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Abstract 

 

 

Direct psychophysical discrimination of the spatial and temporal characteristics of the retinal 
magnocellular and parvocellular pathways in the primate visual system has proved elusive. However, 
the results of the experiment reported here suggest that such discrimination is possible using stimuli 
tailored to the underlying physiology of the M and P retinal ganglion cells. To maximise the sensitivity, 
the visual stimuli used were tangential sinusoidal gratings with a linearly varying spacing matched to 
the retinal ganglion cell spacing. The results - support the hypothesised dual-segment characteristic 
of the contrast sensitivity function and are consistent with the known contrast gain and spatial 
physiological characteristics of the P and M pathways in the primate visual system. The results are 
consistent with previous observations that the overall system response is that of the most sensitive of 
the two channels at a given contrast, rather than summing the two channel responses. 
 
In order to visualise how the two pathways transmit visual information to the lateral geniculate nucleus 
(LGN) and the higher visual areas, I developed a simple algorithm for determining local contrast as a 
function of scale in natural images, allowing the derivation of contrast heat maps. The algorithm was 
validated using simple sine wave images and the results on natural images were consistent with 
previous studies. I then used the same algorithm to plot contrast response images at the 
characteristic scales of the M and P pathways, which allowed visualisation of the spatial contrast 
responses of two pathways at an eccentricity of 23.5 degrees. The visualisation can be interpreted as 
indicating that the P and M pathways perform different filter functions of edge enhancement and 
contrast enhancement, respectively. 
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Chapter 1 General Introduction 

 

1.1 Introduction 

The contrast sensitivity function (CSF) is a powerful tool for analysing the response of the visual 

system to spatial information. The CSF was first reported in the 1960’s (Campbell & Green, 1965; 

Campbell, Kulikowski, & Levinson, 1966; Westheimer, 1960), and has been extensively used for 

characterising the spatial sensitivity of the visual system across a range of parameters (De Valois, 

1988; Hoekstra, van der Goot, van den Brink, & Bilsen, 1974; Johnston, 1987; Rovamo, Franssila, & 

Nasanen, 1992; Rovamo et al., 1978). Figure 1 shows examples of the dependence of the CSF on a 

number of parameters, including luminance, eccentricity and temporal frequency. 
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Figure 1. (A) Simple CSF function for human foveal vision (Reproduced from Devalois et al., 1974). 

(B) CSF as a function of adaptation for luminance values of 0.0005 - 5 foot-Lamberts in decade steps 

(Reproduced from Devalois et al., 1974). (C) CSF as a function of eccentricity in inferior visual field at 

eccentricities of 0°, 1.5°, 4.0°, 7.5°, 14° and 30° (circle to rectangle) (Reproduced from Rovamo et al., 

1978). (D) Temporal CSF, as a function of adaptation for luminance values 0.06 to 9300 trolands 

(Reproduced from Kelly, 1961). 

 

 Figure 1(A) shows an example of CSF, with the contrast sensitivity (the inverse of the contrast 

threshold) plotted against the spatial frequency of the stimulus (Devalois et al., 1974). The peak of the 

curve shows the maximum contrast sensitivity, and the shape of the low and high frequency roll-offs 

provide information about the spatial structure of the system under test. The system can be a 

population of retinal ganglion cells in a human retina, as shown here, or a single retinal ganglion cell 

(RGC), for example. Figure 1(B) shows the CSF as a function of adaptation to different luminance 

levels, which shows how the adaptation of the retina as luminance reduces moves the peak sensitivity 

to lower spatial frequencies and a lower absolute value (Devalois et al., 1974). Figure 1(C) shows the 

CSF as function of eccentricity, with the peak moving to lower frequency and lower absolute values as 

eccentricity increases, but in this case due to an increase in the size of the retinal ganglion cells 

(Rovamo et al., 1978). Lastly, Figure 1(D) shows the temporal CSF (which is the contrast sensitivity 

plotted as a function of temporal frequency) as a function of adaptation to different luminance levels, 

showing how temporal CSF shows how the temporal frequency response of shifts from a high 

sensitivity/bandpass response at high luminance to a low sensitivity/lowpass response at low 

luminance. As can be seen, the CSF can provide insight into range of characteristics of the early 

visual system. 

 

The physiological basis of the CSF began to be elucidated with the identification of the differential 

contrast gain characteristics of the two primary cell types in the Lateral Geniculate Nucleus (LGN), the 

parvocellular (P) and magnocellular neurons (M) (Kaplan & Shapley, 1982). The M cell contrast gain 

response is strongly non-linear, with a high gain at low contrast, approaching saturation at high 

contrast, and with a bandpass spatial sensitivity, peaking at lower spatial frequencies. The temporal 

response is predominantly phasic. In contrast, the P cell response has a lower contrast gain but 

remains linear up to high contrast values with no saturation, and a band-pass spatial frequency 

response extending to higher frequencies. The P cell temporal response is predominantly tonic. 

Subsequent experiments showed that these characteristics are mirrored in the response 

characteristics of M and P retinal ganglion cells (Kaplan & Shapley, 1986). Complementary lesion 

studies suggest that the P pathway is predominantly involved with transmitting high spatial acuity 

luminance and chromatic information, and the M pathway for low contrast, high temporal frequency 

information (Edwards, Goodhew, & Badcock, 2021). The demonstration of these differential 

physiological responses at the cellular level led to the hypothesis that the measured psychophysical 

achromatic contrast sensitivity function of the primate visual system could be explained by combining 

the P and M retinal ganglion cell responses (Kaplan et al., 1990; J.J. Kulikowski, 1987) (see Figure 2). 
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       A      B 

                      

  

Figure 2. (A) Model of the achromatic contrast sensitivity function from Kulikowski (Reproduced from 

J.J. Kulikowski, 1987). (B) Model of combined response of an array of P and M RGCs from Kaplan 

(Reproduced from Kaplan et al., 1990).  

 

Figures 2(A) and 2(B) illustrate the models proposed by Kulikowski and Kaplan, showing the 

contributions of the high sensitivity/low spatial frequency response of the M RGC and the lower 

sensitivity/high spatial frequency response of the P RGC. The primary difference is that Kulikowski’s 

figure implies that the combined response is the sum of the two pathway sensitivities, whereas 

Kaplan’s model implies that the combined response is that the more sensitive of the two pathways 

dominates (i.e., a “winner-takes-all” model). If the latter is the case, then in principle it should be 

possible to discriminate between the two pathways by detecting the kink in the combined signal. 

However, it can be seen that the CSFs shown in Figure 1 do not exhibit the kink. 

