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Abstract

In recent years city governments have become more vocal and pro-active when it

comes to climate policy, with cities such as London having policy in place to reach

net zero emissions. In order to achieve these ambitions, cities need reliable methods

to understand their emissions. In this thesis I present a novel method for estimating

London’s emissions, using a purpose-built measurement network and a new custom

designed Bayesian modelling system. This modelling system allows for instruments

that are calibrated only once before measurements begin, and then drift during a

campaign. This allows for a lower cost network that requires less equipment and

maintenance, so that a network can be setup more easily across the world. I apply this

method to the first 6 months of data collected from the network, January-June 2021,

and suggests that London’s methane emissions are 47± 27% higher than previously

reported in the national inventory.
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Foreword

Welcome to my thesis, I hope that it is a pleasant read for you. I am writing here

for two different primary audiences: to my assessors, to convince them that I have

made a novel scientific contribution to the field worthy of a doctorate; and to future

generations of students who I hope find reading this as helpful a place to start as I

did with my predecessors’ theses.

For the sake of clarity, I must first discuss a point of grammar. To avoid the use

of passive voice, which is both unpleasant to read and misleading (the research was

neither performed by this thesis, an animate object, nor did it spontaneously come

in to being) I will be using pronouns that acknowledge the existence of people. To

keep it clear about the work I performed, the pronoun "I" will refer to me personally

and the activities I performed, the pronoun "you" refers to you, the reader, and the

pronoun "we" refers to me, you and the wider scientific community.

An important point to note when reading this thesis, is that all of this work

was performed as a contribution to a larger project, the London GreenHouse Gas

(LGHG) network. This work took contributions from researchers of several different

institutes to combine expertise to deliver a complete project. My role in this group

was to provide modelling expertise throughout, and as such this is the area of the

project I will be writing about in this thesis. Subjects such as instrumentation are

mentioned to the point of providing required context for this thesis and the modelling

requirements, and to detail any modelling contributions I provided for deployment or

analysis purposes. Choices such as the use of a particular instrument, or the focus on

London are outside of my remit, but I will mention reasons for these decisions where

applicable to help keep you informed. More details are provided in the chapter on

this.

Additionally, as a thesis, this text focuses on science and not the underlying

technology and software development that took up the majority of my work hours

during the PhD. In my opinion, this is an outdated flaw in the PhD process, given

how fundamental code development is to modern science and the quality of code can

be just as important as the statistical methods used on the output. My contribution

in those regards lives on largely as internal documents and group knowledge, but I

do include a few technical details within this thesis where they informed my choice
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of method for the science involved. If you wish to access the code involved in this

project, please contact the Atmospheric Chemistry Research Group.
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1 Introduction

In this first chapter I will define the context - both in terms of the scientific theory

to build upon and the sociopolitical justification - of this thesis. I will discuss why

this field of research exists, the importance of its impact on society, the methods

I will use in an abstract form and concrete examples from the existing literature.

With this I will describe the current state of the field, and point out the gaps in the

literature that still need to be filled. By the end of the chapter we will both have

great excitement for how this field of science is rapidly advancing, at which point I

will lay out the rest of my thesis to you, my contribution to the field.

1.1 The ‘Climate Emergency’

Anthropogenic greenhouse gas (GHG) emissions have increased at a rapid rate since

the industrial revolution. The commercialisation of steam power introduced the large-

scale burning of coal and the world has been largely reliant on burning fossil fuels

ever since. The greenhouse effect of gases such as carbon dioxide have been known

for over a century [1], but it is only in recent decades that a clear global temperature

increase has been caused by the accumulated GHGs [2].

In recent years we as a society have begun to prioritise climate change. The

release of the Intergovernmental Panel on Climate Change’s (IPCC) special report

on 1.5 degrees of warming [2] released at the end of 2018 gained widespread media

coverage alerting the public on the dangers of a warming world. By no means the

first climate report written, it did make large waves and appeared to herald a turning

point in popular opinion. This report was written as part of the 2015 Paris Climate

Agreement, in which the parties to the United Nations Framework Convention on

Climate Change (UNFCCC) agreed to limit global temperature increases to 2◦C

at most, and 1.5◦C if possible. The special report highlighted the urgent response

required to minimise the negative impacts of climate change by analysing the increased

risk of harm to the environment and society from the addition 0.5 ◦C warming. In

response, several climate movements and activists such as Greta Thunburg, Friday’s

for Future and Extinction Rebellion, have grown to become household names through

public demonstrations and their interactions with government.
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Governments and other organisations are responding to the latest scientific reports

and public opinions, with ‘climate emergency’s being declared for instance by London

[3], Bristol and the University of Bristol. Some of these declarations are being backed

up with emission reduction plans, such as the London 1.5 degree plan [4] and the

UK’s national target to become ‘net-zero’, increased from the previous goal of an 80%

reduction. Organisations such as C40, a global network of city Mayors from across the

world, have been formed with the express intent on giving guidance on how emission

reductions can be achieved, and to begin holding those in power to account on their

policy promises.

The COVID-19 pandemic changed the way many people lived practically overnight

at the start of 2020, due to efforts aimed at preventing the spread of the virus. Many

countries underwent ’lockdowns’, periods of weeks at a time where many everyday

activities were restricted. This had the effect of greatly reducing the amount of

vehicle and air miles travelled during these periods, which were expected to result in

lower GHG emissions than in previous years. While the restrictions applied were not

optimised to reduce GHG emissions, it did provoke much discussion on actions that

could be taken to reduce emissions and ways to ’build back greener’. Even during an

event as tragic and all-encompassing as a deadly global pandemic, climate change is

still seen as a key issue as society becomes more aware of the dangers it poses, and

the efforts required to minimise harm.

1.2 Emission Monitoring

The UNFCCC came into force in 1994 with the aim of stabilising greenhouse gas

emissions to prevent dangerous impacts on the environment. Annex I parties (industri-

alised countries who were disproportionately responsible for greenhouse gas emissions

and able to act on reducing them) are required to submit annual greenhouse gas

inventories which reported emissions from 1990 until the current reporting year. Such

reports give great insight in to where the emissions are coming from, and thus where

action must be applied to reduce emissions. The reports also provide a transparency

to the process to help ensure that actions are successful and to prevent conflicts of

trust between the parties.
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GHG inventories are produced using the ’bottom-up’ method, based on the simple

idea

total emissions =
∑

activity · emissions factor, (1)

where activity is a measure of the frequency of emissions from a particular type of

event (such as the number of miles driven by petrol cars in a year) and the emissions

factor is the amount of greenhouse gas produced for each event (such as the mass of

carbon dioxide emitted by driving a mile in a petrol car).

At the most basic level, large-scale assumptions and averages are used to estimate

both the activity and the emissions factors, with more advanced methods involving

direct measurements such as placing flux sensors in the exhaust of a power plant,

or detailed modelling with auxiliary data to account for geospatial heterogeneity.

The majority of the annual reports to the UNFCCC from Annex I parties involves

meticulously documenting the methods used to calculate the activity and emissions

factor for each category. This is a requirement to ensure the reports are transparent

and trustworthy, with the best methods to use varying greatly between different

source sectors and the technology available to each country.

In order to help countries produce the highest quality inventories they are capable

of, the IPCC provides guidelines on producing GHG inventories. The guidelines detail

methods for all the required categories at various levels of bureaucratic and technical

difficulties, allowing countries to pick the most appropriate methods for their own

situation [5]. This reduces the research and development burden on individual states

by providing tried and tested methods, and helps facilitate interstate comparison

by provided a limited pool of methods. Alongside these methods for producing the

inventories in the first place, there are sections dedicated to quality control and

assurance. In the 2019 update of the guidelines, greater emphasis was placed on the

use of verification via independent data and methodology to improve the reliability

and ensure accuracy of reported emissions, and in particular the use of ’top-down’

methods. This comes as a result of the increased maturity of the techniques since the

initial publication of the guidelines.

Top-down methods function differently to bottom-up methods, making them

useful for verification purposes. Top-down methods use direct measurements of GHGs

in the atmosphere as opposed to the indirect economic measurements relied upon by

11



many of the bottom-up methods (if it were possible to simply measure the emissions

of everything directly at source there would be no need for top-down estimates). The

report includes several top-down methods, but focuses on inverse modelling, named

as it is based upon solving the inverse of the equation

y = Hx+ ε, (2)

where y is a vector of atmospheric observations, x is a vector of GHG emissions (often

spatially separated), H is matrix that represents a physical model of atmospheric

transport that can relate emissions over the area of interest to the atmospheric

concentration at a measurement location and ε is a measure of uncertainties in the

model and measurements. Details of this equation, and how it solved will be given in

a later chapter, for now it will suffice to focus on the larger ideas behind the method.

Inverse models can be applied at scales from global to local, using the same basic

principles of combining a physical model with atmospheric observations. Currently,

these methods are largely in the domain of researchers and not commercial applica-

tion, requiring trained experts and specialist equipment to be deployed in bespoke

configurations to use successfully. Nonetheless, three countries already use inverse

modelling as an additional part of the verification stage of their annual inventories

- the UK, Switzerland and Australia. Of the three, the UK has the most advanced

setup, with a national network of instruments, the UK Deriving Emissions linked to

Climate Change Network (UK DECC Network), being used to measure number of

different greenhouse gases including carbon dioxide, methane, N2O, SF6 and a variety

of halocarbons [6].

The UK DECC network, like many observation networks for inverse modelling,

measures the total concentration of each greenhouse gas and is only able to distinguish

between sources if they are strongly separated in space or time, including whether

the source is natural or anthropogenic. This means that gases without a natural

component, or with a natural component that is assumed negligible compared to

anthropogenic within the area of interest, are the best candidates for inverse modelling.

Gases with large natural components, such as carbon dioxide, are not verified with

inverse modelling in the UK’s annual inventory although current research is working

towards a method to allow for this with the current network [7]. Networks with further

specialist instruments that allow for isotopes or co-emitted gases to be measured and
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are being trialled in other places [8]. Different sources of greenhouse gases can carry

different isotope signatures or different ratios of co-emitted gasses that can be used

as information to help determine the source of the emissions. For example, the levels

of ethane can be used to help determine whether methane is from a fossil fuel source.

These instruments promise more information that will be able to separate sources

but will not be available for the work presented in this thesis. Because of this, and

that additional modelling techniques are required, these types of measurements are

outside of the scope of this work and will only be mentioned in passing.

A consequence of inversion models being source-agnostic, is that they do not

provide the same detailed breakdown of sectoral emissions that bottom-up methods

provide. This sectoral and source breakdown is very important to creating targeted

policies to control emissions, meaning that for policy makers, top-down estimates

are best used in combination with the bottom up methods and not as a stand alone

product. If the two methods give results that are in agreement, it gives greater

confidence to the bottom-up emissions to be used to derive policy, and when the

methods are in disagreement (and the top-down method has been interrogated for

possible errors) this suggests that their may be incorrect assumptions in the bottom-

up model. An example of this partnership between the methods being successful is

the case of the UK’s HFC-134a emissions inventory, where the bottom-up model was

reevaluated after top-down methods inferred very different levels of emissions [9].

1.3 Inverse Modelling of GHG Emissions

An inverse model can be broadly broken down into three components: an observation

system that can record atmospheric concentrations of the gas of interest at specified

times and locations, an atmospheric transport model that can realistically relate

greenhouse gas emissions to atmospheric concentrations, and a mathematical method

that solves for the inverse - which results in inferred emissions.

1.3.1 Atmospheric Observations

A number of different techniques can be used to measure atmospheric concentrations

of trace gases, which come with their own advantages and disadvantages. The best

13



type of instrument will depend on the scientific aims of the project, as well as practical

constraints such as cost and availability.

For gases such as carbon dioxide and methane(the two gases that will be measured

by the London network, and therefore the two that this section will discuss), Cavity

Ring Down Spectrometry (CRDS) is a powerful technique that is widely used, such

as in the UK DECC network [6]. CRDS instruments use the optical properties of

lasers to rapidly measure gas concentrations. The technique measures the intensity

decay of laser light in a highly reflecting optical cavity, and how it is affected by the

presence of the target gas (which will absorb some of the light, increasing the decay

rate). If the absorption rate of the gas at the laser wavelength is known, the ratio of

decay rates allows the concentration of the gas to be measured. All of this process is

handled by the measurement device. These instruments can achieve high precision as

the decay rate is unaffected by variations in intensity between laser pulses, and the

ability to build a compact cavity, that can allow the laser to have a path length of

several kilometers within a briefcase sized enclosure. A related technique is the Optical

Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) [10], which uses a

modified setup from the CRDS which is often simpler, and this is used in some newer

trace-gas measuring instruments, such as LiCOR instruments. For inverse modelling

purposes, the two techniques function much the same, and the London network will

make use of both. As minimal pre-processing of the gas is required, the measurements

are also near instantaneous, with measurement times on the order of seconds common

in commercial instruments. This allows for high-frequency, continuous measurements

that can be installed in limited physical space.

In order to further improve accuracy, it is common to install high-precision CRDS

instruments with access to gas cylinders filled with pre-defined blends of air and

trace-gases to apply automatic and regular calibration. This automatic process can be

done on a daily schedule, which reduces the problem of ’drift’ within an instrument.

Drift is systematic error in the measurement that changes randomly over time, as

changes in temperature and pressure, or nearby vibrations cause slight misalignment

in the hardware. While high end instruments are built to minimise the amount

of drift present, it is an inherent property of such high-precision multi-component

instruments.
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For other gases without distinctive absorption peaks at accessible wavelengths,

more complicated instruments that are able to separate out traces gases from air are

needed, such as gas chromatography. Different gases require different separation and

measurement techniques, which result in different precision and measurement times.

Some of the specific techniques are discussed elsewhere [6], but are out of the scope

of this work.

Remote sensing of trace gases is possible with Fourier-Transform Infrared spectrom-

etry (FTIR). FTIR is another light based measurement system, but uses broadband

light (such as daylight) rather than lasers. It uses an inteferometer and Fourier trans-

forms to obtain a spectrum rather than a multipass laser cavity. Instead of placing

an air sample into the path of a laser, FTIR trace gas measurement systems are

passive, measuring solar radiation that has passed through the atmosphere to measure

trace gas concentrations throughout an entire column (or alternatively a slanted path

[11]) of the atmosphere. Such system’s are implemented both as ground stations

such as TCCON (Total Carbon Column Observing Network) [12] and COCCON

(COllaborative Carbon Column Observing Network) [13], and aboard satellites such

as GOSAT [14]. FTIR instruments, especially those aboard satellites, are often less

precise than CRDS instruments and sensitive to more of the atmosphere, measuring

a different view of the atmosphere. These instruments are often used in global inverse

modelling, with satellites also used for regional studies for areas that do not have

dedicated networks of their own [15]. The main problem with these instruments is

they are limited to times where there is enough sunlight available - during cloudless

daytime. In the UK, especially during the winter, this is a severe limit on the amount

of data that can be collected.

1.3.2 Transport Models

Atmospheric transport models range from simplified Gaussian plume models, to full

fluid dynamic approaches, and both Lagrangian [15] and Eulerian [16] models have

been used for inverse modelling. Lagrangian models approach atmospheric transport

by looking at individual parcels of air that are advected and diffused through the

atmosphere while Eulerian models place the atmosphere on a grid and model what

happens within each grid cell.
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Lagrangian models are very efficient when modelling transport for a small number

of observation sites, as the air parcels can be started at the location of the measurement

and the model run backwards in time in order to determine where the air parcels

originated. In this way, it can be guaranteed that no computational resources are

wasted on calculating parts of the atmosphere that are not measured by the observation

system. Lagrangian models require a description of the atmosphere to inform the

transport of the air parcels, such as the output of a numerical weather prediction

(NWP) model. Lagrangian models are not inherently limited in resolution as they do

not rely on a grid-based system, but the accuracy of the transport will be limited by

the resolution of the underlying meteorology. The accuracy of a lagrangian model

will also depend on assumptions used to calculate processes such as diffusion within

the atmosphere.

Eulerian models are, in general, computationally expensive to run as they perform

a full fluid dynamics simulation, although they do not require a NWP model to have

been previously run to provide atmospheric conditions, but may use either NWP

output or measurements as boundary or initial conditions. Eulerian models are useful

for modelling a large number of observation sites, as the model’s computational cost

scales with the resolution of the model and is indifferent to the number of observation

sites as the entire field is resolved. With enough sites, a Lagrangian model’s cost will

out-scale the initial cost of the Eulerian model. It is also possible to run a cheaper

variation which uses the grid system but with pre-computed NWP data and solve

only for chemical composition.

Other considerations for transport models include the desired resolution (does

the model include features unique to urban environments?) and compatibility with

existing data and models (if appropriate NWP output is already available). These

models often require a high level of expertise to run, so technical knowledge can also

limit the models practically available for a particular study. Ultimately, to be useful

in inverse modelling, the transport model must be able to produce the matrix H

accurately, which maps GHG emissions to atmospheric concentrations.
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1.3.3 Inverse methods

A number of different methods exist for solving inverse problems in general, with

several being commonly in use for GHG modelling using different assumptions and

approximations. The problem of estimating greenhouse gas emissions from atmospheric

observations is particularly suited to Bayesian techniques, which are able to combine

information from multiple sources to obtain an answer that is more accurate than

the sum of its parts. Here, I will briefly cover an overview of the inverse methods,

with a more in-depth and specific discussion in a later chapter.

Figure 1: A 1D example of a Bayesian model, showing the prior, model-observation

and posterior distributions. The posterior has the lowest uncertainty, given by the

standard deviation.

