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Abstract

We present several new discoveries in two multiple areas of set theory. First, we introduce a new kind of
forcing axiom known as a “name principle”. We give a detailed and comprehensive account of how these
name principles relate to one another and to the classical forcing axioms. This leads us to consider new
variants of the traditional forcing axioms, and we also include these in our account. We then show several
examples of uses for these relationships, including improvements to, and substantially simplified proofs of,
several well-known theorems.

We then turn to another topic, looking at stratifying the class Reg of V regular cardinals by Cantor-
Bendixson rank. Letting Reg α be the class of all elements of Reg of rank  α, we show (under fairly weak
large cardinal assumptions) that LrReg αs can be expressed as a generic extension of an iteration of a type
of model called a “mouse”. We also prove a similar result for Regs, the class of strong inaccessibles. Then
we go on to show that all the mice we’ve used exist in LrRegss.

Finally, we generalise a result in [29]. We define two different predicates of second order logic which are
related to Reg α in much the same way that the famous predicate I is related to Card. We then find a lower
bound for the Löwenheim-Skolem-Tarski number of these two predicates (together with I), and show that
this lower bound is optimal.
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Introduction

Since its invention roughly a century and a half ago, set theory has blossomed into a myriad of a different
subfields. Two of the more notable of these fields are Inner Model Theory and Forcing.

Inner Model Theory began early on with Gödel’s constructible universe L: he showed that given any
model V of ZF, there will be a transitive proper subclass L of V which is also a model of ZF. This L will
also believe the axiom of choice and the continuum hypothesis; thus, we can conclude that if ZF is consistent
then so is ZFC�CH.

We call L an “inner model”: a class-sized model M � V of ZF which is in some sense recognised and
understood by V . By modifying Gödel’s construction in very natural ways, one can build other inner models.
Gödel’s universe L is the least of these inner models, in the sense that it’s both contained in and definable
over any other one.

It’s not actually possible to prove from ZFC alone that V contains any inner models other than L. (To
see this, consider what would happen if we happened to choose L itself as our universe V .) But if we add
certain other common axioms of set theory in, we get a rich tapestry of different inner models. Those which
are generated by “mice” are of particular interest. A mouse is a small (i.e. set-size) object which looks
suspiciously like part of an inner model, and which satisfies a selection of other requirements. The defining
feature of a mouse is that it can be “iterated”: we can push the ordinals around and make the mouse grow
larger by using a series of elementary embeddings.

Forcing deals with a process invented by Cohen in 1963 to answer the converse to Gödel’s result: If ZF is
consistent, then are ZF� Choice and ZFC� CH also consistent? To prove that they are, we do the opposite
of Gödel: we start with a universe V and add something into it. We take a forcing – a type of partial order –
in V , and use it to define an object known as a generic filter. In nontrivial cases we can show that no generic
filter actually exists in V , but we can use certain tricks to somehow conjure up one which lives outside V .

Having got a generic filter, we then use it to define a minimal model of ZFC which contains it as a set,
and contains the whole of V as a subclass. If we start with the right forcing, we can get a model of ZFC for
which CH fails; or (with a small additional step) a model of ZF for which Choice fails.

The discovery of forcing revolutionised set theory, because the same process enables us to create universes
with many different kinds of sets in them, depending on which forcing (i.e. partial order) we started with.
Suddenly, many consistency results which were previously inaccessible became easy to prove.

There is a weakness to forcing, however. By its nature, it deals only with consistency results: in all
nontrivial cases, the generic filter won’t be a set in our original universe V , so we can’t really say anything
much about that universe. To work around this, set theorists found it natural to introduce forcing axioms,
which say that V contains filters which are close (in a certain technical sense) to being generic. This avoids
the need to move outside V when we want to use a “generic” filter, so we can prove things about V itself
using the methods of forcing. Iconic examples of forcing axioms include Martin’s Axiom MA and the Proper
Forcing Axiom PFA.

In the first part of this thesis, I will present a new kind of forcing axiom known as a name principle. They
also express the idea that V contains filters that are close to being generic, but do so in a completely different
way to the classical forcing axioms. Very simple instances of these name principles are often proved ad-hoc
in arguments involving forcing axioms. But so far as I am aware, there has not hitherto been any proper
study of name principles as axioms in their own right. The first half of this thesis is devoted to conducting
such an analysis. It turns out that there is a detailed web of connections and equivalences, far beyond the
simple results that are routinely proved ad-hoc. The web also naturally suggests the invention of new forcing
axioms in the classical style, which also get included in the study. This work is adapted from [37], which is

v



the result of collaboration between myself and Philipp Schlicht.
In the second part of this thesis, we will turn to another topic and look at the class Reg of all regular

cardinals. We stratify Reg according to Cantor-Bendixson rank, so Reg0 is the class of all successor cardinals,
Reg1 is the class of all simple (weak) inaccessibles, Reg2 is the class of all inaccessible simple limits of
inaccessibles, and so on. We can also do a similar stratification of Regs, the class of all strong inaccessibles.
Of course, Reg0 is simply the successors of Card, the class of all cardinals. It turns out that known results
about Card also tend to hold for Reg α for reasonably large α. We present two cases of such a phenomenon,
in different fields of set theory.

The first of these two results is in inner model theory, based on [46]. We show that – assuming the
existence of certain mice – the inner model LrReg αs can be generated by iterating one such mouse On
many times, and then taking a generic extension of the resulting model by (a hyperclass version of) a forcing
invented by Magidor. Conversely, we also show that the mice we started with, if they exist, will always be
found in LrRegss.

The second of this pair of results is in the intersection of set theory and model theory. Recall that the
Löwenheim-Skolem theorem, the foundation of model theory, says that if L is a first order language, then
any L structure will contain an elementary substructure of cardinality at most |L| or ℵ0, whichever is larger.
We can adapt this concept to second order logics: the Löwenheim-Skolem-Tarski number of a second order
language L is the least cardinal κ such that any L structure contains an elementary substructure of cardinality
 κ.

We study two different schemes of second order languages, both giving information about RegV α (for α
an ordinal, or α � 8). We begin by analysing how the LST numbers of these languages relate to one another,
eventually showing that they do exactly what we intuitively expected unless α is a very large ordinal. We
then generalise the main result of [29], by finding a lower bound for each of these LST numbers, and proving
– assuming the consistency of certain standard “large cardinal” axioms – that these lower bounds are optimal
by constructing a model in which the LST number is exactly the lower bound.

The structure of the thesis is as follows.
Chapter 1 is a brief overview of the standard results of forcing which will be used in the thesis. This is

mostly well-known, but the final section (on class forcings) is more obscure.
Chapter 2 is about the new results about name principles (including defining both name principles and

forcing axioms).
Chapter 3 covers some additional standard concepts we need for the second part of the thesis. It opens

by introducing certain “large cardinal” axioms, but the bulk of the chapter is taken up by a detailed account
of mice and iterations. No prior knowledge is assumed.

Chapter 4 contains the new results about LrReg αs and mice.
Chapter 5 covers the new results about LST numbers.

vi



Chapter 1

Introduction to Forcing

We open with a refresher of the basic concepts of forcing we will be using. We will not go through these
results in full detail, and in particular, shall omit almost all proofs. Readers with no knowledge of forcing at
all should refer to [26] for more detailed explanations.

Readers who are already fully comfortable with forcing will probably find little new in this chapter.
However, they may still find the final section on class and hyperclass forcings instructive.

1.1 The Basics

Forcing is a method of generating new universes of sets, which satisfy desirable axioms. To do this, we start
with a universe V , and add a new “generic” set to V (together with everything which can be defined from V
and that set). Depending on what forcing we use, we can show that the generic set has certain properties.

Definition 1.1.1. A forcing is a partial order P with a maximal element, usually denoted 1. If p ¤ q then
we say p is stronger than q. If p, q P P are such that there is some r ¤ p, q then we write p ∥ q and say that
p and q are compatible. Otherwise we write p K q and say that they are incompatible.

Unfortunately, there is some disagreement about which way the inequality should go in a forcing. Some
authors, particularly those in Israel, prefer the reverse: that 1 is the least element, and p is stronger than q
if q ¤ p. But here, we shall exclusively use the (more common) notation where 1 is at the top. Of course, it
makes no difference to the underlying mathematics.

There are a couple of nontriviality conditions which we (almost) always assume when dealing with forcings.

Definition 1.1.2. Let P be a forcing. P is atomless if for all p P P there exist q, r ¤ p such that q K r. The
forcing is separative if for all p, q P P if q ¦ p then there exists r ¤ q such that r K p.

These properties are easy to verify, and we won’t dwell on proving them for specific forcings.
The following two definitions are very standard, even outside the world of forcing.

Definition 1.1.3. Let P be a forcing. A dense subset D of P is a subset such that for all p P P there exists
q P D such that q ¤ p. The set D is open if it is downwards closed; i.e. if p P D ^ q ¤ pÑ q P D.

A filter on P is a collection G of elements of P such that:

� 1 P G

� p, q P G ùñ Dr ¤ p, q : r P G

� p ¥ q P G ùñ p P G

Notice that we have carefully not said that G is a set in the above definition. In general, the convention
with forcing is to write g for a filter which is a set in V , and G for one which isn’t.

The key definition of forcing is as follows:

1



Definition 1.1.4. Let P be a forcing. A filter G on P is generic if for all dense subsets D of P,

GXD � H

This definition is relative to the universe we’re working in: even if the same forcing P is a set in two
universes, they will normally have different collections of dense subsets of P so a filter may be generic in the
sense of one universe but not the other. If we need to clarify things, we say that G is V generic over P, or P
generic over V , or V generic, etc.

Proposition 1.1.5. Let P be atomless. Then there is no filter g which is a set in V and is V generic.

Proof. Suppose such a filter g exists. Then the set

D :� tp P P : p R gu

exists in V . Since P is atomless, D is dense: given any p P P we can find incompatible q, r ¤ p; and then
since all elements of g are compatible at least one of q and r is not in g. But since g is generic, g XD � H,
which is obviously a contradiction.

So we can’t find any generic filters in V . However:

Proposition 1.1.6. Suppose that M is a countable transitive model of ZFC in V , and that M contains a
forcing P. Let q P P. Then there is a filter G P V on P which is M generic and contains q.

Proof. Since M is countable, it contains only countably many dense sets. Enumerate them as tDn : n P ωu.
Construct a descending chain q ¥ p0 ¥ p1 ¥ p2 ¥ . . . of elements of P, where pn P Dn for all n. (This is easy,
since each Dn is dense.) Let

G � tp P P : Dn P ω pn ¤ pu

It is easy to see that G is a generic filter and contains q.

Although it’s a useful simplification, we don’t actually need to assume that we’re working in a countable
transitive model: we can discuss filters G that are V generic. This has some metatheory level problems – if
P is atomless, then such a filter would have to be a “set” which was not in the universe of sets, nor definable
over it. But with some technical work, we can work inside V and still discover what would happen if we
added a (hypothetical) generic filter. See [26, VII.9] for the details of this.

It is therefore standard to speak as though, given any forcing P in V , we can find a generic filter outside
V , and can manipulate any such filter as if it were a set.

1.1.1 Names

So, we now have a filter G which is outside V . But we want to get an entire universe containing G. For this,
we need the concept of names.

Definition 1.1.7. Let P be a forcing. A P name is defined (recursively) as a set σ whose elements are all of
the form pτ, pq where τ is a name and p P P.

The intuition behind a name is that we’re taking some set in V , and labelling all its elements, the elements
of its elements, and so on, with conditions from P. (But do note that this intuitition isn’t exactly right: a
single name τ can appear in σ multiple times, associated with different elements of P.) Unlike generic filters,
names are always elements of V ; and moreover, V knows what the class of all P names looks like.

Definition 1.1.8. Let P be a forcing, let g be a filter (which might be generic, or an element of V , or
neither), and let σ be a name. The interpretation σg of σ is defined (again, recursively) as

σg :� tτg : Dp P g pτ, pq P σu
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So intuitively, interpreting σ using g means throwing away anything which isn’t associated with an element
of g. If a universe contains σ and g (and believes ZFC) then it will also contain σg.

We can define canonical names for every set in V , and for the filter g.

Definition 1.1.9. Let P be a forcing.

1. Let x P V . We recursively define the name

x̌ :� tpy̌,1q : y P xu

2. The name 9G is defined as:

9G :� tpp̌, pq : p P Pu

It is trivial to show that these are always interpreted in the way we expect:

Proposition 1.1.10. Let P be a forcing, and let g be any filter (generic, in V , or otherwise). For x P V ,
x̌g � x. Also, 9Gg � g.

1.1.2 Generic Extensions

Definition 1.1.11. Let P be a forcing, and let G be a V-generic filter. The generic extension V rGs of V
with respect to G is the class of all G interpretations of names:

V rGs � tσG : σ is a P nameu

By 1.1.10 we know that V rGs contains V (as a class) and G (as a set). But in fact, we can prove a lot
more than this.

Theorem 1.1.12. Suppose V believes ZF. Let P be a separative, atomless forcing, and G a generic filter.
Then in any model of ZF containing V (as a class) and G, the generic extension V rGs is the smallest class
which contains G (as an element) and V (as a subclass) and believes ZF. Moreover, if V believes the axiom
of choice, then so does V rGs.

The proof of this theorem is rather in depth and can usually be treated as a black box, so we won’t
cover it here. In the process of proving it, one obtains another black box result. This one is where the word
“forcing” comes from – a testament to how fundamental it is to forcing theory.

Definition 1.1.13. Let P be a forcing, and let p P P. Let φpx0, . . . , xnq be a formula, and let σ0, . . . , σn be
P names. We say that p forces φpσ0, . . . , σnq, and write

p , φpσ0, . . . , σnq

if whenever G is a generic filter which contains p

V rGs ( φpσG0 , . . . , σ
G
n q.

As we’ve stated it, this is a definition that quantifies over all generic filters G that could possibly exist,
and it’s not immediately clear what that means. If V is a countable transitive structure in some larger
universe, then there is no problem – we mean all the generic filters G that exist in that larger universe. But
note that the definition is using knowledge of that wider universe, so it’s not – as written – something that
V knows about. If V is class-sized, then the definition has even more problems – how can we quantify over
filters that “could possibly” exist? We would have to use some kind of second order logic to express it, which
is philosophically difficult to justify and requires us to make several irritating metatheory definitions.

Fortunately, we can work around this by showing that the relation , isn’t fundamentally second order,
and is actually definable in V .
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Theorem 1.1.14. 1. Let P be a forcing in some countable transitive model M of ZF. There is an M -
definable relation ,� such that for any p P P, any formula φpv0, . . . , vnq and any names σ0, . . . , σn

p , φpσ0, . . . , σnq ðñ p ,� pxφy, σ0, . . . , σnq

where xφy denotes the Gödel number of φ. Moreover, ,� can be defined recursively in a canonical way.

2. Let P be a forcing in any model V of ZF. Let G be a generic filter, let φpv0, . . . , vnq be a formula, and
let σ0, . . . , σn be names. Then

V rGs ( φpσG0 , . . . , σ
G
n q

if and only if there exists some p P G such that

p ,� pxφy, σ0, . . . , σnq

3. Let P be any forcing in V , let p P P, and let φ, σ0, . . . , σn be as above. Then the following are equivalent:

� p ,� pxφy, σ0, . . . , σnq

� For densely many q ¤ p, q ,� pxφy, σ0, . . . , σnq

� For all q ¤ p, q ,� pxφy, σ0, . . . , σnq

In particular, if for every condition p P P there is some generic filter G containing p, then ,� and ,
agree with one another.

This means that whatever metatheory you use, in any context where , is definable and Proposition 1.1.6,
, will agree with ,�. And even in contexts where , is not definable, ,� still behaves in all ways as though
it were the same as ,. So in practice, we never talk about ,�: we simply assume that ,� is the same as
,, and that , is definable not just in the metatheory but within V itself. This means that V can “almost”
tell what V rGs will look like. Somehow the only information it’s missing is what G actually is – it knows
exactly what having any given condition in G will mean for V rGs. The reason this result is so critical is that
it allows us to express many statements about V rGs inside V .

1.1.3 Boolean Algebras

There is also another way to formulate forcings, by using complete Boolean algebras instead of partial orders.
Recall the following definitions from order theory.

Definition 1.1.15. A partial order B is a Boolean algebra if it satisfies the following:

1. B has a largest element 1 and a smallest element 0.

2. For any two elements a, b P B, there is a least upper bound a_ b and a greatest lower bound a^ b of a
and b.

3. ^ and _ are distributive over each other: a^pb_cq � pa^bq_pa^cq and a_pb^cq � pa_bq^pa_cq.

4. For any element b P B, there is another element  b P B such that b_ b � 1 and b^ b � 0.

B is complete if every subset S of B (not just pair of elements) has a least upper bound
�
S and a greatest

lower bound
�
S.

Lemma 1.1.16. Let P be any partial order. Then there is a minimal complete Boolean algebra B which
contains P . It is called the Boolean completion of P , and P zt0u is a dense subset of Bzt0u.

Let B be a complete Boolean algebra. Then Bzt0u is a partial order with a maximal element. So we can
do forcing with Bzt0u exactly as defined above. This is what is meant by forcing with a (complete) Boolean
algebra.
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Proposition 1.1.17. Let P be a forcing, and let B be its Boolean completion. If G is a P generic filter,
then its upwards closure G̃ :� tb P B : Dp P G p ¤ bu is a B generic filter. If G̃ is a B generic filter, then
G :� G̃X P is a P generic filter. In both cases, V rGs � V rG̃s.

Due to this proposition, we can generally toggle between forcings and their Boolean completions whenever
we want to, according to what is convenient. The advantage of using the Boolean completion is that it lets
us very easily express certain statements about ,. For example, if some sentence φ is forced by (precisely)
the elements of some set S � B, then “p , φ” is equivalent to the simple order theory statement “p ¤

�
S”.

(We sometimes simplify this statement still further by writing JφK to denote
�
S.) On the other hand the

advantage of using P directly is that it’s a lot easier to understand what the conditions are and what the
forcing actually looks like.

1.2 Standard Forcing Results

So now we have met the basic theory of forcing. Next we shall give a small handful of standard results which
we will be using later on. The first two are easy tests to establish that P does not significantly change certain
parts of V .

1.2.1 Chain Conditions

Definition 1.2.1. Let P be a forcing. A set A � P is an antichain if all its elements are pairwise incompatible.

Definition 1.2.2. Let P be a forcing, and κ be a cardinal. We say that P meets the κ chain condition (the
κ-c.c.) if it contains no antichains of size κ. We say P meets the countable chain condition (the c.c.c.) if it
meets the ω1 chain condition.

Note that this terminology is a little confusing: it should probably be called the κ antichain condition. (A
chain is a descending sequence of conditions, which isn’t really connected to the κ-c.c.!) And the countable
chain condition is associated with the first uncountable cardinal. Unfortunately, the definitions got stuck this
way in the very early days of forcing, and it’s now far too late to change them.

Theorem 1.2.3. [26, 6.9] Let P satisfy the κ chain condition, and let λ ¥ κ be a cardinal of V . If λ ¡ κ or
λ � κ is regular in V , then λ is still a cardinal in any generic extension V rGs. Moreover, if λ ¥ κ is regular

in V then it is still a regular cardinal in V rGs, and otherwise CofV rGspλq � CofV rGspCofV pλqq.

1.2.2 Closed and Distributive Forcings

Definition 1.2.4. Let P be a forcing, and κ be a cardinal. We say P is κ-distributive if whenever pDαqα κ
is a sequence of dense open subsets of P, the set

�
α κDα is also dense. We say P is  κ-distributive if it is

λ distributive for every λ   κ.
We say P is κ-closed if for every descending chain of conditions ppαqα κ, there is a condition q P P such

that for all α, q ¤ pα. We say P is  κ closed if it is λ-closed for every λ   κ.

1

Closed-ness is most often used as an easy way to verify distributivity:

Proposition 1.2.5. If a forcing is κ-closed (resp.  κ-closed), then it is κ-distributive (resp.  κ-distributive).

Theorem 1.2.6. If a forcing is  κ-distributive, then it does not add any new bounded subsets of κ. In
particular, if λ   κ is a cardinal in V , then it is still a cardinal in V rGs and has the same cofinality.

Moreover, if a forcing is  κ-closed, then it does not add any new sequences of ordinals of length less than
κ, and hence does not collapse or change the cofinality of κ either.

1It should be noted that this definition is from [21]. This diverges from [26], where κ-closed denotes the property here defined
as  κ-closed.
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1.2.3 The Continuum

We can show that forcings which satisfy smallness or closed-ness conditions do not change certain parts of
GCH.

Lemma 1.2.7. Let λ be a cardinal of V such that 2λ � λ�. Suppose that P is a forcing which does not
collapse λ or λ�, and that either P is  λ� distributive; or 2|P|   λ; or |P| ¤ λ and P has the λ chain
condition and β   λ ùñ λβ � λ. Then 2λ � λ� in the generic extension.

Proof. If P is  λ� distributive then it does not add any new bounded subsets of λ� and hence does not add
any new subsets of λ. So Ppλq is the same in V and in the generic extension V rGs.

If one of the other two possibilities holds, then consider a generic filter G. If X P V rGs is a subset of λ
then let σ be a name such that σG � X. For γ   λ, let Aγ � tp P P : p , γ̌ P σube a maximal antichain. Let
τ be the name:

τ :� tpγ̌, pq : γ   λ, p P Aγu

Then 1P , τ � σ so τG � σG � X. So any subset of λ in V rGs can be named by a name τ 1 whose
elements are all of the form pγ̌, pq, γ   λ, such that for all γ   λ, tp P P : pγ̌, pq P τ 1u is an antichain. (Such
a τ 1 is sometimes called a nice name.)

If 2|P| ¤ λ then there are only |P||P| ¤ λ many such antichains, and so there are only at most λλ � λ�

many nice names in V .
Similarly, if the third condition holds, then there are only at most λ λ �

°
γ λ λ

γ � λ many antichains,

and so there are only λλ � λ� many nice names. So P can only ever add pλ�qV many new subsets of λ.

1.2.4 Iterations of Forcings

Sometimes, it’s not enough to perform a single forcing: we may want to do multiple, or even transfinitely
many. It is often helpful to turn the whole process into a single forcing over V . Here, we present a way of
combining two forcings into one.

Definition 1.2.8. Let P be a forcing, and let 9Q be a P name for another forcing. The forcing

P � 9Q

consists of pairs pp, 9qq where p P P and p , 9q P 9Q. We define pp, 9qq ¤ pp1, 9q1q if p ¤ p1 and p , 9q ¤ 9q1.

Naturally, we can extend this to iterations of arbitrarily large finite numbers of forcings. The relation �

is almost associative: the pP � 9Qq � 9R and P � 9
pQ � 9 qR are different forcings, but they are equivalent to one

another. When the context is clear, we sometimes omit the dot and speak informally about the forcing Q
itself, but we must always keep in mind that this is a forcing in the P generic extension of V and will depend
on our choice of generic over P.

What about if we have infinitely many forcings we want to put together? The concept gets a bit technical
when written out fully, but is essentially an extension of the above approach. We sketch the construction
briefly here. Later on in Chapter 4, we shall meet the Magidor iteration of infinitely many Prikry forcings,
and then in Chapter 5 we will encounter another custom-made iteration of Prikry-style forcings; we will
define them formally when we get to those chapters.

Say we want to combine the forcings named by p 9Qγqγ α say. (Since this is a sketch, we’ll ignore the
question of what forcing generated these names.) We define the iterated forcing Pα recursively. A condition
of Pα will consist of sequences p :� p 9qγqγ α, such that for γ   α, the sequence päγ :� p 9qβqβ γ P Pγ ; and

päγ , 9qγ P 9Qγ . We usually also include some requirement saying that most of the 9qγ should be in some way
trivial.

We say p ¤ p1 � p 9q1γq if for all γ   α, päγ , 9qγ ¤ 9q1γ .

1.2.5 Proper forcings

A forcing is proper if whenever κ is regular and uncountable, and S P V is a stationary subset of rκsω, S
is still stationary in the generic extension. Proper forcings are generally used in connection with the proper
forcing axiom PFA, which we shall meet later.
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1.3 Some Selected Forcings

In this section, we introduce certain specific forcings which we will be working with later. All of these forcings
are well-known and widely used. Some authors muddle the terminology around these forcings, using the names
and symbols given here to refer to both the partial orders we will define and their Boolean completions. We
will be careful not to do this, because many of the results found in Chapter 2 only work for one or the other.

1.3.1 Cohen Forcing

Cohen forcing was the first forcing discovered, and is the simplest nontrivial one possible. It adds a new real
number. Cohen invented it, and the process of forcing, as a way to show the consistency of  CH.

Definition 1.3.1. The conditions of Cohen forcing are the finite sequences of natural numbers. They are
ordered by end extension.

A Cohen-generic filter will contain sequences of arbitrary length, and all the sequences in the filter will
be end extensions of each other. Taking unions gives us an ω long sequence of natural numbers, and it can
easily be shown that it will not be an element of V . One can informally talk about “adding a Cohen real”,
and talk about a real number as though it were a filter on the Cohen forcing.

Proposition 1.3.2. Cohen forcing satisfies the countable chain condition, and hence does not collapse or
singularise cardinals.

1.3.2 Random Forcing

Random forcing also adds a new real. It is a little more complicated than Cohen forcing, since it uses the
Lebesgue measure on sets of reals as its conditions. Recall the definition of the Lebesgue measure:

Definition 1.3.3. The product topology on 2ω is induced by the basic open sets Nt � tx P 2ω : t � xu for
t P 2 ω. Lebesgue measure is the unique measure µ on the Borel subsets of 2ω such that µpNtq �

1
2n , where

n is the length of t.

Definition 1.3.4. Let P be the set of Borel subsets of 2ω with positive Lebesgue measure. For A,B P P
let A � B if their symmetric difference A△B :� pAzBq Y pBzAq has Lebesgue measure 0. Note that � is an
equivalence relation.

Random forcing P is the set P { �. It is ordered by inclusion, i.e. rAs ¤ rBs :ô A � B.

To simplify notation, we will leave � implicit, and talk about Borel sets of positive measure as if they
were conditions in random forcing.

Lemma 1.3.5. Random forcing satisfies the countable chain condition, and hence does not collapse or
singularise cardinals.

Proof. Suppose A � P is an uncountable antichain. By a pigeonhole argument, we can find some rational
number x ¡ 0 such that infinitely many distinct elements An P A, n   ω satisfy µpAnq ¡ x. By incompati-
bility, m,n   ω,m � n ùñ µpAm XAnq � 0. So

µ
� ¤
m�n

Am XAn
�
� 0

Hence

µ
�¤
n

An
�
�

¸
n

µpAnq � 8

But µp2ωq � 1 is finite.

7



1.3.3 Hechler Forcing

Hechler forcing is a third way to add a real. Like Cohen forcing, each condition gives us a finite initial
segment of the real, but unlike in Cohen forcing we also get some information about what the rest of the real
will look like.

Definition 1.3.6. The conditions of Hechler forcing are pairs ps, fq, where s is a finite sequence of natural
numbers, and f : pωz lengthpsqq Ñ ω is a function. We say ps1, f 1q ¤ ps, fq if s1 is an end extension of s; and
for n P lengthps1qz lengthpsq we have s1pnq ¥ fpnq, and for n ¡ lengthps1q we have f 1pnq ¥ fpnq.

Essentially, f is a pointwise lower bound for the real being added. The distinguishing feature of Hechler
forcing is that the new real added is eventually pointwise greater than any given real number in the ground
model.

Proposition 1.3.7. Hechler forcing satisfies the c.c.c.

1.3.4 Prikry Forcing

Prikry forcing changes a cardinal κ to have cofinality ω. This is a forcing we will be using a lot in this thesis,
so we’ll go into a bit more detail on it here. It works a little like Hechler forcing. Each condition has two
components: an initial segment of the cofinal ω sequence we’re going to add, and a piece of information about
the rest of that sequence. In this case, that piece of extraa information is that the rest of the sequence is
contained in some “large” subset of κ.

In order for this to work, we need some consistent concept of “largeness” for a subset of κ. The notion
we need is a normal measure.

Definition 1.3.8. A cardinal κ is measurable if there exists U � Ppκq which satisfies the following:

1. U is an ultrafilter on Ppκq. That is, U is closed under supersets and intersections, and for any X � κ,
exactly one of X and κzX is in U .

2. U is non-principal: There is no α P κ such that tαu P U .

3. U is κ complete: it is closed under intersections of   κ many of its elements.

4. U is closed under diagonal intersections of length κ: If tXα : α   κu is a sequence of elements of U ,
then i

α κ

Xα :�
 
α   κ : α P

£
β α

Xβ

(
P U

We say a subset of κ is measure 1 if it is in U , and we call U a normal measure on κ.

We will meet measurable cardinals again, and will examine them in much more detail, in Chapter 3. For
now, we shall simply mention that any measurable cardinal is regular.

Definition 1.3.9. Let κ be a measurable cardinal with measure U . The conditions of the Prikry forcing on
κ are pairs ps,Xq, where s P κ ω is a finite increasing sequence of ordinals, X P U and pmaxpsq�1qXX � H.
ps1, X 1q ¤ ps,Xq if:

� s1 is an end extension of s;

� X 1 � X; and

� s1zs � X

By convention, we write ps1, X 1q ¤� ps,Xq if ps1, X 1q ¤ ps,Xq and s1 � s.
Given a generic filter G, we can easily generate a cofinal ω sequence below κ, by taking unions of the s

components of the conditions in G. Conversely, given a cofinal ω sequence below κ, we can generate a filter
on the Prikry forcing. This filter is not automatically generic, but there is an easy way to test whether it is
or not.

8



Lemma 1.3.10 (Mathias Criterion). Let κ be a measurable cardinal, and let P be the Prikry forcing on κ.
Let s be a cofinal ω sequence below κ (so s R V , as κ is regular in V ). Then the P filter generated by s is
generic if and only if for all X P U , szX is finite.

We shall not be using this result as is, but we will be using a generalisation of it to an infinite iteration
of Prikry forcings. There is another useful fact about Prikry forcings which we shall also be using.

Lemma 1.3.11. Let P be the Prikry forcing on κ. Let φ be some sentence (perhaps with parameters) and
let p P P. There is some q ¤� p such that either q , φ or q ,  φ.

Notice that if we had ¤ in place of ¤� then there would be nothing to prove: it would be true about any
forcing.

Finally, we give the usual preservation properties we’ve been giving for all the forcings.

Proposition 1.3.12. The Prikry forcing on κ satisfies the κ� c.c.
It does not collapse any cardinals, and does not change the cofinality of any cardinals except those with

V cardinality κ.

Obviously Prikry forcings are not even ω closed, because there is nothing below a descending sequence of
conditions ppsn, Xnqq where sn has length n. But Lemma 1.3.11 means that somehow this is not a problem.
Every sentence will be decided by ¤� densely many conditions, and the Prikry forcing is closed under ¤�

descending sequences of length less than κ, so it turns out that most of the usual closed/distributive results
can be reproved here by just replacing ¤ with ¤�.

1.3.5 The Collapsing Forcing

This forcing collapses a cardinal κ, adding a surjection onto it from some smaller cardinal λ.

Definition 1.3.13. Let λ   κ be cardinals. The conditions of the collapsing forcing Colpλ, κq are partial
functions f : λÑ κ, whose domains have cardinality   λ. They are ordered by inclusion.

A generic filter will generate a bijection f : λÑ κ.

Proposition 1.3.14. Suppose that |κ λ| � κ. Then Colpλ, κq satisfies the κ chain condition, and is   λ
closed.

So Colpλ, κq doesn’t collapse (or singularise) any cardinals other than the ones between λ and κ.
If µ :� |κ λ| ¡ κ, then it is possible to show that Colpλ, κq and Colpλ, µq are equivalent2, so Colpλ, κq

collapses all the cardinals up to µ but nothing higher than that.
We can also collapse all the cardinals below κ, while keeping κ itself as a cardinal.

Definition 1.3.15. Let λ   κ be cardinals, and suppose that κ is a limit cardinal. The conditions of the
collapsing forcing Colpλ,  κq are partial functions f : λ� κÑ κ whose domains have cardinality   λ, such
that if α   λ, β   κ and fpα, βq is defined, then fpα, βq   |β|�. The conditions are ordered by inclusion.

As before, a generic filter generates a full function f : λ� κÑ κ such that for α   κ, fp , βq : λÑ |β|�
is surjective.

Proposition 1.3.16. Colpλ,  κq collapses all the cardinals in the interval pλ, κq to λ. If κ is a regular limit
cardinal (a weak inaccessible) and @α   κ|α λ|   κ then Colpλ,  κq has the κ chain condition and is   λ
closed, so it does not collapse or singularise any other cardinals.

This is slightly more obscure than some other results, and we give a brief proof of it. We use the following
definition and theorem, from [26].

Definition 1.3.17. A ∆ system is a family of sets A such that there is some fixed set r with aX b � r for
all a, b P A, a � b. We call r the root of A.

2Two forcings are equivalent if they both embed densely into some third forcing. Equivalent forcings produce the same
generic extensions.
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Theorem 1.3.18. [26, 1.6] Let λ be an infinite cardinal. Let κ ¡ λ be regular, and satisfy @α   κp|α λ|  
κq. Let A be a family of sets, such that |A| ¥ κ and @x P Ap|x|   λq. Then there is a subfamily B � A, of
cardinality exactly κ which is a ∆ system.

Proof (proposition). It is trivial to see that Colpλ,  κq is   λ closed; the interesting part is showing that it
satisfies the κ chain condition.

Suppose A � Colpλ,  κq is an antichain of cardinality κ. Let A � tdomppq : p P Au. Note that A is a
family of subsets of λ� κ, each of which have cardinality   λ. We apply the theorem to A, to get B � A of
cardinality κ which is a ∆ system. Let r � λ� κ be the root of B; note that since r � domppq for p P A, we
know |r|   λ. Let β � suptγ   κ : Dα   λ, pα, γq P ru. Then β   κ.

Let B � tp P A : dom p P Bu. Note that |B| � κ. If p, q P B and p � q then p K q (since B � A). So
ppärq K pqärq, and in particular, ppärq � pqärq. Hence, C :� tpär : p P Bu is an antichain of cardinality κ.
But r has cardinality less than λ, and any condition in C is a partial function from r to β�. Since κ is a limit
cardinal, β�   κ, and so an easy pigeonhole argument shows that there are only pβ�q λ many conditions
that could possibly be in C. But by assumption, pβ�q λ   κ.

It is easy to see that the requirements are all needed. If κ is singular, then it will still be singular in V rGs,
and so it cannot be the successor of λ and hence can’t be a cardinal in V rGs. And if there is some α such
that |α λ| ¥ κ then Colpλ, |α|q will already collapse κ, as we saw a moment ago.

1.3.6 Tree Forcing

This isn’t a single kind of forcing, but an observation. A tree, in set theory, is a partial order pT,¤q with a
maximal element r P T called the root, such that for any s P T , the set of all s1 ¡ s is totally well-ordered by
¤. If the order type of this set is α, then we say s is on level α of T . If s is on level α, and s1 ¤ s is on level
α� 1 then we say s1 is a direct successor of α. The height of T is the suptα : Ds P T levelpsq � αu. A branch
of T is a maximal subset of T which is totally ordered by ¤.

Being a partial order, any tree can be used as a forcing. A generic filter on T will be a branch through
T . If densely many elements of T have multiple direct successors, then T is atomless and the branch given
by a generic filter is not in T . If β ¤ htpT q is such that for all s P T and for all α   β there exists s1 ¤ s
such that s1 is on level α, then the branch added will have order type at least β.

1.3.7 Club Shooting

The last forcing in this section adds a new club, which destroys the stationarity of a stationary set. We say
that it “shoots” a club through the complement of S.

Definition 1.3.19. Let S � κ be a stationary set. The club shooting forcing on S has as its conditions all
closed bounded subsets of κzS, ordered by end inclusions.

A generic filter of this forcing generates a club which does not meet S. Thus S is non-stationary in the
generic extension. A special case of the Club Shooting forcing is the non-Mahlo forcing, where we take S to
be the set of singular cardinals below κ.

1.4 Class and Hyperclass Forcing

We now turn to a less well-trodden field. Usually, when we force, we are using set forcing : the forcing is a set
in V , a generic filter meets every dense set, and the generic ends up being a set in the extension. However,
occasionally it becomes necessary to work with forcings that are too large to be sets. This is usually because
we want to change something about the entire structure of the universe V , some property which cannot be
encapsulated in a single set. When this happens, we must use class forcing. In this section, we give a brief
overview of this process insofar as we will be using it in the thesis. Proofs are mostly omitted. Readers
interested in more detail are referred to [4].

As a preliminary attempt, it is possible to naively formulate a kind of class forcing in a model of ZFC, by
working with only definable classes.
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Definition 1.4.1. rZFCs A definable class forcing is a definable class P of V which is a partial order and has
a maximal element. (That is, P is a collection of pairs which define a partial order on some definable class
when we interpret p ¤ q ðñ pp, qq P P. We will, as usual, also use P to refer to the “domain” of P.)

A generic filter G on P is a (perhaps class-sized) collection of elements of P such that:

� G is upwards closed and nonempty;

� p, q P GÑ Dr P gpr ¤ p^ r ¤ qq;

� For any definable subclass D of P which is dense, GXD � H.

In this formulation, we only define set-sized names. We’ll be a little more precise than we were when
defining names for set forcing.

Definition 1.4.2. rZFCs Let P be a class forcing, and let α P On. A set σ P V is an α-level P set-name if it
consists of pairs pτ, pq, with τ some  α-level P set-name and p P P.

If G is a generic filter, then the G interpretation σG of σ is defined in the usual way:

σG � tτG : Dp P G pτ, pq P σu

Depending on who you listen to, the generic extension V rGs is then defined to be either the collection W
of all these interpretations, or the structure pW, P, Gq. Unfortunately, these are not equivalent: because G is
class-sized, it is not an element of W as it would be when working with set forcing.

This highlights a problem with doing class forcing in ZFC: A class sized forcing should really add a new
class, not just new sets, but of course ZFC doesn’t allow for classes as objects in their own right, so we can’t
do that. Because we can only deal with definable classes, we keep finding that structures which somehow
“should” exist aren’t available to us automatically, and we have to appeal to a rather developed metatheory
to prove results which were automatic with set forcing.

It therefore makes more sense to define class forcing in a structure which treats classes as objects in their
own right. The standard theory for this is MK, Morse-Kelley set theory. MK is a theory in a language with
two types of objects: sets and classes. (To formulate this in first-order logic, we should strictly say that
MK has an additional unary predicate symbol S and we say that x is a set if Spxq holds. We then call the
elements of a model of MK classes; a class which is not a set is called a proper class. We don’t usually bother
writing S explicitly, however. Instead, we will write a uppercase letter for any variable which is allowed to
range over all classes, and a lowercase letter for any variable which is only allowed to range over sets.)

Definition 1.4.3. The axioms of MK are as follows:

1. Only sets can be contained in other objects: @X@Y pY P X Ñ SpY qq.

2. Extensionality of classes: @X@Y p@z z P X ðñ z P Y q ðñ X � Y .

3. Empty set: There is a set which is empty.

4. Pairs: For all sets x and y, the collection tx, yu is a set.

5. Unions: For every set x, the collection Yx is a set.

6. Class-Comprehension: If φpv0, V1, . . . , Vnq is a formula of MK (which may quantify over classes as well
as sets) and X1, . . . , Xn are classes, then

tx : φpx,X1, . . . , Xnqu

is a class.

7. Infinity: There is an infinite set.

8. Power set: For every set x, the collection Ppxq of subsets of x is a set.

9. Foundation: Every nonempty class has an P minimal element.

11



10. Replacement: If F is a class function, then for any set x, the collection tF pyq : y P xu is a set.

11. Global Choice: There is a class which is a global well ordering of all sets.

It is easy to verify that the collection V of all sets in a model of MK is a proper class, and that it satisfies
the axioms of ZFC. It is also easy to verify that every definable class of V is also a class in the sense of MK.

We can now define class forcing in the context of MK. The definition is almost the same as in ZFC, only
we drop the word “definable”:

Definition 1.4.4. rMKs A class forcing is a class P of V which is a partial order and has a maximal element.
A generic filter G on P is a (perhaps class-sized) collection of elements of P such that:

1. G is upwards closed and nonempty;

2. p, q P GÑ Dr P gpr ¤ p^ r ¤ qq;

3. For any dense subclass D of P, GXD � H.

In MK, we can define not only names for sets, but also class-size names for classes.

Definition 1.4.5. rMKs Let P be a class forcing, and let α P On. A set σ is an α-level P set-name if it
consists of pairs pτ, pq, with τ some  α-level P set-name and p P P.

A class σ is a P class-name if it consists of pairs pτ, pq with τ some P set-name (of any rank) and p P P.
If G is a generic filter, then the G interpretation σG of a (set- or class-) name σ is defined in the usual

way:

σG � tτG : Dp P Gpτ, pq P σu

If M is the model of MK we are working in, then the generic extension M rGs of M is the collection of all
G interpretations of both set- and class-names. Its sets are the interpretations of the set-names.

This time, G is contained in the domain M rGs as a class, so there is no ambiguity in what structure we
mean by M rGs.

We can, of course, define check names and a canonical (class) name for G in the usual way. Working in
some larger universe, we can define a forcing relation as usual, from an external perspective.

Definition 1.4.6. Let M P V be a countable transitive model of MK, and let P be a class forcing over M .
Let φpX0, . . . , Xnq be a formula in the language of MK, and let σ0, . . . , σn be (set or class) P names. Let
p P P. We say that p , φpσ0, . . . , σnq if for all generic filters p P G P V , M rGs ( φpσG0 , . . . , σ

G
n q.

Even in this context, we can’t quite get all the usual results of forcing automatically. The limitations of
working with classes, even in a MK context, mean that we must make a few extra assumptions about the
forcing P.

Definition 1.4.7. rMKs A class forcing P is pretame if for every set-long sequence xDi : i P ay of dense
subclasses of P, and for every p P P, there is some q ¤ p and some set size di � Di for each i P a such that
every di is predense below q.

P is tame if it is pretame and there exists α P On and densely many q P P such that the following holds:

If r ¤ q and D⃗ :� xpD0
i , D

1
i q : i P ay is a sequence of set-many subclasses of P which are all

predense below r, and if and for all i P a, D0
i and D1

i are pairwise incompatible, and if C is the

class of all conditions s ¤ r such that D⃗ is equivalent below s to some d⃗ P Vα, then C is dense
below r.

By “equivalent below s” we mean d⃗ also partitions P below s in the same way as D⃗, and that there are
densely many conditions t ¤ s such that Di

0 is predense below t if and only if di0 is.

The definition we have given for tameness is a slightly strengthened version found in [15], which fixes a
minor issue with the original definition.

Pretameness and tameness are precisely what we need to get the usual results of class forcing.
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Theorem 1.4.8. [3] rMKs Let P be a class forcing. If P is pretame, then the relation , is definable in a
canonical way within the ground model, and for any generic filter G, the extension M rGs ( MK� (where
MK� denotes the axioms of MK without powerset). If P is tame, then M rGs ( MK.

So much for class forcing. We can also go a level higher up, and will need to do so for the main result of
Chapter 4.

In a model of MK, we can consider definable collections of classes, much like we can consider definable
classes of ZFC. Obviously, we can’t call these collections over MK classes, so instead we use the term
“hyperclass” to refer to them.

This gives us the opportunity to define hyperclass forcing, which is defined much like class forcing was
defined over ZFC.

Definition 1.4.9. rMKs A definable hyperclass forcing is a definable hyperclass P which is a partial order
and has a maximal element.

A generic filter G on P is a (perhaps hyperclass-sized) collection of elements of P such that:

1. G is upwards closed and nonempty;

2. p, q P GÑ Dr P gpr ¤ p^ r ¤ qq;

3. For any definable subclass D of P which is dense, GXD � H.

We could go through and define the interpretation of a name like we did previously with class forcings.
However, in [4], Antos and Friedman noticed a shortcut. If we add another axiom to MK, then we can turn a
model of MK into a special kind of model of ZFC� (that is ZFC without the powerset axiom), and vice versa.
In the ZFC� model, P becomes a class forcing. A generic filter on P will be generic over the ZFC� model if
and only if it is generic over the MK model. And in sufficiently nice situations, we can borrow the results
about class forcings to show that the axioms of MK are preserved, and the forcing relation is definable. The
axioms we need to add to MK are those in the following definition.

Definition 1.4.10. The axiom scheme MK�� consists of the axioms of MK together with the following two
axioms:

12. Class bounding:
�
@xDAφpx,Aq

�
Ñ

�
DB@xDyφpx, pBqyq

�
, where for any set y, pBqy denotes the class of

all z such that pz, yq P B

13. Dependent choice for classes: if φ is such that any set-long sequence of classes X⃗ can be extended by
one set Y such that φpX⃗, Y q holds, then for any choice of X0, there is an On-long sequence of classes

X⃗ starting with X0 such that @α P OnφpX⃗äα,Xαq

The double asterisk is an artefact of the way that Antos and Friedman introduce this subject. They
start by just adding the class bounding axiom to define the theory MK�, which turns out to be sufficient
for everything except one technical issue near the end, then go back and add the dependent choice axiom to
resolve this difficulty.

Definition 1.4.11. The axiom scheme Set MK�� consists of ZFC� together with the following axioms:

1. Set bounding:
�
@x P aDyφpx, yq

�
Ñ Db@x P aDy P bφpx, yq

2. There exists a strongly inaccessible cardinal κ, and every set can be mapped injectively into κ. (This
implies that κ is the largest cardinal.)

3. κ dependent choice: If φ is such that any  κ long sequence of sets x⃗ can be extended by some y such
that φpx⃗, yq holds, then for any x0, there is a κ long sequence x⃗ starting with x0 such that for all α   κ,
φpx⃗äα, xαq.

The “right” intuition to apply to understand this axiom scheme is to think of a model of it as a structure
Vκ�α, where κ is strongly inaccessible and α is some small ordinal.
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Theorem 1.4.12. [4, 20] Let M be a model of MK��. Then there is a unique transitive structure M�

which is a model of SetMK�� with largest cardinal κ, such that:

1. The sets of M are precisely the elements of VM
�

κ ; and

2. The classes of M are precisely the subsets of VM
�

κ which are elements of M�.

Conversely, if M� is a model of SetMK�� with largest cardinal κ, then the structure M of MK�� whose
set-universe is VM

�

κ , and whose classes are the subsets of VM
�

κ in M�, is a model of MK��.

There’s an unstated meta-level assumption here. The process of constructing M� from M involves some
moderately complex manipulations of sets and classes of M , to calculate the new sets which will be added
to M�. These manipulations can’t be carried out inside M . So in order for this theorem to work, we must
assume either that M is a countable transitive model of MK�� inside some larger model V of ZFC, or we
have to use some kind of trick to pretend that sets exist outside MK��. (Note the similarities between this
and our remarks when we first introduced forcing: in both situations, what we’re saying only strictly makes
sense if we’re working with countable transitive models, but we can fiddle things around to pretend it works
in the “real” universe as well.)

Theorem 1.4.13. Let P be a hyperclass forcing in a model M of MK��. Then in the model M� defined
above, P is a definable class forcing. Conversely, if Q is a definable class forcing in a model M� of SetMK��,
then Q is a hyperclass forcing over the corresponding model M of MK��.

A filter G on such a forcing is generic in the sense of M if and only if it is generic in the sense of M�.

Of course Set MK�� does not believe the whole of ZFC, let alone MK. But it believes enough of it for
pretame generic extensions to work properly.

Theorem 1.4.14. [4, 18] Let M� be a model of SetMK��. Let P be a pretame definable class forcing on
M� which has a definable forcing relation, and which preserves the properties of κ given by SetMK��. If
G is P generic over M�, then the version of the class generic extension without the predicate G believes
SetMK��; and the class generic extension with the predicate G believes SetMK�� relativised to G.

This gives us a way to define the generic extension of a pretame hyperclass forcing, provided that the
forcing preserves κ and has a definable forcing relation. First, though, we will formally state what pretameness
means for a hyperclass forcing. The definition is exactly the same as in a class forcing, just with “definable
hyperclass” in place of “class” and “class” in place of “set”. To make the distinction between classes and
hyperclasses clearer in the following definition, we will use A,B etc. to denote (definable) hyperclasses,
standard uppercase letters to denote classes, and lowercase letters for sets.

Definition 1.4.15. rMK��s A hyperclass forcing P is pretame if for every class-long sequence xDi : i P Ay of
dense definable subhyperclasses of P, and for every P P P, there is some Q ¤ P and some class size D1

i � Di
for each i P A such that every D1

i is predense below Q. (By this, we mean that D1
i is a class of pairs of sets,

and there is some class Ci such that if x P C then pD1
iqx is a condition in Di, and otherwise pD1

iqx � H.)

We could also define an analogue of tameness, but we don’t really need to. It’s only used in proving the
preservation of powerset, and that doesn’t actually hold in this context anyway.

Proposition 1.4.16. Let M be a model of M�� and let P be a definable hyperclass forcing over it. Then P
is pretame in M if and only if it is pretame in M�, viewed as a class forcing.

Definition 1.4.17. Let M be a model of MK��, let P be a pretame hyperclass forcing over it, and let G be a
generic filter on P over M . Then in the corresponding model M� of Set MK��, P is a definable pretame class
forcing, and G is still generic. Suppose P preserves the properties of κ and has a definable forcing relation.
Then M�rGs ( Set MK��. We define M rGs to be the unique model of MK�� corresponding to M�rGs.

For our purposes in this thesis, we will exclusively take the generic extension M rGs to not include the
predicate G.

Preserving κ is relatively easy to check. However, the forcing relation is not automatically definable, even
if the forcing is pretame. We need the ground model to have a tiny bit more structure.
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Theorem 1.4.18. [4, p.19-20] Let M� be a (set-size) model of SetMK�� of the form Lκ�rXs where
κ� � OnXM� and X � κ is some predicate. Let P be a pretame definable class forcing over M�. Then the
forcing relation on P is definable, and forcing with P preserves ZFC�.

This is in fact sufficient for our purposes – the only structures we want to hyperclass force over in this
thesis are of the form described above. But to complete this account of hyperclass forcing, we finish by briefly
sketching how we get around this issue in general models of MK��.

First, we relativise all the results we have given in this section: instead of proving them in the context
of MK�� and Set MK��, we prove them in MK�� and Set MK�� relativised to some arbitrary predicate X.
The proofs all go through nicely and the results still hold. Then we prove the following theorem:

Theorem 1.4.19. [4, 22] Let M� be a transitive model of SetMK��, with κ� � OnXM�rGs. Then there
is a pretame definable class forcing Q which has a definable forcing relation, such that if G is Q generic then
M�rGs and M� have the same elements (so the generic extension is trivial if we don’t add G as a predicate),
and such that M� � Lκ�rGs.

We have already seen that this M�rGs will be a model of Set MK�� relativised to G.
So if we want to force over a model M of MK�� with a pretame hyperclass forcing P in general, we use

the following process:

1. Convert M to a model M� of Set MK��.

2. Do a preliminary forcing Q of M� using the previous theorem, to get a model M�rHs of Set MK�� of
the form Lκ�rHs, such that M�rHs and M� have the same elements.

3. Convert M�rHs back to a model M rHs of MK�� relativised to H.

4. In M rHs, define the pretame hyperclass forcing P we want to use, and select a generic filter G.

5. Back in M�rHs, view P as a class forcing (which has a definable forcing relation) and take the generic
extension M�rHsrGs which is a model of Set MK�� relativised to H (and G, if we choose to include G
as a predicate in the extension).

6. Convert M�rHsrGs back into a model M rHsrGs of MK�� relativised to H (and G).

7. Optionally, forget about H and G in order to drop down to a model of MK�� without any extra
predicates.

This gives us a well defined generic extension of M with respect to the two forcings used in the above
process. Note that the overall forcing relation will be definable within M� and M�rHs, and therefore within
M and M rHs as well. If M is already of the form Lκ�rXs (which it will be in this thesis) then we can take
Q to just be a trivial forcing, and effectively skip the first three steps of this process.
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Chapter 2

Forcing Axioms and Name Principles

Now that we have a basic background in forcing, we are ready for the first of three chapters of new results in
this thesis. The content of this chapter is taken from [37], a paper cowritten by myself and Philipp Schlicht,
where we look at forcing axioms. Forcing axioms say the following, for some forcing P and cardinal κ:

Let pDγ : γ   κq be a collection of κ many dense subsets of P. Then there is a filter g � P in
the ground model V such that for all γ   κ, g XDγ � H.

We denote this forcing axiom as FAP,κ. We can think of g as an approximation of a generic filter, which
exists within V . Forcing axioms have been in use for many years, and are an active field of study. The first
one developed was Martin’s Axiom MAω1

, which says that FAP,ω1
holds for every c.c.c. forcing P. Another

forcing axiom is the Proper Forcing Axiom PFA, which says the same but with “proper” replaced by “c.c.c.”
When a forcing axiom is invoked in a proof, its use generally follows a specific pattern. We define some

very simple name σ, which we can easily see is forced to be equal to some set A in the ground model, or
to have some other useful property. We then list all the dense sets which a filter needs to meet for that
particular property to be true, and invoke an appropriate forcing axiom to find a filter g P V which meets all
those dense sets. Then σg will be equal to A, or will satisfy that other property, and we can use that fact in
the rest of the proof.

In effect, the forcing axiom is being used to prove a special case of a more general claim:

Let σ be any sufficiently nice P name, which is forced to have a certain property P . Then
there is a filter g P V such that P is true about σg.

We will be studying claims of this sort, which we shall call “name principles”. Simple name principles
have been used ad-hoc in many proofs in the way described above, and are intuitively natural to talk about
in the context of forcing axioms. But here we study them as axioms in their own right, which so far as we are
aware has never been done systematically before. It turns out that they are intricately connected to forcing
axioms: we can prove highly complex name principles from simple forcing axioms. Moreover, the implication
goes the other way, too: every forcing axiom is implied by (indeed, equivalent to) a whole class of name
principles. On the other hand, there are also many name principles which are not equivalent to any forcing
axiom but sit between two different forcing axioms in strength. So name principles can be thought of as a
generalisation of forcing axioms.

The following theorem is (a simplification of) the main equivalence result of this section. We will, of
course, define the terms used below in a more precise way after this introduction!

Theorem 2.0.1. (see Theorem 2.3.11) Suppose that P is a forcing and κ is a cardinal. Then the following
statements are equivalent:

(1) FAP,κ

(2) The name principle NP,κ for nice names σ and the property P being σ � κ̌.

1This follows from Theorem 2.3.1 (2) for X � κ and α � 1.
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(3) The simultaneous name principle Σ
psimq
0 -NP,κ for nice names σ and P being any first-order formula over

the structure pκ, P, σq.