 

Numerous studies have attempted to discriminate the role of the M and P pathways in the contrast 

sensitivity function psychophysically, using simple spatially and temporally varying grating stimuli 

(Evans, Drasdo, & Richards, 1994; J. J. Kulikowski & Tolhurst, 1973; Legge, 1978; Livingstone & 

Hubel, 1987; F. Martin & Lovegrove, 1984). In principle, the use of these simple stimuli would allow 

the measured psychophysical characteristics to be related to the spatial dimensions of the underlying 

physiological structure of the RGCs. However, despite significant effort, reliable differentiation has 

been elusive and as a result there continues to be debate as to whether the spatial and temporal 

differences between M and P pathway activity are sufficient for them to be discriminated 

psychophysically with grating stimuli (Edwards, Goodhew, & Badcock; Edwards et al., 2021; Skottun, 

2015). 

 

This has led to a search for alternate but more indirect methods of discrimination between M and P 

pathway-determined psychophysical responses. These techniques included the development of 
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temporally varying stimuli that rely on differentially stimulating the saturating, phasic M pathway to 

discriminate between M and P pathways.  

 

A good example of such techniques is the Steady Pedestal /Pulsed Pedestal (SP/PP) paradigm 

(Pokorny & Smith, 1997) which uses common stimuli (squares on background) but differential pre-and 

post-adaptation to discriminate between the M and P pathways. The technique was subsequently 

developed to include a Pedestal Δ Pedestal (PΔP) stimulus (Pokorny, 2011). This combination of 

paradigms enabled the P pathway contrast gain, the M pathway sensitivity and contrast gain to be 

inferred. The data also supported the “winner-takes-all” model (Pokorny, 2011). The technique was 

further developed to include a spatial frequency component in the SP/PP temporally-varying stimuli, 

which enabled partial characterisation of spatial frequency processing in the of M and P pathways for 

short-duration stimuli (26ms) (Leonova, Pokorny, & Smith, 2003)  However, neither paradigm allows 

independent control of the temporal as well as the spatial frequency of the stimuli, preventing the full 

characterisation of the M and P responses in terms of both spatial and temporal frequency. 

  

Experiments in which response time is the primary measure have demonstrated a characteristic 

behaviour which has been interpreted as differentiating between the P and M channels (Tolhurst, 

1975). Typically, response time measurements show a linear dependence on contrast, but under 

certain conditions there is a transition in slope sensitivity giving a bi-linear function (Murray & Plainis, 

2003; Plainis & Murray, 2005). The low and high contrast segments of this bi-linear function was 

attributed to the M and P channels respectively, with an overall conclusion that the results supported 

the contention that the M channel predominantly determines the Contrast Sensitivity Function. It was 

also noted that the overall system response is to the most sensitive of the two channels, rather than 

summing the two channel responses (Murray & Plainis, 2003). 

 

Investigation of contrast-dependent Visually Evoked Potentials (VEPs) has elicited differential 

responses for low and high contrast spatial stimuli, which have been interpreted as representing the 

M and P channels (Lalor & Foxe, 2009). Temporal frequency differentiation was not investigated in 

the study, with the differentiation being determined solely by contrast level 

 

Partly as a result of this reliance on indirect measurements, the debate about the roles of the M and P 

pathways continues; recent reviews have highlighted the continuing lack of clarity about the relative 

contribution of the two channels to achromatic and chromatic perception (Lee, 2019) and the 

challenges of constructing psychophysical stimuli in order to achieve optimal differentiation (Edwards 

et al., 2021). 

 

This dissertation describes a new methodology to psychophysically identify distinct M and P pathway 

responses, together with a simple explanatory model that links the spatial frequency responses to the 

spatial dimensions of the RGCs. In so doing I explore whether it is possible to discriminate between 

the P and M pathways psychophysically in terms of both spatial and temporal frequency responses, 
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and to determine their respective contributions. I also present a new image analysis technique to 

determine local contrast variations across luminance images and then model the corresponding 

contrast response images. 

 

The starting point is a short introduction to the basic functionality of the human eye, identifying the 

main features that will be relevant for understanding and modelling the peripheral contrast responses, 

and to design the discrimination experiment. 

 

 

1.2 Structure of the Human Eye 

The structure of the human eye is shown schematically in Figure 3.  

A       B 

 

Figure 3. (A) Schematic of the human eye (Reproduced from Sekuler & Blake, 2006).(B) Modulation 

transfer function (MTF) as a function of eccentricity for horizontal meridian in temporal, determined at 

circle of east confusion (Reproduced from Navarro et al., 1993). 

 

Light from the external world is focused onto the retina by the complex lens structure formed by 

cornea and lens. Control of the focal length is by changing the tension in the cilium muscles around 

the lens, which in a young adult eye can vary the focus from infinity down to about 0.5m. The amount 

of light falling on the retina is modulated by the iris, which can change in diameter from 2mm to 8 mm 

in a young adult (Sekuler & Blake, 2006), varying the light transmitted by a factor of 16. 

 

The optical performance of the lens is equivalent to a wide-angle lens (Navarro et al., 1993), with an 

adequate but non-diffraction limited resolution at the fovea but with a relatively constant modulation 

transfer function (MTF) in the periphery, as shown in Figure 3(B) (Williams et al., 1996). As such a 

reasonable image is formed approximately +-90 degrees either side of the visual axis. In short, the 

lens is an effective general-purpose lens well-adapted to the requirements of human vision where 

useful information in the periphery needs to be accessed. 
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For studies of peripheral retinal performance where the stimuli are being imaged off-axis, the spatial 

frequency response declines significantly from 0-20 degrees (Figure 1(A)). Therefore, interpretation of 

psychophysical spatial frequency responses in relation to the underlying physiology of the retina in 

this regime will need to take account of the MTF profile. This is the case for the experiment described 

in Chapter 2. However, studies of the perceived peripheral response (such as the visualisation model 

I present in Chapter 3) do not require the MTF compensation.  

 

 

1.3 Anatomy of the Human Retina 

The basic structure of the retina is shown in Figure 4.  

 

A       B 

          

Figure 4. (A) Schematic of main neurons in the primate retina (Reproduced from Sekuler & Blake, 

2006). (B) Images of horizontal (top) and vertical (bottom) cross-sections of human fovea 

(Reproduced from Bringmann et al., 2018). 

 

The primary cell types in retina are (Sekuler & Blake, 2006): 

 

Photoreceptors – conversion of the incoming photons into electrical impulses; two primary types 

namely cones and rods (see Section 1.3.1). 