A Bayesian model is based upon Baye’s Theorem, which is most relevant to this

work stated as

P (x|y) =
P (x)P (y|x)

P (y)
, (3)

where x represents the model inputs and y represents model outputs. P (x|y) is the

posterior distribution, P (x) is the prior, P (y|x) is the likelihood function and P (y) is

a normalisation term. In GHG emissions, the likelihood functions contain information

about the model and measurements, and the prior information is generally taken
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from existing GHG inventories. For a 1D Gaussian problem, it can be rewritten as

P (x|y) ∝ exp

(
−(x− xa)2

2σ2a

)
exp

(
−(y − f(x))2

2σ2m

)
, (4)

where xa and σa are the mean and standard deviation of the prior distribution, σm

is the standard deviation characterising the model-measurement uncertainty and

normalisation terms have been dropped for conceptual clarity.

Figure 1 demonstrates the concept and usefulness of a Bayesian approach using a

1D Gaussian example. By choosing parameters to represent a prior and likelihood (or

Model-Measurement) distribution, the posterior is calculated using 4. The calculated

posterior is also Gaussian, but with a smaller width than either the prior or likelihood

functions. In this case, the posterior is strongly informed by measurements and is

similar to the likelihood function. Further details of the mathematics of Bayesian

modelling can be found in textbooks, including the standard text [17].

In general, the distributions may take non-Gaussian forms and the problem

may be many-dimensional. Gaussian distributions may give nonphysical results if

negative fluxes are not an acceptable solution, and inversion modelling is often used

to spatially and temporally resolve fluxes where each flux component provides an

additional dimension to the problem. For these problems, numerical methods are

required to sample the posterior distribution. The Metropolis-Hastings algorithm for

Markov Chain Monte Carlo sampling [18] is a well established method for sampling

arbitrary, high dimensional distributions, however it can be inefficient due to the

underlying random nature of the sampling. More modern methods, such as the

No-U-Turn sampler extension to Hamiltonian Monte Carlo sampling [19], are much

more efficient in their sampling by using gradient information from the distribution

to better traverse the probability space but can become stuck if the distribution is

not smooth enough. Further details of the relevant methods will be discussed in the

chapter on inverse modelling, for now it is sufficient to say that well-tested algorithms

exist to solve the equations needed for the work in this thesis.

1.4 Global Emissions

At a global scale methane emissions are complex, with around 60% of emissions

being anthropogenic and the rest natural, mostly from wetlands around the globe
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[20]. Methane is the second most important greenhouse gas on a global scale, having

contributed to about 20% of warming since the start of the industrial age [21]. While

it is known that the main sink of methane is with hydroxyl radicals, the exact ratio

of sources and sinks is unknown, and one of the great mysteries of global methane is

that concentration of methane levelled off for several years in the early 2000s before

continuing to rise. Many studies have looked into this, and proposed a number of

different solutions such as differing levels of fossil fuel and biogenic emissions [21] or

a decline in hydroxyl radicals [22].

However, some of these complexities can be ignored for moving towards city

scale emissions. As a city is not a closed system, unlike the Earth as a whole, and

atmospheric transport across a city can be measured in hours and days, the hydroxyl

radical sink, which gives methane a lifetime on the order of one decade, is unimportant.

For city studies, such as this thesis, methane can be treated as nonreactive, with no

decay in concentration caused by a sink. If a city is not built atop wetlands, then

there may be little natural emissions to consider. Water within a city is likely to be

counted as an anthropogenic source, as it will be contaminated by human activity

such as farm runoff, industry pollution or waste treatment. This means, for many

cities, natural emissions are negligble, which makes it easier to estimate anthropogenic

emissions. On the other hand, better constraints of anthropogenic emissions at the

city level can help contribute to a better understanding of anthropogenic emissions

at a global scale and help to solve the mystery of varying rate of increase in global

methane concentration.

1.5 City Emissions

Urban areas are disproportionately responsible for greenhouse gas emissions. A

commonly cited figure is that "urban areas are responsible for 70% of emissions",

however, this figure taken from the IEA 2008 report is only in regards to energy-related

carbon dioxideemissions. These emissions are a large part of total urban greenhouse

gas emissions, but they are not the complete picture. A study by Marcotullio et al [23]

takes a wider look at global urban emissions, analysing key GHGs (carbon dioxide,

N2O, methaneand SF6) by continent for data available for the year 2000. This study

finds that urban emissions account for between 37% and 49% of emissions, depending
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upon the method used. The lower figure includes only emissions from within the

geographic urban extent, while the higher also includes energy used within the city

but produced outside of it. This estimate does not include sectors such as aviation

and shipping, which could be also attributed to the city of origin or destination.

Studies like the above highlight some of the difficulties of emissions accounting,

with the central question being: which emissions count as being produced by a given

city? While this is a key debate for urban policy makers, the final answer of which

will have large consequences for accountability, reporting and policy goals, for us

this is a simple question. A top-down emissions monitoring network only cares about

emissions from within the geographic area of the city, as that is what the network

measures.

Of course, there are some difficulties that arise relating to this. As we wish to use

existing inventories as a prior value, and to be able to comment on the accuracy of

the emissions, we care about which emissions are used to derive the emissions map.

This will vary from inventory to inventory, and must be taken into account when

choosing which inventories to use for inverse modelling.

For London, there are three official GHG inventories that can be analysed for urban

emissions. The UK government commissions the National Atmospheric Emissions

Inventory (NAEI), which is a 1km x 1km resolution gridded inventory used towards

national reporting for UNFCCC and covers many gases, including carbon dioxide

and methane. This is updated every year, 2 years in arrears and is publicly available

from https://naei.beis.gov.uk/. The Greater London Authority produces the London

Atmospheric Emissions Inventory (LAEI) is focused on air quality, although it includes

carbon dioxideand methanefor some years, and is released every few years. The area

covered by this inventory is the area bounded by the M25 and the 32 boroughs.

Both of these inventories provide maps based upon emission source locations, for a

complete range of source sectors. The local government also produces the London

Energy and Greenhouse Gas Inventory (LEGGI), which is focused on GHG emissions

produced primarily through London’s energy usage. It reports a single carbon dioxide

equivalent emissions value composed of carbon dioxide, methane and N2O emissions,

and includes emissions from both direct emissions and indirect emissions related to
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Figure 2: Comparison of emissions (tonnes/year) in two inventories, NAEI 2017 and

LAEI 2013, over London for (top) carbon dioxide and (bottom) methane.

London energy usage. LEGGI summarises emissions by borough but does not provide

a gridded map of emissions.

I will focus on the two gridded emissions inventories as they are both more

complete in the number of sectors being measured, and are more relevant with regards

to inverse modelling due to their geographic sources. At the time of writing, the latest

NAEI emissions are for 2017, and the latest LAEI inventory to grid both carbon

dioxide and methane is 2013. Both grids are 1km x 1km resolution, and to compare

London emissions between the two, I will define London as the set of grid cells that

overlap with the London boundary polygon downloaded from OpenStreetMap, which

includes only the boroughs and city of London.

Figure 2 shows NAEI and LAEI emissions for carbon dioxide and methane over

London. Total carbon dioxide emissions with the London region are 21.1x106 tonnes

for NAEI and 22.7x106 tonnes for LAEI. Total methane emissions are 46.7x105 tonnes

and 24.4x105 tonnes respectively. From both the total emissions and from visually
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inspecting the maps it can be seen there is good agreement between the inventories

for carbon dioxide but poor agreement for methane.

One last point to discuss with respect to these inventories is uncertainty. A NAEI

factsheet (https://naei.beis.gov.uk/resources/Sector_Summary_Factsheet.html) says

that the uncertainty on total emissions across the UK is 15%. However a report

on the methods used to produce the maps [24], does not provide any numerical

measurement of uncertainty, highlighting the complexity of the case. As the spatial

mapping processing uses further approximations and techniques which introduce their

own uncertainties, and also based on the map differences between NAEI and LAEI, it

should be assumed that the spatial and London-scale uncertainties in the emissions

map are significantly higher than 15%.

1.6 City-scale Observations

1.6.1 Overview

A growing number of cities have been targeted for urban-scale emissions studies,

including London. Table 1 summarises a number of of these studies, which are

discussed in further detail below. Measurement systems are classified as a Surface

Network if (semi-)permanent stationary measurements are used, Satellite for any

GHG satellite remote sensing, or Vehicular if aircraft, ships or other mobile transport

system is used to host measurement devices. In general, Surface Networks allow for

high-precision, long-term studies that can identify changing emissions over the period

of years but require sustained maintenance. Vehicular systems allow for snapshots to

be taken, with a lot of bespoke configuration possible to target areas of interest but

do not give sustained measurements. Satellite sensing has the lowest cost barriers

to entry from the user perspective (considering the common case that a user is not

launching their own hardware and is using data from a satellite such as TROPOMI

(TROPOspheric Monitoring Instrument)), but is also often the least sensitive way to

measure GHGs.

Modelling for each city is classified as Inversion for any system that uses an

inverse model to estimate emissions, Mass Balance if mass balance equations are

used (i.e. accounting for the entire mass of greenhouse gas entering and leaving the
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Table 1: Example Urban Emission Studies

City/Region Gasses Measurements Modelling

London CO2, CH4 Surface Network [25],

Vehicular [26, 27]

Inversion [25], Mass Bal-

ance [26, 28]

Los Angeles† CO2, CH4 Surface Network [29],

satellite [30, 31]

Inversion [31], plume

mapping [30, 29]

Oakland CO2 Surface Network [32] Multiple Linear Regres-

sion [32]

Paris CO2 Surface Network [33] Inversion [33]

Salt Lake City CO2, CH4 Surface Network [34],

Vehicular [35]

Inversion [34], plume

mapping [35]

Boston CO2, CH4 Surface Network [8, 36] Inversion [8, 36]

Mumbai CO2 Satellite [30] Plume mapping [30]

Berlin CO2 Satellite (OSSE) [37] Inversion (OSSE) [37]

Indianapolis CO2, CH4 Surface Network [38, 39],

Vehicular [40]

Mass balance [40], Inver-

sion [38, 39]

Yangtze River

Delta

CO2 Surface Network [41] Inversion [41]

Cape Town CO2 Surface Network [42] Inversion [42]

Rotterdam CO2, CO Surface Network [43] Mass-balance [43]

North East

Corridor

CO2 Surface Network [44, 16] Inversion [44, 16]

Rome CO2 Vehicular [45] Mass Balance [45]

Jakarta CO2, CH4 Surface Network [46] not yet available

†IncludingSouthCoastAirBasin(SoCAB)

city’s airshed), or Plume Mapping for measurement of atmospheric concentration

enhancement at or down-wind of a site of interest without estimating fluxes.

Within the literature surveyed, a surface network combined with an inversion

model was the most common setup for monitoring carbon dioxide and methane

emissions using atmospheric observations. Within these categories there exists a lot of

variation, with different network designs and models used for each city. Most studies
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also focus on carbon dioxide, with much fewer looking at methane. Inversion studies

can attempt to attribute emissions to different sectors using tracers, gases which are

co-emitted in a known ratio for a subset of sources, such as the co-emission of CO

and carbon dioxide in combustion. This method is very limited, only found to be

used for measuring gas leakage in Boston using ethane co-measurements [8].

Both the largest and the smallest of the surface networks did not use inversion

modelling. The smallest network consisted of two towers around Rotterdam [43], and

emissions were calculated using a mass balance approach. Their success was limited

by the fact the two towers did not align with the urban region directly between the

two, and suggest a stationary tower combined with a mobile measurement device

would allow for this to be corrected under different wind conditions. The largest

network was located in Oakland, consisting of approximately 50 ’opportunistically’

sited sensors [32]. This network is analysed with Multiple Linear Regression in order

to examine local emissions that are usually filtered out in inverse modelling, taking

advantage of the uniquely high density of measurements available to them, and being

closer in execution to a low cost air quality network than most other GHG systems.

Salt Lake City [34], Paris [33], Boston [36], Indianapolis [38] and the North East

Corridor [16] all display similarities in the methods used. These cities and urban

regions have networks consisting of several measurement sites within and surrounding

the urban region. Sites within the city limits are highly sensitive to the urban emissions

being monitored, and sites upwind of the city centre are used to estimate background

concentrations of the greenhouse gas. This is to be taken as the emerging standard

system in place for city-scale GHG observation systems, and are most similar to

the LGHG system. However, even within this category, there is a large variation in

number and location of measurements, and the modelling systems used to combine

measurements into an emissions estimate.

Observing System Simulation Experiments (OSSEs) are also used to calculate the

usefulness of future satellite missions or network configurations. They have been used

to study future satellite missions and their usefulness for the urban scale, where it

was found that next generation satellites could provide useful constraints on emissions

[37]. Another study has used experiments to calculate the ideal ratio of number

of sensors against sensor precision for a given cost [47], which concludes there are
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optimal trade-offs between sensor accuracy and quantity. OSSEs are also used to

test which of a number of potential sites would be beneficial, with the aim to design

a network of ideally placed instruments [44]. The search for site locations was also

combined with consideration of using more, but lower performance instruments which

may drift more. The work explores different synthetic data inversion setups and the

effect of linear drift on results, but does not include drift correction in their inversion.

The use of satellites are less common, but becoming more common as the next

generation of satellites are coming online with increased resolution. For instance

GOSAT (Greenhouse gases Observing SATellite) could make spot readings of about

10km [30] while OCO-2 (Orbiting Carbon Observatory-2) has a dense swathe of

approximately 1.25 km by 2.2 km [48]. One study used the older GOSAT satellite in a

plume mapping study that estimated carbon dioxide enhancement over Los Angeles

and Mumbai and found that GOSAT would be able to observe a 22% change in

Los Angeles’s emissions [30]. Orbiting Carbon Observatory-2 (OCO-2) was combined

with TCCON sites to perform a flux inversion across the SoCAB, which contains Los

Angeles. The results were reported with an uncertainty of 25%, mostly coming from

their 12 km scale transport model, which is likely too low resolution to capture urban

scale transport. OCO-2 has always been used in a broader study, which looked at

20 cities across the world picked for high population densities, low levels of biogenic

influence and high satellite coverage [49]. In this study, cities are treated as singular

units without spatially devolved emissions to reduce uncertainty in total emission

calculations and the focus is on a broad comparison of global cities.

Within the vehicular category, airborne measurements used in a mass balance

model are the most common. This technique has been used in London [26], Indianapolis

[40], Rome [45] and New York [50]. With this approach, an aircraft is fitted with a

continuous concentration measurement device and flown around the city of focus,

sometimes with multiple transects at the key locations upwind and downwind of the

city. This is combined with meteorological data characterising the wind and planetary

boundary layer height to calculate the mass of air passing within the volume of flight

and calculate the emissions required to give the observed concentration gradient. The

nature of mass balance equations assume simpler air flow than a full atmospheric

model and so can result in higher uncertainty of emissions estimates. Due to the
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logistics of these flights, data is often very limited and can provide only snapshots of

information, which would increase uncertainty of any annual estimates if emissions

vary over time, as there is no way of knowing whether the observations are typical.

The New York study demonstrated that inverse modelling could be used with aircraft

flights to improve results, but from 9 flights over 2 years, the authors find a variability

of emissions of 31% between flights, demonstrating the downside of having such sparse

data. Aircraft flights are also able to give measurements of the ’dome’ of enhanced

greenhouse gas concentration above a city [26], which cannot be achieved by common

ground-based instruments.

In Salt Lake City, an electric Light Rail system has been fitted with continuous

measurement instruments which provide plume mapping along the railway lines,

showing emissions from local industrial sources [35]. These instruments can also be

fitted to cars, and have been used to map plumes from local sources within urban

areas such as waste treatment facilities [51]. The techniques of local source mapping

has recently been extended to use drones to get a more complete spatial profile and

perform mass balance equations [52].

Shipborne measurements have been used for emissions monitoring focusing on the

country scale, but have been used to estimate emissions from the South of England that

correspond to London [53]. This study found agreement with an airborne campaign,

but with much larger uncertainties due to less geographical constraint.

1.6.2 Relation to Air Quality Networks

While observation networks designed for air quality have some similarities to GHG

networks, there are several fundamental differences. An example of a low-cost, many

sensor air quality network is Breathe London (https://www.breathelondon.org/),

which provides real time measurements of NO2 and PM2.5, with more gases to become

available later. Like the LGHG project, the network is composed of a number of

instruments scattered throughout the city that make continuous measurements of air.

Air quality networks are generally focused on human health, measuring gases

that are hazardous to people, and are interested in exposure concentrations and not

emissions as is important for long lived greenhouse gases. For these reasons, air quality

networks often have sensors that are close to the ground and focus on areas that
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are highly contaminated by local sources where people may spend time, for example

by the road in urban canyons. Each sensor measurement is seen as a snapshot of

the air quality in that particular location and time, and does not necessarily say

anything about the rest of the city, which is opposed to the use of footprints for GHG

modelling.

1.6.3 Hyper-local Observations

As well as city wide measurements, there are also measurements that are local to

neighbourhoods or roads within the city. Several studies have utilised instruments

mounted on intra-city transport, such as trains [35],cars [51, 54, 55] and bikes.

Such measurements give access to the spatial concentration of greenhouse gases in

the surveyed area. Using a regular running train provides repeatable and frequent

measurements at no extra cost, giving access to temporal information about sources

in the region. Personal vehicles on the other hand, require a researcher to actively map

out the routes. This means that surveys are often limited in time, but the researchers

can target objects of interest and are not limited to existing routes. This leads to

these measurements serving different purposes - the former can provide continuous

data that is similar, but distinct to other permanent installations, while the latter is

useful for spot-checking emissions and providing information about specific sources.

This can give us information about sources that are out of sight for other instruments,

or for sources that inverse systems have flagged as having large discrepancies from

inventory records.

