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ABSTRACT 

Neuropsychiatric disorders are increasingly prevalent, and understanding the underlying 
biological, psychological, and social mechanisms which act as either risk factors or experiential 
symptoms of the disease is a key goal for biomedical science. A particular focus in this work 
is the use of animal models to probe the cognitive domains which are affected in disease 
models and psychopharmacological therapeutics.  

In this thesis, I explore the cognitive phenotype of Dlg2, a genetic risk factor for diseases 
including schizophrenia, bipolar disorder, and ADHD, using heterozygous rats. Differences in 
cognitive flexibility are assayed on two separate protocols: a touchscreen-based visual 
reversal learning task and a separate visuospatial object-in-place exploration task. My work 
found that Dlg2+/- rats are impaired on the extinction-phase of learning, perseverating on 
newly-unreinforced behaviour longer than control animals. 

Separately, I study task engagement and motivation behaviour in healthy rats using a variable 
interval lever-pressing task, adapted to additionally assay impulsive and explorative 
behaviour through a regularly-changing reinforcement schedule. The effects of NMDA 
antagonists and scopolamine – which are of interest as both schizophrenia models and as 
rapid-acting antidepressants – are characterized, as is the effect of prefeeding high- and low-
value food. My work replicates and expands on previous findings on the diverse effects of 
different NMDA antagonists, in addition to novel and divergent results with scopolamine on 
motivation and impulsivity compared to other pre-clinical tasks. I also discover a potential 
interactive effect of high- and low-value food satiety on explorative behaviour.  

In summary, this work expands knowledge of the Dlg2 behavioural phenotype, as well as 
further characterizing the cognitive effects of a variety of clinically-relevant drugs and non-
pharmacological feeding manipulations.  
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CHAPTER 1 – GENERAL INTRODUCTION 

1.1 INTRODUCTION TO NEUROPSYCHIATRIC DISORDERS  

Psychiatric conditions are highly prevalent, and their impact has significant social burdens: 
disability associated with neuropsychiatric disorders is equivalent to that caused by all 
cardiovascular diseases (M. S. Reddy 2010). The lifetime incidence of depression is 16.2% 
(Kessler et al. 2003), while the lifetime risk of someone developing schizophrenia is about 
0.8% which, though lower than many mental health conditions, is unlikely to ever achieve 
remission and requires constant management (Saha et al. 2005).  

Many mental health conditions, such as major depressive disorder, present with a variety of 
symptoms that range from altered body image to anhedonia. This diversity of symptoms may 
represent a variety of disease subtypes (Schneck 2009), as well as the complex 
pathophysiology of such diseases which may be underlain by a range of genetic, social, and 
neurocognitive causes (Nestler et al. 2002; Belzung, Willner, and Philippot 2015).  

Psychiatric conditions are also highly comorbid with other health conditions, mental and 
otherwise (Hirschfeld 2001; Goodell, Druss, and Walker 2011; Tsai and Rosenheck 2013). This 
can make diagnosis (and treatment) even more complex and requiring personalization. 

Disorders of the brain are often characterized as being ‘mental’, primarily relating to 
observable behavioural changes speculated to arise from altered signaling in brain circuits; or 
‘neurological’, relating to identifiable disruptions or lesions of the brain. However, this 
distinction may be socially-constructed and constrained by available medical technology at 
any given time. A historical example is general paresis, a form of dementia that was 
considered ‘insanity’ before the discovery of its syphilitic etiology and treatment with 
antibiotics (Williams 1892). A more nuanced modern example may be schizophrenia – though 
heritable and thus assumed to have a significant genetic component (Hilker et al. 2018), on a 
population level the disease is highly correlated with external factors such as migration status 
and living in an urbanized environment, indicating an important psychosocial interaction with 
genetic risk factors (van Os, Kenis, and Rutten 2010; Howes and Murray 2014; van der Ven 
and Selten 2018).  

A growing trend in neuroscience research is to instead focus on the underlying biological or 
cognitive processes that interact to create higher-level observable dysfunction (Trivedi 2006; 
Cuthbert 2014). A variety of disciplines are involved in this process – from electrophysiology 
to investigate neural signaling, to pharmacology in producing precisely-targeted models of 
disease, to psychophysical tasks that can translate between both humans and animals.  

As such, though I will discuss my work in the context of diseases like schizophrenia and 
depression, it is important to remember that research (particularly in animals) is less about 
discovering a unifying theory of a disorder and instead helping piece together knowledge that 
may be useful for developing specific treatments or designing future research, in this instance 
with a particular focus on cognition.  

This thesis will cover my work in assessing motivation in rats using a variable interval 
reinforcement protocol, using pharmacological manipulations associated with schizophrenia-
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modelling and depression treatment, as well as appetitive changes to investigate the 
interaction between satiety and engagement with a food-rewarded task; separately, I 
investigate the cognitive phenotype of Dlg2 heterozygous rats, a genetic risk factor associated 
with a range of psychiatric diseases, on both an associative memory and reversal learning 
task.  

 

1.2.1 NEUROCHEMICAL MECHANISMS IN NEUROPSYCHIATRY 

The majority of published neuropsychological research concerns molecular pathways and 
processes, with a particular focus on identifying receptor targets for the development of 
pharmaceutical treatments which normalize a perceived molecular disequilibrium. This 
neurochemical theory of mental health is particularly prominent in conditions like depression, 
with a majority of both the general public and clinical professionals believing it to be directly 
related to underproduction of serotonin, despite empirical research increasingly finding that 
there is no association between depression and lowered serotonin concentrations or receptor 
activity (Moncrieff et al. 2022). 

Interestingly, the way that psychological disorders are framed to patients can alter 
therapeutic outcomes – studies have found that when clinicians or social workers explained 
depression as caused by a chemical imbalance rather than by psychosocial factors, patients 
had more pessimistic expectations about their future recovery, and shifted their preference 
away from psychotherapy to drug-based treatments (Deacon and Baird 2009; Kemp, Lickel, 
and Deacon 2014). The issue of language in psychiatric treatment is further complicated in 
ethnic minority patients, with medical terminology that has been created within a Western 
culture at risk of alienating demographic groups which already have an increased incidence 
of mental health issues (Harvey 2021). 

Ultimately, trying to separate neurochemical and psychosocial theories of mental health is a 
false dichotomy – psychiatric diseases are almost universally a result of complex, 
rhizomatically-interacting patterns of feedback between neural circuitry, genetics, 
phenomenal experience, and the many layers of environment that an individual inhabits. As 
such, it is increasingly recognized through initiatives such as RDoC that research efforts must 
integrate the many domains underlying mental disorders, unifying dimensions of observable 
behaviour with neurobiological measures (Cuthbert and Insel 2013). In this context, single-
variable pre-clinical research is still highly important (especially given that it is the 
predominant model in scientific output), but care must be taken not to over-generalize 
findings to the exclusion of other theories.  
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1.2.2 PHARMACOLOGY AND NEUROBIOLOGY IN TREATMENT AND MODELLING: INTRO 

The monoaminergic system is perhaps the most highly studied within mental health, and 
extensive research has connected how variations in monoaminergic transmission may lead to 
changes in behaviour and cognition (Fig. 1.1). These correlations will inevitably be 
simplifications – receptor systems often evolve a wide range of subtypes, each of which may 
be involved in multiple functions and pathways. Through the process of evolution it is much 
more common for genes to be duplicated, rather than receptors independently evolving from 
scratch, these copies then being appropriated for unrelated functions. For example, serotonin 
receptors involved in gut motility may have nothing to do with those involved in emotion 
regulation in the brain, their neurochemical pathways functionally distinct under normal 
physiological conditions. This process, which is an efficient way to evolve novel neurochemical 
pathways, illustrates the fallacy of trying to create global generalisations of what a 
neurotransmitter’s ‘purpose’ is. It is also one of the causes of side effects of systemically-
administered drugs, as receptor ligands find themselves exposed to receptors throughout the 
body, converse to how endogenous transmitters under most physiological conditions are 
highly localized. It has also been suggested that rather than trying to hyper-selectively target 
a receptor subtype in the hope of isolating the single cause of a deficit, deliberately non-
specific drugs may in fact have greater efficacy by having multiple mechanisms of action and 
thus increasing the likelihood of normalizing interconnected pathways which themselves will 
express a variety of targets along different stages (B. L. Roth, Sheffler, and Kroeze 2004).  Thus 
while part of this project attempts to correlate activity at specific receptors (and receptor 
subtypes) to particular cognitive outcomes, the confounds introduced by aforementioned 
network effects mean that such strict correlations are difficult to identify (or to even exist).  

 

 

Figure 1.1. A simplified interpretation of the role of different monoaminergic systems in 
regulating cognition and behaviour. Adapted from (Entzeroth and Ratty 2017). 
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The history of the monoaminergic theory of mental health is closely linked to the 
development of drugs in the 1950’s – namely, the discovery that MAOIs (which inhibit 
metabolism of monoamines, thus increasing their synaptic concentration) were efficacious in 
the treatment of depression, and that antipsychotics (which block dopamine receptors) 
effectively treated psychotic symptoms in schizophrenia (Davis et al. 1991; Hindmarch 2002). 
These observations lead to the hypomonoaminergic and hyperdopaminergic theories of 
depression and schizophrenia, respectively.  

Such serendipitous, reverse-engineered pharmaceutical-mechanistic approaches, despite 
being highly successful in the development of some treatments, have equally presented 
failures. The observation of psychosis-like symptoms from overdoses of dopaminergic 
stimulants reinforced the theory that schizophrenia was caused by an endogenous 
hyperdopaminergic state (Bell 1965). However, the more recent observation that NMDA 
antagonists recapitulate pro-psychotic symptoms and that psychosis may involve NMDA 
receptor hypofunction (Javitt 1987) has yet to achieve relevance in treating schizophrenia, 
with no glutamatergic drug candidates reaching the clinic despite decades of research.  

Regardless of successful drug development, both pharmacological and non-pharmacological 
models can be highly informative to the mechanisms underlying the relationship between 
neurobiological insult and clinical outcomes. NMDA antagonists are of particular interest, not 
only as schizomimetics, but as a novel class of rapid-acting antidepressants (Berman et al. 
2000). 

 

1.2.3 PHARMACOLOGY AND NEUROBIOLOGY IN TREATMENT AND MODELLING: NMDA 

NMDA receptors are widely distributed throughout the brain and are critical for post-synaptic 
mediation of activity-dependent neuroplasticity. They are unique among ionotropic receptors 
in having relatively slow de-activation kinetics and being highly permeable to Ca2+, features 
which enables them to function as a ‘coincidence detectors’ which induce neuroplastic 
changes in response to specific patterns of activation, a critical physiological process for 
memory and learning.  

Antagonists at NMDA receptors – most commonly ketamine, PCP, or MK-801 – are highly 
effective pharmacological models of schizophrenia, replicating positive, negative, and 
neurocognitive features of the disease (explored further in Section 1.3.1). Studies in rodents 
(Fig. 1.2) have demonstrated that these drugs translatabley cause cognitive dysfunction which 
has been demonstrated in schizophrenia patients. Administration of NMDA antagonists to 
humans, in addition to cognitive measures, also induced effects including hallucinations and 
thought disorganization which are difficult to analyse in non-human animals (Moghaddam 
and Krystal 2012).  
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Figure 1.2. NMDA antagonists have been found to induce cognitive deficits in rodents that are 
highly relevant to schizophrenia as experienced by human patients. Adapted from (Cadinu et 
al. 2018). 

 

NMDA antagonists cause pathway-specific dopaminergic abnormalities which are also seen 
in neurobiological studies (Weinstein et al. 2017; Kokkinou, Ashok, and Howes 2018). Effects 
of NMDA antagonists can be reversed by atypical antipsychotics (López-Gil et al. 2007), adding 
clinical validity and further reinforcing that the mechanism through which they achieve a 
schizophrenia model is not restricted to glutamatergic signaling but also extends to 
dopaminergic and serotonergic theories of the disease. A rare form of cancer that causes 
autoimmune responses against NMDA receptors also adds non-pharmacological evidence to 
the NMDA hypofunction hypothesis, with patients developing psychiatric symptoms 
reminiscent of schizophrenia (Dalmau et al. 2007). 

Decreased expression levels of NMDA receptors have b een found in both schizophrenia 
(Pilowsky et al. 2006) and MDD patients (Feyissa et al. 2009), indicating their importance in 
both cognitive and affective processing. The clinical effects of NMDA antagonists are tied to 
the timescale at which they are analysed: acutely, disruption of NMDA signaling causes a 
psychotomimetic state relevant to schizophrenia, whereas the antidepressant effect appears 
to result from the recruitment of plasticity-related genes in the hours and days following 
administration (N. Li et al. 2010). 

Different NMDA antagonists, despite targeting the same binding site of the same receptor, 
can have highly divergent effects on measures including perception, working memory, and 
attention in animals (Gilmour et al. 2009; Dix et al. 2010; Smith et al. 2011; Talpos et al. 2015), 
suggesting that they are not analogous in creating cognitive models of schizophrenia. 
Likewise, not all NMDA antagonists have an antidepressant effect when tested in humans 
(Serafini et al. 2013). This divergence may be a result of different binding selectivity to NMDA 
receptors which contain particular subunits, with some subtypes having opposing 
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neuroplastic and neuromodulatory effects, in addition to different spatial distributions both 
along the neuron and between brain regions (Wenzel et al. 1995; Massey et al. 2004; Köhr 
2006; Mao et al. 2020). My research further characterizes the cognitive effects of different 
NMDA antagonists (Section 3). 