In addition to simplifying many proofs, this equivalence has several applications that let us prove new
results or improve known ones. We shall meet a few of them later in the chapter. In particular, we shall
examine an connection found by Bagaria between so-called “bounded” forcing axioms and generic absoluteness
principles [5, 6]. No only does Theorem 2.3.2 allow Bagaria’s characterisation to be proved in a much easier
way, but we can see that it is only a special case of a more general result. Here, BFA and BN denote bounded
analogues of forcing axioms and name principles respectively; again, we shall meet them properly in the next
section.

Theorem 2.0.2. (see Theorems 2.3.17 and 2.3.22) Suppose that κ is an uncountable cardinal, P is a complete
Boolean algebra and 9G is a P-name for the generic filter. The following conditions are equivalent:

(1) BFAP,κ

(2) Σ
psimq
0 -BN1

P,κ

(3) ,P V  Σ1
1pκq

V r 9Gs

If Cofpκq ¡ ω or there is no inner model with a Woodin cardinal, then the next condition is equivalent to (1),
(2) and (3):

(4) ,P H
V
κ�  Σ1 H

V r 9Gs
κ�

If Cofpκq � ω and 2 κ � κ, then the next condition is equivalent to (1), (2) and (3):

(5) 1P forces that no new bounded subset of κ are added.

There are also name principles which are too weak to be equivalent to conventional forcing axioms. But
these sometimes still turn out to be equivalent to weaker forcing axioms, where we only ask to meet a “large”
subset of the dense sets. For example, with the right interpretation of “sufficiently nice”, the name principle
for P pσq � “σ contains a club in ω1” is equivalent to the club forcing axiom:

Let pDγ : γ   ω1q be a collection of dense subsets of P. Then there is a filter g � P in the
ground model V such that the class of all γ   ω1 such that g XDγ � H contains a club.

So far as I am aware, this club forcing axiom, and the corresponding stationary and unbounded forcing
axioms, are new to the literature. In the second half of this chapter, we shall conduct a detailed survey of
them, their corresponding name principles, and the relations between them. Our results are illustrated in the
following diagram. We will formally define all the principles shown here over the course of the next section.
Solid arrows denote non-reversible implications, dotted arrows stand for implications whose converse remains
open, and dashed lines indicate that no implication is provable. The numbers indicate where in this chapter
to find the proofs.

Nκ
oo 2.2.6 //

OO

2.2.1

��

club-NκOO

2.2.6

��

2.4.6, 2.4.14

2.4.3 stat-Nκ
//

2.2.7

��

ub-NκOO

2.2.8 2.2.10

��

FAκ
oo 2.2.3

2.2.4
//
club-FAκ

2.2.3 //
stat-FAκ

2.2.3 //
ub-FAκ

Figure 2.1: Forcing axioms and name principles for regular κ

We also investigate whether similar implications hold for λ-bounded name principles and forcing axioms,
where λ is any cardinal. The results about the cases κ ¤ λ, ω ¤ λ   κ and 1 ¤ λ   κ are displayed in the
next diagrams. CBA stands for “complete Boolean algebra”.
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BNλκ
ooØ for CBAs

OO

��

club-BNλκ

Ø for CBAs

��

stat-BNλκ
//

��

ub-BNλκOO

��

BFAλκ
oo //

club-BFAλκ
//
stat-BFAλκ

//
ub-BFAλκ

Figure 2.2: λ-bounded forcing axioms and name principles for regular κ and λ ¥ κ

It is open whether club-BNλP,κ implies stat-BNλP,κ. The converse is known to be false: there are forcings

P where stat-BNλP,κ holds for all λ, but club-BNλP,κ fails for all λ ¥ ω (see Section 2.4.1, Lemma 2.4.6 and
Remark 2.4.14).

BNλκOO

��

oo
club-BNλκ

2.4.24

��

stat-BNλκ

��

ub-BNλκ

��

BFAλκ
oo //

club-BFAλκ
//
stat-BFAλκ

//
ub-BFAλκ

Figure 2.3: λ-bounded forcing axioms and name principles for regular κ and ω ¤ λ   κ

Again, it is open whether club-BNλP,κ implies stat-BNλP,κ, but the converse implication does not hold.

BNnκOO

��

oo club-BNnκ

��

stat-BNnκ

2.4.21

��

ub-BNnκ

2.4.21

��

BFAnκ
oo // club-BFAnκ

oo // stat-BFAnκ
oo // ub-BFAnκ

Figure 2.4: n-bounded forcing axioms and name principles for regular κ and 1 ¤ n   ω

The principles in the bottom row and BNnκ are all provable in ZFC.

Our survey will also involve looking at what happens with most of the specific forcings we introduced in
Chapter 1, which is how we prove most of the non-implications of the diagrams. Some highlights include:

Proposition 2.0.3. (see Lemma 2.4.15) Let P denote random forcing. The following are equivalent:

(1) FAP,ω1

(2) ub-FAP,ω1

(3) 2ω is not the union of ω1 many null sets

Proposition 2.0.4. (see Corollary 2.4.21) Suppose that a Suslin tree exists. Then there exists a Suslin tree
T such that stat-BN1

T,ω1
fails.

For some forcings, most of Figure 2.1 collapses. In particular, if ub-FAP,κ implies FAP,κ, then all entries
other than stat-NP,κ are equivalent. We investigate when this implication holds. For instance:

Proposition 2.0.5. (see Lemma 2.4.1) For any  κ-distributive forcing P, we have ub-FAP,κ ùñ FAP,κ.

In a broader range of cases, ub-FAP,κ implies most of the entries in Figure 2.2:
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Proposition 2.0.6. (see Lemma 2.3.24) If κ an uncountable cardinal and P is a complete Boolean algebra
that does not add bounded subsets of κ, then

p@q P P ub-FAPq,κq ùñ BFAκP,κ.

The previous result is a corollary to the proof of Theorem 2.0.2.

The structure of the chapter is as follows. We collect some definitions in Section 2.1. In Section 2.2,
we prove the positive implications in Figure 2.1. In Section 2.3, we prove a general correspondence between
forcing axioms and name principles. (Theorem 2.0.1 is a special case of this correspondence.) We further
derive results about generic absoluteness and other consequences of the correspondence. In Section 2.4, we
study the principles in Figures 2.1-2.4 for specific classes of forcings such as σ-distributive and c.c.c. and for
specific forcings such as Cohen and random forcing. We use these results to separate some of the principles
in the figures.

2.1 Definitions

In this section, we introduce the forcing axioms and name principles formally. We will also define a few pieces
of notation that we will want to use repeatedly in the coming sections.

Definition 2.1.1. Let X be a set and α an ordinal. We recursively define PαpXq and P αpXq:
P0pXq � X
P αpXq �

�
β α PβpXq

PαpXq � PpP αpXqq for α ¡ 0.

Throughout this section, assume that P is a forcing and C is a class of forcings. G will be a generic filter
(on P); g will be a filter on P which is contained in the ground model V (and therefore certainly not generic,
if P is atomless).

2.1.1 Forcing axioms

Notation. In the following, D⃗ � xDγ : γ   κy always denotes a sequence of dense (or predense) subsets of

a forcing P. If g is a subset of P, then its trace with respect to D⃗ is defined as the set

Trg,D⃗ � tα   κ : g XDα � Hu.

Definition 2.1.2. Let κ be a cardinal. The forcing axiom FAP,κ says:

“For any D⃗, there exists a filter g P V with Trg,D⃗ � κ.”

The forcing axiom FAC,κ asserts that FAP,κ holds for all P P C.

Of course, we could just as well have written “predense” instead of “dense” in the above definition.
We will suppress the P or C in the above notation when it is clear which forcing we are referring to. If

κ � ω1 we will suppress it too, just writing FAP (or just FA if P is clear as well).
We can weaken this axiom: instead of insisting that g must meet every Dγ , we could insist only that it

meets “many” of them in some sense. The following forcing axioms do exactly that, for various senses of
“many”.

Definition 2.1.3. Suppose that κ is a cardinal and φpxq is a formula. The axiom φ-FAP,κ states:

“For any D⃗, there is a filter g on P such that φpTrg,D⃗q holds.”

In particular, we will consider the following formulas:

(1) clubpxq states that x contains a club in κ. club-FAP,κ is called the club forcing axiom.

(2) statpxq states that x is stationary in κ. stat-FAP,κ is called the stationary forcing axiom.
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(3) ubpxq states that x is an unbounded subset of κ. ub-FAP,κ is called the unbounded forcing axiom.

(4) ω-ubpxq states that x contains ω as a subset and is also unbounded in κ. ω-ub-FAP,κ is called the
ω-unbounded forcing axiom.

We define club-FAC,κ, stat-FAC,κ, ub-FAC,κ and ω-ub-FAC,κ in the same way as we defined FAC,κ in Definition
2.1.2.

ω-ub-FA can also be expressed as a combined version of two forcing axioms: that given a κ long sequence
D⃗ and a separate ω long sequence E⃗ of (pre)dense sets, we can find a filter g such that Trg,D⃗ is unbounded
and Trg,E⃗ � ω.

Again, we will suppress P or C where they are obvious, and will suppress κ when κ � ω1.
We can also weaken the axiom by insisting that every dense set Dγ be bounded in cardinality, by some

small cardinal.

Definition 2.1.4. Let κ and λ be cardinals. The bounded forcing axiom BFAλP,κ says

“Whenever xDγ : γ   κy is a sequence of predense subsets of P, and for all γ we have |Dγ | ¤ λ,
then there is a filter g P V such that for all γ   κ, g XDγ � H.”

We define BFAλC,κ, club-BFAλP,κ and so forth in the natural way, using definitions analogous to those in
2.1.2 and 2.1.3.

Again, we will suppress notation as described above. We will suppress the λ if λ � κ.
Note that we are definitely looking at predense sets here, since actual dense sets are likely to be rather

large and the axiom would be likely to be trivial if we had to use dense sets. These bounded forcing axioms
are only really of interest when P is a Boolean algebra, since they always contain (nontrivial) predense sets
with as few as two elements so the axiom will not be vacuous.

There is one more forcing axiom we want to introduce, but it requires some additional notation so we will
postpone it until later in this section.

2.1.2 Name principles

We now need to define name principles, but we need to cover some other terminology first in order to express
the definitions. In the motivating work in the introduction to this chapter, we talked about “sufficiently nice”
names; it’s now time to explain exactly what that means.

Definition 2.1.5. Let X be a set (in V ). We recursively define a name’s rank as follows.
σ is an α rank X name (or a rank α name for short) if either:

� α � 0 and σ � x̌ for some x P X; or

� σ is not rank 0 and α � suptrankpτq � 1 : Dp P Ppτ, pq P σu

We also call a 1 (or 0) rank X name a good name. Of course, we will also talk about rank ¤α names,
meaning names which are either rank  α or rank α.

This definition is a name analogue to saying that σ P PαpXq, where X is transitive. Most of the time, we
will be interested in the case where X is some cardinal, most often either 0 or ω1. Note that every P name
is an α rank X name for some α.

Definition 2.1.6. Let σ be a P name and κ be a cardinal. We say σ is locally κ small if there are at most κ
many names τ such that for some p P P, we have pτ, pq P σ. A name σ is κ small if it is locally κ small, and
every name τ in the above definition is κ small.

If being rank α is analogous to being in Pα (or PαpXq) then the analogue of being κ small would be being
in Hκ� . We could also easily define a version of this for Hκ�pXq if we wanted. However, we don’t actually
need to: in all the cases we’re going to be interested in, X̄ will have cardinality ¤ κ and the definition would
be equivalent to the above one.

The following proposition says that we only really need to worry about κ smallness when we go above
rank 1 names.
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Proposition 2.1.7. Let X be transitive, and of size at most κ. Let σ be a 0 rank or 1 rank X name. Then
σ is κ small.

On the other hand if X has size greater than κ then no interesting rank 1 name will be κ small.
The next definition does not have an easy analogue, but is a kind of complement to the previous one and

is critical when we work with bounded forcing axioms.

Definition 2.1.8. Let σ be a P name and λ be a cardinal. We say σ is locally λ bounded if it can be written
as

σ � tpτ, pq : τ P T, p P Sτu

where T is some set of names, and for τ P T the set Sτ is a subset of P of size at most λ. A name σ is λ
bounded if it is locally λ bounded, and every name τ P T in the above definition is λ bounded.

A good name which is 1 bounded is known as a very good name. A check name x̌ has the form tpy̌, 1q :
y P xu and is therefore guaranteed to be λ bounded for any λ ¡ 0.

We will be talking about interpreting names with respect to a filter. Unfortunately, the literature uses
two different meanings of the word “interpretation”, which only coincide if the filter is generic. For clarity:

Definition 2.1.9. Let σ be a name, and g a filter. (Here, g may be inside V or in some larger model.) When
we refer to the interpretation σg of σ, we mean the recursive interpretation:

σg :� tτg : Dp P gpτ, pq P σu

When we refer to the quasi-interpretation σpgq, we mean the following set:

σpgq :� tx P V : Dp P gp , x̌ P σu

Proposition 2.1.10. σg � σpgq if σ is a 1 rank X name (for some X) and either

(1) g is generic; or

(2) σ is 1 bounded.

Proposition 2.1.11. Suppose P is a complete Boolean algebra, and σ is a 1 rank X name. Then we can
find a name τ such that for every filter g, τg � τ pgq � σpgq.

Proof. For x P X let px � suptp P P : px̌, pq P σu (so px P PY t0u). Let τ � tpx̌, pxq : x P X, px � 0u.

We can now define our name principles. Here, we take P to be a forcing, C a class of forcings, and X an
arbitrary set.

Definition 2.1.12. Let α be an ordinal, κ a cardinal and X a transitive set of size at most κ. The name
principle NP,X,κpαq says the following:

“Whenever σ is a κ small ¤α rank X name, and A P Hκ� XPαpXq is a set such that P , σ � Ǎ,
there is a filter g P V such that σg � A.”

NC,X,κpαq is the statement that NQ,X,κpαq holds for all Q P C. NP,κp8q (resp. NC,κp8q) is the statement
that NP,X,κpαq (resp. NC,X,κpαq) holds for all α P On and all X P Hκ� . (Equivalently, we could just require
that it holds for α ¤ κ� and all X P Hκ� .)

Some comments on this definition: It is easy to see that if σ is a κ small X name, and g P V , then
σg P Hκ� . If σ is rank ¤α, then it is also easy to see that σg P PαpXq. So if we didn’t require that
A P Hκ� X PαpXq, then the principle would fail trivially for most forcings. The only forcings on which it
could hold would be those which don’t force any names to be equal to such large A anyway.

This argument also shows that the name principle fails trivially if, for some λ   κ, there is a λ small σ
which is forced to be equal to some A R Hλ� . So we might think we should exclude such names from the
principle as well. But in fact, we shall see in Section 2.3 that it makes little difference: the proof of Theorem
2.3.1 shows that if a name principle fails because of such a name, then it also fails for non-trivial reasons.
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We can easily see that if σ is a κ-small 1 rank X name, and is forced to be equal to A, then A � X and
|A| ¤ κ. Hence, when we’re dealing with Np1q, we don’t need to worry about checking if the names we’re
working with are in Hκ� X PpXq, as this is automatically true. On the other hand, once we go above rank
1, these names can exist, even for small values of α and κ. For example, [20, Lemma 7.1] has an ω bounded
rank 2 name which is forced to be equal to p2ωqV .

One might ask why we allowed X-names for all X P Hκ� in the definition of NP,κp8q. This is because
any such name can be understood as an H-name of some high rank, so these principles already follow from
the conjunction of NP,H,κpαq for all α P On.

As with the forcing axioms, we will sometimes omit part of this notation. We will drop P and C when
they are clear from context. We will omit α when α � 1. While X is formally just some arbitrary set, most
of the time it can be thought of as a cardinal; we will omit it in the case that X � κ, and will then omit κ
as well if κ � ω1.

Most often, these omissions will come up when we’re assuming α � 1 and taking X to be some cardinal.
In that situation, κ smallness is essentially trivial: if κ   X then our class of names is too restrictive to do
anything interesting, and if κ ¥ X then every 1 rank X name will be κ small, automatically. So when α � 1
and X is a cardinal we can find out everything we need to know just by looking at the case X � κ.

We can also define variations analogous to club-FA, stat-FA, etc. However, this only really makes sense
when we know σ a subset of some cardinal. For this reason, we only define these variations for the case where
α � 1 (also dropping the requirement of κ-smallness) and where X is a cardinal.

Definition 2.1.13. Let κ be a cardinal and φpxq a formula. The axiom φ-NP,κ states:

“For any 1 rank κ name σ, if P , φpσq then there is a filter g on P such that φpσgq holds in V .”

In particular, we shall consider the axioms for the formulas clubpxq, statpxq, ubpxq and ω-ubpxq given in
Definition 2.1.3:

(1) The club name principle club-NP,κ.

(2) The stationary name principle stat-NP,κ.

(3) The unbounded name principle ub-NP,κ.

(4) The ω-unbounded name principle ω-ub-NP,κ.

As usual, we also define similar axioms with C in place of P. Note that we could also express ω-ub-N as
an axiom about two names, one of which is forced to be an unbounded subset of κ while the other is forced
to be equal to ω.

Remark 2.1.14. The axioms club-FAP,κ, stat-FAP,κ, ub-FAP,κ and ω-ub-FAP,κ in Definition 2.1.3 can be
understood as a more general form of name principles for two formulas φpxq and ψpxq:

“For any 1 rank κ name σ, if P , φpσq then there is a filter g on P such that ψpσgq holds in V ,”

For instance, stat-FAP,κ is equivalent to the statement:

“If σ is a rank 1 name for ω1, then there is a filter g P V such that σg is stationary.”

We can also generalise the ideas here: rather than simply working with a single statement like “σ is
unbounded” or “σ is some particular set in V ”, we could ask to be able to find a filter to correctly interpret
every reasonable statement.

In the following definition, we allow bounded quantifiers in our Σ0 formulas.

Definition 2.1.15. Let α be an ordinal and κ a cardinal. The simultaneous name principle Σ
psimq
0 -NP,X,κpαq

says the following:

“Whenever σ0, . . . , σn are κ small ¤α rank X names, we can find a filter g in V such that
φpσg0 , . . . , σ

g
nq holds for every Σ0 formula φ such that P , φpσ0, . . . , σnq.”

Moreover:
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� The simultaneous name principle Σ
psimq
0 -NP,κp8q is the same statement, except that the names are X

names for some X P Hκ� and there is no restriction on their rank.

� Σ
psimq
0 -NC,X,κpαq is the statement that Σ

psimq
0 -NQ,X,κpαq holds for all Q P C.

� Σ
psimq
0 -NC,κp8q is defined similarly.

� The bounded name principles Σ
psimq
0 -BNλP,X,κpαq are defined similarly.

The Σ0 requirement on φ is necessary, because otherwise the axiom would say that any sentence which is
forced to be true by P is already true in V . This would make the axiom trivially false for almost all interesting
forcings. Again we will suppress X, κ and α as described earlier.

All of these name principles also have bounded variants:

Definition 2.1.16. Let α be an ordinal and κ, λ cardinals. The bounded name principle BNλP,X,κpαq says
the following:

“Whenever σ is a κ small λ bounded ¤ α rank X name, and A is a set such that P , σ � A, we
can find a filter g P V such that σg � A.”

We define similar bounded forms of all the other name principles we have introduced so far. Again, we
will suppress λ when λ � κ and will suppress other notation as described above.

2.1.3 Hybrid axioms

There is one more group of axioms which are worth mentioning, because of their frequent use in the literature.
They are a hybrid of forcing axiom and name principle. The axioms MA� and PFA� were introduced
introduced by Baumgartner in [8, Section 8].

Definition 2.1.17. The forcing axiom FA�P,κ says:

Suppose D⃗ � xDγ : γ   κy is a sequence of dense subsets of P and let σ be a 1 rank κ name such
that P , “σ is stationary”. Then there is a filter g such that

(1) For all γ, Dγ X g � H; and

(2) σg is stationary.

The forcing axiom FA��P,κ says:

Let xDγ : γ   κy be dense subsets of P and let xσγ : γ   κy be 1 rank κ names such that P , “σγ
is stationary” for every γ. Then we can find a filter g such that

(1) For all γ, Dγ X g � H; and

(2) For all γ, σgγ is stationary.

As usual, we will also use versions of the above with C in place of P, and bounded versions.
We have actually gone against convention slightly here: the literature generally uses the quasi-interpretation

σpgq when defining FA� and FA�� style axioms. However, our version is in fact equivalent, as the following
theorem shows:

Theorem 2.1.18. Let FAp�q and FAp��q be defined in the same way as FA� and FA�� above, but with σpgq

and σ
pgq
γ in place of σg and σgγ respectively. Then FA�P,κ ðñ FA

p�q
P,κ and FA��P,κ ðñ FA

p��q
P,κ .

Proof. We will prove the FA� case; the FA�� version is similar. The ð direction is trivial.
ñ: Let xDγ : γ   κy be a collection of κ many dense subsets of P. Let σ be a rank 1 name with

P , “σ is stationary”.
For γ P κ, let

Eγ :� tp P P : p , γ̌ R σ or Dq ¥ p pγ̌, qq P σu

We can see that Eγ is dense: given p P P, either we can find some q ∥ p with xγ̌, qy P σ and we’re done, or
p , γ̌ R σ since all the elements of σ are check names.
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Claim 2.1.19. If g is any filter which meets all the Eγ , then σ
g � σpgq

Proof. �: Let γ P σg. Then there is a q P g with pγ̌, qq P σ. Clearly q , γ̌ P σ, so γ P σpgq.
�: Let γ P σpgq. Then we can find r P g with r , γ̌ P σ. Certainly, then, there is no p P g with p , γ̌ R σ.

Since nonetheless g meets Eγ , there must be some q P g with pγ̌, qq P σ. Hence γ P σg.

Now we simply use our forcing axiom to take a filter g which meets all the Dγ , all the Eγ , and which is
such that σpgq is stationary.

In defining the Eγ in the above proof, we used a technique which we will be invoking many times. It will
save us a lot of time if we give it a name now.

Definition 2.1.20. Let τ and σ be names, and p P P. We say p strongly forces τ P σ, and write p ,� τ P σ,
if there exists q ¥ p with pτ, qq P σ.

The value of this definition is shown in the following two propositions.

Proposition 2.1.21. Let σ and τ be names, and p P P.

(1) If p , τ P σ, then there exist densely many r ¤ p such that for some name τ̃ , r , τ̃ � τ and r ,� τ̃ P σ.

(2) If p ,� τ P σ then p , τ P σ.

Proof. (1): Assume p , τ P σ. Let q ¤ p, and let G be a generic filter containing q. Then we know that
τG P σG. Hence there is some pair pτ̃ , sq P σ such that s P G and τ̃G � τG. Since τ̃G � τG, there exists some
condition t P G such that t , τ̃ � τ . Now choose r ¤ q, s, t, which exists by compatibility of elements of G.
It is immediate that r , τ̃ � τ and that r ,� τ̃ P σ.

(2): Trivial.

Proposition 2.1.22. Let σ and τ be names, let p P P and let g be any filter containing p.

(1) If p ,� τ P σ then τg P σg.

(2) If for all τ̃ with pτ̃ , qq P σ (for some q P P) we either know τg � τ̃g or have p , τ̃ R σ then τg R σg.

2.2 Results for rank 1

We will start by looking at the positive results we can prove in general about forcing axioms and rank 1
name principles. We again take P to be an arbitrary forcing. We also take κ to be an uncountable cardinal,
although we’re mostly interested in the case where κ � ω1. Since P is arbitrary, we could just as easily
replace it with a class C of forcings in all our results.

2.2.1 Basic implications

All the positive results expressed in Figure 2.1 are proved in this section. The negative results will be proved
later, when we look at the specific forcings that provide counterexamples. We will not need that κ is regular.
In the case of Cofpκq � ω, a club is

Lemma 2.2.1. FAP,κ ðñ NP,κ

Proof. ùñ: Assume FAκ. (That is, FAP,κ, recall that we said we’d suppress the P whenever it was clear.)
Let σ be a rank 1 name for a subset of κ, and suppose that 1 , σ � A for some A � κ. For γ P A, let

Dγ � tp P P : p ,� γ̌ P σu

It is clear that Dγ is dense by Proposition 2.1.21.
For γ P κzA, let Dγ � P.
Using FAκ, take a filter g that meets every Dγ . We claim that σg � A.
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For γ P A, we know that some p P g strongly forces γ̌ P σ. By 2.1.22 then, γ P σg. Conversely, if γ R A
then 1 , γ̌ R σ and by the same proposition γ R σ.
ðù: Assume Nκ. Let xDγ , γ   κy be a collection of dense subsets of P.
Let

σ � tpγ̌, pq : γ   κ, p P Dγu

It is easy to see that 1 , σ � κ̌. Take a filter g such that σg � κ, and then for all γ   κ Dγ X g � H.

Lemma 2.2.2. FAP,κ holds if and only if for every rank 1 name σ for a subset of κ, there is some g with
σpgq � σg.

Proof. First suppose that FAP,κ holds and σ is a rank 1 P-name for a subset of κ. Note that σg � σpgq holds
for all filters g on P. For each α   ω1,

Dα � tp P P : p , α̌ R σ _ p ,� α̌ P σu

is dense. By FAP,κ, there is a filter g with g XDα for all α   ω1. To see that σpgq � σg holds, suppose that
α P σpgq. Thus there is some p P g which forces α̌ P σ. Take any q P gXDα. Since p ∥ q, we have p ,� α̌ P σ
by the definition of Dα and thus α P σg.

On the other hand, NP,κ and thus FAP,κ (by Lemma 2.2.1) follows trivially from this principle, since for
any rank 1 name σ with , σ � Ǎ, we have σpgq � A for any filter g.

Lemma 2.2.3.

(1) FAP,κ ùñ club-FAP,κ ùñ ub-FAP,κ

(2) FAP,κ ùñ stat-FAP,κ ùñ ub-FAP,κ

(3) FAP,κ ùñ ω-ub-FAP,κ ùñ ub-FAP,κ

(4) If Cofpκq ¡ ω, then club-FAP,κ ùñ stat-FAP,κ

Proof. Follows immediately from the definitions of the axioms.

Lemma 2.2.4. club-FAP,κ ðñ FAP,Cofpκq.

Proof. For Cofpκq � ω, the statements are both provably true. So assume Cofpκq ¡ ω.

ðù: Let π : Cofpκq Ñ κ be a continuous cofinal function. Let D⃗ � xDα : α   κy be a sequence of dense

open subsets of P. Let E⃗ � xEβ : β   λy, where Eα � Dπpαq for α   Cofpκq. By FAP,Cofpκq, there is a filter
g with g X Eα for α   Cofpκq. Thus for all β � πpαq P ranpπq, g XDα � g X Eβ � H. This suffices since
ranpπq is club in κ.
ùñ: We first claim that club-FAP,κ implies club-FAP,Cofpκq. To see this, let π : Cofpκq Ñ κ be a continuous

cofinal function. Let D⃗ � xDα : α   Cofpκqy be a sequence of dense open subsets of P. Let Eπpαq � Dα and
Eγ � P for all γ R ranpπq. Since C X ranpπq is club in κ and π is continuous, π�1pCq is club in Cofpκq and
g XDα � g X Eπpαq � H for all α P π�1pCq as required.

It now suffices to prove club-FAP,λ ùñ FAP,λ for regular λ. Given a sequence D⃗ � xDα : α   λy of dense

open subsets, partition λ into disjoint stationary sets Sα for α   κ. Let E⃗ � xEβ : β   λy, where Eβ � Dα

for β P Sα. By club-FAλ, there is a filter g and a club C in λ with g X Eβ for β P C. Since C is club,
Sα X C � H for all α   λ. Thus g XDα � g X Eβ � H.

Lemma 2.2.5.

(1) FAκ ùñ club-Nκ

(2) club-Nκ ùñ club-FAκ

Proof. (1): Let σ be a rank 1 name such that 1 , “σ contains a club in κ”. Then we can find a rank 1 name
τ such that 1 , τ � σ and 1 , “τ is a club in κ”. For γ   κ, let Dγ denote the set of p P P such that either

(a) p ,� γ̌ P τ , or
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(b) for all sufficiently large α   γ, p , α̌ R τ .

We claim Dγ is dense. Let p P P. If p , γ̌ P τ then by Proposition 2.1.21 we can find q ¤ p strongly forcing
this, and then q P Dγ . Otherwise, take q ¤ p with q , γ̌ R τ . Then q , “τ X γ is bounded in γ”. Take r ¤ q
deciding that bound, and then r satisfies condition b above.

For any filter g with g XDγ � H, τg is closed at γ by Proposition 2.1.22.
Let Eγ denote the set of p P P such that for some δ ¥ γ, p ,� δ̌ P τ . Again, this is dense since τ is forced

to be unbounded. For any filter g with g X Eγ � H for all γ   κ, τg is unbounded.
Let Fγ denote the dense set of p P P such that p ,� γ̌ P σ or p , γ̌ R τ . Once again, Fγ is dense: given

p P P take q ¤ p deciding whether γ P τ . If it decides γ R τ then we’re done; otherwise q , γ̌ P σ and we can
find r ¤ q with r ,� γ̌ P σ

For any filter g with g X Fγ � H, γ P τg ñ γ P σg.
Putting things together, if we find a filter g which meets every Dγ , Eγ and Fγ then τg will be both a club

and a subset of σg.
(2): This works much like the proof that N ñ FA above. Let xDγ : γ   κy be a collection of dense sets.

Let

σ � tpγ̌, pq : γ   κ, p P Dγu

Clearly 1 , σ � κ̌, and hence that σ contains a club. Take a filter g where σg contains a club. Then
σg � tγ   κ : Dγ X g � Hu so g meets a club of Dγ .

Putting together the previous results, we complete the top left corner of Figure 2.1.

Corollary 2.2.6. The following are all equivalent for all uncountable regular cardinals κ: FAκ, Nκ, club-FAκ,
club-Nκ.

The second half of the previous lemma also applies for the other special name principles.

Lemma 2.2.7. stat-Nκ ùñ stat-FAκ

Proof. As for the club case, except that we just insist on σg being stationary.

Lemma 2.2.8. ub-Nκ ùñ ub-FAκ

Proof. As for the club case, except that we insist on σg being unbounded.

Lemma 2.2.9. ω-ub-Nκ ùñ ω-ub-FAκ

Proof. Define σ as in the club case. Define

τ � tpň, pq : n   ω, p P Enu

where we want to meet all of the dense sets xEn : n   ωy as well as unboundedly many of the dense sets Dγ .
Take g such that τg � ω and σg is unbounded.

We can also get converses for these in the case of ub and ω-ub.

Lemma 2.2.10.

(1) ub-FAκ ùñ ub-Nκ

(2) ω-ub-FAκ ùñ ω-ub-Nκ

Proof. (1): Assume ub-FAκ. Let σ be a rank 1 name for an unbounded subset of κ. For γ   κ let Dγ be the
set of all p P P such that for some δ ¡ γ, p ,� δ̌ P σ. Let g be a filter meeting unboundedly many Dγ ; then
σg is unbounded.

(2): Let σ be a rank 1 name for an unbounded subset of κ and τ be a good name for ω. Define Dγ as
above, and for n   ω let En be the set of all p P P which strongly force n P τ . Find g meeting unboundedly
many Dγ and every En; then σg is unbounded and τg � ω.

This proves every implication in the left two columns of Figure 2.1.
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2.2.2 Extremely bounded name principles

Now, we address the right most column of Figure 2.4. These axioms are more interesting if P is a complete
Boolean algebra, since they can be trivial otherwise.

Lemma 2.2.11. BN1
κ is provable in ZFC.

Proof. Let σ be a 1-bounded rank 1 name such that 1 , σ � Ǎ for some set A. Then for γ P κzA, there is
no p P P such that pγ̌, pq P σ. For γ P A there is a unique p P P such that pγ̌, pq P σ; and p is contained in
every generic filter. Assuming P is atomless, it follows that p � 1 and hence that, if we let g be any filter at
all, σg � A. It is also possible to adjust this proof to work for forcings with atoms; this is left as an exercise
for the reader.

All of these results also hold if we work with bounded name principles and forcing axioms, provided that
the bound is at least κ.

For bounds below κ, we can almost get an equivalence between the different bounds for the stationary
and unbounded name principles. A forcing is called well-met if any two compatible conditions p, q have a
greatest lower bound p^ q.

The next result and proof is due to Hamkins for trees (see Corollary 2.2.13). We noticed that his proof
shows a more general fact.

Lemma 2.2.12 (with Hamkins). Suppose λ   κ and P is well-met.

(1) If stat-BNλP,κ fails, then there are densely many conditions p P P such that stat-BN1
Pp,κ fails, where

Pp :� tq P P : q ¤ pu.

(2) The same result holds with ub in place of stat.

Proof. We prove the stat case; the ub case is identical. The key fact the proof uses is that if we partition a sta-
tionary/unbounded subset of κ into λ   κ many parts, then one of those parts must be stationary/unbounded.

Let σ be a λ-bounded (rank 1) name for a stationary set, such that there is no g P V with σg stationary.
Then, without loss of generality, we can enumerate the elements of σ:

σ � tpγ̌, pγ,δq : γ   κ, δ   λu

For δ   λ, we define:

σδ � tpγ̌, pγ,δq : γ   κu

Clearly, σδ is 1-bounded.
For any generic filter G,

�
σGδ � σG is stationary in V rGs. Hence, P forces “There is some δ   λ such

that σδ is stationary.” Now, let p P P be one of the densely many conditions which decides which δ this is.
Then

σδ,p � tpγ̌, pγ,δ ^ pq : γ   κu

is a 1-bounded Pp-name and Pp , σδ,p is stationary. If stat-BN1
Pp,κ would hold, there would exist a filter g

such that σgδ,p is stationary. Then g generates a filter h in P such that σhδ,p � σgδ,p is stationary.

Corollary 2.2.13 (Hamkins). Suppose that T is a tree, PT is T with reversed order and λ   κ.

(1) If stat-BNλPT ,κ fails, then there are densely many conditions p P P such that stat-BN1
pPT qp,κ fails, where

pPT qp :� tq P PT : q ¤ pu.

(2) The same result holds with ub in place of stat.

Corollary 2.2.14. Suppose λ   κ and P is a well-met forcing such that for every p P P, Pp embeds densely
into P. Then

stat-BNλP,κ ðñ stat-BN1
P,κ

ub-BNλP,κ ðñ ub-BN1
P,κ
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Proof. We show that a failure of stat-BNλP,κ implies the failure of stat-BN1
P,κ. The converse direction is clear

and the proof for the unbounded name principles is analogous.
By Lemma 2.2.12, there is some p P P such that stat-BN1

Pp,κ fails. Let i : Pp Ñ P be a dense embedding

and Q :� ipPpq. Since stat-BN1
Q,κ fails, let σ be a 1-bounded Q-name witnessing this failure. We claim that

there is no filter g on P such that σg is stationary. Assume otherwise. Using that Q is well-met, let h denote
the set of all q ¥ p0^Q � � � ^Q pn for some p0, . . . , pn P gXQ. It is easy to check that h is a well-defined filter
on Q and contains g XQ. Then σh � σg is stationary. But this contradicts the choice of σ.

2.2.3 Extremely bounded forcing axioms

We next study forcing axioms for very small predense sets. The next lemmas show that BFAωP,ω1
has some of

the same consequences as BFA.

Lemma 2.2.15. If P is a complete Boolean algebra such that BFAωP,ω1
holds, then 1P does not force that ω1

is collapsed.

Proof. Suppose , 9f : ω1 Ñ ω is injective. Let Aα � tJ 9fpαq � nK � 0 : n P ωu. Since each Aα is a maximal
antichain, there is a filter g with g X Aα � H for all α   ω1. Define f 1 : ω1 Ñ ω by letting f 1pαq � n if

J 9fpαq � nK P g for all α   ω1. Since g is a filter, f 1 : ω1 Ñ ω is well-defined and injective.

Lemma 2.2.16. If P is a complete Boolean algebra such that BFAωP,ω1
holds and P adds a real, then CH fails.

Proof. Suppose CH holds and let xxα : α   ω1y be an enumeration of all reals. Let σ be a name for the real
added by P. For α   ω1, let

Dα � tJt⌢xny � σK : t P 2 ω, n P 2, t � xα, t
⌢xny � xαu

For n   ω, let
En � tJσpnq � mK : m P 2u

Then the Dα and En are all predense and countable. Take a filter g which meets every Dα and En. The En
ensure that g defines a real x (by xpnq � m where Jσpnq � mK P g). But if x � xα then g XDα � H.

There exist forcings P such that the implication BFAωP,ω1
ñ BFAω1

P,ω1
fails. To see this, suppose that Q is a

forcing such that BFAω1

Q,ω1
fails. Let P be a lottery sum of ω1 many copies of Q. Since BFAω1

Q,ω1
fails, BFAω1

P,ω1

fails as well. On the other hand, BFAωP,ω1
holds trivially since any countable predense subset of P contains

0P.

Question 1. Does the implication BFAωP,ω1
ñ BFAω1

P,ω1
hold for all complete Boolean algebras P?

By the previous lemmas, any forcing which is a counterexample cannot force that ω1 is collapsed, and if
it adds reals then CH holds.

2.2.4 Basic results on ub-FA

In this section, we collect some observations about weak forcing axioms. We aim to prove some consequences
of these axioms. We first consider ub-FA and stat-FA. How strong is ub-FA? The next lemmas show that is
has some of the same consequences as FA.

Lemma 2.2.17. If ub-FAP,ω1
holds, then P does not force that ω1 is collapsed.

Proof. Towards a contradiction, suppose P forces that ω1 is collapsed. Let 9f be a P-name for an injective
function ω1 Ñ ω. For α   ω1, let Dα � tp P P : Dn P ω p , 9fpαq � nu. By ub-FAP,ω1

, there is a filter g and
an unbounded subset A of ω1 such that g XDα � H for all α P A. Define f : A Ñ ω by letting fpαq � n if

there is some p P g XDα with p , 9fpαq � n. Since g is a filter, f is injective.

Lemma 2.2.18. If ub-FAP,ω1
holds and P does not add reals, then for each stationary subset S of ω1, P does

not force that S is nonstationary.
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Proof. Suppose that 9C is a name for a club such that ,P S X 9C � H. Let 9f be a name for the characteristic
function of 9C. For each α   ω1,

Dα � tp P P : Dt P 2α t � 9fu

is dense in P, since P does not add reals. By ub-FAP,ω1
, there is a filter g and an unbounded subset A of ω1

such that gXDα � H for all α P A. Since g is a filter, C :� tα   ω1 : Dp P g p , α P 9Cu is a club in ω1 with
S X C � H.

The previous lemma also follows from Theorem 2.3.17 and Lemma 2.3.24 below via an absoluteness
argument, assuming P is a homogeneous complete Boolean algebra. It is open whether the lemma holds for
forcings P which add reals.

What is the relationship between ub-FAP,ω1
and other forcing axioms? We find two opposite situations. For

any σ-centred forcing, ub-FAP,ω1
and stat-FAP,ω1

are provable in ZFC by Lemma 2.4.6 below. For many other
forcings though, ub-FAP,ω1 implies nontrivial axioms such as FAP,ω1 or BFAω1

P,ω1
. For instance, the implication

ub-FAP,ω1 ñ FAP,ω1 holds for all σ-distributive forcing by Lemma 2.4.1 below. We will further see in Lemma
2.3.24 below that for any complete Boolean algebra P which does not add reals, p@q P P ub-FAPq,ω1

q implies
BFAω1

P,ω1
. Moreover, the implication ub-FAP,ω1

ñ FAP,ω1
also holds for some forcings that add reals, for

instance for random forcing by Lemma 2.4.15.
We do not have any examples of forcings where ub-FAP,ω1

and stat-FAP,ω1
sit between these two extremes:

strictly weaker than FAP,ω1 , but not provable in ZFC.
In particular, we have not been able to separate the two axioms:

Question 2. Can forcings P exist such that ub-FAP,κ holds, but stat-FAP,κ fails?

For instance, we would like to know if these axioms hold for the following forcings:

Question 3. Do Baumgartner’s forcing to add a club in ω1 with finite conditions [8, Section 3] and Abraham’s
and Shelah’s forcing for destroying stationary sets with finite conditions [1, Section 2] satisfy ub-FAP,ω1

and
stat-FAP,ω1

?

2.2.5 Characterisations of FA� and FA��

The proof of the equivalence of FA and N still goes through fine if we change the axioms slightly, demanding
some extra property to be true of the filter g we’re looking for. This gives us a nice way to express FA� and
FA��.

Lemma 2.2.19. FA�C,κ is equivalent to the following statement:

For all P P C, for all rank 1 names σ and τ for subsets of κ such that P forces “σ � Ǎ” for some
A and “τ is stationary”, there is some filter g with σg � A and τg stationary.

Similarly, FA��C,κ is equivalent to being able to correctly interpret κ many stationary rank 1 names and a single
rank 1 name for a specific set A.

Proof. Analogous to the proof of 2.2.1 in the previous section.

In the case of FA�� this result can be sharpened further, getting rid of the name for A:

Lemma 2.2.20. FA��C,κ is equivalent to the statement:

For all collections of κ many rank 1 names xσγ : γ   κy with P , “σγ is stationary for all γ”,
there is a filter g P V such that for all γ, σgγ is stationary.

Proof. ùñ: By the previous lemma.
ðù: Let σ be a rank 1 name, such that P , σ � Ǎ for some A � κ. We claim there is a collection

xτγ : γ   κy of rank 1 names, which are forced to be stationary in κ, such that any filter g which interprets
every τγ as stationary will interpret σ as A. Once we have proved this claim, the lemma follows immediately
from the second part of Lemma 2.2.19. For γ P A, let τγ � tpα̌, pq : α P κ, p ,� γ̌ P σu. For γ R A, let τγ � κ̌.
We will see that P , “τγ � κ” for γ P A. Note that P , σ � Ǎ by assumption. So for γ P A, every generic
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filter will contain some p with p ,� γ̌ P σ. Hence P , τγ � κ̌. There is a filter g such that τgγ is stationary
for all γ   κ by assumption. If γ P A, then in particular τgγ � H. Hence γ P σg. If a filter interprets all the
τγ as stationary sets, then σg � A. If γ P σgzA, then there is some p P P with xγ̌, py P σ, which is impossible
as P , γ̌ R σ.

2.3 A correspondence for arbitrary ranks

We now move on to discuss higher ranked name principles, including those of the ranked or unranked
simultaneous variety. It turns out that even at high ranks, a surprising variety of these are equivalent to one
another and to a suitable forcing axiom. These are summarised in the following theorems.

2.3.1 The correspondence

(First proved by the author in [37][Section 4].)

Theorem 2.3.1. Let P be a forcing and let κ be a cardinal. The following implications hold, given the
assumptions noted at the arrows:

(1)

FAκ

��

NP,κp8q oo

44

Σ
psimq
0 -NP,κp8q

(2) For any ordinal α ¡ 0, and any transitive set X of size at most κ: 2

FAκ

��

NP,X,κpαq oo

|P αpXq|¥κ
33

Σ
psimq
0 -NP,X,κpαq

As usual, we can generally think of X as being a cardinal.
There is also a bounded version of this theorem.

Theorem 2.3.2. Let P be a complete Boolean algebra, and let κ, λ be cardinals. The following implications
hold, given the assumptions noted at the arrows:

(1)

BFAλκ
κ¤λ

��

BNλP,κp8q oo

44

Σ
psimq
0 -BNλP,κp8q

(2) For any ordinal α ¡ 0, and transitive set X of size at most κ:

BFAλκ
κ¤λ

  

BNλP,X,κpαq oo

|P αpXq|¥κ
44

Σ
psimq
0 -BNλP,X,κpαq

2Recall that NP,X,κpαq is only defined if X has size at most κ.
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Remark 2.3.3. For the 8 case it suffices to look only at H names, as we discussed after Definition 2.1.12.
Moreover, for the implication NP,κp8q ñ FAP,κ (and the corresponding ones in the other diagrams), we need
only rank 1 κ-names for κ. These can be understood as rank κ H-names for κ. For NP,X,κpαq ñ FAP,κ,
rank 1 Y -names for a fixed set Y of size κ suffice. These can be understood as rank ¤α X-names. These
remarks are also true for the bounded versions. Note that for NP,κp1q ñ FAP,κ, rank 1 κ-names for κ suffice
by Lemma 2.2.1.

We give some simple instances of Theorem 2.3.1 (2) and postpone the proofs to Section 2.3.2. The variant
for bounded forcing axioms has similar consequences. The next result follows by letting κ � X and α � 1.

Corollary 2.3.4. For any forcing P, FAP,κ ðñ Σ
psimq
0 -NP,κ ðñ NP,κ.

To illustrate this, we note how some concrete forcing axioms can be characterized by name principles.
For example, we can characterize PFA as follows:

PFAðñ Σ
psimq
0 -Nproper,ω1

ðñ Nproper,ω1
.

In other words, rank 1 names for ω1 can be interpreted correctly.
For higher ranks, it is useful to choose α, κ and X such that |P αpXq| ¥ κ holds to get an equivalence

in Theorem 2.3.1 (2). This condition holds for κ ¥ 2ω, X � ω and α � 2.

Corollary 2.3.5. For any cardinal κ ¤ 2ω and any forcing P, we have FAP,κ ðñ Σ
psimq
0 -NP,ω,κp2q ðñ

NP,ω,κp2q.

For example, we can characterize PFA as follows:

PFAðñ Σ
psimq
0 -Nproper,ω,ω1p2q ðñ Nproper,ω,ω1p2q.

In other words, rank 2 names for sets of reals can be interpreted correctly. We leave open how to characterise
higher rank (e.g. rank 2) principles for names for reals.

2.3.2 The proofs

Proof of Theorem 2.3.1. We prove both parts of the theorem simultaneously, by fixing X and α and proving
all the implications in the following diagram:

Σ
psimq
0 -NP,κp8q //

��

NP,κp8q

((

��

FAP,κ

55

))

FAP,κ

Σ
psimq
0 -NP,X,κpαq // NP,X,κpαq |P αpXq|¥κ

66

Of these, the first FAP,κ ñ Σ
psimq
0 -NP,κp8q is the hardest to prove, and the main work on the theorem.

We’ll leave it to the end, and prove the other implications first. Note that FAP,κ ñ Σ
psimq
0 -NP,X,κpαq follows

from the rest of the diagram.

Proof of Σ
psimq
0 -NP,κp8q ñ Σ

psimq
0 -NP,κ,Xpαq. The latter is a special case of the former.

Proof of NP,κp8q ñ NP,X,κpαq. Again, this is a special case.

Proof of Σ
psimq
0 -NP,X,κpαq ñ NP,X,κpαq. Given a κ-small name σ of rank α or less, and a set A as called for

by NP,κpαq, we know A P PαpXq X Hκ� . Hence Ǎ is a κ small α rank X name, so “σ � Ǎ” is one of the
formulas discussed by the simultaneous name principle.
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Proof of Σ
psimq
0 -NP,κp8q ñ NP,κp8q. Similar to the previous proof: if σ is any κ-small name, and A P Hκ�

is such that P , σ � Ǎ, then since Ǎ is κ-small we know from Σ
psimq
0 -Np8q that we can find a filter g such

that σg � Ǎg � A.

Proof of NP,X,κpαq ñ FAP,κ. We assume |P αpXq| ¥ κ. The idea is similar to the proof of NP,κ ñ FAP,κ
from Lemma 2.2.1, but first we must prove a technical claim.

Claim 2.3.6. P αpXq contains at least κ many elements whose check names are κ-small  α-rank X-names.

Proof (Claim). Let α1 ¤ α be minimal such that |P α1pXq| ¥ κ.
Let A P P α1pXq. Then A P PϵpXq for some ϵ   α1. We show by induction on ϵ that Ǎ is in fact a

κ-small ϵ-rank X-name. From this and the assumption on the size of κ, it of course follows that there are at
least κ many elements of P α1pXq � P αpXq whose check names are κ-small   α-rank X-names.

The case ϵ � 0 is trivial. Suppose ϵ ¡ 0. By inductive hypothesis, we know that all the names which are
contained in Ǎ are κ-small   ϵ-rank X-names. It remains to check that there are at most κ many of them;
that is, that |A| ¤ κ. But this is obvious, since A � P ϵpXq and |P ϵpXq|   κ by our choice of α1.

Given the claim, we can now take a set of κ many distinct sets A :� tAγ : γ   κu � P αpXq, such that
for all γ, the name Ǎγ is a κ small  α rank X-name.

Let xDγyγ κ be a sequence of dense sets in P. We define a name σ:

σ � txǍγ , py : γ   κ, p P Dγu

Then σ is a κ-small ¤α-rank X-name, and P , σ � Ǎ. Hence, if we assume NP,X,κpαq we can choose a filter
g such that σg � A. It is easy to see that g must meet every Dγ .

Proof of NP,κp8q ñ FAP,κ. Essentially the same as the previous proof, but since we’re no longer required to
make sure σ has rank α we can omit the technical claim and just take Aγ :� γ for all γ   κ.

Proof of FAP,κ ñ Σ
psimq
0 -NP,κp8q. This is the main work of the theorem. By a delicate series of inductions,

we will prove the following lemma:

Lemma 2.3.7. Let φpσ⃗q be a Σ0 formula where σ⃗ is a tuple of κ-small names. Then there is a collection
Dφpσ⃗q of at most κ many dense sets, which has the following property: if g is any filter meeting every set in
Dφpσ⃗q and g contains some p such that p , φpσ⃗q, then in fact φpσ⃗gq holds in V .

The result we’re trying to show follows easily from this lemma: Fix a tuple σ⃗ � xσ0, . . . , σny of κ small
names, and let D :�

�
tDφpσ⃗q : φpv0, . . . , vnq is Σ0u. D is a collection of at most κ many dense sets. Using

FAP,κ, take a filter g meeting every dense set in D. If φpv0, . . . , vnq is a Σ0 formula and 1 , φpσ⃗q then since
1 P g we know that φpσ⃗gq holds.

We will work our way up to proving the lemma, by first proving it in simpler cases. We opt for a direct
proof of the name principle NP,κp8q in the next Claim 2.3.8. This and Claim 2.3.11 could be replaced by

shorter arguments for κ-small H-names, since it suffices to deal with Σ
psimq
0 -NP,H,κp8q as discussed after

Definition 2.1.12.

Claim 2.3.8. The lemma holds when φ is of the form σ � Ǎ for some set A P Hκ� and (κ-small) name σ.

Note that since A P Hκ� , we know that Ǎ is a κ small name. So the statement in the claim does make
sense.

Proof. We use induction on the rank of σ. If σ is rank 0 then it is a check name, and so the lemma is trivial:
we can just take Dσ�Ǎ � H. So say σ is rank α ¡ 0 and the lemma is proved for all names of rank  α.
Since σ is κ-small, we can write σ � tpσγ , pq : γ   κ, p P Sγu for some κ-small names σγ and sets Sγ � P.

First, let B P A. We shall define a set DB , whose “job” is to ensure B ends up in σg.

DB �
 
p P P :

�
p , σ � Ǎ

�
_
�
Dγ   κ pp , σγ � B̌q ^ pp ,� σγ P σq

�(
DB is dense: if we take p P P then either we can find r ¤ p with r , σ � Ǎ, or else p , σ � Ǎ. In the first
case, we’re done. In the second, given any (truly) generic filter G containing p, there will be some γ   κ and
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q P G such that3 σGγ � B and pσγ , qq P σ, so q ,� σγ P σ. Take r P G such that r , σγ � B̌, and take s
below p, q and r by compatibility; then s P DB .

Now let γ   κ. In a similar way, we define a set Eγ , which is designed to ensure that σγ ends up in A if
it’s going to be in σ.

Eγ �
 
p P P : pp , σ � Ǎq _ pp , σγ R σq _

�
DB P A, p , σγ � B̌

�(
Again, Eγ is dense: Let p P P. We can assume that p , σ � Ǎ and p , σγ P σ; otherwise we’re done

immediately. But now we can strengthen p to some r ¤ p which forces σγ P B̌ for some B P A and again
we’re done.

We define
Dσ�Ǎ :� tDB : B P Au Y tEγ : γ   κu Y

¤
γ κ

¤
BPA

Dσγ�B̌

Every σγ is a κ-small name of rank less than α, and every B P Hκ� , so this is well defined by inductive
hypothesis. By assumption, |A| ¤ κ. Hence Dσ�Ǎ contains at most κ many dense sets. Fix a filter g which
meets every element of Dσ�Ǎ, and which contains some p forcing σ � Ǎ. We must verify that σg � A.

First, let B P A. Find q P g XDB , and without loss of generality say q ¤ p. Then clearly q , σ � Ǎ, so
(by definition of DB) we can find γ such that q , σγ � B̌ and q ,� σγ P σ. The latter means that σgγ P σ

g.

Since g also meets every element of Dσγ�B̌
, the fact that q P g forces σγ � B̌ implies that σgγ � B̌g � B.

Hence B P σg.
Now let B P σg. Then we can find γ   κ such that B � σgγ and such that for some q P g we have

q ,� σγ P σ. Without loss of generality, say q ¤ p. Then q , σ � Ǎ. Let r P g XEγ , and again without loss
of generality say r ¤ q. Then for some B1 P A, r , σγ � B̌1. Since g meets every element of Dσγ�B̌1 , this

tells us that σgγ � B1. But then B � σgγ � B1 P A.
Hence σg � A as required.

Next, we go up one step in complexity, by allowing both sides of the equality to be nontrivial.

Claim 2.3.9. The lemma holds when φ has the form σ � τ for two (κ-small) names σ and τ .

Proof. We use induction on the ranks of σ and τ . Without loss of generality, let us assume the rank of σ is α,
and the rank of τ is ¤ α. If rankpτq � 0 then τ is a check name. Since τ is κ-small, it can only be a check name
for some A P Hκ� , so we are already done by the previous claim. So suppose rankpσq � α ¥ rankpτq ¡ 0,
and the result is proven for all τ 1, σ1 where rankpσ1q   rankpσq and rankpτ 1q   rankpτq.

Let us write σ � tpσγ , pq : γ   κ, p P Sγu and τ � tpτδ, qq : δ   κ, q P Tδu.
For γ P κ, we define a set Dγ , whose job is to ensure that if σγ ends up being put in σ by g, then it will

also be equal to some element of τ .

Dγ �
!
p P P :pp , σ � τq _ pp , σγ R σq

_ Dδ   κ
�
pp , σγ � τδq ^ pp ,

� τδ P τq
	)

We claim Dγ is dense: Let p P P. If p �, σγ P σ or p �, σ � τ then take some q ¤ p forcing the converse of
one of these statements, and we are done. If p , σγ P σ ^ σ � τ then take a generic filter G containing p.
We know σGγ P τ

G, so σGγ � τGδ for some τδ which is strongly forced to be in τ by some q P G. Then take
r P G below p and q, and we know r , σγ � τδ and r ,� τδ P τ . Hence r P Dγ .