1.6.4 The Emerging Standard

As interest in the field of urban emissions monitoring increases, the number of research

teams and different techniques applied increases. As the ultimate goal of this field is

to produce emission estimates that are policy-relevant for city government, similar

standards and assurances to the national IPCC monitoring will eventually need

to be adopted. Without these standards, it will be difficult to compare the results

of different cities and networks, and officials may be hesitant to trust and use the

results. At the time of writing, organisations such as (Integrated Global Greenhouse
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Information System) IG3IS and national metrology institutes are in the early phases

of putting together such guides as the science matures.

Although the field is still changing quite rapidly and methods are still being

improved by each new network installed, there are already trends appearing in the

types of network being built. This de facto emerging standard of urban monitoring

network uses from 5 to 15 tall tower analogue sites, equipped with high precision

CRDS instruments, coupled to an atmospheric transport model and an inverse

Bayesian model. The details and methods vary between networks, with many networks

publishing papers to explain the site setup and to demonstrate their chosen models

alongside initial results. I will discuss some of these papers here to highlight similarities

and differences, but these papers primarily are written after the fact and focus just

on the final science, and omit many of the very real practical concerns (logistical and

financial) in creating these networks.

Los Angeles

Los Angeles is the test bed for the NASA JPL "Megacities Carbon Project",

which aims to develop robust city-scale emission monitoring systems. The contextual

framework and the plan for this project is laid out in an article by Duren and Miller

[56]. This initial report from 2012 had hoped for surface networks in 25-30 megacities

by 2020, and while a number of cities have started surface networks, such an uptake

has not yet happened. However, the project is producing useful results from its initial

cities, and is inspiration for more cities to join in, including the London network

discussed in this thesis.

The Los Angeles test bed is a large budget, multi-institute collaboration designed

to look at cutting edge technology and build an ideal model of a city network. Network

details and initial results are discussed by [29]. For Los Angeles, the local geography is

of tantamount importance. Los Angeles is a high density urban area bordered on one

side by the Pacific Ocean, and on the other by a sharp mountain ridge. This mountain

is large enough to significantly hinder atmospheric transport, and Los Angeles thus

forms a large proportion of the South Coast Air Basin (SoCAB). Measurements made

within this basin will be affected greater by emissions within the area, and lesser by

emissions outside the basin as compared to flatter terrain. It also means that the local

meteorology is affected, and care must be taken with transport modelling. In terms of
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measuring emissions, this will cause greater signals to be seen by instruments which

may allow for greater accuracy in tracking emissions changes from the city.

The network design was performed using modelled sensitivity analysis [57], and led

to the conclusion that at least 8 sites would be needed to constrain fossil fuel carbon

dioxidesignals. Potential sites were then visited, subject to surveys, and temporary

local measurements made before a permanent site was installed. Lattice-structured

communication towers were used as primary installation targets, falling back to tall

rooftops where needed to cover gaps in the network. This was to reduce the effect (both

physics and vent emissions) of buildings on the measurements. Additional modelling

was performed to assess the affect of building topology on rooftop measurements. In

total 12 instruments (Picarro G2301 and G2401s, two models of CRDS instruments

that both measure carbon dioxide, methane, water vapour with the G2401 also

measuring carbon monoxide) were deployed across the city in the initial phase of the

experiment. Each site also contained instruments to measure a range of meteorological

data, however these are not used in this study but are in preparation for future studies.

Each site contains two gas standards which are sampled every 22 hours, one of which

is used to calibrate the instrument while the other is used in calculating uncertainty

statistics.

The network sees greater spikes in concentrations during the night and early

morning, when the boundary layer is stable (and thus lower) which leads to increased

sensitivity to local emissions and a greater build-up of emissions in the air. The study

results look at urban enhancements seen through the measurements, by comparing

’urban’ signals and ’background’ signals from the network and calculating the difference

between them. Background signals are chosen based on statistical techniques that

look for stable levels of concentrations indicative of either the ocean or continental

background level. No further data, such as meteorological data, is used. Their results

show some success with this simple method of calculating urban enhancements, but

it is not ideal and some discrepancies were unexplained. Overall, they find that

consistent urban enhancements of carbon dioxideand methaneare found, varying by

time of day and location in the city, with a median enhancement of ≈ 20ppm and ≈

150 ppb respectively for central measurements. The largest uncertainties come from

background estimation and calibration, both of which are on the order of 1ppb for
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carbon dioxideand 10 ppb for methane. These uncertainties are low enough to be

able to measure trends in urban enhancement of both gases if emissions decrease.

This surface network has been combined with mountaintop and satellite instru-

ments into an inverse modelling framework for a multi-tiered methane observation

network [11]. The cities geography, with the high mountain range at the edge, allows

for an FTIR instrument to be mounted high above the city, and used to scan reflective

targets installed across the entire basin throughout the day, to retrieve spatially

resolved slanted column methane measurements. The unique arrangement allows

targeted measurements to be made each day, rather than relying on a once-per-day

overhead passage of a satellite or a stationary ground level FTIR instrument.

The inverse model uses STILT, the Stochastic Time-Inverted Lagrangian Transport

model, at a 3km resolution to model transport and emissions across the city basin. This

study used readily available metrology for this 3km scale, opting for this accessible

option over higher resolution custom data.

The work in Los Angeles demonstrates the type of in-depth, high precision

measurements that can be made when a high level of expertise and budget are

available. While this represents the highest quality of what is achievable with cutting

edge science, it would not be possible for such a network to be rolled out to every

large city due to these costs. Lower cost networks are needed to fill in the gaps.

Paris

Paris is the second test city, analysising emissions of carbon dioxide, being

developed as part of the initial phase of the Megacities Carbon Project. The initial

study is discussed in two papers that document a common inversion method and

the first 2 months [33] and first year [58] of data. The data from these studies came

from 5 sites, the tallest being the 300m high Eiffel Tower in the centre of the city,

a 180m tall tower outside of the city limits, and 3 sites between 4 and 9 meters

above ground level within the city. Picarro CRDS instruments are used at some sites

and gas chromatography at others that already existed, as part of ICOS (Integrated

Carbon Observation System). Data is regularly calibrated against the WMO (World

Meteorological Organization) WMO-X2007 scale.

For the atmospheric model, the CHIMERE model is used at a 2km scale across

the city, and 10km for the region that encloses the city. This model is driven by 15km
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ECWMF (European Centre for Medium-Range Weather Forecasts) meterology. The

authors use data from AirParif for an hourly 1km emissions inventory. Data from

ECWMF is used for biogenic fluxes of carbon dioxide. The inversion is performed

using an analytical (Gaussian) Bayesian inversion framework. These models look

only at carbon dioxide, and find that their inversions are very sensitive to diurnal

cycles and spatial distribution in inventories, and that heavy handed data selection

(removing on the order of 90% of the data) is needed for their inverse method to

work, which looks at gradients across the city rather than raw values. These studies

often remove a lot of data due to models working best under specific conditions, but

requiring these to also be met when conditions are right for gradients to be measured

between two sites makes this more difficult still.

Paris has also been used a test city for COCCON, the network of EM27-SUN

FTIR instruments [59]. Five instruments were deployed across Paris to measure

column carbon dioxidefor two weeks in 2015, timed to coincide with long (14 hour)

days and low cloud cover, both key issues limiting the data availability from these

column instruments. The modelling used here is the same as used by the two previous

studies discussed. While the campaign was too short for in-depth analysis, they find

the instruments to be sensitive to regional biogenic fluxes and again suggest the use

of gradients to reduce uncertainties resulting from estimating background levels.

Salt Lake City

Salt Lake City is within the Salt Lake Valley in the USA, and has five older LiCOR

6262 and 7000 infrared spectrometer carbon dioxide monitoring stations, the oldest

of which has been operating for over a decade [60]. This dataset has not been subject

to atmospheric and inverse modelling, but the trends have been analysed based on

concentration levels above background. By looking at trends in the data, the authors

of the study conclude they see signals from a power plant lowering production over

the years, and the expansion of the suburban area. They were also able to compare

these to temporal patterns in high resolution inventories and how the same trends

are not captured in the inventories. While these are some interesting observations to

make, inverse modelling could allow for greater insights still.

Inverse modelling was performed back in 2012 with the first few years of data [34].

This study used the WRF-STILT model at both 4km and 1.3km horizontal resolution
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to encompass the urban region, although the high resolution was only tested for a two

week period. They conclude that their method is precise enough to measure a change

of no less than 15% carbon dioxideover a month from the urban region, and that

column measurements would improve results, although their evidence for this comes

from simulations. A new inversion scheme with a more advanced Bayesian scheme has

been tested using synthetic data at Salt Lake City [61], but this has not yet been used

on real data. This study finds that the inversion performs well during the afternoon

but poorly at other times. The authors argue again for column measurements, stating

that their lower sensitivity to PBLH is the main benefit. However, most column based

measurements rely on the sun, and thus are only available during daylight hours.

A unique point about Salt Lake City, is the recent instalment of continuous

measurements aboard the cities light rail network [35], building up a pictures of

emission concentrations (both methane and carbon dioxide) throughout each day and

train route. As the trains pass regular routes throughout the entire urban region this

is useful for building up a picture of where the largest emissions are, with the study

authors being able to pinpoint large point sources in the city and observe how they

change over time. This system has not yet been used in an inversion network, but is

still able to provide valuable information about urban emissions.

Indianapolis

The Indianopolis Flux Experiment (INFLUX) explores the limits of atmospheric

methods for observing urban GHG emissions, using a high density of measurement

sites across the city, with a high resolution inventory and a 1km data assimilation

modelling system [38]. The core of their atmospheric modelling is based on WRF-

Chem, at a 1km resolution inner grid covering the city, surrounded by 3km and 9km

grids. They use a Lagrangian model as the adjoint for their inverse methods, where

particle locations are recorded every minute over a 12 hour period.

Indianapolis as a city has a small high density core, and up to 50km of lower

density suburban sprawl, across the flat terrain of Indiana, with no other cities within

200km which makes the modelling easier. A geographically separated source is far

easier to model with the confidence that it is not being influenced by other cities

as the model cannot distinguish co-located sources, and nearby sources introduce

uncertainty into the results. The full network comprises 12 towers across the city,
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although in the inversion study published only the 9 towers that were continuously

running during the study period were used. To make the modelling easier again, the

authors choose to use only afternoon times during the non-growing period for carbon

dioxide. Tower sampling heights are between 40 and 136 meters, and calibrated to

having a drift of less than 0.2ppm per year across the sites. Their inversion finds an

increase of around 20% on the high-resolution bottom-up inventory (increase of 1.2 ±

0.23 Mt carbon). Their inversion is most sensitive to how the prior error is specified

in their model (how the uncertainties are defined on a spatial and sectoral level), and

less so to boundary conditions. Their 4D data assimilation shows good skill, but such

a model is computationally expensive and requires large amounts of meteorological

input data.

The Indianopolis inversion system has been recently advanced [39] to include solv-

ing for biogenic fluxes alongside the carbon dioxidefluxes. Inversions were performed

over individual periods of 5 days, across 3 years of data (including growth periods)

collected from the full 12-tower network. This study finds that for fossil fuel emissions,

the inversion and high-resolution inventory agree to 3% annually. The authors do not

comment on difference between their results from this and the previous study, however

in the time between studies it is possible the inventory was improved, or results were

different for different years, or a seasonal bias was introduced, as wintertime fossil

fuel emissions were found to be higher. They do however, find a large discrepancy

between their results and the cities self-reported emissions, with the self-report being

35% lower than the optimised emissions.

Boston

Boston has a small, 4-site network of measurements within the city centre and

on the periphery. These have been used in an inversion system to solve for city-level

emissions of methane [8]. The unique element of this study was that the measurement

sites also measured atmospheric ethane, and used the ethane-to-methane ratio from

the measurements and the natural gas delivered to the city in order to ascertain how

much of the cities methane emissions come from natural gas. The study finds over the

course of 1 year, that Boston emits 18.5 ± 3.7 g of methane per square meter with

a 95% confidence interval. Of this, 60-100% of the emissions are from natural gas.

Using government statistics on national gas usage, this translates to a natural gas loss
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rate of 2.7 ± 0.6 % compared to inventory values of 1.1%. This is significant larger,

and demonstrates a large potential problem with reported emissions of methane in a

country like USA that has high levels of natural gas infrastructure, if this loss rate is

indicative of a broader problem. Such a study shows the potential for measurements

of additional gases to be made, in order to gain access to sectoral emission estimates

that are otherwise not possible.

North East Corridor

The North-East Corridor is a testbed project following on from the LA and

INFLUX networks, built around Washington D.C. and Baltimore in north east USA.

An initial publication of the project was a study that devised a network design

method using synthetic data and modelling to look at the potential for sites to

improve emissions estimates [44]. By modelling proposed sites, and using an iterative

algorithm, the method sought to find a balance between minimising the similarity of

each site’s measurements and gaining maximum surface sensitivity over the region.

The results of the study show that siting towers too close or too far apart leads to sub-

optimal emission estimates of the urban regions. They also find that adding further

towers increases uncertainty reduction, but with diminishing returns. These findings

confirm how such networks are expected to perform. They find that a large number

of low-accuracy sensors can be comparable to a smaller number of high-accuracy

sensors, but with benefits of wider spatial coverage. The study also takes a look into

bias drift in the measurements, but does not attempt to correct for it, and so find

that a large bias results in bias in the outputs as expected.

Four towers from this network are used in a methane inversion looking at seasonal

variability in emissions [62]. This method uses STILT combined with three different

publicly available meteorology sets at 3, 32 and 50km horizontal resolutions. The

prior emissions used come from relatively low resolution (0.1◦) inventories - EDGAR

(Emission Database for Global Atmospheric Research version 4.3.2) [63] and US

Environmental Protection Agency (EPA) [64]. A background site is used to set

background values for their inversion in one method, or to use the lowest measured

value of methane from the four sites in each month as a static monthly background.

The authors note that additional measurements may allow for a more sophisticated

method to be used, as background concentration can have a large effect on emission
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estimates. The inversion is solved using Gaussian methods to calculate emission values

with uncertainties. The study finds that there is a slight decrease in emissions during

summer, coinciding with lower natural gas usage - the expected highest contributor

to methane emissions in the area. However, this study looks at a single year, so may

not be a robust look at seasonality. The authors find that their annual emission rates

agree with those of other studies using aircraft [65] or gas ratio methods [66].

1.6.5 Current Gaps

Most networks focus on high precision, expensive, and automatically calibrated

instruments. While some previous work has begun to consider instrument drift and

the potential problems this brings [44], the drift is only considered in its most basic

form. Further, the work looks only at the loss of performance from adding drift to

an ideal system, and not into methods that are able to extract information better

from drifting networks, treating drift as an insurmountable barrier. In order to lower

the costs of setting up an urban monitoring network, it would be useful to be able to

handle lower-cost, less frequently calibrated instruments, and thus drift needs to be

something that can be handled in a way that doesn’t invalidate the inversion results.

Including drift corrections within the inversion modelling is one of the key targets of

the London network.

As discussed, a variety of different instruments and methods have been used to

look at city scale emissions, but they are often attempted independently. There is an

example of satellite and TCCON sites being combined to give a more complete view

[30], but for the most part satellites are not combined with in-situ measurements,

or ground-based FTIR with ground-based in-situ. As these methods have different

sensitivities to the atmosphere, and therefore nearby and far emissions, combining

them may be able to give a more complete image of emissions, so long as the differences

between measurements are correctly accounted for when comparing measurements.

Part of the work in the London network will look into how useful FTIR measurements

will be alongside in-situ measurements.

Most of the urban scale networks are focused on measuring carbon dioxide, with

a few looking at methaneand only one identified as looking at other co-tracers. This

is understandable, as carbon dioxide is a larger contributor to climate change and
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emissions with cities are incredibly concentrated, methane is still a potent GHG

with high levels of emissions in the city - and a much shorter atmospheric lifetime

which could lead to quicker reductions. LGHG will be strongly focused on methane

emissions. Nitrous oxide emissions are again shorter lived but more potent, and may

have significant urban emissions due to recent trends in their usage as a party drug

[?]. While it is common for CRDS instruments to measure both carbon dioxide and

methane, it usually requires a separate instrument to also measure nitrous oxide,

adding expense and beyond the scope of the LGHG project.

More reliable methods of sectoral attribution are also required to further the use-

fulness of inverse modelling to policy makers. Some studies are able to use geographic

location to attribute emissions to different sectors, but this relies on specific features

within the layout of individual cities and may not be widely replicable. Measuring

co-emitted gases (co-tracers) or measuring isotope ratios alongside concentrations

are other methods that are being developed for this purpose. They have seen very

limited use in urban studies, but there is much work to be done in this area before

they become routine. This is beyond the scope of the LGHG project.

It is also worth noting that the field as a rule limits itself to afternoon data.

While the definition of afternoon can vary between different studies, the primary

goal is to avoid nighttime and the transition to day. This is because it is commonly

accepted that the models will perform poorly during these times, due to the low,

stable boundary layer that forms in the atmosphere. In a smaller boundary layer, the

scale of physics that dominated transport at the surface is at or below the resolution

of most transport models meaning they are less reliable. Atmospheric transport is

also slower than in the well-mixed daytime boundary layer and measurements become

dominated by local (relative to the city-scale, ie within neighbouring buildings for

instance) emissions. These are difficult problems to overcome, and while in this thesis

some nighttime measurements will be looked at for completeness, they are expected to

be poorly modelled and difficult to work with. Improvements in this area is considered

beyond the scope of this project.

36



1.7 The structure of this thesis

Now that we have a common understanding of the context of this field and the

research that led to its creation, it is time to briefly discuss how the research will be

structured and presented from this point forwards. The thesis is divided between an

overview of the London Greenhouse Gas (LGHG) Project, then 3 research chapters

followed by a conclusion to tie together and summarise the chapters. The research

chapters will in turn discuss the skill of current atmospheric models for the new

urban sites, the development of a new inverse modelling framework and some tests on

synthetic data to characterise its performance, and finally what we can learn about

London’s emissions from this modelling coupled with the new measurement network.

