Experiment 1 (Section 6.4.3) and in Experiment 2 (Section 6.8.4) both suggest that skilled 

readers give higher acceptability ratings to pronunciations they have themselves produced 

earlier for the same items. The current results thus demonstrate convergence between 

nonword naming and rating responses, while ruling out the possibility of between-group 

differences. However, the reason for this convergence could be a result of pronunciation 

preference for a given nonword, or memory-based fidelity to the pronunciation one has 

produced previously. Given the number of nonwords each participant named in the naming 

task (262 nonwords), the latter, memory-based explanation is unlikely to be sufficient. 

Therefore, it appears that both the naming and the rating method capture something similar 

about the pronunciation preferences for nonwords, likely reflecting the PSC knowledge 

skilled readers apply in these tasks. Furthermore, participants with no previous exposure to 

the critical nonwords (the Rating-Only group and Unrelated-Rating group) still showed a 

similar pattern of ratings as the participants who had named the same items before rating 

them, that is, an overall preference for regular pronunciations over irregular pronunciations 

for the Irregular items with low and high token frequency (Sections 6.4.3 and 6.8.1).  

The sensitivity of the rating method, as an average of the sensitivity scores from the four 

groups of participants was 92%. Thus, the rating method is a reliable source of information 

about common pronunciations to nonwords. 

Turning to the limitations of the present experiments, the most concerning issue was the 

small sample of C and G-initial items (i.e., six critical items and four control items for each 

onset). This is problematic as this sample of C and G-initial items is hardly representative of 

these spelling patterns in the English language. Thus, generalisation of the results from this 

small subset of items is limited. Furthermore, although the participant sample sizes for these 

by-subjects analyses were relatively large, some of the between-group differences in the 

patterns of ratings for the items may be sporadic. As such, interpretation of these group 

differences should be done with caution. Nevertheless, the rating method was also used with 

larger sets of items (in particular, the Irregular items reported in Chapter 5, where data loss 

was not an issue in the same way as it was for the Irregular items reported in Chapter 4), thus 
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demonstrating that the findings regarding the acceptability ratings cannot be completely 

disregarded based on these limitations. This issue of small sample of items was a concern 

already when designing the experiment, but due to practical limitations, that is, the already 

sizeable sample of items in each experiment (one of the criteria being approximately 50% of 

fillers in the full set of items presented to the participants), adding more items would have 

increased the duration of the testing sessions excessively. This is especially the case because 

any included item would be presented twice in the rating task – once paired with soft and 

once with hard pronunciation of the onset. Overall, the data for the analyses reported in this 

chapter come from experiments with a primary goal in investigating the role of type and 

token frequency in nonword reading (reported in Chapters 4 and 5) and obtaining data for the 

analyses reported in the current chapter was a secondary goal.  

Another potential limitation of the current experiments is that all the data was collected 

online. As such, even with the Error items that also served as a check for attentiveness, one 

cannot be sure how much effort participants put into the experimental tasks. Admittedly, 

collecting data of this sort in a laboratory setting is likely to produce higher quality data, as 

participants would typically engage and try harder in such a setting compared to online 

participation. However, evidence for the difference in data quality between laboratory and 

online studies is mixed (e.g., Chmielewski & Kucker, 2020; Clifford & Jerit, 2014; Kim et 

al., 2019). Although one of the benefits of the rating method is that it allows collecting data 

from large numbers of participants with ease, it would still be beneficial for future studies to 

complement the findings reported here with laboratory-based experiments. 

6.9.1 Conclusion 

To conclude, in two experiments and total of four participant groups, verbal nonword naming 

responses were compared to acceptability ratings for nonword pronunciations. These 

comparisons allowed evaluation of the traditional nonword naming method (verbal naming 

responses) and a relatively understudied nonword rating method (acceptability ratings for 

nonword pronunciations). The sensitivity and specificity of the rating method was high (both 

90% or above), as assessed against nonword naming responses. The pattern of naming and 

rating responses to different types of nonwords was mostly comparable. The few instances 

where the pattern of rating responses diverged from that of the naming responses could 

mostly be explained, for instance, with different procedures for different groups of 

participants or with a sample of items used in the current study compared to previous studies. 
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Importantly, some of the diverging patterns of results may be interpreted as the rating method 

revealing finer-grained information about skilled readers’ PSC knowledge – such as whether 

and how reliably skilled readers are aware of the contextual cues for soft and hard 

pronunciations of C and G onsets in words and nonwords. To my knowledge, these 

evaluations are the first to include such detailed and varied comparisons between the two 

methods, both as within and between subjects. Overall, the findings reported in this chapter 

are very promising and suggest that the nonword rating method is a feasible alternative for 

the nonword naming method in investigations of the PSC knowledge of skilled readers.  
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Chapter 7 : General Discussion 
 

In this chapter, the findings from the present PhD project are summarised, relative to the aims 

of the project (outlined in Chapter 1, Section 1.3) and previous literature. Implications of 

these findings are discussed briefly, before turning to the strengths and limitations of the 

current PhD work. Finally, I discuss directions for future research, especially regarding 

further development of the Weighted Segments Pronunciation (WSP) model, which I 

developed as a part of the current PhD project.  

7.1 Summary of main findings 

7.1.1 Can the WSP model simulate central tendencies of nonword reading in skilled 

readers? 

The WSP model simulates reading aloud as a process where choice of a pronunciation for a 

letter string is determined by statistical properties of print-to-sound correspondences (PSCs) 

of varying sizes. The model’s tendency to produce pronunciations based on smaller or larger 

PSCs is also influenced by weights for the three different parsing styles that are available for 

the model. The weights can be set by the user, or they can be chosen based on optimisation of 

the model for a set of words or nonwords. The statistical properties determining the choice of 

pronunciation can also be set by the user, but in the simulations reported in the current PhD 

work these properties were consistency and frequency of PSCs, calculated either based on 

types (WSP-type version of the model) or tokens (WSP-token version of the model). These 

two versions of the model were tested against human nonword reading data in parallel, to 

uncover whether a model sensitive to type-based statistical properties (i.e., number of words 

in which a given PSC occurs) is a better fit to human data than a model sensitive to token-

based statistical properties (i.e., the frequency of words and the number of words in which a 

given PSC occurs). 

In Chapter 3, the performance of the WSP-type and WSP-token were assessed against three 

nonword reading data sets and compared to the performance of the dual-route cascaded 

model (DRC) and the connectionist dual process model (CDP++) on the same data sets. In 

these comparisons, the two versions of the WSP model were optimised for the model’s 

vocabulary, which consists of monosyllabic words.  
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The focus of the comparisons between the computational models was on the vowel 

pronunciations. Successful simulation of the naming responses in the three data sets required 

a model to produce regular, standard vowel pronunciations (e.g., the vowel a in the nonword 

namp pronounced as in cat) and irregular, that is, context-sensitive vowel pronunciations, 

both regarding the preceding consonantal context, such as an item wabs pronounced as in 

watch, and the following consonantal context, such as an item blange pronounced as in 

strange.  

Most importantly, the WSP-type and WSP-token versions of the model produced reasonably 

similar naming responses to human participants across the three data sets, demonstrating the 

model’s ability to produce regular, as well as both types of irregular pronunciations to the 

nonwords, often for the items for which the majority of the human participants had also 

produced these types of responses. However, the similarity to the most common responses in 

the human data (human modal responses) was not perfect, as the maximum percentage of 

matching pronunciations between the WSP model and the human modal responses across the 

three data sets was 78% (WSP-token model’s performance on a data set by Treiman et al., 

2003). The lowest performance was seen in a small data set by Andrews and Scarratt (1998, 

Exp. 1), where the WSP-type only matched 38% of the human modal responses. By 

comparison, the highest and lowest performance across the three data sets, quantified as the 

percentage of matches between model output and human modal responses for the DRC model 

were 74% and 50%, respectively. These percentages for the CDP++ model were 75% and 

38%, respectively. These and other comparisons to the human naming responses 

demonstrated that the two versions of the WSP model fared well against the DRC and the 

CDP++ models.  

Investigations reported in Chapter 3 also revealed that the WSP’s vocabulary was not optimal 

for nonword reading performance, as it led to excessively strong influence of one of the 

parsing styles (the antibody-coda parsing style), which empirical work has demonstrated to 

be less influential, compared to other parsing styles (e.g., Andrews & Scarratt, 1998, Exp. 1; 

Kessler & Treiman, 2001; Treiman et al. 1995). Furthermore, optimising the WSP model 

with one of the three data sets the model was tested on tended to produce better performance 

on all of the data sets. The WSP model optimised for the data set by Treiman et al. (2003) 

was particularly well suited for simulating the naming responses in all three data sets.  
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The comparison of the WSP-type and WSP-token versions of the model did not provide a 

definitive answer to the question of whether a model using type or token-based measures of 

statistical properties better capture human nonword reading, as both versions of the model 

performed similarly, or slightly better than the other on some of the data sets. 

Furthermore, the performance of the WSP model and other computational models on new 

nonword reading data sets (Chapters 4 and 5) revealed similar levels of overall performance, 

where the highest percentages of matches to the human modal responses were 44% (the DRC 

model on the Chapter 4 items with varied token frequencies) and 58% (the WSP-type model 

on the Chapter 5 items with varied type frequencies). The performance of different versions 

of the WSP model on both data sets indicated that compared to the human reading responses, 

the WSP model produced too many irregular pronunciations (word body analogies) to 

nonwords with word bodies that are always pronounced irregularly in existing words. This 

was interpreted as consistency of the PSCs having too strong an effect on the competition of 

different parsing styles in the model.  

However, evaluating the performance of the computational models as if the models were 

individual participants, the DRC and the WSP models compared to the human naming 

responses as well as an average participant did in the data set by Pritchard et al. (2012). This 

finding paints a considerably optimistic picture of the performance of these models. Yet, the 

results reported above suggest that the models are not performing as well as would be 

expected, if they are to predict the human modal responses.  

To conclude, the performance of the WSP model is comparable to that of other computational 

models. There are several ways to evaluate a model’s ability to simulate human nonword 

reading. Comparing the range of matching pronunciations human participants share with each 

other to the matches between human participants and computational models showed that the 

DRC and the WSP perform comparably to skilled readers. However, high accuracy in 

predicting human modal responses as a criterion of success showed that none of the models 

performed adequately on any of the testing sets. As the focus on the model evaluations was 

primarily on the vowel pronunciations, each model failed to perfectly predict which items 

would receive an irregular or regular vowel pronunciation in the human data. These findings 

are in concordance with recent evaluations of computational models (e.g., Pritchard et al., 

2012; Mousikou et al., 2017; Treiman et al., 2003), which conclude that the current 
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computational models do not fully capture the patterns of nonword reading responses from 

skilled readers. 

7.1.2 Can the WSP model simulate variability in skilled nonword reading?  

The versions of the WSP model described above aimed to simulate the central tendencies in 

skilled nonword reading. The WSP model can also operate in a variable mode, which aims to 

simulate variability in nonword reading. Ambiguous nonwords typically receive several 

different pronunciations from a group of participants. For instance, the nonword salm, was 

pronounced as /s{lm/, /s#m/ and /s#lm/ by 52%, 32% and 5% of participants, respectively, in 

the Pritchard et al. (2012) data set. The WSP model’s variable mode also produces different 

pronunciation options for nonwords, as well as probabilities for each pronunciation option, 

which are based on the strength of the competing pronunciations resulting from the three 

different parsing styles. As with the WSP model described in the previous section, the 

strength of the different pronunciation options in the variable mode of the WSP model is also 

based on consistency and frequency of PSCs and weights for the three parsing styles.  

The variable output from the WSP model can be extracted using two methods: the raw 

probabilities method, where the probabilities for the different pronunciation options represent 

the proportions of participants producing different pronunciation options in the human data, 

and the multiple simulation runs method, where each simulation run of the same data set 

represents responses from a single participant. In the latter method, the pronunciation of each 

item is random, but based on the probabilities for each pronunciation option for a given item. 

Thus, even though a given simulation run (representing a single participant) might pronounce 

a segment of one nonword regularly, such as the word body alm in salm, the same segment in 

a different nonword might be pronounced irregularly. This type of within-subjects variability 

is also seen in responses from human participants (e.g., in Pritchard et al., 2012 data set, see 

also Ulicheva et al., 2021), and it is this variability, the pronunciation choices skilled readers 

make when encountering an ambiguous letter string, that the multiple simulation runs method 

aims to simulate.  As a set of simulation runs using this method can yield notably different 

output, five sets of simulation runs were generated to gauge the range of performance the 

model can achieve, using this method.  

The three data sets used to evaluate the WSP model’s performance in the previous section 

were also used to evaluate the performance of the model in the variable mode (Chapter 3). 

The similarity of the proportions for different pronunciation options from the WSP model’s 
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variable mode and those in the human data were compared by correlating the two proportions 

for each item in a given data set. When the model’s output was extracted using the raw 

probabilities method, these correlations primarily ranged from moderate to strong, with the 

weakest correlation at .21 (the third most common pronunciation options in the Pritchard et 

al. 2012 data set) and the strongest correlations at .77 (WSP-type, for the context sensitivity 

scores in Treiman et al., 2003 data set). Using the multiple simulation runs method, the 

performance of the model fluctuated, such that the best performing set of simulation runs for 

each data set showed an increase in the correlations compared to the raw probabilities method 

(from .25 to .86), while the worst performing set of simulation runs produced at best 

moderate correlations in each data set (from .11 to .49).   

However, the WSP model’s variable output was also evaluated against how well individual 

participants match human modal responses and other response categories arranged by 

frequency in the Pritchard et al. (2012) data set. These comparisons suggested that the 

individual simulation runs of the WSP model perform, on average, comparably well to 

individual skilled readers, although the WSP model produces somewhat more uncommon 

responses and responses not produced by any of the participants. Nevertheless, the average 

performance of the WSP’s simulation runs was mostly within the range of the performance of 

individual skilled readers.    

Output from the WSP multiple simulation runs was also compared to another model that 

produces variable output, namely, a connectionist model by Zevin and Seidenberg (2006), in 

which the variable output is based on slightly different sets of words the versions of the 

model were exposed to during training. The output for a set of nonwords from the WSP and 

Zevin and Seidenberg’s model were compared to human naming responses for the same 

nonwords (Andrews & Scarratt, 1998, Exp. 2). Comparing the pattern of proportions of 

regular responses given to different types of nonwords in this data set, as well as the pattern 

of pronunciation variability for the different types of nonwords revealed that both models 

captured the general pattern found in the human data. However, the Zevin and Seidenberg’s 

model simulated the proportions of regular responses better than the WSP model, whereas the 

WSP model had a stronger performance in simulating the variability of nonword responses 

than the Zevin and Seidenberg’s model.     
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Overall, these results demonstrate that some of the variability in human naming responses can 

be captured by the WSP model and that the individual simulation runs of the model produce 

typical naming responses, on average, nearly as often as individual participants do. 

However, when the model’s variable mode is evaluated based on how similar the pattern of 

proportions for different pronunciation options are between the model output and human 

data, the level of performance remained relatively low for some data sets. This was the case 

especially for the Pritchard et al. (2012) data set, for which the human-model correlations 

were at best .37 (raw probabilities method) for the human modal responses, whereas the 

corresponding human-human correlations for the modal responses was .83.  

Apart from Zevin and Seidenberg (2006), previous modelling work of variability in nonword 

reading is scarce and has focused on individual differences in developing and dyslexic 

readers (e.g., Perry et al., 2019; Ziegler et al., 2008). Importantly, the individualised 

modelling approach taken in these studies as well as the work by Zevin and Seidenberg does 

not account for within-subjects variability in nonword reading. This is something that, to my 

knowledge, only the WSP model does.  

7.1.3 Does token frequency of PSCs influence nonword processing in skilled readers?  

This question was addressed primarily in Chapter 4, although findings from an additional 

participant group reported in Chapter 6 also bear relevance to this question. I aimed to answer 

this question by testing whether PSCs occurring in highly frequent words are favoured over 

PSCs in less frequent words, both in pronunciations assigned to nonwords and in 

acceptability ratings given to pronunciations assigned to nonwords. The experimental stimuli 

consisted of nonwords sharing a word body with frequent words (high-items, e.g., breird, 

based on the word weird) or less frequent words (low-items, e.g., bealm, based on the word 

realm). If token frequency is influential in nonword processing, then more base word 

congruent pronunciations (i.e., a nonword pronounced to rhyme with its base word) should be 

assigned to high-items than to low-items, and the acceptability ratings should be higher for 

high-items paired with their base word congruent pronunciation compared to low-items.  