Symmetrically, for δ   κ let

Eδ �
!
p P P :pp , σ � τq _ pp , τδ R τq

_ Dγ   κ
�
pp , σγ � τδq ^ pp ,

� σγ P σq
	)

3Note the somewhat delicate nature of this statement: we cannot first take an arbitrary γ such that σG
γ � B then try to find

q such that q ,� σγ P σ.
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Again, Eδ is dense.
We now let

Dσ�τ :� tDγ : γ   κu Y tEδ : δ   κu Y
¤

γ,δ κ

Dσγ�τδ

Note that for all σ, δ   κ, we know rankpσγq   rankpσq and rankpτδq   rankpτq, so Dσγ�τδ is already defined.
Clearly, Dσ�τ contains at most κ many dense sets. Let g be a filter meeting every element of it, and let p P g
force σ � τ .

Suppose B P σg. Then for some q P g and γ   κ, B � σgγ and q ,� σγ P σ (and hence q , σγ P σ). We
can also find some r P g XDγ . Without loss of generality, say r is below both p and q. Certainly r cannot
force σ � τ , nor that σγ R σ. Hence, for some δ   κ, we know r , σγ � τδ and r ,� τδ P τ . But then
τgδ P τ

g, and since g meets every element of Dσγ�τδ , we also know that B � σgγ � τgδ . Hence B P τ .
Hence σg � τg, and by a symmetrical argument τg � σg.

Claim 2.3.10. The lemma holds when φ has the form τ P σ.

Proof. Write σ � tpσγ , pq : γ   κ, p P Sγu as usual. Let

D �
!
p P P : pp , τ R σq _ Dγ   κ

�
pp , τ � σγq ^ pp ,

� σγ P σq
	)

As usual, D is dense. Let
DτPσ :� tDu Y

¤
γ κ

Dτ�σγ

Let g meet every element of DτPσ and contain some p forcing τ P σ. Let q P g X D, and assume q ¤ p.
Then for some γ, q , τ � σγ and q ,� σγ P σ, so σgγ P σ

g. Since g meets every element of Dτ�σγ
we know

τg � σgγ P σ
g.

We next need to prove similar claims about the negations of all these formulas.

Claim 2.3.11. The lemma holds when φ is of the form σ � Ǎ for A P Hκ.

Proof. As before, this is trivial is σ is rank 0. Otherwise, let us write σ � tpσγ , pq : γ   κ, p P Sγu and let

D �
!
p P P :pp , σ � Ǎq _

�
Dγ   κpp ,� σγ P σq ^ pp , σγ R Ǎq

	
_ pDB P A : p , B̌ R σq

)
As usual, D is dense.

We then let
Dσ�Ǎ :� tDu Y

¤
γ κ

¤
BPA

Dσγ�B̌

By induction, this is well defined, and since A is in Hκ� it has cardinality at most κ. Let g be a filter
meeting all of Dσ�Ǎ with p P g forcing σ � Ǎ. Take q P g XD below p. There are two cases to consider.

(1) For some γ, q ,� σγ P σ and q , σγ R Ǎ. Then certainly σgγ P σ
g. Let B P A. Then q , σγ � B̌. Since

g meets all of Dσγ�B , we know σgγ � B. Hence σgγ P σ
gzA so σg � A.

(2) For some B P A, q , B̌ R σ. Let B1 P σg. Then for some γ   κ and r ¤ q in g, σgγ � B1 and

r ,� σγ P σ. Hence r , σγ P σ. But also r , B̌ R σ since r ¤ q. Therefore r , σγ � B̌, and so
B1 � σgγ � B since g meets Dσγ�B̌

. Hence B P Azσg, so again σg � A.

Claim 2.3.12. The lemma holds when φ is of the form σ � τ .
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Proof. The dense sets we need to use are very similar to the ones in the previous lemma. We assume
rankpσq ¥ rankpτq and note that if rankpτq � 0 we’re looking at the previous case. So let us assume
rankpσq ¥ rankpτq ¡ 0 and that we have proved the statement for all σ1 and τ 1 with lower ranks than σ and
τ respectively. As usual, write σ � tpσγ , pq : γ   κ, p P Sγu and τ � tpτδ, qq : δ   κ, q P Tγu.

Let

D �
!
p P P :pp , σ � τq _

�
Dγ   κpp ,� σγ P σq ^ pp , σγ R τq

	
_
�
Dδ   κpp ,� τδ P τq ^ pp , τδ R σq

	)
Once again D is dense. We define

Dσ�τ :� tDu Y
¤

γ,δ κ

Dσγ�τδ

Letting g be our usual filter meeting all of Dσ�τ and containing some p forcing σ � τ , we can find q P gXD
below p. Without loss of generality, there exists γ   κ such that q ,� σγ P σ and q , σγ R τ . As always, the
first statement implies σgγ P σ

g. If σgγ P τ
g then for some δ   κ and r P g (which we can take to be below q),

σgγ � τgδ and r ,� τδ P τ . But then we know r , σγ � τδ. Since g meets all of Dσγ�τδ this implies σgγ � τgγ .
Contradiction. Hence σgγ P σ

gzτg, so σg � τg.

Claim 2.3.13. The lemma holds when φ has the form τ R σ.

Proof. Write σ � tpσγ , pq : γ   κ, p P Sγu as usual. Let

DτRσ :�
¤
γ κ

Dτ�σγ

Suppose g meets all of DτRσ and contains some p forcing τ R σ. Let B P σg. For some γ   κ and some q P g
below p, B � σgγ and q ,� σγ P σ. Then q , τ � σγ , so τg � σgγ � B. Hence τg R σg.

We can now finally prove the full lemma.

Claim 2.3.14. The lemma holds in all cases.

Proof. We use induction on the length of the formula φ. By rearranging φ, we can assume that all the  ’s
in φ are in front of atomic formulas. Throughout this proof, we will suppress the irrelevant variables σ⃗ of
formulas ψpσ⃗q, and will write ψg to denote ψpσ⃗gq.

The base case, where φ is either atomic or the negation of an atomic formula, was covered in the previous
lemmas.

φ � ψ ^ χ: We let Dφ :� Dψ YDχ. If p P g forces φ then it also forces ψ and χ, so if also g meets all of
Dφ then ψg and χg hold.

φ � ψ _ χ: We let D � tp P P : pp ,  φq _ pp , ψq _ pp , χqu, and let Dφ :� tDu Y Dψ Y Dχ. If g
meets all of Dφ and contains some p which forces φ then take q ¤ p in g XD. Then q , ψ or q , χ, and by
definition of Dψ and Dχ this implies ψg or χg respectively.

φ � @x P σ ψpxq: Write σ � tpσγ , pq : γ   κ, p P Sγu, and let Dφ :�
�
γ κDψpσγq. Suppose, as usual,

that g meets all of Dφ and contains some p forcing φ. Let B P σg. Then we have some γ   κ and q P g
such that σgγ � B and q ,� σγ P σ. Taking (without loss of generality) q ¤ p, we then have that q , ψpσγq.
Hence ψgpσgγq holds. But we know σgγ � B. Hence ψgpBq holds for all B P σg, so φg holds.

φ � Dx P σ ψpxq: Again we write σ � tpσγ , pq : γ   κ, p P Sγu. Let D be the dense set tp P P : pp ,
 φq _ Dγ   κ pp ,� σγ P σ ^ p , ψpσγqqu, and let Dφ :� tDu Y

�
γ κDψpσγq. If g meets all of Dφ and

contains p forcing φ then we can take some element q of g X D below p. Then for some γ   κ, we know
q , ψpσγq and q ,� σγ P σ. Then ψgpσgγq holds, and σgγ P σ

g.

This completes the proof of Lemma 2.3.7. Hence FAP,κ implies Σ
psimq
0 -NP,κp8q, as discussed earlier.

This completes the proof of Theorem 2.3.1.
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In fact, this proof works even if we allow formulas to have conjunctions and disjunctions of κ many
formulas (and accordingly let formulas have κ many variables).

The proof of Theorem 2.3.2 is essentially the same:

Proof of Theorem 2.3.2. We prove all the implications in the following diagram.

Σ
psimq
0 -BNλP,κp8q //

��

BNλP,κp8q

((

��

BFAλP,κ

κ¤λ 55

κ¤λ
))

BFAλP,κ

Σ
psimq
0 -BNλP,X,κpαq // BNλP,X,κpαq |P αpXq|¥κ

66

Note that BFAλP,κ ñ Σ
psimq
0 -BNλP,X,κpαq for κ ¤ λ follows from the rest of the diagram.

Proof of Σ
psimq
0 -BNλP,κp8q ñ Σ

psimq
0 -BNλP,κpαq and BNλP,κp8q ñ BNλP,κpαq.

The latter are special cases of the former.

Proof of Σ
psimq
0 -BNλP,X,κpαq ñ BNλP,X,κpαq and Σ

psimq
0 -BNλP,κp8q ñ BNλP,κp8q.

As before, similar to the proofs in Theorems 2.3.1.

Proof of BNλP,X,κpαq ñ BFAλP,κ and BNλP,κp8q ñ BFAλP,κ. Letting xDγ : γ   κy be a sequence of predense
sets of cardinality at most λ, we define a name σ exactly as in the corresponding proof from Theorem 2.3.1.
Since the Dγ have cardinality at most λ, and all the names that appear in σ are 1 bounded check names, σ
is λ-bounded.

As in the earlier proof, a filter g such that σg � A will meet all of the Dγ .

Proof of BFAλP,κ ñ Σ
psimq
0 -BNλP,κ. Assume λ ¥ κ. We prove the following lemma (very similar to Lemma

2.3.7).

Lemma 2.3.15. Let φpσ⃗q be a Σ0 formula where σ⃗ is a tuple of κ-small λ-bounded names. Then there is
a collection Dφpσ⃗q of at most κ many predense sets each of cardinality at most λ, which has the following
property: if g is any filter meeting every set in Dφpσ⃗q and g contains some p such that p , φpσ⃗q, then in fact

φpσ⃗gq holds in V .

We use the same proof as in Theorem 2.3.1, adjusting the dense sets we work with. Whenever a dense
set appears, we will replace it with a predense set of size at most λ which fulfills all the same functions. To
obtain these sets, we use a few techniques.

First, whenever the original proof calls for an arbitrary condition which forces some desirable property,
we replace it with the supremum of all such conditions (exploiting the fact that we are in a complete Boolean
algebra).

For example, in place of

Eγ �
!
p P P : pp , σ � Ǎq _ pp , σγ R Aq _

�
DB P A, p , σγ � B̌

	)
in Claim 2.3.8, we would take the set

E�
γ :� tq0, q1u Y tqB : B P Au

where

q0 � suptp P P : p , σ � Ǎu

q1 � suptp P P : p , σγ R Ǎu

and for B P A,
qB � suptp P P : p , σγ � B̌u.
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E�
γ has cardinality at most λ, since |A| ¤ κ ¤ λ.

When the original set calls for a condition which strongly forces τ P σ for some τ and σ, simply taking
suprema won’t work. Instead, we ask for a condition q such that pτ, qq P σ. Since all the names σ we deal
with in the proof are λ-bounded, there will be at most λ many such conditions.

For example, in the same claim,

DB :�
!
p P P : pp , σ � Ǎq _

�
Dγ   κ pp , σγ � B̌q ^ pp ,� σγ P σq

	)
will be replaced by

D�
B :� tru Y trγ,q : γ   κ, q P P, pσγ , qq P σ, rγ,q � 0u

where
r � suptp P P : p , σ � Ǎu

and for γ   κ, q P P,
rγ,q � suptp ¤ q : p , σγ � B̌u.

Checking that we can indeed apply these techniques to turn all the dense sets in the proof into predense
sets of cardinality at most λ is left as an exercise for the particularly thorough reader.

This completes the proof of Theorem 2.3.2.

2.3.3 Generic absoluteness

In this section, we derive generic absoluteness principles from the above correspondence.
Fix a cardinal κ. We start by defining the class of Σ1

1pκq-formulas. To this end, work with a two-
sorted logic with two types of variables, interpreted as ranging over ordinals below κ and over subsets of κ,
respectively. The language contains a binary relation symbol P and a binary function symbol p for a pairing
function κ � κ Ñ κ. Thus, atomic formulas are of the form α � β, x � y, α P x and ppα, βq � γ, where
α, β, γ denote ordinals and x, y denote subsets of κ.

Definition 2.3.16. A Σ1
1pκq formula is of the form

Dx0, . . . , xm φpx0, . . . , xm, y0, . . . , ynq,

where the xi are variables for subsets of κ, the yi are either type of variables, and φ is a formula which only
quantifies over variables for ordinals.

As a corollary to the results in Section 2.3.1, we obtain Bagaria’s characterisation of bounded forcing
axioms [6, Theorem 5] as the equivalence (1) ô (4) of the next theorem. It also shows that the principles

Σ
psimq
0 -BNλP,κ for λ   κ are all equivalent to BFAκP,κ.

Theorem 2.3.17. Suppose that κ is a cardinal with Cofpκq ¡ ω, P is a complete Boolean algebra and 9G is
a P-name for the generic filter. Then the following conditions are equivalent:4

(1) BFAκP,κ

(2) Σ
psimq
0 -BN1

P,κp1q
5

(3) ,P V  Σ1
1pκq

V r 9Gs

(4) ,P H
V
κ�  Σ1 H

V r 9Gs
κ�

4The equivalence (1) ô (4) is equivalent to Bagaria’s version, since his definition of BFA refers to Boolean completions.
5The version Σ0 � BN1

P,κp1q for single Σ0-formulas is also equivalent by the proof below.
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Proof. The implication (1)ñ (2) holds since BFAκP,κ ô Σ
psimq
0 -BNκP,κp1q by Theorem 2.3.2 and Σ

psimq
0 -BNκP,κp1q

implies Σ
psimq
0 -BN1

P,κp1q.
(2) ñ (3): To simplify the notation, we will only work with Σ1

1pκq-formulas of the form Dx φpx, yq, where
x and y range over subsets of κ. Suppose that y is a subset of κ and p , Dx φpx, y̌q. Let σ be a P-name with
p ,P φpσ, y̌q. Since the variables of φ are interpreted as subsets of κ, this means that p , σ � κ̌. Let τ be
defined by

τ :� tpα̌, Jα̌ P σKq : α   κ, Jα̌ P σK � 0u.

Then τ is a 1-bounded 1 rank κ name with p ,P σ � τ . Note that y̌ is a 1-bounded rank 1 name, too. By

Σ
psimq
0 -BNκP,κp1q, there exists a filter g P V on P such that V |ù φpσg, yq. Hence V |ù Dx φpx, yq.

The implication (3) ñ (1) works just like in the proof of [6, Theorem 5]. In short, the existence of the
required filter is equivalent to a Σ1

1pκq-statement.
For (3) ñ (4), suppose that ψ � Dx φpx, yq is a Σ1-formula with a parameter y P Hκ� . Then

Hκ� |ù ψ ðñ Hκ� |ù “DM transitive s.t. y PM ^M |ù ψ”.

We express the latter by a Σ1
1pκq-formula θ with a parameter A � κ which codes y in the sense that fp0q � y

for the transitive collapse f of pκ, p�1rAsq.
θ states the existence of a subset B of κ such that PM :� p�1rBs has the following properties:

� PM is wellfounded and extensional

� For all α   β   κ, 2 � α PM 2 � β and for all α, β   κ, 2 � α� 1 RM 2 � β.

� There is some κ̂   κ with tα   κ : α PM κ̂u � t2 � α : α   κu

� There exists some Â   κ such that for all β   κ, β PM Âô Dα P A 2 � α � β

� There exists some ŷ   κ such that in pκ, PM q, Â codes ŷ

� φpŷq holds in pκ, PM q

The transitive collapse f of pκ, PM q to a transitive set M will satisfy fp2 � αq � α for all α   κ, fpκ̂q � κ,
fpÂq � A, fpŷq � y and M |ù ψpyq.

All the above conditions apart from wellfoundedness of PM are first order over pκ, P, p, A, PM q. It remains
to express wellfoundedness of PM in a Σ1

1pκq way.6 To see that we can do this, suppose that R is a binary
relation on κ. Since Cofpκq ¡ ω, R is wellfounded if and only if for all γ   κ, Ræγ is wellfounded. Since
γ   κ, Ræγ is wellfounded if and only if there exists a map f : γ Ñ κ such that for all α, β   γ, pα, βq P Rñ
fpαq   fpβq. The existence of such a map f is a Σ1

1pκq statement.
Finally, (4) ñ (3) holds since every Σ1

1pκq-formula is equivalent to a Σ1-formula over Hκ� with parameter
κ.

Remark 2.3.18. Note that for rank 1, Σ
psimq
0 -BNλP,κp1q implies the simultaneous λ-bounded rank 1 name

principle for all Σ1
1pκq-formulas (see Definition 2.1.15) by picking 1-bounded names for witnesses.

Remark 2.3.19. The previous results cannot be extended to higher complexity. To see this, recall that a
Π1

1pκq-formula is the negation of a Σ1
1pκq-formula. We claim that there exists a Π1

1pω1q-formula φpxq such
that the 1-bounded rank 1 Π1

1pω1q-name principle for the class of c.c.c. forcings fails. Otherwise MAω1
would

hold by (2) ñ (1) of Theorem 2.3.17. So in particular, there are no Suslin trees. Since adding a Cohen real
adds a Suslin tree, let σ be a 1-bounded rank 1 P-name for it, where P denotes the Boolean completion of
Cohen forcing, and apply the name principle to the statement “σ is a Suslin tree”. But then we would have
a Suslin tree in V .

Remark 2.3.20. Fuchs and Minden show in [17, Theorem 4.21] assuming CH that the bounded subcomplete
forcing axiom BSCFA can be characterised by the preservation of pω1,¤ω1q-Aronszajn trees. The latter can
be understood as the 1-bounded name principle for statements of the form “σ is an ω1-branch in T”, where
T is an pω1,¤ω1q-Aronszajn tree. (See [17,22] for more about subcomplete forcing.)

6Cofpκq ¡ ω is in fact necessary to ensure that the set of codes on κ for elements of Hκ� is Σ1
1pκq-definable with parameters

in Ppκq. If Cofpκq � ω and κ is a strong limit, then this set is Π1
1pκq-complete and hence not Σ1

1pκq by a result of Dimonte and
Motto Ros [13].
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We now consider forcing axioms at cardinals κ of countable cofinality. To our knowledge, these have not
been studied before. BFAκc.c.c.,κ � MAκ is an example of a consistent forcing axiom of this form. We fix some
notation. If κ is an uncountable cardinals with Cofpκq � µ, we fix a continuous strictly increasing sequence
xκi : i P µy of ordinals with κ0 � 0 and supiPµ κi � κ. We assume that each κi is closed under the pairing
function p.7 For each x P 2κ, we define a function fx : µÑ 2 κ by letting fxpiq � xæκi.

Lemma 2.3.21. Suppose that κ is an uncountable cardinal with Cofpκq � µ. Suppose that φpx, yq is a
formula with quantifiers ranging over κ and y P 2κ is fixed. Then there is a subtree T P V of pp2 κq µq2 such
that in all generic extensions V rGs of V 8 which do not add new bounded subsets of κ,

φpx, yq ðñ Dg P p2 κqµ pfx, gq P rT s

holds for all x P p2κqV rGs. Moreover, for any branch ps⃗, t⃗q P rT s in V rGs with s⃗ � xsi : i P µy,
�
iPµ si � fx

for some x P p2κqV rGs.

Proof. We construct the i-th levels LevipT q by induction on i P µ. Let Lev0pT q � tpH,Hqu. If j P µ is a
limit, let ps⃗, t⃗q P LevjpT q if ps⃗æi, t⃗æiq P LevipT q for all i   j.

For the successor step, suppose that LevjpT q has been constructed. Write s⃗ � xsi : i ¤ jy and t⃗ � xti :
i ¤ jy. Let ps⃗, t⃗q P Levj�1pT q if the following conditions hold:

(1) ps⃗æj, t⃗æjq P LevjpT q.

(2) sj P 2κj and @i   j sjæκi � si.

(3) tj P 2κj codes the following two objects.

(i) A truth table pj which assigns to each formula ψpξ0, . . . , ξkq and parameters α0, . . . , αk   κj a
truth value 0 or 1.

(ii) A function qj which assigns a value in ω to each existential formula Dη ψpξ0, . . . , ξk, ηq and asso-
ciated parameters α0, . . . , αk   κj .

They satisfy pi � pj , qi � qj � qi for all i   j and the following conditions:

(a) pjpφq � 1.

(b) pj satisfies the equality axioms:

pjppψpξ⃗qq, α⃗q � 1^ α⃗ � β⃗ ðñ pjppψpξ⃗qq, β⃗q � 1

(c) pj is correct about atomic formulas ψpξ⃗q which do not mention 9x and 9y:

pjppψpξ⃗qq, α⃗q � 1 ðñ ψpα⃗q

(d) The truth in pj of all atomic formulas of the form ξ P 9x, ξ P 9y is fixed according to sj and y,
respectively:

pjppξ P 9xq, αq � 1 ðñ α P sj

pjppξ P 9yq, αq � 1 ðñ α P y

(e) pj respects propositional connectives:

pjpψ ^ θ, α⃗q � 1 ðñ pjpψ, α⃗q � 1^ pjpθ, α⃗q � 1

pjp ψ, α⃗q � 1 ðñ pjpψ, α⃗q � 0

(f) pj respectes witnesses of existential formulas Dη ψpξ⃗, ηq, α⃗q which it has identified:

Dβ   κj pjpψpξ⃗, ηq, α⃗, βq � 1 ùñ pjpDη ψpξ⃗, ηq, α⃗q � 1.

7If κi is multiplicatively closed, i.e. @α   κα � α   κi, then this holds for Gödel’s pairing function.
8This includes the case V rGs � V .
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(g) qj promises the existence of existential witnesses: for any existential formula Dη ψpξ⃗, ηq and any

tuple α⃗ of parameters, if pjpDη ψpξ⃗, ηq, α⃗q � 1 and qjpDη ψpξ⃗, ηq, α⃗q ¤ n, then there exists some

β   κj such that pjpψpξ⃗, ηq, α⃗, βq � 1.

Let V rGs be a generic extension of V with no new bounded subsets of κ. Work in V rGs.

ñ: Suppose that φpx, yq holds. We define sj � xæκj for each j P µ and pjpψpξ⃗q, α⃗q � 1 if pκ, P, p, x, yq |ù

ψpα⃗q. We further define qjpDη ψpξ⃗, ηq, α⃗q � 0 if pjpDη ψpξ⃗, ηq, α⃗q � 0. Otherwise, qjpDη ψpξ⃗, ηq, α⃗q is defined
as the least l P µ such that for some β   κl, pκ, P, p, x, yq |ù ψpα⃗, βq. Let tj code pj and qj (via the
pairing function p). Note that sj , pj and qj are in V , since V rGs has no new bounded subsets of κ. Hence
xpsj , tjq : j P µy is a branch through T .
ð: Suppose that xpsj , tjq : j P µy is a branch through T . Let x �

�
jPµ sj . By induction on complexity

of formulas, pj and qj are correct about x and y. Therefore pκ, P, p, x, yq |ù φpx, yq.

Theorem 2.3.22. Suppose that κ is an uncountable cardinal with Cofpκq � ω, P is a complete Boolean
algebra and 9G is a P-name for the generic filter. Then the following conditions are equivalent:

(1) BFAκP,κ

(2) Σ
psimq
0 -BN1

P,κ

(3) ,P V  Σ1
1pκq

V r 9Gs

If moreover 2 κ � κ holds,9 then the next condition is equivalent to (1), (2) and (3):

(4) 1P forces that no new bounded subset of κ are added.

If there exists no inner model with a Woodin cardinal,10 then the next condition is equivalent to (1), (2) and
(3):

(5) ,P H
V
κ�  Σ1 H

V r 9Gs
κ�

Proof. The proofs of (1) ô (2) ô (3) ð (5) in Theorem 2.3.17 work for all uncountable cardinals κ.
(3) ñ (4): We assume 2 κ � κ. Towards a contradiction, suppose that V rGs is a generic extension that

adds a new subset of γ   κ. Note that 2γ ¤ κ. Let y⃗ � xyi : i   2γy list all subsets of γ. We define
x � γ � 2γ � κ by letting γ � i� j P xô j P yi. The next formula expresses “there is a new subset of γ   κ”
as a Σ1

1pκq-statement in parameters coding the � and � operations:

Dz rz � γ ^ Di @j   γ pj P z ô γ � i� j P xqs.

This contradicts Σ1
1pκq-absoluteness.

(4) ñ (3): Suppose that Dx ψpx, yq is a Σ1
1pκq-formula and y P p2κqV . Let T be a subtree of pp2 κq ωq2

as in Lemma 2.3.21. Let G be P-generic over V with V rGs ( Dx ψpx, yq. V rGs does not have new bounded
subsets of κ by assumption. Then rT s has a branch in V rGs by the property of T in Lemma 2.3.21. Since
wellfoundedness is absolute, T has a branch xsn, tn : n P ωy in V . Then

�
nPω sn � fx for some x P 2κ by the

properties of T . Since
ψpx, yq ðñ Dg pfx, gq P rT s,

we have V |ù ψpx, yq.
(3) ñ (5): Note that the implication holds vacuously if κ is collapsed in some P-generic extension of V .

In this case, both (3) and (5) fail, since the statement “κ is not a cardinal” is Σ1
1pκq.

We next show: if q P P forces that κ� is preserved, then q , HV
κ�  Σ1 H

V r 9Gs
κ�

holds. To see this, let G be
P-generic over V with q P G. Suppose ψ � Dx φpx, yq is a Σ1-formula with a parameter y P Hκ� . We follow
the proof of (3) ñ (4) in Corollary 2.3.17 to construct a Σ1

1pκq-formula θ that is equivalent to ψ. However,
we replace the first condition by:

9The assumption 2 κ � κ is not needed for (4) ñ (3).
10The assumption that there is no inner model with a Woodin cardinal is not used for (5) ñ (3).
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� PM is extensional and wellfounded of rank γ

for a fixed γ   pκ�qV � pκ�qV rGs. If ψ is true, then for sufficiently large γ, θ will be true. Now we only need
to modify the last step of the above proof. Let C be a subset of κ such that pκ, p�1rCsq � pγ, q. Suppose R
is a binary relation on κ. The condition “R is wellfounded of rank ¤γ” is Σ1

1pκq in C, since it is equivalent
to the existence of a function f : κÑ γ such that for all α, β   κ, pα, βq P Rñ fpαq   fpβq.

Towards a contradiction, suppose that there is no inner model with a Woodin cardinal and in some

P-generic extension V rGs of V , HV
κ�  Σ1 H

V rGs
κ�

fails. By the previous remarks, κ is preserved and κ� is
collapsed in V rGs. Since there is no inner model with a Woodin cardinal, the Jensen-Steel core model K
from [23] is generically absolute and satisfies pλ�qK � λ� for all singular cardinals λ by [23, Theorem 1.1].
Therefore any generic extension V rGs of V which does not collapse λ satisfies pλ�qV � pλ�qV rGs. For λ � κ,
this contradicts our assumption.

Can one remove the assumption that there is no inner model with a Woodin cardinal? A forcing P that
witnesses the failure of (3) ñ (5) must preserve κ and collapse κ� by the above proof. The existence of a
forcing P with these two properties is consistent relative to the existence of a λ�-supercompact cardinal λ
by a result of Adolf, Apter and Koepke [2, Theorem 7]. Their forcing does not add new bounded subsets of
κ as in (4) and thus also satisfies (1)-(3). However, we do not know if it satisfies (5).

Question 4. Is it consistent that there exist an uncountable cardinal κ with Cofpκq � ω and a forcing P
with the properties:

(a) P does not add new bounded subsets of κ and

(b) ,P H
V
κ�  Σ1 H

V r 9Gs
κ�

fails?

(Thus P necessarily collapses κ�.)

2.3.4 Boolean ultrapowers

In this section, we translate the above correspondence to Boolean ultrapowers and use this to characterise
forcing axioms via elementary embeddings.

The Boolean ultrapower construction generalises ultrapowers with respect to ultrafilters on the power
set of a set to ultrafilters on arbitrary Boolean algebras. We recall the basic definitions from Hamkins’
and Seabold’s work on Boolean ultrapowers [19, Section 3]. Suppose that P is a forcing and B its Boolean
completion. Fix an ultrafilter U on B, which may or may not be in the ground model. We define two relations
�U and PU on V B:

σ �U τ :ô Jσ � τK P U

σ PU τ :ô Jσ P τK P U

Let rσsU denote the equivalence class of σ P V B with respect to �U . Let V B{U � trσsU : σ P V Bu denote
the quotient with respect to �U . PU is well-defined on equivalence classes and pV B{U, PU q is a model of
ZFC [19, Theorem 3]. It is easy to see from these definitions that for any P-generic filter G over V , V B{G is
isomorphic to the generic extension V rGs. Moreover, we can determine the truth of sentences in V B{U via
 Los’ theorem [19, Theorem 10]: V B{U |ù φprσ0sU , . . . rσnsU q ðñ Jφpσ0, . . . , σnqK P U . In other words, the
forcing theorem holds.

The Boolean ultrapower is the subclass

V̌U � trσsU : Jσ P V̌ K P Uu

of V B{U . It is isomorphic to V if and only if U is generic over V . The Boolean ultrapower embedding is the
elementary embedding

jU : V Ñ V̌U , jU pxq � rx̌sU .

We are interested in the case that U is an ultrafilter in the ground model. In particular, U is not P-generic
over V . jU has the following properties:

� If U is generic, then jU is an isomorphism.
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� If U is not generic, then V̌U is ill-founded and critpjU q equals the least size of a maximal antichain in
B not met by U [19, Theorem 17]. For example, if P is c.c.c. then critpjU q � ω.

For any x P V B{U , let xPU � ty P V B{U : y PU xu denote the set of all PU -elements of x. If κ is a cardinal
and σ is a name for a subset of κ, then rσsPUU X jrκs � jrσpUqs, since

V B{U |ù jU pαq � rα̌sU P rσsU ô Jα̌ P σK P U ô α P σpUq

for all α   κ.

Theorem 2.3.23. The following statements are equivalent:

(1) FAP,κ

(2) For any transitive set M P Hκ� and for every κ-small M -name σ, there is an ultrafilter U P V on P
such that

jUæM : M Ñ jU pMq
PU

is an elementary embedding from pM, P, σU q to pjU pMq
PU , PU , rσsU q.

(3) For any transitive set M P Hκ� and for any κ-small M -name σ, there is an ultrafilter U on P such that

pM, P, σU q � pjU pMq
PU , PU , rσsU q,

i.e. these structures are elementarily equivalent.

Proof. (1) ñ (2): Recall from Lemma 2.3.7 that for any finite sequence σ⃗ � σ0, . . . , σk of κ-small names
and and every Σ0-formula φpx0, . . . , xkq, there is a collection Dφpσ⃗q of ¤κ many dense subsets of P with the
following property: if g is any filter meeting every set in Dφpσ⃗q and g contains some p such that p , φpσ⃗q,

then in fact φpσ⃗gq holds in V . Let D be the union of all collections Dφpσ⃗q, where k P ω, φpx0, . . . , xkq is a

Σ0-formula and each σi is σ, M̌ or x̌ for some x PM . By FAP,κ, there is a filter g which meets all sets in D.
We extend g to an ultrafilter U .

Suppose that ψpx0, . . . , xkq is a formula such that pjU pMq
PU , PU , rσsU q |ù ψpjU py0q, . . . , jU pykqq. We

obtain φpx0, . . . , xk�2q by replacing the unbounded quantifiers in ψ by quantifiers bounded by xk�1, and any
occurence of rσsU by xk�2. Then

pV B{U, PU q |ù φpjU py0q, . . . , jU pykq, jU pMq, rσsU q.

Recall that jU pyq � ry̌sU for all u P M . Therefore by  Los’ theorem, we have Jφpy̌0, . . . , y̌k, M̌ , σqK P U . So
there is some p P U with p , φpy̌0, . . . , y̌k, M̌ , σq. Since U meets all dense sets in Dφpy̌0,...,y̌k,M̌,σq,

pV, Pq |ù φpy0, . . . , yk,M, σU q.

Hence pM, P, σU q |ù ψpy0, . . . , ykq.
(2) ñ (3): This is clear.
(3) ñ (1): Let M � κ and suppose that σ is a rank 1 M -name such that P , σ � κ̌. Then σpgq � κ

for any filter g on P. It suffices to find a filter g with σg � κ by Lemma 2.2.2. Let U be an ultrafilter as in
(3). Since M � κ and jU pMq � jU pκq � rκ̌sU � rσsU , we have pjU pMq

PU , PU , rσsU q |ù @x x PU rσsU . Thus
pκ, P, σU q |ù @x x PU σU by elementary equivalence. Thus σU � κ.

A version of Theorem 2.3.23 for BFAλP,κ and λ-bounded names also holds for any cardinal λ ¥ κ. The
proof is essentially the same.
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2.3.5 An application to ub-FA

Lemma 2.3.24. If P is a complete Boolean algebra that does not add reals, then

p@q P P ub-FAPq,ω1
q ùñ BFAω1

P,ω1
.

More generally, if κ is an uncountable cardinal and P is a complete Boolean algebra that does not add bounded
subsets of κ, then

p@q P P ub-FAPq,κq ùñ BFAκP,κ.

Proof. If Cofpκq � ω, then adding no new bounded subsets of κ already implies BFAκP,κ by the proof of (4) ñ
(3) in Theorem 2.3.22. Now suppose that Cofpκq ¡ ω. Towards a contradiction, suppose that BFAκP,κ fails.

Then Σ1
1pκq-absoluteness fails for some Σ1

1pκq-formula Dx ψpx, yq and some y P p2κqV by Theorem 2.3.17.
Take a subtree T of p2 κ � κ κq Cofpκq for ψ as in Lemma 2.3.21. Then rT s � H in V rGs in some P-generic
extension V rGs, but rT s � H in V . Let σ denote a rank 1 T -name and let q P P such that q ,P σ P rT s. Let

τ � tpα, pq : p ¤ q ^ Ds P LevαpT q p ,
�
P š P σu

Then ,Pq τ � κ. For any filter g P V on Pq we have τg � dompσgq. But dompσgq P κ, since rT s � H.
Therefore ub-NPq,κ fails and hence ub-FAPq,κ fails by Lemma 2.2.10.

We will see in Lemma 2.4.1 that for any  κ-distributive forcing P, ub-FAP,κ implies FAP,κ. In combination
with the previous lemma, this begs the question:

Question 5. If λ ¡ κ is a cardinal and P is a complete Boolean algebra that does not add new elements of
 κλ, then does the implication

p@q P P ub-FAPq,ω1q ùñ BFAλP,ω1

hold?

2.4 Specific classes of forcings

2.4.1 Classes of forcings

We now move on to look, over the next few sections, at what further results we can prove if we assume P is
some specific kinds of forcing. We shall mostly return to the rank 1 cases for this and discuss the club, stat,
ub and ω-ub axioms in Figure 2.1.

σ-distributive forcings

We begin with a relatively simple case, where P is  κ-distributive. In this case, several of our axioms turn
out to be equivalent to one another. The implications for the class of  κ-distributive forcings are summarised
in the next diagram.

Nκ
oo //

OO

��

club-NκOO

��

oo 2.4.3
stat-Nκ

//

��

ub-NκOO

��

FAκ
oo //

club-FAκ
oo //

stat-FAκ
oo //

ub-FAκ55

2.4.2

hh

Figure 2.5: Forcing axioms and name principles for any  κ-distributive forcing for regular κ. Lemma 2.4.3
shows that stat-NP,ω1

is strictly stronger than the remaining principles for some σ-closed forcing P.

Lemma 2.4.1. For any  κ-distributive forcing P, ub-FAP,κ ùñ FAP,κ.
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Proof. Given a sequence D⃗ � xDi : i   κy of open dense subsets of P, let Ej �
�
i¤j Di for j   κ. If for a

filter g, g X Ej � H for unboundedly many j   κ, then g XDi � H for all i   κ.

Lemma 2.4.2. Let P be  κ-distributive. stat-NP,κ ùñ FA�P,κ

Proof. Suppose that D⃗ � xDi : i   κy is a sequence of open dense subsets of P and σ � tpα̌, pq : p P Sαu is a
name with 1 ,P “σ is stationary”. For each j   κ, let Ej �

�
i¤j Di. For j   κ and p P P, let Ej,p denote a

subset of tq P Ej : q ¤ pu that is dense below p. Let

τ � tpα̌, qq : α   κ, Dp P Sα q P Ej,pu.

1 ,P “τ is stationary”, since 1 ,P σ � τ . By stat-NP,κ, there is a filter g such that τg is stationary. By the
definition of τ , τg � σg. Thus σg is stationary. We further have g X Ej for unboundedly many j   κ and
hence g XDi � H for all i   κ.

An equivalent argument can be made with names for unbounded sets, or for sets containing a club.

σ-closed forcings

Note that FAP,ω1
fails for some σ-distributive forcings, for instance for Suslin trees. But FAσ�closed,ω1

is
provable: if xDα : α   ω1y is a sequence of dense subsets of a σ-closed P, let xpα : α   ω1y be a decreasing
sequence of conditions in P with pα P Dα and let g � tq P P : Dα   ω1 pα ¤ qu. Therefore, the other
principles in Figure 2.5 are provable, with the exception of stat-NP,ω1 by the next lemma. The lemma follows
from known results.

Lemma 2.4.3. It is consistent that there is a σ-closed forcing P such that stat-NP fails.

Proof. It suffices to argue that stat-NP has large cardinal strength for some σ-closed forcing P. Note that
stat-NP implies FA�P for any σ-closed forcing P by Lemma 2.4.2. There is a cardinal µ ¥ ω2 such that
FA�Colpω1,µq

implies the failure of �pκq for all regular κ ¥ ω2 by [14, Page 20 & Proposition 14] and [33, Theorem

2.1].11 The proofs show that a single collapse suffices for the conclusion. The failure of �pκ�q and thus Jensen’s
�κ at a singular strong limit cardinal κ implies the existence of an inner model with a proper class of Woodin
cardinals (and more) by [34, Theorem 0.1] and [39, Theorem 15.1].

Presaturation of the nonstationary ideal on ω1 is another interesting consequence of stat-Nσ-closed,ω1

(equivalently, of FA�σ-closed,ω1
) [14, Theorem 25]. Even for very simple σ-closed forcings P, stat-NP,ω1

is an

interesting axiom. For instance, Sakai showed in [32, Section 3] that FA�Addpω1q,ω1
and thus stat-NAddpω1q,ω1

is
not provable in ZFC. We do not know much about the weakest stationary name principle for σ-closed forcing:

Question 6. Is stat-BN1
σ-closed provable in ZFC?

c.c.c. forcings

The class of c.c.c. forcings is rather more interesting. It has also historically been a class where forcing
axioms have been frequently used; for example FAc.c.c.,ω1 is the well-known Martin’s Axiom MAω1 . Note that
FAP,κ is equivalent to BFAωP,κ.

Nω1

oo //

OO

��

club-Nω1OO

��

oo 2.4.7 // stat-Nω1

oo //

OO

��

ub-Nω1OO

��

FAω1

oo // club-FAω1

oo // stat-FAω1

oo // ub-FAω155

2.4.5

ii

Figure 2.6: Forcing axioms and name principles at ω1 for the class of all c.c.c. forcings.

11A more direct argument using [14, Page 20] and [43, Theorem 3.8] should be possible, but the required results are not
explicitly mentioned there.

44



All principles in Figure 2.1 for κ � ω1 turn out to be equivalent to FAω1 . The implications are valid for
the class of all c.c.c. forcings, but not for all single c.c.c. forcings. For instance, for the class of σ-centred
forcings, the right side of Figure 2.1 is provable in ZFC by Lemma 2.4.6, but the left side is not.

We first derive the implication ub-FAc.c.c.,ω1
ùñ FAc.c.c.,ω1

from well-known results. Note that this
implication does not hold for individual c.c.c. forcings, for instance it fails for Cohen forcing by Lemma 2.4.6
and Remark 2.4.14. We need the following definition:

Definition 2.4.4. Suppose that P is a forcing.

(1) A subset A of P is centred if every finite subset of A has a lower bound in P. A is σ-centred if it is a
union of countably many centred sets.

(2) P is precaliber κ if, whenever A P rPsκ, there is some B P rAsκ that is centred.

The hard implications in the next lemma are due to Todorčević and Veličković [42].

Lemma 2.4.5. The following conditions are equivalent:

(1) ub-FAc.c.c.,ω1 holds.

(2) Every c.c.c. forcing is precaliber ω1.

(3) Every c.c.c. forcing of size ω1 is σ-centred.

(4) FAc.c.c.,ω1
holds.

Proof. (1)ñ(2): This follows immediately from the proof of [21, Theorem 16.21]. The proof only requires
meeting unboundedly many dense sets.

(2)ñ(3): See [42, Corollary 2.7].
(3)ñ(4): See [42, Theorem 3.3].
(4)ñ(1): This is immediate.

Given Lemma 2.4.5, one wonders whether the equivalence of (1) and (4) also holds for σ-centered forcings
instead of c.c.c. forcings. The next lemma together with the fact that FAσ-centred is equivalent to p ¡ ω1

(see [42, Theorem 3.1]) shows that this is not the case.

Lemma 2.4.6. For any cardinal κ with Cofpκq ¡ ω, stat-Nσ-centred,κ holds.

Proof. Suppose that σ is name for a stationary subset of ω1. Let f : P Ñ ω witness that P is σ-centered.
Let S be the stationary set of α such that p , α P σ for some p P P. For each α P S, let pα be such that
pα, pαq P σ. There is a stationary subset R of S and n P ω with fppαq � n for all α P R. Let g be a filter
containing pα for all α P S. Then R � σg, as required.

This suggests to ask whether FAσ-centred implies FA�σ-centred as well. A further, long-standing, open question
is whether one can replace precaliber ω1 by Knaster in the implication (2)ñ(4) of Lemma 2.4.5. Recall that
a subset of P is linked if it consists of pairwise compatible conditions. P is called Knaster if, whenever
A P rPsω1 , there is some B P rAsω1 that is linked.

Question 7. [41, Problem 11.1] Does the statement that every c.c.c. forcing is Knaster imply FAc.c.c.,ω1
?

We now turn to the implication FAc.c.c.,ω1
ùñ stat-Nc.c.c.,ω1

. To this end, we reconstruct Baumgartner’s
unpublished result FAc.c.c.,κ ùñ FA�nc.c.c.,κ that is mentioned without proof in [8, Section 8] and [9, Page 14].

Here FA�nκ denotes the version of FA� with n many names for stationary subsets of κ.

Lemma 2.4.7 (Baumgartner). For any uncountable cardinal κ and for any n P ω, FAc.c.c.,κ implies FA�nc.c.c.,κ.

Proof. Fix an uncountable κ. Suppose that for each i   n, σi is a rank 1 P-name for a stationary subset of
ω1. For each α⃗ � xαi : i   ny P κn, let Aα⃗ be a maximal antichain of conditions which strongly decide α P σi
for each i   k. Let A �

�
α⃗Pκn Aα⃗. Since P satisfies the c.c.c. and |A| ¤ ω1, there exists a subforcing Q � P

with A � Q and |Q| ¤ ω1 such that compatibility is absolute between P and Q. In particular, Q is c.c.c.
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Since every c.c.c. forcing of size ω1 is σ-centred by MAω1 (see [44, Theorem 4.5]), there is a sequence
g⃗ � xgk : k P ωy of filters gk on P with Q �

�
kPω gk. Morover, it follows from the proof of [44, Theorem

4.5] (by a density argument) that we can choose the filters gk such that gk X Bα � H for all pk, αq P ω � κ,

where B⃗ � xBα : α   κy is any sequence of dense subsets of P. (The conditions in the c.c.c. forcing consists
of finite approximations to finitely many filters.)

It remains to find some k P ω such that for all i   n, the set σgki is stationary. Let G be P-generic over
V . We claim that ¹

i n

σGi �
¤
kPω

¹
i n

σgki .

To see this, suppose that α⃗ � xαi : i   ny P
±
i n σ

G
i and let p P Aα⃗ X G. Then p ,�

�
i n αi P σi. Since

p P Q, we have p P gk for some k P ω. Hence α⃗ P
±
i n σ

gk
i . Since σGi is stationary for all i   n, the above

inclusion easily yields that there is some k P ω such that
±
i n σ

gk
i is stationary.

Our proof of the previous lemma does not work for MA�ω. In fact, Baumgartner asked in [8, Section 8]:

Question 8 (Baumgartner 1984). Does MAω1
imply MA�ω1

ω1
?

We finally turn to bounded name principles for c.c.c. forcings.

Lemma 2.4.8.

(1) club-BN1
c.c.c. holds.

(2) For any c.c.c. forcing P, ub-BN1
P implies ub-FAP.

Proof. (1) If σ is a P-name for a set that contains a club, then by the c.c.c. there is a club C with 1 , C � σ.
Since σ is 1-bounded, pα, 1q P σ for all α P C. Thus for every filter g, we have C � σg.

(2) Suppose that P satisfies the c.c.c., and D⃗ � xDα : α   ω1y is a sequence of dense subsets of P. Let
Aα be a maximal antichain in Dα and let a⃗α � xa

n
α : n P ωy enumerate Aα. (For ease of notation, we assume

for that each Aα is infinite.) Let σ � tpω � α � n, anαq : α   ω1, n P ωu. By ub-BN1
P, there is a filter g such

that σg is unbounded. Hence Dα X g � H for unboundedly many α   ω1.

For any c.c.c. forcing P, the principles ub-BN1
P, ub-NP and ub-FAP are equivalent by Lemma 2.4.8 (2) and

the implications in Figure 2.6. We do not know what is their relationship with stat-BN1
c.c.c.. However, we

will show in Lemma 2.4.18 below that stat-BN1
random,ω1

is not provable in ZFC.

Regarding Lemma 2.4.8 (1), it is also easy to see that club-BN1
σ-closed is provable. This suggests to ask:

Question 9. Is club-BN1
P is provable for any proper forcing P?

2.4.2 Specific forcings

Cohen forcing

We will now drop down from classes of forcings, to forcing axioms on specific forcings. This is also where we
prove most of the negative results in the diagram from earlier. We start with the simplest, Cohen forcing
and let κ � ω1. For Cohen forcing, all principles in the right part of the next diagram are provable in ZFC
by Lemma 2.4.6 (on σ-centred forcing) and the basic implications in Figure 2.1. The left part is not provable
by Remark 2.4.14 below.

Nω1

oo //

OO

��

club-Nω1OO

��

2.4.6 // stat-Nω1

oo //

OO

��

ub-Nω1OO

��

FAω1

oo // club-FAω1

// stat-FAω1

oo // ub-FAω1

Figure 2.7: Forcing axioms and name principles at ω1 for Cohen forcing.
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Our first result is an improvement to Lemma 2.4.6. It shows that a simultaneous version of the stationary
forcing axiom for countably many sequences of dense sets holds.

Lemma 2.4.9. Let P be Cohen forcing and κ a cardinal with Cofpκq ¡ ω. For each n P ω, let D⃗n � xD
n
α :

α   κy be a sequence of dense sets. Then there exists a filter g P V such that for all n, the trace Trg,D⃗n
is

stationary in κ.12

Proof. Suppose that there is no filter g as described. For x P 2ω, let us write gx to denote the filter
txæn : n P ωu. Then for each x P 2ω, the filter gx does not have the required property. So there is a natural
number nx and a club Cx � κ with gx XDnx

α � H for all α P Cx. Then the sets An :� tx P 2ω : nx � nu
partition 2ω. By the Baire Category Theorem, not all An are nowhere dense. So there is some n P ω and
basic some open subset Nt � tx P 2ω : t � xu for some t P 2 ω such that An X Nt is dense in Nt. Fix a
countable set D � AnXU which is dense in U . Let α be an element of the club

�
xPD Cx. Let further u P Dn

α

with u ¤ t. Since D is dense in Nt, there is some x P D XNu. Then u P gx XDn
α and hence gx XDn

α � H.
On the other hand, we have x P An and hence nx � n. Since also α P Cx, we have gx XD

n
α � H.

Using a variant of the previous proof, we can also improve stat-NP to work for finitely many names.

Lemma 2.4.10. Let P be Cohen forcing and κ a cardinal with Cofpκq ¡ ω. Suppose that σ⃗ � xσi : i ¤ ny is
a sequence of rank 1 P-names such that for each i ¤ n, P , σi is stationary in κ. Then there is a filter g on
P such that for all i ¤ n, σgi is stationary in κ. In particular, stat-NP,κ holds.

Proof. As in the previous proof, let gx � txæn : n P ωu for x P 2ω. The result will follow from the next claim.

Claim 2.4.11. If D is any dense subset of 2ω, then there is some x P D such that σgxi is stationary in κ for
all i ¤ n.

Proof. We can assume that D is countable. If the claim fails, then for each x P D, there is some i ¤ n and
a club Cx such that σgxi X Cx � H. Then C :�

�
xPD Cx is a club. Moreover, for each x P D, there is some

i ¤ n such that σgxi X C � H. There is some p P P such that for each i ¤ n, there is some αi P C such that
p , α̌i P σi. By Lemma 2.1.21, we can assume that p ,� α̌i P σi for all i ¤ n. Now, since D is dense, we can
find some x P D with p � x. Then p P gx, so by 2.1.22 we conclude αi P σ

gx
i for all i ¤ n. This contradicts

the above property of C.

This completes the proof of Lemma 2.4.10.

Given the previous result about stat-FA, we might expect to be able to correctly interpret ω many names.
But the above proof does not work: it breaks down where we introduce p. For each i, we can find pi strongly
forcing αi P σi; but then we would want to take some p that was below every pi and that is only possible in
σ-closed forcings.

We can, however, apply the same technique in the presence of FA to prove FA�.

Lemma 2.4.12. Let P be Cohen forcing and κ a cardinal with Cofpκq ¡ ω. Then FAP,κ implies FA�P,κ.

Proof. We will in fact prove a stronger version for finitely many names. Suppose that σ⃗ � xσi : i ¤ ny is a

sequence of rank 1 P-names such that for each i ¤ n, P , σi is stationary in κ. Suppose that D⃗ � xDα : α   κy
is a sequence of dense open sets. Then

D :� tx P 2ω : @α   κ Dp P Dα p � xu

consists of all reals x such that gx XDα � H for all α   ω1.
The next claim suffices. By Claim 2.4.11, it implies that for some x P D, σgxi is stationary for all i ¤ n.

Claim 2.4.13. D is dense in 2ω.

Proof. Fix q P P; we will find some x P D with q � x. Since the forcing Pq :� tp P P : p ¤ qu is isomorphic
to Cohen forcing via the map r ÞÑ q⌢r, FAPq

holds. Hence, we can find a filter g on Pq which meets Dα X Pq
for every α   ω1. Yg is an element of 2¤ω with q � Yg by compatibility of elements of a filter. Then any
real x with Yg � x satisfies x P D and q � x.

12See Definition 2.1.1.
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Lemma 2.4.12 follows.

Remark 2.4.14. Note that FACohen,ω1
also has a well known characterisation via sets of reals: it is equivalent

to the statement that the union of ω1 many meagre sets does not cover 2ω. In particular, FACohen,ω1
is not

provable in ZFC.

Random forcing

Nω1

oo //

OO

��

club-Nω1OO

��

oo 2.4.17 stat-Nω1

//

��

ub-Nω1OO

��

FAω1

oo // club-FAω1

oo // stat-FAω1

oo // ub-FAω155

2.4.15

ii

Figure 2.8: Forcing axioms and name principles at ω1 for random forcing.

We have seen in Lemma 2.4.6 and the following remark that ub-FAP implies FAP for σ-centred forcings.
However, random forcing is not σ-centred by [12, Lemma 3.7]. The implication still holds:

Lemma 2.4.15. Let P denote random forcing. The following are equivalent:

(1) FAP,ω1

(2) ub-FAP,ω1

(3) 2ω is not the union of ω1 many null sets

The equivalence of (1) and (3) is a well-known fact, but we really interested in the equivalence of (1) and
(2). The proof of (2)ñ(3) also works for certain forcings of the form PI . PI consists of all Borel subsets
B R I of 2ω, where I is a σ-ideal on the Borel subsets of the Cantor space, ordered by inclusion up to sets in
I. For (2)ñ(3), it suffices that the set of closed p P P is dense in P and Nt R I for all t P 2 ω. If additionally
(3)ñ(1) holds, then ub-FAPI ,ω1

implies FAPI ,ω1
.

Proof. (1)ñ(2): Immediate.
(2)ñ(3): We prove the contrapositive. Suppose 2ω �

�
α ω1

Sα, where Sα � 2ω has measure 0. Without
loss of generality, we may assume that xSα : α   ω1y is an increasing sequence; i.e. α   β   ω1 ñ Sα � Sβ .
Then

Dα � tB P P : B � 2ωzSα and B is closedu

is dense.
Let g P V be a filter. Without loss of generality, assume g is an ultrafilter. Then for any n P ω, there is

some t P 2n with Nt P g. It follows that there is a unique x P 2ω such that Nt P g for all t � x. It is easy to
check that x is in the closure of any element of g.

Towards a contradiction, suppose that for unboundedly many α we can find Bα P Dα X g. Then Bα is
closed, so x P Bα � 2ωzSα so x R Sα. This contradicts the assumptions that 2ω �

�
Sα and the Sα are

increasing.
(3)ñ(1): Again we prove the contrapositive. Let xDα : α   ω1y be a sequence of predense sets such that

there is no filter in V meeting all of them. P has the c.c.c., so without loss of generality we may assume every
Dα is countable.

Fix the following notation. Recall that x P 2ω is a density point of B if
µpBXNpx|kqq

µpNpx|kqq
tends to 1 as k tends

to infinity. For B P P, let DpBq be the set of density points of B. For α   ω1, let

Tα �
¤

BPDα

DpBq and Sα � 2ωzTα.
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We first show that Sα is a null set. To see this, suppose that Sα has positive measure. Then we can
find a closed subset C � Sα with positive measure. Since Dα is predense, we can find some B P Dα with
µpB X Cq ¡ 0. Since B△DpBq is null by Lebesgue’s Density Theorem, we have µpDpBq X Cq ¡ 0. This
contradicts DpBq X C � Tα X C � H.

We now show
�
α ω1

Sα � 2ω. To see this, take any x P 2ω and let

gx � tB P P : x P DpBqu

denote the filter generated by x. Take α   ω1 such that gx XDα � H. We show that x P Sα, as required.
Otherwise x P Tα, so we can find B P Dα with x P DpBq. But then B P gx X Dα. This contradicts
gx XDα � H.

Combining the proofs of (2)ñ(3) and (3)ñ(1), we can obtain the following refinement:

Lemma 2.4.16. Let P be random forcing. Let xDα : α   ω1y be a collection of predense sets. There exists
another collection xD1

α : α   ω1y of dense sets, such that if a filter g meets unboundedly many D1
α, then it

can be extended to a filter g1 which meets every Dα.