The glutamatergic system is the primary form of excitatory neurotransmission in the brain, 
and thus widely interacts with other receptor systems including cholinergic and dopaminergic 
pathways (Fig. 1.3). Acetylcholine signaling is critical for cognitive function. Modulation of 
these pathways, through variations in [ab]normal functioning or by pharmacological 
manipulation, correlates with cognitive and memory impairment (Sarter and Parikh 2005; 
Haense et al. 2012), and synaptic ACh is a key pro-cognitive target of several drugs that treat 
Alzheimer’s Disease (Uddin et al. 2020).  

The nonspecific muscarinic antagonist scopolamine is particularly relevant both in modeling 
disease and as a potential therapeutic. Scopolamine induces acute perceptual and memory 
impairments analogous to those experienced in schizophrenia (Osterholm and Camoriano 
1982; Cieślik et al. 2021), and which may be reversed by antipsychotic drugs (Adedayo et al. 
2021). Through such observations, the muscarinic system has been identified as a potential 
target for future schizophrenia pharmacotherapy (Foster, Jones, and Conn 2012). More 
recently, scopolamine has also been identified as a novel rapid-acting antidepressant, 
showing efficacy in both human patient populations (Furey and Drevets 2006) and animal 
models (Wohleb et al. 2016). 

 

 

Figure 1.3. Pathways between brain regions involved in emotional and cognitive processing 
involve multiple neurotransmitter systems. Adapted from (Holgate and Bartlett 2015). 
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Though psychosis can be acutely triggered by stress and environmental factors the etiology 
of schizophrenia is largely thought to be developmental, with schizophrenia symptoms 
typically manifesting or worsening during adolescence. During this time, brain maturation 
involves the fine-tuning of excitatory-inhibitory signaling balance and the refinements in 
monoaminergic inputs, and disruption during this period can lead to life-long dysfunction of 
these systems (Keshavan et al. 2014).  Models of disease that recapitulate these 
developmental disruptions are important for research validity, with manipulations that 
include administration of certain drugs during critical growth periods or through genetic 
mutation.  

Application of the NMDA channel blocker MK801 or the cytotoxin MAM to juvenile rodents 
results in the animals having a reduction of neuron density in the PFC and hyperactivity in 
dopaminergic signaling as adults (Coleman et al. 2009; Gomes, Rincón-Cortés, and Grace 
2016), particularly as a result of a disruption of the balance between opposing dopaminergic 
regulatory circuits (Trantham-Davidson et al. 2004; Arnsten et al. 2017). These findings mirror 
neural abnormalities found in the PFC of human schizophrenia patients (Beasley and Reynolds 
1997; Broadbelt and Jones 2008). It is notable that loss of neurons in one region of the brain 
leads not only to dysfunction in that specific area, but also impairments to interconnectivity 
throughout the brain (Schmitt et al. 2011), and that relatively minor differences in brain 
volume can lead to significant differences in cognitive function between patient populations 
(Sanfilipo et al. 2002).  

As the PFC is involved in a wide range of cognitive functions, atrophy in this region is 
associated with a range of disorders beyond schizophrenia (Mochcovitch et al. 2014; Miguel 
et al. 2018; Girgenti and Duman 2018) – the NMDA antagonist ketamine achieves at least 
some of its therapeutic antidepressant effect through enhancing transmission in this brain 
region (C.-T. Li et al. 2016).  

Another key brain region thought to be disrupted in schizophrenia is the hippocampus. A 
common neurodevelopmental animal of schizophrenia involves lesioning of the hippocampus 
in juvenile animals, leading to a broad spectrum of schizophrenia-related phenomena in 
adulthood (Tseng, Chambers, and Lipska 2009). Reduced rate of hippocampal neurogenesis 
in schizophrenia patients may lead to an observed reduction in hippocampal volume (Nelson 
et al. 1998; Allen, Fung, and Weickert 2016), leading to cognitive deficits, with reversal of this 
neuroatrophy a potential mechanism of treatment of both antipsychotic and antidepressant 
drugs (Kodama, Fujioka, and Duman 2004). Many schizophrenia patients have impaired 
episodic memory, and the hippocampus is under-activated when performing tasks related to 
this cognitive domain (Weiss et al. 2003) – meanwhile, the hippocampus is over-activated 
when patients are experiencing characteristic auditory hallucination symptoms (Silbersweig 
et al. 1995), thus indicating a link between neuromorphology and presented symptomology. 

Genetic models of schizophrenia can also replicate symptoms of schizophrenia, and are 
particularly scientifically valid when the target genes overlap with human genetic risk factors. 
Mouse knockouts of Neuregulin1, a synaptic growth factor, show a reduction in hippocampal 
spine density and reduction in NMDA receptor concentration (Mei and Xiong 2008). DLG2, 
another genetic risk factor and target for modelling neuropsychiatric disease, is also thought 
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to be involved both in PFC/hippocampal functioning and NMDA neurotransmission, and is 
detailed further in the following section.   

 

1.2.4 DLG2 AS A GENETIC RISK FACTOR FOR PSYCHIATRIC DISEASE 

Even with modern technology, understanding genetic risk factors for psychiatric disease 
remains complex, with highly variable heritability and complex interactions with 
environmental factors (Esposito, Azhari, and Borelli 2018). Mutations associated with 
neurological disruption can vary from isolated changes to single bases, to the deletions of 
entire chromosomes – such changes to the genome may manifest downstream in a variety of 
ways, such as morphological changes to protein shape, or via interactions with epigenetic 
processes and thus altering regulation and levels of gene expression.  

One technique to identify genetic changes associated with disease is the genome-wide 
association study (GWAS), where control populations and those with known phenotypes are 
genotyped and regions of interest identified statistically. These studies may focus on different 
types of genetic changes, such as single-nucleotide polymorphisms (W. Xu et al. 2014) or gene 
copy-number variations (Georgieva et al. 2014), and may identify a range of implicated 
genetic changes and thus therapeutic targets. 

In the context of schizophrenia, many dozens of different candidate genes and genetic loci 
have thus been identified (Ripke et al. 2013; Rees et al. 2014; Pardiñas et al. 2018). Some 
studies have found that symptoms between schizophrenia patients of different genetic 
backgrounds appear to largely overlap, suggesting that disease phenotypes may converge 
despite genotypic differences (Bassett et al. 2003). Conversely, some neuropsychiatric risk 
genes may develop into disorders of very different symptomology in different people (E. K. 
Green et al. 2010). 

One recurring theme in GWAS-identified psychiatric genetic risk factors is proteins associated 
with synaptic stability, including pre-synaptic adhesion molecules, post-synaptic scaffolding 
proteins, and molecules associated with protein-protein interactions during neural signaling 
(Kirov et al. 2012; Fromer et al. 2014; Marshall et al. 2017). That these molecules have highly-
specific context-dependent functions, yet are widely expressed in the brain and are 
sometimes able to substitute their function between paralogs, may explain some of the 
apparent paradoxes and ambiguity in genotype-to-clinical phenotype causality.   

One specific synaptic-associated loci which has been identified as a significant risk factor for 
psychiatric disorders, in particular schizophrenia (Kirov et al. 2012; Marshall et al. 2017), 
bipolar disorder (Georgieva et al. 2014; W. Xu et al. 2014), and autism-spectrum disorder 
(Egger et al. 2014; Ruzzo et al. 2019), is the gene DLG2 (also known as PSD-93).  

DLG2 belongs to a family of molecules called the membrane-associated guanylate kinase 
family (MAGUKs), which includes DLG1–4. These are highly conserved proteins, with some 
overlapping function not only between diverged mammals, but also in invertebrates 
(Humbert, Russell, and Richardson 2003; Nithianantharajah et al. 2013). DLG2 is expressed 
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widely in the brain, including in the hippocampus, striatum, cerebellum, and cortex (Yoo et 
al. 2020; Waldron et al. 2022; Yoo et al. 2022). 

Though a full analysis of molecular and in vitro DLG research is beyond the scope of this thesis, 
DLG2 has been found to be involved in prenatal cortical development (Sanders et al. 2022), 
tumour suppression (Woods et al. 1996), receptor trafficking (Elias and Nicoll 2007), activity-
dependent neuroplasticity (Carlisle et al. 2008), and voltage-gated potassium channel 
functioning (Sanders et al. 2020). Notably, DLG2 also interacts with the NMDA receptor, 
forming complexes with subunits and regulating synaptic receptor expression (Sans et al. 
2000; Ingason et al. 2015; Frank et al. 2016). NMDA receptors are clinically relevant both in 
modelling schizophrenia and as therapeutic targets for rapid-acting antidepressants (detailed 
previously in Section 1.2.3).  

 

Figure 1.4. Schematic of scaffold proteins in excitatory neural synapses, indicating the 
sprawling relationships that DLG complexes (indicated in red) have with other molecules. 
Adapted from (Zhu, Shang, and Zhang 2016). 

 

Though relatively understudied, some research has begun to characterize the effects of DLG2 
in vivo. In a mouse study, Dlg−/ − animals were found to have normal visual discrimination 
ability, suggesting intact perceptual and choice-related abilities. However, they were unable 
to learn a more complex version of this task, where specific visual stimuli were paired with a 
spatial location – a task at which human DLG2 CNV deletion patients were also impaired in a 
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translated protocol (Nithianantharajah et al. 2013; 2015). This same study also found that 
Dlg−/ − mice had a significantly great number of premature responses on the 5-CSRT task, 
suggesting that they had higher levels of impulsivity. This may align with some GWAS studies 
that have found associations between DLG2 CNV’s and ADHD, a disorder which is 
characterized by aberrant behavioural inhibitory control (Alemany et al. 2015). 

A separate study using Dlg−/ − mice found that, compared to wild-type animals, they had 
decreased exploration in a novel environment (an indicator of anxiety), decreased social 
approach to other animals, and an increased rate of stereotypic self-grooming – all behaviours 
associated with animal models of ASD, with translatable equivalents in human populations 
(Yoo et al. 2020). A similar anxiety phenotype was seen in (Qin et al. 2020), which rather than 
genetic editing used an injected chemotherapeutic drug to decrease expression of Dlg2 – this 
study also found decreased exploration in an open-field environment. 

It’s important to note that the majority of previous work using DLG2 knockout have been 
homozygous mutants (i.e. both copies of the gene are deleted), completely removing the 
protein from being expressed by the organism in question. Heterozygous mutants may be a 
more valid model for psychiatric disease given that CNV mutations in humans for DLG2 only 
have one copy deleted.  

One of few studies using heterozygous animals found that Dlg2+/- mice had impaired motor 
learning, decreased startle responses to acoustic stimuli, and slower habituation to novel 
environments (Pass et al. 2022). Interestingly, the removal of one copy of the gene only 
decreased protein expression in the cortex, with intact levels of mRNA in the hippocampus 
and cerebellum, suggesting that this region is more sensitive to decreased levels of Dlg2 and 
that the impairments found in this study were localized to circuits in this brain area.  

Recent work has developed a novel rat strain that is heterozygous for Dlg2, with work in our 
laboratory group finding impaired hippocampal-associated neuroplasticity (Griesius et al. 
2022). Based on this finding, research was expanded to behavioural tasks thought to recruit 
the hippocampus and associative learning processes – mechanisms which are known to be 
impaired in schizophrenia (S. J. Wood et al. 2002; Diwadkar et al. 2008). 

The protocols I used to further characterize the phenotype of Dlg2 using heterozygous Long 
Evans rats are the object-in-place task, which measures associative memory by analyzing how 
much time subjects spend investigating familiar objects that have changed position (Section 
2.4). This process is known to be impaired in schizophrenia patients (Burglen et al. 2004) and 
is dependent on communication between the pre-frontal cortex and hippocampus (Barker 
and Warburton 2015), regions which are disrupted by Dlg2 downregulation. I also ran the 
same cohort of rats on a touchscreen visual discrimination reversal learning protocol (Section 
2.2), another way to investigate flexibility of associative cognition which is impaired in 
schizophrenia (Suetani et al. 2022). I also hoped to replicate and generalize a deficit in bowl-
digging probabilistic reversal learning that was found in our laboratory group (unpublished).  
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1.3.1 BEHAVIOUR IN NEUROPSYCHIATRIC DISEASE 

Many psychological conditions rely on self-reported and clinically-observed behaviour, which 
themselves are a result of underlying cognitive and neurological dysfunctions – targeting 
observable abnormalities may thus address the symptoms, rather than the root cause, of a 
psychiatric condition.  

To illustrate the dissonance between observable symptoms and the cognitive underpinnings, 
one can imagine a common behavioural presentation of a depression patient: a failure to 
engage in social behaviour. Disruption of a variety (or combination) of cognitive processes 
may lead to this – a desensitization to rewarding social stimuli, a decreased ability to predict 
future positive reinforcement, negative bias toward expected outcomes, higher level of 
memory recall toward negative vs. positive associated memories, etc. Each of these processes 
may have distinct neural substrates and risk factors, despite manifesting in convergent ways, 
and thus underlies the need to identify and target specific cognitive processes. Likewise, it is 
important not to assume relevant behavioural endophenotypes based on clinical 
presentations alone. For example, though Alzheimer’s disease is typically associated with 
memory and coordination impairments, research has found that deficits in visual processing 
can predict later progression of the disease (Uhlhaas et al. 2008), indicating both an important 
diagnostic tool and a potentially relevant dimension of experienced patient symptomology, 
divergent from common assumptions about the disease.  