In the naming responses from one group of participants, the incidence of base word 

congruent pronunciations was higher for high-items than for low-items, and this difference 

was significant, showing a small effect of token frequency in nonword naming (dz = 0.24). 

However, the analysis was underpowered. The pattern of rating responses was mixed, but two 

groups of participants, neither of which had named the critical nonwords before rating them, 
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gave higher acceptability ratings for the high-items than the low-items. One of the groups 

showed a small, statistically reliable effect of token frequency (dz = 0.38), while the other 

group’s pattern of ratings remained marginally significant. A third group of participants 

showed an opposite pattern of rating responses, which was not statistically reliable.  

Taken together, token frequency of print-to-sound correspondences (PSCs) appears to have a 

small effect on nonword processing: when several plausible pronunciations can be assigned 

to a letter string, skilled readers are more likely to use pronunciations corresponding to PSCs 

in frequent words than pronunciations corresponding to PSCs in less frequent words. 

Although this finding was not obtained consistently, evidence from both nonword naming 

responses and acceptability ratings given to nonword pronunciations supported this 

conclusion, at least as a numerical trend from several different groups of participants. 

This conclusion is in line with results from previous research (Andrews & Scarratt, 1998; 

Johnson, 1970), which report some influence of token frequency, but conclude that type 

frequency is more influential in nonword reading. Due to the limitations in previous research, 

outlined in Chapter 4 (Section 4.1.1), such as inadequate consideration of consonantal context 

in vowel pronunciations (Johnson, 1970) or insufficiently separable measures of token and 

type frequency (Andrews and Scarratt, 1998), the findings from the current PhD project 

provide, to my knowledge, the strongest evidence to date for the (small) role of token 

frequency in nonword reading.  

7.1.4 Does type frequency of PSCs influence nonword processing in skilled readers? 

I aimed to answer this question by testing whether PSCs occurring in several words are 

favoured over PSCs occurring in a single word, both in pronunciations assigned to nonwords 

and in acceptability ratings given to pronunciations assigned to nonwords. The nonword 

stimuli consisted of nonwords that either shared a word body with several existing words 

(Irregular-Many items) or with a single existing word (Irregular-Single items), while the 

token frequency of the word body segments was comparable between the two item groups. If 

type frequency is influential in nonword processing, then Irregular-Many items should 

receive more base word congruent pronunciations than Irregular-Single items, and the 

acceptability ratings should be higher for the Irregular-Many items paired with their base 

word congruent pronunciation compared to Irregular-Single items. 

These predicted differences were confirmed statistically, both for pronunciations assigned to 

the nonwords (dz = 1.07) and for acceptability ratings given to the nonword pronunciations 
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(dz = 1.78). One group of participants was tested and showed this clear pattern of naming and 

rating responses. Thus, the investigations in Chapter 5 show that type frequency of PSCs has 

a large effect on nonword processing – when a letter string has several plausible 

pronunciations, skilled readers are more likely to pronounce it according to PSCs in several 

words than according to PSCs in only a single word.  

Considering the influence of type frequency and token frequency together, it appears that 

extraction of PSCs from experience with reading is mostly driven by type frequency, but may 

be slightly enhanced or hindered by converging or diverging PSCs occurring in highly 

frequent words. That is, pronunciations associated with a particular spelling pattern in several 

words are more readily available in the reader’s PSC knowledge, when encountering this 

spelling pattern. If some of the words in which this PSC occurs are also highly frequent, this 

should slightly increase the likelihood of using the pronunciation even further. By contrast, if 

there is a highly frequent word with an alternative pronunciation for the same spelling 

pattern, this should slightly reduce the likelihood of using the PSC supported by the several 

existing words. 

These findings are also compatible with the results from the previous empirical work 

(Andrews & Scarratt, 1998; Treiman et al., 1990), which suggests that type frequency plays a 

larger role in nonword reading than token frequency does. As stated in the previous section, 

the findings reported in the current PhD project avoid some of the limitations of the previous 

studies, and as such provide compelling evidence of the importance of type frequency of 

PSCs in nonword reading. 

7.1.5 Can PSC knowledge of skilled readers be assessed using a nonword rating method 

instead of a nonword naming method?  

In Chapter 6, I evaluated the nonword rating task, in which participants are presented with a 

written form of a nonword and an aurally presented pronunciation assigned to it, after which 

the participants give an acceptability rating for how well the pronunciation fits the written 

form of the nonword. The ratings obtained from the rating task were compared to nonword 

naming responses for the same items, in several ways.  

Firstly, the specificity and sensitivity of the rating method was assessed by inspecting the 

acceptability ratings given to nonwords that were paired with an implausible pronunciation 

(such as dwal pronounced as /jEsts/) and ratings to nonwords paired with the most common 

naming response amongst participants (such as glatt pronounced as /gl{t/). Low acceptability 
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ratings for implausible pronunciations and high ratings for common pronunciations would 

indicate high specificity and sensitivity of the rating method, respectively. 

Secondly, rating responses in the rating task were compared to the naming responses in the 

naming task as a within-subjects comparisons. In these comparisons, the same group of 

participants first named the experimental nonwords and subsequently rated the same items, as 

these items were paired with pronunciations containing either a regular or an irregular vowel 

pronunciation (such as an item bealm paired with pronunciations /bilm/ or /bElm/).  

Thirdly, the pattern of rating responses from participants in my experiments were compared 

to that of naming responses from previous studies (Treiman et al., 2007, Exp. 1; Treiman & 

Kessler, 2019, Exp. 1). These previous studies have shown a relatively clear pattern of 

naming responses to nonwords with c and g onsets, divided into critical items (onset c or g 

followed by vowels e or i), as existing words with these spelling patterns often have a soft 

pronunciation (as in cell and gene) and control items (onset c or g, followed by vowels a, o or 

u), as existing words with these spelling patterns always have a hard pronunciation (as in cat 

and game). Most importantly, the proportion of soft pronunciations for the critical nonwords 

were approximately .80, (onset c) and .15 (onset g), while the proportion of soft 

pronunciations for the control items was at most .01, suggesting that skilled readers apply 

these context sensitive pronunciations to new items based on how these types of 

pronunciations occur in existing items (critical versus control items), although the incidence 

of soft pronunciations was not as high for the critical items as would be expected based on 

how often they occur in the existing words. Thus, this pattern of results was expected also in 

the acceptability ratings, where a subset of critical and control nonwords from Treiman et al. 

(2007) study was paired with both soft and hard pronunciations each.  

The most important findings from these evaluations were that the rating method appears to 

have a high level of sensitivity and specificity (both at 92%, as an average score from four 

different groups of participants). Additionally, the within-subjects comparisons showed 

reliable convergence between the naming and rating responses skilled readers give to 

nonwords: participants rated regular vowel pronunciations as more acceptable than irregular 

pronunciations for nonwords they had previously assigned a regular pronunciation (dz = 1.64, 

Chapter 6, Exp1; dz = 1.67, Chapter 6, Exp. 2). Similarly, participants favoured irregular 

vowel pronunciations over regular pronunciations for items in the rating task for which they 
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had previously assigned irregular pronunciations in the naming task (dz = 1.22, Chapter 6, 

Exp1; dz = 2.15, Chapter 6, Exp. 2). 

The comparison of the pattern of rating responses to that of naming responses from previous 

studies revealed, most importantly, that the same general pattern was seen in both types of 

responses. The rating responses for items with c and g onsets were analysed from four groups 

of participants, two of which had also named these items before rating them. Although some 

divergence from the pattern of naming responses from the previous studies were found, most 

of these could be explained, for instance, with the sample of nonwords used in my 

experiments compared to the previous studies. Furthermore, some of the discrepancies 

between the rating and naming responses could be interpreted as a strength of the rating 

method. This possibility was based on the findings that even though the incidence of soft 

pronunciations for control items with g-onset was at most .01 – both in the naming responses 

reported in previous studies and in the naming responses from the two groups of participants 

in my experiments – the g-control items paired with soft pronunciations in the rating task 

were not rejected reliably by at least two groups of participants53. As such, while the naming 

responses alone suggest that skilled readers’ PSC knowledge allows them to differentiate 

between appropriate and inappropriate contexts for soft pronunciation of g, the rating 

responses suggest that this is not the case. The rating method may thus provide more detailed 

information about the PSC knowledge of skilled readers than can be obtained with the 

naming method. 

The evaluation of the rating method reported in Chapter 6 is in line with the handful of 

previous work regarding an alternative for the traditional nonword naming method (e.g., 

Treiman et al., 2003; Treiman & Zukowski, 1988), namely, that the rating method produces 

the same general pattern of results as the naming method does. The findings from the current 

PhD work demonstrate the feasibility and potential strengths of the rating method in 

investigating human nonword reading, much like Gubian et al. (2022) demonstrated the 

usefulness of this method in evaluating computational models. 

 
53 Depending on how conservatively these analyses are protected against increased type I error rate due to 

multiple comparisons 
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7.2 Implications of findings 

7.2.1 Findings regarding computational modelling 

The computational investigations presented in this thesis have theoretical implications 

regarding generalisation in reading aloud. Most importantly, the relative success of the WSP 

model compared to the DRC and CDP++ models suggests, broadly speaking, that the 

mechanisms by which these models convert letter strings into speech sounds are comparably 

fitting explanations for the processes involved in human nonword reading. However, each 

model has particular areas of generalisation in reading aloud that they simulate relatively well 

and areas that they struggle with. These strengths and weaknesses of each model should 

inform further model development.  

For instance, the CDP++ and the WSP models utilise more varied set of statistical properties 

of PSCs compared to the DRC model, where only grapheme-sized PSCs with the highest type 

frequency are applied in nonword reading. Consequently, the CDP++ and the WSP models 

produced much more accurate responses to items with irregular word bodies than the DRC 

model does, although, the two models also overestimated the incidence of the irregular 

pronunciations. As another example, due to the CDP++ and WSP’s sensitivity to a richer set 

of statistical properties of English, across varied unit sizes, nonwords with th-onset were 

often pronounced as in the by these models, rather than as in think, which is the pronunciation 

most human participants used. As suggested in Chapter 3 (Section 3.5.3), this issue may be 

avoided by considering the part of speech information of the words that are included in the 

WSP’s vocabulary that the model’s PSC knowledge is based on, or vocabulary and the 

simple PSCs that the CDP++ model is trained on.    

The model comparisons reported in the current dissertation also add to the discussion of what 

types of models may be the most informative in investigations of reading aloud. Broadly 

speaking, the two symbolic models included in these comparisons, the DRC and the WSP 

models, had the strongest performance across a variety of data sets. This is even though the 

success of the two models was based on quite different patterns of output: the DRC model 

outperformed other models on any set of nonwords where regular pronunciations were 

prevalent amongst human participants (e.g., the data set by Pritchard et al., 2012; the items in 

Chapter 4), whereas the WSP model tended to outperform other models when irregular 

pronunciations were common in the human responses (e.g., the data set by Treiman et al., 

2003; the items in Chapter 5). Compared to connectionist models, symbolic models have the 
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benefit of a clearer account of the exact mechanisms by which these models produce reading 

aloud output. For instance, the source of the high incidence of irregular responses to Chapter 

4 and 5 nonwords by the WSP model could be identified as the overwhelmingly strong word 

body PSCs, which resulted in the output of the model being mostly based on the word body 

parsing style. By contrast, some patterns of output from connectionist models (such as the 

CDP++ and the Psim1 model by Plaut et al. (1996, Sim. 1)) are difficult to explain in terms of 

the way these models operate. It should be noted, however, that the set of models included in 

the comparisons here is by no means comprehensive, and the performance of several other 

connectionist models would undoubtedly be informative regarding the issues investigated in 

this dissertation.  

The evaluation of the computational models in the current PhD work also highlights the 

importance of considering what type of testing sets are used for model comparisons. For 

instance, the explicit inclusion of the antibody, word body and small segment parsing styles 

in the WSP model proved very useful in simulating human nonword reading responses to a 

set of items where pronunciations corresponding to each parsing style were required 

(Treiman et al., 2003). However, the same feature of the WSP model was less helpful for a 

data set where a vast majority of human naming responses consisted of mostly context 

insensitive pronunciations (Pritchard et al., 2012). While these sets of nonwords may test 

different aspects of a model’s reading aloud performance, they appear to also reflect list 

context effects in nonword reading, which the models included in these comparisons are not 

designed to simulate. For instance, there is evidence to suggest that the composition of items 

in the data set by Pritchard et al. (2012) encourages context insensitive reading strategy in 

human participants (Perry, 2018). The current PhD work added to this evidence by 

demonstrating how this data set consists of mostly regular bodied items and was best 

simulated by models that rely on regular pronunciations (the DRC and the WSP model 

optimised for the Pritchard et al.’s set), at the expense of these models’ performance on other 

data sets where irregular pronunciations were more prevalent. Therefore, comparison of 

computational models should always be accompanied with a consideration of the type of 

nonwords used as the testing set, particularly regarding what other behaviours than those 

related to skilled readers’ PSC knowledge the responses to a particular set of nonwords may 

reflect.  

Finally, findings regarding the variable output produced by the WSP model compared to the 

model by Zevin and Seidenberg (2006) demonstrated that model’s simulating within-subjects 
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variability (the WSP model) and those simulating between-subjects variability (Zevin and 

Seidenberg, 2006) may produce output similar to that from a group of human participants. As 

such, more detailed comparisons, with data sets that allow separation of the two types of 

variability, are needed for further computational investigations of variability in nonword 

reading. 

7.2.3 Empirical findings   

The empirical findings regarding the role of token and type frequency of PSCs in nonword 

processing have theoretical implications. The role of token frequency in nonword reading is 

not clear in some computational models of reading, such as the CDP++ model54, or it is not 

included at all, as is the case with the DRC model. The current findings thus indicate a need 

for modifications, if these models are to simulate human nonword reading comprehensively.  

These findings also bear relevance to further development of the WSP model – while the 

evaluation of the model in Chapter 3 did not provide a clear answer to whether the statistical 

properties of the PSCs should be based on type or token frequency, the empirical findings 

suggest that both are needed, with a likely stronger influence of type frequency. It thus 

appears that the most appropriate choice are measures based on summed token frequency, 

which includes both type and token frequency information. This particular measure has also 

been shown to be more important in word reading than type frequency alone (e.g., Jared, 

1990).   

7.2.3 Findings regarding methodology   

The evaluation of the nonword rating method bears relevance to future research in reading 

aloud. As a feasible alternative to the traditional nonword naming method, the rating method 

has clear strengths that allow it to both avoid some of the shortcomings of the naming 

method, as well as potentially provide information that cannot be obtained using the naming 

method.  

 
54 For instance, even though the CDP++ model’s efficiency of learning PSCs should be sensitive to token 

frequency, the CDP++ model did not show an effect of token frequency in Chapter 4, but rather a numerical 

trend to the opposite direction. 
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7.3 Strengths and original contribution 

7.3.1 Computational investigations 

The WSP model, developed as a part of the current PhD project, offers a flexible approach to 

investigating the role of different statistical properties of the writing system in reading aloud, 

as well as a means for investigating the properties of different human nonword reading data 

sets. For instance, the WSP model allows for the isolation of the influence of different 

statistical properties of the writing system, and thus enables more focused investigations of 

specific properties of PSCs on nonword reading. 

While the explicit inclusion of three different parsing styles, based on antibody-coda, onset-

word body and onset-vowel-coda segments, in the WSP model is not new (e.g., Norris, 

1994), the WSP model differs from the previous modelling work in important ways. For 

instance, as opposed to the Multiple-levels model by Norris (1994), where the competition 

between pronunciations associated with different parsing styles is based on a pre-determined 

hierarchy (such as the word body parsing style being favoured over the antibody parsing style 

if the two parsing styles result in different pronunciations), the competition in the WSP model 

is resolved based on the statistical properties of the PSCs in each parsing style. The WSP 

model also includes another factor that affects this competition, namely, weights applied to 

each parsing style, which aim to simulate the global tendency to favour certain parsing styles 

over others. This feature of the WSP model is another source of flexibility: for instance, large 

weight for the small segment parsing style produces reading behaviour similar to that of the 

DRC model. Therefore, different tendencies of parsing a letter string can be explored with the 

WSP model, including extremes such as the ‘GPC-sized segments only’ parsing style 

embodied in the DRC model.   