Horizontal cells – laterally connecting cells that assist in the determining the spatial extent of the 

visual response 

Bipolar cells – intermediate cells which contribute to the ON and OFF functionality 

Amacrine cells – thought to mediate the temporal responses of the retinal ganglion cells 

Ganglion cells – gather inputs from the rods and cones (via the amacrine, horizontal and bipolar 

cells) and transmit (as a bundle called the optic nerve) to the visual cortex (V1, V2 etc) via the 

Lateral Geniculate Nucleus).  
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The primary focus of this dissertation will be on the characteristics of the photoreceptors and RGCs. 

 

The photoreceptors are on the rear surface of the retina, such that the incoming light must pass 

through the semi-transparent upper layers (with the bipolar and amacrine cells) before the light 

reaches the photoreceptors. This leads to some scattering of the light, which limits the spatial acuity 

(the ability to resolve high spatial frequencies). The eye has evolved to minimise this problem by 

having an area on the retina (aligned with the optical axis of the lens) where the bipolar, amacrine and 

ganglion cells are displaced from the central region (the fovea), such that the incoming light falls 

directly onto the photoreceptors (Figure 4B). Therefore, in this region the density of photoreceptors is 

high (predominantly cones), with little scatter from other cells. The fovea therefore provides the 

highest spatial resolution. 

 

 

1.3.1 Types of Photoreceptors 

The rods have a very high sensitivity, able to detect only a few photons when fully dark adapted 

(Burns & Pugh, 2014). However, the rod response saturates at moderate luminance. In contrast, the 

cones are less sensitive, but do not saturate, such that they can differentially respond up to high 

luminance levels. There are three types of cones (L, M and S) with differing chromatic response 

curves which support the perception of colour (chrominance or chromatic vision), as well as 

achromatic vision. The chromatic sensitivity curves of the cones are shown in Figure 5: 

 

Figure 5. Relative sensitivity of the L, M and S cones as a function of wavelength (Reproduced from 

Solomon & Lennie, 2007).  

 

 

The rods have a purely achromatic response, whereas the outputs of the cones can be summed in 

different ways to provide both achromatic (luminance) and chrominance signals: 
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           (1a) 

Luminance = L + M 

          (1b) 

Red – green (R-G) chrominance = L - M 

          (1c) 

Blue (B) chrominance = S - (L+ M) 

 

The spatial distribution of the rods and cones in the retina is shown in Figure 6: 

 

 

Figure 6. Distribution of the cones and rods as a function of eccentricity (along the horizontal 

meridian) (Reproduced from Sekuler & Blake, 2006). 

 

The cone density is highest in the central (foveal) region, declining rapidly with eccentricity. The rod 

density is effectively zero at the fovea, peaks at around 20° eccentricity, and then declining slowly 

with eccentricity. There are approximately 100 million rods and 5 million cones in each retina. The 

relative contribution of the two receptor types to achromatic vision in the periphery depends on their 

sensitivity and saturation characteristics, and so varies with luminance levels. 

 

 

1.3.1.1 Luminance Sensitivity and Adaptation 

The photoreceptors jointly have a luminance dynamic range of about 1012, ranging from low-level 

starlight at 10-6cd/m2 to bright sunlight at 106 cd/m2 as shown in Figure 7: 
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Figure 7. Luminance sensitivity of the human visual system (Reproduced from D. Cao, 2013). 

 

At high luminance levels (101-108 cd/m2) vision is mediated predominantly by cones as the rods begin 

to saturate at around 10 cd/m2. This range is referred to as photopic vision. At very low luminance 

levels, vision is predominantly mediated by rods, and is referred to as scotopic vision. The 

intermediate range where both rods and cones are functional is mesopic vision. 

 

At any point within the total dynamic range of 1012, the active dynamic range is approximately 102, 

determined by the contrast gain characteristics of the RGCs (see Section 1.3.2.1). As such, several 

adaptation mechanisms are present that move the active dynamic range window across the full 

luminance range. The three primary adaptation mechanisms are: 

 

Physical adaptation by aperturing by the iris of the amount of light reaching the retina. The 

diameter of the iris can typically change from 2mm to 8mm, giving a ratio (in terms of area) of 

~1.6x101. 

 

Physiological adaptation of photosensitivity within the chemical pathways of the 

photoreceptors and subordinate cells (Burns & Pugh, 2014) 

 

Channel adaptation (switching) between the rods (high luminance sensitivity, saturating) and 

cones (lower luminance sensitivity, non-saturating) 

 

In the experiments described in this dissertation (Chapter 2), the mean luminance of the display was 

1.05 x 102 cd/m2, which is in the photopic range. At this luminance level, the rods are approaching 

saturation such that the dominant response is that of the cones. In addition, the stimuli used were 

achromatic. As such, that visual response being investigated was achromatic, coned-based, photopic 

vision. 
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1.3.2 Retinal Ganglion Cells 

There are at least 20 types of retinal ganglion cell (RGC) (Kaplan, 2013), of which the three main 

types are the parvocellular (P, midget), magnocellular (M, parasol) and the koniocellular (K). The total 

number of RGCs is approximately 1million per eye, with 80% being P RGCs, 10% being M and the 

balance being K and other types. The parvocellular and magnocellular RGCs are so named because 

they terminate in the respectively named layers in the Lateral Geniculate Nucleus (LGN). The P and 

M RGCs receive inputs from both the L and M cones, whereas the K RGCs only receive inputs from 

the S cones. Achromatic stimuli therefore predominantly stimulate the P and M pathways and not the 

K pathway. 

 

The retinal ganglion cells (RGCs) are the sole link between the retina and the visual cortex, with the 

axons of these neurons forming the optic nerve linking to the lateral geniculate nucleus (LGN) 

(Solomon & Lennie, 2007). Therefore, it is the characteristics of RGCs that determines what visual 

information is passed from the retina to the higher visual cortex. The primary differentiating 

characteristics of the M and P RGCs are: 

 

Contrast sensitivity 

Temporal frequency response 

Spatial frequency response 

Spatial resolution 

Chromatic sensitivity 

 

These are reviewed briefly in the following sections. 