In using animal models in psychological research, such bottom-up approaches to cognition 
are particularly necessary. Though the underlying cellular physiology between mammals may 
be relatively similar, higher-level presentation of embodied behaviour is where major 
divergences emerge between species. The goal of translational research is thus to create tasks 
that are as overlapping as possible in targeting shared cognitive processes, while 
accommodating the unique ways that rodents and humans have evolved to interact with their 
environment and other members of their species. The use of translational ‘cognitive batteries’ 
is thus increasingly prevalent in both research and diagnosis (Stephan, Volkmann, and 
Rossner 2019). The ability to methodologically probe the conscious, embodied experience of 
a research subject is ultimately the goal of neuropsychology – it is difficult to prove if non-
human animals experience mental health in any way that is analogous to humans, or if 
animals kept under laboratory conditions are representative of healthy populations given the 
‘unnatural’ environment in which they exist. Nonetheless, ongoing research to characterize 
the spectrum of cognitive phenotypey will hopefully bring science closer to this goal.  
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Figure 1.5. While independent psychological processes can be grouped by related function and 
evolutionary background, they dynamically interact between themselves and can form 
overlapping spectrums of maladaptation in different psychiatric disorders. Adapted from 
(Anderzhanova, Kirmeier, and Wotjak 2017). 

 

1.3.2 COGNITIVE ENDOPHENOTYPEY AND NEUROPSYCHOLOGY 

As aforementioned, psychiatric conditions can be thought of as a spectrum of cognitive 
abnormalities that coalesce into a diagnosable phenotype with enough consistency to be 
identified as a disease, despite individual differences in presentation (Fig. 1.5). Cognitive 
batteries can be used to assess symptoms both in clinical diagnosis (M. F. Green et al. 2004; 
Gogos, Joshua, and Rossell 2010), and in pre-clinical research of animal models of disease 
(Carter and Barch 2007). 

Schizophrenia encompasses a particularly wide range of symptom manifestations: ‘positive’, 
which include hyperactivity, hallucinations, and paranoia; ‘negative’, which include emotional 
blunting, anhedonia, and amotivation; and ‘cognitive’, which include impairments in 
attention, memory, and sensory processing.  

Negative symptoms largely overlap with the symptoms of MDD, insomuch that around half 
of schizophrenia patients are also comorbid for depression (Buckley et al. 2009). 
Antipsychotic drugs primarily target positive symptoms of schizophrenia, while the negative 
symptoms are currently untreated by medication despite being the major factor in persistent 
disability and patient quality of life (Buchanan 2007). The sedative effects of dopamine 
blockers may even worsen negative and cognitive symptoms of the disease (Mizrahi et al. 
2007). The assessment of negative symptoms including amotivation is explored further in 
Section 1.3.3. 
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Different disease models may capture different cognitive aspects of the condition. In 
schizophrenia, 5-HT2A agonists and muscarinic antagonists both produce acute perceptual 
disruptions consistent with psychosis. However, scopolamine induces impairments in 
attention that aren’t seen in psilocybin (Young et al. 2013; Higgins et al. 2021), while 
psilocybin induces an anhedonic impairment toward rewarding stimuli not seen in 
scopolamine (Navarria et al. 2015; Fadahunsi et al. 2022). 

Even if symptoms present similarly they can have different psychological underpinnings. 
Delusions may be caused by an aberrant assignment of salience, resulting in the individual 
attempting to reconcile hypersignificant ideas or experiences into a subjectively-coherent 
narrative experience (Kapur 2003). Though both pharmacological models of psychosis can 
cause delusions, dopamine agonists may modulate salience through disruption of incentive 
value signaling, while NMDA antagonists through disruption of prediction-based associative 
learning (Corlett, Honey, and Fletcher 2007; Bernacer et al. 2013). 

Cognitive effects are relevant not only acutely, but incrementally. A key cognitive theory of 
depression is that, though antidepressants may have an immediate effect on attenuating 
negative affective bias to stimuli, phenomenal experiences of improved mood take several 
weeks to manifest as newly-positive percepts integrate into memory and internal schemas 
(Harmer et al. 2009). This effect may also be relevant in schizophrenia – though antipsychotics 
cause acute sedation and amotivation, after chronic use they normalize motivation and 
reward processing (Fervaha et al. 2015). 

Psychosocial factors can impart a direct effect on cognition. A social isolation rodent model 
causes neuromorphological deficits similar to those seen in human schizophrenia patients, 
which further interact when combined with brain lesion models (Alquicer et al. 2008). Such 
multifactorial models have translatable validity in intersecting environmental and 
neurobiological risk factors which are seen in vulnerable patient populations. Social factors 
may be relevant not only as a result of experimental manipulation, but also in natural 
variation – the level of maternal grooming and nursing in rat pups correlated with sensitivity 
to propsychotic drugs later in life (G. K. Wood et al. 2001), adding validity to maternal 
deprivation and childhood neglect theories of neurodevelopmental psychopathology 
(Ellenbroek and Riva 2003; Leeb, Lewis, and Zolotor 2011).  

Though I have primarily highlighted the importance of treating biochemical/neurocognitive 
deficits as causative factors, psychotherapy which directly addresses embodied presentations 
of disease (e.g. by teaching social skills) can also be highly effective in treating patients with 
psychosis (L. Wood et al. 2020). Just as normalizing neurochemical abnormalities can improve 
downstream behavioural functioning, developing coping skills and practicing cognitive 
exercises will involve functional and neuroplastic restructuring as the mechanism of 
mediating between the individual and their substrate (Barsaglini et al. 2014).  
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1.3.3 MOTIVATION AND ENGAGEMENT 

Motivation refers to how an individual’s internal state, environment, and past experiences 
intersect in producing goal-directed behaviour, and how the organism performs neural 
computations of the risk-reward analysis of initiating such action. Motivation thus relies on a 
range of processes: learned associations impart whether a stimulus predicts a future reward; 
incentive salience drives ‘wanting’ behaviour towards this goal; hedonic reward signaling 
imparts the phenomenal ‘liking’ of the experience (Berridge 2012). Such processes can be 
dissociated in the neurobiological pathways involved and through pre-clinical task design. 
Instrumental responding toward a reward-associated cue appears to be driven by dopamine 
circuits, whereas hedonic reward sensitivity (e.g. to sugar) is driven by opioid receptors 
(Barbano and Cador 2007; Salamone et al. 2016). These reward pathways dynamically overlap 
via the mesolimbic system, which projects through brain regions including the VTA, NAc, and 
mPFC  (Russo and Nestler 2013). Motivated behaviour can also exist outside of any clear cue-
association or hedonic-feedback, as individuals may spontaneously exhibit novelty-seeking 
and explorative behaviours (Di Domenico and Ryan 2017). 

Motivational impairments are a hallmark of several psychological disorders, notably 
depression and the negative domain of schizophrenia. The level of motivation in individuals 
with schizophrenia has been correlated with other measures of the disease including 
dopaminergic connectivity (P. Xu et al. 2019). Variations in baseline measures of apathy 
symptoms can also predict response to therapy in psychosis patients (Strauss et al. 2013). 
Though considered a separate condition, categorization of symptoms associated with apathy 
can also be informative to understanding motivational deficits in these other psychiatric 
conditions. Domains of apathy have been identified as emotional, social, and behavioural, 
each referring to different ways in which an individual would fail to engage with exogenous 
environmental stimuli (Ang et al. 2017). Motivation deficits are also uniquely harmful in that, 
in addition to impairing the ability to meet an individual’s physical and emotional needs, they 
may also impair their ability to seek or persist with therapeutic treatment (Tylee et al. 1999).   

Most treatments for both depression and schizophrenia do not address motivational deficits 
– indeed, current first-line treatments for these conditions may actually worsen symptoms of 
amotivation (Artaloytia et al. 2006; Padala et al. 2012). As such, reinforcement learning and 
motivation have been identified as critical domains to probe in pre-clinical research for future 
development of treatments (Markou et al. 2013). A number of pre-clinical tasks have been 
developed to probe apathy-related cognitive processes, including variable interval sustained 
responding tasks such as the one I applied in my research. These are discussed further in 
Section 3.1. 
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CHAPTER 2 – COGNITIVE CHARACTERISATION OF DLG+/− RATS  

2.1 INTRODUCTION 

Recent research in our laboratory group had identified NMDA-mediated hippocampal 
neurotransmission as potentially deficit in Dlg2 heterozygous rats (Griesius et al. 2022), with 
behavioural studies further finding impairments on a probabilistic reversal learning task 
(unpublished) which is dependent on hippocampal circuitry (Vilà-Balló et al. 2017). As such, 
my research investigated cognition in Dlg2+/- rats on two tasks also thought to involve the 
hippocampus, touchscreen visual reversal learning and object-in-place associative memory, 
as a follow-up to these earlier findings.  

Discrimination reversal learning is thought to measure cognitive flexibility, or inhibitory 
control over behaviour: the ability of a subject to effortfully withhold a previously-reinforced 
response and instead direct themselves toward a stimulus that prior to reversal was 
unrewarded (Izquierdo and Jentsch 2012). Impairments in such cognitive control are seen in 
schizophrenia (L. F. Reddy et al. 2016; Waltz 2017), ADHD (Banaschewski et al. 2005), and ASD 
(Crawley et al. 2020), conditions for which DLG2 is a genetic risk factor. Difficulty in 
disengaging from a habitual pattern of behaviour despite changes in reward contingency is 
also particularly relevant in diseases such as addiction and substance use disorder, which are 
highly co-morbid with schizophrenia (Thoma and Daum 2013). Blockade of NMDA receptors 
reliably impairs cognitive flexibility (van der Meulen et al. 2003; Stefani and Moghaddam 
2010), indicating the importance of the glutamatergic system in such cognitive functioning, 
with work ongoing to identify if specific subunit-containing receptors are specifically 
associated with behavioural flexibility (Dalton et al. 2011; Marquardt et al. 2014).  

Though rodents are not predominantly visual animals, with albino strains particularly 
impaired in tasks requiring visual acuity, previous research has demonstrated that the Long 
Evans rats used in this study can perform visual reversal learning to a relatively high level 
(Kumar, Talpos, and Steckler 2015). 

Associative recognition memory is most notably disrupted in Alzheimer’s disease (Fowler et 
al. 2002), but also in schizophrenia (S. J. Wood et al. 2002). Object-in-place tasks in rodents 
which probe such visuospatial cognitive function have demonstrated deficits in 
developmental models of schizophrenia (Howland, Cazakoff, and Zhang 2012), with separate 
studies finding that intact glutamatergic hippocampal-mPFC connections and NMDA-
mediated neuroplasticity are critical for performance on this task (Barker and Warburton 
2008; 2015). 

Given the dysfunction of hippocampal LTP and NMDAR-mediated processes which were 
demonstrated in Dlg2+/- rats (Griesius et al. 2022), and the parallel recruitment of these 
processes in these two tasks, I predicted to find an impairment in both reversal learning and 
object-in-place performance in Dlg2+/- rats compared to wild-type controls.  
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2.2 METHODS – TOUCHSCREEN REVERSAL 

ANIMALS AND HOUSING 

Subjects were 12 WT and 12 Dlg2+/– Long Evans rats, with genotype blinded to the handler 
until the end of the study, weighing approximately 450–550g at the start of this study. 
Genotype rats were bred in-house using CRISPR-Cas9 deletion of 7bp in exon 5 of the Dlg2 
gene resulting in a premature stop codon, with the final cohort being generated by crossing 
heterozygous x wild-type rats to create 1:1 ratio of genotype and wild-type littermate controls 
(breeding protocols are fully described in Supplement 1 of (Griesius et al. 2022)).  

The cohort had previously been used in a bowl-digging adaption of the probabilistic reversal 
learning task and a novelty-suppressed feeding task (in press). Re-use of animals from 
unrelated behavioural assays was justified as part of the 3R’s principle of reducing animal 
numbers, in particular given their transgenic background with specialised requirements in 
breeding and ASPA regulation.  

The rats were housed in same-sex pairs in enriched laboratory cages (55 × 35 × 21 cm) with 
sawdust, paper bedding, red Perspex houses (30 × 17 × 10 cm), cotton rope and cardboard 
tubes in temperature-controlled conditions (21 ± 1 °C) and under a 12:12-h reverse light–dark 
cycle (lights off at 07:00 h). 

Rats were mildly food restricted to approximately 90% of their free-feeding weights (~18 g of 
food per rat per day laboratory chow (Purina, UK)). Water was freely available, except during 
~30 minute test sessions. The behavioural procedures and testing were performed during the 
animals’ active phase between 09:00 and 17:00 h. 

All experiments were carried out in accordance with local institutional guidelines (University 
of Bristol Animal Welfare and Ethical Review Board), the UK Animals (Scientific procedures) 
Act 1986, and the European Parliament and Council Directive of 22 September 2010 
(2010/63/EU). 

 

APPARATUS 

Training and behavioural testing were performed in sound-proofed touchscreen operant 
boxes (Med Associates Inc, USA) running K-Limbic software (Conclusive Solutions Ltd., UK). 
Chambers contained a house light, tone generator, infrared touchscreen panel divided into 
three 9.2 x 13.4cm windows, and a magazine delivering 45mg reward pellets (Test Diet, 
Sandown Scientific, UK). Output files were decoded and analysed using MS Excel, Julia, and 
Graphpad.  

 

PRE-TRAINING 

During the first phase of touchscreen training, rats were presented with an initiation square 
presented in the middle window of the screen and received a reward pellet on touching it. 
Sessions lasted 30 minutes or until 120 trials were performed, whichever was reached first. 
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Rats proceeded onto the next stage of pre-training after performing >50 trials on two 
consecutive days (mean time to train 4.96 ± 0.24 [SEM] sessions). For rats that consistently 
failed to respond over multiple sessions, crushed reward pellet was applied to the operant 
chamber to encourage interaction.  