The WSP model also produces variable output to letter strings, with the aim of simulating 

variability in nonword reading, which is based on probabilities derived from statistical 

properties of the PSCs of varying sizes, corresponding to the three parsing styles. Unlike 

previous modelling work regarding variability in the form of individual differences in 

nonword reading (Perry et al., 2019; Zevin and Seidenberg, 2006; Ziegler et al., 2008), the 

approach I took focuses on the within-subjects variability. In addition to the attempt to 

simulate variability in skilled readers’ nonword naming responses, I tested this 

underrepresented feature in computational models. In doing so, I presented new ways to 

evaluate computational models that produce variable output, such as using human-human 
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correlations as a benchmark for human-model correlations of the proportions of different 

pronunciation options (see Chapter 3, Section 3.3.1.1). 

Additionally, I presented several detailed comparisons of some of the current computational 

models (the newest versions of the DRC and CDP++ models) on three existing nonword 

naming data sets, as well as on two new data sets (Chapters 4 and 5).  

7.3.2 Empirical investigations 

The main empirical findings were that token and type frequency of PSCs both play a role in 

nonword processing, but type frequency of PSCs appears to have a larger influence. 

Importantly, these findings do not suffer from some of the shortcomings of previous research 

aiming to clarify the role or the relative importance of these properties in nonword reading 

(cf. Andrews and Scarratt, 1998). Therefore, the findings from the current PhD project are a 

valuable addition to answering the question regarding the role of type and token frequency in 

nonword reading. 

7.3.3 Methodological investigations 

The evaluation of the nonword rating method reported in Chapter 6 goes beyond the previous 

work (e.g., Johnson, 1970; Treiman et al., 2003; Treiman & Zukowski, 1988) in several 

ways. Most notably, the current work provided detailed comparisons between the nonword 

rating and the nonword naming responses for several types of nonwords, from several groups 

of participants. These evaluations also included within-subjects comparisons, thus ruling out 

the potential for between-group differences causing discrepancies in the rating and naming 

responses. Yet, rating responses without previous naming of the same items, or any items at 

all, were also investigated, providing information about nonword rating behaviour without 

potential influence from previous naming of the same stimuli. The specificity and sensitivity 

of the rating method were also quantified relative to nonword naming responses. While this 

approach for measuring specificity and sensitivity of the rating method was inspired by the 

work of Gubian et al. (2022), to my knowledge, this type of assessment of the rating method 

for the purposes of investigating nonword processing in skilled readers has not been 

conducted before. 

7.4 Limitations 

Several limitations of the WSP model were discussed in Chapter 3 (Section 3.5). 

Furthermore, an important limitation was identified in Chapters 4 and 5, namely, that the 
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model produced far higher incidence of irregular (word body analogy) pronunciations for 

items with unique word bodies than what was found in the human data. This behaviour of the 

model, especially when the model was optimised for its vocabulary, was due to the 

consistency of the word body sized PSCs having too strong an influence in the competition 

between different parsing styles, thus leading to most of the pronunciations of the model 

being based on word body parsing style. See Section 7.5 for further consideration of this 

limitation.  

It is also worth mentioning that the vocabulary-optimised versions of the WSP model had a 

surprisingly large global tendency to use the antibody parsing style in reading aloud. This is 

not in line with empirical evidence (e.g., Kessler & Treiman, 2001; Treiman & Zukowski, 

1988), and warrants further investigation on whether the model, the vocabulary or the 

optimisation procedure need to be adjusted. 

Experiments aiming to investigate the role of token and type frequency in nonword 

processing (Chapters 4 and 5, respectively), utilised materials where all (Chapter 4) or half 

(Chapter 5) of the nonwords had unique word bodies, i.e., word bodies that only occur in a 

single existing word in English. Using these types of nonwords had the benefit of keeping the 

consistency of the word body sized PSCs identical between the different groups of nonwords 

that were compared (i.e., the word body sized PSCs in the words that the nonwords were 

based on were comparable). However, it is possible that these singleton or unique items are 

special, and the process of assigning a pronunciation for them is different from other 

nonwords, which embody more typical spelling patterns. In other words, although the 

evidence I provide for the role of token and type frequency of PSCs in nonword naming is a 

clearly beneficial addition to the current literature, more definitive conclusion about the 

influence of these properties in nonword naming requires evidence from more representative 

samples of nonwords. 

The investigations of the token frequency of PSCs in nonword processing relied on the 

difference of token frequencies of the words that the critical nonwords were based on. 

However, this difference may not have been sufficiently strong; that is, the strength of the 

manipulation in this study may explain why the effect of token frequency was not found 

consistently, or why the effect was small, when found. The requirements for the stimuli in 

this experiment greatly reduced the number of available items that could be used. Further 

data loss due to the participants’ insufficient familiarity with the base words for the 
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experimental items was also problematic, and it may partly explain why the findings 

regarding the role of token frequency in nonword processing were somewhat inconsistent. 

This limitation is also relevant in regards to comparing the effects of type and token 

frequency in the current PhD work. While it appears that type frequency of PSCs has a 

stronger influence in nonword processing, I cannot rule out the possibility that a stronger 

manipulation of token frequency would have made this difference less clear.    

Turning to the evaluation of the nonword rating method, apart from the limitations discussed 

in Chapter 6 (Section 6.9), the focus of these investigations was on context sensitive onset 

(the c and g items) and context sensitive vowel pronunciations (irregular word body items 

with varied token or type frequency). As such, the contrast between context sensitive and 

insensitive pronunciations in the audio recordings paired with the written form of the same 

nonword item, for instance, gealth paired with pronunciations /gilT/ and /gElT/, may not have 

been the sole focus of the participants. In other words, the acceptability ratings from the 

participants may have been based on how appropriate they deemed the onset, vowel and coda 

pronunciations for each item, not only the acceptability of the segments that were of interest 

in these experiments. Or, indeed, the participants may have based their ratings on only one of 

these segments. This is not a concern for the majority of the experimental items, as the 

segments that were not focused on in these investigations were typically not ambiguous and 

thus the acceptability of the pronunciation of these segments should be deemed equally high 

amongst most skilled readers. Nevertheless, this aspect should be taken into account in future 

investigations using the rating method, particularly regarding stimuli construction. One of the 

special characteristics of the nonword rating task is that we do not know what criteria 

participants use in their acceptability ratings, or if they ignore parts of the stimuli, a feature 

that is not an issue with the nonword naming task, where producing a pronunciation requires 

consideration of the whole letter string.  

7.5 Future directions 

7.5.1 WSP model’s knowledge of PSCs 

Several avenues for improving the WSP model were considered in Chapter 3 (Section 3.5). 

As briefly discussed in this section, bringing the PSC knowledge of the WSP model closer to 

that of skilled readers would likely help with increasing the similarity between the output 

from the model and human reading responses. Three ways of achieving this are worth 

considering. Firstly, the model’s vocabulary could be expanded to upscale the types of words 
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the PSC knowledge is based on – and by extension, the type of letter strings the WSP model 

can read – to disyllabic and multisyllabic words.  

Secondly, to ensure the vocabulary on which the PSCs available to the model are based on 

consist of words likely known by an average reader, the words included in the model’s 

vocabulary could be restricted to only words with high enough prevalence (i.e., known by 

high enough percentage of skilled readers). I have made some attempts to modify the WSP 

model’s PSC knowledge, based on a vocabulary that only included items known by 90% of 

skilled readers, based on the word prevalence data base by Brysbaert et al. (2019). However, 

further testing is required to uncover the potential benefits of this modified vocabulary and 

PSC knowledge of the WSP model. These modifications would be the most helpful if the 

WSP’s vocabulary was larger, based on disyllabic words as well, as this would reduce the 

likelihood of losing PSCs that an average reader knows, even though they might not base 

their knowledge of these PSCs on an uncommon monosyllabic word or words.  

Thirdly, it may be helpful to include proper nouns, such as names of people and places, in the 

WSP’s vocabulary. These items are also part of the written material skilled readers encounter 

and can learn PSCs from. In my view, proper nouns should thus be considered as items 

representing PSCs, just like all the other letter strings. For example, some common names 

may include PSCs that are uncommon, and thus including them may change the statistics for 

this particular PSC, which might not be consistent enough to be included as a pronunciation 

option in the model unless proper nouns were included. These three modifications to the 

WSP’s vocabulary would likely benefit both the model’s deterministic mode and the variable 

mode. 

7.5.2 Processes involved in print-to-sound conversion 

As suggested in Chapter 3 (Section 3.5.3), including part of speech information in the WSP’s 

vocabulary may be beneficial for addressing the issue of uncommon pronunciations, such as 

items with th-onset. Campbell and Besner (1981) offered a potential explanation for why 

skilled readers may assume that nonwords read aloud in isolation (rather than in a sentence 

context) are nouns, adjectives and verbs rather than function words (this, that, therefore, etc.).  

They suggest that because function words are highly frequent and a limited set of words in a 

language, a skilled reader wouldn’t expect to encounter new function words, whereas coming 

across a new noun is more plausible. Therefore, constructing a computational model that 
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converts text into speech sounds may require more global knowledge of the language than 

mere statistics of the print-to-sound correspondences.  

In line with this idea, other linguistic information is likely required to improve the WSP 

model, especially when attempting to expand the model’s reading abilities beyond 

monosyllabic letter strings. Successful reading of disyllabic and multisyllabic words and 

nonwords also require knowledge about syllabic stress (e.g., Mousikou et al., 2017). This 

feature might be relatively straightforward to implement in the WSP model, as stress of 

syllables for multisyllabic words is readily available in different data bases, such as 

WebCelex. The first attempt at incorporating stress information into the WSP’s PSC 

knowledge would involve extracting the most consistent pronunciations for different 

segments, as in the current versions of the WSP, but additionally including the stress, so that, 

for instance, an initial o as a stressed segment corresponds to /5/ as in open, but the same 

segment without stress corresponds to /@/ as in omit. This approach relies on the assumption 

that certain spelling patterns are associated with stress while others are not. Indeed, Rastle 

and Coltheart (2000) developed an algorithm for disyllabic nonword reading, which relies on 

this assumption. In this approach, naming a letter string is preceded by morphological 

decomposition and a set of affixes categorised as stress taking or not, which then defines on 

which syllable the stress is assigned.  

On a related note, morphological information is likely needed for the WSP model to handle 

morphologically complex items, which are much more common in multisyllabic items 

compared to monosyllabic ones. Morphological knowledge is needed because morphological 

decomposition likely precedes word recognition (e.g., Rastle et al., 2004), which would also 

suggest that this process takes place before naming a morphologically complex nonword. My 

preliminary attempts at implementing this in the WSP model would also involve a knowledge 

base of prefixes and suffixes, similar to Rastle and Coltheart’s (2000) approach. 

Additional linguistic information implemented in the model could also provide a solution for 

some non-adjacent letter context effects reported in the literature, such as a Latinate suffix 

increasing the likelihood of soft pronunciation for nonwords with onset c or g (Treiman et al., 

2007, Exp. 2). In addition to morphological decomposition, a classification of the resulting 

suffixes based on their source (e.g., Germanic or Latinate), would be needed to produce an 

advantage for soft onset pronunciation option with certain suffixes. However, this solution is 

akin to the manner in which the WPS handles context sensitive c and g onsets – i.e., as a 
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special case, supported by an additional feature of the model, rather than the general process 

of parsing a letter string. As such, a more global solution for the model to produce context 

sensitive pronunciations would be more informative. 

Finally, expanding the WSP model beyond monosyllabic letter strings requires additional 

considerations regarding segmentation of disyllabic or multisyllabic letter strings. For 

instance, it is not immediately clear whether m in lemon or tt in otter should be parsed as an 

onset of the second syllable or as a coda of the first syllable. In another model designed to 

simulate disyllabic reading, the CDP++ model (Perry et al., 2010), this issue was solved by 

onset maximisation, such that consonants between two vowels are assigned as onsets 

whenever possible. I would start by applying this same principle, and inspect whether 

additional linguistic constraints might be necessary for a successful segmentation of 

multisyllabic letter strings.    

The general approach taken in the WSP model may also be extended to other alphabetic 

writing systems. It should be possible to extract similar, varied sized PSCs from the 

vocabulary of the relevant language and optimise the weights for the vocabulary. However, 

different parsing styles and their competition may be redundant for models of shallow 

orthographies, such as Italian or Finnish, where single-letter correspondences are largely 

sufficient for accurate print-to-sound conversion of existing words. As such, the 

pronunciations most consistently associated with a particular orthographic segment would 

nearly always be the same regardless of how long this segment is in these writing systems. 

Extending the WSP model to non-alphabetic languages, such as Mandarin Chinese, would 

require more extensive modifications. This is because the characters or features of characters 

in such writing systems also include semantic information, while the focus in the current 

WSP model is on the relationship of orthography and phonology, disregarding semantic or 

morphological information. 

7.5.3 Competition of different pronunciation options 

It became apparent in Chapters 4 and 5, that the consistency of word body sized PSCs has too 

strong an influence on the WSP model’s output, compared to human nonword naming 

responses. As the word body sized segments of the experimental stimuli were perfectly 

consistent in existing words (consistency value 1), this resulted in the WSP model’s output 

being based on the word body parsing style almost exclusively. In these chapters, it was also 

found that frequency measures of the vowel segments were associated with the proportion of 
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word body-based naming responses to nonwords (Sections 4.3.4.2 and 5.3.1.3). This 

relationship was such that if a regular or context insensitive pronunciation of the vowel 

segment occurred in several words or highly frequent words, nonwords containing this vowel 

segment were less likely to be pronounced irregularly as a word body analogy.  

Therefore, one potential modification of the WSP model would be to reduce the influence the 

word body consistency has on the final output depending on the frequency of the vowel 

segment. Although the investigations in Chapters 4 and 5 did not include antibody segments, 

I implemented this modification such that it reduced the influence of both body and antibody 

segments relative to the frequency of the vowel segments. This was based on the assumption 

that if high certainty about the pronunciation of the vowel segment reduces reliance on larger 

unit PSCs, this should apply in both directions: that is, for both the preceding and the 

following consonants. Further testing of the WSP model is needed to see whether this 

modification is beneficial for the overall performance of the model (including potential re-

optimisation of the model with this modification in place).  

In addition to the influence of consistency of word body sized PSCs, the consistency of 

onsets and codas appeared to influence the competition between the three parsing styles in 

unexpected ways. Sometimes consistent onsets and codas would lead to a small segment 

parsing style winning, even though each parsing style produced the same pronunciation for 

these segments (as discussed in Chapter 5). It appears that a way forward from this issue 

would be to base the competition between the three parsing styles on only the strength of the 

segments these parsing styles would produce a different pronunciation for. For instance, if the 

three parsing styles produce a different vowel pronunciation, then only the strength of the 

antibody, the word body and the vowel segments would compete with each other, excluding 

the strengths of onsets and codas from each parsing style.   

7.5.4 Simulating variability in nonword reading 

As mentioned in Chapter 3 (Section 3.5), the WSP model’s ability to simulate variability in 

nonword reading is promising, but it requires more work. While some progress was made in 

simulating within-participants variability, the between-participants variability was neglected. 

This feature could be added by optimising the model with slightly different sets of items, 

similar to the idea employed in Zevin and Seidenberg (2006).  

Another interesting approach for testing how well the modified WSP model could simulate 

between-subjects variability in nonword reading would be to compare the model’s output to 
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detailed nonword naming responses (i.e., including responses from every participant for 

every item) from participants who received reading instruction focusing on GPCs and 

participants whose reading instruction focused on larger segments (as in Thompson et al., 

2009). Here, the groups differed in their general tendency to parse letter strings into smaller 

and larger segments. Similar general tendencies can be produced by the WSP model, by 

either advantaging the larger or the smaller segment parsing styles.   