 

 

1.3.2.1 Contrast Sensitivity of RGCs 

Both M and P RGCs are primarily sensitive to contrast as opposed to luminance, with the two types 

having very different contrast sensitivities as shown in Figure 6 (Kaplan & Shapley, 1986).  
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Figure 8. Contrast gain functions of the magnocellular and parvocellular retinal ganglion cells (based 

on data from (Kaplan & Shapley, 1986)) 

 

The contrast gain characteristic of the M RGCs is described by the Michelis-Menten function: 

          (2) 

𝑅(𝐶) =  
𝑅𝑚𝑎𝑥

(1+
𝐶50

𝐶
)
 

 

Where R(C) is the response (in impulses/sec), C is the contrast, Rmax is the maximum response and 

C50 is the contrast at 50% of the maximum response. The M RGCs have a non-linear response, with 

high sensitivity at low contrast and approaching saturation at high contrast. The P RGCs have a linear 

response that does not saturate, with a lower peak sensitivity at 100% contrast.  This differential 

contrast sensitivity is key to understanding the behaviour of the two pathways, as will be seen in 

Chapter 2. 

 

Given that the threshold value of the RGC is typically 2-5 i.p.s (Pokorny & Smith, 1997), the dynamic 

range is approximately 102. As such, the RGCs are a significant bottleneck in transmitting information 

from the retina to the visual cortex. In addition, given the very different slope sensitivities of the M and 

P contrast gain functions, the equivalent contrast thresholds corresponding to the impulse rate 

threshold are significantly different, around 1% for the M pathway and 10% for the P pathway. 

Therefore, the M pathway has a significantly higher contrast sensitivity than the P pathway. However, 

given the higher density of P RGCs (approximately eight times that of the M RGCs averaged across 
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the retina (Kaplan, 2013)), summing of the P RGC outputs may partially compensate for their lower 

intrinsic contrast sensitivity in contrast sensitivity measurements. 

 

1.3.2.2 Temporal Response 

The M RGC has a transient temporal response to an edge stimulus, compared to the sustained 

temporal response of the P RGC (Kaplan, 2013). In addition, the latency of the M pathway is lower, 

and the axon conduction velocity is higher (Edwards et al., 2021). As such, varying the temporal 

frequency of spatial stimuli should contribute to discrimination between the two pathways.  

 

 

1.3.2.3 Spatial Structure and Spatial Frequency Response of RGCs 

The spatial structure of the RGCs have been shown to be well-described by a Difference of Gaussian 

model (DoG), where the output of a narrow centre Gaussian function is opposed to the output of a 

broader, lower-sensitivity surround Gaussian (Enroth-Cugell & Robson, 1966; Rodieck, 1965). The 

structure is shown schematically in Figure 9. 

                    
 

Figure 9. (A) Spatial centre/surround structure for “Difference of Gaussian” RGC sensitivity model, 

with the blue, red and yellow lines being the centre, surround and DoG responses respectively. 

 

The centre-surround opponency gives rise to both the opponent achromatic spatial frequency 

response for both M and P pathways and the opponent red-green chromatic response for the P 

pathway (when the centre is primarily fed by L cones and the surround by M cones (equation1(b)), or 

vice versa). However, for this dissertation I am only concerned with the achromatic spatial frequency 

response. 
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The spatial frequency response is the Fourier transform of the spatial structure, so the spatial and 

frequency responses of the DoG filter are defined as (Enroth-Cugell & Robson, 1966): 

(3a) 

𝑊(𝑟) = 𝑘𝑐exp (−(𝑟
𝑟𝑐⁄ )2) - 𝑘𝑠exp (−(𝑟

𝑟𝑠⁄ )2 

 

         (3b) 

𝑆(𝑓) = 𝑘𝑐𝜋𝑟𝑐
2exp (−(𝜋𝑟𝑐𝑓)2) −  𝑘𝑠𝜋𝑟𝑠

2exp (−(𝜋𝑟𝑠𝑓)2) 

 

Where r is the spatial dimension, f is the spatial frequency, W(r) and S(f) are the spatial and frequency 

DoG functions respectively, kc and ks are the peak sensitivities of the spatial centre and surround 

functions (dependent on the contrast gain characteristics of each pathway), and rc and rs define the 

radii of the spatial centre and surround functions. 

 

 

The spatial frequency response from equation 3b is plotted in Figure 10, which shows the bandpass 

structure of the DoG response for balanced centre and surround responses, changing to a low pass 

structure as the centre dominates. 

                  
 

Figure 10. Frequency response as a function of spatial frequency for different centre-surround 

structures. The orange line corresponds to a centre/surround weighting of 10:1, showing a strong 

bandpass response. The blue line corresponds to a centre/surround weighting of 100:1, showing a 

low-pass response.  

 

The bandpass response (orange line) in Figure 10 corresponds to the spatial DoG structure in Figure 

7. It can be seen that the response is similar to that of Figure 1(A). As the relative weighting of centre 

to surround increases, the response becomes more band pass. Note that the high-frequency cut-off 



25 
 

behaviour is largely independent of the surround response i.e., it is determined primarily by the centre 

response. 

 

The link between spatial structure (Figure 9) and spatial frequency response (Figure 10) via the DoG 

model is key to differentiating between the M and P RGCs. The original labels for the M and P RGCs 

(parasol and midget) arose from their different relative sizes. Figure 11 shows an example of dendritic 

field diameter data for human RGCs as a function of eccentricity (Dacey & Petersen, 1992).  

 

             

Figure 11. Dendritic field diameters as a function of eccentricity for midget (P, parvocellular) signified 

by the small circles and parasol (M, magnocellular) retinal ganglion cells signified by the large circles. 

The filled circles are for the nasal quadrant and the unfilled circles for the other quadrants. 

(Reproduced from Figure 2(b) from (Dacey & Petersen, 1992)) 

 

The fitted P (midget) RGC dendritic field diameter is 5 times smaller than the M RGCs at 20° 

eccentricity (albeit with a wide range of values). As such, the DoG spatial frequency response of the P 

RGC would be 5 times lower than the equivalent M RGC, for a given eccentricity. 

 

For in vivo experiments (including psychophysics), the dendritic field diameter cannot be measured 

directly. Instead, the receptive field (RF) is determined by a spatially varying stimulus, such as shown 

in Figure 12 (Croner & Kaplan, 1995).,  
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Figure 12. Centre radius of receptive fields of primate parvocellular and magnocellular retinal ganglion 

cells (Reproduced from Croner & Kaplan, 1995) 

 

In contrast to the dendritic field data, the ratio of P and M RF size is only a factor of 2 at 20° 

eccentricity. As such, the interpretation of the relationship between dendritic field diameter and RF 

size requires caution. 

 

Overall, the DoG model is a useful tool for characterising RGC RFs. If the spatial frequency response 

can be determined, then the spatial characteristics of the RGC RFs that we are sampling with our 

stimuli can be inferred. This is the primary tool that I use in Chapter 2  for characterising the M and P 

pathways in peripheral vision. 