In the second phase of training, rats were presented with the initiation square, before then 
pressing either of two stimuli presented simultaneously in the left and right response window 
to receive a reward pellet, with sessions lasting 30 minutes or until 100 trials were performed. 
Animals reached criteria and progressed to the visual discrimination task after completing >50 
trials on two consecutive days (mean time to train 2.29 ± 0.09 sessions). 

 

BEHAVIOURAL TESTING 

Visual discrimination testing involved subjects being presented by the initiation square in the 
middle window, followed by visual stimuli (Flower and Wheel) presented together on the left 
and right windows (with positioning randomized between trials). The rewarded image was 
counterbalanced so that half of rats were initially assigned to Flower and half to Wheel. On 
selecting the correct image, rats were presented with a reward pellet in the magazine, which 
after being retrieved would progress to the next trial. If the incorrect image was selected, 
animals were ‘punished’ with no reward and a timeout of 10 seconds with the house light 
illuminated. If animals made no selection within 30 seconds after pressing the initiation 
square, the trial was classed as an omission and animals also received a timeout of 10 seconds 
with the house light on. 

Accuracy at performing the visual discrimination was tracked across sessions. Once a rat had 
performed at >80% accuracy on two consecutive days, they were moved to the reversal 
condition, where the rewarded images (Flower or Wheel; Fig. 2.1) were swapped.  

 

 

Figure 2.1. Flower and Wheel visual stimuli used in this study.  
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DATA ANALYSIS 

For this study, sessions were divided into three blocks: initial visual discrimination acquisition 
(criteria of ≥80% accuracy across 2 consecutive sessions), extinction of first image pair (after 
reversal of rewarded image pair, criteria of ≥50% accuracy in one session), and reversal re-
acquisition of the new image pair (50% accuracy session until ≥80% accuracy across 2 
consecutive sessions).  

Though most previous research on reversal learning has analysed the entire reversal process 
as one block, there is precedent in other studies in analysing different phases of performance 
as distinct learning processes (Marquardt, Sigdel, and Brigman 2017). 

Of the 24 rats, 16 reached final reversal criteria (8 from each group) within 32 session – all 24 
completed the first two learning blocks. Slightly variable total sessions completed due to non-
simultaneous pre-training criteria (thus starting session1 of main task at different dates). 

The primary outcome measures were the number of sessions/trials to reach these criteria, 
indicating the rate of learning. Secondary measures included the initiation latency (time to 
respond to the initiation square once it had appeared on screen); response latency (time to 
respond to image pairs after initiation the trial); sidebias (preference for the right or left side 
of the screen, regardless of which image was presented); winstay (likelihood of staying on the 
same side after getting a correct trial); and loseshift (likelihood of switching sides after getting 
an incorrect trial). Statistical analysis between genotype groups was conducted using an 
unpaired T-test.  
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Figure 2.2. An example accuracy trace of a single rat. The shaded regions indicate the different 
blocks of sessions for the purposes of analysis (red: acquisition; blue: extinction/perseverance; 
yellow: reversal/re-acquisition) . The S-shaped learning seen through the reversal blocks, with 
a plateau at 50%, motivated the idea that a shift between distinct cognitive processes was 
involved between these different phases. 
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2.3 METHODS – OIP  

APPARATUS 

Exploration of objects occurred in a wooden open-topped arena (90 × 100 cm) with walls 
(height 50 cm) which were painted grey and surrounded by black cloth (height 1.5 m) to 
obscure vision of the handler. The floor was covered with sawdust (depth ~2cm). An overhead 
webcam recorded and monitored the animal's behaviour, which was scored once manually 
on-line and then independently re-scored from videos. The stimuli were copies of objects 
composed of “Duplo” (Lego UK Ltd, Slough, UK) that varied in shape, colour and size (9 × 8 × 
7 cm to 25 × 15 × 10 cm) and could not be displaced. 

 

PRE-TRAINING 

Animals were habituated to the arena over a five-day period. On the first two days, housed 
pairs were allowed to explore the empty arena over a 10-minute period. On the following two 
days, individual rats explored the empty arena for 5 minutes. On the final day of habituation, 
rats explored the arena for 5 minutes with four simple Duplo shapes in each corner. One WT 
rat was excluded from the study due to failure to habituate to the task and abnormally 
anxious behaviour in the arena.  

 

OIP TASK 

The task consisted of an exploration and a test phase. During the exploration phase, four 
unique objects were placed in the corners of the arena 15cm from the walls, and rats were 
allowed to investigate the objects for 5 minutes. Following this, rats were placed into a 
covered holding cage for a 5 minute delay phase during which all objects were cleaned with 
ethanol to remove any scent markings. In the test phase the position of two objects was 
switched, and rats were again placed in the arena for 3 minutes and allowed to investigate 
the objects. Two test conditions were used in this study. During the Test 1, subjects were 
given one 5 minute exploration session followed by a 5 minute delay. During the Test 2, 
subjects were given a 5 minute exploration session, followed by a 5 minute delay, followed 
by another 5 minute exploration session and 5 minute delay. Object position was 
counterbalanced between rats, as detailed in Table 2.1.  

 

DATA ANALYSIS 

The time spent investigating the pair of objects which had switched position was compared 
with the time spent investigating the unchanged pair, with a discrimination ratio calculated 
as [NOVEL]/([NOVEL]+[FAMILIAR]). Object-in-place memory was considered intact when the 
ratio of exploring the novel pair was significantly above 0, analysed using a one-sample T-test. 
Comparisons between geno groups was performed using an unpaired T-test.  
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Table 2.1. Objects and counterbalancing used during the OIP task.  

Group 1 
Rat 1,2; 9,10; 17,18;  

Group 2 
Rat 3,4; 11,12; 19,20;  

Group 3 
Rat 5,6; 13,14; 21,22;  

Group 4 
Rat 7,8; 15,16; 23,24; 

    
Image A (Test 1) 
 

 

Image B 
 

 

Image C 
 

 

Image D 
 

 

Group 1 
Rat 1,2; 9,10; 17,18;  

Group 2 
Rat 3,4; 11,12; 19,20;  

Group 3 
Rat 5,6; 13,14; 21,22;  

Group 4 
Rat 7,8; 15,16; 23,24; 

    
Image A (Test 2) 

 

Image B 

 

Image C 

 

Image D  
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2.4 RESULTS – TOUCHSCREEN REVERSAL LEARNING 

PRIMARY MEASURES 

DLG2 rats required significantly more trials (t22=2.373, p=0.0268; Fig. 2.3) and sessions 
(t22=2.739, p=0.0120; Fig. 2.4) to reach criteria during the ‘extinction’ phase of reversal 
learning, corresponding to the first reversal session until they had reached 50% accuracy.  

No significant difference was seen in any of the other learning blocks, including when looking 
at the sum of reversal. Sessions to criteria has also been visualised as survival graphs (Fig. 2.5) 
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Figure 2.3 Trials to criteria for each of the three learning blocks. Largely analogous to sessions. 
(bars: mean ± SEM;  unpaired T-test between genotypes; p-values in red with significant 
(<0.05)  bolded) 
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Figure 2.4 Sessions to criteria for each of the three learning blocks. Largely analogous to 
sessions. (bars: mean ± SEM;  unpaired T-test between genotypes; p-values in red with 
significant (<0.05)  bolded) 
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Figure 2.5 Survival graphs based on total number of rats reaching criteria after a given session 
– a different way to visualise Fig. 2.4 above. Statistics not performed due to lack of variance 
in this data.  
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SECONDARY MEASURES 

Secondary measures were also analysed across the three separate learning blocks, as well as 
the summated reversal phase. No significant difference was found between genotype on 
initiation latency (Fig. 2.6), response latency (Fig. 2.7), side bias (Fig. 2.8), winstay (Fig. 2.9) or 
loseshift (Fig. 2.10). 

The large differences between learning blocks, in particular between extinction and 
acquisition/re-acquisition phases, reinforces the idea that different cognitive processes 
underlie these different learning blocks, and that future reversal learning studies may benefit 
from this analytic stratification. There were also individual differences in patterns of ‘strategy-
shifting’ over time, i.e. whether a rat would revert to a side bias or winstay strategy as part of 
the extinction process (Fig. 2.11) – formal analysis of this sort of behaviour is beyond the 
frequentist statistics used in this thesis.  
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Figure 2.6 No genotype difference in initiation latency during each learning block. (bars: mean 
± SEM;  unpaired T-test between genotypes; p-values in red with significant (<0.05)  bolded) 
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Figure 2.7 No genotype difference in response latency during each learning block. (bars: mean 
± SEM;  unpaired T-test between genotypes; p-values in red with significant (<0.05)  bolded) 
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Figure 2.8 No genotype difference in mean side bias during each learning block. (bars: mean 
± SEM;  unpaired T-test between genotypes; p-values in red with significant (<0.05)  bolded) 
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Figure 2.9 No genotype difference in mean winstay behaviour during each learning block. 
(bars: mean ± SEM;  unpaired T-test between genotypes; p-values in red with significant 
(<0.05)  bolded) 
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Figure 2.10 No genotype difference in mean loseshift behaviour during each learning block. 
(bars: mean ± SEM; unpaired T-test between genotypes; p-values in red with significant 
(<0.05) bolded) 
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Figure 2.11 Example of single subject’s outcome measures over time during reversal, with 
averages across the group diluting these individual patterns and thus difficult to analyse.  
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MISC. 

My data has also been formatted for more direct comparison to previous literature on 
reversal learning, including  (Nithianantharajah et al. 2013) in Fig. 2.12, and (Savolainen et al. 
2021) in Fig. 2.13. These are discussed further in Section 2.6.  
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Figure 2.12 Left – significant genotype main effect during first 8 sessions of visual 
discrimination reversal in Dlg2-/- mice (Nithianantharajah et al. 2013). Right – no genotype 
effect during first 8 sessions in Dlg2+/- rats (this study) when using analogous between-subjects 
two-way ANOVA. 
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Figure 2.13 Left – significant changes in accuracy, trials completed per session, and response 
latency during first three reversal trials following administration of 1.5 mg/kg PCP (Savolainen 
et al. 2021). Right – no genotype differences between Dlg2+/- rats and controls across these 
same measures.  
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2.5 RESULTS – OIP 

Despite using very short delays and extended exploration phases, the WT controls did not 
reliably discriminate (one-sample T-test vs. 0) on either the first (t11=1.330, p=0.2103; Fig. 
2.14) or second (t10=1.913, p=0.0847; Fig. 2.16) test session, thus no genotype comparison 
could be made. The only cohort to have demonstrated the expected significant novelty-
preference were the DLG2 rats during Test 2 (t11=2.397, p=0.0354; Fig. 2.16.  

Extending the exploration phase to 2 x 5 min appeared to increase the ability to discriminate, 
with higher discrimination ratios for both groups during the second session (WT 0.115–0.145; 
DLG 0.099–0.219). At no point did either group approach the ratio of ~0.4 seen in controls in 
previous publications.  

The failure to discriminate doesn’t appear to be due to object bias, though there was a trend 
towards AB bias during Test 2 (one-sample T-test vs.0; t22=1.781, p=0.0887; Fig. 2.17) 
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Figure 2.14 Control WT group did not demonstrate reliable novel object preference as 
expected, thus no comparison to be made. WT vs. DLG unpaired T-test, WT/DLG vs. 0 one-
sample T-test.  
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Figure 2.15 No bias towards particular object pairs. One-sample T-test vs. 0.  

 



38 
 

WT DLG het
-0.5

0.0

0.5

Test 2 (2x 5min exploration)
Discrimination  Ratio

WT vs. DLG p = 0.54
WT vs. 0 p = 0.08

DLG vs. 0 p = 0.04

 

Figure 2.16 During test with extended exploration, only the DLG hets demonstrated novel 
object preference, with controls again not working thus no comparison to be made. WT vs. 
DLG unpaired T-test, WT/DLG vs. 0 one-sample T-test. 
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Figure 2.17 Non-significant trend towards AB image pair during second test. One-sample T-
test vs. 0. 
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2.5 DISCUSSION 

This study found no genotype difference in initial visual discrimination acquisition, suggesting 
that perceptual mechanisms involving the visual cortex were unlikely to be impaired in Dlg2+/- 

animals compared to controls. However, given that perceptual impairments are a relatively 
common symptom in schizophrenia and ASD (the conditions in which DLG2 CNDs most 
commonly present), further research may wish to probe perceptual processes in animal 
models more specifically – for example, by using tasks that assay visual integration (Talpos et 
al. 2015; 2016).  

I found evidence of a reversal learning deficit specifically associated with the extinction phase, 
the learning period during which animals must dissociate from a now-unrewarded association 
and return to chance level performance (generally by switching to a sub-optimal strategy such 
as side bias or winstay). This may indicate that Dlg2 heterozygosity impaired the ability of the 
animals to ‘un-learn’ irrelevant reinforcements, thus causing them to persist with them for 
longer despite changing reward contingencies.  

Neural mechanisms that are known to be deficit in extinction, but not acquisition, may 
indicate the specific pathology that is induced by Dlg2 heterozygosity. Lesions (Schmaltz and 
Theios 1972) or localized infusions of protein synthesis inhibitors (Vianna et al. 2003) into the 
hippocampus have demonstrated specific impairments in extinction learning, with the first 
study finding no effect from cortical lesions. Conversely, studies on fear extinction have 
identified specific regions in the orbitofrontal cortex and lateral amygdala which are 
selectively recruited in extinction learning (Gottfried and Dolan 2004). Though such fear 
conditioning protocols often use aversive stimuli, rather than the neutral ones as in this study, 
the amygdala has been demonstrated to be involved with associative learning of conditioned 
reinforcement (Hatfield et al. 1996) even in the absence of aversive or emotionally-salient 
stimuli (beyond the ‘positive’ appetitive reward).  