Furthermore, as the WSP model is one of the few models producing variable output to a set 

of stimuli, the best practice for evaluating such a model is still lacking. For instance, if the 

empirical evidence from Ulicheva et al. (2021) is considered, the responses from even the 

same group of participants for the same nonwords may be quite different from one testing 

session to the next. As such, detailed naming responses (from every participant and for every 

item) from different groups of participants for the same item set would be needed to test 

whether variability produced by the WSP model’s variable mode (multiple simulation runs 

method) is similar to the variability found between different participant groups.   

However, investigations of variability in nonword reading require reliable differentiation 

between intended naming responses and mispronunciations or lapses of concentration. 

Procedures of collecting naming responses may in part help reduce the number of careless 

errors, such as instructing participants to re-pronounce an item if they think they mis-

pronounced it the first time. Perhaps one way to distinguish between truly variable, 

intentional responses from careless errors is designing experiments with a large enough 

number of items that share a particular spelling pattern (e.g., plall, rall, scrall to tap into 

alternative pronunciations of the word body all). If a participant pronounces the same spelling 

pattern repeatedly in different ways, such that each alternative pronunciation is produced at 

least twice or three times, this would be more suggestive of deliberate pronunciations, based 

on what a given participant considers plausible, rather than careless errors. Considering 

group-level variability, pronunciations produced by several participants should generally be 

considered intentional. 

It is also worth considering whether accurate simulation of central tendencies should be 

achieved before attempting to simulate variability in nonword reading. The cognitive 

processes involved in reading are undoubtedly more complex than the mechanisms included 

in current computational models. The models’ inadequate success in simulating central 

tendencies may be, at least in part, due to factors that influence human reading behaviour but 
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that are not included in the models. In my view, it is not necessarily the case that certain 

aspects of human reading need to be successfully captured before others can be simulated. In 

fact, considering some additional aspects of nonword reading may also help discovering ways 

to improve the models’ ability to simulate central tendencies. In addition to variability in 

nonword reading, attempts to simulate reading of disyllabic nonwords have also been made 

before monosyllabic reading is fully mastered by a particular model or framework (e.g., the 

CDP++ model by Perry et al., 2010). Findings from disyllabic reading behaviour may inform 

us about the general constraints in reading that cannot be discovered based on monosyllabic 

items only (such as stress assignment and influence of non-adjacent letter contexts). 

Similarly, endeavours of simulating variability in nonword reading may reveal aspects about 

the reading process as a whole that facilitate more comprehensive characterisation of reading, 

including more accurate simulation of central tendencies. 

7.5.5 Other considerations 

Throughout the thesis, I have contrasted the large segment and the small segment parsing 

styles, which are also a central part of the WSP model. The support for the idea of these 

parsing styles being utilised by skilled readers comes from empirical studies showing that, for 

instance, the nonword item moup is pronounced according to the GPC rules (/m6p/) by some 

participants and as a word body analogy (/mup/) by other participants (Andrews and Scarratt, 

1998). However, it is not clear whether the latter, irregular or word body analogy responses 

are indeed a result of parsing the letter string and applying PSCs based on larger segments, or 

whether the vowel pronunciation in the word body analogy pronunciation is a context 

sensitive pronunciation, based on a context-sensitive rule or PSC: ou followed by p is 

pronounced as /u/. To my knowledge, the difference between larger segment or context 

sensitive rules/correspondences has not been investigated directly in empirical work. One 

way of trying to tease apart the two would be by using nonword items with word bodies 

where in addition to the vowel, the coda is also pronounced in a non-standard way, such as 

nonwords sharing a word body with folk and yolk. If these nonwords are pronounced with the 

non-standard vowel and coda, /5/ and /k/, this would suggest that word body sized PSCs are 

used. If these nonwords are pronounced with a non-standard vowel, /5/, but with a standard 

coda, /lk/, this would suggest utilization of context sensitive PSCs instead.  

The issue with this type of experiment is that there might not be many items in the English 

language that contain the required characteristics. Additionally, skilled readers may utilise 
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both types of PSCs in their reading. Nevertheless, context sensitive PSCs rather than PSCs 

based on larger segments could be implemented in the WSP model: while the competition of 

the parsing styles could still determine which vowel pronunciation is applied, the 

pronunciation of the onset and the coda could be based on pronunciations of the grapheme-

sized segments. This modification would also address some of the issues relating to the 

pronunciation options produced by the variable mode of the WSP model. Comparing the 

performance of this ‘context sensitive’ version of the WSP model to the versions of the 

model described and tested in the present dissertation may prove useful in trying to clarify 

whether skilled readers primarily utilise context sensitive PSCs or PSCs based on larger 

orthographic segments.  

However, effects of letter context on pronunciation of letter clusters are not restricted to 

adjacent letter contexts, such as the influence of onset or coda on the vowel. Non-adjacent 

contexts may also influence pronunciations. Treiman et al. (2007, Exp. 2) demonstrated that a 

Latinate suffix in disyllabic nonwords increased the likelihood of soft pronunciation assigned 

to the onset c or g of these nonwords (cebic or gebic), compared to native suffixes (e.g., 

cebful or gebful), which is in concordance with these types of onset pronunciations being 

more common in existing words with Latinate suffixes. While context sensitive 

pronunciations in monosyllabic nonwords can be explained reasonably well with unit size of 

PSCs, this explanation does not accommodate non-adjacent contextual effects. Thus, when 

moving beyond monosyllabic nonword naming, the approach reliant on varied unit size needs 

to be reconsidered. Whether a possibility of combining the two approaches exists, is yet to be 

seen. For instance, implementing a context sensitive, rather than varied unit size based 

approach for modelling nonword reading requires a mechanism for connecting the adjacent or 

non-adjacent parts of the letter string that define the pronunciation of certain parts of a 

nonword. I do not have a proposed implementation for this, but it would appear that a 

combination of varied unit size and context sensitive approach may also be an option – this is 

particularly so if further empirical work demonstrates that the influence of non-adjacent letter 

contexts are limited to only a few cases. In this situation, the morphological information 

required for morphological decomposition of polysyllabic letter strings may also include 

classifications of the sources of suffixes, while most other context sensitive influences would 

still be achieved by varied unit size. 

Turning to the empirical investigations, two important statistical properties of the writing 

system, the regularity and the consistency of PSCs, were not investigated empirically in the 
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current PhD project. This was mainly because the question of different types of frequency 

measures was more pressing, as an answer to this question would also bear relevance to 

which type of frequency the measure of consistency should be based on. Although a large 

proportion of findings in the nonword naming literature could be interpreted as the influence 

of consistency (especially if this applies to varied unit sizes, in which case regular 

pronunciations would also be explained by consistency), there are some findings that are not 

explained fully with consistency (e.g., Andrews and Scarratt, 1998, discussed in Chapter 1, 

Section 1.1.2). Although there is evidence to suggest that regularity and consistency are 

separate properties from word reading studies (e.g., Andrews, 1982; Jared, 2002), whether 

and how these properties relate to each other in nonword reading is still unclear. These 

investigations, left for future research, could also inform further development of the WSP 

model. This is so particularly given that the influence of the consistency of PSCs on the 

model’s output appeared to be problematic in some versions of the model.  

Finally, further evaluation of the nonword rating method is needed to both 1) to further 

clarify under which circumstances and for what purposes should the nonword rating method 

be used instead of the nonword naming method and 2) to fine-tune the form in which the 

nonword rating task would provide maximal amount of information. However, previous 

literature provides some constraints for what type of modifications may be the most 

promising to explore. For instance, it appears that scales with seven, nine or 10 response 

categories should be preferred, as indicated by the highest participant preference, 

discriminatory power, reliability and validity of these types of scales over those with fewer or 

higher number of categories (Preston & Colman, 2000). Additionally, previous research using 

a multiple-choice method in nonword processing (Treiman et al., 2003, Exp. 2) suggests that 

a neutral response option is likely not beneficial in this type of task. With these constraints in 

mind, instead of the six-point, verbally labelled response categories used in the investigations 

in Chapter 6, a different number and form of response categories, such as a numeric, 10-point 

scale, may produce more detailed information about the pronunciation preferences and print-

to-sound knowledge skilled readers have. 

7.6 Concluding remarks 

Reading aloud new words requires an ability to generalise linguistic knowledge acquired via 

experience in reading. For decades, empirical investigations and the development of verbal 

theories and computational models have been used with the aim of uncovering the cognitive 
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processes involved in the human ability to generalise from previous reading experience. One 

of the biggest challenges and a benchmark test for computational models of reading is 

whether they can simulate this generalisation, that is, whether they read new words or 

pronounceable letter strings (nonwords) in the same way as humans do. 

In this PhD project, I aimed to shed light on the cognitive process of generalisation in 

reading, via empirical and computational investigations of nonword reading. I also evaluated 

a new method of investigating nonword processing.  

The most important conclusions from the computational investigations in this thesis were that 

the WSP model, which is sensitive to different statistical properties of the writing system, 

across varying sized print-to-sound correspondences, simulates central tendencies in human 

nonword reading responses as well as other models of reading (the DRC and the CDP++ 

model). However, none of the models compared here predicted the human modal responses 

adequately. Most importantly, each model failed to find the right balance between standard 

and context-sensitive vowel pronunciations for nonwords, compared to the pattern of human 

nonword responses found in several data sets.     

The WSP’s variable output was an attempt to simulate variability in nonword reading. While 

moderate success was achieved, several areas of improvement were also identified. Most 

importantly, these investigations generated some ideas for how to assess models that produce 

variable naming responses. It was also concluded that differentiating within-participants and 

between-participants variability or comparing models that produce either type of variability, 

requires detailed nonword naming data sets from several testing sessions. 

The empirical investigations demonstrated that skilled readers are sensitive to both type and 

token frequencies of print-to-sound correspondences, which suggests that modifications are 

needed for computational models in which these properties are not included.   

Detailed comparisons of the nonword rating responses and the nonword naming responses 

demonstrated the feasibility of the nonword rating method, with its strengths and weaknesses 

discussed, relative to the nonword naming method. 

These conclusions bear relevance to future computational modelling of reading aloud as well 

as further empirical investigations in this area. I hope the insights provided by this PhD work 

serve future endeavours to improve our understanding of generalisation in reading. 
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Phoneme symbols in DISC character set used throughout the thesis 

 

 

 

Table 1A  

Phoneme symbols in DISC and IPA character sets  

Example DISC IPA  Example DISC IPA 

pat { a  bat b b 
pet E ɛ  cad k k 
pit I ɪ  cheap J tʃ 

pot Q ɒ  dad d d 
putt V ʌ  fat f f 
put U ʊ  game g g 

another @ ə  had h h 

barn # ɑː  jeep _ dʒ 

bean i iː  measure Z ʒ 

born $ ɔː  lad l l 
boon u uː  mad m m 
burn 3 əː  nat n n 
bay 1 eɪ  bang N ŋ 

buy 2 ʌɪ  pat p p 
boy 4 ɔɪ  rat r r 
no 5 əʊ  sap s s 

brow 6 aʊ  sheep S ʃ 

peer 7 ɪə  tack t t 
pair 8 ɛː  thin T θ 

poor 9 ʊə  then D ð 

    vat v v 

    why w w 

    yank j j 

    zap z z 
 

 

 

 

 

 



 

 

Appendix 2 

Performance of the WSP model in the variable mode after optimisation using larger 

range of weights 

Weights and performance of the WSP-type version of the model (variable mode), optimised 

for Andrews and Scarratt, Treiman and Pritchard sets, using a larger range of weights for the 

parsing styles (from 1 to 50 in increments of 5). 

Table 2A 

Performance of WSP-type model in variable mode (raw probabilities method) optimised for 

three nonword data sets using a range of weights from 1 to 50 

 

data set item group 
human-model 
correlation 

p-value 
match 
proportion 

weights 

optimised for Andrews & Scarratt set 

Andrews & 
Scarratt set 

regular 0.86 < .001 1.00 CV-C: 1 
irregular 0.75 < .001 1.00 C-VC: 46 

reg-irreg diff. 0.84 < .001 1.00 C-V-C: 26 
Treiman set  0.54 0.17  -  

Pritchard 
set 

1st response 0.37 < .001 0.92  

2nd response 0.17 0.04 0.40  

3rd response 0.09 0.53 0.26   

optimised for Treiman set 

Andrews & 
Scarratt set 

regular 0.52 0.04 1.00 CV-C: 41 
irregular 0.08 0.76 1.00 C-VC: 46 

reg-irreg diff. 0.31 0.25 1.00 C-V-C: 1 
Treiman set  0.82 0.01  -  

Pritchard 
set 

1st response 0.30 < .001 0.92  

2nd response 0.14 0.10 0.40  

3rd response 0.20 0.17 0.26   

optimised for Pritchard set 

Andrews & 
Scarratt set 

regular 0.55 0.03 1.00 CV-C: 6 
irregular 0.64 0.01 1.00 C-VC: 11 

reg-irreg diff. 0.61 0.01 1.00 C-V-C: 21 
Treiman set  0.60 0.11  -  

Pritchard 
set 

1st response 0.42 < .001 0.92  

2nd response 0.19 0.03 0.40  
3rd response 0.12 0.41 0.26   

 

Note. cv-c = antibody-coda parsing style (e.g., wa-sk); c-vc = onset-word body parsing style 

(e.g., w-ask); c-v-c = small segment parsing style (e.g., w-a-sk). 

 



 

 

Appendix 3 

Stimuli Properties in investigations of token frequency of PSCs in nonword processing 

(Chapter 4) 

 

Table 3A 

Non-Unique Base words for Experimental Items  

Non-Unique Base words 

BW BW2 
BW2 
Freq 

BW type 

borne  airborne 3.39 Regular-
high seaborne 1.97 

waterborne 1.93 

forborne no Freq 

overborne no Freq 

bulb  flashbulb 1.39 Regular-
high lightbulb 2.68 

curve  
recurve 1.17 

Regular-
high 

dealt  
misdealt no Freq 

Irregular-
high 

gauge  rain-gauge no Freq Irregular-
high wind-gauge no Freq 

heart  
sweetheart 4.28 

Irregular-
high 

leash  
unleash 3.36 

Regular-
low 

month  
twelvemonth 1.54 

Irregular-
high 

soap  
soft-soap no Freq 

Regular-
high 

waist  
shirtwaist 1.17 

Regular-
high 

watt  
kilowatt 2.57 

Irregular-
low 

world  dreamworld 1.74 Irregular-
high underworld 3.21 

 

Note. BW = a baseword of an experimental nonword, BW2 = the lexical item or items that 

share a word body with the baseword, BW2 Freq = Zipf frequency of the BW2, BW type = 

the type of the baseword. ‘no Freq’ in the BW2 Freq column indicates that there was no 

frequency value available for the relevant item (i.e. this item does did exist in the SUBTLEX-

UK database).  