 

However, the analysis so far has related to the structure of the individual RGCs. Another key 

consideration is the geometry of the arrays of the RGCs, which determines the visual acuity. 

 

 

1.4 Visual Acuity 

In practice, the measured visual acuity depends on the task that is being undertaken. If the task is to 

simply detect the presence or absence of a stimulus (detection), then the spatial frequency response 

is that defined by the DoG function arising from the physical dimensions of the RGC (in the periphery) 

or the cones (in the fovea). However, the detection task has limited relevance for interacting with the 

outside world as it simply indicates the presence or absence of a stimulus, with no indication of size, 

direction, movement, or orientation. A more relevant task is resolution, which is both detecting the 

presence of a stimulus plus determining something about its form, such as the orientation of gratings, 

or the position of the gap in a Landholt C. In the resolution task, the limiting physical factor is not the 

physical dimensions of individual RGCs as it is for detection but is instead the spacing between 

adjacent elements in an array of photoreceptors or RGCs. 
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The determination of the resolution spatial acuity is governed by sampling theory, originally described 

by Shannon (Shannon, 1949). In this theory, the highest unambiguous spatial frequency that can be 

measured is given by the Nyquist frequency 𝑓𝑁  where: 

           (4) 

𝑓𝑁 =  1
2𝑑⁄  

 

where d is the spacing in the array. For spatial frequencies below the Nyquist frequency, the sampled 

signal can be accurately recovered from the input signal. For frequencies higher than 𝑓𝑁, the input 

signal is aliased (or reflected back below fN), such that the input signal can no longer be 

unambiguously recovered. Therefore, in order to understand the variation of resolution with 

eccentricity, we need to understand what the limiting spacings are of the various sampling arrays in 

the retina. 

 

 

1.4.1 Sampling Arrays in the Retina 

In principle, the sampling spacing of the retina is that of the RGC array, given that the RGCs are the 

sole link between the retina and the visual cortex (Sekuler & Blake, 2006). However, due to the 

displacement of the RGCs (and the other retinal neurones around the fovea) described in Section 1.3, 

the effective sampling spacing at any point in the retina is determined by either the cone spacing or 

the RGC spacing, whichever is the smaller. 

 

The density of cones as a function of eccentricity is shown in Figure 13(A) (Curcio & Allen, 1990; 

Watson, 2014) for the four meridians, with the RGC distribution shown in Figure 13(B).   
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A        

B                     

 

 

Figure 13. (A) Cone density as a function of eccentricity for the four meridians (Reproduced 

fromWatson, 2014, after Curcio et al, 1990)). (B) P RGC density as a function of eccentricity for the 

four meridians (Reproduced from Watson, 2014, after Curcio et al, 1990). 

 

The density of cones (Figure 13(A)) is highest at the fovea, declining rapidly with eccentricity. The 

density of P RGCs (Figure 13(B)) is essentially zero at the fovea (due to displacement of the RGCs at 

the fovea as discussed in Section 1.3), with a peak at 5°, and then declining with eccentricity. Note 

that the blind spot where the axons of the RGCs pass through the retina to form the optic nerve can 

be observed in the nasal meridian for both the cone and RGC data.  

 

The sampling spacing (d), assuming hexagonal close packing, is given by (Watson, 2014):  

(5) 

𝑑 =  √
2

𝐷√3
 

Nasal 
Superior 
Temporal 
Inferior 

Nasal 
Superior 
Temporal 
Inferior 
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where D is the density. Using the density data from Figure 13 and Equation 5, Watson derived the 

equivalent spacing of the P RGCs spacing for each meridian, as shown in Figure 14 (Watson, 2014). 

 

Figure 14. Array spacing as a function of eccentricity for the four meridians, including the overall 

mean and the mean for the horizontal meridian (Reproduced from Watson, 2014).  

 

The nasal meridian array spacing increases approximately linearly up to about 50° eccentricity. For 

the mean of all the meridians, the array spacing can be approximated by the following linear equation 

(Watson, 2014): 

            (6) 

A = A0 +S x ε 

 

Where A0 is the value at the fovea, S is the characteristic scale factor and ε is the eccentricity. For the 

data shown, the scale factor is S = 0.0075 and A0 = 0.0088°.  

 

A reasonable assumption is that the array spacing in the retina would approximately match the 

receptive field diameter of the RGCs, to maximise the efficiency of photon capture (i.e., no gaps) 

whilst minimising crosstalk (minimising overlaps). Comparison of the RGC spacing with dendritic field 

diameter data confirms that this is a reasonable assumption, as shown in Figure 15. 

Nasal 

Temporal 



30 
 

            

 

Figure 15. Comparison of dendritic field diameter vs eccentricity to the P RGC spacing. The black and 

white circles are dendritic field sizes for individual nasal and non-nasal meridians respectively  and 

the red and blue lines are the RGC array spacing fits for nasal and non-nasal meridians, respectively 

(Reproduced from Watson, 2014, with dendritic field size data after Dacey, 1993). 

 

Figure 15 shows reasonable agreement between calculated array spacing and measured dendritic 

field size for the P RGCs, albeit with a large spread on the field diameter data (Watson, 2014). A key 

point to note is the significant difference in receptive field size (and array spacing) of the nasal 

meridian relative to the other meridians. Therefore, to maximise the sensitivity to cut-off frequency, 

the stimuli should be viewed monocularly to isolate a single meridian (which is the nasal meridian for 

the experiment described in Chapter 2). 

 

The observation that receptive field size increases approximately linearly with eccentricity is a general 

property of the visual system. For example, Figure 16 shows population receptive field (pRF) size 

versus eccentricity determined using fMRI for different layers of the visual cortex (Wandell & Winawer, 

2015).  

  

Nasal 
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       A         B 

               

Figure 16 (A) Population receptive field (pRF) as a function of eccentricity for the primary areas in the 

visual cortex determined using fMRI (V1-V3AB are in the primary visual cortex and V01-2, LO1-2 and 

TO1-2 are the ventral occipital, lateral occipital and temporal occipital regions (Reproduced from 

Wandell & Winawer, 2015). (B) Visualisation of the variation of the RF diameter as a function of 

eccentricity for V1, V2 and hV4 (Reproduced from Wandell and Winawer, 2015). 