Proof. Define Sα as in the proof of (3)ñ(1). Then for any x P 2ω, we have gxXDα � H or x P Sα. Consider
the null sets S1α �

�
β α Sβ . Then define D1

α from S1α in the same way we defined Dα from Sα in the proof
of (2)ñ(3). As in the proof of (2)ñ(3), we obtain the following for any x P 2ω and α   ω1: if gx XD

1
α � H,

then x R S1α. Let g be a filter which meets unboundedly many D1
α. Then g � gx for some x P 2ω. We have

seen that x R S1α for unboundedly many α. Therefore x misses all S1α and all Sα. By the choice of the Sα,
we have gx XDα � H for all α   ω1.

This then allows us to prove that stat-N alone gives us the full FA�.

Lemma 2.4.17. Let P be random forcing. Then stat-NP ùñ FA�P .

Proof. Suppose that xDα : α   ω1y is a sequence of dense subsets of P. Suppose further that σ is a rank 1
name which is forced to be stationary. Let xD1

α : α   ω1y be a sequence as in Lemma 2.4.16 and

τ � tpα̌, pq : p P D1
α ^ p ,

� α̌ P σu.

Note that P , σ � τ . By stat-NP, we obtain a filter g such that τg is stationary. Since τh � σh for all filters h,
σg is stationary as well. Moreover, gXD1

α � H, for stationarily many α. By the choice of xD1
α : α   ω1y, we

can extend g to a filter g1 such that g1XDα � H for all α   ω1. Moreover, σg � σg
1

, so σg
1

is stationary.

The missing link in Figure 2.8 is:

Question 10. If P denotes random forcing, does FAP,ω1
imply stat-NP,ω1

?

We finally show that the 1-bounded stationary name principle for random forcing is non-trivial, as we
discussed at the end of Section 2.4.1.

Lemma 2.4.18. Let κ � 2ℵ0 and assume that every set of size  κ is null.13 Then stat-BN1
P,κ fails for

random forcing P. In particular, CH implies that stat-BN1
P,ω1

fails.

Proof. It suffices to show that stat-BNωP,κ fails. To see this, apply Corollary 2.2.14 and use the fact that
random forcing is well-met and for any q P P, the forcing Pq is isomorphic to P by [25, Theorem 17.41]. Let
x⃗ � xxα : α   κy enumerate all reals. Then Cβ :� txα : α   βu is null for all β   κ. For each α   κ, let Aα
be a countable set of approximations to the complement of Cα in the following sense:

(a) Each element of Aα is a closed set disjoint from Cα, and

(b) For all ϵ ¡ 0, Aα contains a set C with µpCq ¥ 1� ϵ.

13This assumption is equivalent to nonpnullq � 2ℵ0 . It follows from MA, but not from FArandom by known facts about Cichon’s
diagram.
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Let σ � tpα̌, pq : p P Aαu. Then ,P σ is stationary, since each Aα is predense by (b). We claim that there
is no filter g in V such that σg is unbounded. If g were such a filter, then we could assume that for every
n P ω, g contains Ntn for some (unique) tn P 2n by extending g. (Clearly σg will remain unbounded.) Let
x �

�
nPω tn and suppose that x � xα. Since σg is unbounded, there is some γ ¡ α in σg. Find some p P Aγ

with p P g. By the definition of Aγ , p is a closed set with xα R p. Hence p XNtn � H for some n P ω. But
this contradicts the fact that both p and Ntn are in g.

Hechler forcing

For σ-centred forcings P, the principles on the right side of Figure 2.1 are provable in ZFC (see Lemma 2.4.6).
A subtle difference appears when we add the requirement that the filter has to meet countably many fixed
dense sets. We write ω-ub-FA for this axiom (see Definition 2.1.3). For some forcings, this axiom is stronger
that ub-FA. To see this, we will make use of the fact that for Hechler forcing, a filter that meets certain
countably many dense sets corresponds to a real. Recall that a subset A � ωω is unbounded if no y P ωω

eventually strictly dominates all x P A, i.e. Dm @n ¥ m xpnq   ypnq. The next result shows that ω-ub-FAω1

for Hechler forcing implies the negation of the continuum hypothesis.

Lemma 2.4.19. Let P denote Hechler forcing. If ω-ub-FAP holds, then the size of any unbounded family is
at least ω2.

Proof. Towards a contradiction, suppose ω-ub-FAP holds and A is an unbounded family of size ω1. Let us
enumerate its elements as x⃗ � xxα : α   ω1y. We define the following dense sets: For α   ω1, we define a
real yα by taking a sort of “diagonal maximum” of x⃗. Let π : αÑ ω be a bijection and let

yαpnq � maxtxγpnq : πpγq ¤ nu.

It is easy to check that yα is well defined, and that it eventually dominates xγ for all γ   α. We now define

Dα � tps, xq P P : x eventually strictly dominates yγu

For n   ω, let
En � tps, xq P P : lengthpsq ¥ nu

Now let g P V be a filter meeting unboundedly many Dα and all En. Since g meets all En, the first
components of its conditions are arbitrarily long. Since all its elements are compatible, this means that the
union Yts : ps, xq P gu is a real y. And y must eventually strictly dominate x for every ps, xq P g. But there
are unboundedly many α such that g meets Dα. For any such Dα, then, we have ps, xq P g where x eventually
strictly dominates yα. Hence, y must eventually strictly dominate unboundedly many yα and hence every
x P A. But A was assumed to be unbounded.

Suslin trees

A Suslin tree is a tree of height ω1, with no uncountable branches or antichains. The existence of Suslin trees
is not provable from ZFC, but follows from the axiom ♢ω1

(below). We can think of a Suslin tree T as a
forcing, with p ¤ q if p is below q in the tree. It is easy to see that the forcing satisfies the c.c.c., and that a
generic filter will add a cofinal branch through the tree. Suslin trees are useful tools when we want to prove
that axioms about forcing can fail, because adding a Suslin tree using forcing and then and forcing over that
tree to collapse it is effectively a variant of Cohen forcing, but the existence of Suslin trees are incompatible
with various standard axioms which are preserved by Cohen forcing.

Here, we will also be using Suslin trees to show the failure of simple axioms; in particular, we can show
that stat-BN1

T,ω1
fails for most Suslin trees.

Lemma 2.4.20. Suppose T is a Suslin tree. Then stat-BNωT,ω1
fails.

Proof. Let σ � txα, py : α   ω1, p P T, heightppq � αu. It is easy to see that σ is ω bounded, and is forced
to be equal to ω1. But any filter g P V is a subset of a branch in V , and therefore countable. So σg is not
stationary, or even unbounded.
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Corollary 2.4.21. Suppose that a Suslin tree exists. Then there exists a Suslin tree T such that stat-BN1
T,ω1

fails.

Proof. Let T be any Suslin tree. By the previous lemma we know that stat-BNωT,ω1
fails. But then by

Corollary 2.2.13, T contains a subtree S such that stat-BN1
S,ω1

fails.

This also tells us that stat-BN1
P,ω1

is not equivalent to stat-BFA1
P,ω1

, since the latter is trivially provable
for any forcing in ZFC.

In fact, if we assume ♢ω1 (which is somewhat stronger than the existence of a Suslin tree, see [31, Section
3]) then we can do better than this: we can show that stat-BN1

ω1
fails for every Suslin tree.

Definition 2.4.22. ♢ω1
says: There is a sequence pAγqγ ω1

, Aγ � γ such that for any stationary set S � ω1,
the set tγ   ω1 : S X γ � Aγu is stationary.

Lemma 2.4.23. Suppose ♢ω1 holds. If T is a Suslin tree, then stat-BN1
T,ω1

fails.

Proof. Let pAγq be the sequence given by ♢ω1
. We build up a rank 1 name σ � tpα̌, pq : α   γ, p P Bαu

recursively as follows.
Suppose we have defined Bγ for all γ   α. Consider

�
γPAα

Bγ . If this union is predense, then we let
Bα � H. Otherwise, choose a condition p P T , sitting beyond level α of the Suslin tree, such that p is
incompatible with every element of that union. Let Bα � tpu.

If G is a generic filter, then every club C 1 � ω1 in V rGs contains a club C P V . Hence, to show that
T , “σ is stationary” we only need to show that for every club C P V , the set

�
αPC Bα is predense. Suppose

for some club C that is not the case. For stationarily many α, we have that C X α � Aα and hence the
union we are looking at in defining Bα is

�
γPAα

Bγ �
�
γPCXαBγ . Hence, the union is not predense, and Bα

contains an element that is incompatible with every element of
�
γPCXαBγ . But this is true for unboundedly

many such α, so this gives us an ω1 long sequence of pairwise incompatible conditions, i.e. an uncountable
antichain. Since a Suslin tree is by definition c.c.c., this is a contradiction. Hence T , “σ is stationary”.

But now let g P V be a filter. By extending it if necessary, without loss of generality we can assume g is a
maximal branch of the tree. Since g P V , we know that g is countable, so let the supremum of the heights of
its elements be γ. Let α ¡ γ, and let q P g. Since Bα is at most a singleton tpu with htppq ¥ α ¡ γ ¡ htpqq,
and since T is atomless, we know there is some r ¤ q with r , α R σ. Hence q �, α P σ. Since this is true for
all q P g, it follows that α R σpgq. Hence far from being stationary, σpgq is not even unbounded!

So (assuming the existence of Suslin trees) there are certainly some Suslin trees in which stat-BN1 fails.
And with strong enough assumptions, we can show that stat-BN1 fails for every tree. So it’s natural to ask:

Question 11. Can we show in ZFC that stat-BN1
T,ω1

fails for every Suslin tree T?

Note that we can show the failure of ub-BN1
T,ω1

for any Suslin tree. Enumerate its level α elements as
tpα,n : n P ωu. Now let

σ � tpβ̌, pα,nq : α   ω1, n P ω, β � ω � α� nu

Then σ is forced to be unbounded but if g P V is such that σg is unbounded, then g defines an uncountable
branch through T .

Club shooting

The next lemma is a counterexample to the implication club-BFAλκ ñ club-BNλκ in Figure 2.3. It is open
whether there is such a counterexample for complete Boolean algebras.

Suppose that S is a stationary and co-stationary subset of ω1. Let PS denote the forcing that shoots a
club through S. Its conditions are closed bounded subsets of S, ordered by end extension.

Lemma 2.4.24.

(1) BFAωPS ,ω1
holds.

(2) club-BN1
PS ,ω1

fails.
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In particular, for no 1 ¤ λ ¤ ω does BFAλPS ,ω1
imply club-BNλPS ,ω1

.

Proof. (1): We claim that every maximal antichain A � t1PS
u is uncountable. (This shows that BFAωPS ,ω1

holds vacuously.) To see this, suppose that A is countable. Let α � suptminppq : p P Au and find some β ¡ α
in S. Then q � tβu is incompatible with all p P A, so A cannot be maximal.

(2): σ � Š is 1-bounded and PS , “σ contains a club”. But for every filter g, σg � S does not contain a
club, since S is co-stationary.

2.5 Summing Up

The above results show that often, name principles are equivalent to forcing axioms. This provides an
understanding of basic name principles NP,κ and of simultaneous name principles for Σ0-formulas. For

bounded names, the results provide new characterisations of the bounded forcing axioms BFAλ for λ ¥ κ.
Name principles are closely related with generic absoluteness and can be used to reprove Bagaria’s equivalence
between bounded forcing axioms of the form BFAκ and generic absoluteness principles. Bagaria’s result has
been recently extended by Fuchs [16]. He introduced a notion of Σ1

1pκ, λq-absoluteness for cardinals λ ¥ κ
and proved that it is equivalent to BFAλκ. It remains to see if this can be derived from our results.

Several problems about the unbounded name principle ub-FAκ remain unclear. The results in Lemmas
2.3.24 and 2.4.1 about obtaining (bounded) forcing axioms from ub-FAκ for forcings that do not add reals or
 κ-sequences, respectively, hint at possible generalisations (see Question 5). For forcings which add reals,
we have that ub-FAω1

is trivial for all σ-linked forcings and implies FAω1
for random forcing. In all these

cases, ub-FAω1
and stat-FAω1

are either both trivial or both equivalent to FAω1
. Can we separate ub-FAω1

from stat-FAω1 (See Question 2)? Can ub-FAω1 be nontrivial but not imply FAω1? It remains to study other
forcings adding reals and Baumgartner’s forcing [8, Section 3] (see Question 3).

The stationary name principle stat-Nω1
follows from the forcing axiom FAω1

for some classes of forcings.
For example, for the class of c.c.c. forcings both stat-Nω1

and FA�ω1
are equivalent to FAω1

by results of

Baumgartner (see Lemma 2.4.7), Todorčević and Veličković [42] (see Lemma 2.4.5). In general, FA� goes
beyond FA, since being stationary is not first-order over pκ, Pq. For example, for the class of proper forcings,
PFA� is strictly stronger that PFA by results of Beaudoin [9, Corollary 3.2] and Magidor (see [38]). So FA�

and BFA� do not fall in the scope of generic absoluteness principles, unless one artificially adds a predicate
for the nonstationary ideal. Can one formulate PFA� as a generic absoluteness or name principle for a logic
beyond first order? Some questions remain about the weak variant stat-BN1

P,ω1
of stat-Nω1

. It is nontrivial
for random forcing (see Lemma 2.4.18) and for Suslin trees (see Corollary 2.4.21). What is its relation with
other principles? Does stat-BN1

c.c.c.,ω1
imply MAω1

?
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Chapter 3

Some more standard concepts

For the other two threads of this thesis, we’re going to need a bit more background material. This chapter
is devoted to going over that material. We start with a brief look at several large cardinals we’re going to be
using. After that, we give a detailed exposition of the theory of mice. This takes several pages, and should
be suitable even for readers with no prior experience of mice at all. However, many of the proofs are omitted,
and we use a simplified definition which omits certain complex variants of mice which we won’t be using in
the thesis. Readers who want to see these details are advised to look at [36] and [47].

3.1 Large Cardinals

“Large cardinal” is a general term for classes of cardinals which may or may not exist. There are a wide
variety of them that have been defined, and we will be looking at only a selection of smaller ones. In this
section, we define some nonstandard notation which we will be using in the ensuing chapters, so even readers
familiar with large cardinals should study the section on inaccessibles.

3.1.1 Inaccessibles and Hyperinaccessibles

The smallest kind of large cardinal is the inaccessible.

Definition 3.1.1. An inaccessible (or weakly inaccessible) is an uncountable regular limit cardinal.

We say an inaccessible is simple if it is not a limit of other inaccessibles.
The main focus of the next chapters of this thesis is to investigate these inaccessibles, by partitioning

them into simple inaccessibles, simple limits of simple inaccessibles, etc. Motivated by this, we shall define
the following (non-standard) heirarchy.

Definition 3.1.2. Reg is the class of all infinite regular cardinals. For ϵ P On, Regϵ is the class of all regular
cardinals of Cantor-Bendixson rank ϵ.

More formally, for ϵ P On, we recursively define Reg ϵ, Reg¥ϵ and Regϵ as follows:

Reg ϵ �
¤
δ ϵ

Regδ

Reg¥ϵ � Reg zReg ϵ

Regϵ � tκ P On : κ is a successor of the club generated by Reg¥ϵu

So Reg 0 is empty, Reg0 � Reg 1 is the class of all successor cardinals, Reg1 � Reg 2 is the class of
all simple (weak) inaccessibles, and so on. Note that the definition implies that ω is not in Regϵ for any ϵ.
However, any other regular cardinal will be in some Regϵ:¤

ϵ On

Regϵ � Reg ztωu

53



Notice that Reg0 � Reg 1 can easily both generate and be generated from Card, the class of all cardinals.
So if a statement is provable about Card, then we can sensibly ask if it’s also true about Regϵ or Reg ϵ, for
larger ϵ P On. This is what we shall do, in several different situations, in the following two chapters of this
thesis.

Another piece of notation which we shall need is the hyperinaccessible.

Definition 3.1.3. A cardinal κ ¡ 0 is (weakly) hyperinaccessible if it is an element of Regκ.

It is easy to check that such a κ must be the smallest element of Regκ, and that no κ is an element of
Regδ for any δ ¡ κ. It should be noted in passing that some authors use “hyperinaccessible” to refer to any
element of Reg zReg 2; that is, any inaccessible which is a limit of other inaccessibles. In this thesis, we
shall only use the definition we gave above: a κ which is an element of Regκ.

Unfortunately, there is also another kind of cardinal which is also called inaccessible, and this is more
difficult to make unambiguous.

Definition 3.1.4. A cardinal κ is inaccessible (or strongly inaccessible) if it is weakly inaccesible, and α   κ
implies 2α   κ.

Originally, “inaccessible” exclusively meant “weakly inaccessible”. However, for several decades, “inac-
cessible” has also been used to mean “strongly inaccessible”, and this has slowly taken over as the default
definition. Obviously, this sometimes leads to confusion. We will try to specify whether we mean weak or
strong inaccessibility whenever an ambiguity pops up.

For the heirarchy of Regϵ defined above, dealing with weak inaccessibles is somehow more natural to
work with: then

�
ϵPOn Regϵ is simply the class of all regular cardinals. But strong inaccessibles are more

interesting in other areas of set theory. So should we instead work with a heirarchy of strong inaccessibles?
Fortunately, most of the results here actually work whether we are talking about weak or strong inacces-

sibles, so long as we are consistent. We do have to make some minor tweaks to our notation, however:

Definition 3.1.5. Regs is defined as the class of all cardinals κ which are either successor cardinals or
strongly inaccessible.

Regs ϵ and Regsϵ are defined in the same way as Reg ϵ and Regϵ respectively, but with Regs in place of
Reg.

Note that the class Regs omits the weak inaccessibles which are not strongly inaccessible. Regs0 is the
class of successor cardinals, Regs1 the class of simple strong inaccessibles, etc. Of course, a successor cardinal
will never satisfy the extra 2α   κ property called for in the definition of a strong inaccesible. So in a sense,
it would have been more natural to make Regs0 the simple strong inaccessibles, Regs1 the simple strong limits
of strong inaccessibles, and so on. But then our notation would no longer line up with Reg and it would be
much more inconvenient to state our results properly. We can intuitively justify the notation if we think of
Regs as coding both the class Card, and the class of all the strong inaccessibles.

Definition 3.1.6. A (strong) hyperinaccessible is a cardinal κ which is in Regsκ.

Again, some authors consider a (strong) hyperinaccesible to be an element of Regs zRegs 2. And of course,
authors who use “inaccessible” to mean “strong inaccessible” apply the same convention to hyperinaccessibles
as well. So there are four different conventions for a hyperinaccessible in the literature.

Notice that if κ P Regsϵ , then κ P Regδ for some δ ¥ ϵ. It follows that a strong hyperinaccesible will
always also be a weak hyperinaccessible.

3.1.2 Mahlo Cardinals

The next level up above these inaccessibles is the Mahlo cardinals (which, yet again, some authors refer to
as hyperinaccessible!)

Definition 3.1.7. A strongly inaccessible cardinal κ is a Mahlo cardinal if the set of strong inaccessibles
below κ is stationary.

Proposition 3.1.8. A Mahlo cardinal κ is strongly hyperinaccessible.
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Proof. Suppose that κ is a counterexample. Clearly κ is strongly inaccessible, so κ P Regsϵ for some 0   ϵ   κ.
It follows immediately by definition of Regsϵ that κ is not a limit of elements of Regsϵ , but that it is a limit of
elements of Regsδ for all δ   ϵ. Let λ   κ be large enough that rλ, κq X Regsϵ � H. Let C � κ be the set of
all cardinals in the interval rλ, κq which are limits of Regsδ for every δ   ϵ. It is easy to see that C is closed,
and contains no strong inaccessibles.

C is also unbounded: if λ ¤ µ   κ then for δ   ϵ let µδ be the first limit of Regsδ above µ. We know that
κ is a limit of Regδ so µδ ¤ κ. In fact since Cofpµδq � ω we know µδ   κ. Now let ν � supδ ϵ µδ. Then
ν ¥ µ is a limit of Regsδ for all δ   ϵ, and by regularity of κ we know that ν   κ.

So C is a club below κ which doesn’t contain any strong inaccessibles, so κ is not Mahlo.

3.1.3 Measurable Cardinals

The next large cardinal up is one we have met before, back when we were introducing Prikry forcing.

Definition 3.1.9. A cardinal κ is measurable if there exists U � Ppκq which satisfies the following:

1. U is an ultrafilter on Ppκq. That is, U is closed under supersets and intersections, and for any X � κ,
exactly one of X and κzX is in U .

2. U is non-principal: There is no α P κ such that tαu P U .

3. U is κ complete: it is closed under intersections of   κ many of its elements.

We say a subset of κ is measure 1 if it is in U , and we call U a κ complete measure on κ.

It can be shown [21, 10.20] that if κ is measurable, then we can choose U to satisfy an additional property:

4. U is closed under diagonal intersections of length κ: If tXα : α   κu is a sequence of elements of U ,
then

i

α κ

Xα :� tα   κ : α P
£
β α

Xβu P U

If U satisfies this additional condition, we call it a normal measure.
Note that in Definition 1.3.8 we incorporated the fourth condition into the definition for simplicity.
It is possible, by a technical argument, to prove that any measurable cardinal is a Mahlo cardinal. [21,

10.21]
At this level, something rather odd starts to happen. We can use the normal measure U to define an

elementary map from V to some new model, by taking an ultrapower.

Proposition 3.1.10. [24, Ch.1, S.5] Let κ be a measurable cardinal, with corresponding normal measure
U . We define the following relations on V κ:

f �U g ðñ tα P κ : fpαq � gpαqu P U

f PU g ðñ tα P κ : fpαq P gpαqu P U

Then �U is an equivalence relation, and PU is consistent across members of its equivalence classes. Let
Ṽ be the structure pV κ{ �U , PU q. Then Ṽ is elementarily equivalent to V , and the map

jU : x ÞÑ rcxs

is an elementary embedding, where cx is the constant function with output x. Moreover, Ṽ is well-founded.

Since Ṽ is well-founded, we tend to also use Ṽ to denote its Mostowski collapse, and jU to denote the
corresponding map from V into the collapse. It can be shown that the Mostowski collapse is closed under κ
sequences: Ṽ κ � Ṽ .

Proposition 3.1.11. The map jU has critical point κ. (This means it is constant below κ, but jU pκq ¡ κ).
For X � κ, κ P jU pXq if and only if X P U .
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This gives us a way to generate U from jU .

Proposition 3.1.12. [24, 5.6] Let κ be a cardinal such that there is an elementary embedding j : V Ñ M
with critical point κ, for some transitive class M . Then κ is measurable in V with normal measure U , where
X P U ðñ X � κ^ κ P jpXq.

One further simple result will be useful later.

Proposition 3.1.13. Let jU : V Ñ Ṽ be an ultrapower map, as described above, with critical point κ. Let
λ ¡ κ be strongly inaccessible in V . Then jU pλq � λ.

Proof. Hλ is a model of ZFC so we can define the ultrapower construction over it, instead of over V . This
gives us the map jUäHλ : Hλ Ñ H̃λ. The ultrapower construction doesn’t add any new ordinals to the
universe, so H̃λ XOn � Hλ XOn � λ. So for γ   λ we know jU pγq   λ.

Suppose that jU pλq ¡ λ. We know there is some function f P V κ such that the collapse of rf s is λ.
Since rf s   rcλs, we know that for measure 1 many α   κ, fpαq   cλpαq � λ. Without loss of generality,
we can adjust f so that this is true for all α   κ. We also know that for all γ   λ there exists (measure
1 many) α such that fpαq ¡ γ; otherwise rf s would be less than rcγs, and we know that rcγs collapses
to γ by the previous paragraph. But then f is a cofinal sequence below λ of length κ   λ, contradicting
inaccessibility.

3.1.4 Supercompacts

Cardinals above measurables are generally defined in terms of the existence of elementary embeddings, rather
than in terms of the structure of the cardinal itself. Our final large cardinals, the supercompacts, are a good
example of this.

Definition 3.1.14. Let λ P On. A cardinal κ is λ supercompact if there is an elementary embedding
j : V ÑM into a transitive class M which is closed under λ sequences, such that j has critical point κ and
jpκq ¡ λ. A cardinal κ is supercompact if it is λ supercompact for all λ P On.

Obviously, supercompact implies λ supercompact, which in turn implies measurable by Proposition 3.1.12.
A cardinal κ being λ supercompact can also be expressed in terms of the existence of a certain kind of
ultrafilter. This time, however, the ultrafilter is not on κ, but on the κ size subsets of λ.

Definition 3.1.15. Let κ   λ be cardinals. Let U be a collection of subsets Pκpλq. (So the elements of
a member of U are all subsets of λ of cardinality κ. The members of U themselves can more than κ many
elements.) We say that U is a normal ultrafilter on Pκpλq if:

1. U is an ultrafilter. That is, U is closed under intersections and supersets, and for all X � Pκpλq, either
X P U or PκpλqzX P U ;

2.   κ completeness: U is closed under intersections of size   κ;

3. Fineness: For any α   λ, tx P Pκpλq : α P xu P U ; and

4. Normality: For any sequence tXα : α   λu of elements of U , the diagonal intersection

i

α λ

Xα :� tx P Pκpλq : x P
£
αPx

Xαu P U

Lemma 3.1.16. [24, 22.7,22.11] Let κ ¤ λ. Then κ is λ supercompact if and only if there is a normal
ultrafilter on Pκpλq (the set of cardinality ¤ κ subsets of λ). More specifically, this ultrafilter generates the
embedding j : V Ñ M , using the ultrapower construction given in Proposition 3.1.10 (with κ replaced by
Pκpλq) followed by a Mostowski collapse.

Moreover, when we do this construction, we find for α   λ that α is the equivalence class of the function
f which takes x P Pκpλq to o.t.pxX αq. Similarly, j2α is the equivalence class of the function g which takes
x P Pκpλq to xX α.
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If κ is κ� supercompact, then there is an embedding and ultrafilter which are minimal, in the sense that
they destroy that supercompactness.

Lemma 3.1.17. Let κ be a λ supercompact cardinal for some λ ¡ κ. Then there is an embedding j : V ÑM ,
consistent with the definition of λ supercompactness, such that κ is no longer λ supercompact in M .

Proof. We adapt a technique from [30, 1.1]. Let j : V ÑM be a λ supercompact embedding with critical point
κ, such that jpκq is minimal. Suppose that κ is λ supercompact in M . Then we can find a λ supercompact
embedding j� : M ÑM�. This corresponds to a normal ultrafilter U� on Pκpλq in M . Since M � V is closed
under λ sequences, U� is also normal in V . So it also defines a λ supercompact embedding j̃ : V Ñ M̃ . Since
jpκq is an inaccessible above λ in M , a simple cofinality argument shows that j�pκq   jpκq. But j�pκq � j̃pκq
since M and V contain the same subsets of κ, and by assumption j̃pκq ¥ jpκq. Contradiction.

There is one further standard fact about supercompacts that we will be using.

Lemma 3.1.18 (Laver). [27] There is a function h : κ Ñ Vκ such that given any x P V and any µ ¥ κ,
there is an M with Mµ � M and an embedding j : V Ñ M with critical point κ, such that jpκq ¡ µ and
jphqpκq � x.

3.2 Introduction to Mice

Consider again a measurable κ with normal measure U . As we have seen, there is an elementary map
jU : V ÑM (for some transitive class M) with critical point κ. By elementarity, M believes that U 1 :� jU pUq
is a normal measure on κ1 :� jU pκq. So we can find another elementary map jU 1 : M Ñ M 1 with critical
point κ1. By composing jU and jU 1 , we can of course get an elementary map j : V ÑM 1, which has critical
point κ and which sends κ to κ2 :� jU 1pκ1q.

We can continue this process indefinitely, and if we have multiple measurables, then we can jump around
taking ultrapowers with respect to different measurables at each stage.

This allows us to construct some interesting models of ZFC. But the true power of this process is only
realised if we can continue it transfinitely often, which requires us to have some way to handle limit stages.
The theory of mice was designed to allow us to do this in a controlled environment.

A mouse M is a special kind of set-sized model J of ZFC� (that is, ZFC without powerset), together with
a predicate giving a normal measure on its largest cardinal, and another predicate giving a list of normal
measures contained within J on smaller cardinals. It is defined in such a way that we can take transfinitely
many ultrapowers using any normal measures in M , including the normal measure on the largest cardinal.

The full definition of a mouse requires a great many properties to hold, and is therefore quite long. The
entirety of Section 3.2 is devoted to formally defining mice, and their class-size analogues (weasels). However,
there’s no need to get bogged down in the details of the definitions in the early subsections. They’re just
stepping stones to defining a mouse, and most of them will never be explicitly invoked in this thesis.

The section will also contain several results, but the proofs will mostly be omitted in the interests of
brevity. They can be found in [36] and [47].

3.2.1 Rudimentary Functions and J Structures

The first step to defining a mouse is to introduce the “J heirarchy”, which is a slightly different variant of
Gödel’s L-hierarchy of the constructible universe. Recall that L0 � H, Lα�1 is the set of all definable subsets
of Lα, and at limits we take unions.

The J heirarchy is similar, but instead of throwing in every definable set at each successor stage of the
hierarchy, we just include sets which can be reached by some rather simple functions. There are a few different
ways to define these “rudimentary” functions and the specific definition isn’t very important; here, we use
the formulation of [36, 1.7].

Definition 3.2.1. A function f : V 2 Ñ V is basic rudimentary if it is of one of the following:

1. fpx, yq � tx, yu
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2. fpx, yq � xzy

3. fpx, yq � x� y

4. fpx, yq � txu, z, vy : z P x, xu, vy P yu

5. fpx, yq � txu, v, zy : z P x, xu, vy P yu

6. fpx, yq � Yx

7. fpx, yq � dompxq

8. fpx, yq �P äpx� xq

9. fpx, yq � tx2pzq : z P yu

10. fpx, yq � xx, yy

11. fpx, yq � x2pyq

12. fpx, yq � xu, x, vy if y � xu, vy; or H if y is not an ordered pair

13. fpx, yq � xv, w, xy if y � xv, wy; or H if y is not an ordered pair

14. fpx, yq � tu, xv, xyu if y � xv, wy; or H if y is not an ordered pair

15. fpx, yq � tu, xx, vyu if y � xv, wy; or H if y is not an ordered pair

If A⃗ � xA0, . . . , Any is a finite collection of sets or classes, we say f is basic rudimentary in A⃗ if it is either
basic rudimentary or is

fpx, yq � Ai X x for some 0 ¤ i ¤ n

If n � 0 then we instead say that f is basic rudimentary in A0.
We say a function f : V k Ñ V is rudimentary (or rudimentary in A⃗ or A0) if it can be generated by

composition of functions which are basic rudimentary (resp. basic rudimentary in A⃗ or A0).

Given a set X, let us write SpXq to denote X Y
�
tf2X : f is basic rudimentaryu. We write rudpXq to

denote the closure of X under rudimentary functions, which is equal to
�
n ω S

npXq.

Similarly, we will write SA and rudA to define analogous concepts with rudimentary in A functions (where
A is a finite tuple of predicates, or is a single predicate).

We use rudimentary functions to define an analogue of the L hierarchy.

Definition 3.2.2. We recursively define:

J0 � H

Jα�1 � rudpJαq

Jλ �
¤
α λ

Jα
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We write JOn to denote the union of all the Jα for α P On.
Occasionally, it’s useful to look more carefully at these jumps from Jα to Jα�1, and for that purpose we

define the S hierarchy:

S0 � H

Sα�1 � SpSαq

Sλ �
¤
α λ

Sα

For A a predicate or a finite tuple of predicates, we define JAα and SAα similarly.

For any α we can easily see Jα � Sωα and JAα � SAωα. It is also possible to show that LrAs �
�

On J
A
α .

Confusingly, some authors (including [36]) write JAωα to denote what we are calling JAα , and then leave
JAβ undefined where β is a successor ordinal. This makes it match up more neatly with the S hierarchy, but
means the notation becomes more messy everywhere else. We will not be using that definition here, but it is
worth keeping in mind when reading [36] and other literature about fine structure.

We’re going to be defining a mouse to be a level JAα of some J hierarchy, together with some predicates
(including A) telling us about the measurable cardinals the mouse has.

3.2.2 J structures

We shall now meet, in quick succession, a series of properties that A and JAα should satisfy.

Definition 3.2.3. Let A0, . . . , An be predicates. A structure xX, P, A0, . . . , Any is amenable if for all 0 ¤
i ¤ n and x P X, we have xXAi P X.

Definition 3.2.4. [36, 1.9] A J-structure is a structure of the form xJAα , P, A,By which is amenable.

We often write xJAα , By as a shorthand for xJAα , P, A,By, leaving the P and A implicit.

Definition 3.2.5. A J-structure xJAα , P, A,By is acceptable if the following holds: For all ordinals γ   β   α,
with β P Lim, if Ppγq X JAβ�1 � JAβ then we can find a surjection f : γ Ñ β in JAβ�1.

Unpicking this definition, it essentially says that if we add a new subset of γ at stage β� 1, then |γ| � |β|
and JAβ�1 knows it.

We always have that α P JAα . If the J-structure is acceptable, then every (infinite) cardinal κ of V is a
“fixed point” of the hierarchy, in the sense that JAκ is closed under subsets of cardinality less than κ which
exist anywhere in the J-structure.

Lemma 3.2.6. If M � xJAα , A,By is an acceptable J structure, and ρ PM is an infinite successor cardinal
of M , then JAρ is a model of ZFC� (i.e. ZFC without powerset) relativised to A. Moreover, if ρ � κ� and κ

is strongly inaccessible in M , then JAρ is a model of SetMK�� relativised to A.

Proof. The proof for ZFC� is [36, 1.25]. The additional axioms of Set MK�� aren’t explicitly proved there,
but work in essentially in the same way: as part of [36, 1.24] we show that if a suitably small set is in M then
it’s actually in JAρ , and we can invoke rudimentary closure to show the sets required by the extra axioms of
Set MK�� are in M .

3.2.3 Soundness

This section is particularly technical, working towards defining a single “soundness” property we want our
mice to have. Nonetheless, it may be worthwhile to at last skim through it, because we will be using the
n’th projectum briefly a few times in Chapter 4. Throughout this section, we fix an acceptable J-structure
M � xJAα , By.

Definition 3.2.7. [36, 2.1] We define the first projectum ρpMq to be the least ordinal ρ such that there is
a ΣM

1 subset of ρ which is not an element of M .
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Definition 3.2.8. For p P pOnXMq ω, the standard code Ap of p is the set of Gödel codes for formulae
with parameter p and parameters in Hρ which M believes. Formally,

Ap � txi, qy : i P ω, q⃗ P pHM
ρ q

 ω,M ( φipp, qqu

Note that Ap depends on A, B and M . From the perspective of Ap, the only interesting parts of the
parameter p are those which are at least ρpMq, as the rest is simply contained in HM

ρ anyway. So we’ll only
work with p P rρpMq,OnXMq ω when defining properties about p.

We can define two classes of parameters p.

Definition 3.2.9. Let p P rρpMq,OnXMq ω. We say p is good if there is some set Y which is Σ1ppq such
that Y X ρ is not in M . We write P or PM for the set of good parameters.

We say p is very good if the Σ1 Skolem hull hM pρ Y tpuq � JAα and write R or RM for the set of very
good parameters.

So essentially, a parameter is good if we can use it to get to a set which is outside M , in a Σ1 way. The
parameter is very good if we can get to every element of M in a Σ1 way. It isn’t directly relevant to us,
but it can be shown that any very good parameter is also good, so the terminology here is sensible. It’s also
possible to show that PM � H.

We can extend these concepts to the n’th projectum ρn for n P ω.

Definition 3.2.10. [36, 5.1] Let n P ω. We recursively define the ordinal ρn, the set of parameters Γn, and
the predicate An,p and model Mn,p for each p P Γn as follows:

ρ0 � α

Γ0 � tHu

A0,H � H

M0,H �M

ρn�1 � mintρpMn,pq : p P Γnu

Γn�1 � tpp0, . . . , pnq : pp0, . . . , pn�1q P Γn, pn P rρn�1, ρnq
 ωu

An�1,p � Apn in the sense of Mn,pän

Mn�1,p � xJAρn�1
, An�1,py

Note that pρnqnPω is a descending sequence of ordinals, so it stabilises at some minimum value ρk. We
call that minimum ρω.

We again define two classes of parameters in Γn.

Definition 3.2.11. The class of good parameters Pn � PMn � Γn is defined recursively:

P0 � H

Pn�1 � tp P Γn�1 : pän P Pn, ρpM
n,pänq � ρn�1, pn P PMn,pävu

The class of very good parameters Rn � RMn is defined similarly:

R0 � H

Rn�1 � tp P Γn�1 : pän P Rn, ρpM
n,pänq � ρn�1, pn P RMn,pävu

We can easily see by induction that Rn � Pn � H for all n, given the result that RM 1 � PM 1 � H for
any M 1.

We can now give the definition we’ve been working towards in this section:

Definition 3.2.12. [36, 5.7] For n   ω, M is n-sound if Rn � Pn. M is sound (or ω-sound) if it is n-sound
for all n.

More generally, M is α sound for an ordinal α if for all n P ω, any element of Pn which has no terms
below α is in fact in Rn. (If there is some n such that ρn�1 ¤ α   ρn then we can equivalently just ask for
this statement to hold for that n.)
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There’s one extra tool which it’s appropriate to mention here. Occasionally, it’s useful to be able to take
some arbitrary parameter, in some definable and absolute way.

Definition 3.2.13. Let n P ω. The n’th standard parameter is the first element of Pn, ordered lexicograph-
ically.

Proposition 3.2.14. [36, 6.5] Suppose M is n sound. Let m   n P ω. The n’th standard parameter is an
end extension of the m’th standard parameter.

3.2.4 Ultrapowers of Rudimentary Closed Structures

We now have enough to say what the domain of a mouse should be: it will be an acceptable J structure
JAγ , whose initial segments are all sound, where A also satisfies some other properties we’ll introduce shortly.
We’re now ready to start considering the measurables of our mouse, and working our way up to iterating a
sequence of ultrapowers.

The first difficulty we encounter is that J structures are not models of the whole of ZFC: for a start, the
ones we’re interested in will have a largest cardinal. So we’ll have to do some work to ensure that, given a
measurable cardinal, we can take a well-defined ultrapower to get a transitive structure, and more work to
ensure that it will be elementarily equivalent to the original structure. That is the goal of this chapter.

We can get pretty close to what we want by naively applying Proposition 3.1.10 to M directly. Recall
that any J structure is rudimentary closed by definition.

Lemma 3.2.15. [36, 8.4] Let M � xJAα , A,By be an acceptable J structure. Let U be a collection of subsets
of some M cardinal κ such that either:

1. κ is not the largest cardinal of M and U PM ; or

2. κ is the largest cardinal of M , and U � B for some i.

Suppose further that M believes U is a normal measure on κ.
Let �U and PU be defined as in Proposition 3.1.10. Let

AU pfq ðñ tα   κ : Apfpαqqu P U

and define BU likewise.
Let M̃ � xppJAα q

κXpJAα qq{ �U , PU , AU , BU y. Then the map jU : M Ñ M̃ defined in Proposition 3.1.10 is
Σ1 elementary (even in the language with symbols for P0, . . . , Pn) and has critical point κ.

In particular, this implies that ppJAα q
κ X pJAα q{ �U q � JAU

β for some β, and therefore that M̃ is a J
structure.

This is all well and good. But we really want the ultrapower embedding to preserve more than just Σ1

formulas. We will get full elementarity if M ( ZFC�. But we can’t ensure that will always be the case, and
in fact it’s not possible to get a fully elementary embedding in most cases. But we can get a bit closer than
just Σ1 elementarity, if we define the ultrapower in a slightly different way. Rather than taking the quotient
of pJAα q

κ X pJAα q, we will take the quotient of pJAα q
κ X DefSpJ

A
α q, where S is some class of formulas, and

DefSpJ
A
α q is the collection of all sets which are S definable over M .

What should S be? If we want Σn elementarity, then our first instinct might be to take S � Σn. But
this turns out not to work: we need to use a rather more complicated class. For this definition, let L be a
first order language where each variable vnm has two indices.

Definition 3.2.16. [47, 1.6] Let φpv⃗q be a formula of L. Recursively, we say φ is Σ
pnq
0 if it is of the form

ψpχ0pv⃗q, . . . , χkpv⃗qq, where χ0pv⃗q, . . . , χkpv⃗q are all Σ
pn�1q
0 formulas, and all the quantifiers of ψ are of the

form @vnm P v
j
i or Dvnm P x

j
i , with j ¥ n.

We say φ is Σ
pnq
1 if it is of the form Dvnmψ where ψ is a Σ

pnq
0 formula.

Recall from the last chapter that ρn is the n’th projectum of M . If M is a J-structure, we interpret a
formula in L by letting xji range over Hρj :
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Definition 3.2.17. Let M be a J-structure, and let X �M . We say that X is Σ
pnq
1 definable over M if we

can find a Σ
pnq
1 formula φpvj0i0 , . . . , v

jm
im
, v�q and parameters pk P H

M
ρjk

for 0 ¤ k ¤ m, such that

X � tx PM : φ̃pp0, . . . , pm, xqu

where φ̃ is obtained from φ by replacing all instances of @vji and Dvji with @vi,j P H
M
ρj and Dvi,j P H

M
ρj

respectively.

We say X is Σ
pωq
1 definable over M if it is Σ

pnq
1 definable for some n P ω.

We write Σ
pnq
1 pMq for the class of all sets which are Σ

pnq
1 definable over M , and likewise for Σ

pωq
1 .

Lemma 3.2.18. [47, 3.5] Let M � xJAα , A,By be an acceptable J structure. Let U be a collection of subsets
of some M cardinal κ such that either:

1. κ is not the largest cardinal of M and U PM ; or

2. κ is the largest cardinal of M , and U � B for some i.

Suppose further that M believes U is a normal measure on κ.

Let m ¤ ω and suppose κ   ρm. For f, g P pJAα q
κ XΣ

pmq
1 pJAα q, let us define:

f �U g ðñ DX P U : X � tα   κ : fpαq � gpαqu

f PU g ðñ DX P U : X � tα   κ : fpαq P gpαqu

AU pfq ðñ DX P U : X � tα   κ : Apfpαqqu

BU pfq ðñ DX P U : X � tα   κ : Bpfpαqqu

Then �U is an equivalence relation, and PU and FU are consistent across members of its equivalence
classes. Let

M̃ � xppJAα q
κ XΣ�pJAα qq{ �U , PU , AU BU y

Then M̃ is Σ
pmq
1 elementarily equivalent to M , and the map

jU : x ÞÑ rcxs

is a Σ
pmq
1 , cofinal elementary embedding. We call M̃ the Σ

pmq
1 ultrapower of M with critical point κ.

Again, M̃ is a J-structure.
Although the embedding isn’t fully elementary, that’s only because of the extra information added by A

and B. The embdedding of the underlying domains is fully elementary.

Lemma 3.2.19. LetM � xJAα , A,By be as above, and let U , M̃ and jU be as above. Say M̃ � xJAU

β , AU , BU y.

Then jU : JAα Ñ JAU

β is a fully elementary embedding.

Taking a single ultrapower never increases the cardinality of M in the sense of V :

Proposition 3.2.20. Let M̃ be as above. Then |M̃ | � |M |

Proof. For simplicity, assume M is transitive. We know κ P M so |M | ¥ |κ|. Now M̃ is a quotient of some
subclass of pMκqV , and so has cardinality at most |pMκqV | � |M |. On the other hand, jU : M Ñ M̃ is
injective, so |M | ¤ |M̃ |.

Notice that in the context of a model of ZFC, this definition of an ultrapower would agree with the simpler
one in Proposition 3.1.10. The only thing missing now is well-foundedness of M̃ . We cannot prove that M̃
is well founded. So instead, we’ll make it part of the definition of a mouse that all the ultrapowers we could
want to take are well founded. We’ll do this later on, since we’re going to need some more technology before
we can formalise “all the ultrapowers we could want to take”. For now, we shall simply introduce a piece of
notation for use when the ultrapower is well founded:
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Definition 3.2.21. Let M and κ be as in Lemmas 3.2.15 and 3.2.18. Let m ¤ ω be maximal such that
κ   ρm. Let M̃ be the Σ

pmq
1 ultrapower as above, and suppose it is well founded. Then we define UltpM,Uq

to be the transitive collapse of M̃ , and we define the ultrapower map πU : M Ñ UltpM,Uq as the composition
of jU and the transitive collapsing map.

Recall that an ultrapower of V is closed under κ sequences, so in particular it agrees with V on subsets
of κ. This is not automatically true here, but will be true for a J structure as a consequence of amenability.

Proposition 3.2.22. [36, 8.10] LetM � xJAα , P, A,By be an n-sound J structure, with a measurable cardinal
κ P pρn�1, ρnq. Let M̃ be the ultrapower defined above. Then M and M̃ contain the same subsets of κ.

Actually, we can go slightly further than this: the ultrapower is closed under κ sequences.

Proposition 3.2.23. Let M , M̃ and κ be as in the previous proposition. If S � pxαqα κ PM is a sequence
of length κ, and for all α   κ xα P M̃ , then S P M̃ .

Connecting with the previous section, we can also say despite not being definable within M , the projecta
of M are to some extent respected by the embedding.

Proposition 3.2.24. [47, 3.2.1, 3.2.2] Suppose that ρMn�1 ¤ κ   ρMn . Then ρM̃n�1 ¤ ρMn�1, and ρ
M̃
n � ρMn .

3.2.5 Extender Sequences

It is now time to start introducing the collections of measurables we are going to be working with. Recall
that a J structure has the form xJAα , P, A,By where A and B are predicates. For a mouse, we’re going to
want B to be a normal measure on its largest cardinal, and A to be a (possibly empty) sequence of normal
measures on smaller cardinals. We formalise this with the concepts of a filter sequence and of an extender
sequence.

First, we need an important piece of technical notation:

Definition 3.2.25. Let M � xJEγ , P, E, F y be a J structure, where γ P OnYtOnu. Let κ be the largest

cardinal of M ; or let κ � OnXM if M has no largest cardinal. Suppose that E : κ Ñ JEγ is some class

function which maps each α   κ to some Eα � JEα . For β   κ, we define

Mäβ :�xJEβ , P, Eäβ,Eβy

�xJEäββ , P, Eäβ,Eβy

For notational purposes, if β � κ then we define Mäβ to be M .

Now, a filter sequence is exactly what it sounds like: a sequence of (normal) measures on cardinals. For
the time being, we shall simply ignore F and allow it to float around being anything it likes.

Definition 3.2.26. Let M � xJEγ , P, E, F y, κ and E : κÑ JEγ be as above. E is a filter sequence over M if
for all α   κ, either

1. Eα � H; or

2. Mäα has a largest cardinal β   α, and

Mäα ( “Eα is a normal measure on β”

and for all β   γ   α,
Mäα * “Eγ is a normal measure on β”

We have cheated slightly with this notation. A filter sequence, as we have defined it above, can only have
at most a single measure on any given ordinal α. But usually, especially complex mice are allowed to have
multiple measures on the same measurable: the mouse called O-Sword is a famous example of this. So really,
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we should define a filter sequence in a way which allows the same cardinal to get multiple measures, and later
specify under what circumstances this is allowed to happen in a mouse.

But in this thesis, we will not actually be working with any mice which have multiple measures on the
same cardinal. And without this limit, we would have to give various tedious statements about when certain
results in this chapter hold.

Definition 3.2.27. Let M � xJEγ , P, E, F y be a J structure, and let E is a filter sequence over M . Let κ
again be the largest cardinal of M , or let κ � OnXM if M has no largest cardinal. Then E is an extender
sequence over M if M and E satisfy the following properties whenever α   κ and Eα � H:

1. Acceptability: JEα is acceptable and α is its largest cardinal;

2. Amenability: Mäα is amenable;

3. Coherency: If the ultrapower of Mäα with respect to Eα is well-founded, and so πEα : Mäα Ñ
UltpMäα,Eαq is defined, then for all β   α,

Eβ :� Epβq � πEα
pβq

and
πEα

pEqpαq � H

We say that pE,F q is an extender sequence over M if:

1. E is an extender sequence over M ;

2. Either F � H or M believes F is a normal measure on κ   OnXM ; and

3. If F � H then the coherency property holds with κ in place of α and F in place of Eα

If so, we often informally write Eκ for F .

We have now almost reached the point of defining a mouse!

Definition 3.2.28. [47, 4.1] A premouse is an acceptable J structure M � xJEγ , P, E, F y, such that pE,F q
is an extender sequence over M , γ   On, and for all α   κ, the J structure Mäα is sound. If F � H (and
so M has a largest cardinal and F is a normal measure on it) we say that M is active.

There is no requirement that M itself should be sound. In fact, a (pre)mouse itself being sound implies
several other special properties, as we will see later.

Notice that if M is a premouse and α   κ then Mäα will also be a premouse. Also, if Eα is a normal
measure on α, and the ultrapower of M with respect to it is well founded, then its transitive collapse will be
another premouse, whose extender sequence agrees with E up to κ.

3.2.6 Iterations and Mice

We’re nearly there! A premouse defines all the structure we need for a mouse: we have both an underlying
domain, and a list of measurables. We just need one last step: we need to make sure that we can take
repeated ultrapowers using those measurables. Recall that the ultrapower of a premouse with respect to a
given measure always exists, but is not necessarily well-founded.

We carefully give a formal definition of what it means to perform an iteration of ultrapowers. The
definition is complicated, but the idea is fairly simple. At each stage i of the iteration we just pick some
measurable κi in the extender sequence of the current mouse Mi, perhaps cut the mouse down to some level
αi ¥ κi, and then take the ultrapower to get the next mouse Mi�1. But to make limit stages work properly,
we have to insist that we only do finitely many of these cut-downs.
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Definition 3.2.29. [47, 4.2] LetM � xJEγ , E, F y be a premouse. An iteration I ofM of length δ P OnYtOnu
is a tuple

xMi, πi,jyi¤j δ

together with a tuple of pairs of ordinals

xκi, αiyi�1 δ

such that I satisfies the following:

1. For i ¤ j   δ, Mi � xJ
Ei

γi , E
i, F iy is a premouse, and πi,j is a map (not necessarily total) from Miäαi

into Mj .

2. M0 �M

3. For i   δ, πi,i : Mi ÑMi is the (full) identity map.

4. For i � 1   δ, κi ¤ αi ¤ λi where λi is the supremum of the cardinals of Mi. (In particular, if Mi is
active then λi is the largest cardinal of Mi.)

5. The sequence pκiqi δ is strictly increasing.1

6. For all but finitely many i� 1   δ, αi � λi.

7. If κi   λi and Eipκiq � H then αi � λi and Mi�1 � Mi and πi,i�1 : Mi Ñ Mi�1 is the identity. The
same is true if κi � λi and F i is trivial.

8. If κi   λi and Eipκiq � H then Miäαi believes that Eipκiq is a normal measure; and when we take
the ultrapower of Miäαi with respect to that measure, we get a well-founded set. Mi�1 is the transi-
tive collapse UltpMiäαi, E

ipκiqq of that ultrapower, and πi,i�1 : Miäαi Ñ Mi�1 is the corresponding
elementary embedding.

9. If κi � λi and F i is nontrivial, then when we take the ultrapower of Mi (which equals Miäαi by 4)
with respect to F i we get a well-founded set. Mi�1 � UltpMi, F

iq is the transitive collapse of this
ultrapower, and πi,i�1 : Mi ÑMi�1 is the corresponding ultrapower map.

10. For i ¤ j   j � 1   δ, the map πi,j�1 is obtained by composing πj,j�1 with πi,j , the latter restricted
to the preimage of the domain of the former:

πi,j�1 � πj,j�1 �
�
πi,jäppπ

�1
i,j q”pMjäαjqq

�
11. If j   δ is a limit ordinal, then letting i0 be large enough that for all i0 ¤ i   j we have αi � λi

(recall that there are only finitely many i for which this fails, so this i0 must exist) the direct limit of
the system xMi, πi,kyi0¤i¤k j is well founded, and Mj is its transitive collapse. (This makes sense as
a definition, because πi,k is always at least Σ1 elementary in this system, so the direct limit must at
least exist.) For i0 ¤ i   j, the map πi,j is the corresponding elementary embedding.

12. For j and i0 as above, and i   i0   j, πi,j � πi0,j � πi,i0 .

If αi is always equal to λi and δ   On then we say I is “simple”. If for some i, αi   λi we say that
the mouse Mi is “cut down”, or that there is a “truncation”, at stage i. (We also say that I is simple if it
contains no truncations, δ � On, and a tail of its critical points are trivial – so it’s “really” only set long.)

We say that a (simple) iteration I has no “drops in degree” if for all i   δ, the least n   ω such that
ρMi
n ¤ κi exists and does not depend on i.

We call the κi the critical points of the iteration I, and say that δ is the length of the iteration. Notice
that an iteration is allowed to have “do nothing” stages where Eipκiq � H. This is important when we are
doing coiterations (see section 3.3.2), because we will want to do two different iterations simultaneously and
give them the same critical points. But most of the time, it’s irrelevant clutter, and without loss of generality
we can usually assume that there is no stage in I where Eipκiq � H.

1If we were allowing multiple measures on the same cardinal in our premice, then we would have to drop the “strictly” here.
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Definition 3.2.30. Let M be a premouse, and I be an iteration of length δ   On. We say that I can be
continued if either:

1. δ is a limit, and if i0 is large enough that for all i0   i   δ, αi � λi then the direct limit of the system
xMi, πi,jyi0 i¤j δ is well-founded; or

2. δ � i� 1 for some i, and Mi � xJ
Ei

γi , E
i, F iy is such that:

(a) If κ is below the largest cardinal of Mi and Eipκq � H then we can find α ¥ κ such that Miäα
believes Eipκq is a normal measure on κ; and

(b) For every such α ¥ κ, if we take the ultrapower of Miäα with respect to the measure Eipκq, we
get a well-founded structure; and

(c) If F i is nontrivial then the ultrapower of Mi with respect to F i is well founded.

The idea is that we can take the iteration I of length δ and extend it to an iteration of length δ� 1 using
any measure the premice know about.

We can now, finally, define a mouse.

Definition 3.2.31. [47, 4.2] A mouse is a premouse M such that every iteration I of M of length less than
On can be continued.

Lemma 3.2.32. Let M � xJEγ , E, F y be a mouse. Let α be a successor cardinal of M . Then Mäα believes

ZFC� relativised to E. Similarly, if M is active then xJEγ , Ey believes ZFC
� relativised to E. Moreover, both

also believe the additional axioms of SetMK�� (relativised to E).

Proof (Sketch). The successor cardinal case follows immediately from Lemma 3.2.6. Let M 1 be the result of
iterating the top measure F of M once. Then M 1 is also a mouse, and thinks that OnXM is a successor
cardinal, so M 1äOnXM believes the required axioms. But M 1äOnXM is just xJEγ , Ey, because the extender
sequence E1 of M 1 agrees with E below OnXM , and is trivial on OnXM .