Like other types of learning, extinction is itself divided into subroutines such as consolidation 
and retrieval, which themselves are mediated via different brain structures and molecular 
pathways (Quirk and Mueller 2008). As such, it may be difficult to identify a specific 
mechanism through which Dlg2 mediates extinction learning, especially given the broad 
expression of the gene throughout the brain (Fagerberg et al. 2014; Yoo et al. 2020; Waldron 
et al. 2022; Yoo et al. 2022). As DLG2 is known to interact with the stable expression of NMDA 
receptors in the synapse (Sans et al. 2000; Frank et al. 2016), and NMDA antagonism induces 
deficits in extinction learning (Santini, Muller, and Quirk 2001; Duffy, Labrie, and Roder 2008; 
Savolainen et al. 2021), it is reasonable to assume that DLG2 causes dysregulation of NMDA-
mediated neuroplasticity in regions or pathways associated with extinction while leaving 
other learning mechanisms relatively intact. Given the specific deficit in Dlg2+/- hippocampal  
NMDA-mediated synaptic integration found in (Griesius et al. 2022), it is possible that this 
neurophysiological deficit is directly related to the behavioural flexibility impairment found in 
this study. However, future research may include activity-mediated imaging studies such as 
c-fos to identify if other regions including the orbitofrontal cortex or amygdala are 
maladaptively recruited compared to wild-type animals during tasks which probe extinction 



40 
 

learning processes, or further electrophysiology to identify particular NMDA subtypes 
involved in Dlg2+/- neuroplastic deficits in both the hippocampus and other brain areas.  

My study found no genotype differences in secondary measures including latencies (which 
would indicate impulsivity) or winstay/loseshift/sidebias strategies (which would indicate 
perseverative non-flexibility toward sub-optimal strategies). However, my analysis involved 
blocking mean secondary measure performance across many sessions, which may blur out 
individual variation in strategy shifting, especially given that individuals may switch multiple 
times within one test session (Ashwood et al. 2022). Likewise, trying to create learning curves 
from animals that are performing with high levels of variation due to different strategies (Fig. 
2.11) may not be the optimal approach, particularly when trying to extend curves to sessions 
beyond which animals have already reversed (thus inconsistent subject numbers in 
datapoints). 

My findings partially align with a study using Dlg−/ − mice, which also found impairment at this 
early phase of reversal learning (Nithianantharajah et al. 2013). In their analysis, they found 
a significant genotype main effect when looking at the learning curves of the first 8 sessions 
(coincidentally, this aligns with the sessions before the average performance of the Dlg+/- 
reaches 50% accuracy; in the below graph, I have included for illustrative purposes up to 
session 14, after which the first animal reached reversal). When analysing my data using an 
analogous between-subjects ANOVA of the learning curves of the first 8 sessions, no 
significant genotype main effect was found (Fig. 2.12). However, the statistical methods 
employed in this analysis are unclear – only the first 8 sessions were analysed rather than the 
entire learning curve, and some information on post-hoc and multiple-comparisons 
adjustments is absent.  

My findings also partially align with a previous study that found the subchronic administration 
of the NMDA antagonist PCP, a well-characterised schizophrenia model, impaired early 
reversal learning (this previous study did not look at the later stages and instead only looked 
at the first five sessions), suggesting that Dlg2 heterozygosity had similar cognitive effects to 
PCP on this task (Savolainen et al. 2021). The study reversed these PCP-induced deficits using 
an α2C antagonist, a novel schizophrenia treatment, and future replications of my research 
could investigate whether this drug would also ameliorate Dlg2-induced effects on this task. 
Similar to the aforementioned comparison to the mouse study by (Nithianantharajah et al. 
2013), despite finding a significant effect at the extinction phase of reversal, when data was 
re-structured into individual sessions and 2-way ANOVA performed no difference was found. 
Additionally, no effect was found on secondary measures explored by (Savolainen et al. 2021)  
was found (Fig. 2.17). It is worth noting that such acute pharmacological manipulation 
introduced during the task may have more severe effects than a lifelong genotype difference 
to which the animal may have developed adaptations and compensatory mechanisms.  

Interestingly, GluN2B-selective NMDA antagonists impair the re-acquisition phase but not the 
extinction phase of visual reversal learning when infused into the striatum, while impairing 
extinction but not re-acquisition phase when infused into the orbitofrontal cortex (Brigman 
et al. 2013). This suggests that the impairment seen with PCP, which is relatively non-selective 
for NMDA subtypes, may be mediated through this mechanism, and further affirms that 
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GluN2B subtypes and the orbitofrontal cortex could be further investigated in 
electrophysiological studies of Dlg2+/-. 

Though it is assumed that cognitive flexibility is being assessed in my protocols, a range of 
other cognitive processes are involved in visual discrimination reversal learning: attention to 
the stimulus, impulsivity in responding prematurely (i.e. before perceptually resolving the 
stimulus), reward processing of reinforced stimulus, etc. Animal models of epilepsy (Roebuck 
et al. 2020) and Alzheimer’s disease (Van den Broeck et al. 2019) have demonstrated 
impairments in reversal learning, further suggesting that broader mechanisms may be 
involved beyond our focus disease model of schizophrenia. Indirect factors such as stress 
(Graybeal et al. 2014; Bryce and Howland 2015) and diet (Kanoski et al. 2007; Makowiecki, 
Hammond, and Rodger 2012) can also affect performance on reversal learning, indicating the 
importance of welfare, animal husbandry,  and other factors beyond task design.  

More complex metacognition about the task, such as a subject’s knowledge that outcomes 
can change in future, may be relevant in situations where multiple reversals occur. While 
some individuals did complete multiple reversals on the task, in this study only one reversal 
is assessed due to the relatively slow learning that occurs with rodents in visual tasks (of the 
n=24 cohort, 8 rats failed to reach reversal within 32 sessions, while 4 completed two 
reversals in the same time period). Other reversal learning tasks, such as those involving 
spatial locations as opposed to visual discriminations, are relatively ‘easier’ for rats to acquire 
and demonstrate multiple reversals within a session (Bari et al. 2010), adding granularity to 
results. Such tasks have also been found to be impaired by NMDA antagonists (Wilkinson et 
al. 2020), suggesting overlapping mechanisms. Future research could investigate Dlg2 
heterozygotes on these other reversal learning protocols, given that our research group has 
now investigated using visual touchscreens and tactile bowl-digging. Fear conditioning 
protocols, which also involve extinction learning, may also be of interest in further probing 
this deficit.  

The object-in-place study did not produce useful results, with wild-type animals failing to 
significantly discriminate on both tests. Without a functional control group, no genotype 
comparison can be made.  

The OIP protocol necessitates a well-lit open-field arena which is known to be anxiogenic for 
rodents (K. A. Roth and Katz 1979), and it is possible that anxiety confounded exploration and 
visuospatial learning during the task. No genotype difference was found for Dlg2 
heterozygotes on either elevated plus maze (Waldron et al. 2022) or on novelty-suppressed 
feeding (unpublished), suggesting that hypersensitivity to anxiety may be present in the base 
Long Evans strain.  

Previous research has demonstrated that strain can affect stress behaviours, with some 
studies finding Long Evans more susceptible to anxiety than other strains (Keeley et al. 2015; 
Hughes and Hancock 2016). This is concurred by informal observations by the handler in this 
study that Long Evans rats were visibly more reactive to noise compared to Lister Hooded rats 
when performing analogous operant tasks, and that Lister Hooded rats which are normally 
used for OIP in our institute reliably produce control discrimination behaviour. Future 
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replication of the Dlg2+/- OIP study may consider using a different rat base strain for breeding, 
or other mechanisms to ameliorate anxiety such as enriched housing or darkened testing 
conditions.  
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CHAPTER 3 – VARIABLE INTERVAL RESPONDING IN RATS 

3.1 INTRODUCTION  

As described in Section 1.3.3, motivation is an emergent behaviour that can be described by 
a range of cognitive processes. The ability to allocate cognitive and metabolic resources to 
compute appropriate perceived-effort for perceived-reward is a multifactorial neural process 
that underlies a wide variety of interactions between the individual and their environment. 
At a higher level, motivational behaviour can be divided into two phases: directional 
behaviour covers instrumental-wanting and subsequent consummatory-liking; in parallel, 
activational behaviour refers to the physical effort an organism makes toward these cues and 
goals (Salamone et al. 2017). Motivational deficits are a symptom of a range of disorders – 
perhaps most commonly presenting in depression, where motivational deficits do not appear 
to be treated by first-line SSRIs (Yohn et al. 2016). Likewise, motivation impairments in 
schizophrenia are largely untreated, or even aggravated, by dopaminergic antipsychotics 
(Mizrahi et al. 2007). Designing pre-clinical assays of motivation is thus a necessity for future 
drug development to improve efficacy and therapeutic outcomes.  

A number of pre-clinical assays have been developed with motivational domains in mind. 
Progressive ratio tasks involve an increasing number of lever presses to earn a fixed reward, 
assaying the ‘breakpoint’ at which the effort/reward ratio becomes too high and the animal 
stops responding (Skjoldager, Pierre, and Mittleman 1993). Other tasks, such as effort-for-
reward, involve giving subjects a choice between low-effort/low-reward and high-effort/high-
reward, assaying the ratio of responses (Salamone et al. 1991). Such tasks will often include 
secondary measures of motivation such as temporal latency to respond. 

The variable interval task which I used was based on the single-lever VI30 described in 
(Gilmour et al. 2009) but with some notable changes, including adding regular periods when 
reinforcement dropped to zero, and measuring presses on a lever which was never 
reinforced. Based on other tasks which manipulate reinforcement, such extra measures were 
aimed to assess additional cognitive domains beyond motivation.  

Unlike some pre-clinical assays of motivation, there is no manipulation of work required to 
earn reinforcement, with a pseudo-random reinforcement instead inducing sustained effort. 
Nonetheless, different behavioural readouts on this study are hoped to correlate to different 
subprocesses of motivation: instrumental/wanting to the rate of lever presses, and 
consummatory/liking to the rate of entries to the magazine where reward pellets are 
presented. Additionally, the task is divided into 10-minute blocks where the active lever 
switches from standard reinforcement (ON-phase) to no reinforcement (OFF-phase). Activity 
toward temporarily-unreinforced levers may reflect preservative/impulsive behaviour, 
though it may also reflect the individual’s ability to perceptually discern between indicators 
of the phase change. Exploratory/superstitious behaviour may be assayed by activity at the 
never-reinforced ‘dummy’ lever – despite never being rewarded, animals may still engage 
with this stimuli either because they have formed aberrant causal relationships between 
coincidental reinforced behaviour (Catania and Cutts 1963), or from an intrinsic foraging-like 



44 
 

drive to update information about the environment that unrewarded stimuli are still 
unrewarded and have not changed value over time. 

My task design also adds temporal granularity, sampling data every 10 minutes over a test 
duration of 3 hours, an improvement on previous VI30 studies which look at averages across 
the entire session (Gilmour et al. 2009) or at a smaller number of fixed timepoints 
(Gastambide et al. 2013). This allows for the correlation of cognitive readouts to known 
pharmacokinetic profiles of a drug, bridging behavioural data with in vitro metabolics.  

The drugs I assay as part of my VI task include the muscarinic antagonist scopolamine and a 
number of NMDA antagonists, which have clinical relevance both as psychosis models and as 
rapid-acting antidepressants – characterisation of these drug’s effects thus serves a dual 
scientific purpose. Different NMDA antagonists have been previously demonstrated pre-
clinically to have divergent effects on cognitive measures including attention (Benn and 
Robinson 2014), perception (Cherbanich 2016), and working memory (Dix et al. 2010). Drugs 
can also have different therapeutic relevance – notably, ketamine but not its precursor PCP 
has antidepressant properties. A subject of ongoing debate, the theories for these divergent 
effects include off-target receptor binding, NMDA subunit selectivity, brain region-specific 
localization, molecular dynamics within the ion channel, and differences in synaptic plasticity 
(Wenzel et al. 1995; Massey et al. 2004; Köhr 2006; Ingram et al. 2018; Mao et al. 2020). This 
study investigates a number of NMDA antagonists with differing [known] properties, including 
PCP (schizomimetic), ketamine (schizomimetic, antidepressant), lanicemine (low ion trapping, 
potential antidepressant), and CP-101,606 (NR2B-selective, potential antidepressant). 

In parallel to NMDA antagonists, scopolamine has in recent decades been identified as a 
potential rapid-acting antidepressant (Furey and Drevets 2006; Wohleb et al. 2016). 
Interestingly, despite differing primary pharmacology, it appears to have a similar mechanism 
of action to ketamine, mediated through AMPA glutamatergic signalling, GABAergic 
interneuron disinhibition, and mTOR-mediated neuroplasticity (E. Martin et al. 2017; Wohleb 
et al. 2017). Scopolamine has also been used to induce general cognitive impairment and 
amnesia, particularly as a model of dementia (Ebert and Kirch 1998; Klinkenberg and Blokland 
2010), and this study aims to further define the precise nature of these deficits. 