 

The scale factors increase from approximately 0.15 for V1 to 1.7 for T02, and the pRF (for a given 

eccentricity) increases for each layer, referred to as spatial pooling.  The importance of spatial pooling 

is that it has been hypothesised that if each layer of the visual cortex has a defined scale factor, then 

if the scale factor for a given process can be determined then that process can be localised to a 

specific layer in the visual cortex. This localisation technique been reported using metameric images 

to determine characteristic scale factors for specific models of V1 and V2 and V4 (Freeman & 

Simoncelli, 2011; Freeman, Ziemba, Heeger, Simoncelli, & Movshon, 2013), although the structure of 

the stimuli can limit the validity of the model (Wallis, Bethge, & Wichmann, 2016). 

 

Although I don’t specifically use metameric images in this dissertation, the concept of the scale factor 

is key for the design of the stimuli discussed in Chapter 2.In particular, for a finite stimulus window 

size, the receptive field diameter will increase linearly across the window as a function of eccentricity 

and therefore the stimulus fringe spacing should match this, in order to reach contrast threshold 

simultaneously for all the RFs in the window. 
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1.5 Experimental Design Considerations 

Based on the characteristics of the eye discussed above, the main elements of the experimental 

design for the discrimination of the peripheral M and P pathways described in the following chapter 

are:  

a) Detection task to discriminate between the M and P receptive field sizes  

b) Tangential pseudo-sinusoidal gratings with linearly increasing spacing to match the 

underlying scale factor geometry of the RGC RFs 

c) Stimuli presented in the periphery to ensure spatial response defined solely by RGCs, in the 

left nasal visual field only (monocular presentation). 

d) Photopic illumination (mean luminance of 105 cd/m2), so cone inputs only to the RGCs. 

e) Achromatic stimuli to allow comparison between both M and P RGC responses. 

 

The detail of the experimental methods, data analysis, results and discussion are described in 

Chapter 2. 

 

 

1.6 The Current Thesis 

The first part of Chapter 1 described the contrast sensitivity function and its hypothesised 

physiological basis in the differential spatial and contrast gain characteristics of the P and M 

pathways. In particular, it identified a kink in the high-frequency side of the CSF that would arise at the 

transition between the P and M pathways if the visual system has a “winner takes all” characteristic. 

The kink has not been detected using simple spatially- and temporally varying stimuli but has been 

observed using more indirect techniques. The challenge is therefore to design an experiment with 

stimuli tailored to the underlying physiology to maximise the sensitivity to the predicted kink. The 

second part of Chapter 1 was a brief review the main features of the human eye, and to explore those 

aspects that are relevant for developing the tailored stimuli. 

 

Chapter 2 describes the experimental design, methodology, results, and data analysis techniques for 

the psychophysics experiment with tailored stimuli carried out by three participants. The data analysis 

makes extensive use of Maximum Likelihood Estimation and the application of Akaike Information 

Criteria for the determination of the most parsimonious model. Results are presented for models for 

the participants individually and also for a combined data set of all the participants data. The evidence 

for supporting the hypothesis is discussed. 

 

Chapter 3 builds on the differentiated pathway model by describing a simple algorithm developed to 

map the distribution of local contrast in images as a function of scale, to enable a visualisation of how 

the two pathways differentially transfer information to the LGN and the higher visual system. The 

algorithm is initially evaluated against sinusoidal images and is then applied to a sample of calibrated 

achromatic natural images in order to compare with known statistics. Having confirmed the validity of 

the algorithm, it is then used to generate contrast response images corresponding to the level of 
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activity (impulses per second) generated in each pathway dependent on the spatial and contrast gain 

characteristics.  

 

Chapter 4 Discusses the results of the experiment and image analysis and explores the limitations of 

the current work and potential for future research. 
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Chapter 2. Experiment - Psychophysical Discrimination of Parvocellular and Magnocellular 

Responses in Peripheral Vision 

 

2.1 Introduction 

Declaration: This chapter forms the basis of a draft paper to be submitted to the Journal of Vision, co-

authored with Iain Gilchrist and Casimir Ludwig. I declare that the experimental study and modelling is 

my work, and that I am the primary author. 

 

In Chapter 1, I discussed the hypothesis that the contrast sensitivity function can be modelled in terms 

of the individual P and M pathway responses, and the potential for psychophysically discriminating 

between the two contributions. I also reviewed the literature regarding a range of techniques that have 

been used to test the hypothesis, and showed that despite significant effort, reliable discrimination 

using simple spatially and temporally varying stimuli has been elusive.  

 

In this chapter, I describe a new methodology for psychophysical discriminating the two pathways, 

with the experimental parameters optimised for the discrimination task, based on the key features of 

the peripheral retinal system that I reviewed in Chapter 1. 

 

The psychophysical experiments reported here measure detection thresholds for grating stimuli 

presented in the periphery.  The stimuli were systematically varied in both temporal and spatial 

frequencies to explore the effect of both parameters on sensitivity.  They were presented at a large 

eccentricity (23.5°) to ensure that the spatial resolution was determined solely by the retinal ganglion 

cell array spacing. Using model selection, I provide evidence for the contribution of two unique signals 

in determining changes in sensitivity across spatial frequency. I will argue that these signals 

correspond to the M and P pathways. 

 

 

2.2 Methods 

 

2.2.1 Participants 

There were three participants in the experiment (JW, NM, and TH), two were male and one female. 

Their ages ranged from 22 to 64 years. JW is the primary investigator and NM and TH were naïve to 

the purpose of the experiment. The participants had normal or corrected to normal vision. Ethical 

approval for this study was obtained from the School of Psychological Science Research Ethics 

Committee (2020-6798-6745, 21/10/2020). 

 

2.2.2 Apparatus 

The stimuli were presented on a gamma-corrected VPixx 3D monitor (VPixx Technologies Ltd, Saint-

Bruno, Canada). The display was 1920 x 1080 resolution with a pixel pitch of 0.272mm and a 610mm 

diagonal. Each of the RGB channels was 10-bit resolution. The scanning backlight functionality was 
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disabled to allow temporal modulation of the stimuli at up to 60 Hz (based on the 120Hz frame rate). 

The display was positioned 800mm from the participants eye line, with the head held in a 

chin/forehead rest. The mean luminance at 50% contrast was 105 cd/m2. 

 

The display was situated in a windowless laboratory with no ambient light. Each participant wore an 

opaque eye-patch over their right eye and the task was performed using the left nasal visual field.   

The experiment was controlled by a Windows Personal Computer running Psychtoolbox-3 (Kleiner, 

Brainard, & Pelli, 2007) in Matlab 2019a (Mathworks Inc., Natick, MA, USA).  