The technique in this proof involved creating a larger mouse M 1 in which OnXM was κ�, and which
agreed with M below that κ�. So in a sense, we can informally think of OnXM as being a successor cardinal.
Motivated by this, if M is an active mouse then we informally write HM

κ� to denote HM 1

κ� � xJ
E
γ , Ey.

3.2.7 Weasels

What about if we do an iteration of length On? We can still get a direct limit structure. The structure will
be class-sized, and therefore we can’t do a transitive collapse, even if it is well-founded. (If we tried, we would
end up generating “sets” which contained all the ordinals of V , for example.) But we can take the collapse
of those parts of the structure which are simple enough to be sets. This gives us a weasel (so named because
it’s like a very long mouse).

Definition 3.2.33. A weasel is a structure W � xJE8, Ey, where E is an extender sequence over W , and for
all β   On, Wäβ is a mouse.

A major aim of this subsection is to prove that whenever we take a class-length iteration, we can generate
a weasel from it. The first step – after taking a direct limit – is to find an “ordinal” of the resulting structure
which is analogous to On. To do this, we use Fodor’s Lemma.

Lemma 3.2.34 (Fodor’s Lemma). [47, 6.1.4] Let ω   λ P RegV , or λ � On. Let T � λ be stationary.
Let f : T Ñ λ be a (class) function which is regressive (i.e. fpαq   α for all α P λ). Then there is some
stationary set S � T and some β P λ such that for all α P S, fpαq � β.

To show that we generate a weasel, we actually only need to prove the following two lemmas for the case
λ � On. But the proof for λ P RegV is exactly the same, and we’ll need it later.
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Lemma 3.2.35. [47, 6.1.5] Let λ P RegV , or λ � On. Let M0 be a mouse, such that λ ¡ |M0|. Let
I � xMi, πi,jy be a simple iteration of length λ of M0 with no nontrivial critical points, whose set/class of
critical points is cofinal below λ, but does not go above λ. Then there exists a cofinal increasing sequence
piγqγ λ such that for all γ   δ   λ,

πiγ ,iδpκiγ q � κiδ

Proof. We define a regressive function f : pLimXλq Ñ λ. Let i P LimXλ. Then κi P Mi, so (since Mi is a
direct limit model) κi is the image of something in an earlier model. Let fpiq be the least j   i such that
there exists κ̄i P Mj with πj,ipκ̄iq � κi. Applying Fodor’s Lemma, take a stationary S � LimXλ and fixed
j   λ such that for all i P S, fpiq � j.

So for all i P S, κ̄i PMj . By Proposition 3.2.20 and a cofinality argument, we can see that |Mj |   λ. So
by the pigeonhole principle, there is an unbounded U � S and κ P Mj such that for all i P U , κ̄i � κ. But
then for i P U , πj,ipκq � κi; it follows immediately that if i, i1 P U and i   i1 then πi,i1pκiq � κi1 . So we can
get our sequence piγq by enumerating the elements of U in increasing order.

Lemma 3.2.36. Let λ, M0 and I be as in the previous lemma. If λ � On, let Mλ be the new mouse in the
continuation of I (i.e. the transitive collapse of the direct limit of xMi, πi,jyi¤j λ). Let πi,λ : Mi Ñ Mλ be
the corresponding maps. Then λ is measurable in Mλ; specifically,

πi0,λpκi0q � λ

Similarly, if λ � On (and so we don’t have a well defined transitive collapse) then let M̄λ be the structure
which is the direct limit of the system xMi, πi,jy and let π̄i,λ : Mi Ñ M̄λ be the corresponding maps. Then
π̄i0,λpκi0q is an ordinal in the sense of M̄λ, and has order type On.

Proof. First we prove the case λ � On. Clearly πi0,λpκi0q ¥ πi0,iγ pκi0q � κiγ for all γ   λ, and hence
πi0,λpκi0q ¥ λ. On the other hand, if πi0,λpκi0q ¡ λ, then for large enough iγ   λ, we can find a preimage
λ̄ � π�1

iγ ,λ
pλq P Miγ of λ in Miγ . Note that the cardinality of Miγ is less than λ, and hence λ̄   λ. By

elementarity λ̄   πi0,iγ pκi0q � κiγ . But then πiγ ,λpλ̄q � λ̄   λ. Contradiction.
The case λ � On is proved in exactly the same way; the notation is just a bit messier.

We can use this to define a part of M̄On which can be collapsed. Let I be a class length iteration. Without
loss of generality, we may assume all its critical points are nontrivial. Let M̄ � M̄On be the direct limit model
as above, and let X � π̄i0,Onpκi0q. Now, M̄ is a model of most of ZFC and X is an ordinal of M̄ , so we can

define pHXq
M̄ in the usual way.

Lemma 3.2.37. pHXq
M̄ is a wellfounded class size structure, and for all x PM̄ pHXq

M̄ , the collection
ty PM̄ xu of PM̄ elements of x is set size.

Thus, we can define the transitive collapse Ṽ of pHXq
M̄ , and the collapsing map ι : pHXq

M̄ Ñ Ṽ . We
can also define a predicate EṼ , as the image under ι of EM̄ .

Lemma 3.2.38. [47, 6.1.6] The structure W � xṼ , P, EṼ y is a weasel. Moreover, for any α ¤ κj   On
such that all the truncations of I happen before stage j,

Wäα �Mjäα

As a shorthand, we will refer to an iteration of length On�1 to mean an iteration of length On together
with the weasel it generates.

The weasel we get is not dependent on what iterations we did above X.

Lemma 3.2.39. Let I � xMi, πi,jy be a class length iteration, and let W be as above. Let J � xNi, τi,jy be
another iteration of M0, which does the same as I below X, but does nothing at all above X.2

Then I and J generate the same weasel.
2Formally, this means that if i   On, then stage i of J is trivial unless the critical point κi of I is such that πi,Onpκiq ¤M̄ X.

If this is true, then letting αj be the cut-down at stage j of I, we have J do a cut-down to minj i πj,ipαjq, and then take the
ultrapower with respect to κi. Verifying that this gives a well-defined iteration is an exercise for the reader.
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Proof. If M is any mouse or weasel, then we know by 3.3.4 that taking an ultrapower (or a direct limit of
ultrapowers), with critical points above X will not change MäX. So by induction, it follows that MiäX �
NiäX. But the previous lemma implies that if j is large enough that I (and therefore J ) involves no
cut-downs after stage j

Ṽ �
¤
αPW

Wäα

�
¤

j αPOn

Mα

�
¤

j αPOn

Nα

�
¤

j αPOn

W 1äα

where W 1 is the weasel generated by J .
It follows easily that W �W 1.

Not every weasel can be produced by iterating mice, but if a weasel can be, then we can actually inherit
a little more structure from M̄ and get a model of MK.

Lemma 3.2.40. Let M̄ , X, ι, Ṽ and EṼ be as above. For Y P M̄ , let

CY � tx P Ṽ : ι�1pxq PM̄ Y u

be the class of Ṽ defined by Y . Let C be the collection of all CY for Y P M̄ .3 Then the structure xṼ , P, Cy
is a model of MK��, relativised to E.

Proof. Mostly follows from Lemma 3.2.32. The only “trick” is the powerset axiom, which holds because X
is a strong limit cardinal of M̄ .

If we abuse notation slightly, this effectively says that HM̄
X� is a model of MK, and its transitive collapse

is xṼ , P, Cy. This means that if we know a weasel was generated by iterating mice, then we can informally
treat it as if it were a model of MK. In particular, this lets us use definable class forcings over the weasel,
which is something we’re going to need in the next chapter.

It is possible to iterate weasels in exactly the same way as mice, and it can be shown that any set-length
iteration of a weasel can be continued. Essentially, because each iteration only really affects a set size portion
of W , so if the iteration is set-length then it’s only “really” happening on some set size portion Wäβ of W .
By definition, Wäβ is a mouse, so any iteration on it can be continued. We can use this to construct a weasel
which continues the original iteration of W .

This also means that we can define a class long iteration of weasels. There’s one definition that we do
need to adjust here: that of a simple iteration. With mice, we only allowed simple iterations that were set
long, but with weasels, we allow certain class-long iterations to be simple too.

Definition 3.2.41. Let W0 be a weasel, and let I � xWi, πi,jyi¤j θ be an iteration of W0 of length θ ¤
On. We say that I is simple if it has no cut-downs, and either θ   On or θ � On and for all α P On,
supjPOn π0,jpαq   On.

Essentially, this means that in order for a class-length iteration of a weasel to be simple, we can’t iterate
any measurable up onto On in the manner we described in Lemma 3.2.35. As we saw above, this always
happens for (genuinely) class-length iterations of mice, justifying the way we excluded class long simple
iterations of mice altogether.

If a class-length iteration of weasels is simple, then we can take a direct limit and take its transitive
collapse in the usual way for mice, and it can be shown that this will be another well-defined weasel. This is
a consequence of the following simple lemma, which is itself a complement to Lemma 3.2.36:

3Notice that this is not something that is definable in V , since it’s a collection of classes. This is a definition in the metatheory.
If this bothers you, then you can avoid going outside V by working with M̄ itself instead of Ṽ , but the notation becomes nasty.
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Lemma 3.2.42. Let λ P RegV , let I � xMiyi θ be a set-length simple iteration of mice or weasels which
all contain λ, whose critical points are all below λ. Suppose that there is no sequence of the sort described
in Lemma 3.2.35, i.e. no sequence piγqγ θ of ordinals below θ such that for all γ   δ   θ, πiγ ,iδpκiγ q � κiδ ,
and such that pκiγ qγ θ is cofinal below λ. Then λ is a fixed point of I.

If an iteration is not simple, then we can still construct a direct limit, but it’s more complicated: we work
in exactly the manner described in this chapter for mice. This implicitly involves a cut-down to On at the
final stage, justifying our refusal to call the iteration simple.

3.3 More about Mice

There are a plethora of standard results about mice and how they interact. In this section, we present those
which we’re going to be using later.

3.3.1 Extending results about a single ultrapower

Several results about ultrapowers extend upward automatically to iterations. For example, the following
result extends the elementarity we obtained in Lemma 3.2.18.

Lemma 3.3.1. Let M0 be a mouse (or weasel) and let I � xMi, πi,jy be a simple iteration of length θ ¤ On.
Suppose that n P ω is such that for all i   θ, ρMi

n ¡ κi. Then for all i ¤ j   θ, the map πi,j : Mi Ñ Mj is

Σ
pnq
1 elementary and cofinal.

Proof. An easy induction on j. Successor stages follow from Lemma 3.2.18; limit stages from basic properties
of a direct limit.

Proposition 3.3.2. [47, 3.2.2] Let M0 be a mouse (or weasel), let I be a simple iteration of length θ ¤ On,
and let n P ω be such that for i   θ, ρMi

n�1 ¤ κi   ρMi
n . Then for all i   θ, ρMi

n�1 � ρM0
n�1, and π0,ipρ

M0
n q � ρMi

n .

Consider a single (transitive collapse of an) ultrapower V̄ of V with respect to some measurable κ. Let
π : V Ñ V̄ be the corresponding map. Recall that every element of the ultrapower is (the transitive collapse
of) an equivalence class rf s for some function f P V κ. If π : V Ñ V̄ is the ultrapower map, then we know
that πpfq P V̄ πpκq agrees with f up to κ. Also, recall that κ is the transitive collapse of rid äκs. Consider
πpfqpκq P V̄ . What are its elements? Let x P V̄ be the transitive collapse of (say) rgs. Then:

x P πpfqpκq ðñ x P pπpfqqpπpid äκqq

ðñ x P πpf � id äκq

ðñ tγ   κ : gpγq P fpγqu

ðñ rgs P rf s

So πpfqpκq is the transitive collapse of f , and so we can express every element of V̄ in this way for some
choice of f .

It turns out that this result extends to iterations.

Theorem 3.3.3. [47, 4.2.4] LetM0 be a mouse or weasel, and let I be a simple iteration of length θ ¤ On�1.
Let i   θ and let x P Mi. Then there exists a function f P M0, f : OnXM0 Ñ M0, and n P ω and
i0   . . .   in   i such that

x � π0,ipfqpκi0 , . . . , κinq

Recall now Proposition 3.2.22, which says that we never change the subsets of κ by taking an ultrapower
of a measurable cardinal κ in a J structure. This extends to iterations.

Proposition 3.3.4. [47, 4.2.1(d)] LetM0 be an n sound mouse, let I be an iteration of length θ�1 ¤ On�1,
and let ρM0

n�1 ¤ κ0   ρM0
n be the first critical point. Then M0 and Mθ agree about sequences of length ¤ κ0.

69



3.3.2 The Mouse-Weasel Ordering

Our next trick is to construct a prewellordering of mice (and weasels). First we define a coiteration, a way
of iterating two mice to make them look similar. For this definition, we really do need to allow iterations to
have non-measurable critical points κi, in which case we do nothing and Mi �Mi�1.

Definition 3.3.5. Let M and N be mice or weasels. A coiteration of M and N is a pair of iterations
I :� xMi, πi, jy and J :� xNi, τi,jy such that:

1. M0 �M and N0 � N . (Recall that it’s possible to iterate weasels as well as mice, so this makes sense.)

2. I and J are the same length θ � 1 ¤ On�1.

3. At every i   θ, the critical point κi is the same in both I and J , and is an element of both Mi and Ni.

4. For i   θ, either Mi �Mi�1 or Ni � Ni�1 (or both).

5. For i   θ, if both Mi �Mi�1 and Ni � Ni�1 then the measures on κi in Mi and Ni must be different.

6. At least one of I and J is simple. The only cut-downs that happen on the other are those which
are necessary to make the next critical points into a measurable, and there we cut down only to some
maximal α which does this.

7. Either Mθ � Nθ; or there is some α such that Mθ � Nθäα and the iteration I is simple; or vice versa
there is some α such that Nθ �Mθäα and J is simple.

So a coiteration involves iterating M and N until they end up looking the same as one another (except
that perhaps one of them has had its top cut off), and then stopping as soon as we achieve that.

Lemma 3.3.6 (The Comparison Lemma). [47, 4.4.1] Let M and N be any mice or weasels. Then there
exists a unique coiteration of M and N . This coiteration is set-length if both M and N are mice.

Proof (sketch). We basically do the only thing the definition allows. At each stage i, we compare Mi and
Ni, and find the least κ which is either measurable in just one of Mi and Ni, or is measurable in both but
with different measures. We choose that as our next critical point. If there is no such κ, then without loss of
generality the extender sequence of Mi is either the same as, or an initial segment of, the extender sequence
of Ni. But then the domains of Mi and Ni are levels of the same J hierarchy, so are either equal or one is a
cut down of the other.

We can use this to define a pre-well-ordering:

Definition 3.3.7. Let M and N be two mice or weasels. Let I � xMiyi θ�1 and J � xNiyj θ�1 be the
coiteration of M and N . We say M �� N if Mθ � Nθ and both I and J are simple. We say M  � N if
either J is not simple, or Mθ is a proper initial segment of Nθ.

Lemma 3.3.8. [47, 5.4.4] �� is an equivalence relation.  � and �� constitute a prewellordering of mice
and weasels.

If we want to show that one mouse is  � another, we can often use the following result.

Proposition 3.3.9. Let M be a mouse or weasel, and let N PM be another mouse. Then N  � M .

There are a couple of other easy results which are useful to know.

Proposition 3.3.10. Let M be a mouse, and W be a weasel. Then M �� W .

Proof. If the coiteration of M and W involves any cut-downs of W , then we immediately know that M  � W .
If not, then the iterate of W will still be class-sized. If the iterate of M is set-size, then it has to be a proper
initial segment of W (so again M  � W ). If the iterate of M is class-size, then the M side of the coiteration
must be genuinely class-length, and so M ¡� W .

Proposition 3.3.11. Let M be an active mouse, and N �� M . Then N is also active.
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Proof. N is also a mouse, and M and N can both be iterated to produce the same mouse M̄ � N̄ . By
elementarity, M̄ is active; so again by elementarity so is N .

It’s natural to want to improve  � to an actual well-ordering so that we can talk about the minimal mouse
with some property. Unfortunately, in general an equivalence class of �� mice (or weasels) can’t really be
well ordered in a sensible way. But we can still find a mouse in the class which is somehow minimal. To do
this, we take any arbitrary mouse M in the equivalence class, and then find a new mouse in the class which
is known as the “core” of M . This core is the same whichever M we chose, and it can be iterated to produce
any mouse in the class.

How we find this core is the subject of the next section.

3.3.3 Universal Weasels and the Core Model

We will start by defining the core K of the universe V . To define K, we have to introduce a new concept,
a universal weasel. Recall that a “weasel” is a class-sized mouse, or more formally, a structure that can be
obtained by iterating some mouse with an iteration of length On.

Definition 3.3.12. Let W be a weasel. We say W is universal if every coiteration of W with a mouse M
has length less than On. In other words, given any mouse M we can embed some set-size iterate of M in
some simple iterate of W as a proper initial segment.

Lemma 3.3.13. [47, 6.3.2] If V is a weasel, then it is universal.

Actually, [47] uses the term “weakly universal” for this, and reserves “universal” for weasels for which
this property also holds with M in a certain class of premice. But for the small mice we are dealing with in
this thesis, the two concepts agree.

Note that this implies that W ¡� M for every mouse M , so a universal weasel is in some sense in the
class of the most complex sort of weasels that exist in V . In sufficiently nice situations, we can always find
a universal weasel. [47, 6.4.4] [35]

Definition 3.3.14. Let M � xJEα , Ey be a mouse. We say M is strong if we can extend M to a universal
weasel. That is, M is strong if we can find a universal weasel W such that M �Wäα.

We’re now ready to define the core K of V .

Definition 3.3.15. The core model K is the weasel of the form
�

On J
E
α , where E is a (class long) extender

sequence defined recursively as follows. Suppose we have defined Eäα. If V contains a normal measure F
such that xJEäαα , Eäα, F y is strong, then we define Eα � F . (It can be shown that if F exists then it must
be unique.) If V does not contain any such F , then we instead define Eα � H.

This construction throws every normal measure F it can find into E, except those which would immedi-
ately mean that there was something which was ¡� above K.

Lemma 3.3.16. [47, 7.1] K is well defined, and can be defined within ZFC. Thus K is a subclass of V .
Also, it is a model of ZFC (since it’s a weasel) and the core model of K is K itself.

The construction of the core involves throwing in every measure which won’t cause problems, so it contains
a lot of the measures on K that V knows about.

Lemma 3.3.17. [47, 7.3.7] If U P V is a normal ultrafilter on some ordinal of K, and U is ω complete,
then U is in the extender sequence of K.

We can also say something further about the structure of K.

Theorem 3.3.18. [47, 7.3.7] The core K of V is a universal weasel.

Theorem 3.3.19. [47, 7.4.9] Any universal weasel is a simple iterate of K. In particular, by Lemma 3.3.13
if V is a weasel, then it will be a simple iterate of K.

Note that any weasel W is a model of ZFC, so we can relativise these results to define the core of W .
Then W will be a simple iterate of its core. Inspired by this, we define an analogous “core” of a mouse.
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Definition 3.3.20. The core of a mouse M is the unique sound mouse which can be simply iterated to
produce M , if it exists.

Proposition 3.3.21. [45, 9.6] The core exists for any mouse with no measurables below ρω.

We can also generalise this.

Definition 3.3.22. Let n P ω. The n’th core of a mouse M is the unique n sound N mouse which can be
simply iterated to produce M , and which agrees with M below ρn�1.

Proposition 3.3.23. The n’th core of a mouse always exists.

Going back to the full core, we can show that it agrees between mice which are ��.

Lemma 3.3.24. Let M �� N be two mice with no measurables below their respective ρωs, and the same
ordinal height. Then they have the same core.

Proof. Let KM be the core of M and KN be the core of N . Let M̃ � Ñ be the mouse produced by coiterating
M and N . Then M̃ is a simple iterate of both M and N , and hence of both KM and KN . So both KM and
KN are cores of M̃ . By uniqueness, KM � KN .

In particular, this means that every mouse in rM s will be a simple iterate of KM . So it makes sense to
talk about KM as the “least mouse”.

Definition 3.3.25. We say that a mouse M is the least mouse of rM s if M has no measurables below ρω
and M is its own core.

Proposition 3.3.26. If M is the least mouse of rM s, then every N P rM s is a simple iterate of M .

Definition 3.3.27. Let P be a property such that if P holds for a mouse or weasel M , it holds for all mice
(resp. weasels) N such that M �� N . Then the least mouse (resp. least weasel) such that P holds is defined
to be the least mouse/weasel M̃ of rM s, where rM s is the  � smallest equivalence class such that P holds
on the elements of rM s.

3.3.4 Universal Iterations and Fixed Points

In this section, we shall look at a test which lets us identify some fixed points of an iteration. This is less
well-known material, and can be found in [40].

First, we shall define a “universal” iteration. In some ways, this is related to a universal weasel. A
universal weasel “almost” contains an iterate of every mouse; a universal iteration of a mouse M actually
does contain an iterate of every mouse which is itself an iterate of M .

Definition 3.3.28. Let M0 � xJEγ , E, F y be a mouse, and n P ω. An iteration I � xMi, πi,jy of length

δ � 1 with no trivial steps is n-universal if for all i, for all α   ρMi
n such that π0,ipEqpαq � H, there are

unboundedly many i   j   δ such that κj � πi,jpπ0,ipEqpαqq.

Note that this definition is absolute between different class-size models of ZFC. This definition can also
be extended to work for weasels, but we won’t need universal iterations of weasels in this thesis, and there
are a few extra technicalities we would have to deal with. Notice that if m ¡ n and I is n-universal, then it
is also m universal.

In the right circumstances, it can be shown that universal iterations not only exist, but are definable in
LrM s. Recall the definition of an admissible ordinal.

Definition 3.3.29. We say an ordinal α is admissible if Lα is a model of Kripke-Platek set theory KP. If X
is a predicate, then we say α is X-admissible if LαrXs is a model of KP.

KP is a weaker version of ZFC, which has only Σ0 separation and Σ0 collection (together with induction,
and extensionality, emptyset, pairs and unions). It can be shown that if X is a set then any sufficiently large
regular cardinal is X-admissible, so there are plenty of them around.
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Lemma 3.3.30. [40, 2.8] Let M be a mouse, and let OnM   λ   κ be two M -admissible ordinals. Then
for some n P ω, there is an n-universal iteration I of M of length λ� 1 which is an element of LκrM s.

The universal iteration is not unique (there are many trivial ways we can tweak it). But any two iterations
of the same length produce the same results.

Lemma 3.3.31. [40, 2.9] Let M be a mouse, and let λ be an M -admissible ordinal. Let I � xMiy and
J � xNiy be iterations of length λ� 1, which are both n universal for large enough n. Then Mλ � Nλ.

The key feature of a universal iteration is that any other iteration can be embedded into it, even if that
iteration isn’t in LrM s.

Theorem 3.3.32. [40, 2.10] Let M � M0 � N0 be a mouse, let λ be M -admissible, let n P ω, and let
I � xMiyi¤λ be an n-universal iteration of M of length λ � 1. Let J � xNiyi δ be a simple iteration of M
of length δ � 1   λ with no drops in degree. Then for some δ ¤ ϵ   λ, there is some extension J 1 � xNiyi¤ϵ
of J (still with no truncations or drops in degree) such that Nϵ � Mj for some j   λ, and the embeddings
M ÑMj � Nϵ defined by I and J 1 are the same.

This allows us to prove that certain ordinals are fixed points of a given iteration.

Lemma 3.3.33. [46, 2.10] Let M be a mouse, and let λ P M be M admissible. Let µ P M be strongly
inaccessible in the sense of W , and larger than λ.

Let I � xMi, πi,jy be a simple iteration of M of length δ � 1   λ. Then π0,δpµq � µ.

Proof. Let κ � OnXM . Note that κ is M -admissible, since LκrM s � M ( ZFC�. Let us define (for some
n) an n-universal iteration J � xNi, τi,jy of M of length λ� 1, which is contained in LκrM s �M .

Claim 3.3.34. For j ¤ λ, τ0,jpµq � µ

Proof. We use induction on j. The case j � 0 is of course trivial, and successors follow from Proposition
3.1.13. If j is a limit ordinal, and the result is proved for i   j, then the only way that τ0,jpµq ¡ µ can
happen is if there is some β   µ and some i   j such that τi,jpβq � µ. This implies that the sequence
pτi,kpβqqi k j (which we know by inductive hypothesis does not reach µ) is cofinal below µ. This contradicts
inaccessibility of µ in M , because µ ¡ λ ¡ j.

Let I 1 be an extension of I, of total length ϵ�1, such that Mϵ � Nj for some j, and such that π0,ϵ � τ0,j .
We know by the claim that πδ,ϵpπ0,δpµqq � π0,ϵpµq � τ0,jpµq � µ. But π0,δ and πδ,ϵ are increasing functions,
so this implies that π0,δpµq � µ.
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Chapter 4

Of Mice and Machetes

Recall that we defined the classes Regϵ and Regsϵ near the start of the previous chapter. We suggested that
results about the predicate Card could be extended to Reg ϵ. In this chapter, we present two such extensions.

In [46], Welch proves the following result:

Suppose there exists a mouse with an unbounded sequence of measurables in it. Then LrCards
is a generic extension of an iterate of the smallest such mouse.

The analogous result, which we shall prove here, is the following:

Let ϵ ¡ 0. Suppose there exists a mouse containing “enough” measurables (in a sense to be
specified shortly). Then LrReg ϵs and LrRegs ϵs are both generic extensions of iterates of the
smallest mouse with “enough” measurables.

Welch calls the mouse he uses O-Kukri, since it fits somewhere between two mice called O-Dagger and
O-Sword. The mice we need to use will contain more measurables, so they will be somewhat larger than
O-Kukri; but they are still strictly smaller than O-Sword. Continuing the established pattern, we shall name
them after a weapon which is somewhere between a kukri and a sword in size – a machete.

Definition 4.0.1. Let ϵ P On. Suppose there is an active sound mouse M whose extender sequence E con-
tains unboundedly many measurables of all Cantor-Bendixson ranks below ϵ. That is, M contains (definable)
sequences Cδ, δ   ϵ of ordinals, cofinal below the largest cardinal κ of M , such that:

1. For all δ   ϵ, and for all α P Cδ, Epαq � H is a normal measure on α from the perspective of M (and
so can be iterated without cutdowns)

2. For all δ   ϵ, Cδ does not contain any of its own limits.

3. For all γ   δ   ϵ, if α P Cδ then α is a limit of Cγ .

If such a mouse exists, then we define the mouse OMachete-ϵ, or OMϵ for short, to be the least such sound
mouse. (If no such mice exist, then we simply say that OMϵ does not exist.)

Proposition 4.0.2. Suppose that an active (but not necessarily sound) mouse M exists with measurables of
all ranks below ϵ. Then OMϵ exists, and is ¤� M . Moreover, if OMϵ exists, then every mouse which is ��

to OMϵ has unboundedly many measurables of all ranks below ϵ, but none has any (full) measure below ϵ, or
any measurables of Cantor Bendixson rank ϵ (other than the top measure). Also, |OMϵ| � maxpℵ0, |ϵ|q.

Proof. Without loss of generality, suppose that M is in the smallest �� equivalence class containing a mouse
with unboundedly many measurables of all ranks   ϵ. (Clearly M ¤� OMϵ if the latter exists; once we prove
the first sentence of the proposition we will know that M �� OMϵ as well.) We start by proving that M has
no measurables of rank ϵ or measurables ¤ ϵ.
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Suppose that the extender sequence of M contains a measurable κ of rank ϵ. Then the extender sequence
of Mäκ  � M would also have unboundedly many measurables of all ranks below ϵ, and be active, so rM s
would not be the least � � class containing such a mouse after all.

Next, suppose that the least measurable λ P M in the extender sequence of M is ¤ ϵ. Let us construct
a simple set long iteration of M where we repeatedly iterate its bottom measure until we reach a mouse
M̄ P rM s whose least measurable is above ϵ. This gives us an elementary map π : M Ñ M̄ such that
πpϵq ¡ πpλq ¡ ϵ. By elementarity, M̄ contains unboundedly many measurables of all ranks below πpϵq, and
hence its extender sequence contains a measurable µ (below its top measure) which is rank ϵ. But also, M̄ is
another active mouse in rM s whose extender sequence contains unboundedly many measurables of all ranks
below ϵ, and we just saw this implies that no such µ can exist in M̄ . So the least measurable λ of M must
be above ϵ.

Let M̃ be the transitive collapse of the Σ1 Skolem hull of ϵ in M . Then M̃ is elementarily equivalent to M ,
so it is a premouse. Moreover, any iteration of M̃ corresponds to a unique iteration of M , and hence can be
continued. So M̃ is a mouse. By elementarity, M̃ contains unboundedly many measurables of all ranks   ϵ,
and no measurables below ϵ, and hence M̃ ¥� M by minimality of M . But M̃ is (elementarily equivalent to) a

subset of M . Hence M̃ �� M . But a simple cardinality argument shows ρM̃ω ¤ ρM̃1 ¤ |M̃ | � maxtℵ0, |ϵ|u ¤ ϵ.
In particular, M̃ contains no measurables below ρω, and hence there exists a (unique) sound mouse which is
�� to M̃ and hence also to M .1

Now let M̄ be the unique sound mouse which is �� to M . Note that |M̄ | ¤ |M̃ | � maxtℵ0, ϵu. We know
by elementarity that there is some ϵ̄ P M̄ such that M̃ contains unboundedly many measurables of all ranks
  ϵ̄, but none of rank ϵ̄ other than its top measure. Moreover, there is some simple iteration M̄ ÑM , which
(by elementarity) sends ϵ̄ to ϵ. But there are no measurables below ϵ in M , and hence none below ϵ̄ in M̄ .
So in fact ϵ̄ � ϵ. Hence, M̄ satisfies the requirement for OMϵ; by minimality of M we therefore know that
M̄ � OMϵ. This also tells us that ϵ P M̄ , so |M̄ | ¥ ϵ. Hence,

|OMϵ| � maxtℵ0, ϵu

as required.
Now, if N is a mouse such that N �� OMϵ, then N is a simple iterate of OMϵ and ϵ is not moved by the

iteration, so elementarity means N contains unboundedly many measurables of all ranks   ϵ, none of rank ϵ
other than its top measure, and none below ϵ.

Saying “the full measurables contained in the extender sequence of M” is a bit of a mouthful, and will
quickly get tiresome. To save time, we will informally talk about the measurables of a mouse M , meaning
that collection of measurables which have normal measures defined by the extender sequence.

To generate LrReg ϵs or LrRegs ϵs, the mouse we need is precisely OMϵ. Our main aim in this section is
to prove the following theorem:

Theorem 4.0.3. Let ϵ P ℵω, and suppose OMϵ exists. Then there exists an iteration I � xMi, πi,jy of
M0 � OMϵ, of length On�1, such that LrReg ϵs is a generic extension of MOn by a hyperclass forcing, and
another similar iteration such that LrRegs ϵs is a generic extension of MOn.

There’s nothing inherently special about the statement “has unboundedly many measurables of a certain
Cantor-Bendixson rank”, from the perspective of the definition. We could reasonably define Machete mice
for other first order statements.

Definition 4.0.4. Let φpv0, . . . , vn, vn�1q be any first order formula. Let α0, . . . , αn be ordinals of V .
Suppose there exists an active mouse M , whose least measurable is above α :� maxtα0, . . . , αnu, and whose
top measurable κ is such that

HM
κ� ( φpα0, . . . , αn, κq

Suppose further that a least such mouse M is sound. Then we say that M is OMφ,α0,...,αn . If no such mouse
exists, then we say that OMφ,α0,...,αn does not exist.

If the parameters are obvious, we will suppress them and just write OMφ.

1We can actually show that M̄ � M̃ , but we don’t need that here.
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Note that unlike when we defined OMϵ, we are explicitly requiring that OMφ be not just the least sound
mouse which satisfies the criteria, but also the least mouse in general (in the sense that there is no mice that
is  � it and satisfies the criteria too). This is necessary, as we can see from the following trivial example.

Example 1. Let φpv0, v1q :� v0 � v0. Suppose that there exists an active sound mouse of uncountable
cardinality, which has no measurables below ℵ1. (This is a fairly weak assumption.) Let M be the least such
mouse. Then M � OMφ,ℵ1 , because ℵ1 must be in the mouse OMφ,ℵ1 .

On the other hand, let N be the smallest nontrivial sound mouse possible: a mouse with a single measure.2

A Löwenheim-Skolem argument shows that N  � M . But there exists a simple iterate N 1 of N which contains
ℵ1; and then

HN 1

κ� ( φpℵ1, κq

However, we can get close to OMφ. We can at least find a mouse which is α sound.

Proposition 4.0.5. Suppose that there exists a (not necessarily sound) mouse M of the kind described in
the definition above. Then there is an α sound mouse N ¤� M , also of the kind described above. Moreover,
we can choose N so that there is a sound mouse which is �� to N .

Proof. Take the Σ1 Skolem hull of α in M , and let N be its transitive collapse. By construction, ρN1 ¤ α,
and hence ρω is below the least measurable of N . So the core of N exists.

In particular, if φ has no parameters other than κ, then the existence of any such mouse is sufficient to
conclude that OMφ exists.

A similar argument, applied to OMφ itself, shows:

Proposition 4.0.6. For any φ and α0, . . . , αn, if OMφ exists then

ρO
Mφ

1 ¤ maxtα0, . . . , αnu

Proposition 4.0.7. Suppose that OMφ exists. Then for all mice M �� OMφ, the same statement about φ
holds true for M as for OMφ.

Proof. Follows from soundness, elementarity and the fact that there are no measurables below α.

For any ϵ, OMϵ is an OMφ mouse. The φ we use has two variables, and says “Below v1 I have unboundedly
many measurables of all Cantor-Bendixson ranks less than v0”. We saw above that the least measurable of
OMϵ � OMφ,ϵ is greater than ϵ.

In the later sections of this chapter, we will see that any sufficiently nice Machete mouse, including OMϵ

for any reasonable ϵ, is contained in a different regularity related inner model:

Suppose that On is Mahlo. Let α be the least measurable in the core of LrRegss. Let
OM,α0,...,αn be a hereditarily α friendly, hereditarily tidy machete mouse which is friendly with
respect to φ. Then OMφ P LrRegss.

We will define what friendliness and tidiness mean in this context later in the chapter.

4.1 Magidor Forcings, Iterations and the Mathias Criterion

The hyperclass forcing we shall be using in proving Theorem 4.0.3 will be a Magidor iteration of Prikry
forcings. Before we start proving the theorem, we shall lay some groundwork about these iterations for
us to use later. First, let’s define what the forcing actually is. Recall that a Prikry forcing singularises a
measurable cardinal, and has two relations ¤ and ¤�. The Magidor iteration singularises an infinite collection
of measurables, by doing a Prikry forcing on each one. If we are working in ZFC, then we can do an iteration
for any set of measurables; if we are in a model of MK then we can go further and define the iteration for a
proper class.

2This mouse is called O#, “O Sharp”.
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Definition 4.1.1. [28] Let C be a set of measurables (if we are working in ZFC) or a class of measurables
(if we are working in MK), and for κ P C let Uκ be a normal measure on κ. We recursively define forcings

Pκ for κ P C Y tsupCu and Pκ names 9Qκ of Prikry forcings for κ P C. The two definitions depend on one
another, and so are part of the same recursion. The Magidor iteration of C is the forcing PsupC .

Pκ: For κ P C Y tsupCu, Pκ consists of sequences p � ppλqλPCXκ, such that:

1. For all λ P C X κ, päλ :� ppδqδPCXλ P Pλ

2. For all λ P C X κ, päλ , pλ P 9Qλ

3. For all but finitely many λ P C X κ, päλ , pλ ¤
�
9Qλ

1
9Qλ

The order ¤ on Pκ is defined in the natural way: if p � ppλqλPCXκ and q � pqλqλPCXκ then q ¤ p if for
all λ P C X κ, qäλ , qλ ¤ 9Qλ

pλ. We also define a second partial order ¤� on Pκ: q ¤� p if for all λ P C X κ,
qäλ , qλ ¤

�
9Qλ
pλ.

9Qκ: For κ P C, let jUκ
be the ultrapower map defined by Uκ. Let P̃κ � jUκ

pPκq. Let 9U�
κ be the following

Pκ name:

9U�
κ � tp

9A, pq : Dq ¤�P̃κ
pjUκppqzκq, p

⌢q ,P̃κ
κ̌ P jUκp

9Aqu

It can be shown [28, 2.5] that 9U�
κ is a name for a normal measure on κ in the Pκ generic extension, and

that 1Pκ ,
9U�
κ X V � Ǔκ.

We define 9Qκ to be a name for the Prikry forcing on κ in the generic extension defined by 9U�
κ .

The Magidor iteration adds a cofinal ω sequence below each measurable in C. Like a Prikry forcing,
a generic filter is determined by the generic sequence (in

±
κPC κ

ω) it adds. Notice that in MK, if C is a
proper class then the iteration is a hyperclass forcing and a generic filter is technically a hyperclass, but its
equivalent sequence is just a class.

We can also say a little more about the nature of the measure 9U�
κ .

Proposition 4.1.2. [10] In the forcing defined above, let κ P C. Let G be Pκ generic, and for λ P C X κ
let Gλ be the ω sequence added by G below λ. Then p 9U�

κ q
G is generated by the measure 1 sets of Uκ, together

with the set

ΣGκ :� tν   κ : @λ P C X κzν, pν � 1q XGλ � Hu

We can show an analogue of Lemma 1.3.11. (In fact, this lemma is essentially always true in Prikry style
forcings, and is one of their defining features.)

Lemma 4.1.3. [28, 2.1] Let φ be some sentence (perhaps with parameters) in the language of Pκ, and let
p P Pκ. There is some q ¤� p such that either q , φ or q ,  φ.

Recall that the Prikry forcing on κ consists of two components: a finite stem which is an element of κ ω,
and a measure 1 set X. So an element p � ppλq of the Magidor forcing can be rearranged into a sequence of
names 9sλ for stems sλ P λ

 ω, and a sequence of names 9Xλ for measure 1 subsets Xλ � λ.

Lemma 4.1.4. Let p, q P Pκ. Let p � p 9sλ, 9XλqλPCXκ, and let q � p 9tλ, 9YλqλPCXκ.
Suppose that for all λ, päλ , 9sλ � 9tλ, or qäλ , 9sλ � 9tλ.
Then r :� p 9sλ, 9Xλ X 9YλqλPCXκ is a condition of Pκ, and r ¤� p and r ¤� q.

Proof. Induction on the order type of C X κ. The case o.t. � 0 is trivial: it boils down to saying that the
intersection of two measure 1 sets is measure 1.

Suppose C X κ has a largest element λ. By inductive assumption räλ P Pλ, and räλ ¤� päλ and
räλ ¤� qäλ. Then we know that räλ , 9sλ � 9tλ P λ̌

 ω, and that räλ , 9Xλ, 9Yλ P 9U�
λ . So räλ , 9XλX 9Yλ P 9U�

λ .

Hence räλ , x 9sλ, 9Xλy X 9Yλ P 9Qλ.
Hence, r � räλ⌢p 9s, 9Xλ X 9Yλq P Pκ. It is now trivial to see that r ¤� p, q.
If C X κ has a limit order type, then it is immediate that r P Pκ and r ¤� p, q, just by the definition of

Pκ and ¤� and the inductive hypothesis.
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Corollary 4.1.5. [28, 4.4] Pκ satisfies the κ� chain condition.

Proof. Induction on the order type of C X κ. If the order type is a successor (say it has a largest element λ),

then Pκ � Pλ � 9Qλ, and the result follows by inductive hypothesis and the fact that the Prikry forcing on λ
has the λ� chain condition. So we just need to consider the case where the order type is a limit.

Suppose that this is the case, and that A is an antichain of Pκ of size κ�. For each p P Pκ, let suppppq be
the support of the stem of p, i.e. the finite set of λ P C X κ such that päλ , pλ ¤

�
9Qλ

1
9Qλ

. Note that this is

defined in the ground model V . By the pigeonhole principle, we can find some finite subset S � C X κ, and
some A1 � A of cardinality κ�, such that for all p P A1, suppppq � S. Since C X κ has limit order type, we
know that S is bounded below κ, by some λ say.

Let A2 � tpäλ : p P A1u � Pλ. We know that Pλ has the λ� chain condition by assumption, so either A2

has cardinality less than κ�, or it contains two compatible elements. Either way, we can find p, q P A1 such
that päλ and qäλ are compatible. Let r P Pλ be below both of them. Let p1, q1 P Pκ be obtained by sticking
the parts of p and q (respectively) above λ onto the end of r. Since r ¤ päλ and r ¤ qäλ, we know p1 and q1

are conditions, and that p1 ¤ p and q1 ¤ q.
But the parts of p and q which are above λ have empty support. So the stems of p1 and q1 are both

exactly the same as the stem of p1äλ � r � q1äλ. By the previous lemma, then, p1 and q1 are compatible.
But then p ¥ p1 and q ¥ q1 are also compatible. Contradiction.

In [11], Ben Neria gives a generalisation of the Mathias criterion to test whether a given sequence is
generic.

Theorem 4.1.6. [11] [ZFC] Let P be the Magidor iteration on a set of measurables C, with corresponding
normal measures Uκ as above. Let S � pSκqκPC P

±
κPC κ

ω be a sequence, not necessarily in the ground model
V . Then the filter corresponding to S is P generic if and only if it satisfies the following two conditions:

1. The Mathias Criterion: For every X P
±
κPC Uκ in V , the set

�
κPC SκzXκ is finite;

2. The Separation Property: There are only finitely many tuples ν ¤ ν1   κ   κ1 such that κ, κ1 P C and
ν P Sκ and ν1 P Sκ1 .

We will be using this to show that the sequence we want to add to create LrReg ϵs or LrRegs ϵs is actually
generic.

More precisely, we shall use this to prove that a new criterion is sufficient for a sequence to be generic;
and will then verify that the sequence we’re interested in satisfies this criterion.

Lemma 4.1.7. Let M �M0 be a mouse whose extender sequence contains a bounded set of measurables C.
Let I � xMi, πi,jyi¤j¤θ be a (set or class) length iteration of M . For λ P π0,θpCq, let Sλ P λ

ω be an increasing
and cofinal sequence (necessarily outside Mα) of critical points of I, such that if κi P Sλ then πi,θpκiq � λ.

Then S � pSλqλPπ0,θpCq is a generic sequence for the Magidor iteration of π0 θpCq.

Proof. We shall show that S satisfies the criteria in 4.1.6.
First, the Separation Property. Suppose that ν P Sλ and ν1 P S1λ, and ν ¤ ν1   λ   λ1. We know, by

definition of Sλ, that there exists i P θ such that ν � κi and πi,θpκiq � λ. Likewise, there exists j P θ such
that ν1 � κj and πj,θpκjq � λ1. We know that κi ¤ κj , so i ¤ j. Since

πi,θpκiq � λ   λ1 � πj,θpκjq

it follows that i   j. By elementarity, then,

πi,jpκiq   πj,jpκjq � κj

But πj,θäκj � id, so πi,jpκiq � πi,θpκiq � λ. This implies that λ   κj , contradicting our assumption that
ν ¤ ν1   κ   κ1. So there are no such interleaved pairs at all, and S very much satisfies the Separation
Property.

We now turn to the more difficult part of this proof, showing that the Mathias Criterion is satisfied.
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To simplify notation, let C� � π0,θpCq, let U � tpλ,Uλq : λ P Cu be the sequence of ultrapowers on C in
M0, and let U� � π0,θpUq be the corresponding sequence of ultrapowers on C�. For κ P C�, let U�

λ � U�pλq.
Fix X P

±
λPC� U�

λ in Mθ, and for κ P C� let Xλ � Xpλq. Let

τX � suptλ P C� : Xλ � λu ¤ supC�

We want to show that
�
SλzXλ is finite. Suppose we can find a counterexample: an X for which the is

infinite. Then let X be a counterexample which minimises τX .3 Let X̄ � XäτX .
Recall that by Theorem 3.3.3, we can write

X̄ � π0,θpfqpκi0 , . . . , κinqäτX

for some function f P M0, some n P ω and some i0   . . .   in   θ, where κi denotes the i’th critical
point of the iteration I as usual. In fact, we know it’s possible to do this even without the äτX . Fix a way of
writing this (including the äτX) which minimises in for our chosen X̄, and let i � in. (Note that we do not
require that π0,θpfqpκi,0, . . . , κinq be equal to either X or X̄, only that it agree with X̄ � XäτX up to τX .)

This is an opportune point to prove a short technical result we’re going to need later.

Claim 4.1.8. κi   τX

Proof. This is trivial if τX ¡ κj for all j   θ. Suppose otherwise, and let j   θ be least such that κj ¥ τX .
Now X̄ P Mθ can be coded easily as a subset of τX and hence as a subset of κj . By Proposition 3.3.4,
we know that this coding already exists in Mj , and hence that X̄ P Mj . Since πj,θ acts as the identity on
ordinals below κ, it is also easy to see that πj,θpX̄qäτX � X̄.

We can write X̄ � π0,jpgqpκj0 , . . . , κjmq for some g P M0, some m P ω and some j0   . . .   jm   j. But
then

X̄äτX � π0,θpgqpκj0 , . . . , κjmq

Hence i ¤ jm   τX .

Returning from this diversion, we now prove the central claim of this lemma.

Claim 4.1.9. Let λ P C�, let i   j   θ, and suppose that πj,θpκjq � λ. Then κj P Xλ.

Proof. If λ ¥ τX , then Xλ � λ and so the claim is trivial. So suppose λ P C� X τX .
Now, j�1 ¡ i, so π0,j�1pfqpκi0 , . . . , κinq is well defined, and is a function in Mj which chooses a measure

1 subset of each measurable in π0,j�1pCq. We know that πj,θpκjq � λ P C� � π0,θpCq, so by elementarity
κj P π0,jpCq and πj,j�1pκjq P π0,j�1pCq. So it makes sense to talk about the set

Y :� π0,j�1pfqpκi0 , . . . , κinqpπj,j�1pκjqq PMj�1

Mj�1 believes that this Y is a measure 1 subset of πj,j�1pκjq.
But (since κj is the critical point the iteration I at stage j) we know that we generated Mj�1 by taking

the ultrapower of κj in Mj , and πj,j�1 is the corresponding ultrapower map. So Proposition 3.1.11 (or rather,
the equivalent proposition for rudimentary closed structures) tells us that κj P Y , since Y is measure 1 in
Mj�1.

The critical point of πj�1,α is κj�1 ¡ κj . So

κj � πj�1,θpκjq P πj�1,θpY q

But

πj�1,θpY q � πj�1,θ

�
π0,j�1pfqpκi0 , . . . , κinqpπj,j�1pκjqq

�
� π0,θpfqpπj�1,θpκi0q, . . . , πj�1,θpκinqqpπj,θpκjqq

� π0,θpfqpκi0 , . . . , κinqpλq

� Xλ

3At this point, it’s entirely plausible at this stage that τX can’t ever be smaller than supC�.
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So κj P Xλ.

Let λ P C�X τX . It follows immediately from the second Claim that SλzXλ � κi. Of course, this tells us
nothing if λ ¤ κi, but if λ ¡ κi then since Sλ is cofinal in λ, we know that SλzXλ is finite. Moreover, if the
least j   θ such that κj P Sλ is greater than i, then SλzXλ � H.

We shall show that this second, stronger statement holds for all but finitely many λ P C�zκi. That is,
there are only finitely many λ ¥ κi in C� such that κj P Sλ for some j   i. Suppose there were infinitely
many such elements of C�. Call them λ0   λ1   . . . say, and call the corresponding indices j0, j1, . . ..
Without loss of generality, say that λ0 � κi. For m   n, we know that κjm P Sλm

, that κjn P Sλn
, and that

κjn ¤ κi   λm   λn. If κjm ¤ κjn , then we are in exactly the situation we were dealing with back when we
were proving the Separation Property. We have already seen that this leads to a contradiction, so instead
it must be that κjn   κjm . But now κj0 ¡ κj1 ¡ . . . is an infinite decreasing sequence of ordinals. So our
assumption about the existence of the λn’s and jn’s is contradictory – there are only finitely many λ ¡ κi
such that we can find j   i with κj P Sλ.

Hence, the set
�
λPC�zκi

SλzXλ is finite. We are assuming that
�
C� SλzXλ is infinite, so

�
λPC�Xκi

SλzXλ

must be infinite.
Let us define a new sequence X̃ P

±
C� U�

λ :

X̃pλq �

#
Xpλq if λ P C� X κi

λ if λ P C�zκi

Let X̃λ � X̃pλq. We have just seen that
�
λPC� SλzX̃λ �

�
λPC�Xκi

SλzXλ is infinite. Also, τX̃ :� suptλ :

X̃λ � λu ¤ κi.
We saw earlier that κi   τX , so τX̃   τX . But then the existence of X̃ contradicts minimality of τX . So

we have a contradiction, and there is no X such that
�
C� SλzXλ is infinite.

So the Mathias Criterion and Separation Property both hold, and hence S is generic by Theorem 4.1.6.

4.2 Generating an inner model

With those preliminaries done, we shall now return to O-Machete and Theorem 4.0.3. We shall actually
prove a slightly more general statement, of which both the Reg and Regs statements are special cases:

Theorem 4.2.1. Suppose OMϵ exists. Let R be any (proper) class of regular uncountable cardinals of V ,
none of whose elements have Cantor-Bendixson rank ϵ in R, and which has at most finitely many elements
below ϵ. Then there is a class long iterate MOn of OMϵ such that LrRs is a hyperclass generic extension of
MOn. The forcing we use is the Magidor forcing on all the measurables of the extender sequence of MOn.

We get Theorem 4.0.3 by taking R � Regϵ or R � Regsϵ . (The assumption in that theorem that ϵ   ℵω
gives us the “at most finitely many elements below ϵ statement here.)

4.2.1 Iterating O-Machete

Proof. For γ   ϵ, let Rγ be the class of elements of R of rank γ. (So if R � Regϵ then Rγ � Regγ , and

likewise for Regsϵ .) Let Wγ be the class of ω limits of Rγ . For λ PWγ , let Sλγ be the ω sequence of cardinals

in Rγ immediately preceding λ: i.e. Sλγ is the ω many elements of pRγ X λqz suppWγ X λq, ordered as an

increasing sequence. Notice that
�
λPWγ

Sλγ � Rγ , and Rγz
�
λPWγ

Sλγ is finite.

LetM0 � OMϵ. We saw in 4.0.2 that the extender sequence ofM0 contains unboundedly many measurables
of every rank below ϵ, but none of rank ϵ or above. As in that proposition, let C denote the collection of all
the measurables in the extender sequence of M0.

Consider the On�1-long iteration I � xMi, πi,jy which is defined by the following rule:

If i P On and Mi is defined, then the critical point used to generate Mi�1 is the first measurable
κ in π0,ipCq which is not an element of Wγ for any γ   ϵ. If no such measurables exist, then
instead the critical point used is the top measure of Mi.
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It is immediately clear that we can follow this rule in any iterate Mi, so this gives us a well-defined
iteration with no trivial stages.

Lemma 4.2.2. 1. π0,OnpCq �
�
γ ϵWγ

2. For all γ   ϵ, if λ P Rγ , and λ ¡ ϵ, then λ is a critical point κi of the iteration I. Moreover, if
λ   supWγ then πi,Onpλq is the least element of Wγ above λ. On the other hand, if λ ¥ supWγ then
πi,jpλq becomes arbitrarily high as j increases, and therefore πi,Onpλq is undefined. (This means that
the image of λ is not in the set size part of the direct limit of the Mj, so it is lost when we do a “cut
down” to produce the weasel MOn.)

Proof. We shall first prove that every element of Rγ above ϵ is a critical point of I. Let λ P Rγ be greater
than ϵ. Let i   On be least such that κi ¥ λ.

Claim 4.2.3. i � λ

Proof. By 4.0.2 we know OMϵ has cardinality equal to maxpω, |ϵ|q   λ. On the other hand, obviously Mi has
V cardinality at least λ. Let j ¤ i be least such that |Mj | ¥ λ. It is easy to see that for α an infinite ordinal,
|JEα | � |α|, so j is also least such that λ PMj .

By Proposition 3.2.20, we know that j is not a successor cardinal. So Mj is a direct limit model, and for
some k   j, there exists λ̄ PMk such that πk,jpλ̄q � λ.

The sequence tπk,j1pλ̄q : k   j1   ju is cofinal below λ. Since λ is regular, it follows that λ ¤ j ¤ i. On
the other hand, by definition of i, there is an i long sequence of critical points below λ, so i ¤ λ.

So the sequence of critical points pκjqj i of the iteration M0 ÑMi is a λ long increasing sequence below
λ, and is therefore unbounded. We’ve also already seen that OnXOMϵ   λ. By Lemma 3.2.36, in Mi �Mλ

there is a measurable on λ. Moreover, this measurable is an image of an earlier critical point and therefore
(by how we constructed the iteration) it is an element of π0,ipCq.

Suppose that there is some µ P π0,ipCq X λ which is not an element of any Wγ . Then for large enough
j   i, κj ¡ µ and µ P π0,jpCq. But then we would have chosen µ to be the critical point of the iteration at
stage j, which we didn’t since κj ¡ µ. So no such µ exists: in Mi, all the measurables of π0,ipCq below λ are
on elements of Wγ for some γ as they’re supposed to be.

On the other hand, λ itself is regular in V , so is certainly not an element of any Wγ (or it would have
V cofinality ω). So λ is the least element of π0,ipCq which is not on an element of Wγ for any γ, and hence
λ � κi.

We must still show that πi,Onpλq is the smallest element of Wγ above λ (or does not exist if λ ¡ supWγ).
We do this by proving the following two statements together, using induction on γ:

Claim 4.2.4. 1. For all λ P Rγ , if λ
1 is the immediate successor of λ in Rγ , and λ � κi and λ

1 � κj,
then πi,jpλq � λ1.4

2. For all λ P Rγ , if µ � minWγzλ and λ � κi, then πi,Onpλq � µ. If Wγzλ � H then πi,jpλq is unbounded
as j increases.

Proof. Induction on γ. Suppose that both 1 and 2 hold for all δ   γ.
1: We know that λ � κi is the critical point at stage i. The first step is to show that its Cantor-Bendixson

rank in the class π0,ipCq of measurables of Mi is at least (in fact, exactly) γ. Since we are assuming 2 holds
for δ   γ, for any δ   γ and for any µ P Wδ X λ, we know that µ � πα,Onpαq for some α P Rδ. But we also
know that α � κα P π0,κpCq. Hence µ P π0,OnpCq.

Since κi � λ, the map πi,On acts as the identity below λ, and hence µ � π�1
i,Onpµq P π0,ipCq. This gives

us an unbounded collection of measurables below λ of every rank below γ. So the rank of λ in π0,ipCq is at
least γ.

On the other hand, since λ is the critical point at stage i of the iteration, we know that every element of
π0,ipCq below λ is in Wδ for some δ   ϵ. And λ has Cantor-Bendixon rank γ in the class

�
Wδ. So its rank

in π0,ipCq is at most γ.