I also manipulate feeding state as a way to investigate the effect of satiety and reinforcer-
desensitization on behaviour. Prefeeding was performed with standard chow, reward pellets, 
and both together, and was hypothesized to decrease the perceived value of the food 
reinforcement and thus decrease motivation towards performing instrumental responses for 
this reward.  
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3.2 METHODS 

ANIMALS AND HOUSING 

Male Lister Hooded rats (Envigo, UK) are used as subjects in all studies.  Subjects were a cohort 
of rats (n=8) who had previously been used in an unrelated bowl-digging task and weighed 
360–460g at start of the study. 

The rats were housed in same-sex pairs in enriched laboratory cages (55 × 35 × 21 cm) with 
sawdust, paper bedding, red Perspex houses (30 × 17 × 10 cm), cotton rope and cardboard 
tubes in temperature-controlled conditions (21 ± 1 °C) and under a 12:12-h reverse light–dark 
cycle (lights off at 07:00 h). 

Rats were mildly food restricted to approximately 90% of their free-feeding weights (~18 g of 
food per rat per day laboratory chow (Purina, UK)). Water was freely available, except during 
30–180 minute operant sessions. The behavioural procedures and testing were performed 
during the animals’ active phase between 09:00 and 17:00 h. 

All experiments were carried out in accordance with local institutional guidelines (University 
of Bristol Animal Welfare and Ethical Review Board), the UK Animals (Scientific procedures) 
Act 1986, and the European Parliament and Council Directive of 22 September 2010 
(2010/63/EU). 

 

APPARATUS 

Training and behavioural testing were performed in 30.5 × 24.1 × 21.0 cm sound-attenuating 
lever operant boxes (Med Associates Inc, USA) running K-Limbic software (Conclusive 
Solutions Ltd., UK). Chambers contained a house light, tone generator, two retractable 
response levers located on each side of the food magazine with two lever lights positioned 
above each lever (1” White Lens, 28 V), a ventilation fan, and a magazine delivering 45mg 
reward pellets (Test Diet, Sandown Scientific, UK). A panel of 5CSRT nosepokes was also 
present but inactive during the study. Output files were decoded and analysed using MS Excel, 
Julia, and Graphpad.  

 

PRE-TRAINING 

Animals were habituated to the operant task with two stages of pre-training. The first session 
of habituation involved the rats being placed in the operant chambers while a pellet was 
presented every 60 seconds, to teach them to collect the reward from the magazine 
receptacle. All rats learned to collect pellets within one session of magazine training. Next, 
rats were counterbalanced to either the left or right target lever, with the other lever 
remaining an unrewarded dummy – this assignment would be maintained for the entire 
duration of the study. During lever training, both levers were presented, with the target lever 
rewarding one pellet per press, with sessions lasting 30 minutes or until 100 trials were 
performed. Animals reached criteria and progressed to the VI training after completing >50 
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trials on two consecutive sessions. All rats reached criteria within 3 sessions, after which they 
progressed to the VI30 baseline task. Rats would remain on this stage of training until reaching 
stable levels of performance on the primary measures of Lev/Min (target lever presses per 
minute during the ON phase) and Accuracy at target lever during the ON phase versus the 
OFF phase, calculated as [ON/[ON+OFF]] (‘Accuracy’), about 20 sessions (Fig. 3.1)  
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Figure 3.1 Pre-training data of primary measures for the two cohorts of rats. Stable 
performance is reached by 20 sessions, with no significant difference in Lever/Min across the 
final 3 sessions of training. The initial dip in Lever/Min is likely due to the sudden drop in 
reinforcement rate during the transition from the FR1 pre-training to the VI30 randomised 
schedule.  

 

VI30 TASK 

The VI task used in this study is based on the Single Lever VI 30 protocol previously described 
in (Gilmour et al. 2009). Rats are conditioned to press a lever, which provides a reward pellet 
on a randomised variable interval schedule of 30s ± 23s. The unpredictability of the 
reinforcement encourages sustained responding to ensure maximum reward is achieved. As 
well as the reinforced target lever, a dummy lever was present which was never reinforced.  

An alteration to previously-published protocols was to stratify the sessions into sequential 
10-minute ON and OFF blocks. During the ON phase, the target lever provided a reward pellet 
on the variable interval schedule of 30s ± 75%. After 10 minutes, the OFF phase was signalled 
with a 1 second 8kHz tone and dimming of the house light. During the OFF phase, both levers 
remained in the chamber but no reward was available. Following the 10-minute OFF phase, 
the ON phase would then be signalled with the tone and the house light becoming 
illuminated. The ON and OFF phases would alternate for the duration of the session – 30 
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minutes during baseline training sessions, or 180 minutes for drug test sessions. Thus, each 
timepoint on the DRUG*TIME graphs indicates a 20 minute block, which is segregated based 
on the measure in question.  

The primary measures on the task were target lever presses per minute during the ON phase 
(‘Lev/Min’), and the accuracy of pressing the target lever during the ON phase versus the OFF 
phase, calculated as [ON/[ON+OFF]] (‘Accuracy’). 

In addition to these primary measures, I developed other measures as a way to further probe 
areas of interest, which are detailed in Table 3.1. Findings on these novel metrics may be 
compared with previous research on similar tasks as part of a pilot validation, discussed 
further in Section 3.5.  

 

Table 3.1 Behavioural measures in the VI30 task.  

Lever/Min Target ON Primary measure. Activity at reinforced lever to get a semi-
predictable reward during ON phase. Instrumental responding, 
task engagement, motivation, reinforcer-earning.  

Accuracy ON/OFF Primary measure. Percent of lever presses at target lever during 
ON phase as a sum of total lever presses during ON + OFF phase. 
Discriminability, inhibitory control.  

Lever/Min Target OFF Activity at target lever during OFF phase when no reward is 
available. Discriminability, inhibitory control, perseverative 
behaviour.  

Mag Entries/Min ON Reward magazine entries during ON phase when pellets are 
available to be dispensed. Reward-seeking, reinforcer-obtaining.  

Mag Entries/Min OFF Reward magazine entries during OFF phase when no pellets 
available to be dispensed. Reward-seeking, compulsivity, 
inhibitory control.  

Lever/Min Dummy 
ON 

Activity at never-reinforced dummy lever during ON phase when 
reward is available at target lever.  Explorative.  

Lever/Min Dummy 
OFF 

Activity at never-reinforced dummy lever during OFF phase when 
reward is not available at target lever. Explorative. 
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DRUG STUDIES 

Testing schedules followed a twice-weekly schedule, which involved a baseline training 
session, followed by a drug testing session, followed by a rest day. This is then repeated for 
the second half of the week but with two rest days.  

The drug formulation, doses, and routes of administration are detailed in Table 3.2.  Doses 
and routes of administration were based on those previously used in similar pre-clinical 
research tasks to allow for comparison (Gilmour et al. 2009; Griesius, Mellor, and Robinson 
2020; Hales et al. 2020; Wilkinson et al. 2020). 

Additionally, non-pharmacological manipulations of feeding and satiety were investigated 
(Table 3.3). 

 

Table 3.2 Drugs dose-responses in this study. 

Drug Doses (mg/kg) Route of 
Administration 

Vehicle 

Scopolamine 0.01, 0.03, 0.1, 
0.3 

Subcutaneous 
injection 

Saline 

Ketamine 0.6, 1.25, 2.5, 
5.0, 10.0 

Subcutaneous 
injection 

Saline 

CP-101,606 1, 3, 10 Intraperitoneal 
injection 

5-10% DMSO, 
10-20% 
cremephor, 
saline 

PCP 0.01, 0.03, 0.1, 
0.3, 1.0 

Intraperitoneal 
injection 

Saline 

Lanicemine 1, 3, 10 Intraperitoneal 
injection 

Saline 

 

 

Table 3.3 Prefeeding manipulations used in this study.  

Manipulation Details 

Chow pre-feeding Free access to food overnight prior to 
session 

Reward pellet pre-feeding Free access to reward pellets 90 mins prior 
to test session 

Reward pellet + chow pre-feeding Free food overnight + free access to reward 
pellets 90 mins prior to session 
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ANALYSIS 

Effect of DRUG x TIME was analysed with repeated measures two-way ANOVA. Where a 
significant main effect or interaction occurred (p < 0.05), Sidak multiple comparisons post-hoc 
corrections are performed where appropriate. Figures are annotated with DRUG main effect 
/ DRUG*TIME interaction above bars, and repeated measures comparisons against VEHICLE 
above each timepoint with colour-coding to signify dose. Mean effect of DRUG was also 
calculated by averaging effect across the session and normalizing against VEHICLE, which was 
defined as 100%, using a within-subject one-way repeated measures ANOVA (in effect, a one-
sample T-test against 100, as there is no variance on the vehicle group due to the 
normalization). Significance is defined as * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 
0.0001. In drug*time data where a divide-by-zero or NaN error occurred, value was adjusted 
to 0. In drug main effect bar charts where 0/0 occurred (i.e. zero performance at both vehicle 
at drug), NaN error was adjusted to 100% to indicate no change in performance. Outliers at 
>2SD were excluded and replaced with groupmean for purposes of analysis. 

In Results section, main effect and p-value is cited first for each measure, together with mean 
values which are % relative to VEH ± SEM, as calculated using one-way ANOVA with Sidak 
multiple comparisons, with comparisons only made when main effect was significant. 
DRUG*TIME statistics, including main effects, interactions, and multiple comparisons, are not 
cited in text and are detailed in the figures. A simplified diagram of drug dose-response 
responses and statistics for all drug studies can be seen in Table 3.4.  
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3.3 RESULTS 

SCOPOLAMINE (Fig. 3.2) 

For Lever/Min (Fig. a) drug impairment (F(2.877, 20.14)=63.40, p=<0.0001) was only seen for the 
highest two doses of 0.1 mg/kg (56.3 ± 6.0%; p=0.0007) and 0.3 mg/kg (29.2 ± 3.5%; p<0.0001) 
compared to VEH. A brief decrease in Lever/Min activity was seen with 0.01 mg/kg only during 
timeblocks 2–3 before it returned to VEH level.  

Accuracy (Fig. b; F(1.555, 10.88)=15.38, p=0.0011) similarly only demonstrated an effect with 
these higher doses, though at a lesser magnitude than Lev/Min, with 0.1 mg/kg decreasing to 
88.7 ± 2.5% (p=0.0099) and 0.3 mg/kg to 84.4 ± 4.0% (p=0.0220).  

For Lever/Min OFF (Fig. c; F(1.687, 11.81)=5.655, p=0.0225) there was generally no effect, though 
one can observe a trend toward increase with 0.1 but not 0.3, suggesting a dose-dependent 
disinhibition that was overwhelmed by non-specific impairment at the highest dose.  

Mag Entries/Min during the ON phase (Fig. d; F(2.359, 16.51)=14.11) appeared to follow a similar 
pattern to the Lev/Min dose-response, with decreases at 0.1 mg/kg (63.3 ± 4.8%, p=0.0004) 
and 0.3 mg/kg (50.8 ± 6.0%, p=0.0003), perhaps indicating a shared mechanism of impairment 
between these measures.  

Mag Entries/Min OFF (Fig. e; F(1.938, 13.57)=6.881, p=0.0090) appears to show a linear dose-
dependent increase with dose, though with low absolute values and large variability only 0.3 
mg/kg is significant (851.9 ± 220.0%, p=0.0439). This increase in mag entries was prominent 
at the beginning of the session, when other doses rapidly dropped to zero, perhaps indicating 
that this dose impairs online learning about reward non-availability during the OFF phase. 

No main effect was seen Dummy Lever/Min during the ON phase (Fig. f) and thus no 
observations can be made, though a dose-dependent decrease was seen with all but the 
lowest dose during the OFF phase (Fig. g; F(1.283, 8.984)=5.840, p=0.0331):  0.03 mg/kg to 54.1 ± 
12.7% (p=0.0337), 0.1 mg/kg to 39.6 ± 11.5% (p=0.0050), and 0.3 mg/kg to 17.7 ± 3.7% 
(p<0.0001). Scopolamine is the only drug tested to demonstrate a significant grand-mean 
main effect on this measure. 
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KETAMINE (Fig. 3.3) 

Impairments in ON Lever/Min (a; F(2.398, 16.79)=22.26, p<0.0001) were seen only in the highest 
doses of 5 mg/kg (64.0 ± 3.8%, p=0.0001) and 10 mg/kg (55.0 ± 3.0%, p<0.0001), which 
recovered to baseline by block 5 and 6 respectively, indicating an increased duration of action 
between these doses.  

Accuracy (b; F(1.652, 11.56)=7.566, p=0.0102) showed an impairment with the highest dose of 10 
mg/kg to 91.1 ± 2.3%, p=0.0286. Recovery to VEH baseline was much faster, by block 3 for 5 
mg/kg, suggesting a dissociable, duration-sensitive cognitive effect of the drug. The slower 
recovery for 10 mg/kg was perhaps driven by a disinhibition effect on Lever/Min OFF (c), 
which had a non-significant main effect, but one can observe for most doses was high during 
block 1 before dropping, but which for 10 mg/kg started low before rebounding above VEH, 
perhaps demonstrating a reaction to the task that was delayed by initial cognitive 
impairments from this dose.  

Mag Entries/Min ON (d; F(3.001, 21.01)=5.380, p=0.0066) didn’t appear to show dose-
dependence, though 10 mg/kg was significantly above vehicle (161.3 ± 16.3%, p=0.0352) in 
particular around timeblock 4, potentially aligning with a delayed pharmacokinetic profile as 
mentioned for Lev/Min OFF. Mag Entries during the OFF phase (e; F (1.045, 7.314) = 7.469, 
p=were also increased for 10 mg/kg during the first 4 time blocks, though due to variability 
were not significant, whereas the more muted increase during the start of the session for 5 
mg/kg resulted in significance at that dose on the one-way ANOVA.  