 

 

2.2.3 Stimulus Design 

 

As discussed in Section 1.4.1, the linear increase of RGC receptive field diameter with eccentricity 

suggests that the maximum sensitivity for discrimination (i.e., lowest threshold) would be achieved 

with a stimulus that matches the linear RF dependence. For example, if we consider a grating 

stimulus with a fixed spatial wavelength but an extended spatial extent, the threshold wavelength will 

vary across the patch. This will give rise to a psychometric function with a shallow slope, and hence a 

lower signal to noise ratio for the measurement. Therefore, to better match the threshold of the grating 

across the whole patch as far as possible, the stimuli used in this experiment had a continuously 

increasing spatial wavelength (swept wavelength) across the patch determined by a linear scale 

factor. By using a linear swept wavelength sinusoidal grating which approximately matched the scale 

factor of the RGC spacing (Curcio & Allen, 1990; Dacey, 1993; Drasdo, Millican, Katholl, & Curcio, 

2007; Watson, 2014), in principle all the cells whose receptive fields fell within the patch would 

simultaneously reach threshold. This should maximise the sensitivity for the threshold measurement, 

with improved contrast resolution. 

 

The equation used to calculate the  swept wavelength sinusoidal grating included a quadratic phase 

term to approximate a linear wavelength ramp (Equation 7), where A(n,m) is a luminance image array 

of n x m pixels ,B1 is a scaling constant, C is the Michelson contrast, r(n,m) is radial distance from the 

foveal point, λmax and λbase define the range of spatial wavelengths, rmax is the maximum radial 

distance and B2 is a scaling constant for the quadratic term. 

(7) 

𝐴(𝑛, 𝑚) = 𝐵1 (1 + 𝐶𝑐𝑜𝑠 (
2𝜋𝑟(𝑛, 𝑚)

𝜆𝑚𝑎𝑥 − 𝜆𝑏𝑎𝑠𝑒(1 − 𝑟(𝑛, 𝑚) 𝑟𝑚𝑎𝑥⁄ ) − 𝐵2𝑟(𝑛, 𝑚)2)) 

 

The constants λmax, rmax and B2 were selected empirically to give a linear increase in wavelength within 

a tolerance of 3% linearity for each stimulus. The scale factor of the swept wavelength gratings 

ranged from a nominal 0 to 0.024 in steps of 0.001, with 12 bits amplitude resolution. The intercept 

value was 0.058°, giving a maximum cut-off frequency of 17.2 cpd at the viewing distance of 800mm. 
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The gratings were oriented tangentially to the horizontal median, with Michelson contrast values from 

1.5% -75%. The gratings were presented in the periphery in a broad crescent-shaped patch centred 

on 23.5 degrees from the fixation point, with a fixation point offset by 420 pixels (6.6 degrees) from 

the RHS of the screen (Figure 17). The outer edge of the patch was defined by an ellipse with one 

locus positioned on the fixation point, with the inner edge defined by a circle centred on the fixation 

point. This specific shape of the patch was derived from a segmented elliptical mask used for early 

pilot studies of full images, and was used in this study for convenience, rather than being motivated 

by a specific theoretical justification. The horizontal width of the window was 5.5°, with the overall 

area of the patch being approximately 55° squared. A linear transition band of 0.9° width was applied 

around the around the edge of the patch to give a smooth transition from the grey background to the 

full contrast value of the gratings. 

 

 

 

 

 

Figure 17. Example of a test stimulus with a scale factor of 0.016 and 50% Michelson contrast, at a 

nominal 23.5° eccentricity. The white dot on the right-hand side is the fixation point. 

 

The specific position of the stimuli in the periphery was a trade-off between working in a region where 

the spatial acuity is determined by the RGC spacing rather than cone spacing, and also being able to 

generate spatial sine waves on the display where the cut-off frequency determined by the pixel size 

was above the expected cut-off frequency of the RGC response. 

 

The test stimuli had variable scale factors in the range 0 – 0.024. Incrementing the scale factors had 

the effect of incrementing the mean spatial wavelength of the swept wavelength sinusoidal gratings 

within the patch, such that as the scale factor decreased, the swept wavelengths also decreased (ie 

the spatial frequency increased).  
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The reference stimulus had a fixed scale factor of 0.0008. I used a very low scale factor value (with 

the same mask function as the test stimuli) for the reference rather than a 50% luminance grey screen 

to avoid potential inadvertent cuing from any mask artefacts. In practice, the reference stimulus was 

effectively zero contrast for the peripheral presentation. An obliquity correction factor of 0.84 (equal to 

cos2ε, at the eccentricity of ε = 23.5°) was applied to the spatial wavelength values to correct for the 

use of a flat rather than a curved display. 

 

 

In addition to variable contrast, the stimuli could also have a sine wave temporal modulation applied 

at frequencies of 2Hz, 10Hz, 30Hz and 60Hz within the presentation window, corresponding to 

undistorted sampled sine waves for the 120Hz frame rate of the display. This allowed the effect of 

temporal modulation on the discrimination thresholds to be measured. It should be noted that in the 

display mode used (with the scanning backlight disabled), the frequency response at 60 Hz was 

limited by the rise time of the LCD pixels. This meant that the peak contrast value reached at 60Hz 

was only 90% of the contrast value at lower frequencies. Therefore, a correction factor of 1.11 was 

applied to the contrast values at 60Hz. 

 

 

2.3 Procedure 

The experimental paradigm was a serial Two Alternative Forced Choice (2AFC) task with the primary 

dependent variable being the Michelson contrast of he swept wavelength sinusoidal gratings, and the 

secondary dependent variable being the temporal modulation frequency. 

 

For each trial, the participants were presented with a grey screen (50% luminance) for 1000ms, 

followed by the first stimulus of 500ms duration, a grey screen for 500ms, and then the second 

stimulus of 500ms duration. The two stimuli were a test stimulus and a reference stimulus, with the 

order randomised between each trial. 

 

For each run of trials, the participants were required to fixate on a white fixation mark to the right of 

the screen throughout the experiment (see Figure 17). The task for the participant was to determine 

which of the two stimuli intervals had the more visible grating pattern, and then press the appropriate 

key. When the participant correctly detected the test stimulus the scale factor was decremented by a 

nominal -0.001 change in scale factor for the next trial. For an incorrect response, the scale factor 

was incremented by +0.001. It should be noted that this task is discrimination (presence or absence of 

a stimulus) rather than resolution (determination of form or shape of a stimulus).  

  

Each run consisted of 18 trials, with the initial test stimuli scale factor selected such that the first four 

or five trials were well above threshold. At the beginning of each run, the participants were therefore 

easily able to discriminate between the test and reference stimuli (100% accuracy), with the task 
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becoming more difficult as the test stimulus scale factor decreased, such that for the later trials the 

participants were performing at chance (50% accuracy). 