The first chapter is modified from a paper I published in 2020, to exclude some of

the context we have laid out already, and to include further details on the method

that were not possible within the publishers word limit.

The work from each chapter, while presented separately, is reliant on the work

of previous chapters. The high resolution footprints from the first chapter are used

to inform the resolution and structure of the inverse methods in the second chapter,

which are then used to solve for emissions in the third chapter. While in truth there

was some iterative nature to the research - some of the stages were developed in

tandem, with prior stages being reworked to fit the needs of later stages as they

progressed - the work is presented as a linear progression for clarity and ease of

understanding. I note this for any readers, particularly PhD researchers, who are

reading this in order to follow a similar path in their own research.

Without any further ado, I will now present to you my ’significant and original

contribution’ to the field of urban greenhouse gas emission monitoring.
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2 The London Greenhouse Gas Project

This short chapter exists to provide context of the larger project within which I

worked for this thesis. It will discuss the aims of the project, my role within it, and

finish with a description of the final established network. It is the aim that providing

this context and knowledge will make the decisions and work of the research chapters

easier to understand.

2.1 Aims of the Project

The LGHG project is a NERC (Natural Environment Research Council) funded

project lead by the University of Cambridge, with Cranfield University and Bristol

University. This project was funded and began before I started, and thus I had no

role in its creation. As a publicly funded project, the initially proposed details of the

project are available online (https://gtr.ukri.org/projects?ref=NE%2FR000921%2F1)

but will be summarised here for clarity, and discussed as to how they relate to the

rest of the thesis.

The project gives two key motivations for its existence:

1. to follow on from the expensive Megacities projects discussed in the first chapter,

but to make them cheaper and simpler with the aim of being practical for cities

in the developing world, and

2. to provide policy relevant information at the city scale.

To this end, there were three primary tasks for the project to complete:

1. design and deploy a network low-cost methane, carbon monoxide and carbon

dioxide sensors,

2. develop a high resolution inverse modelling method to estimate emissions from

these measurements,

3. complete a case study where this model is used on a network of 20 instruments

in London over a 12-month period.

The idea was that this case study could then be presented to policy makers in the

Greater London Authority, which would help inform policy choices towards London’s

goals of lowering its emissions.
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By the time I had begun my work on this project (and as will become evident in

the research chapters to follow) the parameters of these tasks had changed. These

changes focused on the measurement instruments that were be used, and that rather

than 20 low-cost sensors, the project began with two sets of 8 higher cost Licor

instruments, one set each to measure methane and carbon dioxide (one of each to

be installed side by side at each site). While this was a significant change from the

original specifications, the original aims were adhered to and these instruments were

to be installed with minimal extra equipment to maintain simplicity of the network,

and so the modelling would have to account for instrument drift for these devices

still.

During my time on the project the coronavirus pandemic caused further changes.

Due to lockdowns, and the health and safety difficulties of field work during a

pandemic, the installation of instruments was significantly hampered. Instruments

ended up being installed several years later than originally expected, and not enough

sites were secured to host all the available instruments. As a result of this, the final

network (presented later in this chapter) is both far smaller than expected and a full

year of data was not available for me to do the case study work on. It is my hope

that at a later date, the full timeseries of data will be available for my successor to

look at completely using the methods I have created in this work.

2.2 My Role

Within this framework, my role was contained within the second and third points,

to develop the new modelling techniques, and apply them during the case study.

The procurement and deploying of instruments was to be left to my colleagues at

Cambridge and Cranfield, as they were the experts on measurement methods within

the project. The sections of this work I contributed thus inform the structure and

contents of this thesis, where I have two research chapters focusing on modelling

development and analysis work that were completed as the network was planned and

installed, and the final chapter being the work towards using London as a case study,

although it was not the full 12-month study due to the delays of the pandemic.

In this section I will also describe the only work I completed on the subject of

instrument and network design, which was the work to create a short list of potential
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installation sites. I include this work for completeness, and to provide potential

avenues for future researchers who read this work to undertake, but ultimately this

did not account to much as site selection became so heavily constrained by logistical

problems (just finding co-operative building owners).

2.3 Complete Network Description

I will now discuss the network as it came to be implemented. I take care to note that I

had no hand in the final choice of site locations, instruments and the deployment. As

well as the the newly acquired Licors, several Picarro instruments were also included

in the network. One of which, at the Thames Barrier, was installed by Cranfield and

used as a key part of the first research chapter. The other Picarro sites were installed

seperately to this project, but their data was agreed to be shared to strengthen the

network.

2.3.1 Network Design

The initial network design was guided by several principles: the sites should be

evenly spread around the city and should be installed in locations elevated above the

surrounding urban canopy. For the latter condition, a database of building heights,

and average building heights within 250 meters were obtained and given to me. For

London, this database contained over 3 million buildings. The ratio of each building

height to its surrounding buildings average height was calculated, to give the height

ratio. This selection was narrowed by restricting the search to buildings with a height

ratio of greater than 2.5. This is done in order to avoid making measurements within

the roughness sublayer of the atmosphere, which is more difficult to model due to

increase turbulence and small scale air movement [67].

Due to the great number of buildings available, I applied a stricter (albeit arbitrary

with no physics reasoning) height ratio of 4.0, which still results in 1807 buildings

on the short list to choose from. Figure 3 shows a map of these buildings across

London. Ideally, one would target the buildings with the highest ratio for the clearest

measurements. However, for my colleagues, gaining permissions for access to the

various target sites proved to be slow and troublesome, and the greatest barrier

to this process. Out of practical concerns, the instrument team targeted buildings
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on the list for which they had contacts amenable to hosting research instruments,

such as churches and council owned buildings. This practical concern significantly

reduced the number of possible locations. Because of the logistical difficulties, and

the COVID-19 pandemic, instruments weren’t installed until nearly 2 years after the

initial short listing process. The low number of viable instrument locations meant

that no modelling or other advanced technique was applied to the network design at

this stage, as sites were ultimately decided on by which ones could be accessed.

* not used in final inversion

Thames Barrier

Highfield Tower

Woodgreen Farm*

St. Mary's Church
BT Tower*

Egham*

NPL*

London Bou
nda

ry

M
25

Motorway

River Thames

Sites

Existing
New
Ratio 4 - 6.5
Ratio > 6.5

St. Jude's ChurchUniversity of Westminster

Figure 3: A map of London showing new Licor sites, existing sites with a Picarro and

the shortlist of buildings used for LICOR instruments. Due to issues in data quality

or availability for the final time period used, several sites are not used in the final

inversion in this thesis, however, they are expected to be available for further studies.

2.3.2 Installed Instruments

A map of the London network is shown in Figure 3, and a summary of the sites

available is provided in Table 2. The network in total consists of 4 sites with Picarros

installed that are automatically calibrated on a regular basis and 5 sites which have

the LI-CORs and no automatic calibration in place. Several of the Picarro sites
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Table 2:
Site Code Instrument Start Date Height

(magl)

Daily

Calibration

Thames Barrier TMB Picarro G2401 2018-05-04 10 Yes

NPL NPL Picarro G2401 2020-05-01 17 Yes

University of

Westminster

LWMH LI-COR 2020-06-30 40 No

St. Jude’s Church LSTJ LI-COR 2020-08-14 20 No

Woodgreen Farm LWGF LI-COR 2020-12-05 6 No

St. Mary’s church LSTM LI-COR 2020-12-08 36 No

Highfield Tower LHFT LI-COR 2020-12-10 45 No

(Egham, NPL and BT Tower) are installed and maintained by the the teams at Royal

Holloway, NPL and Imperial College London respectively. Due to issues with the

timeliness of data sharing, the Egham and BT Tower sites will not be used for the

initial work presented here, but will be available for a full analysis at a later date.

The Thames Barrier and all LI-COR sites are installed and maintained by the LGHG

instrument team led by Rod Jones and Neil Harris, and located to be evenly spread

around London, as far as possible given the practical constraints we faced. It is clear

from the map that there is a gap in the network for south London, which may be

patched at a later date with further instruments. However, as the dominant wind

direction is south-easterly this gap should still be somewhat covered by the rest of

the instruments on a regular basis.

2.4 Conclusion

In this short chapter I have presented the context of this thesis, the LGHG project,

and explored its goals and how they changed as I came to start this work. I have

explained how they link to the work I have performed, and how that relates to what

is included in this thesis. It is my hope, that by including this section here, you will

have context for the research I present in the first two research chapters, and how

they come together for the case study presented in the final research chapter.
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3 Atmospheric Modelling at the Urban Scale

This section contains work previously published [68], alongside new material which

provides further context as well as greater methodological details appropriate to a

thesis chapter. As lead author of the paper, I designed, performed and wrote the

analysis presented, with co-authors providing the measurement data, feedback and

suggestions on drafts. ADMS-URBAN model runs and details were provided by

Cambridge Environmental Research Consultants (CERC).

3.1 Introduction

NAME has been used to model national scale networks, such as the UK DECC network

[69, 70] but has not before been used for this type of greenhouse gas inversions in the

urban environment. The UKV meteorology produced from the MetOffice’s Unified

Model, runs at a horizontal resolution of 1.5km over the UK, which is able to

capture the general flow of air through a large city such as London. However, urban

environments suffer from local effects due to the complication of topology associated

with large buildings, streets and other structures [67]. An urban dispersion scheme

is under development at the Met Office, but is still in the initial stages and has not

been tested to work in backwards runs as required for inverse modelling1. For these

reasons, it is worth spending some time answering whether NAME can successfully

model the atmospheric transport for the city-scale network in London. This is tested

by analysing the model-data discrepancies for the initial site at the Thames Barrier,

and comparing with a specialist urban scale model, ADMS-URBAN.

In this chapter, I will present analysis of modelling the first few months of data

available from a continuous surface measurement site in central London. The modelled

and measured time series will be compared using both the NAME model with high

resolution output, as well as the ADMS-URBAN model, along with brief descriptions

of each model highlighting the differences in this work. These details and the results

presented constitute the previously published work. The chapter then ends with

supplementary work, commenting on the model parameters used for the NAME runs

as well as setting up NAME model runs for a new type of instrument, the EM27-SUN,

which measures vertical column-integrated methane abundance.
1personal correspondence
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3.2 Methods

An initial instrument has been established an initial measurement site at the Thames

Barrier in central London (51.497◦N, 0.037◦E). This site measures carbon dioxide

and methane using a Picarro G2401 cavity ringdown spectrometer which performs a

measurement every 5 seconds with a single measurement precision of approximately 50

parts per billion (ppb) for carbon dioxide and 1ppb for methane, well below the level

of hourly variation in measurements that the modelling uses. These measurements

are provided in mole fractions, which is the number of moles of the gas of interest

relative to the number of moles of air. This instrument is similar to those installed

throughout the national-scale UK Deriving Emissions linked to Climate Change (UK

DECC) network [6]. In this article we will examine the initial period of data collected

from 5 May 2018 to 31 July 2018.

In this work I geographically combine two bottom-up inventories to use as an

emissions map, such that NAEI is used where present (over the UK) and Emissions

Database for Global Atmospheric Research (EDGAR) used in surrounding countries to

ensure coverage across the entire domain. The NAEI is a gridded inventory produced

by the UK government, and provides a resolution of 1km x 1km which can resolve

London, while EDGAR is produced by the European Commission Joint Research

Centre at 0.1◦ x 0.1◦ (approximately 10km x 10km in the UK). The latest versions

of the both inventories available at the time of writing are used, which are 2016 for

the NAEI and 2012 for EDGAR. Both inventories provide annual mean estimates

and include no seasonal or diurnal time variations, or spatial uncertainty estimates.

Within London, NAEI methane emissions are predominantly due to waste and water

treatment, and leakages in the domestic gas distribution system. Emissions from

the gas network are roughly distributed by population in the inventory, while waste

emissions are centred on multiple emission hotspots across the city, as shown in Figure

4. These hotspots may provide a challenge for atmospheric modelling, as they are of

a size similar to, or smaller than, the model resolution.

Two models are required to infer GHG emissions from atmospheric concentrations:

a physical model and a statistical model. The physical model is usually an atmospheric

or chemical transport model that estimates the atmospheric concentration at a given

location and time using emission data and meteorological input. The statistical model
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Figure 4: Methane Emissions from NAEI 2016 dataset across London for the two

largest sectors, a) waste treatment and disposal, b) natural gas distribution – labelled

‘offshore’ in the inventory, and c) the total methane emissions on the model grid.

Outlines show UK coast and London boundaries.

compares the modelled and observed concentrations and calculates the emissions field

that enables the model to best replicate observations, subject to various constraints

[71]. In this work, we focus on analysing the performance of the physical model in an

urban environment.

The first of the two physical models used in this work is the Met Office Lagrangian

particle dispersion model NAME [72]. Atmospheric transport is simulated in NAME

as the advection and diffusion of thousands of particles, which are tracked backwards

in time from the measurement location, recording where they pass near (within 100

meters of) the surface – the assumed source of emissions [69] (Figure 5). The model

provides estimates of observation sensitivities known as ‘footprints’, which are 2D

fields that map how much the different regions in the emissions field contribute to the

observed atmospheric concentration of the gas for each measurement. The model also

estimates where and when particles leave the domain, so that boundary conditions

can be accounted for. Mole fractions at the measurement site can be estimated as

the product of each footprint and the emissions field, plus any contribution from

the mole fraction at the boundary of the domain. The domain and boundaries used

in this work are shown in Figure 6. The boundary conditions are taken from the

Copernicus Atmosphere Monitoring Service global methane products, which use
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Figure 5: Schematic depiction of a Lagrangian particle dispersion model, such as

NAME. Each sphere represents a modelled particle, which is released from the

measurement location and transported backwards in time through advection and

diffusion, and its passage near the surface is recorded to estimate where the air may

have picked up methane emitted from the surface.

Figure 6: Domain and boundaries for NAME, height not to scale.

satellite measurements and models to produce global four-dimensional methane fields

[73], adjusted to better match background measurements at Mace Head, Ireland.

The NAME model was run offline using Met Office Unified Model meteorology. I

use the high resolution (1.5 km) UKV meteorological data where available and the

approximately 12km resolution Global dataset elsewhere. While the UKV meteorology

is high enough resolution to resolve urban scale phenomena such as the urban

heat island, NAME itself does not explicitly account for urban turbulent transport.

Footprints and emissions are combined in a multiple-resolution grid shown in Figure

4c, with a high-resolution (0.032◦ x 0.021◦, 2.5km) grid covering London and its

surroundings embedded in a low-resolution (0.352◦ x 0.234◦, 25km) grid used for

previous national modelling [74].
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The second physical model used is ADMS-URBAN produced by CERC, [75, 76].

This model is designed specifically to model urban environments at a very high

(street level) resolution, taking account of complex features such as the effect of

buildings. ADMS-URBAN differs from NAME in several key ways: ADMS-URBAN

can explicitly represent large numbers of individual sources including point sources

(with specified heights) and road sources but is limited in domain, the concentration

downstream of each source is represented by an analytic distribution which for point

sources is Gaussian in neutral and stable conditions and skewed Gaussian in unstable

conditions, but has other more complex forms for road sources. The concentration

distribution is stationary in time for each successive hour and may use single-site

or gridded meteorology to calculate the footprint. Here, we drive ADMS-URBAN

with meteorological measurements from Heathrow Airport. These measurements are

internally modified according to the difference in roughness lengths from the urban

landscape at Heathrow and the Thames Barrier, resulting in a lower windspeed. This

is the same setup that has been successfully used for modelling air quality in London

[76]. The boundary layer height is calculated internally as opposed to NAME, which

uses the value diagnosed in the Unified Model. In this study the domain for ADMS-

URBAN is the same as used by the LAEI, which encompasses all London boroughs

and everything within the M25. As ADMS-URBAN does not estimate the influence of

fluxes outside London, or regional boundary conditions, the ADMS-URBAN footprint

requires additional information, so that the total methane concentration can be

simulated. In this study, we embedded ADMS-URBAN footprints within the larger-

scale NAME footprints. The ADMS-URBAN footprints are coarsened to match the

NAME high-resolution grid ( 2.5km) and thus loses some spatial information, as

the grid cartographic projections are otherwise incompatible. The geographic extent

of London used throughout the paper is taken from the OpenStreetMap London

administration polygon, rasterised onto the NAME high-resolution grid.

3.3 Results

Examples of NAME and ADMS-Urban footprints are shown for two different meteo-

rological conditions in Figure 7. The top row shows footprints under steady westerly

winds on 10 May 2018 1500 UTC, whereas the bottom row shows footprints on 24
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May 2018 1500 UTC under more complex conditions with fronts passing over London

(Figure 8). Under the steady westerly winds, both footprints are qualitatively similar,

with observations at the Thames Barrier being influenced by fluxes from western and

central London, although the ADMS-URBAN footprint is four times more sensitive

to emissions when both models are integrated over London. Under the more complex

meteorological scenario, the NAME footprints indicate sensitivity to a wider area of

London with nearly twice the total London sensitivity as ADMS-URBAN, presumably

reflecting the range of wind directions experienced by the model particles, whereas

the quasi-Gaussian plume model shows sensitivity to a narrower region upwind of

the measurement site. On average, ADMS-URBAN is about twice as sensitive to

London fluxes as NAME, with a mean (5th-95th percentile) total London sensitivity

of 0.97 (0.24-2.96) (mol m−2 s−1)−1 compared to 0.43 (0.09-1.39) (mol m−2 s−1)−1

for NAME. These differences are likely due to a combination of different boundary

layer and dispersion calculations, and input meteorology used by the two models.