No significance was seen with Lever/Min Dummy ON (f), with all doses showing, to varying 
degree, elevation during block 1 before dropping to near-zero. There was also no significant 
main effect on Dummy OFF (g), with a single repeated-measures significance appearing for 
0.6 mg/kg seemingly from variability in the VEH group.  
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CP-101,606 (Fig. 3.4) 

CP-101,606 demonstrated a dose-dependent increase in Lever/Min (a; F(1.721, 12.05)=14.15, 
p=0.0009), the only drug to reliably do so, though this was only significant at the highest dose 
of 10 mg/kg with one-way analysis (137.4 ± 6.6%, p=0.0023). 

Accuracy (b; F(1.459, 10.21)=17.93, p=0.0008) was significantly impaired at this dose (96.8 ± 0.6%, 
p=0.0026), concentrated entirely within the first timeblock. This decrease in accuracy 
appeared to be largely due to the influence of a very large increase in Lever/Min OFF (c; F(1.124, 

7.867)=20.87, p=0.0016), which feeds into the Accuracy calculation together with Lev/Min, 
indicating a major but short-lasting disinhibition effect at 10 mg/kg (651.6 ± 104.1%, 
p=0.0034). 

ON Mag Entries/Min (d) had a significant drug main effect (F(2.600, 18.20)= 3.307, p=0.0490) with 
a trend towards an increase with higher doses, though no treatment in particular was 
significant in comparison to VEH.  

Mag Entries/Min OFF (e; F(1.315, 9.208)=10.15) showed a significant increase with 10 mg/kg 
(482.0 ± 120.3%, p=0.0460), largely concentrated in block 1. Together with the OFF Lev/Min, 
this data shows that CP-101,606 enhanced activity during the early stages of the OFF-phase, 
indicating an impairment of inhibitory control, but one which rapidly returned to baseline, 
suggesting that learning and reaction to non-reinforcement was intact. Neither Dummy Lever 
measure (f–g) showed any significance.  
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PCP (Fig. 3.5) 

None of the assayed measures demonstrated significance, with the exception of a main effect 
on one-way means for Lever/Min Dummy ON (f; F(2.032, 14.23)=4.342, p=0.0333) – given the 
unusual s-shaped dose-response and the lack of significance for any particular dose on 
repeated measures, and near-zero values involved in analysis of the dummy levers, it’s 
possible this main effect is a statistical artefact.  

An expanded study with a higher dose more closely aligned with other literature (3 mg/kg) 
was aborted on welfare grounds after the first animal to be dosed displayed potentially 
injurious increases in locomotor activity.  
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LANICEMINE (Fig. 3.6) 

Main effect of drug was near-significant on Lever/Min (a; F(1.372, 9.607)=4.294, p=0.0574), with 
no drug treatment significant against VEH, though an impairment with the highest dose 
during blocks 1 and 2 is evident on repeated measures. There was no main effect of drug on 
either analysis, with slight increases at 1 and 3 mg/kg potentially due to a below-normal 
vehicle trace. Likewise, a minor main effect on Accuracy (b; F(1.241, 8.689)=5.107, p=0.0458) was 
likely driven by these ON Lev/Min impairments at 10 mg/kg and non-significant increases in 
OFF Lev/Min (c).  

There were no differences in either Mag Entry/Min ON, Dummy Lever/Min ON, and Dummy 
Lev/Min OFF (Fig. d,f,g), though a significant repeated-measures impairment seen during 
block 1 of OFF Dummy Lev/Min measure, before all drugs dropped to near-zero, suggests a 
potential inhibition of the initial unreinforced-explorative behaviour commonly seen at this 
first timepoint between different studies.  

A highly significant effect was seen on the one-way test of Mag Entries/Min OFF (e; F(1.548, 

10.84)= 19.83, p=0.0004), with large increases for both 3 mg/kg (821.1 ± 102.6%, p=0.0006) and 
10 mg/kg (721.4 ± 166.6%, p=0.0219), but scrutinising the two-way DRUG*TIME graphs 
reveals these percentages were largely due to relatively minor absolute increases relative to 
a near-zero vehicle performance, with variability further constrained by group-mean 
adjustments to zero values.  

 

 

Table 3.4 Pharmacology dose-response responses and statistical significance, based on mean 
one-way ANOVA analysis. Arrows indicate approximate response shapes with increasing 
doses (↗: dose-dependent increase; ↘: dose-dependent decrease; ↷: inverted U-shaped 
dose-response; ↝: non-linear dose-response). Within-subject One-way ANOVA, VEH vs. drug 
normalized to 100%, main effect of drug. n.s. not significant; * p < 0.05; ** p < 0.01; *** p < 
0.001; **** p < 0.0001.  

Drug Lev/Min 
ON 

Accuracy Lev/Min 
OFF 

Mag/Min 
ON 

Mag/Min 
OFF 

Lev/Min 
Dum ON 

Lev/Min 
Dum 
OFF 

Scopolamine ↘  **** ↘  ** ↷ * ↘  *** ↗ ** n.s. ↘ * 
Ketamine ↘  **** ↘  * n.s. ↗  ** ↗ * n.s. n.s. 
CP-101,606 ↗  *** ↘  *** ↗  *** ↗  * ↗  ** n.s. n.s. 
PCP n.s. n.s. n.s. n.s. n.s. ↝ * n.s. 
Lanicemine n.s. ↘  * n.s. n.s. ↗  *** n.s. n.s. 
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PREFEEDING (Fig 3.7) 

The results of the prefeeding studies are all analysed as mean effects throughout the session, 
and thus refer to one-way ANOVA analysis against control, with no time interaction – the 
temporal profiles of the prefeeding effects were not deemed to be relevant as they were in 
the pharmacological studies. A simplified summary is seen in Table 3.5.  

Chow prefeeding created a minor impairment for Lev/Min ON (73.1 ± 4.3%, t7=6.215, 
p=0.0004), whereas both pellets (32.0 ± 3.5%, t7=19.62, p<0.0001) and chow+pellets (30.7 ± 
4.4%, t7=15.84, p<0.0001) displayed analogous impairments that were greater than chow 
alone. Mag/Min ON followed a similar pattern of responses to Lev/Min, with chow creating a 
minor impairment (78.6 ± 7.5%, t7=2.856, p=0.0245), and pellets (36.2 ± 6.9%, t7=9.197, 
p<0.0001) and chow+pellets (32.8 ± 5.6%, t7=12.03, p<0.0001) impaired to a greater but 
equivalent degree.  For these measures, rat behavioural output is thus more responsive to 
pellet prefeeding than chow, though there is no cumulative effect with presenting them 
together.  

For Levers/Min OFF and Mag Entries/Min OFF, all manipulations appeared to show similar 
levels of impairment, suggesting that impulsive responding at temporarily-unreinforced 
instruments was broadly inhibited but insensitive to different types of satiety, though the 
latter measure was highly variable and less interpretable (Lev/Min OFF: chow [24.0 ± 4.8%, 
t7=15.82, p<0.0001], pellets [29.6 ± 13.4%, t7=5.225, p=0.0012], chow+pellets [28.8 ± 16.5%, 
t7=4.318, p=0.0035]; Mag/Min OFF: chow [55.3 ±14.9%, t7=2.996, p=0.0201], pellets [55.6 ± 
33.9%, n.s.], chow+pellets [37.5 ± 18.3%, t7=3.416, p=0.0112]).  

Chow prefeeding had no effect on Accuracy (100.6 ± 0.31%, n.s.), suggesting that the rat’s 
Lev/Min output during both ON and OFF phases was equally affected, though prefeeding with 
pellets (73.7 ± 4.6%, t7=5.665, p=0.0008) and chow+pellets (71.1 ± 8.3%, t7=3.484, p=0.0102) 
impaired this measure, suggesting that a desensitization to reward pellets but not just food 
satiety was necessary for impairments at ON/OFF phase lever discrimination. 

Lev/Min Dummy ON was the only measure where mean output appeared to increase, but 
was not significant for any manipulation. Dummy Lev/Min OFF showed a pattern of 
impairment somewhere between that seen in Accuracy and ON-phase Mags/Levers; chow 
prefeeding caused a non-significant decrease in output (80.3 ± 17.4%, n.s.), while pellets (52.4 
± 17.1%, t7=2.774, p=0.0276) and chow+pellets (44.5 ± 14.9%, t7=3.729, p=0.0074) 
impairments, suggesting that exploratory, unreinforced behaviour was sensitive in a gradient 
way to satiety.  
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Table 3.5 Simplified effects of prefeeding manipulations and statistical significance.  
↓ indicates impairment to 70–100%, ↓↓ indicates 40–70%, ↓↓↓  10–40%. Within subject 
ANOVA, prefeeding manipulation vs. control normalized to 100%. n.s. not significant; * p < 
0.05; ** p < 0.01 ; *** p < 0.001.  

Prefeeding Lev/Min 
ON 

Accuracy Lev/Min 
OFF 

Mag/Min 
ON 

Mag/Min 
OFF 

Lev/Min 
Dum 
ON 

Lev/Min 
Dum OFF 

Chow     ↓     *** n.s. ↓↓↓****     ↓      *    ↓↓  * n.s. n.s. 

Reward ↓↓↓**** ↓     *** ↓↓↓  ** ↓↓↓**** n.s. n.s. ↓↓    * 

Both ↓↓↓**** ↓       * ↓↓↓  ** ↓↓↓**** ↓↓↓ * n.s. ↓↓   ** 
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MISC. 

The linear-to-plateau relationship between lever-pressing rate and pellet reinforcement is 
shown in Fig. 3.8. The random nature of the VI induces a sustained effort as individuals try to 
maximise their probability of getting a reward – animals often perform at a level of activity 
where increasing lever presses doesn’t actually increase the chance of reinforcement, but 
which evidently serves as an behavioural effort/reward baseline. 
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Figure 3.8 Using highest doses of ketamine and CP-101,606 as examples, we can demonstrate 
an ‘exponential plateau’ relationship of Levers/Pellet, where rats preferentially operate above 
the threshold (~12 Lev/Min) necessary to reach maximum reward, after which increases at 
Lev/Min have a diminished effect on Pel/Min. Ketamine impairs performance towards the 
linear stage, whereas CP-101,606 enhances performance towards the plateau stage, with 
neither drugs altering the overall relationship curve.  
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My data has also been reformatted for more direct comparison to previous literature. In Fig. 
3.9, I split the group into the lowest-performing tertile at baseline, and display it alongside 
the total group, to compare to previous research by (Higgins et al. 2021) which found a a 
ketamine-induced enhancement of motivation in the PR task in low-performing animals. I also 
compare findings with ketamine and scopolamine (Fig 3.10) and pre-feeding (Fig 3.11) 
between my own study and an EfR publication (Griesius, Mellor, and Robinson 2020) – this 
data has previously been shown in results, but is placed side-by-side for easier discussion.  
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Figure 3.9 Comparison of PR (top; (Higgins et al. 2021)) and this VI study (bottom). In my data, 
there was no significant effect where ‘worst tertile’ had an increase alongside ‘all’ rats having 
no change, such as that seen with 1 mg/kg in the PR study. However, at doses 0.6 and 2.5 
mg/kg it appears that the low-performing sub-group did have a minor increase in performance 
while the overall group had little change. The small (n=3) group size in my tertile means the 
analysis is underpowered, and the doses I use are not exactly the same as those in Higgins et 
al, which further complicates direct comparison. (bars: mean ± SEM; one-way ANOVA, VEH vs. 
drug for both all and worst tertile groups; p-values in red, *** <0.001; *** <0.0001). 
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Figure 3.10 Comparison of EfR (top; (Griesius, Mellor, and Robinson 2020)) and this VI30 study 
(bottom). VI30 task shows lever press impairments with ketamine and scopolamine at doses 
that EfR was not sensitive to.  
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Figure 3.11 Comparisons of EfR (top; (Griesius, Mellor, and Robinson 2020)) with my own 
research in VI (bottom) in prefeeding manipulations.  
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3.4 DISCUSSION 

This study further characterised NMDA antagonists and scopolamine which are clinically 
relevant both as models of schizophrenia, and as rapid-acting antidepressants. In this study, 
the VI30 task detected motivational impairments not previously seen using other tasks, 
suggesting a sensitivity that may be advantageous as part of future batteries of rodent 
cognition. The modifications added in this version of the VI30 task also allowed for the 
integrated pilot assessment of multiple cognitive measures in parallel with motivation, 
including reward-seeking (magazine entries), impulsivity (activity at temporarily-unreinforced 
lever) and explorativity (activity at never-reinforced lever).  

My findings largely replicated the VI30 NMDA results from (Gilmour et al. 2009), which found 
significant impairments in Lev/Min on 5, 10 mg/kg ketamine, and significant enhancements 
in Lev/Min with 2.5–10 mg/kg CP-101,606. The reduced effect I found with CP-101,606 
compared to this previous study may reflect the extended session durations (180 minutes 
rather than 120 minutes), and thus the short-acting effect of this drug was diluted. Across the 
doses of PCP shared between the studies, neither I nor (Gilmour et al. 2009) found an effect. 
It is worth noting that doses of ketamine that reliably showed effects in these studies were 
much higher than those used clinically in depression (Andrade 2017) – a widespread problem 
of translational psychopharmacology.  