 

 

Table 3B 

List of Experimental Stimuli in the Naming Task and Proportion of Regular and Irregular 

Pronunciations Assigned to Each Item 

 

Item Item type 
Base 
word 

Frequency 
(Zipf) 

Number of 
responses 

Regular 
responses 

Irregular 
responses 

BEALM Irregular-low realm 3.53 58 0.45 0.31 
BROULT Irregular-low moult 2.7 39 0.31 0 
CHUAVE Irregular-low suave 2.91 51 0.12 0.45 

CRAUCHE Irregular-low gauche 2.56 0   
DUAVE Irregular-low suave 2.91 53 0.17 0.6 

DWURGH Irregular-low burgh 2.84 1 0 0 
FLIRSCH Irregular-low kirsch 2.5 1 1 0 
FRORL Irregular-low whorl 1.3 36 0.75 0 

GHUEDE Irregular-low suede 3.07 38 0.5 0.32 

GLATT Irregular-low watt 3.45 57 0.91 0 
GLOURGE Irregular-low scourge 2.99 10 0.7 0.3 

HOULT Irregular-low moult 2.7 41 0.1 0.1 
JAUCHE Irregular-low gauche 2.56 0   
LUSQUE Irregular-low brusque 2 15 0.67 0.2 
MIRSCH Irregular-low kirsch 2.5 1 0 1 
NEANSE Irregular-low cleanse 3.13 64 0.7 0.09 

PHEALM Irregular-low realm 3.53 57 0.28 0.56 
PSORL Irregular-low whorl 1.3 34 0.85 0 

PSUGUE Irregular-low fugue 2.54 24 0 0.71 
SHUGUE Irregular-low fugue 2.54 26 0.04 0.73 

SMUSQUE Irregular-low brusque 2 15 0.2 0.4 
SNULLE Irregular-low tulle 2.2 29 0.52 0.28 

STEANSE Irregular-low cleanse 3.13 65 0.72 0.22 
TUEDE Irregular-low suede 3.07 38 0.42 0.26 

TWOURGE Irregular-low scourge 2.99 10 0.7 0.3 
VULLE Irregular-low tulle 2.2 29 0.48 0.31 

WURGH Irregular-low burgh 2.84 1 0 0 
ZATT Irregular-low watt 3.45 57 0.98 0 

BLEIZE Irregular-high seize 3.77 64 0.34 0.45 
BREIRD Irregular-high weird 4.75 65 0.05 0.65 

CHOUNG Irregular-high young 5.51 61 0.21 0.2 
CRORST Irregular-high worst 4.92 66 0.8 0.02 
DONTH Irregular-high month 5.08 67 1 0 

DWONGE Irregular-high sponge 4.12 66 0.91 0.05 
FLOUSSE Irregular-high mousse 3.76 67 0.25 0.61 
FOUSSE Irregular-high mousse 3.76 64 0.13 0.78 
FREART Irregular-high heart 5.3 66 0.2 0.24 
GHEALT Irregular-high dealt 4.3 51 0.31 0.49 



 

 

Table 3B continued 

Item Item type 
Base 
word 

Frequency 
(Zipf) 

Number of 
responses 

Regular 
responses 

Irregular 
responses 

GLEART Irregular-high heart 5.3 65 0.12 0.26 
GLILST Irregular-high whilst 4.63 52 0.96 0.02 
HAUGE Irregular-high gauge 3.69 25 0.4 0.2 
JEALT Irregular-high dealt 4.3 53 0.32 0.38 
LORST Irregular-high worst 4.92 65 1 0 
MEIRD Irregular-high weird 4.75 67 0 0.75 
NORLD Irregular-high world 5.88 68 0.82 0.01 

PHOUTE Irregular-high route 4.6 58 0.16 0.72 
PSORLD Irregular-high world 5.88 68 0.87 0.06 

SHOUNG Irregular-high young 5.51 60 0.25 0.25 
SMACHT Irregular-high yacht 3.77 60 0.85 0.05 
SNAUGE Irregular-high gauge 3.69 25 0.32 0.04 
STONTH Irregular-high month 5.08 67 0.97 0 

TILST Irregular-high whilst 4.63 53 1 0 
TWEIZE Irregular-high seize 3.77 64 0.02 0.81 
VOUTE Irregular-high route 4.6 60 0.28 0.65 

WONGE Irregular-high sponge 4.12 67 0.9 0.03 
ZACHT Irregular-high yacht 3.77 60 0.85 0.1 
BAIPSE Regular-low traipse 2.16 69 0.87  - 
BREINT Regular-low feint 1.95 67 0.36  - 

CHORGUE Regular-low morgue 3.12 66 0.94  - 

CRAICE Regular-low plaice 3.02 68 0.94  - 
DONCH Regular-low conch 2.81 69 1  - 

DWOPSE Regular-low copse 2.59 68 0.71  - 
FLAIPSE Regular-low traipse 2.16 69 0.86  - 
FOMPT Regular-low prompt 3.13 67 0.97  - 
FRAUZE Regular-low gauze 2.53 69 0.55  - 

GHOMPT Regular-low prompt 3.13 67 1  - 
GLIEK Regular-low shriek 2.78 69 0.7  - 

GLOPSE Regular-low copse 2.59 68 0.84  - 
HEINT Regular-low feint 1.95 69 0.16  - 
JALC Regular-low talc 2.4 69 0.87  - 

LORGUE Regular-low morgue 3.12 69 0.96  - 

MEASH Regular-low leash 3.12 67 1  - 
NOOTHE Regular-low soothe 2.76 69 0.97  - 
PHULPT Regular-low sculpt 2.61 68 0.9  - 
PSONCH Regular-low conch 2.81 66 0.97  - 
SHAICE Regular-low plaice 3.02 69 0.75  - 

SMEASH Regular-low leash 3.12 67 0.96  - 
SNALC Regular-low talc 2.4 67 0.87  - 
STILGE Regular-low bilge 2.53 69 0.96  - 
TULPT Regular-low sculpt 2.61 69 0.93  - 



 

 

Table 3B continued 

Item Item type 
Base 
word 

Frequency 
(Zipf) 

Number of 
responses 

Regular 
responses 

Irregular 
responses 

TWOOTHE Regular-low soothe 2.76 69 0.96  - 
VAUZE Regular-low gauze 2.53 69 0.58  - 
WILGE Regular-low bilge 2.53 69 0.96  - 

ZIEK Regular-low shriek 2.78 68 0.82  - 
BORPSE Regular-high corpse 3.41 68 0.99  - 

CHOATHE Regular-high loathe 3.16 67 0.91  - 
CROILT Regular-high spoilt 3.65 66 0.76  - 
DWEK Regular-high trek 3.72 68 0.99  - 

DWORPSE Regular-high corpse 3.41 68 0.93  - 

DYNCH Regular-high lynch 3.44 68 0.87  - 
FLURVE Regular-high curve 3.91 68 0.97  - 
FOATHE Regular-high loathe 3.16 69 0.96  - 
FROAP Regular-high soap 4.1 68 0.81  - 

GHONZE Regular-high bronze 4.41 66 0.89  - 
GLORNE Regular-high borne 3.44 69 1  - 
HONZE Regular-high bronze 4.41 69 0.96  - 
JOAP Regular-high soap 4.1 68 0.91  - 

LOSQUE Regular-high mosque 3.81 67 0.88  - 
MEACE Regular-high peace 4.74 69 0.99  - 
NAIST Regular-high waist 3.71 69 0.78  - 

PHOOB Regular-high boob 3.21 68 1  - 

PSAIST Regular-high waist 3.71 66 0.73  - 
SHULB Regular-high bulb 3.68 69 0.93  - 

SMEACE Regular-high peace 4.74 69 0.99  - 
SNYNCH Regular-high lynch 3.44 69 0.93  - 
STULB Regular-high bulb 3.68 68 0.91  - 
SWEK Regular-high trek 3.72 68 0.96  - 
TURVE Regular-high curve 3.91 68 1  - 

TWOSQUE Regular-high mosque 3.81 68 0.75  - 
VOOB Regular-high boob 3.21 69 1  - 
WOILT Regular-high spoilt 3.65 68 0.76  - 
ZORNE Regular-high borne 3.44 69 0.99  - 

 

 

 

 

 

 

 



 

 

 

Table 3C 

List of Filler Items in the Naming Task 

Naming Task Fillers 

BALSH DORT GERD NYTH SUNCE 
BELSH DRERN GHIMN OL SWUS 

BILTH DRICHE GILSH PHISP TELTH 
BLALM DULTH GIPTH PHONK THAFE 
BLUGE DWAL GIRSH PHOZ THIM 
BLYPE DWALP GISE PHRUP THOUN 
BRASK DWARB GORD PLAIL THWIE 
BRORK DWI GRORD PLANGE TULTH 
CALSH DWYM GRUIT PLOFT TWALPH 

CALTH FALTH GULTH POY TWARK 

CELTH FATH GWADD PUDD TWEIL 
CEPTH FENE GWI RELTH TWING 
CERSH FENTH GWIEL RERNS TWOVE 
CHIEL FEPTH GWOB RHUPS TWULT 

CHUILT FIPTH HELTE RILSH VAPSE 
CIFF FIRSH JOCH ROP VATE 

CILSH FLANE KEALD ROUCHE VEBB 
CILTH FLOAF KNEAM ROWSE VIPTH 
CIRSH FLOLL KNUSH SCAWP VORNS 
CLUFT FLUST KULSE SICH WEFF 
CORSH FORSH LECS SKEWT WHA 

CREUM FRA LERSH SKOAL WHOLT 

CRICHE FRABE LIRSH SKUBE WRAUK 
CUPTH FRARC LUB SKUNT WROID 
DALSH FUPTH LUT SLONT YELF 
DALTH FUSK MUNE SLYS ZERE 
DANGE GALSH NALK SMILL ZERPS 
DAWSE GALTH NEPTH SPAGS ZI 

DERSH GELSH NIS SPEVE ZOINS 
DILSH GELTH NORB SPLEZ ZORT 

 

 

 

 

 

 



 

 

 

Table 3D 

List of Experimental Stimuli in the Rating Task 

Rating Task Experimental Items 

Spelling Type 
Pronunciation   

Spelling Type 
Pronunciation 

Irregular Regular   Irregular Regular 

BEALM Irreg-low bElm bilm   BLEIZE Irreg-high bliz bl1z 
BROULT Irreg-low br5lt br6lt   BREIRD Irreg-high br7d br8d 
CHUAVE Irreg-low Jw#v J1v   CHOUNG Irreg-high JVN J6N 

CRAUCHE Irreg-low kr5S kr$S   CRORST Irreg-high kr3st kr$st 
DUAVE Irreg-low dw#v dw1v   DONTH Irreg-high dVnT dQnT 

DWURGH Irreg-low dwVr@ dw3g   DWOUTE Irreg-high dwut dw6t 
FLIRSCH Irreg-low fl7S fl3S   FLOUSSE Irreg-high flus fl6s 
FRORL Irreg-low fr3l fr$l   FOUSSE Irreg-high fus f6s 

GHUEDE Irreg-low g1d gud   FREART Irreg-high fr#t fr7t 
GLATT Irreg-low glQt gl{t   GHEALT Irreg-high gElt gilt 

GLOURGE Irreg-low gl3_ gl$_   GLEART Irreg-high gl#t gl7t 
HOULT Irreg-low h5lt h6lt   GLILST Irreg-high gl2lst glIlst 
JAUCHE Irreg-low _5S _$S   HAUGE Irreg-high h1_ h$_ 
LUSQUE Irreg-low lusk lVsk   JEALT Irreg-high _Elt _ilt 
MIRSCH Irreg-low m7S m3S   LORST Irreg-high l3st l$st 
NEANSE Irreg-low nEns nins   MEIRD Irreg-high m7d m8d 
PHEALM Irreg-low fElm film   NORLD Irreg-high n3ld n$ld 

PSORL Irreg-low s3l s$l   PHONGE Irreg-high fVn_ fQn_ 
PSUGUE Irreg-low sug sVg   PSORLD Irreg-high s3ld s$ld 
SHUGUE Irreg-low Sug SVg   SHOUNG Irreg-high SVN S6N 

SMUSQUE Irreg-low smusk smVsk   SMACHT Irreg-high smQt sm{Jt 

SNULLE Irreg-low snul snVl   SNAUGE Irreg-high sn1_ sn$_ 
STEANSE Irreg-low stEns stins   STONTH Irreg-high stVnT stQnT 
TUEDE Irreg-low tw1d tjud   TILST Irreg-high t2lst tIlst 

TWOURGE Irreg-low tw3_ tw$_   TWEIZE Irreg-high twiz tw1z 
VULLE Irreg-low vjul vVl   VOUTE Irreg-high vut v6t 

WURGH Irreg-low wVr@ w3g   WONGE Irreg-high wVn_ wQn_ 
ZATT Irreg-low zQt z{t   ZACHT Irreg-high zQt z{Jt 

 

 

 

 

 

 

 



 

 

 

Table 3E 

List of Filler Items in the Rating Task 

Rating Task Fillers 

Spelling 
Pronunciation   

Spelling Pronunciation 
  

Spelling Pronunciation 
Option1 Option2 Option3     

BLALM bl#m bl{lm     BALSH b{lS   LUT lVt 
BRASK br#sk br{sk     BELSH bElS   MUNE mjun 
CHIEL J2l Jil     BILTH bIlT   NEPTH nEpT 

CHUILT Jilt Jult     BLUGE bluZ   NORB n$b 
DANGE d1n_ d{n_     BLYPE bl2p   PHISP fIsp 
DRICHE dr2J driS     BRORK br$k   PHRUP frVp 
DWALP dwQlp dw{lp     CREUM krum   PLAIL pl1l 
DWARB dw$b dw#b     DAWSE d$s   PLOFT plQft 

DWI dw2 dwI     DERSH d3S   POY p4 
FATH f#T f{T     DILSH dIlS   RELTH rElT 
FLOLL fl5l flQl     DRERN dr3n   RHUPS rVps 
FRA fr# fr{     DWYM dwIm   ROP rQp 

GWIEL gwIl gw2l gwil   FALTH f{lT   SCAWP sk$p 
NALK n$k n{lk     FENTH fEnT   SICH sIJ 
NIS nIs nIz     FIPTH fIpT   SKEWT skjut 

NYTH n2T nIT     FORSH f$S   SKOAL sk5l 
OL 5l Ql     FRARC fr#k   SKUNT skVnt 

PHONK f5nk fQnk     FUPTH fVpT   SLONT slQnt 
PHOZ f5z fQz     FUSK fVsk   SPLEZ splEz 

PLANGE pl1n_ pl{n_     GHIMN gIm   SUNCE sVns 
ROUCHE r5J r6S     GISE g2s   THIM Tim 
ROWSE r5z r6s     GRUIT grut   THOUN T6n 
SKUBE skVb skub     GWADD gw{d   TULTH tVlT 
SLYS sl2s slIs     HELTE hElt   TWEIL tw1l 

SPLICHE splIS       JOCH _QJ   TWING twIN 
SWUS swus swVs     KEALD kild   TWOVE tw5v 

TWALPH twQlf tw{lf     KNEAM nim   TWULT twVlt 
TWARK tw$k tw#k     KNUSH nVS   VATE v1t 

WHA w1 w#     KULSE kVls   WEFF wEf 
WHOLT w5lt wQlt     LECS lEks   WRAUK r$k 

ZERE z8 z3 z7   LIRSH l3S   YELF jElf 
ZI zi z2 zI   LUB lVb   ZORT z$t 

 

 

Additionally, 10 C-initial, 10 G-initial, 10 Error and 10 Odd items were included in the rating 

task, these items are listed in Appendix 11. 

 



 

 

Table 3F 

List of Words and Their Definition Options in the Vocabulary Task 

Words and Four Definition Options in the Vocabulary task 

Word Option 1 Option 2 Option 3 Option 4 
WHORL  spiral  square  triangle  ellipse 

BRUSQUE  careful  abrupt  slow  cheerful 
TULLE  a woollen blanket  velvet drapes  a thin cloth  thick fabric 

KIRSCH 
 wine made from 

dates  
 whiskey made from 

rice  
 vodka made from 

wheat  
brandy made from 

cherries 

FUGUE 
 a loss of awareness 

of one's identity  
 a state of exhaustion  

 a bad-tempered 
person  

 an increased 
amount of optimism  

GAUCHE 
 exaggeratedly 

enthusiastic  
 awkward  rebellious  dishonest 

MOULT 
 cause a large 

amount of damage  
 perplex (someone)  shed old hair or skin  

renounce or reject 
(something) 

BURGH  a remote village   a metropolitan area  
 an independent 

state  
 a chartered town  

SUAVE  charming   timid   sentimental   hostile  

SCOURGE 
 a showy and purely 

ornamental thing  

 thing that causes 
great trouble or 

suffering  

 the scope or bounds 
of something  

 the point at which 
something is at its 

best  

SUEDE  cotton  silk  leather  wool 
CLEANSE  empty  resize  twist  purify 

WATT  unit of power  unit of time  unit of length  unit of depth 

REALM 
 an international 

organisation  
 a kingdom  

 an unrecognized 
state 

 a military 
dictatorship 

GAUGE  summarise  steer  measure  advertise 

MOUSSE  a type of drink 
 a type of nutritional 

supplement 
 a type of soup  a type of dessert 

SEIZE  grab  throw  break  push 

YACHT  a racing car  a sailing boat  a rowing boat 
 a cycle with a single 

wheel 

SPONGE 
a device for 

sharpening razors 

material providing 
heat insulation for a 
water tank and pipes 

 a piece of a soft and 
absorbent substance 

used for cleaning  

 a medium-paced 
French dance 

DEALT 
 (past tense) 

estimate  
 (past tense) steal  

 (past tense) 
approach  

 (past tense) 
distribute  

ROUTE  course  hight  duration  consistency 

WHILST  in a straight line  at the same time  
 at a fairly brisk 

speed  
in a smooth flowing 

manner 

WEIRD  superficial   loyal   very strange   popular 

WORST  the finest  the most common  the most expensive 
 of the poorest 

quality 

MONTH  4 weeks  2 weeks  7 days  14 weeks 
 



 

 

Table 3F continued 

Word Option 1 Option 2 Option 3 Option 4 

HEART 
 a glandular organ 
involved in many 

metabolic processes  

 a muscular organ 
that pumps blood 

through the 
circulatory system   

 an abdominal organ 
involved in the 
production and 

removal of blood 
cells 

 organ of balance 
and hearing 

embedded in the 
temporal bone 

YOUNG  middle-aged  elderly  immature  intermittent 
WORLD  a star  an asteroid  a moon  a planet 

 

Note. The correct answer is in italics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 4 

Conversion of phonemic transcription from Plaut et al. (1996) to DISC 

 

The key for the phonemic transcription and the corresponding example word given in Plaut et 

al. (1996, Appendix B and C, p. 114-115) was followed. Additionally, the choice of DISC 

transcription for the phonemes a, o, ur and Or in Plaut et al. was supported by inference from 

the example transcriptions of existing words in Appendix C of their paper (e.g. ‘BROAD - 

/brod/’, ‘WANT - /want/’, ‘WERE - /wur/’ and ‘SWARM - /swOrm/’). 