Figure 9a shows the hourly median and 33rd-66th and 5th-95th percentile ranges

of methane observations at the Thames Barrier between 5 May 2018 and 31 July

2018 inclusive. Observed mole fractions are generally higher and more variable at

night than during the day, and the lowest values observed are typically observed

during the daytime. This difference is thought to be largely due to diurnal changes in

atmospheric stability, with stable nocturnal boundary layers trapping locally emitted

methane in contrast to strong mixing of nearby sources during the day [77].

Figure 9b shows the mean observed mole fractions as a function of wind direction

and wind speed which highlights that highest observed concentrations occur at low

windspeeds and/or from a north-easterly direction. There are several possibilities for

why north-easterly winds are associated with higher methane concentrations. The

first reason is that these winds are likely to be carrying emissions from mainland

Europe, with the Benelux region being particularly high in emissions according to

the EDGAR inventory. In contrast, when winds come from the west, they arrive in

the UK or Ireland with mole fractions consistent with the hemispheric background. A

contribution from local sources is also possible, with several large methane emission

hotspots within several kilometres of the Thames Barrier, according to the NAEI.

For example, emissions from the Beckton Sewage Treatment Works approximately 4
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Figure 7: NAME and ADMS-URBAN footprints over London for (a,b) calm weather

on 10 May 2018 1500 UTC and (c,d) a passing front on 24 May 2018 1500 UTC .ADMS-

URBAN agrees qualitatively with NAME using gridded meteorological input in most

weather conditions over London but differences are found in the overall magnitude of

the footprint and during complex meteorological conditions (e.g. passage of fronts).

Figure 8: Met Office analysis charts for 24 May 12:00 and 25 May 00:00, showing the

passage of fronts through London. Reproduced from the Met Office Daily Weather

Summary 2018, Met Office Crown Copyright.
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Figure 9: a,c,e) Methane hourly median (black line) and 33rd-66th (orange area) and

5th-95th (blue area) percentile range mole fractions and b,d,f) rose plot (angular: wind

direction, radial: wind speed in ms−1) for the Thames Barrier (51.497◦N, 0.037◦E

) for (top) observations, (middle) NAME and (bottom) ADMS-URBAN between 5

May 2018 and 31 July 2018. Extreme values in a) are not shown to allow a clearer

comparison to model values.
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km away may be consistent with the maximum in the mole fraction rose at around

50◦. Mole fractions associated with this wind direction tend to be highly variable,

suggesting a nearby plume impinging on the measurement site, rather than a more

well-mixed regional source. Data from the addition sites planned around London

could help distinguish between these two cases by providing different viewpoints on

local emissions.

By combining the footprints for NAME or ADMS-URBAN (embedded within

NAME) with the NAEI and EDGAR emissions fields, we can produce a modelled

timeseries that can be compared to the Thames Barrier data. An example for a typical

two-week period is shown in Figure 10. The modelled mole fractions are attributed

to three different factors: fluxes from within London, fluxes outside London and

contribution from the boundary conditions at the edge of our NAME domain. The

two models only differ in their modelled London contribution as the ADMS-URBAN

footprints are embedded into the NAME-derived regional footprints and boundary

conditions. The full period mean and 5th-95th percentiles of the mole fraction due

to sources within London for NAME and ADMS are 34.2 (4.37-121) ppb and 55.9

(9.30-173) ppb respectively, compared to 45.2 (9.67-113) ppb from regional sources

and 1921 (1910-1937) ppb from the boundary conditions. The modelled concentrations

generally capture the observed diurnal cycle, although the magnitude of the night-

time peaks can differ from the observed data by around a factor of two or more,

with modelled concentrations lower, suggesting the models overestimate atmospheric

transport during the night as there is no expectation of greatly increased nighttime

emissions.

Figure 9c-f show the hourly medians and wind dependence for the observed,

NAME and ADMS-URBAN modelled mole fractions. From the hourly medians, the

night-time underestimation seen in Figure 10 is more evident. Both models show an

increase in mean mole fractions at low wind speeds, but at a much lower magnitude

than in the observations. This finding could be because nearby sources (within a few

km) are larger than estimated in the inventory, or it could show that the models tend

to over-estimate mixing during low-wind conditions, with both possibilities suggesting

the high observations are not primarily due to the Benelux region. The hotspot to

the north-east is also not captured in the models, which may indicate that a source
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Figure 10: Timeseries comparison of modelled and observed fluxes for both NAME and

ADMS-URBAN embedded in NAME. The different colours represent the contribution

from different geographical regions, with the Background and Non-London Fluxes

being the same between the two models. The purple segments show where the two

London contributions overlap.
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Figure 11: The top row shows the hourly mean mole fractions (contributions from

London, regional sources and boundary conditions) for NAME (left) and ADMS

(right). The bottom row shows the London contribution only, by subtracting the

modelled non-London component from both the data and the model.

in this direction is not present or underestimated in the inventory, or it could show

that model transport is generally too dispersive for this wind sector. A result like this

highlights a point of interest that could be further explored with mobile instruments

that can map out local emissions clearly, as this seems to be a long-running effect

rather than a one-off event.

Figure 11 shows the modelled mole fractions plotted against the observations for

the two dispersion models, for total concentrations and the London contribution only.

For this analysis, the data were filtered to keep only points where the observational

variability within each hour period was less than one half of the modelled London

contribution. This removes points heavily influenced by local emissions that the models
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are not expected to capture accurately, such as an exhaust vent on a neighbouring

building. Such a method could result in a underestimate bias if the instrument is

near a significant source that gets filtered. However, this would be avoided when

multiple sites are used for the full network. Summary statistics are shown in Table 3.

Overall, the models show broadly similar correlations with the data, despite their very

different architectures, with the largest difference being where the ADMS-URBAN

model overestimates methane concentrations. The NAME model has a slope of

regression greater than 1, suggesting that the emissions or modelled sensitivity are

underestimated. The opposite is true for the ADMS model, although the line of

regression is skewed by a small number of points where the model greatly overpredicts

methane concentrations. For both models, the R2 value decreases when looking at

just the London contribution, perhaps because they struggle to accurately represent

complex urban meteorology, or because of errors in the distribution of nearby emissions

sources in the NAEI. During the most well-mixed conditions (between 1100 and 1700,

when hourly observation variability is below 5 ppb) the models are in closer agreement

but show lower sensitivity to London emissions than at other times. Overall, model

output from NAME correlates more strongly with the observations than ADMS-

URBAN, perhaps due to the use of three-dimensional meteorology, compared to single

site meteorology. However, ADMS-URBAN better captures the diurnal cycle present

in the observations, possibly due to the different boundary layer height calculations

used- although there could be many factors that contribute to both differences between

the models.

These simulations show that NAME and ADMS combined with the NAEI can

capture some of the major features in a methane mole fraction time series at an

urban site. The two models show similar features in their simulated mole fractions,

despite a different modelling approach and driving meteorology, which suggests that

a substantial portion of the model-measurement mismatch is due to the differences

between the truth and inventory emissions magnitude, distribution and/or temporal

variability. The next step in the development of a modelling system to support the

London GHG network is to develop a new statistical model, an inverse modelling

system that can determine whether changes in emissions and their distribution

can improve the fit between the model and the data [74]. The differences between
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Table 3: Linear fit statistics for model-observation comparison. The slope is derived

with the model-predicted mole fraction as the independent variable (as in Figure 8),

and the bias is the mean of the data minus the model (i.e., a positive bias, or a slope

greater than one shows a model underestimate and vice versa).

Model Configuration Slope R2 Bias (ppb) Standard Deviation (ppb)

NAME 1.3 0.67 12 59

ADMS embedded in NAME 0.71 0.43 -17 79

NAME (London) 1.5 0.46 28 72

ADMS embedded in NAME

(London)

0.53 0.19 -2.9 92

NAME (well mixed) 1.2 0.77 1.8 16

ADMS embedded in NAME

(well mixed)

0.95 0.63 -6.6 20

the models will lead to differences in inferred emissions from an inverse modelling

system. These differences will capture some of the sensitivity of the inverse models

to atmospheric transport error and can help better inform interpretation of inferred

emissions as a result.

3.4 Thames Barrier Modelling Summary

As a first step in the development of a network for monitoring of London’s carbon

dioxide and methane emissions, a continuous measurement site has been established

on the Thames Barrier by the instrument team. In this chapter I analysed methane

data from this site during the summer of 2018 and compared the observations to two

distinct atmospheric transport models, NAME and ADMS-URBAN. Results showed

that over a 3-month period, the models could capture some of the broader features in

the data, such as the diurnal cycle and wind-direction dependence. The consistency

of the difference between the model prediction of some of these features and the data

suggests that there may be a large discrepancy between the inventory emissions and

actual emissions, and further study will be useful to analyse this.
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Ideally, any follow-up would use both models in the inverse modelling, to provide

some estimate of the sensitivity of the derived emissions to atmospheric transport

model errors. This thesis will focus on the use of the NAME model from here, with

follow up work using ADMS-URBAN recommended. The further work suggested in

the original paper - work towards a London GHG monitoring network will involve

the setup of additional measurement sites across the city, and the development of an

urban-scale inverse modelling system - form the next chapters of this thesis.

Provided that the network can be supported over the coming years, the results

from the emission estimates with these new measurements will be supplied to policy

makers to help determine whether London’s emissions reduction targets have been

successful. The LGHG system also has the potential to identify missing sources or

spatial discrepancies in the NAEI and may be able to give some insight into the

temporal variability in emissions not accounted for in the bottom-up inventories.

3.5 Additional NAME Modelling

This subsection is supplementary information to the modelling efforts previously

discussed in this section. In order to assess the model configuration of NAME for

use in the new urban scenario, NAME is run as an ensemble with different input

parameters. The outputs from these models are fitted against observational values,

as described above, and the fit is compared between model configurations to identify

which model setup performs best. All ensembles are run for comparison over May

2018 for Thames Barrier, chosen as a representative sample of the data, as this work

is computationally expensive. For comparison between model and observations, the

time series is filtered to remove times when the observational variation was greater

than 20 ppm. This threshold is applied as times with high observational variations

within the hour are most likely due to rapidly changing meteorological conditions

or local pollution events that cannot be captured by the model. Different model

configurations are compared using the model-measurement correlation as a metric.

The first ensemble of 9 configurations varies the number of particles and type of

meteorology used, as shown in Table 4. These are all run with a 5x5 high resolution

grid of approximately 2km horizontal resolution. Two separate ensembles were run for

the resolution and extent of the high resolution grid, based upon the best performing
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Table 4: Model configurations for the first NAME ensemble. London UKV refers to

just UKV PT14 used over the south East, all UKV refers to all 16 UKV PTs used

over the UK.
Model Configuration Particles per Hour Input met

1 3333 Global

2 10k Global

3 20k Global

4 3333 London UKV

5 10k London UKV

6 20k London UKV

7 3333 All UKV

8 10k All UKV

9 20k All UKV

model from the first ensemble. These parameters are picked as higher values or

increased fidelity are expected to increase the skill of the mode, but with greater

computational cost. Although the cutoff is arbitrary and subject, by analysing a

range of values, we can pick a point before diminishing returns sets in to balance skill

and cost of the model.

Figure 12 shows the comparison between members of the first ensemble. As can

be seen, the number of particles makes only a minimal difference within the range

chosen, suggesting that even the lowest number of particles here is sufficient for the

model. The type of meteorological input used has a much greater effect, with a clear

improvement in model performance when using the higher resolution data. A greater

difference is seen between the global met, and the UKV met only over London, than

from London only to all of the UK being covered by UKV. The interpretation here

is the former directly improves the surface sensitivity of the model over the London

area, which is the most significant source of emissions as seen by the model, whereas

the latter is just an improvement on long range transport and modelled background

values, which vary less.

For the inner grid resolution, resolutions of approximately 20km (no separate inner

grid), 4km, 2km and 1km are used. The high resolution met data has a resolution
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Figure 12: Model-measurement correlation for the NAME parameter scan of number

of particles and input met data.

of 1.5km, and the input emissions inventory has a resolution of 1km, setting the

lower limits for improvement of model-measurement mismatch. The correlations in

Figure 13 show a model improvement as resolution is increased, but has converged to

greatest correlation by the 2km resolution grid, with no improvement when moving

to 1km. This may be due to the limit of the underlying met data, or of increased

spatial uncertainty of the input emissions at its native 1km resolution.

The effect of the extent of the inner grid on model-measurement mismatch was

explored by running a 2km inner grid with an extent that corresponded to a 7x7 box

of the outer grid and comparing subsets of the inner grid. The correlation values

and maps of the inner grids are shown in Figure 14. The grid cell that contains the

Thames Barrier (B) contributes almost half of the total correlation increase of the

full inner grid. The grid cell immediately to the east (C) contributes around a third

of the total improvement, and the rest by the other 7 cells that include London (D).

Grids for (E) and (F) are offset to the west as this is the dominant wind direction

and so is expected to be more important to model better. Although these grid cells

provide no further improvement to model-measurement correlation, they may allow

for increased performance in the inversion stages by allowing the inverse model to

more finely reassign fluxes in the area immediately surrounding London.
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Figure 13: Model-measurement correlation for the NAME parameter scan of the

resolution of the inner grid.

Figure 14: Left: Model-measurement correlation for the NAME parameter scan of the

extent of the inner grid. Right: Map of model configurations B-F. Each configuration

includes the geographic region of earlier letters. Configuration A has no inner grid.
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3.6 EM27/SUN

EM27/SUN is a mobile FTIR spectrometer, used as a standard instrument for the

collaborative carbon column observing network (COCCON) [13]. There is a proposal

to have an EM27 instrument at both the National Physical Laboratory (NPL) and

at Heathfield (HFD), as well as two additional sites in London for at least a short

campaign. Here I generate synthetic data to look at possible performance of the

instrument as a first step in the process.

As a remote sensing, near infrared instrument, the EM27 functions somewhat

similarly to GOSAT and TROPOMI in its physics and modelling requirements. While

I ultimately use these instruments as column measurements, in the modelling processes

this column is split into a number of different vertical slices. Each of these slices, or

levels, are modelled separately and then combined to give footprint information for

the total column measurements. This process is demonstrated in figure 15.

In order to correctly use EM27 data with NAME output, several inputs are needed

in addition to the column mole fraction measurement. As the column measurement

does not provide enough information to fully characterise atmospheric methane alone,

a prior concentration field is required, which is generated using global chemistry

models. Pressure weights (P ) must also be calculated, which define how much each

layer of column contributes to the total. Finally, an averaging kernel (A) is needed,

which contains information on how sensitive to each layer the measurement is.

These inputs are generated as part of the instrument’s processing suite, but need

to be manually set up in this preliminary stage. Averaging kernel look up tables, as a

function of gas, altitude and solar zenith angle, were provided by Frank Hase of the

Karlsruhe Institute of Technology. Prior information on methane, water and gravity

profiles were taken from the closest TCCON site, Paris. These are generated on a

daily basis for days with observations. As the synthetic data is generated assuming

perfect clear skies, each day of synthetic data uses prior information from the next

available day. The water (XH2O) and gravity (g) profiles are used to calculate the

pressure weights through a standard method [78]

ci =
1−XH2O

i

g ·Mdryair
, (5)

Pi =
ci · δpressure∑
(ci · δpressure)

, (6)
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Figure 15: Diagram showing how a single column measurement for a rooftop EM27-

Sun spectrometer is modelled as multiple layers in NAME. The orange beam represents

the column of air measured, and the blue spheres are the modelled air particles.
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where the subscript i refers to the level within the column and X is a column profile.

All the TCCON profiles are interpolated onto the same levels as the EM27

averaging kernels. For NAME, the Mk10 meteorological data (this is the product

that offers global coverage over this time period) has a maximum height of 29km,

so the max level used is 35, which is several kilometers below 29km depending on

the day. For the levels above the model maximum the prior concentration is used in

reconstructing the total column measurement. This contributes on the order of 16

ppb for our setup here.

We calculate the modelled column mole fraction using an existing method which

splits out the levels that can be fully modelled from those that can’t [15]

XCHmodel
4 =

35∑
1

Pi

(
Ai · CHmodel

4 + (1−Ai) · CHprior
4

)
+

49∑
36

Pi · CHprior
4 , (7)

where 49 is the highest level available in the data, which will be used in any inversions,

and also to compare to other observations. When comparing the EM27 mole fraction to

other ground based sites, we look for trends such as diurnal cycles and synoptic events

present in the data. Finer comparison is not possible (without invoking information

from the footprint as is used in the inversions) as the instruments are measuring

different properties. Column and in-situ measurements are expected to be different,

with column measurements showing lower mole fractions due to the decreased methane

in the upper atmosphere, and lower sensitivity to local surface emissions. However,

both observations should contain signals of changing emission levels, or the effects of

synoptic weather events.

A timeseries of modelled data from an EM27 device are shown in figure 16. The

modelled mole fractions for the EM27 instrument shows a ’v’ shaped diurnal cycle,

with higher methane concentrations in the evening and early morning, and midday

dip. Similar patterns have been observed with the instruments in other locations.

From analysing the model, it can be seen that the majority of this diurnal cycle

comes from changes in sensitivity to the background conditions, with a minor effect

from the change in surface sensitivity.

Figure 17 shows a comparison between the modelled local contribution of the

EM27 and TMB (Thames Barrier) instruments. From this comparison it is clear that

the TMB site sees a much greater signal, on the order of 20-100 ppb, compared to
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Figure 16: Simulated data for an EM27 device situated in London, showing the

contributions from the boundary conditions (bc) and the modelled local contribution

(mf_mod).

Figure 17: The modelled local contribution (mf_mod) in ppb for the EM27 instrument

and the TMB instrument. TMB data is filtered to only display daytime values when

EM27 model output is available for direct comparison.
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the EM27 seeing around 10-20 ppb each day. It can be seen that the two instruments

follow the same mesoscale pattern, as well as some shared features on a daily timescale.