Together with this previous study, my research further reinforces evidence that NMDA 
receptor antagonists can have highly divergent (yet replicable) cognitive effects. Though 
ketamine, PCP, and CP-101,606 all have the same binding site and primary mechanism of 
action through blocking the NMDAR ion channel, they have notable pharmacodynamic 
differences which may underlie their divergent cognitive profiles: for example, ketamine 
binds to GABA-A and opioid receptors at higher affinities than PCP (Hirota et al. 1999; Hevers 
et al. 2008), while PCP binds to serotonin transporters and impairs monoamine reuptake at a 
greater rate than ketamine (B. L. Roth et al. 2013). Both of these drugs also bind to nicotinic 
ACh and dopamine receptors (Fryer and Lukas 1999; Yamakura, Chavez-Noriega, and Harris 
2000; Seeman, Ko, and Tallerico 2005).  

Pharmacological diversity also occurs within the NMDA receptor, which can be composed of 
a range of subunits which themselves are associated with different region-specific function 
and expression levels (Buller et al. 1994; Wenzel et al. 1995; Mao et al. 2020). Ketamine is 
more selective for GluN2C and GluN2D-containing NMDA receptors than PCP (Dravid et al. 
2007): GluN2C is highly expressed in the cerebellum (Tarrés-Gatius et al. 2020) with 
antagonism at this subunit potentially responsible for the greater motor impairments seen in 
ketamine which are entirely absent in CP-101,606 and present at a lesser extent in PCP, while 
GluN2D is expressed relatively highly on GABAergic interneurons and is associated with 
mesolimbic disinhibitory dopamine release, which may be responsible for working memory 
impairments and ketamine’s psychedelic properties (Ingram et al. 2018). 

CP-101,606 was studied due to its selectivity for the GluN2B-containing NMDAR, a subunit 
involved in a number of critical neuroplastic and developmental processes, exemplified by 
the lethality of GluN2B knockout (Kutsuwada et al. 1996). In adults, while both GluN2A and 
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GluN2B are involved in core processes of learning and memory (with GluN2A/GluN2B ratio a 
metaplastic regulator of LTP/LTD levels (Shipton and Paulsen 2014)), GluN2B is particularly 
present in extrasynaptic neuroprotective signalling (Sun et al. 2018). GluN2B is also a key 
clinical target, potentially responsible for the neuroplastic and antidepressant effects of 
ketamine (Miller et al. 2014). Given the array of differences between drugs, it is difficult to be 
certain which pharmacodynamic properties are responsible for which cognitive effect, and 
thus which behavioural metric in this study. However, given that ketamine and CP-101,606 
had similar effects on mag entries in both ON and OFF phase, but opposing effects on lever 
presses, one can infer that antagonism at GluN2B enhances reward-seeking in both an 
instrumental and impulsive fashion, whereas antagonism of other subunits at which ketamine 
preferentially binds may be responsible for acute motivational impairments. As CP-101,606 
was the only drug assayed that increased lever pressing on the task, it is also possible that 
GluN2B antagonism enhances motivational cognition, which is opposed by antagonism at 
other subunits. Previous research has  found that in the context of conditioned 
reinforcement, ketamine decreases sign-tracking but increases goal-tracking  (Fitzpatrick and 
Morrow 2017) – CP-101,606 can thus be said to increase both these metrics by enhancing 
both lever pressing and mag entry reward-seeking.  

Ketamine is known to increase dopamine release (Kokkinou, Ashok, and Howes 2018) – 
however, it binds relatively non-selectively, and NR2A- and NR2B-containing receptors have 
different functional roles, including some opposing regulation of dopaminergic signalling 
(Schotanus and Chergui 2008). The GluN2D subunit has also been identified as having a key 
role in GABAergic disinhibition of dopamine signaling (Ingram et al. 2018). As dopamine 
transmission is a well-established mechanism for motivational behaviour (Wise 2004; 
Treadway et al. 2012; Salamone et al. 2018), it is possible that NR2B antagonism with  
CP-101,606 engages dopamine-mediated motivational pathways more specifically than 
antagonism at other subunits. Alternately or additionally, the relatively low expression of 
NR2B receptors in the cerebellum (Wang et al. 1995) may attenuate the motor impairment 
seen with other NMDA antagonists which may confound measures of motivated activity. 
Future research may study the effects of subunit-selective NMDA antagonists on cognition in 
combination with region-specific infusions or radiolabelled drugs to investigate the 
interaction between receptor distribution, ligand binding, and behavioural outcomes, or 
microdialysis to quantify dopamine release is enhanced during motivation tasks under the 
effects of different NMDA antagonists.  

Lanicemine was developed as a non-psychoactive alternative to ketamine as a rapid-acting 
antidepressant, with a low-trapping mechanism thought to preferentially target high-activity 
synapses. It also shows less selectivity to NR2A compared to ketamine (Sanacora et al. 2014). 
Previous rodent studies have focused on the antidepressant properties of lanicemine with a 
general finding that it has similar but weaker or more transient effects compared to ketamine 
(Qu et al. 2017; Becker et al. 2019), though little research exists on operant cognition. Though 
behavioural measures with lanicemine were largely similar to VEH, with no change in lever 
pressing activity, a significant increase in OFF-phase mag entries on 3 and 10 mg/kg suggests 
that the drug did induce cognitive changes relating to consummatory motivation and 
impulsivity.  This measure was also increased at the highest dose of scopolamine and 
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ketamine assayed and at which schizomimetic symptoms are known to manifest. Though 
previous research has claimed that lanicemine is non-psychoactive, this OFF-phase mag entry 
disinhibition may be a biomarker for previously unknown cognitive disruption with this drug.  

The temporal dynamics of ketamine also replicated those found in (Gastambide et al. 2013), 
with Lev/Min for 10 mg/kg impaired for 60 minutes post-administration on the VI30 task 
which recovered by 120 minutes. My study found an increase in mag entries for this dose of 
ketamine which wasn’t seen with this previous study. It is possible that the additional 
granularity in my study, with regular time-sampling across the entire session, altered the 
analysis enough to become sensitive to this effect. Such temporal dynamics can be combined 
with traditional metabolic measures such as half-life to explore the ‘behavioural 
pharmacokinetics’ of a drug. For example, the pharmacokinetic profile of 10 mg/kg 
subcutaneous ketamine shows plasma concentrations drop to near-zero by 120 minutes post-
injection,  paralleling the pattern of lever presses in this study which also returns to baseline 
by around 120 minutes (Le Nedelec et al. 2018). Conversely, at the highest dose of 10 mg/kg 
lanicemine showed impairment on lever presses for only 60 minutes, whereas it has a half-
life of 9–16 hours (Agbo, Bui, and Zhou 2017), suggesting that desensitization to the 
motivational effects of this drug occurred through a mechanism beyond plasma clearance.  

Some dissociable temporal cognitive profiles were also observed. Notably, CP-101,606 
showed a trend to increase active lever presses up to 120 minutes, while increases in OFF-
phase lever presses and mag entries was increased only for the first 20-minute block. This 
suggests that impulsive activity isn’t increased in an absolute manner across the duration of 
the drug effect, but instead disinhibits an existing minor effect seen across all drug conditions 
during the first 20 minutes. The dissociable temporal profiles of these cognitive effects 
suggest that motivational enhancements through GluN2B antagonism are indeed separate 
from behavioural disinhibition, with increases in impulsivity also previously observed in 5-
CSRT studies (Higgins et al. 2016). GluN2B antagonism has also been shown to impair 
cognitive flexibility (Duffy, Labrie, and Roder 2008; Brigman et al. 2013), and it is possible the 
increased OFF-phase responding may be a result of deficited on-line learning as the rats are 
reminded of the reinforcement patterns at the start of the task.  

Human studies suggest that ketamine may increase motivation in depressed patients but 
impair it in healthy participants (N. Lally et al. 2014; Níall Lally et al. 2015; Thiebes et al. 2017; 
Mkrtchian et al. 2021). A PR rodent study also demonstrates this effect, with 1 mg/kg 
ketamine increasing lever presses and breakpoint for the lowest-performing tertile but not 
the cohort as a whole (Higgins et al. 2021).  Reformatting my own data to assess low-
performing individuals appears to show a trend in this direction, but the low n-number 
underpowering makes it difficult to interpret (Fig. 3.9). This PR study otherwise found no 
effect on lever-pressing at doses of ketamine at which I found an impairment. Future research 
on the motivational effects of ketamine and other rapid-acting antidepressants may further 
investigate the effect of baseline variability, or the use of these drugs to reverse motivational 
impairments induced through other mechanisms.  

Another PR study found that low (0.1–0.5 mg/kg) doses of ketamine had significant increases 
in lever presses (Transpharmation Ltd. 2021). This didn’t replicate in my VI30 study, with the 
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lowest dose (0.6 mg/kg) having no significant effects except a minor impairment in Accuracy 
– however, the trend toward increase in Lev/Min OFF in my study suggests an increase in 
impulsive lever-pressing activity, a metric which the PR study does not directly account for 
and may contribute to their finding.  A separate PR study using scopolamine found an increase 
in lever presses and breakpoint with 0.1 and 0.3 mg/kg (Hailwood et al. 2019). This is converse 
to my own findings, which found an impairment in Lev/Min at these doses. However, my 
study did find an increase in OFF-phase behaviour at both lever and mag entries – this again 
may demonstrate that increases in impulsivity are filtering into primary measures of 
motivation in the PR task, while the additional measures in the VI30 may allow dissociation 
between these different cognitive processes.   

An EfR study found no effect of scopolamine on lever presses (Griesius, Mellor, and Robinson 
2020). This is also contrary to my findings, which found significant impairments at 0.1 mg/kg 
(Fig. 3.10). A similar pattern was seen with their study on ketamine, with my VI30 study 
demonstrating impairments at doses that had no (or decreased) effect on the EfR. The VI30 
task may thus be more sensitive to motivational impairments. Conversely, the task design of 
VI30 may encourage over-capacity performance (Fig. 3.8), thus providing more space for 
decrease in activity. The EfR also provides a low-effort chow choice which may act as a 
distractor and demotivator, while the choiceless nature of the VI30 may create a ‘behavioural 
vacuum’ that further encourages responses at the active lever given the lack of options to do 
much else.  

A PRLT study, though assaying motivation through a secondary measure of latency to initiate 
trial rather than direct instrumental responding, found that scopolamine, ketamine, and chow 
pre-feeding all impaired motivation, analogous to results found in this study (Wilkinson et al. 
2020). Further modifications to the VI30 protocol, not detailed here, also allow for analysis of 
latencies as a secondary measure.  

Previous studies have demonstrated that by increasing reward value (i.e. more sugar pellets), 
motivated operant behaviour is enhanced (Skjoldager, Pierre, and Mittleman 1993). 
Conversely, prefeeding was theorised to increase satiety and thus decrease the perceived 
value of the appetitive pellet reward. Previous rodent studies have found that prefeeding 
decreases activity on PR tasks (Randall et al. 2012; Thompson et al. 2017) and EfR (Griesius, 
Mellor, and Robinson 2020). However, this is the first study to look at prefeeding chow and 
pellets both separately and together. I found that pellet prefeeding impaired motivation to a 
greater extent than chow prefeeding, showing a dissociation between different forms of 
satiety, with high-value prefeeding causing a greater extent of hedonic reward devaluation. 
This was notably absent with OFF-phase lever presses, which showed similar impairments 
across prefeeding conditions, suggesting that impulsive responding may be due to chow food-
restricted hunger rather than hedonic seeking of the high-value reward pellet. Interestingly, 
though most measures did not display a cumulative effect (i.e chow+pellet prefeeding caused 
largely similar impairments to just pellet prefeeding), dummy lever press and mag entry 
activity during the OFF-phase showed a potential interaction with concurrent chow and pellet 
prefeeding, suggesting that low-value and high-value food sensitization may have separate 
mechanisms in explorative or impulsive behaviour. Graded decreases in activity during the 
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OFF-phase may also suggest a ‘behavioural momentum’ mechanism where perceived 
decreases in reinforcer value cause a lower resistance to change in reward conditions during 
the OFF phase (Cohen 1998).  

As with pharmacology studies, the VI30 task appeared to be more sensitive to impairment 
than the EfR (Fig. 3.11), which found no effect from chow prefeeding and a relatively 
attenuated impairment with pellet prefeeding compared to that seen in this study (Griesius, 
Mellor, and Robinson 2020). However, the task design of the EfR which involves providing 
free access to chow during the study may mean that the animals are at baseline at least 
partially sated already and thus any effect of prefeeding is also apparent in the controls.  

While VI-based tasks have previously been used to develop theories of reinforcement by 
providing a choice of levers with different reinforcement schedules. Unlike such mixed-
schedule studies, my study involved only one rewarded lever and is effectively ‘choiceless’, 
and thus many theories of choice behaviour such as the matching law (Herrnstein 1961; Belke 
and Belliveau 2001) or computational metrics (Trepka et al. 2021) are irrelevant. 

In conclusion, my work with VI30 has found dose-dependent effects on motivation in 
prefeeding, scopolamine and a range of NMDA antagonists, which appear to be dissociable 
from other activity measures thought to assay impulsivity or explorativity. Some comparisons 
to other protocols, which found no or opposing effects in some drugs, may be a result of 
differences in task design: EfR has food present during the task presenting enrichment and a 
choice of reward-oriented behaviour, while PR is absent of lever-pressing conditions which 
may dissociate between impulsive responding. Future work could clarify computational 
metrics of reward-sensitivity in response to different types of prefeeding, clarify the 
motivational effects of scopolamine which was most inconsistent between different studies, 
and further investigate NMDA subtype-specific cognitive effects to quantify if and how 
selective antagonism at different subunits may disequilibrate potentially opposing effects on 
motivation.    
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