 

Table 4A 

Conversion of phonemic transcription from Plaut et al. (1996) to DISC 

Plaut et al. example DISC 

a pot Q 

 @ cat { 

e bed E 

i hit I 

o dog $ 

u good U 

A make 1 

E keep i 

I bike 2 

O hope 5 

U boot u 

W now 6 

Y boy 4 

^ cup V 

N ring N 

S she S 

C chin J 

Z beige Z 

T thin T 

D this D 

j jeep _ 

y yes j 

ura were 3 

Ora swarm $ 

 

Note. The rest of the consonant phonemes are written as in DISC, as Plaut et al. state that the 

remaining phonemes are transcribed in the ‘conventional way (e.g. /b/ in BAT)’. 

a These print-to-sound correspondences were inferred from the Appendix C (Plaut et al., 

1996, p. 115).  



 

 

 

Appendix 5 

Analyses of naming and rating responses to Irregular items with stricter criteria for 

individual means (Chapter 4) 

The samples in these analyses only contain participants with a minimum of 10 valid 

responses in each condition. See Table 5A for descriptive statistics for the naming and rating 

data.  

Table 5A 

Proportion and mean ratings of irregularly pronounced Irregular items in naming and rating 

tasks 

Data Group Irregular-low Irregular-high 

  n Mean SD n Mean SD 
Naming Naming-Rating 59 0.26 0.14 59 0.28 0.1 

Rating 
Naming-Rating 60 4.88 0.51 60 4.80 0.54 

Rating-Only 56 4.35 0.51 56 4.50 0.55 
 

Comparison of proportion of irregular pronunciations assigned to Irregular-low and Irregular-

high items as a paired-samples t-test revealed no reliable differences (t(58) = 0.93, p = 0.18, 

Cohen’s dz = 0.12). The rating data for paired samples t-tests comparing the mean ratings to 

irregularly pronounced Irregular items is reported in Table 5B. 

 

Table 5B 

Comparison of the mean acceptability ratings to irregularly pronounced low and high 

frequency nonwords  

Group Mean diff. t-value df 
p-

value dz  
Min. dz 

Naming-Rating -0.08 -1.82 59 0.96 -0.24 0.32 
Rating-Only 0.15 2.32 55 0.01 0.31 0.34 

 

Note. Min. dz shows the minimum detectable effect sizes from sensitivity analyses computed 

for 1-tailed, paired samples t-tests with an alpha level of .05, power of .8 and sample size of 

either 60 or 56. 

 



 

 

 

Appendix 6 

Human and model responses to Irregular nonwords with varied token frequency 

 

Table 6A 

Human and model responses to Irregular nonwords 

    Human participants Computational models 

Item Type first n second n third n DRC CDP++ Psim1 WSP-type WSP-token WSP-token-T 

BEALM Low bilm 23 bElm 16 bIlm 11 bilm bElm bilm bElm bElm bElm 

BLEIZE High bliz 29 bl1z 21 bl2z 10 bl1z bl1z bl1z bliz bliz bliz 

BREIRD High br7d 40 br8d 11 brid 3 br1rd br8d br1rd br7d br7d br7d 

BROULT Low brUlt 10 brQlt 8 br6t 7 br6lt br$lt br5lt br5lt br$lt br6lt 

CHOUNG High JQN 16 JVN 12 J6N 10 J6N J6N_ k6N JVN JVN J6N 

CHUAVE Low Jw#v 13 J6v 5 Jw1v 4 JV1v Jw#v JQv J#v J#v J#v 

CRAUCHE Low  -   -   -   -   -   -  kr$S kr$J kr5S kr5S kr5S kr5S 

CRORST High kr$st 48 krQst 8 k$st 2 kr$st kr$st kr$st kr3st kr3st kr$st 

DONTH High dQnT 65 dQnt 1 dQNT 1 dQnT dVnT dVnT dVnT dVnT dVnT 

DUAVE Low dw#v 32 dw1v 9 d$v 2 dV1v dwuv dQv d#v d#v d#v 

DWONGE High dwQn_ 39 dwQN 17 dwVN 3 dwQn_ dwQn dw$n_ dwVn_ dwVn_ dwQn_ 

DWURGH Low dw# 1  -   -   -   -  dw3g dw3 dw3 dwV dwV dw3 

FLIRSCH Low fl3S 1  -   -   -   -  fl3S fl3zJ fl3sJ fl7S fl7S fl7S 

FLOUSSE High flus 39 fl6s 15 flQs 2 fl6si fl6s fl6s flus flus flus 

FOUSSE High fus 45 f6s 7 fus1 5 f6si f6s f6s fus fus fus 

 



 

 

Table 6A continued 

    Human participants Computational models 

Item Type first n second n third n DRC CDP++ Psim1 WSP-type WSP-token WSP-token-T 

FREART High fr#t 15 fr3t 15 fr7t 12 fr7t fr7t frirt fr#t fr#t fr7t 

FRORL Low fr$l 24 frQl 6 $ 1 fr$l fr$l fr$l fr3l fr3l fr$l 

GHEALT High gElt 18 gilt 14 gIlt 5 gilt gElt gElt gElt gElt gilt 

GHUEDE Low gud 16 gw1d 10 gwid 3 gjud gjud gjud g1d g1d g1d 

GLATT Low gl{t 51 glVt 3 gl#t 2 gl{t gl{t gl{t glQt glQt gl{t 

GLEART High gl3t 37 gl#t 16 gl7t 8 gl7t gl7t gl$t gl#t gl#t gl7t 

GLILST High glIlst 33 glIst 7 gIlst 5 glIlst glIlst glIlst gl2lst gl2lst glIlst 

GLOURGE Low gl$_ 6 gl3_ 2 gl$g 1 gl$_ gl$_ gl$_ gl3_ gl3_ gl3_ 

HAUGE High h$_ 6 h1g 4 h6g 4 h$_ h$_ h$ h1_ h1_ h1_ 

HOULT Low hQlt 21 hUlt 6 h5lt 4 h6lt h6lt h5lt h5lt h5lt h5lt 

JAUCHE Low  -   -   -   -   -   -  _$S _$J 5 _5S _5S _5S 

JEALT High _Elt 20 _ilt 16 _Ilt 13 _ilt _Elt _ilt _Elt _Elt _ilt 

LORST High l$st 63 l$s 2  -   -  l$st l$st l$st l$st l$st l$st 

LUSQUE Low lVsk 9 lusk 3 l{sk1 1 lVsk lVsk lus lusk lusk lVsk 

MEIRD High m7d 50 m3d 5 m8d 5 m1rd m7d mird m7d m7d m7d 

MIRSCH Low m7S 1  -   -   -   -  m3S m3sJ m3sJ m7S m7S m7S 

NEANSE Low nins 41 nEns 6 ni{ns 3 nins nEns ninz nEnz nEnz nEnz 

NORLD High n$ld 50 nQld 7 n$d 4 n$ld n$ld n$ld n$ld n$ld n$ld 

PHEALM Low fElm 30 film 16 fIlm 6 film fElm ilm fElm fElm fim 

PHOUTE High fut 40 f6t 9 f5t 3 f6t f6t f5t fut fut f6t 

PSORL Low ps$l 13 s$l 12 s$ 2 s$l p$l sp$l s$l s$l s$l 

PSORLD High s$ld 34 ps$ld 14 s$d 3 s$ld p$ld sp$ld s$ld s3ld s$ld 

PSUGUE Low sug 6 psug 2 sjug 2 sug pVg spV_ sVg sVg sVg 



 

 

Table 6A continued 

    Human participants Computational models 

Item Type first n second n third n DRC CDP++ Psim1 WSP-type WSP-token WSP-token-T 

SHOUNG High SVN 15 SQN 13 S6N 12 S6N SVN SV SVN SVN SVN 

SHUGUE Low Sug 13 Su_ 4 Sugu 2 Sjug SVg Sug Sug Sug SVg 

SMACHT High sm{kt 21 sm{Jt 9 sm{J 6 sm{Jt sm{tt sm{J smQt smQt smQt 

SMUSQUE Low smusk 3 smUsk 2 musk 1 smVsk smVsk smVs smusk smusk smVsk 

SNAUGE High sn6_ 6 sn$_ 4 sn$g 4 sn$_ sn$_ sn1_ sn1_ sn1_ sn1_ 

SNULLE Low snVl 15 snul 8 snUl 4 snVl snul snVl snul snul snVl 

STEANSE Low stins 44 stEns 13 i 1 stins stEns stin stEnz stEnz stEnz 

STONTH High stQnT 61 st5nT 2 dQnT 1 stQnT stVnT stVnT stVnT stVnT stVnT 

TILST High tIlst 50 tIls 2 dIlst 1 tIlst tIlst tIlst t2lst t2lst t2lst 

TUEDE Low tud 13 twid 10 tw1d 9 tjud tjud tud t1d t1d t1d 

TWEIZE High twiz 52 tw2z 8 tw2 2 tw1z tw1z tw2z twiz twiz twiz 

TWOURGE Low tw$_ 4 tw$g 3 tw3Z 2 tw$_ tw$_ t3 tw3_ tw3_ tw$_ 

VOUTE High vut 39 v6t 17 v5t 2 v6t v6t v6t vut vut v6t 

VULLE Low vVl 14 vul 9 vUl 4 vVl vjul vjUl vul vul vVl 

WONGE High wQn_ 33 wQN 22 w5n_ 3 wQn_ wQn wVn_ wVn_ wVn_ wQn_ 

WURGH Low w3g@ 1  -   -   -   -  w3g w3 w3 wV wV wV 

ZACHT High z{kt 31 z{Jt 5 z{J 4 z{Jt z{tt QJ zQt zQt zQt 

ZATT Low z{t 55 { 1 sVt 1 z{t z{t z{t zQt zQt z{t 

 

 

 



 

 

 

Table 6B 

Model output not produced by any participant 

Item DRC CDP++ Psim1 
WSP-
type 

WSP-
token 

WSP-token-
T 

BREIRD br1rd   br1rd       
BROULT  br$lt br5lt br5lt br$lt  
CHOUNG   J6N_ k6N       
CHUAVE JV1v  JQv    

CRORST       kr3st kr3st   
DONTH  dVnT dVnT dVnT dVnT dVnT 

DUAVE dV1v dwuv dQv d#v d#v d#v 
DWONGE  dwQn dw$n_ dwVn_ dwVn_  
DWURGH dw3g dw3 dw3 dwV dwV dw3 
FLIRSCH  fl3zJ fl3sJ fl7S fl7S fl7S 
FLOUSSE fl6si           
FOUSSE f6si      

FREART     frirt       
FRORL    fr3l fr3l  
GHUEDE gjud gjud gjud       
GLEART   gl$t    

GLATT       glQt glQt   
GLILST    gl2lst gl2lst  
HAUGE     h$ h1_ h1_ h1_ 
LORST       

LUSQUE     lus       
MEIRD m1rd  mird    

MIRSCH m3S m3sJ m3sJ       
NEANSE    nEnz nEnz nEnz 
PHEALM     ilm     fim 
PSORL  p$l sp$l    

PSORLD   p$ld sp$ld       
PSUGUE  pVg spV_ sVg sVg sVg 
SHOUNG     SV       
SHUGUE Sjug SVg    SVg 

SMACHT   sm{tt         
SMUSQUE  smVs    

SNAUGE     sn1_ sn1_ sn1_ sn1_ 
STONTH  stVnT stVnT stVnT stVnT stVnT 
TILST       t2lst t2lst t2lst 
TWOURGE  t3    

VULLE   vjul vjUl       
WURGH w3g w3 w3 wV wV wV 
ZACHT   z{tt QJ zQt zQt   

 



 

 

Appendix 7 

Comparison of vowel segment properties (Chapter 4) 

The frequency measures of vowel segments of low and high (token) frequency nonwords 

were compared with a Welch’s t-test for both Irregular and Regular item groups. The tests 

were conducted as 1-tailed tests, in the direction indicated by the descriptive statistics of the 

vowel segments. Table 7A summarises the results of these comparisons. 

 

Table 7A 

Welch’s t-tests comparing properties of vowel segments between low and high items of 

Irregular and Regular item groups 

Comparison 
direction Property t-value df p-value 

Regular items 
low > high type freq 1.24 49.58 0.11 
low > high sum token freq 1.11 50.27 0.14 
high > low max token freq 0.17 51.19 0.43 

Irregular items 
low > high type freq 0.7 45.1 0.24 
low > high sum token freq 0.57 46.1 0.29 
high > low max token freq 0.93 39 0.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Appendix 8 

Stimuli Properties in investigations of type frequency of PSCs in nonword processing (Chapter 5) 

Table 8A 

Properties of the Experimental Stimuli in the Naming Task and proportion of irregular and regular pronunciations assigned to each item 

Item Item type Base words 
Max frequency 

(Zipf) 
Type 

frequency 
Number of 
responses 

Regular 
responses 

Irregular 
responses 

BRALF Irregular-Many half, calf, behalf 5.55 3 55 0.84 0.05 
FLALD Irregular-Many bald, scald 3.72 2 55 0.78 0.07 
FLALT Irregular-Many halt, malt, salt… 4.69 5 55 0.69 0.04 

FRALM Irregular-Many balm, calm, palm… 4.72 5 55 0.69 0.25 
GEALTH Irregular-Many health, stealth, wealth 5.14 3 54 0.15 0.44 
GHASK Irregular-Many cask, mask, task… 4.66 6 54 0.67 0.33 

GHIGN Irregular-Many sign, align, benign… 4.98 10 49 0.39 0.45 
GLALK Irregular-Many balk, chalk, talk… 5.52 5 55 0.65 0.11 
GLIGH Irregular-Many high, sigh, thigh… 5.53 4 54 0.39 0.46 
GNOLK Irregular-Many folk, yolk 4.24 2 54 0.87 0 
KEALTH Irregular-Many health, stealth, wealth 5.14 3 55 0.31 0.4 
KYME Irregular-Many rhyme, thyme 4 2 54 0 0.98 

MEARN Irregular-Many earn, learn, yearn 5.01 3 55 0.25 0.71 
NALM Irregular-Many balm, calm, palm… 4.72 5 55 0.62 0.31 
NALT Irregular-Many halt, malt, salt… 4.69 5 54 0.56 0.06 

PHOUP Irregular-Many group, soup, recoup 5.19 6 55 0.11 0.87 
PLALF Irregular-Many half, calf, behalf 5.55 3 54 0.91 0 
PLIGN Irregular-Many sign, align, benign… 4.98 10 55 0.16 0.78 
PSASK Irregular-Many cask, mask, task… 4.66 6 52 0.85 0.1 
RHALD Irregular-Many bald, scald 3.72 2 53 0.74 0.06 



 

 