From this I can conclude that the models see a lot of the same information from both

instruments, but with a far greater sensitivity for TMB than the EM27. Based on the

methods of point measurements and column measurements, this is an expected result,

but the difference seen here is quite stark. For this reason, these results suggest the

TMB site is far more important for measuring London’s emissions.

3.7 Conclusion

In this section I have presented the results from a published paper, detailing the

skill of both NAME and ADMS to model a measurement site in central London. We

find that both models are able to perform well using two different approaches, and

therefore there would be an advantage to using both in attempting to infer London’s

greenhouse gas emissions.

I have also presented some sensitivity studies used to setup the NAME model

runs for the London network, detailing several key model parameters including the

number of particles, the meteorological data used and the span of the high-resolution

inner grid. The final parameters are chosen to balance accuracy and performance -

diminishing returns are clearly visible in the tests and using the highest settings in

the model would substantially increase computational cost with little to no benefit to

model accuracy.

Finally, I set out the atmospheric modelling setup for column measurements

for the EM27-Sun spectrometer. Several of these devices will be installed around

London and could be beneficial to supplement the LGHG network with an alternative

measurement method that is less sensitive to the most local emissions which can

be difficult to model. However, further modelling and use of the EM27 system is

dependant on future access to measurements and the auxiliary data required to

correctly model the more complicated column measurements.
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4 Multi-resolution Inverse Modelling

4.1 Introduction

In this chapter I will discuss the next key component of the London GHG emissions

monitoring network - the inverse model that solves Equation 2. As we have learnt

from the introductory chapter of this thesis, there are a number of ways that this

equation can be solved in practice. For this study, I will be drawing upon my research

group’s (the atmospheric chemistry research group) expertise and implementing an

MCMC hierarchical Bayesian method [71]. The key advantages to this method are

that I do not need my equations or distributions to follow Gaussian distributions to

allow for analytical solutions, allowing more realistic distributions to be used, and

the method will produce uncertainty characteristics on each variable that can be

adjusted.

I will describe the model that I use for the rest of this thesis; a model which is able

to work at multiple resolutions, with a high-density urban network of observations

(the London Greenhouse Gas (LGHG) Project), embedded in a lower density regional

network (the UK tall-tower network). Some of the urban sites may also slowly drift

over time. By keeping the full size domain used in previous inverse modelling of the

UK network [70, 69], the boundaries are kept far from the area of interest (London,

and to a lesser extent the UK). Keeping the boundary conditions far from the area

of interest is good practice to reduce the impact they have on the results, especially

when we don’t have direct measurements of the boundary conditions and rely on

model extrapolation instead. I also use a non-uniform spatial grid to allow both a

large total domain and high detail around London.

For LGHG, the model must be able to handle potentially drifting instruments.

The network is composed of 5 LI-COR instruments that are not regularly calibrated

and are therefore likely to drift over time. To help with this, regularly calibrated

high resolution Picarro instruments will also be used in the inversion, which will help

to anchor the LI-COR instruments in the model. The idea behind the anchor is to

provide data as boundary conditions to the drift correction to reduce the degrees

of freedom and ensure the model has enough information to solve the equations.

We will use these conditions to build an urban inversion frame work for lower-cost
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instruments that could be replicated with cheaper instruments still. I will also test

the effectiveness of the model with some synthetic data tests. This will demonstrate

the model is functioning correctly, and I will then be able to move onto using real

data.

4.2 Bayesian Modelling

The introduction chapter gave a broad overview of the basics of Bayesian inverse

modelling but this chapter will go into the specifics of the modelling required for the

LGHG project. The project will be not using an analytical solution but instead will

be using a Markov-Chain Monte Carlo (MCMC) method. I will not be diving into how

to derive the underlying theory and equations behind the model - these techniques are

well established and are already implemented in many packages, including the PYMC3

framework [79] that is used for this work. Instead, we care about the practicalities of

these methods, the conditions in which they are likely to fail or misbehave and where

they work well. I will now present the equations of the model, and then discuss some

of the technical considerations for their implementation.

4.2.1 Full Model Description

The model being used in this study, as stated before, is based upon the existing setup

used for regional level emission solving [15]. The main modifications I have made to

the model are including a new term to account for time-varying drift in the LICOR

instruments, a new method for defining the geographical basis functions and by

implementing the equations in a new format to make use of the new solver available in

PYMC3. This setup is designed to be used for inversions at a monthly scale, however

it could be adapted to different time periods by adjusting the normalisation used,

especially on the drift correction components.
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The set of equations defining the Bayesian model are:

x(basis) ∼ LN(x̄, x̂) (8)

xbg(bcbasis, time) ∼ N(x̄bg, x̂bg) (9)

σmodel(site) ∼ LN( ¯σmodel, ˆσmodel) (10)

φ̃(basis, site, t) = Quadtree(φ) (11)

ci,site = N( ¯ci,site, ˆci,site) (12)

µ(site, t) =
∑

bcbasis

(BC · xbg) +
∑
basis

(
φ̃ · x · xap

)
+

2∑
i=0

(
ci,sitet

i
)

(13)

lh(site, t) ∼ N(y − µ, σy + σmodel), (14)

where x is the scaling vector for the domain, xbg is the scaling vector for the boundary

conditions, σy and σmodel are the measurement and model uncertainties, φ̃ is the

footprint sensitivity on gridded to the computation basis, φ is the mean of the a priori

gridded modelled mole fraction contribution calculated as
∑

lat,lon (S · xap) with S

being the model domain sensitivity and xap being the a priori fluxes. BC are the

mole fractions at the boundaries, ci,site are drift coefficients, t is time and y are the

observations. A bar refers to a mean parameter, and a hat to a width/standard

deviation parameter. The Quadtree function aggregates the raw grid to a coarser

resolution to create the basis functions for the inversion, and is uniquely calculated

for each inversion. How this is implemented is described in further detail later in this

chapter.

In these equations the three sums within µ refer to the boundary condition

contribution, the within-domain contribution (from emissions) and the instrument

drift, respectively. In the LGHG network, only the Licor instruments have a drift

component, with the regular automated calibration of the other instruments assumed

to fully eliminate drift. This component is vital to studying whether a cheap network

made of drifting instruments can be successfully used to estimate emissions, and is

one of the aims of the LGHG project. The drift is assumed to be quadratic over the

time range of each inversion. The use of a second order approximation allows for

instruments with relatively high levels of drifts over the time span, as large levels of

drift have no reason to be linear. This assumption is tested later in this chapter, but

there is no conceptual reason to prevent a different equation being used if a researcher
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had access to information that suggested their instrument would drift in a different

manner.

Within this framework, the values of ci,site are explicitly solved for in each inversion.

This means the amount of drift present in each instrument is estimated for each

inversion using the data given to the model. As the model is ran independently for

each time period, drift information cannot be carried between different runs. It is

suggested to use laboratory testing to confirm the prior values used for the mean

and standard deviation values, as well as the quadratic form being appropriate. In

this thesis, the corrected drift, or solved for drift, corresponds to the component∑2
i=0

(
ci,sitet

i
)
, which is a time series representing the total amount of drift estimated

for each instrument in each inversion.

The equations are normalised such that x refers to the multiplicative scaling factor

applied to the prior emissions, xbg is an additive percentage, both uncertainties are in

ppb, t is in ‘months’ (30 day periods) and ci,site are in ppb/month. This normalization

is used for model performance - this keeps expected adjustments of each parameter to

the same order of magnitude, helping to create an ideal geometry for the probability

space as explained below.

4.2.2 Technical Considerations

I have implemented my model using PYMC 3.8, a popular open source Bayesian

programming package for Python. Its widespread use throughout many fields of science,

and it’s open source nature, means we can be confident in its correct implementation

of the algorithms it uses to solve Bayesian problems. By using a third party package

I am able to get access to well tested, and advanced implementations of complex

algorithms, compared to the potential issues (of bugs or computational inefficiency)

of attempting to code one myself. In theory, this can also limit the possibilities of

what can be achieved, but in practice PYMC has implemented all of the required

features for this case.

The solver method used is a key practical consideration when using MCMC, as

it can determine the computational efficiency of the problem, or even whether the

problem can be reliably solved for. I will be using PYMC’s recommended solver, which

is the NO-U-Turn Sampler (NUTS) [19]. NUTS is a variation of Hamiltonian Monte
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Carlo, a method designed to give greater computational efficiency. Computational

efficiency is a key factor in an MCMC solver, as a large number of samples must be

drawn to ensure an accurate result.

Hamiltonian Monte Carlo methods are gradient methods, using Hamiltonian

mechanics (differential equations of motion in momentum space) applied to probability

spaces to efficiently sample a given distribution. We do not need to know the exact

equations used, so instead I will discuss the broader ideas in play. In MCMC methods,

common metaphors compare the probability space to a landscape filled with mountains

and valleys that an agent walks around: the agent moves a given distance in a given

direction and notes its altitude. The agent then repeats this action many times, slowly

building up a picture of the landscape from its many samples. Where the traditional

Metropolis-Hastings style approaches wander around the landscape picking directions

at random each step, Hamiltonian methods pick a random direction and then kick a

ball, gaining information about the terrain by how the ball rolls across it (gradient

information). The individual steps of NUTS are more expensive than each step of

Metropolis-Hastings, but give us much more information, leading to an overall more

efficient algorithm.

Hamiltonian methods do have another draw back as well. Imagine this landscape

of gentle valleys actually contains a narrow, but deep canyon in it. This canyon makes

up only a very small portion of the landscape, but if the agent kicks the ball into

the canyon, it’s going to struggle to kick the ball back up the sheer walls to get back

to the rest of the landscape. These problems with geometry having these steep local

gradients can cause issues with the sampler, slowing it down or preventing it from

getting a good sample of the whole space.

These problems can be identified by looking at the diagnostic properties available

within PYMC3, such as the effective sample size and divergence factors, and can

often be solved by implementation of scaling parameters or variable substitutions

(with non-centred variables being a sensible option in many situations) in the model

equations being solved. These fixes work by adjusting the geometry of the probability

space the sampler has to explore without changing the underlying physical system

that is being solved. In our metaphor, a change of variable would allow us to pull

apart a canyon until it is once again a gentle valley.
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4.3 Basis Functions and Prior Knowledge

The basis functions for the domain are based on quadtrees, which are a data structure

useful for efficiently storing 2D data with spatially dependant information density. In

this work, the modelled mole fraction contribution from each grid cell is used as the

information density, to create a grid that is higher resolution closer to the observation

sites, and lower resolution further away, in an organic way that reflects how skilled

we expect the model to be for each location.

A common method, and the one I implement here, for creating a quadtree begins

with a single node that encompasses the entire domain. The sum of the domain

contents is checked against a predefined ‘bucket level’ and if the sum is greater than

this, the domain is split into 4 equally sized child nodes. The value of the bucket

level determines how coarse the final grid is, and is a subjective choice. One can use

expert domain knowledge to define a grid such that any box has a contribution equal

to some metric of knowability (such as model error) or it can be set to determine

how many grid cells there are (more cells has a higher computational cost). This

process is repeated recursively, until all of the leaves are either below the bucket level

or correspond to a single grid cell. In this work, an additional initial step is optionally

used to add more geographic information by defining a set of initial nodes based

on country and land/sea borders as these are complex boundaries where different

emissions may be expected on either side. The results of this algorithm are shown in

Figure 18. A different method, that produces a similar style of grid, has been found

to be effective in national studies [69].

The domain is split into a low resolution grid and a high resolution, small area

grid that is embedded within the domain. The high resolution grid is calculated in

advance for the specific setup (city of interest), and requires the footprints and flux

fields to match in both low resolution and high resolution. The quadtree algorithm is

applied to both grids separately, and then the aggregated basis functions are combined

in the same way as the prior fields. This process requires consistent bookkeeping set

up between all parts of the data pre- and post- processing, but does not change the

functioning of the model as the underlying matrix calculations are performed the

same way.
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Figure 18: The model domain with grid cells aggregated through the quadtree function.

This example has been pre-seeded with a land-sea basis and a London basis to give

non-rectangular divisions for these important regions.

71



The boundary condition basis functions are kept simple, and are divided between

North, East, South and West boundaries, which assumes the spatial structure of the

background fields is correct. As I have no observational data near the boundaries of

the model domain, I limit the degrees of freedom in changing the background and

place greater trust in the priors compared to the emissions field. These background

fields are taken from the CAMS inversion global products.

The prior fluxes are a combination of EDGAR [80] and NAEI emissions [available

from https://naei.beis.gov.uk/] products. NAEI is the preferred emissions inventory,

as it is high resolution and uses UK specific values in its design. However, it does not

cover any area outside of the UK, while EDGAR is a global inventory. Embedding

NAEI within the EDGAR fields, allows for higher resolution and UK specific prior

values to be used for the UK while covering the complete domain. NAEI is embedded

by converting both models onto compatible grids (those used by the model) and then

simply swapping cutting EDGAR values out of the UK region and replacing them

with NAEI values. As the two inventories use different methods, this Frankenstein

style emissions map would not be useful for comparative analysis as is, but functions

as a useful prior to start an inversion on, especially as the non-UK regions have a

lower contribution to the observed and modelled values and thus matter less.

4.4 Testing Drift Assumption

Before working with full inversions that include the drift correction function, the

assumption of 2nd order polynomial drift should be assessed. At the very first

stage, I looked at the data collected when instruments were being setup in the lab

qualitatively to ensure that quadratic curves could be fitted to the data on monthly

time periods. After no problems were found at this stage, a more formal study was

performed. Between 12-06-2019 and 27-11-2019, two LiCor instruments (LICOR01016,

LICOR01033) were co-located with the Picarro at Thames Barrier. As the Picarro

is automatically calibrated each day, this provides a stable ’truth’ against which to

test the LiCor instruments. A simplified Bayesian model, consisting of just the drift

correction portion of the main model, is used to calculate a second order polynomial

drift between the LiCor and Picarro hourly mean measurements. Alongside the drift,

there is a random error component between the instruments, this is partially handled
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Figure 19: Residual of drift-corrected LiCor measurements compared to the Picarro

’truth’ for methane.

by the Bayesian model including a small standard deviation in the likelihood function,

and partially by filtering the data to be compared by the Thames Barrier variation to

remove the local pollution events which cause the biggest discrepancies. This filtering

was found to necessary as just one or two outliers was found to bias this simple model,

as it assumes the random error between the instruments is small.

Figure 19 shows the difference between the Picarro and drift-corrected LiCor

measurements once the drift-correction had been applied to the month of July. Both

LiCors have significantly different drift patterns, but both are slowly drifting and can

be corrected. The CO2 measurements of these instruments has much larger drift, and

is shown similarly in Figure 20. Although a large portion of the drift is corrected

with a 2nd order polynomial, high order non-linear drift can be seen to remain.

The results of these tests suggests that for methane, a second-order polynomial drift

is sufficient to capture the instruments behaviour. Most instruments demonstrated a

small offset, but offsets of around 30 ppb were seen. Total drift over the course of

a month remained under 5 ppb. The justification is weaker for the carbon dioxide

measurements, but still provides most of the drift being accounted for. The issue here

is that the instrument offers much worse performance for measuring carbon dioxide

compared to methane. As the focus will be on methane for the rest of this thesis, this

is not an issue that will be dealt with here. Further studies could also look into the

effect of non-linearity correction, but as the largest values often get removed from
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Figure 20: Residual of drift-corrected LiCor measurements for carbon dioxide.

model runs as the model cannot be trusted with them, it becomes less important. It

would also add more degrees of freedom, and any study would have to assure sufficient

data was present to model both the drift and non-linearity.

4.5 Pseudodata Inversion Tests

4.5.1 Introduction

To ensure that the inversion system is functioning well before unleashing the complex-

ity of real data upon it, an experiment should be performed with a known solution to

test for correctness. I generate pseudodata/synthetic observations = from a prescribed

emissions field combined with the model footprints, then I perform an inversion with

a different flux field as a prior to test convergence to the correct answer. Pseudo-

data tests have been used in previous inversion systems, for example by applying a

checker-board pattern to the prior flux to generate the ’true’ flux [74].

Existing studies that have performed test runs with synthetic data tend to rely

on using analytical methods where possible [57, 81, 44]. With the analytical Bayesian

inversions, it is possible to exactly calculate the posterior error covariance matrix.

From this matrix, and from the prior error covariance matrix, it is straight forward

to calculate an uncertainty reduction. The uncertainty reduction is a common metric
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used to assess the skill of the inversion. Other studies [47] begin with an analytical

method but run into computationally difficulties, with the size of their matrices

preventing practical calculations of the posterior error covariance. In this case, an

alternative error metric is used: the ratio of geometric distances between the true

emissions and the prior and posterior emissions. This method is not chosen for this

work, as it does not make use of information from the full distributions available.

With the Monte Carlo approach taken in this thesis, I am unable to use analytical

methods but I know the prior distribution and store all samples of the posterior

distribution. From this the highest density intervals of both distributions can be

calculated and used to measure the uncertainty reduction of the inversion.

Pseudodata tests have to be further expanded to also include tests for the drift

correction component. One study [44] has previously looked at drifting instruments,

but took a simplified approach by considering uniformly, linearly drifting instruments.

They find that larger biases decrease the skill of the inversion as would be expected, but

they make no attempt to correct for the drift as is done here. There are several aims

to be considered for testing the skill of drift-correcting inversions. Most fundamentally,

the inversion needs to be able to retrieve the correct fluxes as this is the ultimate goal

of the model. The drift correction should also be accurate to prevent biases in the

results. Both of these aims are easy to test in a synthetic data inversion. For testing

for the retrieved drift, comparison should be made between the true and retrieved

values as time-series curves, rather than by comparing the quadratic coefficients. The

latter method is inadvisable due to the anti-correlation of coefficients, where a change

in one can be compensated by the opposite change in another to produce a drift that

is practically the same. Using orthogonal basis functions would prevent this issue,

but the simplicity of quadratic drift makes it more appealing overall.