4Of course, we’ve just shown that in fact i � λ and j � λ1, but we use i and j to emphasise that we’re thinking of the ordinals
as stages of the iteration.
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Let ν � suppWγXλq   λ. We have shown that λ is the least measurable in π0,ipCq which is strictly above
ν and has Cantor Bendixson rank γ in π0,ipCq. The same argument shows that λ1 is the least measurable in
π0,jpCq which is strictly above suppWγ X λ

1q and has rank γ.
But Wγ is a collection of ω limits of Rγ , and λ1 is the immediate successor of λ in Rγ , so suppWγXλ

1q � ν.
And since ν, γ   λ � κi, we know that πi,jpνq � ν and πi,jpγq � γ. Since πi,j is elementary, πi,jpλq � λ1 as
required.

2: Suppose that λ   supRγ . Let λ � κi � κi0   κi1   . . . be the first ω many elements of Rγ above λ,
whose supremum µ is the least element of Wγ above λ. Let j � suptin : n P ωu. By induction on 1 we know
πi0,inpλq � κin for all n P ω. So since Mj is a direct limit model, πi,jpλq � suptκn : n P ωu � µ.

By stage j of the iteration I, we have seen unboundedly large critical points below µ (namely, κi0 , κi1 , . . .).
So from j onwards, the remainder of the iteration has no critical points below µ. Moreover, µ P Wγ and we
defined I such that no element of Wγ would ever be a critical point. So all the critical points of the iteration
from Mj to MOn are strictly greater than µ. Hence πj,Onpµq � µ and so πi,8pλq � µ.

Now suppose λ ¥ supWγ . As we saw earlier, λ is of rank at least γ in π0,ipCq. This will also be true (by
elementarity) about πi,jpκq in π0,jpCq, for i   j   On. So for all such j, we know Mj will contain at least
one measurable λ ¤ πi,jpκq of π0,jpCq which is not an element of

�
δWδ. Hence for all i   j   On we know

κj ¤ πi, jpλq. Since the critical points of a class long iteration always become arbitrarily high, it follows that
πi,jpλq increases unboundedly as j increases and πi,Onpλq is undefined.

This immediately shows the remainder of the second part of the lemma, and also that π0,OnpCq �
�
γWγ .

The last step is to show that this is an equality. Suppose that λ P π0,OnpCqz
�
Wγ . Then for large enough

i, we know there is some λ̄ ¤ λ such that πi,Onpλ̄q � λ. Choosing i such that κi ¡ λ ¥ λ̄ it is immediately
clear that λ̄ � λ R

�
Wγ . It is then clear by elementarity that λ P π0,ipCq. But then we would have chosen

λ as our critical point at stage i, and we said that κi ¡ λ. Contradiction. So π0,OnpCq �
�
γWγ .

Corollary 4.2.5. Let κ P π0,OnpCq. In MOn, let Pκ be the Magidor iteration of π0,OnpCqäκ. Then

Tκ :� tpλ, Sλγ q : γ   ϵ, λ PWγ X κu

is generic for Pκ.

Proof. By Lemma 4.2.2, we know that Tκ satisfies the condition for genericity proved in Lemma 4.1.7.

So we now have our generic extension. There is a subtle issue we still need to deal with, however. The
corollary only talks about Pκ, a set size initial segment of the Magidor iteration. We want to show that
it holds for the Magidor iteration of the whole of π0 OnpCq. But this is a proper class of M8, and so the
Magidor iteration is a hyperclass forcing. Lemma 4.1.7 only tells us about set size forcings. We must find a
way to get around this difficulty if we want to force with the full iteration P. First, we must check that P
actually satisfies the conditions from Chapter 1 to make forcing work properly.

Lemma 4.2.6. Let P be the Magidor iteration of π0,OnpCq, defined in the MK�� model generated by I whose
(set) domain is MOn. Then P is pretame.

Proof. Follows immediately from the fact that it has the “On� chain condition” (see Corollary 4.1.5; the
proof goes through for classes in exactly the same way), so every dense subhyperclass of P contains a predense
subclass.

Lemma 4.2.7. Let P be as above. Then

T :� tpλ, Sλγ q : γ   ϵ, λ P Rγu

is generic for P.

Proof. Let piγqγPOn be the sequence given in Lemma 3.2.35 for λ :� On. For γ P ZFC, let

Cγ � pPpHκiγ
qqMiγ

and let
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Hγ � xH
Miγ
κiγ

, Cγy

We know that the analogous structure in the direct limit of xMiyi On is a model of MK�� (see the remarks

after Lemma 3.2.40) so by elementarity Hγ is a model of MK��, with set-part H
Miγ
κiγ

. So we can also view
Päκiγ � Pκiγ

as a hyperclass forcing over Hγ .

Claim 4.2.8. Let γ P On. A filter G is generic over Pκiγ
for Hγ (as a hyperclass forcing) if and only if it

is generic over Pκiγ
for MOn (as a set forcing).

Proof. To keep notation tidier, let us write P̄ for Pκiγ
just for this claim.

The critical points of the iteration from Miγ to MOn are all ¥ κiγ . So by Proposition 3.3.4 MOn and Miγ

agree on Hκiγ
and its subsets. So Hγ is a set in MOn:

Hγ � xH
MOn
κiγ

, pPpHκiγ
qqMOny PMOn

Hence any definable dense subhyperclass of P̄ in Hγ is a set in MOn. So a filter which is generic in the
sense of MOn is generic in the sense of Hγ as well.

On the other hand, we saw in Corollary 4.1.5 that P̄ has the κ�iγ chain condition. So letting D P MOn

be any dense subset of P̄, we can find some predense subset D1 � D of cardinality ¤ κiγ . Since P̄ � HMOn

κ�iγ
,

we know D1 P HMOn

κ�iγ
and hence that D1 can be coded using a canonical Skolem function as a set S � κiγ

in MOn. Since S � κiγ , it follows immediately that S is a class in the MK�� model Hγ . Hence, D1 is a
definable hyperclass over Hγ . So any filter G which is generic in the sense of Hγ will meet D1 and hence
meet D. Since D was arbitrary, any such filter G is generic in the sense of M8.

In particular, this claim means that Tκiγ is generic over Hγ in the sense of hyperclass forcing, because
Corollary 4.2.5 tells us it is generic over MOn.

We now need a way to transfer this up to genericity of T over P in MOn. To help us here, we need the
following technical result.

Claim 4.2.9. Let i   On and let κi   κ ¤ On. Let j ¤ On be minimal such that κj ¥ κ (interpreting κOn

as On). If p P pPκi
qMi agrees with Täκi, then πi,jppqäκ agrees with Täκ.

By “p agrees with Täκi” we mean that p is in the generic filter generated by Täκi, i.e. that all the Prikry
conditions named by p are interpreted by the appropriate initial segments of T as Prikry conditions that are
compatible with the relevant part of the sequence. Note that the claim makes sense: if κi is the i’th critical
point, then Mi and MOn agree on πpCqäκi, so Täκi is a collection of ordinals with the correct suprema for
Pκi . Similarly for Mj and Täκ.

Proof. We prove this by induction on κ, but simultaneously for all i below the j defined by κ. The notation
in this proof gets a bit fiddly, so to simplify things, we shall introduce some shorthand. Let π � πi,j . Let

C̃ � π0,ipCq X κi, and T̃ � Täκi. Let C̄ � π0,jpCq X κ and T̄ � Täκ. By a small abuse of notation, let the

Magidor forcing on C̄ be Pκ. Let p̄ � πppqäκ. Note that Pκi is the Magidor forcing on C̃.
As usual, we can think of p as a combination of two parts: a name 9s � p 9sλqλPC̃ for some stem of the

generic sequence we are adding, and another name 9X � p 9XλqλPC̃ for a sequence of measure 1 sets. We

know that p̄ is an end extension of p, so let’s extend this notation by writing 9sλ � πp 9sqpλq and 9Xλ for all
λ P C̄. Since πppq is an end extension, the two definitions of 9sλ and 9Xλ agree where they are both defined.
For clarity, we will avoid writing 9s to denote the overall sequence, instead writing s̄ to denote the sequence
9s � p 9sλqλPC̄ and s̃ for the sequence p 9sλqλPC̃ . We will define X̄ and X̃ likewise. Note that πppq consists of s̄

together with X̄. We know that s̃T̃ and X̃ T̃ both agree with T̃ ; we want to show that s̄T and X̄T agree with
T̄ .

Now s̃ has finite support which is bounded below κi, so πps̃q � s̄ differs from s̃ only by a trivial end
extension. So s̄ is forced by 1Pκ to be equal to s̃, and thus, s̄ agrees with T̃ and hence also T̄ in any generic
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extension whose filter contains (an end extension of) p. In particular, we know that T̄ itself contains many
end extensions of p, so s̄T̄ agrees with T̄ .

The more difficult task is showing that X̄ agrees with T . More precisely, we’re aiming to show that if
λ P C̄ (and so λ P Wβ say), then the measure 1 set p 9Xλq

Täλ contains all of the ω sequence Sλβ except for

any elements of p 9sλq
Täλ. This is given to us automatically if λ P C̃ by our assumption that p P T̃ . Also,

notice that κi R C̃ (since it’s not measurable in Mj). So the only case we actually need to check is where
κi   λ P C̄. Fix such a λ.

Recall that by Proposition 4.1.2, any measure 1 set 9Y G in a Pλ generic extension (by any generic G) will
contain the intersection of some measure 1 set Y in the ground model with the set

ΣGλ :� tν   λ : @κ P C̄ X λzν, pν � 1q XGκ � Hu

Decoding this for G � Täλ, we find that ν P ΣTäλλ if and only if ν   λ and ν is not in the interval

pminSδκ, κq for any κ   λ in C̄. So in particular, every term of Sβλ is in ΣTäλλ . We now need to show that Sβλ
is also contained in the relevant ground model measure 1 set in Mj .

Let κk be the first element of Sβλ ; and let l be least such that πk,lpκkq � λ. We know that the κk portion of

the condition πi,kppq contains a Päκk name 9X� for a measure 1 subset of κk. As we said above, in MkrTäκjs

there is some measure 1 subset Y of κk such that Y XΣTäκk
κk

� p 9X 1
λq
Täκk . Let q P Täκk be a condition which

decides which Y PMk this is.
Now, since λ P C̄ X κ, we know that λ   κ. And l is least such that πk,lpκjq � λ, and hence is least such

that κl ¥ λ. (We’ve already seen that κj will be sent through limit many critical points before reaching λ,
so certainly κl ¥ λ.) So by inductive hypothesis, πk,lpqq � πk,lpqqäλ P Täλ. By elementarity, πk,lpqq forces

that πk,lpY qXΣλ is a subset of πk,lp 9X
�q. And we saw during the proof of Lemma 4.1.7 that πk,lpY q contains

all the critical points of the iteration taking κk to λ, including all the elements of Sβλ . Finally, note that
κl ¡ λ (since λ P C̄ it can’t be a critical point) so πl,j acts as the identity below λ. So by elementarity,

πk,jpqq � πk,lpqq forces that πk,jpY q X Σλ � πk,lpY q X Σλ is a subset of πk,jp 9X
�q � 9Xλ. Since both πk,lpY q

and ΣTäλλ contain all of Sβλ it follows that Sβλ is contained in 9XTäλ
λ , as required.

This is what we were aiming to show, and implies that p̄pq agrees with Täκ.

Now, let D � P be a dense definable hyperclass over MOn. Let φpx⃗q be the formula defining it. By an
elementarity argument, we know that for large enough γ, φpx⃗q defines a hyperclass Dγ over Hγ , which is
dense in the Miγ analogue of P, i.e. Pκiγ

. Since Tκiγ is generic for Pκiγ
over Hγ , it must meet Diγ . So

let p P Tκ P Diγ . Then Hγ ( φpx⃗qppq. By elementarity, φpx⃗qpπi,Onppqq holds in the MK�� model with
set-domain MOn, so πi,Onppq P D. But Tκiγ � Täκiγ , so by the claim we just proved, πppq P TäOn � T .
So T meets every dense subhyperclass of P over the MK model extending MOn, and is therefore generic over
that model.

4.2.2 Proving the theorem

It should now be clear how we’re going to prove theorem 4.2.1. Starting with M0 � OMϵ, we perform the
iteration described in the previous section to get MOn, together with a collection of classes C over MOn which
make it a model of MK. We then take the hyperclass generic extension of this MK model with respect to the
generic sequence T , to get a model pMOnrT s, CrT sq. The last step, which we do in this section, is to show
that MOnrT s � LrRs.

First, let us make some easy observations. Abusing notation slightly, we shall write YT to denote the
collection of all terms in sequences in T , i.e. all µ such that pn, µq P Sλγ for some n, λ and γ.

Lemma 4.2.10. RzYT is finite.

Proof. Clearly, for any γ   ϵ, RγzYT will just consist of the top few elements of Regγ , above which there is
no element of Wγ . Since Wγ is defined as the class of ω limits of Rγ , there can only be finitely many of these.

Let X be the set of all γ   ϵ such that RγzYT � H. As we’ve seen, if this holds for some γ then Rγ has
a finite (but nonempty) final segment, and so contains a maximum element λγ .

If δ, γ P X and δ   γ, then λγ is a limit of elements of Rδ, and so λδ ¡ λγ . Hence, X must be finite, or
pλγqγPX would be an infinite decreasing sequence of ordinals.
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So RzYT �
�
γPSpRγzYT q is a finite union of finite sets, and hence finite.

Lemma 4.2.11. If M is any model of ZFC, the T definable sets over M are precisely the R definable sets
over M . Hence, if M is closed under T definability then it contains LrRs as a subclass, definable in any
language which includes T . Likewise, ifM is closed under R definability and containsMOn as an R- definable
subclass, then it also contains MOnrT s as an R-definable subclass.

Proof. R is simply YT together with a finite collection of extra ordinals, so any formula in terms of R can
easily be turned into one in terms of T . Conversely, in a model of ZFC there is a class function taking any set
S to the Cantor-Bendixson rank of its largest element. We can apply this class function to the R definable
set RX pκ� 1q to determine the Cantor-Bendixson rank of any κ P R, and thus calculate the classes Rγ for
γ   ϵ within M . Once we have done that, it is easy to make a formula to calculate where, if anywhere, a
given κ will appear in T , and thus turn any formula in terms of T into one in terms of R.

So we automatically know that LrRs is a T -definable subclass of MOnrT s, and to complete the theorem,
it suffices to show that MOn is an R-definable subclass of LrRs.

Lemma 4.2.12. MOn is an R-definable subclass of LrRs.

Proof. Recall that by definition, MOn � pJ
E
On, Eq � pLrEs, Eq, where E is the extender sequence of MOn. So

it suffices to show that LrRs can calculate E, i.e. that it can determine what the measurables of E are, and
which of the sets in MOn are measure 1. We can then carry out the usual recursive construction to calculate
LγrEs for all γ, and hence find MOn. Note that we do not need to devise an explicit test for whether a given
set is an element of MOn: it suffices to determine the properties of sets we already know to be in MOn.

The class of measurables of E is just π0,OnpCq �
�
γWγ �: W . This is clearly definable over LrRs.

Now we must find a way to express in LrRs the statement, for λ PW and X P LrRs,

“If X P LrEs then X is a measure 1 subset of λ.”

Of course, it is easy to express “X is a subset of λ”; the challenge is in the “measure 1” part. Suppose
that X P LrEs, and that (say) λ P Wγ . If X is measure 1, then by Theorem 4.1.65 and the fact that T is
generic in LrEs, we know X will contain all but finitely many terms of Sγλ .

On the other hand, if X � λ is not measure 1 but is an element of LrEs, then λzX will be measure 1
instead. So as we just saw, λzX will contain all but finitely many terms of Sγλ , and therefore X itself will
contain at most finitely many terms of Sγλ .

So if X P LrEs is a subset of λ, then X is measure 1 if and only if it contains all but finitely many terms
of Sγλ , which is a statement which can be expressed in LrRs. So LrRs knows what E looks like, and can
therefore calculate the whole of pLrEs, Eq �MOn.

Corollary 4.2.13. The domain of MOnrT s is precisely LrRs, and its extender sequence is R-definable over
LrRs.

This ends the proof of Theorem 4.0.3.

4.3 Friendly Machetes

We end this chapter with an existence result about O-Machetes. So far, we’ve been assuming we’ve already
found an O-Machete, and then used it to generate some structure LrRs. But maybe we could do the opposite:
we could start with some interesting LrSs type structure for some predicate S, and show that every nice
enough O-Machete must be an element of that model.

The predicate S we are going to look at is Regs, a natural choice when we want to find a mouse which
contains mice that we’ve just seen can generate LrRegs αs. Of course, it’s possible that Regs is almost empty
and doesn’t give us any useful information: for example, if there are no inaccessibles then Regs is effectively

5Invoking genericity of T and Ben Neria’s result is actually very much overkill for showing this simple fact. It can be proved
directly with an adjusted version of the second Claim in the proof of 4.1.7. But since we’ve proved genericity already, we might
as well save ourselves some time by making use of it.
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just Card. So we need to assume some largeness criterion for Regs. The condition we’ll be using is “Regs is
a stationary class”, which can also be expressed as “On is Mahlo”.

Assuming this condition, it turns out that every nice enough machete mouse will be in LrRegss.

4.3.1 Definitions

To state this properly, we must first introduce some new definitions so we can express “nice enough”. Im-
portantly, these definitions are not restricted to machete mice.

Definition 4.3.1. Let φpv0, . . . , vn�1q be a formula, and let α0, . . . , αn be ordinals. We say the tuple
xφ, α0, . . . , αny is upwards reflecting if for all weasels W , and for all sequences of ordinals pβγqγ δ above
maxtα0, . . . , αnu such that for all γ   δ,

HW
β�γ
( φpα0, . . . , αn, βγq

we have
HW
β� ( φpα0, . . . , αn, βq

where β � supγ βγ .

Essentially, this rather complicated looking statement is just asking that the statement associated with
OMφ be preserved by limits.

As a specific example, the formula associated with OMϵ (“There are unboundedly many measurables of
all ranks   ϵ below vn�1”) is upwards-reflecting: if for all γ, there are unboundedly many measurables of
ranks   ϵ below βγ then there will also be unboundedly many measurables of ranks   ϵ below β � supβγ .

Definition 4.3.2. Let α be an ordinal, and let M be a mouse. We say that M is α friendly if there exists
an upwards-reflecting formula φpv0, . . . , vn�1q and parameters α0, . . . , αn PM such that:

1. M is active, and has largest cardinal κ;

2. For all 0 ¤ i ¤ n, αi is below the least measurable of M and αi   α;

3. HM
κ� ( φpα0, . . . , αn, κq (so M is a candidate for OMφ);

4. There are at most boundedly many measurables λ of M below κ such that HM
λ� ( φpα0, . . . , αn, λq

M is hereditarily α friendly if it is α friendly, and for all active N  � M , N is α friendly.
We say that M is α friendly with respect to φ and α0, . . . , αn if this formula and parameters satisfy the

criteria above.

Of course, any machete mouse OMφ will be α friendly, provided that φ is Σ1 and its parameters are below
α. Condition 4 holds because there are no such measurables λ at all: if there were, then OMφ äλ  � M
would be a candidate for OMφ.

We saw earlier that for all ϵ, OMϵ � OMφ for a certain formula φ with parameter ϵ. It follows that if
ϵ   α then OMϵ is α friendly.

Proposition 4.3.3. In fact, OMϵ is hereditarily α friendly for ϵ   α.

Proof. Let N  � OMϵ be active. Let δ be the Cantor Bendixson rank of the largest measurable κ of N . We
know that δ   ϵ   α.

N believes that there are only boundedly many measurables below κ which are rank δ. So it is friendly,
with φpδ, vq saying “There are unboundedly many measurables of all ranks   δ below v”.

There is another property which we will need to state the theorem, and it looks a bit technical.

Definition 4.3.4. Let M0 be some mouse, and let I be an iteration of M0 of length On�1. As usual, let
κi denote the i’th critical point of I, and let Mi be the i’th mouse of the iteration.

We say that I is tidy if there exist cardinals λ P Card and µ P Reg such that if κ ¡ λ is strongly
inaccessible in MOn, one of the following holds:
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1. κ is measurable in MOn

2. κ � κi for some i   On (meaning κ used to be measurable earlier in the iteration, but was used as a
critical point)

3. CofV pκq � µ

We say that a mouse M is tidy if every class length iteration I of M is tidy. We say that M is hereditarily
tidy if it is tidy and every active mouse N ¤� M is tidy.

Although this seems like a very specific condition, it’s actually extremely common. It turns out that with
the definition of a mouse we gave in Chapter 3, almost every mouse is tidy automatically, provided that
ρω drops below the first measurable. (This is also true for any mouse whose consistency strength is below
that of a strong cardinal, even if it has multiple measures on the same cardinal.) The proof is an expansion
of [46, 6.3].

Lemma 4.3.5. Let M0 be a mouse, and let I � xMi, πi,jyi θ�1 be a set-length simple iteration with no
drops in degree, whose iteration takes place above ρω.

Let n   ω be the unique natural number such that ρMi
n�1 ¤ κi   ρMi

n for all i   θ. If κ is strongly

inaccessible in Mθ, and ρ
Mθ
n�1   κ   ρMθ

n , then one of the following holds:

1. κ is measurable in Mθ

2. κ � κi for some i   θ

3. CofV pκq � CofV pρM0
n q

4. κ is below the supremum of the critical points of the iteration from the core of M0 to M0 itself.

Proof. First, some easy results from [47]. Let 0 ¤ i ¤ j ¤ θ. By Lemma 3.3.1, the map πi,j is Σ
pnq
1 preserving

and cofinal, and by Proposition 3.3.2, ρMi
n�1 � ρ

Mj

n�1.
We can’t say the same about ρn, which can increase as we do the iteration. But its cofinality in V remains

constant.

Claim 4.3.6. [46, 6.3] There is a Σ
pnq
1 formula with a single parameter, which defines, over any Mi for

i   θ, a cofinal sequence below ρMi
n in Mi whose order type does not depend on i and is ¤ ρM0

n�1.

Hence, CofV pρMi
n q does not depend on i.

Proof. Let M̄ be the n’th core of M . Let K : M̄ Ñ M0 be the corresponding iteration, with iteration map
τ : M̄ ÑM0.

Since M̄ is n sound, we can map ρn�1 onto M̄n,pän in a Σ1ppq way (where p is the n � 1’th standard

parameter of M̄). In particular, this gives us a Σ
pnq
1 definable partial map f0 : ρM̄n�1 Ñ ρM̄n , with parameter p,

whose range is cofinal below ρM0
n . By preservation of Σ

pnq
1 formulae (or just by the fact that π0,i is cofinal) we

know that for all i ¤ θ, the same formula (with parameter π0,ipτppqq) defines a partial map fi : ρMi
n�1 Ñ ρMi

n

whose range is cofinal below ρMi
n . But π0,ipτpρ

M̄
n�1qq � ρM̄n�1 � ρMi

n�1. So the domains of f0 and fi are the
same, and hence the order types of their ranges are the same.

Let µ denote the fixed order type of this sequence. Note that CofV pµq � CofV pρM0
n q.

Now, we prove the result by induction on the length θ� 1 of I. Assume it holds for all shorter iterations,
and in particular the lemma holds with Mi in place of Mθ for any i   θ.

Fix some κ P pρM0
n�1, ρ

Mθ
n q strongly inaccessible in Mθ, and large enough that the fourth condition fails.

Let λθ � suptκi : i   θu. We will divide into three cases. Case 1: κ   λθ. Then for some i   θ, we have
κ   κi. In particular (since κi   ρMi

n for all i) this means that κ   ρMi
n . Since πi,θpκq � κ we know that κ

is strongly inaccessible in Mi. So by inductive hypothesis, we know that either κ is measurable in Mi (and
hence also in Mθ) or it was a critical point κj for some j   i, or its V cofinality is µ. So we’re done.

Case 2: κ ¡ λθ. We’ll start by introducing some more notation. Let p be the n’th standard parameter

of M̃ , let pn � pzρM̃n , and let qn � pX ρM̃n zρ
M0
n�1. Let π̃ : M̃ Ñ M0 be the ultrapower map given by J . Let
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p0n � π̃ppnq and q0n � π̃pqnq, and let pθn � π0,θpp
0
nq and qθn � π0,θpq

0
nq. Finally, let K be the set of critical

points of J .
We prove the following claim, which will also be useful in proving Case 3.

Claim 4.3.7. Suppose that κ1 ¡ λθ is any regular cardinal of Mθ below ρMθ
n , but above the supremum of the

critical points of J . Then there is a (fixed) Σ1 formula, with parameters θ, κ1, tκj : j   θu, ρMθ
n�1 � ρM0

n�1, K,

qθn, and the parameter from the previous claim, which defines in M
n,pθn
θ a sequence pβθkqk µ which is cofinal

below κ1.

Proof. Let pαiqi µ be the cofinal µ sequence below ρMθ
n given by the previous claim. Let us write M̄ to

denote M
n,pθn
θ .

We know M̃ is sound (since it’s the core of M0) so p P P M̃n � RM̃n . Hence, pM̃qn,pn is the Σ1 Skolem hull

of ρM̃n�1 Y tqnu. By Theorem 3.3.3, applied to the iteration that combines I and J , any element of M̄ can
be expressed in terms of a function f P Mn,pn and a tuple of elements of tκj : j   θu YK. So M̄ is the Σ1

Skolem hull of
S :� tκj : j   θu YK Y π̃pρM̃n�1q Y tqnu

in M̄ itself.
For i   µ, let βi :� supκ1XhM̄äαipSq. Now, M̄äαi and hM̄äαipSq are elements of M̄ , and S has cardinality

less than κ1. And κ1 is regular from the perspective of Mθ and hence the perspective of M̄ . So we know that
βi   κ1. On the other hand,

supβi � sup
i µ

supκ1 X hM̄äαipSq

� supκX
¤
i µ

hM̄äαipSq

� supκX hYM̄äαipSq

� supκX hM̄ pSq

� supκX M̄

� κ

The claim immediately finishes case 2 by showing CofV pκq � CofV pµq.
Case 3: κ � λθ. If θ is a successor ordinal i� 1, then λθ � κi, and so we’re done immediately. Suppose

that θ is a limit ordinal. For all large enough j   θ, we can find σj P Mj such that πj,θpσjq � κ. By
elementarity, we know that Mj ( “σj is inaccessible”. Also, since πj,θpσjq � κ � λθ ¡ κj we know that
σj ¥ κj . If σj � κj then πj,θpκjq is measurable in Mθ and we’re done. So suppose that σj ¡ κj for all j. In

particular, this means that σj ¡ suptκi : i   ju. By Proposition 3.3.2, we know that σj   ρ
Mj
n as well. And

a tail of the σj are above all the critical points of J . So we can apply the claim from Case 2 with j in place

of θ, and σj in place of κ. This gives us a (canonically defined) sequence pβji qi µ of ordinals, cofinal below
σj .

Since every sequence pβji q (j   θ) is defined using the same Σ
pnq
1 formula, elementarity tells us that for

j1   j2   θ and i   µ,
πj1,j2pβ

j1
i q � βj2i

All the sequences are also the same length µ. So if for i   µ we define, for some suitably large j   θ,

βi :� πj,θpβ
j
i q

then the value of βi does not depend on our choice of j, and by elementarity the sequence pβiqi µ is
cofinal below πj,θpσjq � κ.

Corollary 4.3.8. If M0 is a mouse, and ρM0
ω is below the smallest measurable of M0, then M0 is tidy.
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Proof. Let M̃ be the core of M0, and let J be the iteration from M̃ to M0. Let λ0 be the supremum of its
critical points.

Let I be an iteration of M0 of length On�1. We know that I contains only finitely many cut-downs (by
definition of an iteration). After the final cut-down, there can only be finitely many drops in degree (since
each one indicates a move from ρn to ρm for some m   n, and there’s no way to reverse this move).

Let i be beyond all the cut-downs and drops in degree, and let n   ω be such that ρMi
n�1 ¤ κi   ρMi

n . Let

λ � maxpκi, λ0q � 1 and let µ � CofV pρMi
n q.

Applying the definition of tidiness, let κ ¡ λ be inaccessible in MOn. Let On ¡ θ ¡ i be large enough
that κθ ¡ κ, and therefore πθ,Onpκq � κ. By elementarity, κ is inaccessible in Mθ. Apply the previous lemma
to the iteration Mi ÑMθ. This iteration is simple and has no drops. We know that

ρMθ
n�1 � ρMi

n�1   λ   κ   κθ   ρMθ
n

So the lemma tells us that one of the following holds:

1. κ is measurable in Mθ

2. κ � κj for some j   θ

3. CofV pκq � CofV pρMi
n q �: µ

This is exactly what we need to show that I is tidy. Since I was arbitrary, M0 is tidy.

4.3.2 Finding Friendly Machetes

We are now ready to state and prove the final result of this chapter.

Theorem 4.3.9. Suppose that On is Mahlo; i.e., that Regs is stationary. Let α be the least measurable in
the core model of LrRegss.6 Let OMφ,α0,...,αn be a hereditarily α friendly, hereditarily tidy machete mouse,
which is friendly with respect to φ and α0, . . . , αn. Then OMφ P LrRegss.

Proof. Suppose this is false for a given OMφ. Let K be the core of V , and let K 1 be the core of LrRegss. By
Theorem 3.3.18 we know that K is a universal weasel, so OMφ  � K.

Claim 4.3.10. K 1  � OMφ

Proof. Of course OMφ �� K 1 as OMφ is a mouse and K 1 is a weasel. Suppose OMφ  � K 1. We will show that
this implies OMφ P K 1, a contradiction. We immediately know that some (not necessarily simple) iterate Nθ
of K 1 contains some simple iterate Mθ of OMφ as an initial segment (not necessarily proper).

Let π : OMφ Ñ Mθ and τ : K 1 Ñ Nθ be the corresponding embeddings. Recall from Proposition 4.0.6
that ρO

Mφ

1 is at most the largest parameter of φ, and so by definition of a machete, it is below the least
measurable of OMφ.

Let p be the first standard parameter of OMφ. Then Ap � ω�ρO
Mφ

1 , so π sends Ap to itself. In particular

then, pApqO
Mφ

P Mθ � Nθ. Since, again, ρO
Mφ

1 is at most the largest parameter of the φ, by α friendliness

it follows that ρO
Mφ

1   α, the least measurable of K 1. So τ acts as the identity on subsets of ω � ρO
Mφ

1 , and
hence Ap P K 1.

But we can now use Ap to define, in K 1, a structure that is isomorphic to M0. It will be well-founded,
and its transitive collapse, which is M0 itself, will also be an element of K 1. So OMφ P K 1, which contradicts
our assumption that OMφ R LrRegss.

So K 1  � OMφ  � K. Now (abandoning the notation in the preceding claim), for the rest of this
proof, let M0 � K 1, let N0 � K, and let pI,J q be the coiteration of M0 and N0. As usual, let us say
that I � xMi, πi,jyi¤j¤On and J � xNi, τi,jyi¤j¤On. Since M0  

� N0 and N0 is a weasel, we know that
J is class-length. I is also class length (and simple) but doesn’t iterate any measurables up to On: every
measurable gets left behind after a set-long iteration. (Recall that by definition this will always be true for
the  � side of the coiteration.) We also know that MOn � NOn: since MOn is class sized, it can’t be a proper

6If the core contains no measurables then we say α � 8.
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initial segment of NOn. (Recall that NOn isn’t the direct limit model of the system xNiy, it’s the cut-down
of that direct limit model of On.)

It’s possible that the N side of the coiteration pushes some ordinals all the way up above On, where they
disappear in the jump to NOn. (In fact, we know that it pushes at least one measurable up onto On: see
below.) These ordinals play no actual role in the proof, and make certain concepts we need rather fiddly to
express. So to tidy things up, we’ll start by rearranging the N side of the coiteration to get rid of them by
doing a suitable cut-down earlier on.

Claim 4.3.11. There is some i and some ordinal ν P Ni such that the class-length iteration J̄ � xN̄j , τ̄j0,j1y
defined by

N̄j �

#
Nj j ¤ i

Njäτ̄i,jpνq j ¡ i

is well defined and satisfies N̄On � NOn. Moreover, we can choose i and ν such that for all j ¡ i, all the
cardinals of N̄j other than its top one are in the domain of τ̄j,On.

Proof. We know the direct limit model N � limxNjyj On contains an “ordinal” of order type On. For any
large enough i, we can find some ν P Ni which is sent to that “ordinal” of N . It is easy to see that i and ν
then have the required properties.

Fix i, ν and J̄ as given in the previous claim. Note that J̄ has no cut-downs after stage i (because all
the cardinals of N̄j , j ¡ i are in the domain of πj,On).

Claim 4.3.12. N̄i�1 ¤
� OMφ

Proof. Recall that N̄On  
� N̄i�1, and that N̄i�1 is an active mouse.

Suppose first OMφ  � N̄On. Then since N̄On � NOn � MOn is a set-long simple iterate of K 1, we know
OMφ  � K 1. But we saw earlier that K 1  � OMφ.

Next, suppose that N̄On  
� OMφ  � N̄i�1. (Obviously N̄On �

� OMφ as the former is a weasel and the
latter a mouse.) Coiterate OMφ and N̄i�1. The OMφ side of the coiteration is simple, so its result M̃ satisfies
M̃ ¡� N̄On. Coiterating M̃ with N̄On, we get a class-long iteration of M̃ whose final model is some simple
set-long iterate of N̄On. But M̃ itself is an initial segment of some iterate of N̄i�1, and either the initial
segment is proper or the iteration wasn’t simple. So this gives us a iteration of N̄i which involves at least
one cut-down, and produces a simple set-long iterate of N̄On. This is, by definition, one half of a coiteration
of N̄i�1 with N̄On. But the iteration N̄i�1 Ñ N̄On is also (the nontrivial half of) a coiteration of these two
objects, and it is simple. So there are two different coiterations of N̄i�1 with N̄On, contradicting uniqueness
of coiterations.

The only remaining possibility is that N̄i�1 ¤
� OMφ as claimed.

If N̄i�1  
� OMφ then (since N̄i�1 has a top measure ν� :� τi,i�1pνq and OMφ is hereditarily α friendly)

we know that N̄i�1 is α friendly. So there exists an upwards-preserving formula ψpv0, . . . , vm�1q and ordinals
α10, . . . , α

1
m below α and below all the measurables of N̄i�1 such that

H
N̄i�1

pν�q� ( ψpα10, . . . , α
1
m, ν

�q

but such that N̄i�1 contains only boundedly many smaller measurables λ   ν� such that

H
N̄i�1

λ�
( ψpα10, . . . , α

1
m, λq

Trivially, this is also true if N̄i�1 �
� OMφ: we can take ψ :� φ and α1k :� αk for all k ¤ n. Indeed, in

this case there are no λ   ν� at all satisfying the above equation.
In either case, fix some ψ and α10, . . . , α

1
m as described. By elementarity, N̄On � NOn contains only

boundedly many measurables λ such that

HN̄On

λ�
( ψpα10, . . . , α

1
m, λq
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This equation is a bit of a mouthful to keep writing all the time, so we’ll informally say that “λ believes
ψ in M” to mean that

HM
λ� ( ψpα10, . . . , α

1
m, λq

Let us now fix some j P On which is large enough that I and J have already done everything interesting
by stage j:

1. j ¡ i;

2. j P On zN̄i�1;

3. j is larger than the λ given in Definition 4.3.4 for the iteration N̄i�1 Ñ N̄On � NOn (which holds for
N̄i�1 since OMφ is hereditarily tidy);

4. There is a K 1 admissible ordinal in the interval pi, jq, and j is more than the cardinality of its powerset;
and

5. N̄On � NOn �MOn contains no measurables λ ¡ j such that λ believes ψ in MOn

Let us also choose j to be strongly inaccessible in V .
The final item means (by elementarity and the fact that πpjq ¥ j) that M0 � K 1 also contains no

measurables λ ¡ j such that

HN̄On

λ�
( ψpα10, . . . , α

1
m, λq

Our goal for this proof is to derive a contradiction, by finding such a measurable of K 1.
From Definition 4.3.4 and condition 3 above, we know that there is some µ P RegV such that if κ ¡ j is

strongly inaccessible in NOn, then one of the following holds.

1. κ is measurable in NOn

2. κ � κh for some i   h   On

3. CofV pκq � µ

We shall now use this to show that K 1 can almost calculate the critical points of the iteration N̄j Ñ NOn

at which we iterate the top measure. But only “almost”: the test we use misses some of the critical points,
and in fact, it may miss quite a lot of them.

Definition 4.3.13. Let us call an ordinal β useful if:

1. β ¡ κj (and hence β ¡ j);

2. ψpα10, . . . , α
1
m, βq holds in HK1

β� ;

3. β P Regs

Claim 4.3.14. Let β P On be useful. Then β is a fixed point of the iteration M0 Ñ MOn, and a nontrivial
critical point κh of the iteration N̄j Ñ NOn, for some j   h   On. Moreover, β is the top measurable of N̄h.

Proof. Let k be least such that κk ¥ β. Since β really is strongly inaccessible in V , we know it’s a fixed point
of π0,k by Lemma 3.2.42. Also, since β ¡ j and believes ψ in M0 � K 1, we know that β can’t be measurable
in M0, and hence can’t be measurable in Mk either. So either κk ¡ β, or κk � β is trivial on the M side of
the coiteration; and hence β is a fixed point of π0,On.

So β believes ψ in MOn � NOn. Now β is also strongly inaccessible in NOn (and indeed in V ) so one of
the following holds:

1. β is measurable in NOn;

2. β � κh for some nontrivial i   h   On; or
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3. CofV pβq � µ

We know that β isn’t measurable in NOn since it wasn’t measurable in M0. We also know that β P Regs,
so CofV pβq � β ¡ µ. So by process of elimination, β is a critical point of the iteration N̄i�1 Ñ NOn, say
β � κh. It remains to show that β � κh is the top measure of N̄h. But since β is the critical point κh, we
know

HN̄h

β�
� HNOn

β�
( ψpα10, . . . , α

1
m, βq

By elementarity between NOn and N̄h, we know that N̄h doesn’t contain any measurables λ ¡ j which
believe ψ in N̄h, other than its top measurable (which is sent up to On). So β must be the top measurable
of N̄h.

Of course, not every such critical point will be useful: there will be lots of times we iterated the top
measure but weren’t on a strong inaccessible of V , for example. But we can still say that a lot of them will
be useful.

Claim 4.3.15. There are unboundedly many useful ordinals.

Proof. In the iteration N̄i�1 Ñ NOn we iterate the top measure unboundedly often. Hence, in NOn � MOn

there are unboundedly many ordinals λ which believe ψ. (Recall that friendliness merely tells us that there
are only boundedly many measurables which believe ψ.)

By elementarity, there are also unboundedly many ordinals λ which believe ψ in M0 � K 1. Since ψ is
upwards reflecting there are actually a club of these ordinals. But we’re assuming Regs is stationary in V , so
there are unboundedly many ordinals λ P Regs which believe ψ in K 1. Hence there are unboundedly many
useful ordinals.

“β is a useful ordinal” can be expressed as a statement about K 1, β and Regs, so LrRegss can identify
the class of all useful ordinals. For γ P On let βγ be the γ’th useful ordinal. Let C be the club of all limits
of useful ordinals, and (again exploiting the fact that Regs is a club) let β P C X Regs. Then (since β is
inaccessible) we know β � supγ β βγ . Since ψ is upwards reflecting and for all γ   β, usefulness tells us
that βγ believes ψ in K 1, it follows immediately that β also believes ψ in K 1. Hence, β is itself useful. (We
could, rather repetitively, write β � ββ .) Also, we’ll have our desired contradiction if we can show that β is
measurable in K 1.

Now, by the claim before last, we know that β and each βγ is a fixed point of π0,On:

π0,Onpβγq � βγ

π0,Onpβq � β

The same claim also tells us that for all γ, βγ is a nontrivial critical point κhγ
of the iteration N̄j Ñ NOn,

and moreover that κhγ
is the top measure of N̄hγ

. So in particular, since the iteration N̄i�1 Ñ NOn is simple,
we know that for δ   γ   β,

τ̄hδ,hγ pβδq � βγ

So if h :� supthγ : γ   ω1u then τ̄hγ ,hpβγq � β is the top measure of N̄h. Since stage h is a limit of stages
where we iterated the top measure, the critical point κh must be the top measure of N̄h; ie. β � κh.7

Claim 4.3.16. A subset X P N̄h of β is measure 1 if and only if it contains a tail of the sequence pβγqγ β.
Hence, K 1 can identify whether a subset of β in N̄h XK

1 is measure 1 or not.

8

7It might seem like we’re making a mountain out of a molehill with this proof. Can’t we just use the fact that β is useful to
conclude immediately that it’s a top-measure critical point? But doing it this way tells us that it’s specifically the critical point
at stage h � supthγ : γ   βu.

8Note the similarities between this claim and the proof of Lemma 4.2.12. The only change is that we’re now dealing with a
β sequence of critical points, whereas back there it was just an ω sequence. This makes no difference to the underlying proof,
but it means we can’t use the same shortcut we did in that lemma.
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Proof. Suppose that X is measure 1. Let f P N̄j and i0   . . .   in   h be such that X � τ̄j,hpfqpκi0 , . . . , κinq.
Let γ   β be large enough that hγ ¡ in, so βγ ¡ κin . Now we know τ̄hγ ,hpβγq � β so by elementarity,
Xγ :� τ̄j,hγ�1pfqpκi0 , . . . , κinq is a measure 1 subset of τ̄hγ ,hγ�1pβγq. So by Proposition 3.1.11, βγ P Xγ . But
then

βγ � τhγ�1,hpβγq P τhγ�1,hpXγq � X

So X contains βγ for all sufficiently large γ   β.
On the other hand, if X � β is not measure 1, then βzX is measure 1 instead. So βzX contains a tail of

the βγ , and therefore X does not contain such a tail.

Since β has the same subsets in N̄h and NOn �MOn we know that the normal measure Fh on β in N̄h is
also a normal measure on β in MOn. (Of course, β isn’t actually measurable in MOn, but that’s because it
doesn’t know about Fh, not because something has changed about the subsets of β.)

So the pull-back U of Fh to M0, defined by

X P U ðñ X PM0 ^X � β ^ π0,OnpXq P Fh

is a normal measure on β � π�1
0,Onpβq over M0 � K 1. So we’ve found our normal measure. But we need

to show that U is in the extender sequence of K 1.
By the preceding claims, we know for X P K 1 that

X P U ðñ X � β ^ π0,OnpXq P Fh

ðñ X � β ^ π0,OnpXq contains a tail of pβγqγ β

ðñ X � β ^ Dα   β @γ P pα, βqβγ P π0,OnpXq

ðñ X � β ^ Dα   β @γ P pα, βqπ0,Onpβγq P π0,OnpXq

ðñ X � β ^ Dα   β @γ P pα, βqβγ P X

This final line can be expressed within LrRegss, so U P LrRegss.
Now, note that within LrRegss (or indeed V ) β is regular, so U is ω complete. Hence, by Lemma 3.3.17

we know U will appear on the extender sequence of K 1.
So β ¡ j is now a measurable of K 1 such that

HK1

β� ( ψpα10, . . . , α
1
mq

But there were supposed to be no such β ¡ j. Contradiction!

4.4 Open Questions

In this final section, we suggest some extensions of these results, which are beyond the scope of this thesis
but would be interesting to prove.

Perhaps the most interesting of these relates to Theorem 4.0.3.

Question 12. Assuming the existence of complex enough mice, can we prove that LrRegs is a generic
extension of an iterate of a certain mouse?

The natural mouse to start from would probably be O-Sword. This is the smallest mouse which has two
measures on its largest cardinal. (This means that it doesn’t fit into the scheme of mice that we’ve defined in
this thesis.) It is also the smallest mouse which has measure 1 many measurables below that largest cardinal.
This means that any iterate of O-Sword will have lots of measurables of all Cantox-Bendixson ranks, so it
seems likely that we can line them up onto the ω limits of subclasses of Reg in the same way we did for Regϵ
in Lemma 4.2.2.

However, there’s one important hurdle to overcome with this approach. We need to partition Reg into
ω sequences, in such a way that knowing all the ω sequences is equivalent to knowing Reg itself. A simple
Cantor-Bendixson partition will no longer work: Lemma 4.2.2 will fail at hyperinaccessibles. (This is one

93



reason why we have to assume there are only finitely many elements of R below ϵ in Theorem 4.2.1: it makes
sure there are only finitely many “R-hyperinaccessibles”.) And other natural ways to divide up Reg by, say,
quarantining the hyperinaccessibles in new ω sequences, tend to use information that can’t be calculated
from Reg alone.

There are also interesting questions to be answered about the more general class of OMφ mice. Firstly,
recall that we only defined OMφ if the “least α sound” mouse which believes φ is actually sound. (We put
this in quotes because the concept of a least α sound mouse hasn’t really been defined.) This was necessary
for the definition to make sense, since otherwise either we define OMφ to be a mouse which isn’t sound (and
then φ might not be preserved across �� mice) or we define OMφ to be the least sound mouse believing φ
and lose minimality.

Question 13. For which φ and parameters α0, . . . , αn is it consistent that OMφ exists? Of those, for which
will OMφ always exist if there exists any mouse that believes φ?

We saw in Proposition 4.0.2 that (assuming large mice can exist) both of these are true for OMϵ, for any
ϵ. So there are definitely nontrivial choices of φ and α0, . . . , αn for which the question is answered positively.
On the other hand, the answer is not always yes, even when mice exist that believe φ: see Example 1.

Other questions can be asked about the theorem in the previous section, and the axioms leading up to it.

Question 14. Which mice are α friendly? Which mice are tidy?

Again, this is nontrivial. We know that OMϵ is α friendly for ϵ   α. We know that a mouse is tidy if ρω
is below the least measurable. And we know this is true for any actual OMφ (by Proposition 4.0.6). But can
we show that it’s true for all mice below OMφ too?

Finally, it would be interesting to examine the role of the upwards-reflecting property in the proof of
Theorem 4.3.9. It’s used in only two places, and in both of them it seems plausible that it could be removed.

Question 15. Can we prove Theorem 4.3.9 if we drop the requirement (in the definition of α-friendliness)
for the formula to be upwards-reflecting?

The first place the upwards-reflecting property came up when we were showing that there are unboundedly
many useful ordinals. We showed that in MOn there are unboundedly many ordinals which believe ψ; so
there are also unboundedly many in M0. Since ψ is upwards-reflecting this means that there’s a club of such
points, and so there are examples of them which are in Regs.

But actually, even if ψ were not upwards-reflecting, we know that the class of all ordinals in MOn which
believe ψ contains a club: namely, all the critical points of J where we iterated the top measure. If we could
somehow transfer this property down to M0 then we’d be home and dry: we could find elements of that club
which are in Regs and we’d be done. This is nontrivial, however, because the club is not necessarily definable
in MOn so we can’t just invoke elementarity.

If this can be solved, it is likely that the only other point we use upwards-reflection – showing that a
limit of useful ordinals which is in Regs is useful – could also be handled in a similar way, since every useful
ordinal is a top measure critical point of J .

94



Chapter 5

Lowenheim-Skolem-Tarski Numbers

In this final chapter, we shall examine a question about logics that sit between first and second order. The
Löwenheim-Skolem theorem famously says that for any first-order language L, any first order L structure
contains an elementary substructure of size less than maxp|L|, ω1q. The concept of the Löwenheim-Skolem-
Tarski number generalises this to simple second order logics. The LST number of a second-order logic is the
smallest cardinal κ such that every structure contains a substructure of size less than κ.

In [29], Magidor and Väänänen investigate LST numbers for two syntactical quantifiers: the Härtig
quantifier I and the equal cofinality quantifier Qe.c.. Roughly speaking, we can think of I as telling us about
the class Card of all cardinals (or, equivalently, about the class Reg0 of all successor cardinals), while Qe.c.

tells us about the class Reg of all (infinite) regular cardinals. They prove an exact lower bound for both
LSTpIq and LSTpI,Qe.c.q.

We shall introduce two schemes of analogous quantifiers Qϵ and Rϵ, which both tell us about Reg ϵ. We
will then investigate what results about their LST numbers can be proved in ZFC, in the process justifying
our choice of those particular quantifiers. Finally, we will derive lower bounds for LSTpI,Qϵq and LSTpI,Rϵq,
and – as the main result of this chapter – prove that these lower bounds are exact (assuming the consistency
of supercompacts).

5.1 Preliminaries

We open with some definitions. The logics we will be looking at are first order, but expanded with some extra
quantifier symbols. These “quantifiers” are so-named because they hold the same positions in a formula that
the standard quantifiers @ and D do, and both @ and D can be understood as particular syntactic quantifiers.

Definition 5.1.1. A quantifier is a formal symbol Q, which is equipped with an arity n P ω and a number
m P ω, called the number of variables it quantifies over.

Definition 5.1.2. Let L be a first order language, and let Q be an n-ary quantifier over m variables. The
language LY tQu consists of the following formulas:

� Atomic formulas of L

�  φ and φ ùñ ψ, whenever φ and ψ are formulas

� @vpφq where v is any variable and φ is a formula

� Qv1, . . . , vmpφ1, . . . , φnq where v1, . . . , vm are any variables (not necessarily distinct) and φ1, . . . , φn
are formulas

If Q1, . . . , Qk are quantifiers then the language LY tQ1, . . . , Qnu is defined similarly.

We are specifically interested in quantifiers which (like @ and D) have a single canonical interpretation.
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Definition 5.1.3. A predefined quantifier is an n-ary quantifier symbol Q in m variables (for some n and
m), together with a fixed rule of how to interpret Qv1, . . . , vmpφ1, . . . , φnq, for any second-order formulas
φ1, . . . , φn in any language L including Q, over any L structure A and assignment of variable symbols to
elements of A. Usually, this guideline will be expressed in a recursive manner, with the interpretation of
Qv1, . . . , vmpφ1, . . . , φnq dependent on the interpretations of φ1, . . . , φn.

The details of how we formalise this concept are left to the reader: there are several different options, all
of which are fiddly to write down formally. See [7] for one method.

A trivial example might make the idea here clearer.

Example 2. @ is a predefined 1-ary quantifier, which quantifies over one variable. @v1φ is true (for a given
φ � φpv1q, A and assignment) if and only if for all x P A, φpxq is interpreted as true. Similarly, D is also a
predefined 1-ary quantifier, which again quantifies over one variable.

There are two well-known quantifiers we are interested in, each with this predefined property.

Definition 5.1.4. The Härtig quantifier I is 2-ary, and quantifies over two variables. Iv1, v2pφ,ψq is inter-
preted as true (in a structure A over which we can interpret φ and ψ, and have defined an assignment for
variable symbols) if and only if the two sets

X :� tx P A : A ( φrx{v1su

and
Y :� tx P A : A ( ψrx{v2su

have the same cardinality in V .

Definition 5.1.5. The Equal Cofinality quantifierQe.c. is 2-ary, and quantifies over 4 variables. Qe.c.v1, . . . , v4pφ,ψq
is interpreted as true (over A, etc.) if the two sets

X :� tpx, yq : A ( φrx{v1, y{v2su

and
Y :� tpx, yq : A ( ψrx{v3, y{v4su

are both linear orders, and have the same cofinality.

Intuitively, we can think of I as telling us about Card and Qe.c. telling us about Reg.
Throughout this chapter, we will simplify notation by committing a slight abuse: if the free variables of a

formula Qv1, . . . , vkφ1, . . . , φn are, say, some subset of vm�1, . . . , vm�k and y1, . . . , yk are a tuple of elements
of some structure A, we will write

A ( Qpφ1, . . . , φn, y1, . . . , ykq

to denote the statement

Qv1, . . . , vmpφ1, . . . , φnq is interpreted as true over A with the assignment of yi to vm�i for
0   i ¤ k.

We will also use the same notation if instead of v1, . . . , vm and vm�1, . . . , vm�k, we are quantifying over
some (otherwise unused) variables vi1 , . . . , vim and assign the variables vj1 , . . . , vjk .

The final standard concept to define is the LST number.

Definition 5.1.6. Let Q0, . . . , Qn be predefined quantifier symbols of second order logic. The Löwenheim-
Skolem-Tarski number LSTpQ0, . . . , Qnq of Q0, . . . , Qn is the least infinite cardinal κ such that the following
holds: For every first order language L whose vocabulary has cardinality less than κ, for every L structure
A, there is an LY tQ0, . . . , Qnu elementary substructure B ¤ A of size less than κ.

If no such κ exists, then we say that LSTpQ0, . . . , Qnq � 8 or that it does not exist.
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[29] appears to define the LST number in a slightly different way: they start by (implicitly) fixing a
particular first order language L and then only discuss L structures. However, it is easy to check that the
results we will be looking at still apply in this general setting. (In fact, the formulation in [29] has a minor
error, in that they do not specify a limit on the size of the language L in their theorems about its LST
number. The formulation given here bypasses this issue.)

It was shown in [29] that LSTpIq can be the least inaccessible (but not less than that) and that LSTpI,Qe.c.q
can be the least Mahlo cardinal (but again, no less):

Theorem 5.1.7 (Magidor,Väänänen). [29, Theorems 7, 20 & 21] If it exists, then LSTpIq is at least the
first inaccessible cardinal. Similarly, LSTpI,Qe.c.q is at least the first Mahlo cardinal, if it exists. Moreover,
if it is consistent that a supercompact cardinal exists then it is also consistent that either one of these LST
numbers is exactly equal to the bound given.

5.2 The New Quantifiers

As we discussed in the introduction, in this chapter we are looking at LST numbers for quantifiers analogous
to I and Qe.c., which tell us about Reg ϵ. It is now time to define the quantifiers we’re going to be looking
at. The first is similar to Qe.c.. However, in order to restrict it to Reg ϵ in a natural way, we add an extra
requirement: as well as requiring that the two linear orders have the same cofinality, we ask for an auxiliary
set deciding the Cantor-Bendixson rank of that cofinality.

Definition 5.2.1. Let ϵ P On or ϵ � On. The quantifier Qϵ is 3-ary, and quantifies over six variables.
Qϵv1, . . . , v6pφ,ψ, χq is interpreted as true (over A, etc.) if the three sets

X :� tpx, yq : A ( φrx{v1, y{v2su

Y :� tpx, yq : A ( ψrx{v3, y{v4su

Z :� tpx, yq : A ( χrx{v5, y{v6su

satisfy the following four conditions.

1. X and Y are both linear orders with the same V cofinality

2. Z is a well order

3. The order type of Z is less than ϵ

4. The equal cofinality of X and Y is an element of Rego.t.pZq

These extra requirements on Z mean that for δ ¤ ϵ ¤ On, we can naturally define Qδ from Qϵ and δ. We
simply have to restrict Qϵ to those cases where the third argument of the quantifier defines a set with order
type less than δ. This is something which can be defined universally over any L structure A which knows
even basic set theory and contains all the ordinals below δ. By converse, if we had attempted to define a
quantifier which simply restricted the domain of Qe.c. without using the auxiliary set, then we would have to
produce a complicated definition – inside A – of the Cantor-Bendixson rank of a definable class.