Table 8A continued 

Item Item type Base words 
Max frequency 

(Zipf) 
Type 

frequency 
Number of 
responses 

Regular 
responses 

Irregular 
responses 

RHOLK Irregular-Many folk, yolk 4.24 2 51 0.88 0.04 
SMIQUE Irregular-Many pique, antique, unique… 4.66 11 52 0.13 0.65 
SMYME Irregular-Many rhyme, thyme 4 2 53 0 0.89 

SNAST Irregular-Many blast, cast, fast… 5.97 14 55 0.91 0.09 
TWEARN Irregular-Many earn, learn, yearn 5.01 3 55 0.09 0.85 

VOUP Irregular-Many group, soup, recoup 5.19 6 55 0.05 0.91 
YAST Irregular-Many blast, cast, fast… 5.97 14 55 0.85 0.15 

YIQUE Irregular-Many pique, antique, unique… 4.66 11 55 0.15 0.73 
ZALK Irregular-Many balk, chalk, talk… 5.52 5 55 0.73 0.15 
ZIGH Irregular-Many high, sigh, thigh… 5.53 4 55 0.22 0.65 

BEALM Irregular-Single realm 3.53 1 54 0.48 0.33 

BLEIZE Irregular-Single seize 3.77 1 54 0.24 0.57 
BREIRD Irregular-Single weird 4.75 1 55 0.13 0.67 

CHOUNG Irregular-Single young 5.51 1 54 0.33 0.07 
CRORST Irregular-Single worst 4.92 1 55 0.84 0 
DONTH Irregular-Single month 5.08 1 54 0.98 0.02 

DWOUTE Irregular-Single route 4.6 1 54 0.3 0.56 
FLOUSSE Irregular-Single mousse 3.76 1 55 0.25 0.64 
FOUSSE Irregular-Single mousse 3.76 1 54 0.15 0.78 
FREART Irregular-Single heart 5.3 1 52 0.25 0.38 

GHEALT Irregular-Single dealt 4.3 1 54 0.17 0.48 
GLEART Irregular-Single heart 5.3 1 52 0.29 0.21 
GLILST Irregular-Single whilst 4.63 1 53 0.94 0.04 
HAUGE Irregular-Single gauge 3.69 1 52 0.48 0.21 

JEALT Irregular-Single dealt 4.3 1 55 0.2 0.49 



 

 

Table 8A continued 

Item Item type 
Base 

words 
Max frequency 

(Zipf) 
Type 

frequency 
Number of 
responses 

Regular 
responses 

Irregular 
responses 

LORST Irregular-Single worst 4.92 1 55 0.96 0.04 
MEIRD Irregular-Single weird 4.75 1 53 0.02 0.92 
NORLD Irregular-Single world 5.88 1 55 0.96 0.02 

PHEALM Irregular-Single realm 3.53 1 54 0.2 0.57 
PHONGE Irregular-Single sponge 4.12 1 54 0.83 0.11 
PSORLD Irregular-Single world 5.88 1 53 0.91 0.04 
SHOUNG Irregular-Single young 5.51 1 54 0.28 0.06 
SMACHT Irregular-Single yacht 3.77 1 53 0.85 0.11 
SNAUGE Irregular-Single gauge 3.69 1 54 0.35 0.09 
STONTH Irregular-Single month 5.08 1 55 1 0 

TILST Irregular-Single whilst 4.63 1 55 1 0 

TWEIZE Irregular-Single seize 3.77 1 55 0.05 0.78 
VOUTE Irregular-Single route 4.6 1 52 0.19 0.75 

WONGE Irregular-Single sponge 4.12 1 55 0.95 0.02 
ZACHT Irregular-Single yacht 3.77 1 53 0.77 0.17 

 

 

 

 

 



 

 

Table 8B 

Fillers in the Naming task 

Naming Task Fillers 

BALSH DWARM GULTH PLOFT THOUN 
BELSH DWI GWADD POY THWIE 
BILTH DWYM GWI PRU THWYM 
BLUGE FALTH GWIEL PUDD TREWN 
BLYPE FATH GWOB RADGE TRISK 
BRORK FEECE GWUTT RELTH TULTH 
CALSH FENE HELTE RERNS TWALPH 
CALTH FENTH JACE RERV TWEIL 
CELTH FEPTH JOCH RESS TWING 
CEPTH FIPTH KAUVE RHESK TWITE 
CERSH FIRSH KEALD RHUPS TWOVE 
CHIEL FLANE KNEAM RILSH TWULT 

CHUILT FLOAF KNULB ROP VAPSE 
CIFF FLOLL KNUSH ROUCHE VARP 

CILSH FLUST KULSE ROWSE VATE 
CILTH FLUTH LAWK SCALC VEBB 
CIRSH FORSH LECS SCAWP VIPTH 
CLARP FRA LERSH SCRIF VIVE 
CLITE FRABE LIRSH SICH VOOCH 
CLUFT FRARC LUB SKEWT VORNS 
CORSH FRAUL LUN SKOAL VUD 
CREUM FRAVE LUT SKUBE WEFF 
CRICHE FUPTH MUNE SKUNT WERF 
CRIFE FUSK NARSE SLONT WERGE 

CUPTH GALSH NARVE SLULK WHA 

DALSH GALTH NEAF SLYS WHOLT 

DALTH GELSH NEPTH SMILL WHURF 
DANGE GELTH NIS SNEBE WRAUK 
DAWSE GERD NORB SNOBE WROID 

DEET GHIMN NYTH SPAC YARL 
DENGE GHURF OL SPAGS YELF 
DERSH GILSH PEAF SPEVE YOAT 

DILSH GIPTH PHIEK SPLEZ YUCH 
DORT GIRM PHISP SUNCE ZARVE 

DRERN GIRSH PHONK SWURB ZERE 
DRICHE GISE PHOZ SWUS ZERPS 
DULF GLELP PHROR TELTH ZI 

DULTH GLERT PHRUP THAFE ZOINS 
DWAL GORD PLAIL THIM ZORT 

DWALP GRORD PLANGE THOOT ZOSE 
DWARB GRUIT    

 



 

 

Table 8C 

Experimental items in the Rating task 

Rating Task Experimental Items 

Spelling Type 
Pronunciation  

Spelling Type 
Pronunciation 

Irregular Regular  Irregular Regular 

RHALD IM r$ld r{ld  BEALM IS bElm bilm 
BRALF IM br#f br{lf  HAUGE IS h1_ h$_ 
ZALK IM z$k z{lk  FOUSSE IS fus f6s 

NALM IM n#m n{lm  BLEIZE IS bliz bl1z 
FLALT IM fl$lt fl{lt  ZACHT IS zQt z{Jt 
GHASK IM g#sk g{sk  WONGE IS wVn_ wQn_ 
YAST IM j#st j{st  JEALT IS _Elt _ilt 

KEALTH IM kElT kilT  VOUTE IS vut v6t 
MEARN IM m3n m7n  TILST IS t2lst tIlst 
GLIGH IM gl2 glI  MEIRD IS m7d m8d 
GHIGN IM g2n gIn  LORST IS l3st l$st 
YIQUE IM jik jIk  DONTH IS dVnT dQnT 
GNOLK IM n5k nQlk  GLEART IS gl#t gl7t 
VOUP IM vup v6p  SHOUNG IS SVN S6N 
KYME IM k2m kIm  NORLD IS n3ld n$ld 
FLALD IM fl$ld fl{ld  PHEALM IS fElm film 
PLALF IM pl#f pl{lf  SNAUGE IS sn1_ sn$_ 
GLALK IM gl$k gl{lk  FLOUSSE IS flus fl6s 
FRALM IM fr#m fr{lm  TWEIZE IS twiz tw1z 
NALT IM n$lt n{lt  SMACHT IS smQt sm{Jt 
PSASK IM s#sk s{sk  PHONGE IS fVn_ fQn_ 
SNAST IM sn#st sn{st  GHEALT IS gElt gilt 

GEALTH IM gElT gilT  DWOUTE IS dwut dw6t 
TWEARN IM tw3n tw7n  GLILST IS gl2lst glIlst 

ZIGH IM z2 zI  BREIRD IS br7d br8d 
PLIGN IM pl2n plIn  CRORST IS kr3st kr$st 

SMIQUE IM smik smIk  STONTH IS stVnT stQnT 
RHOLK IM r5k rQlk  FREART IS fr#t fr7t 
PHOUP IM fup f6p  CHOUNG IS JVN J6N 
SMYME IM sm2m smIm  PSORLD IS s3ld s$ld 

 

Note. IM = Irregular-Many items; IS = Irregular-Single items 

 

 

 

 



 

 

 

Table 8D 

Filler items in the Rating task 

Rating Task Fillers 

Spelling 
Pronunciation  

Spelling Pronunciation 
 

Spelling Pronunciation 
Option1 Option2 Option3   

BALSH b{lS   
 BRORK br$k  PHRUP frVp 

BELSH bElS   
 CREUM krum  PLAIL pl1l 

BILTH bIlT   
 DAWSE d$s  PLOFT plQft 

BLUGE bluZ   
 DERSH d3S  POY p4 

BLYPE bl2p   
 DILSH dIlS  RELTH rElT 

CHIEL J2l Jil   DRERN dr3n  RHUPS rVps 
CHUILT Jilt Jult   DWYM dwIm  ROP rQp 
DANGE d1n_ d{n_   FALTH f{lT  SCAWP sk$p 
DRICHE dr2J driS   FENTH fEnT  SICH sIJ 
DWALP dwQlp dw{lp   FIPTH fIpT  SKEWT skjut 
DWARB dw$b dw#b   FORSH f$S  SKOAL sk5l 

DWI dw2 dwI   FRARC fr#k  SKUNT skVnt 
FATH f#T f{T   FUPTH fVpT  SLONT slQnt 
FLOLL fl5l flQl   FUSK fVsk  SPLEZ splEz 
FRA fr# fr{   GHIMN gIm  SPLICHE splIS 

GWIEL gwIl gw2l gwil  GISE g2s  SUNCE sVns 
NIS nIs nIz   GRUIT grut  THIM Tim 

NYTH n2T nIT   GWADD gw{d  THOUN T6n 
OL 5l Ql   HELTE hElt  TULTH tVlT 

PHONK f5nk fQnk   JOCH _QJ  TWEIL tw1l 
PHOZ f5z fQz   KEALD kild  TWING twIN 

PLANGE pl1n_ pl{n_   KNEAM nim  TWOVE tw5v 
ROUCHE r5J r6S   KNUSH nVS  TWULT twVlt 
ROWSE r5z r6s   KULSE kVls  VATE v1t 
SKUBE skVb skub   LECS lEks  WEFF wEf 
SLYS sl2s slIs   LIRSH l3S  WRAUK r$k 

SWUS swus swVs   LUB lVb  YELF jElf 
TWALPH twQlf tw{lf   LUT lVt  ZORT z$t 

WHA w1 w#  
 MUNE mjun  

  

WHOLT w5lt wQlt  
 NEPTH nEpT  

  

ZERE z8 z3 z7  NORB n$b  
  

ZI zi z2 zI  PHISP fIsp  
  

 

Additionally, 10 C-initial, 10 G-initial, 10 Error and 10 Odd items were included in the 

Rating task, these items are listed in Appendix 11. 

 

 



 

 

 

Appendix 9 

Analyses with full set of nonword items (Chapter 5) 

 

Nonword naming and rating responses were also compared with the original, full set of the 

nonword stimuli. Table 9A depicts the key properties of the full set of items. Table 9B shows 

the mean proportion of irregular pronunciations (standard deviations in brackets) assigned to 

the nonwords, mean ratings for irregularly pronounced nonwords and 1-tailed t-test results 

comparing the mean irregular naming proportions and ratings between Irregular-Single and 

Irregular-Many items.   

 

Table 9A 

Key properties of the full set of Irregular-Many and Irregular-Single items 

Statistic 
Irregular-

Many base 
words 

Irregular-
Many Max 

Zipf 

Irregular-
Single Zipf 

Irregular-
Single known 
base words 

Irregular-
Single prop. of 

irreg. pron. 

Mean 5.40 4.91 4.51 0.88 0.29 
SD 3.54 0.61 0.72 0.16 0.28 

 

Note. Irregular-Single known base words = proportion of participants that defined and 

pronounced at least the vowel of the base word correctly in the study reported in Chapter 4. 

Irregular-Single prop. of irreg. pron. = proportion of irregular pronunciations assigned to each 

nonword (calculated as pooled responses to two nonwords that both had the same word body) 

in the study reported in Chapter 4.  

 

Table 9B 

Mean proportions of irregular responses, mean ratings for irregularly pronounced nonwords 

and t-test results comparing IS and IM items 

Data 
Irregular-

Single items 
Irregular-

Many items 
t-value df p-value 

 ohen’s 
dz 

Naming 0.31 (0.1) 0.39 (0.11) 5.64 54 <.001 0.76 
Rating 4.62 (0.44) 5.31 (0.39) 14.35 54 <.001 1.94 

 

 

 



 

 

 

Appendix 10 

Human and model responses to experimental nonwords (Chapter 5) 

Table 10A 

Human and model responses to Irregular-Single (IS) and Irregular-Many (IM) nonwords  

    Human participants Computational models 

item type TypeFreq TokenFreq first n second n third n DRC CDP++ Psim1 WSP-type WSP-token WSP-type-T 

BEALM IS 1 3.53 bilm 24 bElm 18 bIlm 8 bilm bElm bilm bElm bElm bElm 

BLEIZE IS 1 3.77 bliz 29 bl1z 11 bl2z 9 bl1z bl1z bl1z bliz bliz bliz 

BRALF IM 3 5.55 br{lf 46 brQlf 4 br#f 3 br{lf br#lf br$f br#f br#f br#f 

BREIRD IS 1 4.75 br7d 34 br8d 7 brid 5 br1rd br8d br1rd br7d br7d br7d 

CHOUNG IS 1 5.51 JQN 17 J6N 12 JuN 12 J6N J6N_ k6N JVN JVN J6N 

CRORST IS 1 4.92 kr$st 43 krQst 6 kr$s 2 kr$st kr$st kr$st kr3st kr3st kr$st 

DONTH IS 1 5.08 dQnT 52 dQ 1 dVnT 1 dQnT dVnT dVnT dVnT dVnT dVnT 

DWOUTE IS 1 4.6 dwut 29 dw6t 16 dw5t 2 dw6t dwut dw6t dwut dwut dw6t 

FLALD IM 2 3.72 fl{ld 40 fl$d 4 flQld 3 fl{ld fl{ld fl{d fl{ld fl{ld fl$ld 

FLALT IM 5 4.69 fl{lt 36 flQlt 5 fl6t 3 fl{lt fl$lt fl$t fl{lt fl{lt fl{lt 

FLOUSSE IS 1 3.76 flus 33 fl6s 14 flus1 3 fl6si fl6s fl6s flus flus flus 

FOUSSE IS 1 3.76 fus 39 f6s 8 fu 2 f6si f6s f6s fus fus fus 

FRALM IM 5 4.72 fr{lm 35 fr#m 14 f{lm 1 fr{lm fr#m fr{m fr#m fr#m fr#m 

FREART IS 1 5.3 fr#t 19 fr3t 13 fr7t 13 fr7t fr7t frirt fr#t fr#t fr7t 

GEALTH IM 3 5.14 gElT 22 gIlT 21 gilT 7 _ilT gElT gElT _ElT _ElT _ilT 

GHASK IM 6 4.66 g{sk 35 g#sk 18 g{Sk 1 g{sk g#sk g{sk g#sk g#sk g{sk 

GHEALT IS 1 4.3 gElt 24 gIlt 17 gilt 7 gilt gElt gElt gElt gElt gilt 

GHIGN IM 10 4.98 g2n 17 gIn 12 gIN 4 gIn g2n In g2n g2n gIn 



 

 

Table 10A continued 

    Human participants Computational models 

item type TypeFreq TokenFreq first n second n third n DRC CDP++ Psim1 WSP-type WSP-token WSP-type-T 