For the LGHG project, tests will also be performed to see how the size of the

network effects the results, as well as the contributions from both the calibrated and

uncalibrated instruments. It must be ensured that running with the drifting London

sites does not decrease the skill of the model.
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4.5.2 Results

The synthetic inversion tests are kept simple to understand the basic behaviour of the

system. Synthetic observations are generated for sites by keeping the background prior

constant, and multiplying the flux prior by a fixed value in the range 1.1-2.0. Gaussian

noise is added to all observations, with a mean of 0.0 and standard deviations between

2.0 ppb and 15.0 ppb (but constant over each set of observations). For the potential

LI-COR sites, quadratic drift with coefficients randomised between -10.0 and 10.0 is

added.

First I look at whether the drifting component of the model is functioning correctly

- as it is the most novel and untested section of the model. Inversions are run with

variable number of sites, with combinations of only drifting sites, drifting sites paired

with a non-drifting site and the non-drifting site alone. Both the Thames Barrier and

Mace Head sites are used as the non-drifting site, to test whether the site needs to

be in London to correctly anchor the drifting sites.

From these tests, I analyse the qualitative behaviour of the inversion system

with the resulting drift shown in Figure 21. I find that without an anchor site, the

time varying components of the drift are retrieved with high uncertainty, but the

offset bias is not retrieved, and instead the background is adjusted to get a match.

With two drifting sites, the offset between sites is retrieved within uncertainty but

again the mean is compensated by the background. Flux retrieval is largely successful

despite this error in the mean offset. When an anchor site is added to the system,

all components of the drift are retrieved, with low levels of uncertainty and more

accurate flux retrieval. Both choices of anchor site (central London and Mace Head)

were able to achieve these results, showing that the site does not need to be co-located

with the drifting sites to function well.

With the drift compensation functioning correctly, and with its limits explored, I

can now look at the emission levels. Figure 22 shows the results of several inversions

in terms of total emissions for London high resolution grid and the UK low resolution

grid. This is run at true (synthetic) emissions being a factor 1.1, 1.3 and 2.0 higher

than the prior emissions, and with measurement uncertainties of 2.0 ppb and 15.0 ppb

for each factor. I find that the correct emissions are retrieved for all scenarios, with a

lower emission uncertainty in London compared to the UK. This is to be expected
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as only one non-London site is being used (Mace Head) for these tests. Emission

estimates have much higher uncertainties when measurement uncertainties are higher,

as expected, but still produce results that agree with the truth values, demonstrating

that a higher uncertainty is not detrimental to the technique but does limit how

precisely we can narrow down emissions.

Next I look into the effects of the site density in London. I calculate uncertainty

reduction using the equation

uncertainty reduction = 1− posterior uncertainty
prior uncertainty

, (15)

and compare this geographically between two different scenarios. A value of 0 demon-

strates no improvement in the posterior, and values approaching 1 demonstrate a great

improvement on the prior resulting from the inversion. The first scenario is using the

national network only, the second is using 4 of the proposed London sites. The results

are shown in Figure 23. As we can see, not only is the output grid higher resolution

due to the greater knowledge available combined with the quadtree algorithm, but

London has a greater uncertainty reduction. Some small sections of London show a

decrease in uncertainty reduction with more sites, this is likely a sign that not enough

information (low emissions or low footprint sensitivity) is available to calculate the

posterior with high skill at that resolution in those locations. One way to further

improve this model would be to add an additional stage to the quadtree algorithm

that would recombine cells with little information contained in them to counteract

this.

The results of these tests demonstrate that the novel drift correction is functioning

well, and adding the London sites with drift improves upon the results available with

the previous national network. At a range of different true emissions and measurement

uncertainty scenarios, the model functions with high skill, successfully retrieving the

true emissions within posterior uncertainties.

4.6 Further Work

The work presented here needs further development to be used for estimating carbon

dioxide emissions, largely due to the diurnal variation in emissions. This means that

the underlying input needs to be presented at, and work with, a higher time resolution
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Figure 21: Drift correction during an inversion, with and without a non-drifting site.

The black line shows the true drift added to the data. Coloured lines and shaded

regions show mean and 2 standard deviation uncertainty on retrieved values.

Figure 22: Normalised emission estimates (5th-95th percentile ranges) from synthetic

data inversions, using data with an hourly standard deviation of (left) 2ppb and

(right) 15 ppb.
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Figure 23: Fractional uncertainty reduction from a synthetic data inversion showing

increased reduction and higher resolution is possible with more London sites.

- a 30 day average footprint will present problems for a diurnal emissions profile.

Adding seasonal time scale variation needed for carbon dioxide emissions into the

inverse method may cause interactions between the retrieved emissions time profile

and the time profile of the drift correction - some fine tuning may be needed to

reliably separate the two effects. Some extra data or restriction on the model may be

needed to prevent the model compensating for one with the other.

Spatial basis functions can have a large effect on the results of an inversion, and

the quadtree algorithm presented here is a simple approach. It is possible that more

sophisticated, or multi-step, algorithms would be able to provide more useful basis

functions - by making each component (grid cell) more equal by combining those

that fall below the bucket level for instance. An improvement in performance is by

no means guaranteed however, and due to limited resources I did not explore this

further in this thesis as the current method showed no signs of this being a problem -

all the synthetic data tests show good retrievals of the truth.

4.7 Conclusions

In this chapter I presented the framework of the inverse method that will be used

within the final chapter of the thesis. It is largely based off of existing, proven methods,
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but has been adapted and expanded to include a drift component and a new method

to calculate geographical basis functions.

I have analysed some of the initial data of the new Licor instruments co-located

with existing Picarro to deduce the amount of instrument drift that I expect to see.

This leads to a simple quadratic drift form within the inverse model, which is a simple

model that can easily be incorporated into the equations. The potential problem of

using this form is that there will be some anti-correlation between the linear and

quadratic terms in the inversion, which could effect the performance of the model.

This also means the drift correction should be analysed as a time-series rather than

by its individual parameters. However, it is not expected that these issues will prevent

high skill in the model.

Finally, I tested the new inverse model in several scenarios with synthetic data,

using different additional sites and a range of uncertainties and true emission levels.

From these results, it can be seen that the model performs drift correction well when

an ’anchor’ site is included - one that is not drifting that the model can use as a

boundary condition. Without an anchor site the time varying component of the drift

is captured, but the offset from the drift is balanced against correcting the background

signal. I have also shown that including London sites increases the resolution and

skill of the model to resolve London emissions, and that the model is able to correctly

recover the true emissions in test conditions, within posterior uncertainties. From

this, I conclude that the model is ready to be used on real data to estimate London’s

methane emissions.
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5 Inferring Methane Emissions in London

5.1 Introduction

In this section I will use the methods and framework outlined in the previous two

chapters, with the newly installed measurement network, in order to infer the methane

emissions of London. I begin by looking at how much data we have from the installed

network, then I outline and discuss the inversion modelling setup used to infer

London’s emissions, including several sensitivity tests to investigate the robustness of

the results. I finish the chapter by analysing the results for possible explanations for

differences between inventory and posterior emissions.

5.2 Analysing the LGHG network

With the instruments installed across London, I can begin analysing the data taken

from these sites, and applying the models from the previous two chapters. I begin by

using the methods from the first chapter to produce high-resolution NAME footprints

for each of the sites. Due to complications arising from the pandemic, ADMS-URBAN

modelling is not available for this chapter, and I recommend that inclusion of that

model to this work be a point for a future researcher to look into.

In Figure 24 we see the time-averaged NAME footprint for all of the sites in the

London network for a typical month. This map gives us an idea of where the network

is more likely to make accurate estimates of greenhouse gas emissions and where

uncertainty reduction is likely to be higher - the higher the sensitivity the higher the

expected skill of the inverse model in general. Two main features we see from this

plot are: the increased sensitivity in west London due to an increased concentration

of sites, with a corresponding lack of sensitivity in south-east London due to a lack of

sites; and the increased sensitivity to the south-west of each site due to the prevailing

winds. In this month we also see an increased sensitivity to the north-east, likely the

result of a winter weather system passing through the UK at some point during the

month shown, which is regular if infrequent occurrence in London.

This all suggests that I should be able to resolve most of the London, particularly

the central and western regions, very well, but with less skill in the south-east of the

city. As we saw in Figure 2, there are several large sources of methane documented
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Figure 24: Average NAME footprint of the seven main London sites for January 2021,

showing the high resolution model domain with the London boundaries outlined.

in the southern and eastern portions of London. A lack of sensitivity in these areas

is likely to make it harder to accurately infer these emissions and lead to a higher

uncertainty in our final results.

5.3 Data from LICOR Network

Before I continue to use the full network to achieve our goals of obtaining an emissions

estimate for London, it would be prudent to take a pause to look at the data from

the new sites. The quality of the data we put into the inverse model will directly

affect the quality of the output estimates I get. I also need to know how to filter the

data in order to prevent local emissions and spikes that cannot be correctly resolved

from entering the model as this would bias the outputs.

Figure 25 shows the average daily cycle of models and observations for the new

data. The average is calculated over the first 3 months of 2021. A short time period

prevents any potential large seasonal or other longterm changes affecting the data.

The sites follow a general pattern of peaking during the early hours of the morning,

and a minimum in the early afternoon - the pattern expected when concentration is

dominated by the boundary layer height and emissions are homogeneous throughout
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a day. Some sites, such as TMB and LSTJ show a very close match between the

modelled and observed values, while other sites such as LWMH and LWGF show a

model under-prediction. These sites also have a larger observational uncertainty - this

could mean local emissions that the model is unable to pick up. This is expected for

LWGF, as this instrument is close to the ground on a farm, which is known to have

large volumes of manure on site, which would be a local source of methane. For this

reason, and large variance in the high resolution data, LWGF is excluded from the

model runs as we do not expect the model to accurately capture the local pollution

events that dominate the data.

Figure 25: Average daily cycle for modelled and measured observations for each of

the London sites, over the first 3 months of 2021. Shading indicates 33-66 percentile

range.

5.4 Coherence Tests

In the previous chapter I tested how robust the model is to various effects, such

as number of sites and instrument drifts. However, it is inevitable that when we

apply real data to a model, there will be effects that have not been included in the

cleaner, artificial data. It could be that instrument drift takes a different form from

the model I applied based on the results of a single test site. Perhaps it is that the
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prior emissions map is significantly wrong such that the inversion gets stuck in local

minima before finding the ’correct’ value. Or that the real data of a site is adversely

affected by instrument malfunction or unforeseen strong local meteorological effects.

Part of this problem is negated by applying quality assurance procedures to the

raw data before it is used. The instrument team use their expert analysis to check for

spurious or suspect data points. We can apply multiple distinct emission maps to see

how great of an effect they have on the end results, we can check against multiple

different transport models with their different physics schemes.

Even with all these different procedures in place to protect against spurious results,

it is good to apply some simple coherence tests to the inversion outputs themselves.

These tests are to be considered necessary but not sufficient - if the results fail the

tests they must be treated with scepticism, but passing them does not guarantee

the results are error free. This is why in the previous chapter I tested the model on

synthetic data first, to ensure it works as expected under laboratory conditons.

The basic test I will apply to the inversions at this point, is to compare inversions

with an additional site added or removed. The results of such an inversion should

be consistent, in a perfect world adding an extra site would simply decrease the

uncertainty of the previous result. The more sites involved in the inversion, the smaller

this effect should be. Large differences in results by changing a single tower could be

the result of strong sources previously unseen by the network, or by issues with the

data of that site, or perhaps difficulties in simulating that particular site.

An initial coherence test is shown in Figure 26. This is a set of monthly inversions

performed over 2019 and 2020 on initial data from Picarro sites, with a few missing

months due to pandemic-related data availability issues. The grey bars represent prior

emissions values from NAEI, the blue bars are using the national network (DECC)

only, with the others representing one or both of the initial London non-drifting sites.

In this case I would expect to see that by adding London sites the London emissions

uncertainty in the posterior would decrease, and that results from each London site

separately would agree with each other. When we look at the results this is what we

see - the inversion with this set of data is passing my basic checks.

There is one point to note however, and that is the disagreement between the

London sites in 2020-09. This was not an expected result, as the TMB results disagree
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Figure 26: A monthly inversion performed using initial London GHG network data.

Grey bars show prior emissions. The emission values are purposefully omitted as only

the relative values are relevent here.

with both the national network and NPL results. By taking a closer look at the data,

there are several extremely large, and possibly quite local, pollution events in the

TMB timeseries which are likely driving up the emissions estimates. For this month

as well the NPL data is only available for the first half of the month, before these

pollution events are seen. These local pollution events are not present in inventories

and can be difficult to capture in inversions, but should be easier to discern as more

sites are added to the network in London, giving us a closer look at how emissions

change. This also points to how the inverse system can be biased by large local

pollution events, and that correctly filtering the data for events that may not be

accurately modelled (such as by using variation in hourly data) are key to getting

accurate emissions estimates in systems like LondonGHG.

5.5 London’s Methane Emissions

Now I am ready to begin exploring the emissions estimates from using the full London

Greenhouse Gas network. This section will focus on emissions from the first half

of 2021, as this period has the most complete data record available at the time of

writing. As a result of data not being available to myself at the time this was carried

out, the NPL data is not used in these inversions.
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Before I share any results in this section, I believe it is important to first clarify a

matter of geography. One of the difficulties of comparing different emission estimates,

whether inventory or inversion, is that direct comparisons only work when estimates

use the same scope. In this case, the scope of emissions is defined by the geographic

location of the sources. Figure 27 displays maps showing the geographic extents I

consider as the "UK" and as "London". Emissions estimates cited in the following

section for London are those summed within the highlighted grid cells, and for the

UK as the same from its highlighted grid cells (excluding London emissions). To

make it clear, the "UK" values do not include emissions from London, and the total

emissions can be found from summing the two values. The priors likewise are the

prior emissions maps summed across the same grid cells - this may lead to a small

difference in totals between the results cited here and the UK’s official estimates.

Figure 27: Map showing the geographic definitions of the UK (yellow) and London

(inner black with blue border) used in this work. Coastlines are shown in red.

A set of inversions with slightly differing configurations are run over this period -

this allows us to gain some insight into what is affecting the results. These runs include

the baseline run of the DECC and London sites together with drifting LICORs, a run
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with only the DECC sites, a run with only the London sites, a run where there is no

drift corrected in any instrument, and a run where the TMB fixed instrument is also

allowed to drift. The last run allows us to check whether unnecessary drift is being

added by the model. These inversions all filter the data to use only daytime values -

this is standard practice in the field as during the night there is extreme variance

in observations due to the combination of London’s local emissions and the stable

boundary conditions of the night, and it is not expected that the model would be

skilled with these conditions. A final run of the baseline configuration, but including

all data is also tested.

First step is to check that the components of the model are sensible and correct.

The main point to check is that the posterior modelled concentrations correctly match

the observations, as this is the primary aim of the model. Figure 28 shows a typical

set of observations and posterior modelled values. These plots show a good agreement

between the observations and model outputs. Figure 29, which shows scatter plots of

the modelled vs observed methane levels during one month for each run, demonstrates

how the the posterior shows a great improvement on the prior values. From this plot

it is clear that for all setups, the prior data has an underestimate in the methane

levels, but the inverse model is able to adjust the priors to obtain similar levels of

agreement between model and observation.

It is interesting to note that these plots show very similar posterior agreements

between the different setups, suggesting the model is not particularly sensitive to the

different input parameters being adjusted (sites used and the drift being solved for).

While they don’t tell us about which priors have been adjusted to create a solution,

it does suggest a large amount of freedom in the system if drift is as important to

the results as expected. This is something we will need to take a look at.

With this we have confirmed that the inverse model is achieving its goal - of

adjusting priors to make the modelled and observed methane values agree. The next

step is to ensure that it has done this in a reasonable manner, and that it hasn’t found

non-physical solutions to the problems. The correct setup of priors, such as using

log-normal distributions to ensure no negative emissions should prevent a number of

non-physical solutions such inverse models may find, but I should not be so arrogant

to assume that this has prevented all possible problems.
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Figure 28: A set of typical observations and modelled values, shown for April for a

run including nighttime values. Note that all y axes have separate scales.

5.5.1 Drift Correction

My next important question to ask is: how is the drift correction in this model

performing? To give an answer to this I look into the difference in performance

between the runs with different drift settings applied. I check to see what would

happen if no drift correction was used, and I check to see what happens if drift

correction is applied unnecessarily (to a calibrated site with no expected drift) - do

these conditions give significantly different results?

Looking at Figure 30 (which shows emission estimates for various setups) -

specifically the runs with TMB drift, and no LICOR drift, we see that adding drift to

a non-drifting instrument does not change the results, while not solving for drift on

the LICORs does impact the results. This impact is more significant in some months

than others - as the true drift is random it is not unexpected that some months may

have minimal problems from drift.
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Figure 29: Prior (left) and posterior (right) scatter plots of modelled vs observed

methane levels in January 2021. The black dotted line shows the 1:1 line.

The drift that is solved for the non-drifting Thames Barrier site is shown in

figure 31. We can see that, while the priors for the monthly drift give a 0-centred

drift and the instrument is calibrated daily, the model assigns some drift to the site

each month. The drift is not continuous between months - each month is solved for

independently. The gap in the drift values plotted is due to no data available for

the Thames Barrier site at these times. All drift values are positive, meaning the

model believes the observations are higher than what should be caused by emissions

and background values. However, this assigned drift does not appear to change the

retrieved emissions. There are several possibilities here: the drift may be balanced by

a background offset as was seen in some of the initial tests, the drift is correcting for

other time-varying effects not present in the priors, or a combination of the two. This
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Figure 30: Emission priors (grey) and posterior estimates for the UK and London.