Note that QOn is effectively Qe.c., but with this auxiliary set requirement.1 Fortunately, it turns out that
the extra requirement is unimportant when studying LST numbers:

Theorem 5.2.2. LSTpI,QOnq � LSTpI,Qe.c.q

1There’s one small difference: QOn never tells us that two linear orders have the same cofinality if they happen to both have
cofinality ω. But in a moderately rich L structure, that’s not a problem: we can discover whether the linear order has cofinality
ω by comparing it to itself using QOn with different auxiliary sets Z. If QOn is never true, whatever auxiliary set we use, then
we know that the order has cofinality ω. And of course any two orders of cofinality ω have the same cofinality, so we can define
the “missing” bit of Qe.c.. The details are left to the reader.
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Thus, we can reasonably say that (for the purposes of LST numbers) QOn is just Qe.c. expressed in a more
convenient form. And therefore, that for ϵ   On, the quantifier Qϵ that we have introduced is a fragment of
Qe.c..

Before we get into proving the theorem, we finish off our definitions by introducing the second class
of quantifiers we’re going to be looking at. These tell us only about cardinalities (not cofinalities), and
specifically whether a given cardinality is regular. It uses the same auxiliary set technique as Qα.

Definition 5.2.3. Let ϵ ¤ On. The quantifierRϵ is 2-ary, and quantifies over three variables. Rϵv1, . . . , v3pφ,ψ, χq
is interpreted as true (over A, etc.) if the two sets

X :� tx : A ( φrx{v1su

Z :� tpx, yq : A ( χrx{v2, y{v3su

satisfy the following three conditions.

1. Z is a well order

2. The order type of Z is less than ϵ

3. |X| P Rego.t.pZq

Morally, Rα is true of X if |X| P Reg α. We are interested in looking at the LST numbers of these
predicates together with I. (Examining LST numbers of this kind of symbol in contexts where I is not
available is notoriously difficult: little is known even about LSTpQe.c.q.)

5.3 Inequalities

There is an implicit hierarchy of complexity in the new predicates: if δ   ϵ then Qϵ is intuitively giving all
the information that Qδ is, and more. So we would expect the LST number to be higher for Qϵ than Qδ.
This turns out to be the case, with one exception: in the right structures, we can use the fact that Qδ stops
working at δ to define an order type of exactly δ using Qδ. So if δ is particularly large, Qδ might give a small
piece of information which is not given by Qϵ and so the relationship breaks down. A similar hierarchy exists
among the Rϵ as well, and the LST numbers of the two schemes of predicates are also related to one another.

Theorem 5.3.1. In the following statements, if an LST number does not exist we consider it to be equal to
8. For ϵ, δ P OnYtOnu and δ   ϵ:

1. LSTpI,Qe.c.q � LSTpI,QOnq

2. LSTpI,Qϵq ¥ LSTpI,Rϵq

3. Either LSTpI,Qϵq ¥ LSTpI,Qδq, or both δ ¥ LSTpI,Qϵq and LSTpI,Qδq ¡ minpRegδq.

4. Either LSTpI,Rϵq ¥ LSTpI,Rδq, or both δ ¥ LSTpI,Rϵq and LSTpI,Rδq ¡ minpRegδq.

5. LSTpI,R1q � LSTpI,R0q � LSTpIq.

The second possibilities in 3 and 4 always fail unless δ is above certain large cardinals. To see this, we
will need certain other results, so that result is deferred until 5.3.5.

Proof. The idea of all these proofs is the same. Although the predicates are not definable from one another
in arbitrary structures, we show that they can be defined from each other in a suitable extension of any L
structure.

Throughout these proofs, we shall use the following two formulas (in any language containing the symbols
P and �), for use with I,Q and R:

φPpv0, v1q :� v0 P v1

φ1Ppv0, v1, v2q :� v0 P v2 ^ v1 P v2 ^ v0 P v1
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φ@pv0q :� v0 � v0

φOnpv0q :� “v0 is transitive and well-ordered by P ”

These are very simple formulas, of course, but having names for them will be useful when we use them
as parameters for second order predicates. We will always be quantifying over v0, or v0 and v1 in the case of
φ1P.

Note that φOn is saying that v0 is an ordinal of the structure it is interpreted over, not an ordinal of V .
We will only use it in situations where we already know these two notions to agree before using it.

Proof (1). First, we shall show that LSTpI,Qe.c.q ¥ LSTpI,QOnq. Obviously, this is trivial if the former is
8. So suppose that LSTpI,Qe.c.q � κ   8. Let L be a first order language of cardinality less than κ, and
let A be an L structure of cardinality λ ¥ κ. Without loss of generality, assume that A does not contain any
ordinals, but is an element of Hλ� , and that L does not include the symbol P.

Let P be a new 1-ary first order predicate symbol, and let L1 � L \ tP, P u. Let A1 be the L1 structure
with domain Hλ� , with P interpreted in the usual way, the predicate P interpreted as true of elements of A,
and all the symbols of L interpreted in line with A on the elements of A, and in some trivial way everywhere
else.

Let B1 be an L1YtI,Qe.c.u elementary substructure of A1 of cardinality less than κ (which we are assuming
exists), and let C1 be its transitive collapse. Let j : C1 Ñ A1 be the L1YtI,Qe.c.u elementary embedding. Let

B � tx P B1 : P pxqu � B1 XA

viewed as an L structure, and let C be the analogous substructure of C1.
We shall show that j is an L1 Y tI,QOnu elementary embedding of C1 into A1. From this it immediately

follows that B1 � ranpjq is an L1 Y tI,QOnu elementary substructure of A1, and it hence that B � B1 X P is
an LY tI,QOnu elementary substructure of A � A1 X P .

We show L1 Y tI,QOnu elementarity of j in several stages.

Claim 5.3.2. 1. Both A1 and C1 believe a set is an ordinal if and only if it is an ordinal of V .

2. Both A1 and C1 believe an ordinal is a cardinal if and only if it is a cardinal of V .

3. Both A1 and C1 believe a cardinal is regular if and only if it is a regular cardinal of V .

4. There is an L1YtI,Qe.c.u formula ΦRpx, yq which both A1 and C1 interpret as true of px, yq if and only
if y is an ordinal and x P Regy.

5. Suppose that φ,ψ, χ are L Y tI,Qe.c.u formulas, which are elementary between A1 and C1. Suppose
further that φpv1, . . . , vkq ùñ P pv1q^P pv2q, and similarly for ψ and χ. So φ, ψ and χ, together with
any assignment y⃗, define subsets of A2 and C2 in A1 and C1 respectively.
Then there is a formula Ψpφ,ψ, χ, v⃗q such that for any assignment y⃗ of variables to elements of A (resp.
of C), A1 (resp. C1) interprets Ψpφ,ψ, χ, y⃗q as true if and only if A (resp. C) believes QOnpφ,ψ, χ, y⃗q.

Proof (Claim, 1). Trivial, since A1 and C1 are transitive.

Proof (Claim, 2). First, notice that since A1 has domain Hλ� , it is true that the cardinals of A1 are precisely
the cardinals of V which are in A1.

In both A1 and C1, the L1 Y I formula

ΦCpxq :� x P On^@y P x IpφP, φP, x, yq

is true of a set x if and only if x is a cardinal of V . So we have a way to “test” whether an ordinal is a
cardinal. But then as we saw a moment ago,

A1 ( @xx P Card ðñ ΦCpxq

As usual, “x P Card” is shorthand for the first order formula in the language of set theory which says
that x is a cardinal.

99



By elementarity, then,
C1 ( @xx P Card ðñ ΦCpxq

Hence, the cardinals of C1 are precisely the cardinals of V that are in C1.

Proof (Claim, 3). Similar to the previous case, but instead of ΦC we use the formula:

Φ1
Rpxq :� ΦCpxq ^ @y P x Q

e.c.pφ1P, φ
1
P, x, yq

which is true in both A1 and C1 if and only if x is a V -regular cardinal. We know that A1 is correct about
the regular cardinals because its domain is Hλ� , so by elementarity C1 is as well.

Proof (Claim, 4). Note that A1 believes in recursion. Since RegA1

is a definable subclass of A1, we know that

A1 can recursively calculate the Cantor-Bendixson ranks of elements of RegA1

and therefore can calculate

RegA1

ϵ for all ϵ P A1. Let ΦRpx, yq be the (first order) formula which does this. That is, for x, y P A1, ΦRpx, yq

is true if y P On and x P RegA1

y .
By elementarity, this property of ΦR is also true in C1. That is, C1 believes that ΦRpx, yq is true if and

only if y P OnC1 and x P RegC1
y .

But we know that both RegA1

and RegC1 are simply RegV intersected with their respective models. So

in fact RegA1

y � RegC1
y � RegVy .

Proof (Claim, 5). We begin by defining a formula Ψ0pχ, v⃗, vkq (where vk is an otherwise unused variable).

Ψ0pχ, y⃗, zq :� z P On^Ds
�
@x0, x1 px0, x1q P s ðñ χpx0, x1, y⃗q

�
^ s is a well order^ o.t.psq � z

So Ψ0 holds if and only if χ and y⃗ define a well order, and that well order is an element of the structure,
and it has order type z P On.

Since A1 has domain Hλ� , we know that if χ and y⃗ define a well order of size less than λ�, then that well
order will be an element of A1. So in particular, if χ and y⃗ define a linear order over A (which, remember,
has cardinality λ) then that linear order will be an element of A1, and if it is a well order then its order type
will then also be an ordinal in A1.

We claim the same is true of C and C1. If χ and y⃗ define a linear order of elements of C over C1, then by
elementarity they define a linear order of elements of A over A1. That linear order is in A1. By elementarity
then the original linear order over C is in C1. For the order type part, note that A1 and hence C1 believe that
for all α P On,  IpφOn, φP, αq, meaning that OnXC1 is a cardinal of V . And letting φP pxq :� P pxq, we also
know (by elementarity) that C1 believes there is some cardinal α such that IpφP , φP, αq. So the cardinality
of C is below OnXC1. Hence all the ordinals of cardinality ¤ |C| are in C1, and so any well order of elements
of C will have order type in C1.

So if χ and y⃗ define a subset of C2 or A2 over C1 or A1 then they define a well order if and only if there is
some ordinal z of C1 or A1 such that C1 or A1, respectively, believes Ψ0pχ, y⃗, zq; and if so, then the well order
has order type z.

Now let

Ψpφ,ψ, χ, y⃗q :�Qe.c.pφ,ψ, y⃗q^

Dα P On Ψ0pχ, y⃗, αq^

Dβ P On ΦRpβ, αq ^Q
e.c.pφ,φ1P, y⃗, βq

An easy definition chase shows that if φ,ψ and χ, together with y⃗, define subsets of A2 or C2 over A1 or
C1 (respectively) then A1 or C1 believe Ψpφ,ψ, χ, y⃗q if and only if A believes QOnpφ,ψ, χ, y⃗q. Since we already
know how Ψ0 is interpreted, the only “trick” is showing that the equal cofinality of the orders defined by φ
and ψ must be an element of A1 or C1. This is trivial for A1, and for C1 it follows from the fact that (as we
saw above) C1 contains all the cardinals ¤ |C|.
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The existence of Ψ shows that C is L Y tI,QOnu elementarily equivalent to A by standard arguments,
and therefore that B is an LY tI,QOnu elementary substructure of A. So LSTpI,QOnq ¤ LSTpI,Qe.c.q.

To show the converse, we use a similar trick, but the technique is much simpler: given an L structure A
of cardinality λ ¡ κ � LSTpI,QOnq, let A1 � pλ � 1, Pq and let A2 � A \ A1. Let B2 be an L Y tI,QOnu
elementary substructure of size less than κ, and let B be the part corresponding to A.

Now, the cardinality of A is equal to the cardinality of A1, and A2 can easily express this using I. Hence,
by elementarity B and B1 also have the same cardinality as each other. Since B1 has a largest element, if X
is any linear order of elements of B1 then its V cofinality, and the Cantor-Bendixson rank of its cofinality in
RegV , will be in the transitive collapse of B1.

Hence, in both A2 and B2, Qe.c.pφ,ψ, y⃗q is equivalent to “Dϵ P OnQOnpφ,ψ, φ1P, y⃗, ϵq”. So B is an
LY tI,Qe.c.u elementary substructure of A. Hence LSTpI,Qe.c.q ¤ LSTpI,QOnq.

Proof (2). Similar to the previous part. Let A be an L structure with cardinality λ ¥ κ � LSTpI,Qϵq.
Without loss of generality assume A P Hλ� . Let L1 � L\ tP, P u and let A1 be a L1 structure which extends
A, with PA1

� A and all the symbols of L interpreted trivially outside A.
Let B1 be an L\tI,Qϵu substructure of cardinality   κ, and let B � B1XP � A. Now, Rϵ can be defined

in terms of Qϵ in both A1 and B1. Let

Φpφ, χ, y⃗0, y⃗1q :� Dα P OnpIpφ,φP, y⃗0, αq^

@β   α IpϕP, ϕP, α, βq^

Dγ P OnQϵpφ1P, φ
1
P, φ

1
P, α, α, γq^

@β   α@γ P On Qϵpφ1P, φ
1
P, φ

1
P, α, β, γqq

Then in both A1 and B1, φpx, y⃗0q ùñ P pxq implies that Φpφ, χ, y⃗0, y⃗1q holds if and only if Rϵpφ, χ, y⃗0, y⃗1q
is true.

To see that this works in B1, it suffices to know that the transitive collapse of B1 contains ordinals of every
order type below |B|. This follows as before: in B1, IpφOn, φP, αq fails for all α   OnXB1, so OnXB1 is a
cardinal of V . But there is some α P OnXB1 such that IpφP , φP, αq holds, where φP pxq � P pxq. So OnXB1
is a cardinal of V which is larger than |B|.

Now B1 is an L1 Y tI,Φu elementary substructure of A1. But Φ agrees with Rϵ on A and B, so B is an
LY tI,Φu elementary substructure of A of cardinality less than κ.

Proof (3). First suppose that δ   LSTpI,Qϵq. We shall show that LSTpI,Qϵq ¥ LSTpI,Qδq. The technique
is (once again) similar. However, we need some way to name δ.

Let A be an L structure, of cardinality λ ¥ LSTpI,Qϵq. Assume that L has cardinality less than
LSTpI,Qϵq. Expand L to a language L1 which contains P, a predicate P and δ many constant symbols
ci : i   δ�1. Note that L1 has cardinality less than LSTpI,Qϵq still. Let A1 � A\pλ�1q be an expansion of
A which adds the first λ� 1 ordinals, and assigns constant symbols to the first δ� 1 many of those ordinals,
and interprets P as true on A. Let B1 ¤ A1 be an L1 Y tI,Qϵu elementary substructure of cardinality
  LSTpI,Qϵq. We know that B1 contains all the ordinals up to and including δ � cδ, so the set defined over
B1 by φP and cδ is just δ itself.

It follows that we can define Qδ, in both A1 and B1, via:

Qδpφ,ψ, χ, y⃗q ðñ Qϵpφ,ψ, χ, y⃗q ^ Dα P cδQ
ϵpφ,ψ, φP, y⃗, αq

So B � B1 XA is a LY tI,Qδu elementary substructure of A, and LSTpI,Qδq ¤ LSTpI,Qϵq.
Now suppose instead that LSTpI,Qδq ¤ minpRegδq, and suppose (seeking a contradiction) that LSTpI,Qϵq  

LSTpI,Qδq. Let A be an L structure (where the cardinality of L is less than LSTpI,Qϵq). Then A contains
an L Y tI,Qδu elementary substructure B of cardinality less than LSTpI,Qδq. And B has an L Y tI,Qϵu
substructure C of cardinality less than LSTpI,Qϵq. But B is small enough that every linear order we can con-
struct from its elements has cofinality in Reg δ. Hence, in B and all its substructures, Qϵ and Qδ agree with
each other. So C is an LYtI,Qδu elementary substructure of B and hence of A. So any L structure contains
an LY tI,Qδu elementary substructure of cardinality   LSTpI,Qϵq   LSTpI,Qδq. Contradiction.

Proof (4). Just like the previous case.

101



Proof (5). First note that R0 is simply always false, since there are no ordinals below 0. So the claim
LSTpI,R0q � LSTpIq is trivial.

LSTpI,R1q ¥ LSTpIq is also trivial. The only thing to show is LSTpI,R1q ¤ LSTpIq. We prove this in
the same way as the previous cases. Let A be an L structure of cardinality λ ¥ LSTpIq. Let L1 � LYtP, P u
and let A1 � L\ λ� 1 with P interpreted as true on A1. Now, R1pφ, χ, y⃗q holds in A1 if and only if χ (and
the relevant part of y⃗) defines the empty set, and φ (and y⃗) defines a set whose cardinality is an (infinite)
successor cardinal. Both of these properties can be easily defined in A1:

A1 ( R1pφ, χ, y⃗q ðñ A1 (@x χpx, y⃗q^

Dκ P On Ipφ,φP, y⃗, κq^

@α P κ IpφP, φP, κ, αq^

Dµ P κ@α P pµ, κqIpφP, φPµ, αq

So B :� P pB1q is an LY tI,R1u elementary substructure of A � P pA1q.

This theorem shows that if we exclude very large values of ϵ, LSTpI,Qϵq and LSTpI,Rϵqmove downward as
we decrease ϵ or move from Q to R. At the bottom of this hierarchy is LSTpIq, and we saw earlier (from [29])
that the minimum possible value of this is precisely the first inaccessible. At the top is LSTpI,QOnq �
LSTpI,Qe.c.q, and we saw that the minimum possible value of this is precisely the first Mahlo cardinal. The
remainder of the section is devoted to finding a similar result for the other members of the hierarchy. The
tagline for this section is:

For ϵ ¡ 0, the minimum consistent values for LSTpI,Qϵq and LSTpI,Rϵq are both precisely the
first element of Regϵ, provided ϵ is not too large.

So for example, this says the minimum value of LSTpI,R1q � LSTpIq is the first element of Reg1, which
is the least inaccessible as we had expected. We will, of course, explain what we mean by “too large” shortly;
it depends on whether we’re dealing with Q or R.

First, we shall prove that these cardinals are lower bounds for the LST numbers.

Theorem 5.3.3. Let ϵ ¡ 0 be such that there are no hyperinaccessibles below ϵ. Then if it exists, LSTpI,Rϵq
is at least the first element of Regϵ.

Proof. Suppose κ � LSTpI,Rϵq is less than the first element of Regϵ. Let A � pHκ� , Pq. The cardinals of A
are precisely the cardinals of V up to (and including) κ.

By definition of the LST number, we can find an elementary substructure B � A of cardinality less than
κ. Since A is well founded, so is B, so we can take its transitive collapse C � pC, Pq and the elementary
embedding

j : C Ñ A

Now, letting φP be as in the previous theorem,

γ P CardC ðñ jpγq P CardA

ðñ jpγq P CardV

ðñ A ( @α P jpγq IpφP, φP, α, jpγqq
ðñ C ( @α P γ IpφP, φP, α, γq
ðñ γ P CardV

The last ðñ follows because C is transitive. Similarly,
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γ P RegC ðñ jpγq P RegA

ðñ jpγq P pReg ϵq
V because κ   minpRegϵq

ðñ A ( Dβ P OnRϵpφP, φ
1
P, jpγq, βq

ðñ C ( Dβ P OnRϵpφP, φ
1
P, γ, βq

ðñ γ P pReg ϵq
V

ðñ γ P RegV

A and C can then (using the same recursion) calculate which cardinals are in RegVδ for each δ   ϵ.
Now, let γ P C be the least ordinal such that jpγq ¡ γ. (Such a γ must exist: C has a largest cardinal β

which must be smaller than κ, and jpβq � κ ¡ β.)
Clearly γ is a cardinal of C. Otherwise there would be some bijection f : αÑ γ for some α   γ; and then

jpfq � f would be a bijection from jpαq � α to jpγq ¡ γ, which is clearly nonsense. So γ is a cardinal of C,
and hence of V . Moreover, γ cannot be a successor cardinal: if γ � pβ�qC then

jpγq � pjpβq�qA � pjpβq�qV � pβ�qV � pβ�qC � γ

Suppose that γ is singular (in C or equivalently in V ). Then we can take some sequence µ � pµδqδ β P C
which is cofinal in γ, with β   γ. Since jäγ � id, jpµδq � µδ for all δ, and the length of jpµq is jpβq � β.
Hence jpµq � µ. But jpµq is cofinal in jpγq, so then jpγq � γ. Contradiction.

So γ is a regular limit cardinal, and hence is in RegVα for some 0   α. We know that α   ϵ since
|C|   minpRegVϵ q. As usual, since γ P Regα we know α ¤ γ. Moreover, if α � γ then it is a hyperinaccessible,
and we are assuming none exist below ϵ. So α   γ and jpαq � α.

Say γ is the β’th element of Regα. Since RegαXγ must be bounded below γ, we know β   γ and hence
jpβq � β. But then

C ( “γ is the β’th element of RegC
α ”

and hence by elementarity

A ( “jpγq is the β’th element of RegA
α ”

But this is saying that γ and jpγq are both the same element of RegVα . Contradiction.

By the above and Theorem 5.3.1 it also follows, under the above conditions, that LSTpI,Qϵq ¥ minpRegϵq.
In fact, if minpRegϵq is strongly inaccessible (e.g. because we are assuming GCH) then this will hold under
weaker conditions:

Theorem 5.3.4. Let ϵ ¡ 0 and suppose that the first element of Regϵ is strongly inaccessible. Suppose there
are no Mahlo cardinals below ϵ. Then if it exists, LSTpI,Qϵq is at least the first element of Regϵ.

Proof. Suppose that LSTpI,Qϵq   minpRegϵq �: κ. Since κ is strongly inaccessible, M :� Hκ is a model of
ZFC. It is easy to see that LSTM pI,Qϵq ¤ LSTV pI,Qϵq P M : if A P M is an L structure, then it contains
some LY tI,Qϵu elementary substructure B P V of cardinality   LSTpI,QϵqV . Then B P Hκ �M .

Moreover, M contains no Mahlo cardinals. This is because (by assumption) it has none below ϵ, and
since any Mahlo cardinal is hyperinaccessible, there cannot be any in the interval rϵ,minpRegϵqq � rϵ, κq. So
we know that LSTM pI,Qe.c.q � 8.

But M doesn’t contain any cardinals which are in Regϵ,Regϵ�1, . . .. So as far as M is concerned Qϵ is

evaluated in exactly the same way as QOn. Hence, LSTM pI,Qϵq � LSTM pI,QOnq � 8. Contradiction.

A similar argument shows that if there are no Mahlo cardinals below ϵ and Regϵ � H then LSTpI,Qϵq �
8.

This gives us the promised condition for 3 and 4 of Theorem 5.3.1:
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Corollary 5.3.5. If δ   ϵ and there are no hyperinaccessibles below ϵ then LSTpI,Rδq ¤ LSTpI,Rϵq and
LSTpI,Qδq ¤ LSTpI,Qϵq. If instead there are no Mahlo cardinals below ϵ and minpRegϵq is strongly inacces-
sible, then LSTpI,Qδq ¤ LSTpI,Qϵq.

Proof. If δ � 0 then this is trivial, as both Q0 and R0 are always false. So assume δ ¡ 0.
We have just seen that this implies LSTpI,Rϵq ¥. But minpRegϵq ¥ ϵ ¡ δ, so δ   LSTpI,Rϵq. We saw in

Theorem 5.3.1 that this implies LSTpI,Rδq ¤ LSTpI,Rϵq.

So we have seen that if ϵ is not too large, the first element of Regϵ is a lower bound. We now want to
show these lower bounds are optimal. This is the focus of most of the rest of this chapter.

Just before we begin, we shall note in passing that there is also an upper bound for LSTpI,Qϵq and
LSTpI,Rϵq: they can never be above a supercompact. The proof is fairly simple, but introduces several of
the techniques we will use in proving the main theorem.

Theorem 5.3.6. Let κ be a supercompact, and let ϵ   κ. Then LSTpI,Qϵq exists, and is no larger than κ.
Hence, the same is true of LSTpI,Rϵq.

Proof. Let L be a first order language of cardinality less than κ, and let A P V be an L structure, of
cardinality λ ¥ κ. Without loss of generality, let us say that the domain of A is λ. Without loss of generality,
let us further say that L P Hκ. We want to show that there is a substructure of cardinality less than κ.

Let j : V Ñ M be an elementary embedding with critical point κ, such that jpκq ¡ λ and Mλ � M .
(Such an embedding exists by definition of a supercompact). Note that since L P Hκ, j acts as the identity
on L. Moreover, A can be coded as a λ sequence. Since M contains all its λ sequences, we know that A PM .
Also notice that since ϵ   κ ¤ λ we know that jppQϵqV q � pQϵqM . And of course, jpIV q � IM .

Another consequence of M containing all its λ sequences is that it correctly calculates the cardinalities
and cofinalities of all subsets of λ and λ� λ. In particular, both I and Qϵ are evaluated the same way over
A in both M and V . It follows that if Φ is an LY tI,Qϵu formula (with parameters from A and L) then

pA ( ΦqM ðñ pA ( ΦqV

By elementarity, we know that

pA ( ΦqV ðñ pjpAq ( ΦqM

There is a small technicity which is disguised by this notation. Φ can have parameters from A and L,
which we have suppressed. For elementarity to hold, the Φ on the right must take the images of those
parameters under j. But in fact, since j acts as the identity on L and on the domain λ of A, doing j to those
parameters just gives us back the original parameters.

This argument implies that in M ,

A ( Φ ðñ jpAq ( Φ

Hence, from the perspective of M , A is an L Y tI,Qϵu elementary substructure of jpAq of cardinality
λ   jpκq. So M believes: “jpAq contains an L Y tI,Qϵu elementary substructure of cardinality less than
jpκq”. So by elementarity, V believes: “A contains an LYtI,Qϵu elementary substructure of cardinality less
than κ.” Which is what we wanted to show.

Without further ado, we now state and prove the main result of this section.

5.4 The main theorem

Theorem 5.4.1. Let 0   ϵ P On. If the universe believes GCH and contains a supercompact cardinal larger
than ϵ, then there is a generic extension in which ϵ is countable (and so has no hyperinaccessibles below it)
and LSTpI,Qϵq and LSTpI,Rϵq are both no larger than the first element of Regϵ.
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Proof. We adapt a technique from [29]. The first step is to show that without loss of generality, we may
assume that ϵ is countable. Take a universe V0 which believes GCH and has a supercompact κ ¡ ϵ. Let V be
a generic extension of V0 by the collapsing forcing Colpω, |ϵ|q. We show that V inherits the properties of V0:
κ is supercompact, and GCH holds. GCH follows from Lemma 1.2.7 but the supercompactness of κ requires
a little work. We need the following lemmas, which is known as the Silver Lifting Criterion. We will prove
it for an arbitrary universe Ṽ and forcing P, because we’ll need it again in a different context later on in the
proof.

Lemma 5.4.2. Let j : Ṽ ÑM be an elementary embedding from some universe Ṽ to a model M . Let P P Ṽ
be a forcing. Let G be P generic, and let H be jpPq generic. Suppose that for all p P G, jppq P H. Then
there is an elementary embedding j� : Ṽ rGs ÑM rHs, which extends j and is such that the following diagram
commutes.

M M rHs

Ṽ Ṽ rGs

j j�

Proof. We define j� in the only way we can, and verify that the definition works. Let S P Ṽ rGs be a set. Let
σ be a P name with σG � S. We fix

j�pSq � pjpσqqH

We must verify that j� is well defined. Suppose that σ and τ are two P names, and σG � τG. Then there
is some p P G such that p , σ � τ . By elementarity jppq , jpσq � jpτq, and by assumption jppq P H. Hence
pjpσqqH � pjpτqqH .

It is trivial to verify that j� extends j, and that the diagram commutes. The last thing to check is
that j� is elementary, and this is done in a similar way to the “well-defined” proof. Let φ be a formula with
parameters S⃗ � σ⃗G and suppose that Ṽ rGs ( φpS⃗q. Then let p P G force φpσ⃗q; by elementarity jppq , φpjpσ⃗q

and by assumption jppq P H. So M rHs ( φpj�pS⃗qq.

If we add some extra assumptions, we can also prove that j� preserves λ sequences like a supercompact
embedding.

Lemma 5.4.3. Suppose the conditions of the above lemma hold, that jpPq � P, H � G and that P satisfies
the λ� chain condition. Then Ṽ rGs believes that M rGsλ �M rGs.

In fact, this can be proved in much more general circumstances: rather than assuming that jpPq � P and
H � G we only need that G PM rHs and H P Ṽ rGs. But that’s overkill for this proof.

Proof. First, note that since M is definable in Ṽ , M rGs is definable in V rGs. Let S � pSγqγ λ P Ṽ rGs be

a λ sequence of elements of M rGs. Since M and G are definable in Ṽ rGs, we can also define a sequence
9S � p 9Sγqγ λ P Ṽ rGs of names for the terms of S. (Note that S itself is not a name, it’s just a sequence of

names.) Let 9Σ P Ṽ be a P name for 9S. Let p P G force 9Σ to be a λ sequence of P names, each of which is an
element of M .

For γ   λ, let Aγ be a maximal antichain of conditions below p which decide which name 9Σpγq is going

to be interpreted as. So for any q P Aγ there is some name σq,γ P M such that q , 9Σpγq � σq,γ . Then 9Σ is
forced by p to be equal to

τ :� txpσq,γ , γ̌q, qy : γ   λ, q P Aγu

By the chain condition, |Aγ | ¤ λ for all γ   λ, and hence τ has cardinality ¤ λ. All the elements of τ

are in M , τ P Ṽ and M is closed under λ sequences, so τ P M . So 9S � τG P M rGs. The conclusion that
S PM rGs is now immediate.

Corollary 5.4.4. κ is supercompact in V .
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Proof. Let λ ¡ κ. Let j : V0 Ñ M be a λ embedding: i.e. elementary, with critical point κ, jpκq ¡ λ and
Mλ � M . Let G be the P :� Colpω, |ϵ|q generic filter used in constructing V (so V � V0rGs). Note that P
is small compared to κ, so jpPq � P and G is also generic over M . Clearly for all p P G, jppq � p P G. So
j extends to an elementary embedding j� : V0rGs Ñ M rGs by the first lemma. Since j� extends j it has
critical point κ and sends κ up above λ. Since P is small compared to κ it certainly satisfies the λ� chain
condition, and therefore by the second lemma V � V0rGs believes that M rGsλ �M rGs.

From now on, we will forget about V0 and the collapsing forcing, and just work in V , a universe where
ϵ is countable, GCH holds and κ is supercompact, and where Reg ϵ is unbounded. Note that since κ is
supercompact it is hyperinaccessible, and therefore Reg ϵ is also unbounded below κ. We will also assume
(by cutting off the top of the model if necessary) that Regϵ zκ

� � H. Note that κ will be an inaccessible
limit of elements of Reg ϵ (so it is in Regδ for some δ ¡ ϵ), and by the assumption we just made it is the
largest element of this Regδ.

5.4.1 The Structure of the Proof

We will construct a forcing which will make κ the first element of Regϵ and ensure LSTpI,Qϵq,LSTpI,Rϵq ¤ κ.
The actual forcing we want to use is complex to define – it’s a delicate combination of several other forcings,
some of which are rather complicated in their own right. We’ll start by giving an informal sketch of how the
proof is going to work, before we dive into the formalities.

First, we will singularise all the cardinals below κ which are dangerously close to being supercompact.
To be precise, we singularise any λ   κ which is λ� supercompact. Any such cardinal will be measurable,
so we could just use Prikry forcing to do this; but for reasons which will shortly be explained we actually
need a more complicated forcing we call Qλ, which combines elements of both Prikry forcing and some other
forcings.

After we have done this, we next force κ to be non-Mahlo. We knew that we don’t want κ to be Mahlo in
the final model, since the set of all limits of Reg ϵ below κ should end up being a club of singular cardinals.
The non-Mahlo forcing NMκ we use gives us a club C of κ whose limits are all singular, and whose successors
are all elements of Regϵ. We will also somehow contrive C to be such that for “a short distance” above any
of its elements, we can find many elements of Reg ϵ but no elements of Regϵ. Of course, once we begin the
actual proof we’ll formalise what we mean by “a short distance”, and explain what forcing we use to make
these things happen. For now, it’s enough to know that given any cardinal µ ¡ κ, there is some embedding
j : V ÑM (with critical point κ) such that µ is considered ”a short distance” above κ in M .

Finally, we collapse every cardinal below κ that is not a “short distance” above some element of C. We
do this using an Easton product ColpCq of collapsing forcings.

The overall forcing P that we use is the usual � iteration of these forcings: first we do Qλ for every λ�

supercompact λ   κ, then we do the non-Mahlo forcing NMκ, and finally the collapsing forcing ColpCq.
This gives us a universe V P in which, below κ, there are unboundedly many elements of Reg ϵ, but no

elements of Regϵ. Meanwhile, κ is still inaccessible. This immediately tells us it is the first element of Regϵ.
And of course ϵ is countable in V P.

How do we show that LSTpI,Qϵq,LSTpI,Rϵq ¤ κ? We already know that LSTpI,Rϵq ¤ LSTpI,Qϵq from
the previous lemmas; we need to show that given any language L P V P (of cardinality   κ) and any structure
A P V P, we can find a substructure of cardinality less than κ which is LY pI,Qϵq-elementarily equivalent to
A. We use a similar approach to in Theorem 5.3.6.

Say that A has cardinality µ ¡ κ. Because κ is supercompact in V , we can find an embedding j : V ÑM
such that jpκq ¡ µ and such that µ is only a “short distance” above κ (in the sense we were discussing a
moment ago). With a good deal of effort, we can show that P embeds nicely into jpPq, and that the conditions
of Lemma 5.4.2 and Lemma ?? hold for some suitable jpPq generic extension of M . For this to be happen,
we must be able to embed the non-Mahlo forcing NMκ on κ into Qκ, and we must also be able to make the
collapsing forcing components of P and jpPq interact nicely with each other. This is why we can’t just use
a Prikry forcing for Qλ: it must also somehow contain NMλ and decide some things about the collapsing
forcing. The Lemmas tell us that j : V ÑM extends naturally to an embedding j� : V P ÑM jpPq, and that
M jpPq is closed under λ sequences from the perspective of V P.

Now, in M jpPq, we know that no cardinals between κ and µ are collapsed or singularised, because µ is
only a “short distance” above κ. Because we made the collapsing forcings somehow interact nicely with
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each other, we can also contrive for the club C in V P added by NMκ to be contained in the equivalent club
in M jpPq added by NMjpκq. So pCardXµ�q, pReg0Xµ

�q, . . . , pRegδ Xµ
�q, . . . (δ   ϵ) are each unchanged

between M jpPq and V P. Hence, L Y tI,Qϵu interprets all statements about A in the same way in V P and
M jpPq.

The proof now follows Theorem 5.3.6. Without loss of generality, we can easily arrange that L,A PM jpPq

and that A is a substructure of j�pAq. And since j� : V P ÑM jpPq is elementary, an LYtI,Qϵu sentence will
be true about j�pAq in M jpPq if and only if it’s true about A in V P, and thus if and only if it’s true about
A in M jpPq too. So in M jpPq, A is an LY tI,Qϵu-elementary substructure of j�pAq.

So M jpPq believes the statement “j�pAq contains an LtI,Qϵu-elementary substructure of cardinality less
than j�pκq.” Pulling back to V P using elementarity of j�, we see that A contains an LtI,Qϵu-elementary
substructure of cardinality less than κ, as required.

So in summary, the proof will consist of the following steps:

1. Define a function f that formalises the concept of “a short distance”

2. Define the non-Mahlo and collapsing forcings NMλ and Col we discussed above

3. Define the forcing Qλ, which singularises λ and somehow contains NMλ and some information about
Col

4. Show that NMλ �Col embeds nicely in Qλ � Col

5. Put these forcings together in some way to get the forcing P we will be using

6. Show that in a P generic extension, the LST is number at most κ

5.4.2 Defining f

Recall Lemma 3.1.18, for any supercompact cardinal κ:

Lemma. There is a function h : κ Ñ Vκ such that given any x P V and any µ ¥ κ, there is an M with
Mµ �M and an embedding j : V ÑM with critical point κ, such that jpκq ¡ µ and jphqpκq � x.

We use this h to define a related function f specifically for the ordinals.

Lemma 5.4.5. There is a strictly increasing function f : κÑ κ such that:

1. For all α   κ, the interval pα, fpαqq contains unboundedly many elements of Regδ for every δ   ϵ, but
no elements of Regϵ

2. For any µ ¡ κ, there is a model M with Mµ � M and an elementary embedding j : V Ñ M with
critical point κ such that jpκq ¡ µ and jpfqpκq ¡ µ.

Proof. For α   κ, let gpαq :� hpαq if the latter is an ordinal greater than α but smaller than κ, and
pα, gpαqq XRegϵ � H, and otherwise let gpαq :� α. Let fpαq be the least element of Regϵ which is (strictly)
above gpαq. It is trivial to see that f is strictly increasing and satisfies the first requirement.

Fix µ ¡ κ. Using the previous result, let M and J : V ÑM be such that jphqpκq � µ. We know that M
is closed under µ sequences, so it correctly calculates the cardinalities and cofinalities of all cardinals below
µ. In particular, RegMϵ agrees with RegVϵ up to µ, and hence pκ, µq X Regϵ � H from the perspective of M .
Hence jpgqpκq � jphqpκq � µ. So jpfqpκq ¡ µ.

In the language we used in the preamble to this proof, β is “a short distance” above α if β P pα, fpαqq.
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5.4.3 NM and Col

Now we have f , we can define the simpler forcings used in this construction, NMλ and Col. Throughout this
section, let Ṽ be any universe which contains the f we found in the previous section. We will also assume

that f has the same relation to Reg in Ṽ as it does in V (although we do not assume that RegṼδ � RegVδ
for any particular δ ¤ ϵ), and (in preparation for the future) we assume that GCH holds in Ṽ except that
there are perhaps a few singular cardinals λ such that 2λ � λ��. Let us fix λ ¤ κ to be a λ� supercompact
cardinal in Ṽ .

A Mahlo cardinal is one for which the class of regulars below it is stationary, so to stop it being Mahlo
we need to add a club which consists only of singular cardinals. We use a variant of the usual club shooting
forcing which also chooses some elements of Regϵ.

Definition 5.4.6. We define the non-Mahlo forcing NMλ as follows. Its elements are closed bounded subsets
of λ, whose minimum element is ω, whose successors are all taken from Regϵ, and whose limits are all singular.
We order NMλ by end inclusion.

Note that this is not quite the usual non-Mahlo forcing: it gives us a club whose limits are singular, but
whose successors are elements of Regϵ. (Since Regϵ is unbounded below λ, we do get an unbounded subset
of λ despite the odd requirement for successors.) By contrast, a standard non-Mahlo forcing would just add
a club of singular cardinals. Of course, we can obtain a fully singular club here simply by deleting all the
successors, so NMλ does indeed force that λ is no longer Mahlo.

Although NMλ is not strictly  λ-closed (since the limit of a sequence of conditions could be inaccessible)
it is almost  λ-closed, and we can prove the usual results of  λ-closed-ness.

Lemma 5.4.7. Let µ   λ. Then there are densely many conditions p such that NMλ äp is µ-closed.

Proof. Let p P NMλ be any condition whose final element is larger than µ. Let p ¥ p0 ¥ p1 ¥ . . . be a
descending sequence of conditions of length µ. Then p0 � p1 � . . . are all end extensions of one another,
so

�
i µ pi is a set whose successors are all in Regϵ and whose limit elements are all singular. It is closed,

except that it might not contain its supremum α. But α ¥ sup p ¡ µ has cofinality Cofpµq, so it is singular.
This implies that α   λ, and that

�
i µ pi Y tαu P NMλ.

Corollary 5.4.8. NMλ is   λ distributive, does not collapse or singularise any cardinals, and preserves
GCH, except perhaps that 2λ becomes λ��.

Proof. Let µ   λ. Let Di : i   µ be a collection of dense sets. Fix some p such that NMλ äp is µ-closed. For
i   µ let D1

i � DiXpNMλ äpq. Then D1
i is a dense subset of NMλ äp. We know that NMλ äp is µ distributive

since it is µ-closed, and hence H �
�
D1
i �

�
Di.

It follows immediately from Theorem 1.2.6 that NMλ preserves all cardinals   λ and does not singularise
any of them, and from Lemma 1.2.7 that it preserves GCH below λ.

Showing that λ is not collapsed or singularised requires a slightly more technical argument, where we
essentially mimic the proof of Theorem 1.2.6. Suppose that Ṽ rGs collapses λ. Let g : µ Ñ λ be a bijection
for some µ   λ, and let 9g be a name for g. Let p P G force “ 9g is a bijection from µ to λ”. Let q ¤ p be such
that NMλ äq is µ-closed. We construct a descending sequence of conditions q � q0 ¥ q1 ¥ . . . (not necessarily
elements of G) of length µ � 1 as follows. If i � j � 1 then we choose qi ¤ qj which decides the value of
9gpjq. If i is a limit, then by µ-closed-ness, we can choose some qi below every earlier qj . At the end, qµ has

decided 9gpiq for every i, and hence has defined a bijection from µ to λ in Ṽ . Contradiction. A similar proof
shows that λ is not singularised.

Finally, note that NMλ � λ λ, so

|NMλ| ¤
¸
α λ

λα �
¸
α λ

λ � λ

Hence NMλ has the λ� chain condition, and so does not collapse or singularise any cardinals ¥ λ�. By
Lemma 1.2.7 it also preserves GCH for cardinals above λ.

Finally, then, in the generic extension 2λ ¤ 2λ
�

� λ��.
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Throughout this proof, we shall write C, and variants thereof, to refer to the generic club added by NMλ.
It should (hopefully) always be clear from context to which λ we are referring. Notice that for any α P C,
we know Succpαq ¥ fpαq, because there are no Regϵ’s between α and fpαq.

Next, we define the collapsing forcing. Recall Definition 1.3.15, where we defined the forcing Colpα,  βq
collapsing all the cardinals below β down to α.

For the rest of this section, let us fix a club C which is generic for NMλ. We will work in some generic
extension Ṽ rGs of Ṽ containing C, but we do not assume that Ṽ rGs � Ṽ rCs. We will, however, assume that
rGs does not collapse or singularise any cardinals below λ, and preserves GCH where it holds, except perhaps
at λ.

The forcing we want to work with is a combination of these collapsing forcings, and is defined in terms of
C. We want a forcing which will collapse, for each α P C, every cardinal between fpαq and SuccCpαq. Once
we have done this, it will be easy to see that it makes λ the first element of Regϵ. The forcing we want to
use is the Easton product of all the collapsing forcings:

Definition 5.4.9. Let Ṽ rGs be some generic extension of Ṽ , which contains an NMṼ
λ generic club C and is

such that all the successors of C are strongly inaccessible in Ṽ rGs. We define the forcing ColpCq to be the
set of all the elements h of ¹

αPC

Colpfpαq,  SuccCpαqq

such that for all regular cardinals µ ¤ λ, the set

tα P C X µ : hpαq � Hu

is bounded in µ.
We order ColpCq in the obvious way.

More generally, we define Colpcq in the same way for any closed set c of cardinals whose successors
are all strong inaccessibles below κ. In particular, we can define Colpcq for any c P NMλ. Notice that in
this case c P Ṽ , so Colpcq is actually defined in Ṽ . Unless otherwise specified, when we write Colpcq for

c P Ṽ we shall always mean ColṼ pcq. Also, if Ṽ rGs is some generic extension of Ṽ (with respect to any
forcing) and if C P Ṽ rGs is an NMλ generic club containing c, then with a minor abuse of notation we can

say ColṼ pcq � ColṼ rGspCq. (The abuse is that an element of Colpcq is technically a function with domain
cztmaxpcqu, and we are identifying it with a function whose domain is C but which is trivial above c).

We can think of Colpcq as the set of all conditions that Ṽ knows will be in ColpCq if c is an initial segment
of C.

Note that ColpCq depends not just on C but also on which cardinals are regular. Thus, two different
universes may have different opinions on what ColpCq should look like, even if both universes contain the
same club C.

Proposition 5.4.10. Let c be a closed set of cardinals (in Ṽ or Ṽ rGs) whose successors are all inaccessibles
below κ. If α � minpcq then Colpcq is   fpαq-closed. In particular, this means it is α�-closed.

Proof. An easy definition chase we leave to the reader.

Lemma 5.4.11. Let C P Ṽ rGs. Then ColpCq, defined over Ṽ rGs, does not collapse any cardinals except
those which it is supposed to (i.e. those in the interval pfpαq,SuccCpαqq for some α P C). Nor does it
singularise any other cardinals.

Proof. Let µ be a cardinal which is not in any of the intervals that are supposed to be collapsed by ColpCq.
Let P � ColpCäµq (in the sense of Ṽ rCs, not Ṽ ) and let R � ColpCzµq. Then ColpCq � P � R. Now P has
cardinality less than µ (by GCH) and therefore does not collapse or singularise µ. On the other hand, R is
µ-closed, and so again it does not collapse or singularise µ.

Corollary 5.4.12. Let C P Ṽ rGs as above. If 0   δ   ϵ then ColpCq does not modify Regδ, other than
removing those elements which are in an interval pfpαq,SuccCpαqq.
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Proof. Let µ P Card not be in pfpαq,SuccCpαqq for any α P C. We show that µ P Regδ in the ColpCq generic
extension if and only if µ P Regδ in Ṽ rGs.

Case 1: µ   minpCq, µ P pα, fpαqs or µ ¡ λ. All the cardinals in these intervals are preserved, and not
singularised, by ColpCq. So Regδ is preserved over these intervals too.

Case 2: µ P C is a successor of C. By definition of NMλ, we know µ is an element of Regϵ in Ṽ rGs, and
hence not in Regδ. In the generic extension µ becomes a successor cardinal, and hence again not in Regδ.

Case 3: µ P C is a limit of C. By definition of NMλ, we know µ is a successor cardinal in Ṽ rGs and hence
also in the ColpCq generic extension.

Case 4: µ � λ. In Ṽ , we know that λ ¡ δ is hyperinaccessible, and therefore a limit of elements of Regδ.
By assumption, Ṽ rGs agrees with Ṽ on Reg äλ, so in particular in Ṽ rGs we know that λ is still a limit of
Regδ. So it cannot be an element of Regδ. Recall that every interval pα, fpαqs contains an element of Regδ.
So by Case 1, we know that in the generic extension λ is still a limit of elements of Regδ, and hence cannot
be in Regδ.

Notice also that in the ColpCq generic extension, there are no elements of Regϵ below λ, and that λ is a
limit of elements of Regδ for all δ   ϵ. So if λ is regular in Ṽ rGs (and hence in the ColpCq generic extension)
then it will be the first element of Regϵ.

5.4.4 The Prikry-style forcing Q
Again, we fix a λ� supercompact λ ¤ κ in a universe Ṽ which knows about f . Assume also that ColpCq is

well defined for every NMṼ
λ generic club C.

The forcing Qλ is similar to a Prikry forcing, but with some extra components. We want any Qλ generic
filter to not only singularise λ, but also to define a NMλ generic club C. For reasons that will become clearer
later, we also want it to define some kind of “generic element” of ColpCq.

Where a standard Prikry forcing would add an ω sequence of single ordinals, we will arrange for Qλ to
add an ω sequence whose terms are taken from the following set:

Definition 5.4.13. Kλ is the set of all triples xc, x, γy where:

1. c P NMλ;

2. h P Colpcq;

3. γ P On and maxpcq   γ   λ.

For δ   λ, Kδ
λ is the subset of Kλ consisting of all the triples xc, h, γy where the least element of c is

greater than δ (and thus also γ ¡ δ).

The Prikry-style generic sequence we’re aiming for will consist of an element xc0, h0, γ0y of Kλ, then an
element xc1, h1, γ1y of Kγ0

λ , and so on up through the all n P ω.
From such a sequence G, we will be able to extract a club C �

�
nPω cn in λ, an element H �

�
nPω hn of±

αPC Colpα,  SuccCpαqq and an ω-sequence pγnq. If we set up the forcing correctly, we will later discover

that C is NMλ generic, that H P ColṼ rGspCq, and that pγnq is cofinal in λ.
Recall that a condition in a Prikry forcing consists of two components: a finite stem of the sequence we’re

constructing, and a “large” (i.e. measure 1) set of places that are allowed to be in later parts of the sequence.
It’s fairly easy to see what the finite stem should look like in this context. But how can we find an

analogue of a measure 1 set of ordinals? We must define a measure on Kλ, and in fact on Kδ
λ for every δ   λ.

To do this, we first define an ordering on Kλ:

Definition 5.4.14. Let xc, h, γy and xc̃, h̃, γ̃y be elements of Kλ. We say that xc̃, h̃, γ̃y ¤� xc, h, γy if:

1. c̃ ¤ c, that is, c̃ is an end extension of c;

2. h̃ämaxpcq � h;

3. γ̃ ¥ γ.
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Notice the unusual nature of the second clause. It’s not enough that h̃ ¤ h in the Colpc̃q ordering. It
must actually agree completely with h, although it is allowed to add more things once we’re above the area
where h is defined. This is because H �

�
hn is supposed to be a condition in ColpCq, not a ColpCq generic

filter.
Of course, this also defines an ordering on Kδ

λ � Kλ for every δ   λ.

Lemma 5.4.15. Let δ   λ. Let F be the family of all subsets of Kδ
λ which contain a ¤� dense open subset

of Kδ
λ. Then F is a λ complete filter in Kδ

λ in the usual � ordering of PpKδ
λq.

Proof. Clearly, F is upwards closed and nonempty. The intersection of fewer than λ many ¤� dense open
sets can be easily seen to be dense open, so F is a λ complete filter.

The following is a standard consequence of λ� supercompactness:

Lemma 5.4.16. [24, 22.17] Let S be a set of size λ, and let F be a λ complete filter on PpSq. Then F can
be extended to a λ complete ultrafilter U .

Proof. Without loss of generality, let us assume S � λ. Note that |F | ¤ 2λ � λ�. Let j : Ṽ Ñ M be an

embedding with critical point λ such that jpλq ¡ λ� and Mλ� � M . By elementarity jpF q P M is jpλq
complete. Since |j2pF q| ¤ λ� (in Ṽ ) and M is closed under λ� sequences, we know that j2pF q P M . Since
also λ� ¤ jpλq and j2pF q � jpF q, we know by jpλq completeness of jpF q that Xj2pF q P jpF q. In particular,
there is some α P Xj2pF q. Now define an ultrafilter U P Ṽ by:

X P U ðñ X � λ^ α P jpXq

It is easy to check that F � U , that U is an ultrafilter, and that it is λ complete.

Corollary 5.4.17. Let δ   λ. There is an ultrafilter Uδ on Kδ
λ which contains all the ¤� dense open subsets

of Kδ
λ.

In fact, of course, there will be many such ultrafilters, but we will fix a single one for the rest of this
section to call Uδ.

With Uδ in hand, we can define the analogue of the measure 1 set of ordinals in a Prikry forcing.

Definition 5.4.18. Let T be a tree of height ω, whose nodes are all elements of Kλ. We abuse notation
by allowing the same element of Kλ to appear multiple times, provided no element appears twice as direct
successors of the same node. We say T is nice if the following hold:

1. If xc̃, h̃, γ̃y  T xc, h, γy P T , then xc̃, h̃, γ̃y P Kγ
λ ;

2. If xc, h, γy P T then the set of its direct successors (which is a subset of Kγ
λ by the previous condition)

is in Uγ .

Recall that a condition in a Prikry forcing contains two components: a finite sequence of ordinals, and
a measure 1 set. The finite sequence fixes an initial segment of the ω sequence we are going to add, and
the rest of the sequence is chosen from elements of the measure 1 set. Analogously, in the forcing Qλ, our
conditions will have two components: a finite sequence s of terms from Kλ and a nice tree T which gives us
a map of where the sequence is allowed to go from there. The root of T will the final term of s. Then for
n ¡ 0, the n’th level contains all the elements of Kλ which we are allowing to appear as the n’th term in
the undetermined part of the sequence. A branch through the tree corresponds to a (not necessarily generic)
way to complete the sequence.

Definition 5.4.19. The forcing Qλ has conditions of the form

�
pxc0, h0, γ0y, xc1, h1, γ1y, . . . , xcn�1, hn�1, γn�1yq, T

�
for some n P ω, where

1. xc0, h0, γ0y P Kλ if n ¡ 0;
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2. For 0   i   n, xci, hi, γiy P K
γi�1

λ ;

3. T is a nice tree

4. The root of T is xcn�1, hn�1, γn�1y.

We call γn�1 the height of the condition (writing ht in symbols).
The conditions are ordered in the usual way for a Prikry style forcing: ps1, T 1q ¤ ps, T q if s1 is an end

extension of s and there is a path B � b0, b1, . . . , bk through T of length k :� |s1zs|� 1 such that:

1. b0 is the root of T (i.e. the last element of s)

2. For all 0   i ¤ k, bi is the i’th element of s1zs

3. T 1 is a subtree of T whose root is bk

As usual for Prikry forcings, if s1 � s we say ps1, T 1q is a direct extension of ps, T q and write ps1, T 1q ¤�

ps, T q.

Note: We now have two different definitions of ¤�. One talks about elements of Kλ and the other about
conditions in Qλ, so it should be easy to understand which one we are talking about.

Proposition 5.4.20. The forcing pQλ,¤�q is  λ-closed. That is, any descending sequence T0 � T1 � T2 . . .
of nice trees with the same root will have a nice tree as their intersection.

Proof. Follows from the fact that Uγ is closed under   λ intersections.

The following lemma is very standard for Prikry style forcings.

Lemma 5.4.21. Let p P Qλ. Let φ be first order (perhaps with parameters). Then there is some q ¤� p
deciding φ.

Proof. We’ll essentially follow the standard proof of this result for Prikry forcings. However, the argument
gets rather technical to state, because we need to construct a tree analogue of the diagonal intersection of
measure 1 sets. The way we do this is really quite simple and natural, but unfortunately it’s also rather
messy to write out.

Let p � ps, T q. We shall recursively construct a condition r � ps, T 1q ¤� p, together with a collection of
nice subtrees tTt � T : t P T 1u, where Tt has root t. For t P T 1, we define st to be the sequence of predecessors
of t in T 1, starting at the root of T 1 and ending at t itself. For each t P T 1, the intention is that psY st, T

1ätq
should be a condition of Qλ below psY st, Ttq; and that if at all possible both will decide φ.

First, suppose t is the root of T (which will also have to be the root of T 1, since ps, T 1q is supposed to be
a condition of Qλ). If there is some rt ¤

� p which decides φ, then let Tt be its associated tree. (Of course, if
such an rt exists, then we’re already done!). Otherwise, let Tt � T .