GLALK IM 5 5.52 gl{lk 33 gl$k 5 glQlk 4 gl{lk gl{k gl{k gl$k gl$k gl$k 

GLEART IS 1 5.3 gl3t 22 gl7t 15 gl#t 9 gl7t gl7t gl$t gl#t gl#t gl7t 

GLIGH IM 4 5.53 gl2 24 glIk 7 gli 5 gl2 gl2 gl2 gl2 gl2 gl2 

GLILST IS 1 4.63 glIlst 39 gIlst 4 glIst 4 glIlst glIlst glIlst gl2lst gl2lst glIlst 

GNOLK IM 2 4.24 nQlk 32 gnQlk 13 n$k 4 nQlk n5lk n5 n5k n5k nQlk 

HAUGE IS 1 3.69 h$_ 18 h1g 6 h6_ 6 h$_ h$_ h$ h1_ h1_ h1_ 

JEALT IS 1 4.3 _Elt 27 _Ilt 17 _ilt 10 _ilt _Elt _ilt _Elt _Elt _ilt 

KEALTH IM 3 5.14 kElT 22 kilT 16 kIlT 16 kilT kilT kilT kElT kElT kElT 

KYME IM 2 4 k2m 53 kim 1  -  - k2m k2m k2m k2m k2m k2m 

LORST IS 1 4.92 l$st 53 l3s 1 l3st 1 l$st l$st l$st l$st l$st l$st 

MEARN IM 3 5.01 m3n 38 m7n 14 min 2 m7n m3n mirn m3n m3n m3n 

MEIRD IS 1 4.75 m7d 49 m3d 2 m2@d 1 m1rd m7d mird m7d m7d m7d 

NALM IM 5 4.72 n{lm 34 n#m 16 nQlm 2 n{lm n#m nQm n#m n#m n#m 

NALT IM 5 4.69 n{lt 30 nQlt 14 n$t 3 n{lt n$lt n{lt n{lt n$lt n{lt 

NORLD IS 1 5.88 n$ld 45 n$d 8 n3ld 1 n$ld n$ld n$ld n$ld n$ld n$ld 

PHEALM IS 1 3.53 fElm 30 fIlm 11 film 10 film fElm ilm fElm fElm fim 

PHONGE IS 1 4.12 fQn_ 37 fQN 7 fVn_ 4 fQn_ f5n_ f$n_ fVn_ fVn_ fQn_ 

PHOUP IM 6 5.19 fup 46 f6p 4 f5p 1 f6p f6p up fup fup f6p 

PLALF IM 3 5.55 pl{lf 39 f{lf 3 pl{f 3 pl{lf pl#f pl{f pl#f pl#f pl#f 

PLIGN IM 10 4.98 pl2n 40 plIN 5 plIn 4 plIn pl2n pl2n pl2n pl2n plIn 

PSASK IM 6 4.66 s{sk 30 ps{sk 5 ps{k 4 s{sk p#sk sp{sk s#sk s#sk s{sk 

PSORLD IS 1 5.88 s$ld 20 ps$ld 15 s$l 4 s$ld p$ld sp$ld s$ld s3ld s$ld 

RHALD IM 2 3.72 r{ld 39 rQld 9 r$d 2 r{ld r{ld hr{d r$ld r$ld r{ld 



 

 

Table 10A continued 

    Human participants Computational models 

item type TypeFreq TokenFreq first n second n third n DRC CDP++ Psim1 WSP-type WSP-token WSP-type-T 

RHOLK IM 2 4.24 rQlk 45 r4k 2 r5k 2 rQlk r5lk r5k r5k r5k rQlk 

SHOUNG IS 1 5.51 SQN 18 S6N 13 SuN 13 S6N SVN SV SVN SVN SVN 

SMACHT IS 1 3.77 sm{kt 22 sm{J 12 sm{Jt 4 sm{Jt sm{tt sm{J smQt smQt smQt 

SMIQUE IM 11 4.66 smik 32 sm2k 8 smIk 7 smIk sm2k sm2 smik smik smIk 

SMYME IM 2 4 sm2m 44 sm2mi 2 smim 2 sm2m sm2m sm2m sm2m sm2m sm2m 

SNAST IM 14 5.97 sn{st 48 sn#st 4 n{st 2 sn{st sn#st sn{st sn{st sn{st sn{st 

SNAUGE IS 1 3.69 sn6_ 19 sn$_ 9 sn$g 8 sn$_ sn$_ sn1_ sn1_ sn1_ sn1_ 

STONTH IS 1 5.08 stQnT 55  -  -  -  - stQnT stVnT stVnT stVnT stVnT stVnT 

TILST IS 1 4.63 tIlst 53 tIst 1 zIls 1 tIlst tIlst tIlst t2lst t2lst t2lst 

TWEARN IM 3 5.01 tw3n 47 tw7n 5 tw@n 1 tw7n tw3n tw3n tw3n tw3n tw7n 

TWEIZE IS 1 3.77 twiz 42 tw2z 5 tw1z 3 tw1z tw1z tw2z twiz twiz twiz 

VOUP IM 6 5.19 vup 49 v6p 3 fup 1 v6p v6p vup vup vup v6p 

VOUTE IS 1 4.6 vut 38 v6t 10 fut 1 v6t v6t v6t vut vut v6t 

WONGE IS 1 4.12 wQn_ 32 wQN 18 w5n_ 1 wQn_ wQn wVn_ wVn_ wVn_ wQn_ 

YAST IM 14 5.97 j{st 47 j#st 8  -  - j{st j#st j{st j{st j{st j{st 

YIQUE IM 11 4.66 jik 40 jIk 8 j2k 2 jIk jik j2 jik jik jIk 

ZACHT IS 1 3.77 z{kt 26 z{J 7 zQt 7 z{Jt z{tt QJ zQt zQt z{t 

ZALK IM 5 5.52 z{lk 40 z$k 7 zQlk 6 z{lk z$kk z$lk z$k z$k z$k 

ZIGH IM 4 5.53 z2 32 zIg 12 zi 4 z2 z2 2 z2 z2 zI 

 

 

 



 

 

Table 10B 

Model output not produced by any participant 

Item DRC CDP++ Psim1 WSP-type WSP-token WSP-type-T 

BREIRD br1rd   br1rd       

CHOUNG  J6N_ k6N    

CRORST       kr3st kr3st   

FREART   frirt    

FLALD           fl$ld 

FLALT  fl$lt     

FLOUSSE fl6si           

FOUSSE f6si      

GEALTH _ilT         _ilT 

GHIGN   In    

GLEART     gl$t       

GLILST    gl2lst gl2lst  
GNOLK   n5lk n5 n5k n5k   

MEARN   mirn    

MEIRD m1rd   mird       

NALM   nQm    

NALT   n$lt     n$lt   

PHONGE   f$n_    

PHOUP     up       

PSASK   sp{sk    

PSORLD   p$ld sp$ld   s3ld   

RHALD   hr{d    

RHOLK   r5lk         

SHOUNG   SV    

SMACHT   sm{tt         

SMIQUE   sm2    

STONTH   stVnT stVnT stVnT stVnT stVnT 

TILST    t2lst t2lst t2lst 

YIQUE     j2       

ZACHT  z{tt QJ   z{t 

ZALK   z$kk z$lk       

ZIGH   2   zI 
 

 

 

 

 



 

 

Appendix 11 

Key Stimuli in Experiments 1 and 2 (Chapter 6) 

 

 

Table 11A 

List of Error and Odd Items in the Rating Task 

Spelling Pronunciation Type 

COSE fr{kt Error 
DWAL jEsts Error 

FRACT prib Error 
GWI mElS Error 

MELSH rVpT Error 
PREBE t$S Error 
RUPTH zElms Error 
TORSH vIpT Error 
YESTS gw2 Error 
ZELMS k5z Error 

CHAIPSE J$ps Odd 
DWEK dwuk Odd 
FLOICE fl#s Odd 
FROAP fr1p Odd 

GLOOST glEst Odd 
GOMPT g6mpt Odd 
LONCH l1nJ Odd 

NOATHE niT Odd 
STOPSE stIps Odd 

ZURVE ziv Odd 
 

 

 

 

 

 

 

 

 

 

 



 

 

Table 11B 

List of C and G-initial Items in the Rating Task 

Item Type 
Hard 

pronunciation 
Soft 

pronunciation 

CELTH C-critical kElT sElT 
CEPTH C-critical kEpT sEpT 
CERSH C-critical k3S s3S 
CILSH C-critical kIlS sIlS 
CILTH C-critical kIlT sIlT 
CIRSH C-critical k3S s3S 
CALSH C-control k{lS s{lS 
CALTH C-control k{lT s{lT 

CORSH C-control k$S s$S 
CUPTH C-control kVpT sVpT 
GELSH G-critical gElS _ElS 
GELTH G-critical gElT _ElT 

GERD G-critical g3d _3d 
GILSH G-critical gIlS _IlS 
GIPTH G-critical gIpT _IpT 
GIRSH G-critical g3S _3S 
GALSH G-control g{lS _{lS 
GALTH G-control g{lT _{lT 
GORD G-control g$d _$d 
GULTH G-control gVlT _VlT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 11C 

List of nonwords named by the Unrelated-Rating group 

Naming task items 

ANG CLOUNT FLOKE HENCH NITHE SCRALK SPRILT TUNCH 
ANK CRAX FOOF HESE NUM SCRINTH SQUEER TUNG 
BACHE CRICHE FOOK HEST PAULT SHELSE SQUOINT TURGE 
BAITH CRITCH FOW HIBE PAYST SHESE STAFT TWEARN 
BEAP CROAST FRALL HINTH PENTH SHIG STASK TWOLL 
BEM CUKE FRAUSE HOUGH PITE SHILL STAUSE URE 
BERGE DANGE FREC HURST PLALSE SHINK STENE VACK 
BIME DECHE FRULK INE PLARF SHIVE STIEGE VIGN 
BISE DEIGH FUSH JEICH PLEN SHONG STINE VOSE 

BIVE DIFF GEALTH JILL PLIGN SHOULE STUICE VOUP 
BLANCE DOAL GENVE JOCK POUGHT SHRAS STULL WAIR 
BLILL DOAN GEPTH JOFF POURT SHRERE SUILE WAWL 
BLOOT DOM GERR KOH POVE SIVE SUNT WEATHE 
BLOUCH DOSH GERSH KUP POWN SKECHE SURP WEICH 
BLUISE DOUCH GHETE KYME PRAUGH SLEECH TAM WHAGUE 
BOIST DREAT GHIGN LAIT PREL SLELL TARF WHAISE 
BOT DRICHE GIDGE LALTZ PRUMP SLUE TAY WHETCH 
BOUCHE DRICK GIEXT LART PSOOSH SLYS TEEP WHYRE 
BRAME DRUIT GINVE LIDE PUISE SMINK THAIPSE WIB 
BRETE DRUMF GLAPE LILTH QUIME SMYS THEAT WOAT 

BROAR DULSE GLEEZE LIMPSE QUOP SNAITCH THECHE WOCK 
BRULPT DWAWSE GLIGH MANK QUOUGH SNEAR THOG WOLK 
CEAT EATH GLUNT MECK RALL SNEIR TIX WOOT 
CELSH EST GNOMB MEEP RART SOAST TIZZ WOTCH 
CENVE FAMP GNOOSH MELL RHAWSE SPAIL TOWSE WRAWSE 

CHACH FANT GNUSE MERSE RHOISE SPELP TREAN WRICHE 
CHALM FIDE GOAK MUNG RIR SPINT TRELT YAST 
CIKE FIFF GRACH NACH ROFT SPLAKE TROME YAUGHT 
CINVE FLALD GROE NALK ROO SPLALM TROUNT YIGHT 
CIPTH FLALSE GRUZZ NALT ROWSE SPLIE TRURE YIQUE 
CLALF FLEATHE GUITT NASTE SCEACH SPONCH TUISE ZAUSE 
CLIB FLEG GWALF NAWN SCOP SPOW TUIT  
CLIX FLO HEAN NIRST SCRAFT SPOWN TUMPH  

 

 

 

 

 

 



 

 

Appendix 12 

Results of the Experiment 1 Rating Data Analyses (Chapter 6) 

 

 

Table 12A 

Results of Repeated measures ANOVAs investigating the effects of Onset, Condition and 

Pronunciation on mean ratings for the C and G-initial items in each participant group 

Effect df F p-value ηp
2 

Rating-Only group (n = 68) 

Onset 1, 67 37.59 < .001 0.36 

Cond 1, 67 102.64 < .001 0.61 

Pron 1, 67 229.08 < .001 0.77 

Onset x Cond 1, 67 3.10 0.08 0.04 

Onset x Pron 1, 67 31.83 < .001 0.32 

Cond x Pron 1, 67 242.87 < .001 0.78 

Onset x Cond x Pron 1, 67 76.42 < .001 0.53 

Naming-Rating group (n = 69) 

Onset 1, 68 5.52 0.02 0.08 

Cond 1, 68 88.49 < .001 0.57 

Pron 1, 68 196.34 < .001 0.74 

Onset x Cond 1, 68 3.01 0.09 0.04 

Onset x Pron 1, 68 46.95 < .001 0.41 

Cond x Pron 1, 68 165.22 < .001 0.71 

Onset x Cond x Pron 1, 68 87.14 < .001 0.56 
 

 

 

 

 

 

 

 

 



 

 

Table 12B 

Results of Repeated measures ANOVA investigating the effects of Condition and 

Pronunciation on mean ratings for the C and G-initial items at each level of Onset 

 

Onset Effect df F p-value ηp
2 

Rating-Only group (n = 68) 

C Cond 1, 67 73.6 < .001 0.52 

C Pron 1, 67 97.6 < .001 0.59 

C Cond x Pron 1, 67 208 < .001 0.76 

G Cond 1, 67 48.4 < .001 0.42 

G Pron 1, 67 244 < .001 0.78 

G Cond x Pron 1, 67 37.4 < .001 0.36 

Naming-Rating group (n = 69) 

C Cond 1, 68 42.7 < .001 0.39 

C Pron 1, 68 49.7 < .001 0.42 

C Cond x Pron 1, 68 152 < .001 0.69 

G Cond 1, 68 54.1 < .001 0.44 

G Pron 1, 68 265 < .001 0.80 

G Cond x Pron 1, 68 40.1 < .001 0.37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix 13 

Results of the Experiment 2 Rating Data Analyses (Chapter 6) 

 

Table 13A 

Results of Repeated measures ANOVAs investigating the effects of Onset, Condition and 

Pronunciation on mean ratings for the C and G-initial items in each participant group 

Effect df F p-value ηp
2 

Unrelated-Rating group (n = 62) 

Onset 1,61 26.13 < .001 0.30 

Cond 1,61 128.72 < .001 0.68 

Pron 1,61 228.36 < .001 0.79 

Onset x Cond 1,61 2.51 0.12 0.04 

Onset x Pron 1,61 12.81 < .001 0.17 

Cond x Pron 1,61 162.73 < .001 0.73 

Onset x Cond x Pron 1,61 72.11 < .001 0.54 

Naming-Rating-type group (n = 55) 

Onset 1,54 2.91 0.09 0.05 

Cond 1,54 64.11 < .001 0.54 

Pron 1,54 203.26 < .001 0.79 

Onset x Cond 1,54 2.38 0.13 0.04 

Onset x Pron 1,54 26.06 < .001 0.33 

Cond x Pron 1,54 89.22 < .001 0.62 

Onset x Cond x Pron 1,54 43.56 < .001 0.45 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 13B 

Results of Repeated measures ANOVA investigating the effects of Condition and 

Pronunciation on mean ratings for the C and G-initial items at each level of Onset in each 

group 

Onset Effect df F p-value ηp
2 

Unrelated-Rating group (n = 62) 

C Cond 1,61 76.70 < .001 0.56 

C Pron 1,61 85.60 < .001 0.58 

C Cond x Pron 1,61 142.00 < .001 0.70 

G Cond 1,61 77.40 < .001 0.56 

G Pron 1,61 159.00 < .001 0.72 

G Cond x Pron 1,61 37.40 < .001 0.38 

Naming-Rating-type group (n = 55) 

C Cond 1,54 46.60 < .001 0.46 

C Pron 1,54 69.80 < .001 0.56 

C Cond x Pron 1,54 92.00 < .001 0.63 

G Cond 1,54 35.20 < .001 0.40 

G Pron 1,54 256.00 < .001 0.83 

G Cond x Pron 1,54 17.70 < .001 0.25 
 

 

 

 