Several different runs with different configurations are used for a sensitivity test.

90



Figure 31: The Thames Barrier site is assumed not to drift as it is calibrated daily

but the model is allowed to assign drift in one experiment, and the resulting drift is

shown here.

unknown time-varying effect could be due to meteorological simulation errors in the

transport model or time varying emissions that are not in the inventory.

There are several time-varying effects that could be present that are not accounted

for in this model. The most likely effects are related to the emissions - which are

assumed to be constant in time and space across the entire month for each inversion.

While methane emissions are relatively stable across the year compared to a gas such

as carbon dioxide, it is likely that there are changes over time, especially somewhere

with dense emissions such as London. This could come, for instance, from gas leaks

being fixed or worsening or from changes in decomposition rate at waste centres

due to the weather or waste loads. Cataloguing these effects is beyond the scope of

this project, but could be monitored by measuring local emissions through targeted

campaigns in the city.

These results give us confidence that the drift correction in this model improves

the skill at resolving emissions. While there is evidence that there are more effects

than just instrument drift being captured by this part of the model, it does not

appear to significantly affect the emissions estimates made for London.
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Ideally, further tests would be done on the data to verify how accurate the drift

correction is and there are several methods proposed to achieve this. The first is to

run the inversion against the pre-calibration data for one of the calibrated sites and

compare the drift correction against the calibration. However, the Picarro instruments

drift at a rate of much less than 1ppb in a month, which is not a large enough for the

model to distinguish from noise in the data. The second proposed method is to utilize

a technique used from the Breathe London network, which uses raw observation data

from a large number of sites to calculate the background drift between them, using

similar principles but a much more direct method than the inverse model. Due to

limited resources, this method has not been implemented in time for this thesis, but

will be available to be trialled on the data at a later date.

5.5.2 Emission Values

Figure 30 shows the prior and posterior emissions for both London and the rest of

the UK. A number of different runs are used to see how the setup effects the results,

by which sites are included, which sites are drift corrected, and a run that includes

the night time emissions that are expected to be poorly modelled just to confirm

whether this is the case. The run using DECC and LGHG is considered to be the

best setup, based on model skill and data availability, and is to be used as the final

estimate. We can see that emissions are consistently estimated to be higher than the

inventory values, with the exception of May 2021 where emissions are estimated to be

consistent with inventory values. Emission differences for each run averaged over the

months are shown in Table 5. Another expected feature is present: adding London

sites does not significantly change estimates for the UK’s total emissions, but has a

large effect (in mean value and uncertainty range) on London’s emissions.

In terms of UK total emissions, adding London sites only has a small change in

magnitude, and little in uncertainty. The exception here is when the DECC sites are

removed (using London-only sites does not get the same UK total emissions) or when

nighttime values are used. These results suggest that adding a concentrated network

of sites in London does not provide a benefit to modelling the UK total emissions

directly. This in itself is not too surprising - on the UK scale each site would be

largely redundant as they are located in a very similar place, and not too far from
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Table 5: Mean difference between posterior and prior emissions totals for the various

inversions averaged over first 6 months of 2021. Uncertainty is calculated from the

68% highest probability distribution.

Inversion UK Difference (%) London Difference (%)

DECC Only 16 ±11 19 ±20

DECC + LGHG 18 ±15 47 ±27

DECC + LGHG + TMB Drift 17 ±15 42 ±27

DECC + LGHG without Drift 17 ±15 57 ±22

LGHG Only 27 ±18 47 ±33

DECC + LGHG all times 7 ±15 49 ±16

an existing DECC site. However, if the results from modelling London’s emissions

can enable inventory developers to gain new insights into London’s emissions this

may have knock-on effects to the inventories for other urban areas, leading to more

accurate national inventories.

I now take a look at the geographic distribution of the emissions, first to check

they appear reasonable and physical, and secondly to interpret what this means

for London’s emissions. When looking at these graphs, we must bear in mind that

the spatial scale of adjustment to emissions is coarser than the original emissions

map, and is applied at the scale of the Quadtree basis. The model also adjusts total

emissions only: it cannot adjust emissions by sector or other variable. This means the

fine details of London’s emissions will remain unchanged (we cannot easily allocate

change in emissions to individual sources), and it is the larger scale changes we will

see.

Maps showing the difference in emissions from prior (NAEI) to posterior for

January’s inversions are shown in Figure 32. One common feature to all model runs

here is that central London shows lower emissions in the posterior, suggesting the

priors over-estimate of central London emissions is robust to the data we use in

the inversions. Apart from this, there are broadly three different outputs across the

6 inversions here; a small decrease across all of London from DECC only, a large

increase across most of London and to the north-west of London from including night

time observations, and a moderate increase in London and to the north for the rest. It
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Figure 32: Difference in emissions between posterior and prior for the inner grid.

Results are shown for each model run during January.

is not unexpected that including night time observations increases posterior emissions

across London - we have already seen from the previous chapter that the model has a

large underestimate of methane concentration during the nighttime compared to the

city centre observations. It is quite possible this is a physics modelling error that the

inversion is over-compensating for, especially as it is an outlier from the rest of the

runs.

Taking a look at the same plots for February in Figure 33, we see some of the same

patterns from January, but with some differences. All but the DECC-only run show

the same central London decrease in emissions, and the 3 daytime drifting London

site runs are in good agreement with each other. This time the DECC-only run shows
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Figure 33: Difference in emissions between posterior and prior for the inner grid.

Results are shown for each model run during February.

an increase, the non-drifting run shows a greater increase in emissions compared to

drifting, and the all time run shows a different pattern of emission increases, with a

greater overall increase.

Overall, the maps highlight differences between the solutions to the inverse model

based upon the inputs, along with a persistent overestimate compared to NAEI

emissions in central London. Otherwise they suggest a general increase in London’s

emissions, but not in any location in particular. As was seen in a previous chapter,

most of London’s methane emissions are allocated to waste and gas emissions, with

gas emissions distributed by population density. It may be that the density in central
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London reaches a saturation point where natural gas emissions do not scale linearly

with population, and that across London these emissions are generally underestimated.

It could also be that waste sector is underestimated, but the model is not able to

resolve specific waste sites as that would require high resolution, which is not available

with the level of data available here. To be more confident about what source is being

underestimated further measurements would be needed, such as isotopes, co-emitted

gasses or by taking local emission measurements at sites of interest.

5.5.3 Comparison to Other Work

A recent study using data from Imperial College London has also analysed methane

emissions from London during 2018-2020 [82]. I do not have a temporal overlap

between their results and the results I just presented, but I do not expect significant

changes in methane emissions in a single year. This work also uses the NAME model

and NAEI emissions priors, and finds that their observations suggest emissions are

under-reported by 20-30%, mainly from the natural gas sector (attribution is gained

by using isotope measurements). This magnitude of under-reporting is in agreement

within uncertainty of the value of 47 ± 27 % obtained by my results. The agreement

between both methods strengthens the claim that emissions are being under-reported.

5.6 Further Work

The work I have presented in this chapter only corresponds to 6 months of data,

January-June of 2021, from a subset of all sites that have collected data on methane

in London. This leaves some straightforward goals for further work: to analyse the full

time series of work available and complete the original plan for a year long case study,

and to run new inversions to estimate emissions that make use of all the Picarro sites

across London. While further sites will provide diminishing returns in the inversion

framework as their footprints overlap more, it does allow for some gaps in sensitivity

to be reduced, to allow for site redundancy and to better analyse consistency between

sites. However, it is not expected that more sites would allow source attribution

as London’s emissions are not geographically separated. As more data comes in it

will eventually be possible to analyse longer trends and patterns such as seasonality

and annual emissions change. Monitoring the change in emissions over time is a key
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political goal from a monitoring network, as it will allow policy makers in London to

verify that emission reduction plans are working at the expected rate.

While laying out the shortcomings of some of the results presented, I have

mentioned several other possibilities for further work. Two key works that could help

make this work more policy relevant include doing targeted hotspot campaigns similar

to those performed before [51] but based on the presented inversions, and to include

isotope or ethane measurements such as have been done in other studies [8, 82].

For the hotspot studies, this thesis has consistently found high levels of methane

emissions appearing to come from north-east London, both from the original analysis of

Thames Barrier data and from the inversions. North-east London contains several large

point sources as listed within the NAEI inventory, including industry, gas and waste

treatment facilities. One possibility is that these point sources are underestimated in

the inventory - carrying out mobile measurement campaigns around these sources

would help identify whether or not they are in fact underestimated in the inventory.

In order to be able to identify sector sources for the emissions, more data is

required than is gathered by the LGHG network. This data could come in the form of

isotope or ethane measurements, values of which differ by whether the methane source

is fossil fuel or biogenic. Including this data would require substantial modelling work

to update and test the inverse models, and both isotope and local measurements

would require new instruments and logistical concerns. These additional complexities

do not fit in with the original LGHG goal of proving a simple and cheap measurement

system that could be used in the developing world, but would be useful for the goals

of providing useful information for London policy makers.

It was also planned that in the future a round-robin calibration would be performed

on all the London sites, which would allow the instrument drift at a given time to be

directly measured, which could be compared against the modelled values to further

validate the model. Such an event has not yet happened due to resource and logistical

constraints.

5.7 Conclusion

In this chapter I have outlined the new measurement network in London, explored

some of the observational data coming from the instruments, and discussed the
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outcomes of various inversion setups using the network. I find that the network is

able to provide useful methane estimates from the inverse modelling, and results

consistently show that the inventory under-estimates London’s emissions. Further

work is required to pinpoint the source of these emissions that are unaccounted for,

but the evidence is robust and makes a strong starting point for directly tracking

London’s emissions.

The results here show that this type of lower-cost, lower-maintenance measurement

network, where sites are not regularly calibrated, can successfully be used to monitor

methane emissions provided an appropriate model is used. This demonstration means

that further networks of this description can be used to monitor more cities across

the globe, and also demonstrate a good starting point for continuous monitoring of

London’s emissions. However, the results also point out the need to do more specific

and targeted monitoring work to locate the individual sources of emissions that are

not being accounted for in the inventory.
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6 Summary and Final Remarks

And now we come to the final chapter in this thesis. Here I provide a brief summary

of my thesis, highlighting key points from the main chapters, recapping my previous

chapters.

6.1 State of the Field

I have shown that the study of urban-scale measurement networks for measuring

greenhouse gas emissions is an active and evolving field. Numerous case studies have

been set-up in cities across the world, with varying budgets, lifetimes and methods

used. As this field is still establishing itself, and due to the great variation between

the geographies of cities, there is not a single, best methodology used. However, an

unofficial standard can be seen to begin emerging, with a large number of studies

using a network of continuous in-situ measurements, combined with a atmospheric

transport model and inverse model. However, each of these components still sees

a great variation between each study. There are several points where I extend the

current scientific knowledge in the field with this study.

One niche identified in the current literature is that the use of drifting instruments

has not been greatly explored. By this, I refer to instruments that are not equipped

with a gas standard and automatically calibrated against the standard on a regular

basis as many measurement locations are. The instruments are calibrated before

deployment, and may be manually calibrated several times a year, but drift in between

these points. Drift in instrument measurements introduces a new source of uncertainty

that can weaken the skill of the inverse model, but if this can be mitigated it would

allow for smaller, cheaper instrument deployments. Such deployments could be vital

for monitoring emissions in the developing world.

Another unique point of the LGHG network is that I seek to embed it within an

existing national network. Many cities use the city limits (sometimes with a buffer

zone) as the boundaries for the modelling work. However, the boundary conditions

are potentially a large source of uncertainty as they have a great effect on emission

estimates and they can be difficult to accurately quantify across all dimensions at

all times. By embedding the urban model within a national model, the boundary

conditions are greatly moved from the point of interest (reducing their impact on the
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final result) and allowing the national model to solve for some of the information that

would otherwise have to be input as boundary conditions.

6.2 The LGHG Instrument Network

The instruments and network was chosen and deployed by the instrument teams from

the University of Cambridge and Cranfield University. The LGHG network is composed

of two types of instruments: the drifting Licor instruments installed across London

buildings as a part of the project grant, and calibrated Picarro instruments operated

by various research groups who have agreed to share data with the project (although

several sites were not available in time for this write up). The two instruments operate

largely under the same principles, passing air samples through a laser cavity and

recording changes in the absorbed light at the target gas absorption peaks. This

allows them to make measurements at the second scale with good accuracy. This

high resolution data is averaged to hourly to match with the modelling, but the high

frequency allows for analysis of variability in the data which can be used to look for

data that may be poorly modelled.

The instruments are sited largely opportunistically. I performed work was done

to find optimal locations for the sites, such as identifying buildings that stood high

above the local urban canopy to reduce the effect of small-scale atmospheric dynamics

the models cannot reproduce. However, gaining access to ideal sites was difficult

in practice and this method was largely abandoned, and instruments were placed

wherever access could be gained, attempting to find higher buildings and avoiding

placing instruments too close together. This process has led to a lack of instruments

south London, but this is not of too much concern due to the prevailing south-westerly

winds resulting in much of south London being seen by existing sites. The problem of

site selection will be unique to each city that attempts to deploy a network such as

LGHG, and my recommendation to anyone who seeks to do this should first attempt

to gain the cooperation of people who can easily grant access to a large number of

buildings. If this route is successful, your shortlist of potential sites would first be

those you already have permission to use, and you could do atmospheric modelling

to decide which sites provide the best overall coverage of the city.
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6.3 Upgraded Models

I modified existing models primarily used for national level studies, adapting them

to work in the high resolution urban environment. The atmospheric outputs have

been collated using new high-resolution inputs and with the outputs using a multi-

resolution grid to capture the details over London, but include the large geographic

region from the previous work.

The inverse modelling has seen an even greater level of change, and I have

developed it to be purpose built for the work presented in this thesis. The model is

now written in a new programming environment, which is able to use Hamiltonian

MCMC methods, which are more efficient at exploring the probability space, and

is more easily adapted to account for new features. This has been used to include

the new drift-correction terms to solve for instrument drift within the inverse model

itself, as well as a new method to generate basis functions based upon the priors and

input data that work with the multi-resolution grids.

I first trialled this new modelling setup in synthetic data experiments to assess

how well the new features worked. This enabled an understanding of the new models,

including finding out details such as the importance of an ’anchor site’ - a calibrated

site that can be used as a reference for the model when calculating instrument drift

for other sites.

6.4 London’s Emissions

The first 6 months of data (January-June 2021) from the complete London network

has been collected and analysed. Taking a look at the original data, one of the sites

(Woodgreen farm) has been discarded due to signs of contamination from a local

source that would interfere with modelling, while the remaining sites look like good

candidates for inverse modelling.

I ran inversion models on this data at a monthly time scale with a variety of

different inputs, based upon which sites are used and whether instrument drift is

accounted for. The inverse model is able to align the modelled data with observational

data with good skill in all cases, with different posterior emissions for different scenarios.

The experiment shows that excluding local sites, not allowing the uncalibrated

instruments to drift, or including difficult to model nighttime observations can
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significantly change the emissions. Allowing a calibrated instrument to drift in the

model, or excluding national sites has a much smaller effect.

The final results of the inverse modelling is that the best configuration, using the

London and national sites during the daytime, shows an increase of London emissions

of 47 ± 27% on average (using uncertainty from 68% highest probability density)

compared to NAEI emissions in the first half of 2021. These values are in agreement

within uncertainty with an independent study [82] that used a different data source

to estimate London’s emissions in 2018-2020. This is strong evidence that London’s

emissions are under-reported, and the inventories need to be updated. However,

further investigation will be needed to determine the source-sectors responsible for

this increase. This study also demonstrates that this type of network, with drifting

instruments, can be successfully combined with an appropriate model to monitor

emissions. Removing the requirement of constant calibration means instruments can

be cheaper and easier to install in a variety of locations, allowing these emission

estimation systems to be used in a wider range of cities across the world.

6.5 Conclusion

And thus I come to the final conclusions of this thesis. I have taken a look at the

transport models available, and deemed them to perform well (they produce sensible

behaviour that correlates well with observational data) at the scales of the emissions

data we have available. I have taken a look at the ways inverse models can be updated

to include instruments that are uncalibrated and drift over time. And finally I have

combined these, with a novel instrument network, to provide an estimate of London’s

emissions.

The results I have shown here demonstrate the inverse modelling setups in the

style of the London GreenHouse Gas Network can be useful for providing estimates of

city-scale emissions with a method that can mitigate the effects of drifting instruments.

These achieves the projects goal of providing a potential modelling framework for

cheaper instrument networks that could be deployed in the developing world. I have

been able to show that, across the entire city, methane emissions are underreported in

the NAEI emissions inventory. However, I have not been able to draw any conclusions

about what may be the source of these emissions, by either sector or by geography.
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To this end, further studies would be required. Isotope measurements could be used

to differentiate between fossil fuel (natural gas) and biogenic (waste) emissions as

these are the largest two sectors in London by reporting. A denser network may allow

for a higher geographic resolution in solving for emissions, and be better able to

pinpoint any hotspots around the city. Finally, more studies of the gas network and

individual waste treatment facilities would be able to directly tell if that infrastructure

is emitting more methane than the inventory reports.

Keeping the London network running would allow us to monitor London’s emissions

over the coming years. This could be powerful information for policy makers as

reducing methane emissions is becoming more of a hot topic. Being able to monitor

the effects of policy in near-real time would provide excellent evidence of policy

impact, and help reduce emissions in a timely fashion.

This work also demonstrates that similar networks could be setup in other cities,

using cheaper and lower-maintenance setups than previously expected. Being able to

use lower cost instruments, that are not required to be constantly calibrated lowers

the financial and logistical barriers for setting up such a network. This makes an

urban greenhouse gas monitoring system more readily available for cities across the

globe.
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