Now, let n ¡ 0 and assume that we have already defined levels 1 . . . , n of T 1, as well as Tt for all t in
these levels of T 1. Let t P T 1 be at level n. Then we define the direct successors of t in T 1 to be the level 1
elements of Tt (all of which are, by inductive hypothesis, direct successors of t in T ). In doing this, we have
define the whole of level n� 1 of T 1. It remains to define the trees Tu of elements u of this level.

If u P T 1 is a direct successor of t, then let T 0
u be the restriction Ttäu of Tt to u. (So T 0

u has root u and
consists of all elements of Tt which are below u.) Consider the condition pu :� psY su, T

0
uq. Since u P T and

Tt is a subtree of T , we know that pu ¤ p. If there is some direct extension ru ¤
� pu which decides φ, then

let Tu be the tree in ru. If no such rt exists, then we define Tu :� T 0
u . This completes the recursive definition.

It is easy to verify that r :� ps, T 1q ¤� p, and that it has the following property: if r̃ � ps̃, T̃ q ¤ r decides
φ, then so does ps̃, T 1ämax s̃q.

The next step is to recursively construct another condition q � ps, T 2q ¤� r which actually decides φ
itself. This time, the construction is a little simpler: we don’t need the auxiliary Tt trees. The root of T 2 is
the same as that of T 1 and T , of course.

Say that we have built the first n levels of T 2. Let t be in the n’th level of T 2, and let A � Kλ be the
set of all its direct successors in T 1. Recall that A is measure 1 in the sense of Uδ, where δ is the height of t.
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We partition A into three parts: we say that u P A is in A1 if qu :� ps Y su, T
1äuq decides that φ is true, u

is in A2 if qu decides φ is false, and u is in A3 if qu doesn’t decide φ at all.
One of A1, A2 and A3 will be measure 1 in the sense of Uδ. The direct successors of t in T 2 are defined

to be the elements of that measure 1 set. It is again easy to verify that this defines a nice tree T 2 and that
q :� ps, T 2q P Qλ. It is also easy to check that q ¤� r ¤� p and that q has the following two properties:

1. If q̃ � ps̃, T̃ q ¤ q decides φ, then so does q1 :� ps̃, T 2äs̃q (this follows from q ¤ r); and

2. For any extension q1 � ps̃, T 2äs̃q of q, either all the one step extensions of q1 fail to decide φ, or they
all decide it and make the same decision.

Let q̃ � ps̃, T̃ q ¤ q be some condition which decides φ, and let it be such that s̃ has minimal length
among conditions which decide φ. Then by the first property, φ is decided by q1 :� ps̃, T 2äs̃q. Suppose,
seeking a contradiction, that s̃ is a proper extension of s, and let s̃1 be s̃ with its final term t omitted. (So
by assumption, s̃1 still extends s.)

Then q1 is a one step extension of q2 :� ps̃1, T 2äs̃1q, and decides φ. So by the second property, all the
one-step extensions of q2 decide φ, and agree on that decision. But then q2 decides φ as well, and this is a
contradiction since s̃1 is shorter than s̃.

So in fact s̃ � s and q̃ ¤� q decides φ.

Corollary 5.4.22. Let φpxq be a formula with one free variable, let µ ¤ λ, and let p , Dx   µ̌ φpxq. Then
there is some q ¤� p and some α   µ such that q , φpα̌q.

Proof. If no such q exists, then let p � q0 ¥
� q1 ¥

� q2 . . . be a descending sequence of conditions of length
µ � 1 defined as follows. For i � j � 1, we choose qi ¤

� qj deciding φpǰq; by assumption qi ,  φpǰq.
At limit i we take some qi which is ¤� every qj , j   i. This exists by   λ closure of pQλ,¤�q. Then
qµ ¤

� p , @x   ν̌ φpxq. Contradiction.

This tells us that Qλ does not do any unexpected collapsing or singularising of cardinals.

Lemma 5.4.23. Qλ does not add any new bounded subsets of λ, collapse any cardinals, or singularise any
cardinals apart from λ. It preserves GCH where it holds in Ṽ , except at λ.

Proof. First, note that Qλ has the λ� chain condition, because any two conditions of Qλ with the same stem
are compatible. Hence, it does not collapse or singularise any cardinals ¥ λ�, or change the cardinalities of
their power sets.

Let µ   λ be a cardinal of Ṽ , and suppose that Qλ collapses it to some cardinal ν   µ. Let 9g be a name
for a bijection g : ν Ñ µ. Let p , 9g : “ν̌ Ñ µ̌ is a bijection”. We construct a descending chain of direct
extensions p � p0 ¥

� p1 ¥
� . . . of length ν � 1. If i is a successor, then we use the previous corollary to take

pi deciding the value of 9gpiq; at limit i we take some pi which is ¤� pj for all j   i. Then pν decides what

g is, and hence g P Ṽ . Contradiction. A similar proof shows that Qλ does not singularise µ either, and that
it adds no bounded subsets of λ. (For the latter, we start with some p P Qλ which decides what the bound
will be, and then take a ¤� descending chain whose length is that bound, deciding which elements of λ will
be in the new subset.)

This also means that λ is a limit of cardinals in Ṽ rGs, and hence is still a cardinal, and that the power
sets of cardinals below λ are preserved.

All our definitions of NMλ, ColpCq and Qλ have been given only for λ ¤ κ. The only reason for this is
because we use f in their definition, and f is only defined up to κ. We will later want to deal with elementary
embeddings j : Ṽ Ñ M with critical point κ. From the perspective of such a model M , we can extend the
definition by introducing analogous forcings in terms of jpfq, for any λ ¤ jpκq. We will extend the notation
by referring to these forcings also as NMλ, ColpCq and Qλ. Since jpfq will be an end-extension of f , for
λ ¤ κ the forcings NMλ, ColpCq and Qλ are defined the same way in M whether we use f or jpfq in their
definitions, so there is no ambiguity in doing this.
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5.4.5 Embedding NM*Col into QQ*Col

Once again, fix a λ� supercompact λ ¤ κ in a universe Ṽ which knows about f . As we discussed earlier, we
can extract elements of NMλ and Col from a Qλ condition.

Definition 5.4.24. We define two groups of abbreviations.

1. Let
p � ppxc0, h0, γ0y, xc1, h1, γ1y, . . . , xcn�1, hn�1, γn�1yq, T q

be a condition in Qλ. We define cp �
�
i n ci and hp �

�
i n hi.

2. Let G be Qλ generic. We define CG �
�
pPG cp and HG �

�
pPG hp.

An equivalent, but less friendly, definition is that

CG �
¤
tc : Dh, γ xc, h, γy is a term in the first part of some p P Gu

and that
HG �

¤
th : Dc, γ xc, h, γy is a term in the first part of some p P Gu

We shall now establish what these four objects actually are, in terms of NMλ and Col. The first two
objects, cp and hp, are simply conditions of the relevant forcings in Ṽ :

Proposition 5.4.25. Let p P Qλ. Then cp P NMλ and hp P Colpcpq in Ṽ .

Proof. cp is a union of finitely many conditions in NMλ, so it is certainly closed, bounded, and its successors
and limits have the right properties. So cp P NMλ.

In the notation used in the definition, hp is a union of one condition from each Colpciq, i   n. Thus it’s
certainly an element of ¹

αPcztmaxpcqu

Colpfpαq,  SuccCpαqq

Moreover, maxpci�1q   γi�1   minpciq for all 0   i   n, so the domain of hp is trivially bounded below
minpciq for i   n. It is also bounded below all other regular ordinals, by definition of Colpciq. Hence,
hp P Colpcpq.

CG will be generic for NMλ, and there is a useful correspondence between NMλ and Qλ:

Lemma 5.4.26. If G is Qλ generic, then CG is a club which is NMλ generic (over Ṽ ). Moreover, given any
NMλ name σ, there is a Qλ name φpσq such that for any Qλ filter G (not necessarily generic), σCG � φpσqG.

(As usual, in the statement of the lemma we are muddling the definition of a generic filter over NMλ, and
the club corresponding to that generic filter.)

Proof. It is easy to see that CG is a club in λ, and that all its closed initial segments are elements of NMλ.
We must show that it is generic.

Let D � NMλ be open dense. We will show that XD :� tp P Qλ : cp P Du is dense in Qλ. This implies
GXXD � H and so CG contains an element of D as required.

Fix a condition p � ps, T q P Qλ.
D is dense in NMλ, so the set

SD,p :� txc, h, γy P K
htppq
λ : cp Y c P Du

is ¤� dense in K
htppq
λ . Clearly, it is also open.

So SD,p P Uhtppq because Uhtppq contains all the open dense subsets of K
htppq
λ . Since the set of all successors

of the root of T is also in Uhtppq, there must be a level 1 element of the tree T which is in SD,p. But then
that gives us a 1 step extension q ¤ p in Qλ, such that the extra term xc, h, γy in q is an element of SD,p. It
follows that cq � cp Y c P D, and hence q P XD as required.

The second part of the lemma is an easy recursive definition: we take
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φpσq :� txφpτq, py : p P Qλ ^ xτ, cpy P σu

and verify that the required equality holds for any Qλ filter G.

So Qλ behaves well regarding NMλ. What about ColpCq? We want Qλ �ColṼ rGspCGq to play nicely with

NMλ �ColṼ rCGspCGq.

This is not as simple as it looks, because (fixing some Qλ generic filter G) we know ColṼ rGspCGq and

ColṼ rCGspCGq are not the same. Remember that the Easton product we used to define Col only asks for its
conditions to be bounded below regular ordinals. λ is regular in Ṽ rCGs but is singular in Ṽ rGs. So there are

sets in Ṽ rCGs which are in ColṼ rGspCGq but not in ColṼ rCGspCGq.

On the other hand, we do at least know that ColṼ rCGspCGq � ColṼ rGspCGq X Ṽ rCGs.

This is where the condition HG named by G comes in. It ise a sort of “generic element” of ColṼ rGspCGq
which forces any generic extension containing it to cooperate in the way we want despite this difficulty.

First, we must verify that HG really is a condition.

Lemma 5.4.27. Let G be Qλ generic. Then HG P ColṼ rGspCGq.

Proof. It is easy to see that HG P
±
αPCG

Colpα,  SuccCG
pαqq. We must verify that its support is bounded

below every Ṽ rGs regular cardinal µ P r0, λs. If µ   λ, this follows from Proposition 5.4.25: take p P G such
that sup cp ¡ µ, and then Hp|µ � hp P Colpcpq and hence (since µ is regular in Ṽ ) the support of Hp is
bounded below µ.

On the other hand, we know that Qλ singularises λ, so the case µ � λ is vacuous.

The value of HG is shown in the following rather technical lemma.

Lemma 5.4.28. Let G be Qλ generic. Let G� be ColṼ rGspCGq generic over Ṽ rGs, and contain HG. Then

the filter G�� :� G� X ColṼ rCGspCGq is ColṼ rCGspCGq generic over Ṽ rCGs.

Proof. It is easy to check that G�� is indeed a filter; the challenge is showing that it’s generic. So let 9D be

an NMλ name for a dense open subset of ColṼ rCGspCGq. (Formally, this means 1NMλ
should force that 9D is

a dense subset of ColpCq, where C is the generic club added by NMλ.)

For any Qλ generic filter G, and for any ColṼ rGspCGq generic filter G� containing HG, the set G�XD � H,
where D � 9DCG .

To begin with, we shall work in Ṽ rCGs for a fixed filter G. Let D � 9DCG as above. For β P SuccpCGq,

consider the two forcings Pβ :� ColṼ rCGspCGzβ � 1q and Pβ :� ColṼ rCGspCG X pβ � 1qq.
For h P Pβ we define the set

Dh :� th1 P Pβ : h1 Y h P Du

Then we define

Dβ :� th P Pβ : Dh is open denseu

Claim 5.4.29. Dβ is an open dense subset of Pβ.

Proof. D is open, so if h̃ ¤ h P Pβ then Dh̃ � Dh. Hence Dh̃ is dense. Moreover, Dh̃ is also open, since D is
open. Hence Dβ is open.

To show Dβ is also dense, let us fix h P Pβ .
Now Pβ has cardinality β, so we can enumerate its elements thα : α   βu. We construct a decreasing

sequence ph1αqα β�1 of length β of conditions in Pβ . Let h10 � h. For γ   β, we choose some h1γ�1 ¤ h1γ such
that for some h� ¤ hγ , the condition h� Y h1γ�1 P D. We can do this easily, since D is dense: just take some
element of D below hγ Y h

1
γ and let h1γ�1 be the part of it which is above β.

For limit α ¤ β, we take hα to be below every earlier term of the sequence, which we can do since Pβ is
β�-closed by Proposition 5.4.10.
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Now, h1β ¤ h is such that for all hα P Pβ , there exists h� ¤ hα such that h� Y h1β P D, since h1β ¤ h1α�1

and D is open. It follows immediately that Dh1β
is dense. Since D is open, it’s also immediate that Dh1β

is

open. Hence h1β P D
β . But h1β ¤ h so Dβ is dense.

We now work in Ṽ . We shall show that 1Qλ
forces the following statement:

“There are two ordinals β   δ in CG, with β a successor element of CG, such that HGärβ, δs P
Dβ .”

This statement makes sense, since Ṽ rCGs is a definable subclass of Ṽ rGs and so Ṽ rGs knows what Dβ

looks like for any β. Note that it implicitly assumes that HGärβ, δs P Ṽ rCGs, but that’s automatically true
since it’s an element of ColpCG X δ � 1q P Ṽ .

So fix p P Qλ. Let htppq � γ. We shall show there is a one step extension of p which forces the above
statement.

Let us say an element xc, h, αy of Kγ
λ is cooperative if there is some element β P Succpcq such that

cp Y c ,NMλ
häpczβq P Dβ . (Recall that by definition of Kλ, we know h P ColṼ pcq, so h P ColṼ rCGspCGq. So

häpczβq P Pβ in Ṽ rCGs, and thus it makes sense ask whether it is in Dβ .)

Claim 5.4.30. The set of all cooperative elements of Kγ
λ is ¤� dense.

Proof. Let xc, h, αy P Kγ
λ . Without loss of generality, we can assume c has a largest element. (If it doesn’t,

then we can simply extend c arbitrarily by one step to get a pc1, h, α1q  � pc, h, αq and work with that instead.)
Let β be that largest element.

cp Y c forces that β is a successor element of the club that NMλ adds, so it forces that Dβ is an open

dense subset of Pβ . Hence, there is some end extension c1 ¤ c and some name 9h1 for an element of Pβ such
that cp Y c

1 ,NMλ
9h1 P Dβ .

Now, in Ṽ rCGs an element of Pβ is a sequence of conditions in collapsing forcings whose support is
bounded below λ. Each of these collapsing forcings also has cardinality less than λ. So any element of Pβ in
Ṽ rCGs can be coded as a subset of λ. NMλ is λ distributive, so by Theorem 1.2.6 all the elements of Pβ in
Ṽ rCGs actually already existed in Ṽ . (Of course, Pβ itself does not exist in Ṽ , though!)

So without loss of generality, we can choose 9h1 to be a check name for some h1 P Ṽ . Now h1 is certainly
bounded below λ, so without loss of generality we may assume that c1 is longer than the support of h1, that

is, that h1 P ColṼ pc1q � ColṼ rCGspc1q. In fact, since h1 P P β , we know h1 P Colpc1zβq. In particular, since
h P Colpcq and suppcq � β, we know h Y h1 is a well defined element of Colpc1q. Take α1 ¥ α to be some
ordinal which is larger than suppc1q.

Then xc1, h Y h1, α1y P Kγ
λ and xc1, h Y h1, α1y ¤� xc, h, αy. Using the same β as above, we can see by

construction that cp Y c
1 ,NMλ

phY h1qäpc1zβq � h1 P Dβ . Hence pc1, hY h1, α1q is cooperative.

So the set K̃ of all cooperative elements of Kγ
λ is in Uγ . Since the set of all valid one step extensions of p is

also in Uγ , there is a cooperative xc, h, αy which is a valid way to extend p by one step. Let q be this one step
extension of p. Since xc, h, αy is cooperative, we can find β P Succpcq such that cp Y c ,NMλ

häpczβq P Dβ .
Let δ � suppcq.

Now, let G be a Qλ generic filter with q P G. Then HGärβ, δs � häpczβq, and cp Y c P CG. So
HGärβ, δs P D

β . Hence q forces “There are two ordinals β   δ in CG, with β a successor element of CG, such
that HGärβ, δs P D

β”. The condition p was arbitrary, so 1Qλ
forces the statement, which is what we wanted

to show.
Now let G be an arbitrary Qλ generic filter G, and work over Ṽ rGs. The statement is true of Ṽ rGs, so

find β   δ that fit it. Let G� be a ColṼ rGspCGq generic filter containing HG. Recall that we are aiming to
show that G� X D � G� X 9DCG � H. Let h � HGärβ, δs. So h P Dβ . Hence, Dh is open and dense in

Pβ � ColṼ rCGspCG X pβ � 1qq. Also, h P G� since HG ¤ h.

Now, Qλ adds no new bounded subsets of λ by Lemma 5.4.23, so in fact ColṼ pCG X pβ � 1qq �

ColṼ rCGspCG X pβ � 1qq � ColṼ rGspCG X pβ � 1qq. So Dh is open dense over the latter forcing. Since

G� is generic over ColṼ rGspCGq, the restriction of G� to ColṼ rGspCG X pβ � 1qq is generic over that forcing.
Hence G� X Dh � H, so it contains some h1. But then h1 Y h P D by definition of Dh (and hence also
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h1 Y h P ColṼ rCGspCGq). Since h1, h P G� also h1 Y h P G�. So G�� XD � G� X ColṼ rCGspCGq XD contains
h1 Y h and is therefore nonempty.

So fixing an arbitrary Qλ filter G, we know that if G� is any ColṼ rGspCGq generic filter containing HG

and D is any ColṼ rCGspCGq dense set in Ṽ rCGs, then G�� :� G� X ColṼ rCGspCGq meets D. Hence this G��

is generic over Ṽ rCGs, as required.

As a consequence of our earlier results about NM, Q and Col, we can also conclude that the generic
extensions agree about Card and Regδ for all δ   ϵ

Lemma 5.4.31. Let G be Qλ generic, let G� be ColṼ rGspCGq generic and contain HG, and let G�� be
obtained from G� as in lemma 5.4.28. The cardinals of Ṽ rGsrG�s and Ṽ rCGsrG

��s are both precisely the
cardinals of Ṽ which are not in the interval pfpαq,SuccCpαqq for any α P C. Moreover, in both these generic

extensions, for all 0   δ   ϵ, the class Regδ in the generic extension is precisely RegṼδ but with the intervals

pfpαq,SuccCpαqq omitted. In particular, RegṼδ and Card agree up in Ṽ rGsrG�s and Ṽ rCGsrG
��s, for all

δ   ϵ.

Proof. Corollary 5.4.8 tells us that Ṽ rCGs has the same cardinals, and regular cardinals, as Ṽ . Likewise,
Lemma 5.4.11 tells us that Ṽ rGs has the same cardinals and regular cardinals as Ṽ , except that λ has
been singularised (which does not modify Regδ for δ   ϵ). Then Lemma 5.4.23 tells us that the generic
extensions of Ṽ rGs and Ṽ rCGs by G� and G�� respectively both remove all the cardinals in the intervals
pfpαq,SuccCpαqq but do not otherwise change Card or Regδ for 0   δ   ϵ. For the final sentence, we’ve
covered the case δ ¡ 0; and showing that the two models agree on Reg0 just requires us to recall that Reg0

can be trivially calculated from Card.

Corollary 5.4.32. Let G,G�, G�� be as above. Then Ṽ rCGsrG
��s and Ṽ rGsrG�s have the same cardinals,

and their Regδ’s are the same for all δ   ϵ.

5.4.6 Putting the forcings together

We are finally ready to put together these forcings, and define the overall forcing we’re going to be using. We
use a Prikry style iteration of Qλ forcings, followed by an NMκ forcing and the corresponding Col forcing.
This will give us a universe in which κ is the first element of Regϵ, and is also LSTpI,Qϵq. We now drop our
discussions of Ṽ , and just work in the universe V we fixed near the start of the proof. Recall that V believes
GCH.

Definition 5.4.33. Recursively, we define forcings Pα (α ¤ κq with two orders ¤ and ¤�, and (for α   κ)
Pα names 9Qα for forcings, also with two orders ¤ and ¤�, as follows.

� For α ¤ κ, the elements of Pα are sequences xτγyγ α of length α such that:

1. For β   α, the sequence xτγyγ β P Pβ and forces τβ P 9Qβ .

2. The sequence has Easton support. That is, for every V regular λ ¤ α, the set

tβ   λ : xτγyγ β . τβ � 1
9Qβ
u

is bounded below λ.

� The ¤ order of Pα is defined as follows: xτ 1γyγ α ¤ xτγyγ α if:

1. For all β   α, xτ 1γyγ β , τ 1β ¤ τβ .

2. For all but finitely many β, either τβ is forced to be 1
9Qβ

by xτγyγ β , or we can replace ¤ with ¤�

(in the sense of 9Qβ) on the previous line.

� xτ 1γyγ α ¤
� xτγyγ α if in the above, 2 holds for every β.

� For any α   κ, 9Qα is a Pα name for a forcing:
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1. If α is α� supercompact in V and Pα forces: “α is a cardinal which is α� supercompact”, then
9Qα is a name for the forcing Qα we defined earlier.

2. Otherwise, 9Qα is the canonical name for the trivial forcing.

This gives us a well defined forcing Pκ. But we don’t immediately know very much about it. For the rest
of the proof to work, we need to verify that it does in fact singularise every λ� supercompact λ   κ with
a Qλ style forcing, but that κ remains Mahlo. There is also a further complication: we need to make sure
that when we do our NMκ �ColpCq portion of the forcing, we will end up with κ � minpRegϵq. Showing that
there are no elements of Regϵ below κ is pretty much immediate. But making sure that unboundedly many
elements of Regδ survive below κ, for every δ   ϵ, is harder.

Of course, once we know that κ is a Mahlo cardinal in the Pκ generic extension, it follows that Regδ
will certainly be unbounded in κ at that point. But remember that ColpCq collapses nearly all the cardinals
below κ. So if we’re not careful, we might get unlucky and find that we’ve collapsed all the elements of Regδ
in the final stage of hte forcing. To avoid this, we need to make sure that there are elements of Regδ in the
intervals pα, fpαqq, α P C.

Now because of how we defined f , we know that there are such regulars in that interval in V . But when
we choose α P C, we need to be sure that these regulars have survived in the Pκ generic extension. This is
non-trivial, since we cannot (easily) prove Pκ preserves all the cardinals, let alone that it doesn’t singularise
anything we didn’t ask it to.

We start with some technical lemmas. The first is a special case of [18, 1.3] and we do not re-prove it
here.

Lemma 5.4.34. Let α ¤ κ be a Mahlo cardinal (of V ). Then Pα has the α chain condition, and has
cardinality ¤ α.

Corollary 5.4.35. Let α ¤ κ. Then |Pα| ¤ α��.

Proof. Case 1: α is a Mahlo cardinal. Then |Pα| ¤ α by the previous lemma. Case 2: α is a limit of Mahlo
cardinals. Let pγiqi cfpαq � α be a sequence of Mahlo cardinals which is cofinal below µ. Again by Lemma
5.4.34, for all i, |Pγi | � γi. A condition of Pα can be expressed as a collection of conditions, one from each
Pγi , which all agree with each other. So

|Pα| ¤
¹

i cfpαq

|Pγi |

�
¹

i cfpαq

γi

¤
¹

i cfpαq

α

¤ αα

� α�

Case 3: α is neither a Mahlo cardinal nor a limit of Mahlo cardinals. Let β   α � suptMahlo cardinalsuXα.
Any λ� supercompact cardinal λ is Mahlo, so we know that 9Qγ is trivial for all γ P pβ, αq. So

|Pα| ¤ |Pβ � 9Qβ |
¤ β��

  α��

Similarly, this next lemma is a special case of [18, 1.4], and again we don’t prove it here:

Lemma 5.4.36. Let φ be a statement (with parameters) and p P Pα. There is some q ¤� p which decides
φ. The same is true of the forcing Pα{Pβ if β   α is a Mahlo cardinal.
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Here Pα{Pβ is the (Pβ name for the) forcing defined in the usual way in a Pβ generic extension V rGs: we
simply take Pα and delete all those conditions which are incompatible with an element of G.

Lemma 5.4.37. For any β   α ¤ κ, the forcing Pα{Pβ is closed under ¤� sequences of length less than β.

Proof. Let p0 ¥
� p1 ¥ . . . be a ¥� decreasing sequence of Pα{Pβ length λ   β. We want to find a

p � pλ � τγβ¤γ α which is ¤� below every pi. We define it recursively as follows. Let β ¤ γ   α.

If for all i, the γ component of pi is trivial (either because 9Qγ is trivial, or because γ is not in the support
of pi) then we define τγ to be trivial as well.

Otherwise, if say pjpγq is nontrivial, then we know that pjpγq ¥
� pj�1pγq ¥

� . . . are names for an ¤�

decreasing sequence of conditions in Qγ of length λ   γ. We know by Proposition 5.4.20 that there is a
condition in Qγ below them; let τγ be a name which is forced to be that condition by päγ.

If this construction works, it will obviously give a condition which is ¤� pi for all i   λ. We must check
that päγ is a condition of Pα{Pβ , for all γ. It suffices to check that p has Easton support, i.e. its support is
bounded below every regular cardinal of V rGs. But we can easily see that

suppppq �
¤
i λ

suppppiq

For all i, we know that suppppiq is bounded below every regular cardinal of V rGs, and suppppiqXβ � H.
So if µ is regular in V rGs, then either µ ¤ β (and suppppqXµ � H) or suppppqXµ is a union of λ   µ many
bounded sets, and therefore is bounded below µ.

Lemma 5.4.38. If β   α is a Mahlo cardinal, then the forcing Pα{Pβ does not collapse or singularise any
cardinals below β, or add any new bounded subsets of β.

Proof. This is similar to Lemma 5.4.23. Let us write P for Pα{Pβ . First, let p P P , and let φpxq be a
statement such that

p , Dx P λ̌ φpxq

We claim there is some condition q ¤� p which forces, for some γ P λ, that φpγ̌q holds. By Lemmas 5.4.36
and 5.4.37 we can construct a descending chain of conditions p � p0 ¥

� p1 ¥
� . . . in P of length λ� 1 such

that pi decides φp̌iq. But then q :� pλ decides φpγ̌q for every α P λ, so it must decide at least one of them
positively.

Now let λ   β be a cardinal of V rGs, a generic extension of V by Pβ . Suppose that λ is collapsed by P .

Let 9h be a name for a bijection h : ν Ñ λ for some ν   λ. Let p P P be a condition forcing this. Using the
above and Lemma 5.4.37, we construct a descending sequence p � p0 ¥

� p1 ¥
� . . . of length ν � 1, such that

for all i, pi decides the value of 9hp̌iq. Then pν defines bijection between ν and λ in V rGs. Contradiction.
Showing that λ is not singularised by P , and that P adds no bounded subsets of β, are both similar.

Corollary 5.4.39. If α is a Mahlo cardinal, and G is a Pα generic filter, then GCH holds in V rGs except
perhaps at the cardinals λ for which 9Qλ is nontrivial. (In other words, if λ is not λ� supercompact in V , or
λ ¥ α, then 2λ � λ� in V rGs.)

Proof. Let λ be a cardinal of V which is not λ� supercompact. We first examine the case λ ¥ α. By Lemma
1.2.7 and Lemma 5.4.34 we know that if λ ¡ α� then 2λ � λ� in any Pα generic extension. Similarly, if
λ � α or λ � α�, then by regularity we know that for all β   λ, λβ � λ. So again by the same two lemmas,
we know Pα preserves 2λ.

Now suppose that λ   α. Let µ ¤ λ � suptβ ¤ λ : β is β� supercompactu and let ν be the least β ¡ λ
such that β is β� supercompact. Then up to some trivial notation changes,

Pα � Pµ � 9Qµ � Pα{Pν

We have just seen that Pµ preserves 2λ. If 9Qµ is nontrivial, then µ is µ� supercompact in V , and hence

µ   λ. If so, then 9Qµ is Qµ, which we saw in Lemma 5.4.23 preserves 2λ. And finally, Pα{Pν adds no new
bounded subsets of ν ¡ λ, so it doesn’t change Ppλq at all. Hence Pα preserves 2λ.
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Lemma 5.4.40. If α ¤ κ is α� supercompact in V then it is still α� supercompact in the Pα generic
extension.

Proof. Let V rGs be a Pα generic extension of V . Let j : V Ñ M be an α� supercompact embedding with
critical point α ¥ κ, such that α is no longer α� supercompact in M , which exists by Lemma 3.1.17. Let U
be the ultrafilter on Pαpα�q generated by j in Lemma 3.1.16. Let

pP�
β : β ¤ jpαqq :� jppPβ : β ¤ αqq

and
p 9Q�

β : β   jpαqq :� jpp 9Qβ : β   αqq

Now α is strongly inaccessible in V , so by Corollary 5.4.35 we know that for β   α, |Pβ | ¤ β��   α.

Also, |Qβ |   λ for β   α. Hence, for all β   α, P�
β � Pβ and 9Q�

β �
9Qβ . It follows that also P�

α � Pα. So

jpPαq � P�
jpαq is an end extension of Pα. Moreover, 9Q�

α is trivial, as α is not α� supercompact in M . Note

that G is also generic for Pα over M .
By Lemma 5.4.34, Pα satisfies the α chain condition and has cardinality α from the perspective of V ,

and hence also from the perspective of M . Also, M is closed under α� sequences. So α� and α�� are both
absolute between V , M , V rGs and M rGs. In particular, since 2α

�

� α�� from the perspective of V (and
V rGs, see Corollary 5.4.39) we can find in V a collection of α�� many names such that in any Pα generic
extension, every element of Pαpα�q will be equal to one of these names. To ward off a technical issue later in
the proof, we will insist that we include in this collection all the check names X̌ for elements X of pPαpα�qqV .

Let us enumerate these names σi : i   α��. Since Mα� � M and Pα P M , we know for k   α�� that
pjpσiqqi k PM .

Now α is a Mahlo cardinal in M , because M and V agree on the singular cardinals below κ and any club
of such singulars in M would also be definable in V . We can localise the proof of Lemmas 5.4.37 and 5.4.36
to M and P�

jpαq. In particular, since α is still a Mahlo cardinal in M , we know that P�
jpαq{Pα is closed under

¤� sequences of length α�, and any statement can be decided by ¤� densely many conditions of P�
jpαq{Pα.

Note also that for i   α��, jpσiq is a P�
jpαq name for a subset of jpα��q; in V rGs we can think of it as a

P�
jpαq{Pα name.

We shall use this to recursively define a descending α�� sequence of conditions p0 ¥
� p1 ¥

� . . . of
P�
jpαq{Pα. (Technically, this means pi will be a Pα name in M for a condition of P�

jpαq which is compatible

with the Pα generic filter.)
To get a canonical choice function for the definition, let us fix some well ordering ¡ in M on the elements

of P�
jpαq{Pα. (Note that ¡ need not have any particular relation to ¥�.) As part of the recursion, we will

also inductively show that all the initial segments pplql i of the sequence are definable in terms of G, j2α�,
and pjpσkqqki . The sequence itself, however, will not be in M but only in V .

Now, we take p0 � 1. For i � k � 1   α��, we define pi to be the ¡ least element of M which is ¤� pk
and which decides

ˇj2α� P jpσkq

pi is definable in terms of ¡, j2α�, jpσkq and pk, which by inductive hypothesis is itself definable in terms
of ¡, j2α� and pjpσlqql k. So pplql i�1 is definable in terms of ¡, j2α� and pjpσlqql i�1.

Now suppose that i   α�� is a limit. Then pplql i is definable in terms of ¡, j2α� and pjpσkqqk i. These
are in M , so the sequence pplql i P M . Hence there exist p P M such that p ¤� pl for all l   i. Let pi be
the ¡ least such p. p is definable in terms of pplql i and ¡, so it is also definable in terms of ¡, j2α� and
pjpσkqqk i�1.

Now, the overall sequence ppiqi α�� does not exist in M , but it does exist in V and hence in V rGs.
Working in V rGs, let U� be defined by:

σGi P U
� ðñ pi , ˇj2α

�
P ˇjpσiq

Here we are viewing jpσiq as the P�
jpαq{Pα name for a subset of jpα�q.

Claim 5.4.41. U� is a well-defined normal ultrafilter on Pαpα�q.
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Proof. We go through the properties of a normal ultrafilter on Pαpα�q.
Well-defined: Suppose that σGi � σGk , i   k. Then pi decides whether j2α� P jpσiq or not. pk ¤ �pi so it

agrees with pi about this.
Filter: If σGi , σ

G
k P U

� then let l be such that σGl � σGi X σ
G
k . Let m � maxti, l,mu. Then pm forces that

j2α� P jpσiq X jpσkq � jpσlq. Also pm ¤
� pl so pl cannot decide j2α� R jpσlq. So pl decides j2α� P jpσlq

and hence σGl P U
�. Similarly, if σGi � σGk and σGi P U

� then let l � maxti, ku; then pl cannot decide that
j2α� R jpσkq, so pk decides that j2α� P jpσkq.

Ultrafilter: Suppose that σGi R U
�; let α�zσGi � σGk , and let l � maxti, ku. Then pl cannot decide that

j2α� R jpσkq so pk decides that j2α� P jpσkq.
Complete: Let σGiγ : γ   β be a collection of elements of U�, with β   α. Let k be such that σGk �

�
σiγ .

Let l � maxtiγ : γ   βuYtku   α. Then pl cannot decide that j2α� R jpσkq so pk decides that j2α� P jpσkq.
Fine: Fix β   α�. Let X � tx P pPαpα

�qqV : β P xu. By definition of U , we know that X P U and hence
that j2α� P jpXq. Since X P V , we know that X̌ � σi for some i. (This is the reason we insisted on including
all the check names in our collection of σi’s near the start of the lemma.) And of course, jpX̌q � ˇpjpXqq. So
clearly 1 , ˇj2α� P ˇjpXq, and hence X P U�. But X � tx P Pαpα

�qV rGs : β P xu, so the latter is also in U�.
Normal: Let σGiγ : γ   α� be a collection of elements of U�. Let k be such that σGk �

a
γ α� σ

G
γ .

Let l � maxtiγ : γ   α�u Y tku   α��. Then pl cannot decide that j2α� R jpσkq, so pk decides that
j2α� P jpσkq.

Hence α is α� supercompact in V rGs by Lemma 3.1.16.

Corollary 5.4.42. For α   κ, 9Qα is nontrivial if any only if α is α� supercompact in V .

Lemma 5.4.43. Let α ¤ κ and let G be a Pα generic filter. Suppose that β   α is in Regϵ from the
perspective of V rGs. Then V rGs believes that pβ, fpβqq contains unboundedly many elements of Regδ for all
δ   ϵ, but no elements of Regϵ. Also, V rGs does not believe that fpβq is in Regϵ.

Proof. Since the interval contains no elements of Regϵ even in V by definition of f , it is immediate that it

contains none in V rGs either. Similarly, fpβq R RegV rGsϵ .
Let µ ¤ β be be the supremum of the class of λ� supercompacts λ which are ¤ β. Let ν ¡ β be the least

λ ¡ β which is λ� supercompact. Note that Pα � Pµ � 9Qµ � pPα{Pνq (or, if we want to be very formal, these
two forcings are equivalent via a trivial relabelling of conditions).

It follows trivially from Corollary 5.4.35 that Pµ satisfies the µ�� chain condition, and therefore does not
collapse or singularise any cardinals ¥ µ��. But we know that fpβq is a limit of elements of Reg0 � Succ,
so fpβq is a limit cardinal. Hence, µ�� ¤ β��   fpβq.

9Qµ is either trivial, or is of the form Qµ, which we know by Lemma 5.4.23 does not collapse or singularise
any cardinals other than µ.

ν is a successor element of X, and hence is ν� supercompact in V . In particular, then, it is Mahlo. So
by Lemma 5.4.38, Pα{Pν does not collapse or singularise any cardinals below ν. But since ν ¡ β ¡ ϵ, and
(again) ν is Mahlo in V , there are certainly elements of Regϵ in the interval pβ, νq. It follows that ν ¡ fpβq.

Putting these facts together, we find that Pα does not collapse or singularise any cardinals in the interval
ppβ��qV , fpβqq, and hence that in V rGs there are unboundedly many elements of Regδ for all δ   ϵ.

So now we know that Pκ is a well-defined forcing which combines a Qλ on every λ� supercompact
λ   κ. Also, κ is still κ� supercompact and hence Mahlo in the generic extension, so the following forcing is
well-defined.

Definition 5.4.44. The forcing P is defined as

Pκ �NMκ �Col 9C

Here, 9C is a Pκ �NMκ name for the generic club added by NMκ. (We are abusing notation slightly here:

strictly speaking, the forcing is Pκ � 9NM � 9Col where 9NM is a name for NMκ and 9Col is a name for Colp 9Cq.
This kind of abuse is standard shorthand.)
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5.4.7 The LST number

Now, let us fix a P generic extension V �� of V . Let the corresponding generic filter be G̃ � C � G��. So G̃
is a Pκ generic filter, and C is an NMκ generic club over V rG̃s, and G�� is a ColpCq generic extension over
V rG̃srCs.

To tidy up our notation, let us write Ṽ for V rG̃s. By Corollary 5.4.8 and Lemma 5.4.11 we know that
the cardinals of V �� below κ are precisely the cardinals of Ṽ which are either below minpCq � ω or are in
some interval rα, fpαqs for some α P C. By Lemma 5.4.43 it follows that in V �� there are unboundedly many
elements of Regδ below κ � suppCq for all δ   ϵ, but no elements of Regϵ.

Also, κ is regular (since it was Mahlo in Ṽ and neither NMκ nor ColpCq singularise it). So κ �

minpRegV
��

ϵ q.
Our goal now is to show that in V ��,

LSTpI,Qϵq � LSTpI,Rϵq � κ

By Theorem 5.3.1 and 5.3.3, we know that LSTpI,Qϵq ¥ LSTpI,Rϵq ¥ κ. (Recall that ϵ is countable, so
there are certainly no hyperinaccessibles below it.) So it suffices to show that LSTpI,Qϵq ¤ κ.

Let A P V �� be a structure in some first order language L for cardinality less than κ. Without loss of
generality, let us assume |A| � µ is much larger than κ. (Any smaller structure can be easily padded out by
gluing on a extra structure of large cardinality over which all the symbols of L are interpreted trivially, and
adding one extra predicate to let us identify the original structure.) In fact, without loss of generality, we
can just assume that the domain of A is µ itself. We want to find an LY tI,Qϵu elementary substructure of
A of cardinality less than κ.

By Lemma 5.4.5, we can find a model M with Mµ � M (from the perspective of V ) and an elementary
embedding j : V ÑM with critical point κ, such that jpκq ¡ µ and jpfqpκq ¡ µ.

We want to use Lemma 5.4.2 to extend j to an elementary embedding j� of V �� into some jpPq generic
extension of M . The first step is to work out what jpPq generic filter we’re going to use.

Let’s start by working out what jpPq looks like. Since the critical point of j is κ, we know that jpPαq � Pα
for α   κ. (We saw the proof of this in Lemma 5.4.40.) What about jpPκq? It will start off by just
constructing Pκ, but will then have some extra steps of the iteration to get it up to jpκq stages. To be
precise, it will add in Qλ for all λ� supercompacts λ in the interval rκ, jpκqq in M .

Now, since Mµ �M we know that below µ, M and V agree on the cardinals and their cofinalities. Also,
we know that κ is κ� supercompact in M : by Lemma 3.1.16 this is equivalent to the existence of a normal
ultrafilter on Pκpκ

�q, and since M is closed under µ sequences and µ ¡ κ�� this is absolute between V and
M . On the other hand, there are no other λ� supercompact cardinals λ between κ and µ in M : there are
no even any elements of Regϵ in this interval, since RegVϵ � κ. So jpPκq is the iterated forcing:

Pκ �Qκ � Pjpκq{Pν
where jpκq ¥ ν ¡ µ is the least cardinal above µ such that M believes ν is ν� supercompact. (We are

slightly abusing notation: strictly speaking, we only defined P up to Pκ, within V . By Pν for ν ¤ jpκq we
mean the forcing in M which is defined analogously to Pα for α ¤ κ in V .)

Then jpPq is

Pκ �Qκ � Pjpκq{Pν �NMjpκq �Colp 9Dq

where 9D is the name for the club added by NMjpκq.

In order to make j� exist, we need to find a jpPq generic filter which extends G̃ � C �G��. We will need
the following well-known lemma.

Lemma 5.4.45. Let Q be a complete Boolean algebra, and let P � Q be a complete Boolean subforcing.
Suppose that H is a Q generic filter, and that G :� H X P is P generic. Then there is a forcing QG � Q
(defined in V rGs) such that H is a QG generic filter.

Proof. We define a function π : QÑ P by

πpqq � inftp P P : p ¥ qu
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Notice that πpqq ¥ q for all q P Q. We then define

QG :� tq P Q : πpqq P Gu

Although we will avoid using this terminology, our goal is essentially to show that π is a projection map
from Q � P �QG onto P.

First, we shall establish that H � QG. Let q P H. Let

Dq :� tπpqqu Y t p P P : p ¥ qu � P

Now, Dq is clearly predense: if r P P is incompatible with  p for all p ¥ q, then r ¤ p for all p ¥ q, and
hence r ¤ πpqq Since G is generic, G X Dq � H. But for all p ¥ q, we know p P H and hence p P G, so
 p R G. By process of elimination, πpqq P G, and so q P QG. Hence H � QG.

We know H is a filter; it remains to show that it is generic over QG.
Let D P V rGs be an open dense subset of QG. Let 9D be a P name for D, which is forced by 1 to be dense

and open in Q
9G. Let

D1 :� tq P Q : πpqq , q̌ P 9Du

Note that D1 P V . We shall show that it is dense in Q. Fix q P Q. Let Ḡ be any P generic filter containing
πpqq. Then q P QḠ.

Now, 9DḠ is dense in QḠ, so let r P 9DḠ be an element of QḠ which is below q. Find p P Ḡ which forces
ř P 9D.

Since r P QḠ we know πprq P Ḡ. So p ∥ πprq. Without loss of generality, say p ¤ πprq.

Claim 5.4.46. There is a condition s ¤ r with πpsq ¤ p.

In fact, the existence of such an s for all p ¤ πprq is one way to define a projection map π.

Proof. We claim that r ∥ p. Note that  p � suptp1 P P : p1 K pu. So if r K p then r ¤  p. But then
πprq ¤  p, by definition of π and the fact that  p P P. Hence p ¤ πprq ¤  p, a contradiction. So r ∥ p.

So let s ¤ p, r. Since p P P, we know by definition of π that πpsq ¤ p, so s is as required.

Now, p , ř P 9D, so since 9D is forced to be open and s ¤ r, p , š P 9D as well. And πpsq ¤ p, so
πpsq , š P 9D. So s P D1. Since s ¤ r ¤ q and q was arbitrary, D1 is dense.

Now, since H is generic over Q, we know there is some q P HXD1; that is, a q P H such that πpqq , q P 9D.
But then πpqq ¥ q P H so πpqq P H X P � G. Hence, q P 9DG � D. We also know q P H, so H XD � H.
Hence, H is QG generic.

We use this lemma to extend G̃ � C �G�� to a Pκ �Qκ � ColpCq generic filter.

Lemma 5.4.47. There exists a pQκqṼ generic filter G and a ColṼ rGspCGq generic filter G� such that:

1. CG � C

2. HG P G
�

3. G�� � G� X ColṼ rCspCq

Proof. Just for this proof, let us write BpQq for the Boolean completion of a forcing Q.
First, we show that the claim will hold if and only if V �� believes the following statement. (The technical

details of this formalisation aren’t very important; we just need to establish that it’s something we can express
within V ��.)

“There is a forcing R � BpQκ � Colp 9CGqq such that some condition in R forces that the R
generic filter is also generic over BpQκ � Colp 9CGqq, and that the equivalent generic filter G � G�

on Qκ � Colp 9CGq is such that CG � C, 9HG P G
� and G�� � G� X ColṼ rCspCq.”
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It is clear that if V �� believes this, then we can find our filters G and G� as required by the claim. On
the other hand, suppose we can find G and G� as the claim describes. Then apply Lemma 5.4.45 in Ṽ , using
BpNMκ �Colp 9Cqq as P and BpQκ � Colp 9CGqq as Q. We use the Boolean analogue of C � G�� in place of
G and the analogue of G � G� in place of H. This gives us a subforcing R (denoted QG in the lemma) of
BpQκ �Colp 9CGqq, which exists in Ṽ rC �G��s � V ��, and which is such that the Boolean analogue of G �G�

is generic over this subforcing. This witnesses that the statement is then true. So V �� knows whether such
a G and G� exist (although of course it won’t know what they look like).

Now, suppose that for some choice of C and G��, no such G and G� exist. Then we can find some

condition pc, 9hq P NMκ �ColpCq forcing that G and G� do not exist. Since ColV
��rCspCq � Ṽ , we know

h :� 9hC P Ṽ , and so without loss of generality we can choose c such that c , 9h � ȟ. Further, without loss of
generality, we can then assume that 9h � ȟ.

Working in Ṽ , let G be a Qκ generic filter such that c is an initial segment of CG and h � HG. (Note that
we aren’t insisting that CG � C. It is easy to see that such a G exists: h is bounded below κ, so by extending
c if necessary we may assume h P Colpcq, and then we can just take a condition p with cp � c, hp � h and take

a generic containing p.) Let G� be a ColṼ rGspCGq generic filter containing HG, and hence also containing h.

Let G��
new :� G� X ColṼ rCGspCGq. As we saw in Lemma 5.4.28, G��

new is ColṼ rCGs generic. Let Cnew � CG.
Consider the model Ṽ rCnewsrG

��
news. Clearly, there exist G and G� corresponding to Cnew and G��

new in
the way described in the claim: the G and G� we have already defined are the ones we need. And since

c P Cnew � CG and h P G� X ColṼ rCGspCGq � G��
new we know that pc, ȟq P Cnew � G

��
new. But pc, ȟq was

supposed to force that there were no such G and G�. Contradiction.

Now, let us define the jpPq filter GM . Recall that

jpPq � Pκ �Qκ � Pjpκq{Pν �NMjpκq �Colp 9C 1q

We shall define generic filters G1, . . . , G5 on each of these forcings in turn, which together will make up
GM . Recall that we already have fixed generic sets G̃ (over Pκ), C (over NMκ in V rG̃s) and G�� (over ColpCq
in V rG̃srCs), G (over Qκ in V rG̃s) and G� (over ColpCGq in V rG̃srGs). The generic filters G1, . . . , G5 are
defined as follows:

� G1 :� G̃;

� G2 :� G;

� G3 is some arbitrary Pjpκq{Pν generic filter over V rG1 �G2s;

� G4 is an NMκ generic club extending C � CG. This is possible since κ is singular in V rG1 �G2 �G3s,
and C P Ṽ rCs � V rG1 � G2s, and neither Qκ nor Pjpκq{Pν collapse or singularise any cardinals below
κ, so C is a condition of NMjpκq in V rG1 �G2 �G3s.

Defining G5 is a little more complicated. We know that C is an initial segment of the generic club G4, so
we can break down

ColV rG1�...�G4spG4q � ColV rG1�...�G4spCq � ColV rG1�...�G4spG4zκq

We know that Pjpκq{Pν and NMjpκq do not collapse or singularise any cardinals below κ, or otherwise add
any new elements or subsets of ColpCq. So

ColV rG1�...�G4spCq � ColV rG1�G2spCq � ColṼ rGspCGq

.
Moreover, this forcing has the same dense subsets in Ṽ rGs and V rG1 � . . . �G4s. So the filter G�, defined

in Lemma 5.4.47, is ColV rG1�...�G4spCq generic over V rG1 � . . . �G4s.

Now, let G1 be some arbitrary ColV rG1�...�G4spG4zκq generic filter over V rG1 � . . . �G4srG
�s.

Finally, we define G5 :� G� �G1, and

GM :� G1 �G2 �G3 �G4 �G5

We now verify that GM satisfies the requirements for Lemma 5.4.2.
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Claim 5.4.48. Let p P G̃ � C �G��. Then jppq P GM .

Proof. Let us write p � pq, c, hq. (Formally, c is a name for an element of NMκ, etc. In order to reduce
notation, we will write c for both this name and its interpretation in V rG̃s, and similarly for h.) To verify
that jppq P GM , it suffices to check that jpqq P G̃, that jpcq � CM and that jphq P G� �G1. (Again, strictly
speaking we mean that jpcq is a name whose interpretation in V rG1 �G2 �G3s is an element of CM , and give
a similar statement for h.)

q is easy: jpPκq � Pκ, so jpqq � q P G̃ by assumption.
Similarly, jpcq � c P NMjpκq. By assumption c � C, and by definition of CM , we know C � CM .

Once again, jptq � t. By assumption, t P G��, and so since G�� � G� X Ṽ rCs, we know t P G�.

Hence, by Lemma 5.4.2 we can extend j to an elementary embedding j� : V �� ÑM rGM s.
Recall that the domain of A is µ. Consider jäµ � j�äµ. Since µ � V and M is closed under µ sequences,

we know that rangepjäµq PM and hence rangepj�äµq PM rGM s. Also, since the critical point of j� is κ and
|L|   κ, we also know that j�pLq � L. Hence, j�pAq is an L structure in M rGM s, which is elementarily
equivalent to A in V �� (even in the language L Y tI,Qϵ, Rϵu since j� is fully elementary). Let B be the
substructure of j�pAq whose domain is rangepj�äµq. Note that B PM rGM s, and since j� is elementary and
A has domain µ, we can easily see that B is isomorphic to A. Also, M rGM s believes that B has cardinality
less than j�pκq.

By construction, M rGM s and V �� have the same cardinals and regulars below κ. Also, since P and jpPq
do not collapse or singularise any cardinals in the interval pκ, µs, and the cardinals and cofinalities of V and
M agree up to ν, M rGM s and V �� have the same cardinals and regulars in that interval. So in fact, the two
models agree completely on the cardinals and regulars ¤ µ, except that M rGM s thinks that κ has cofinality
ω and V �� thinks it is in Regα.

In particular, this means that I and Qα are interpreted the same way about subsets of A in V �� and the
L isomorphic structure B in M rGM s. The only case which is nontrivial is when we are using Qα to compare
two linear orders, one or both of which have cofinality κ in V �� and therefore ω in M rGM s. In that case,
since Qα only tells us about cofinalities in Reg α, we know that in V �� it will always be false regardless
of whether the two linear orders actually have the same cofinality, and regardless of the third (auxiliary)
formula we choose. Likewise, we know that ω R Reg α, so Qα will also be false in M rGM s.

So the map

j�äµ : AV ��

Ñ BMrGM s

is an LY tI,Qϵu isomorphism.
But we also know that

j�äA : AV ��

Ñ j�pAqMrGM s

is an LYtI,Qϵq elementary embedding, since j� : V �� ÑM rGM s is fully elementary. So M rGM s believes
that B is an LpI,Qϵq elementary substructure of j�pAq.

But now we know M rGM s believes

“j�pAq contains an LY tI,Qϵu elementary substructure of cardinality less than j�pκq”.

Since j� : V �� ÑM rGM s is elementary, j�pLq � L and j�pϵq � ϵ, it follows that V �� believes

“A contains an LY tI,Qϵu elementary substructure of cardinality less than κ”.

But A was an arbitrary structure in V ��, so

LSTpI,Qϵq ¤ κ

in V ��. As we’ve already seen, LSTpI,Qϵq ¥ LSTpI,Rϵq ¥ κ, so

LSTpI,Qϵq � LSTpI,Rϵq � κ
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5.5 Open Questions

This proof suggests several possible extensions, and improvements to the result. These are beyond the scope
of this thesis, but would be interesting avenues for future research.

Firstly, the results in this section have shown that LSTpI,Qϵq and LSTpI,Rϵq can be the least element
of Regϵ. Could they be a larger element?

Question 16. Let α ¡ 0 and ϵ ¡ 0 be ordinals. Granting the consistency of a supercompact, is it consistent
that LSTpI,Qϵq and LSTpI,Rϵq are the α’th element of Regϵ?

One could also ask for an element of Regδ for some δ ¡ ϵ. I hypothesise that the answer to this question
is “yes”, and that we can adjust the proof as above to preserve an initial segment of the regular cardinals.
The main difficulty would be in making sure that the LST number doesn’t drop below κ: in the proof above,
we knew this automatically by Theorem 5.3.3. If the question were answered positively, then we would have
shown that LSTpI,Rϵq and LSTpI,Qϵq can be any element of Reg¥ϵ.

Question 17. Let ϵ ¡ 0 be an ordinal. Is it possible that LSTpI,Qϵq or LSTpI,Rϵq exist, and are not
elements of Reg¥ϵ?

I hypothesise the answer to this question to be “no”. An element of Reg¥ϵ is somehow the simplest object
which Qϵ and Rϵ don’t know about, so it seems natural that this should be the dividing line. A natural
approach to proving it would be to imitate the proof of Theorem 5.3.3, but let A contain constant symbols
for all the elements Hλ for all λ P RegϵXκ. But this would not work for limits of Regϵ, or for cardinals which
were only slightly above an element of Regϵ.

These two questions, together, could give us an exact characterisation of the possible cardinals which can
be LST numbers of these predicates. But there’s still some information missing here. The technique we used
for proving this rather critically assumed that there were no elements of Regϵ above κ. So κ is not just the
smallest element of Regϵ, but the only one. The adaptations I propose above address the idea of adding
inaccessibles below κ, but would still leave κ as the largest element of Regϵ.

Question 18. Let ϵ ¡ 0 be an ordinal. Assuming sufficient large cardinal hypotheses, is it consistent
that LSTpI,Qϵq or LSTpI,Rϵq are elements of Regϵ, but not its largest element? How about that Regϵ is
unbounded?

Another natural question to ask is whether we can separate LSTpI,Qϵq from LSTpI,Rϵq.

Question 19. For ϵ ¡ 0, is it consistent that LSTpI,Qϵq ¡ LSTpI,Rϵq � minpRegϵq?

To avoid strange answers related to Theorem 5.3.1, it might be necessary to add the assumption that
LSTpI,Rδq ¥ δ for all δ ¤ ϵ.

Finally, thoughout this thesis we have been looking at hierarchies of inaccessibles. Can we prove similar
results with hierarchies of other large cardinals?

Question 20. Let H be some large cardinal property (e.g. hyperinaccessibility, being Mahlo, etc.) For ϵ ¡ 0,
let Hϵ be the class of elements of H of Cantor-Bendixson rank ϵ. Let Sϵ be some second order predicate
expressing H ϵ, in the same way that Rϵ and Qϵ express Reg ϵ.

For what choices of H and ϵ can we show that LSTpI, Sϵq ¥ minHϵ, and that this inequality is optimal?
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