 

For each threshold estimate, there were seven runs, equivalent to 126 trails per estimate. Threshold 

estimates were carried out at 16 different Michelson contrast values in the range 1.5%-75%. The 

threshold estimates at each contrast value were repeated with temporal modulation frequencies of 

2Hz, 10Hz, 30Hz and 60Hz, 

 

The participants conducted several practice runs at the beginning of the experiment to familiarise 

themselves with the experimental arrangement. The participants could rest at the end of each run, , 

as required. 

 

JW and NM collected data at all four temporal modulation frequencies; TH collected data at 2Hz, 

10Hz and 30Hz. The complete data set for each participant was therefore approximately 8000 trials, 

with each participant recording data on different days over several weeks. 

 

2.4 Data Analysis 

The role of the staircase data was to generate the sampling of scale factors to be shown to the 

participants in each trial. For each threshold estimate, a plot of percentage correct versus scale factor 

generated a sigmoidal psychometric function, with the percentage correct being near 100% at high 

scale factors and near chance (50% at low scale factors). The psychometric functions were fitted to a 

cumulative Gaussian sigmoidal function using the Psignifit code v4 for the 2AFC paradigm (Schutt, 

Harmeling, Macke, & Wichmann, 2016). The threshold scale factor was defined as the “75% correct” 

point on the fitted sigmoid function. Threshold scale factors (and 95% credible interval values) were 

determined accordingly for the threshold estimate at each value of contrast and temporal frequency. 

 

The threshold scale factors were subsequently converted to threshold spatial wavelength values by 

multiplying the threshold scale factor by the nominal eccentricity of the stimuli (23.5°) and then adding 

the intercept value (0.058° (see Section 2.2.3)). 

 

Model fitting for the contrast sensitivity function models was performed using Maximum Likelihood 

Estimation (MLE). The MLE code was written in MATLAB, using the “fminsearchbnd” function which 

performed a bounded Nelder-Mead simplex algorithm (Lagarias, Reeds, Wright, & Wright, 1998). 

Starting values for each parameter were generated randomly. 

 

Selection of the most parsimonious model was based on the corrected Akaike Information Criterion 

AICC, which penalises more complex models based on their parameter count. Corrected Akaike 

Information Coefficients (AICC) are recommended for smaller datasets when there are fewer than 40 

data points per parameter (Wagenmakers & Farrell, 2004). The AICc values were converted into 

Akaike weights, which may be interpreted as the probability of a model being the best model (given 
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the data and total set of candidate models) in terms of its Kullback-Leibler distance (Wagenmakers & 

Farrell, 2004). The Akaike weights were also used to determine the evidence ratios for each model 

(i.e., how much more/less likely one model is compared to another). 

 

 

2.5 Results 

 

2.5.1 Threshold Spatial Wavelength as a Function of Contrast 

 

Figure 18 shows an example of the measured threshold spatial wavelength versus contrast for all 

three participants at a 10Hz temporal modulation frequency. 

 

Figure 18. Example threshold spatial wavelength data for JW (blue), NM (magenta) and TH (green) 

for 10Hz temporal modulation. The solid and dotted curves are dual-segment model fits discussed in 

the “Model Fitting” section. The error bars are the 95% credible interval limits. 

 

The key observation is that there appears to be a kink in the contrast threshold curve at approximately 

25% contrast for all three participants. This kink separating two curved segments is a feature of these 

data sets at all temporal frequencies. This functional shape is subsequently referred to as a dual-

segment curve. A formal, statistical assessment of the extent to which these data are better described 

with a single curve, or two curves is reported below. 
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2.5.2 Contrast sensitivity functions 

 

The threshold spatial wavelength versus contrast data was re-plotted as a CSF function, by plotting 

the inverse of the contrast (i.e., contrast sensitivity) on the y axis and the inverse of the threshold 

spatial wavelength (i.e. the threshold spatial frequency) on the x axis, as shown in Figure 19. The 

CSF presentation shows the kink more clearly in many (but not all) of the plots.  Note that the figure 

shows only the high frequency side of the CSF where I collected the data. 

 

 

 

Figure 19. Contrast sensitivity functions for JW (top row), NM (middle row) and TH (bottom row), at 

2Hz, 10Hz, 30Hz and 60Hz temporal modulation. The red and blue curves are the model fit for a 16-

parameter frequency Gaussian model discussed in the Results section. 

 

Figure 19 illustrates three characteristics of the data. First, the dual segment curve function is evident 

for all participants at most temporal frequencies. Second, the most experienced observer (JW) has 

the highest threshold spatial frequencies (lowest threshold wavelength values). And third, the 2Hz 

data for all participants has the highest contrast sensitivity values, for both segments. 

 

The two components of the dual-segment curves correspond to a high contrast sensitivity/low spatial 

frequency segment, and a low contrast sensitivity/high spatial frequency segment.  
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2.6 Model Fitting 

The aim of the modelling was to address the following questions. First, is a single or dual segment 

model more parsimonious? Second, can a single underlying model be applied to all participant’s 

data? Third, can the model give some insight into the physiology of the underlying processes, aside 

from simply being a parsimonious description of the data? 

 

The initial model I analysed used a simple power law, which has been used to successfully describe 

previous studies of dual-segment type responses such as contrast-dependent reaction times (Murray 

& Plainis, 2003). I also evaluated a Gaussian function in the spatial frequency domain, as an 

approximation to the standard Difference of Gaussian (DoG) function which is typically used to 

characterise the centre-surround spatial sensitivity of RGCs (Cope, Blakeslee, & McCourt, 2013). 

Ideally, I would have modelled the DoG directly, but I lacked data on the low frequency side of the 

peak, such that the model for the DoG would not converge. 

 

 

2.6.1 Individual data set model fitting 

Individual participant modelling was initially carried out in the spatial wavelength domain and based 

on a power law function of contrast C. 

(8) 

𝜆 = 𝑘(𝐶 − 𝐶𝑚𝑖𝑛)−𝑎        𝑓𝑜𝑟 𝐶 >  𝐶𝑚𝑖𝑛 
 

where λ is the cut-off wavelength, k is a constant related to the limiting cut-off wavelength at 100% 

contrast, Cmin is the asymptotic value of the contrast and a is the exponent. 

 

We also evaluated a Gaussian function in the spatial frequency domain.  To allow comparison with 

the power law model, the Gaussian model was transformed from the frequency domain into the 

wavelength domain, resulting in the following equation. 

(9) 

𝜆 =  
1

(𝑘2 + √2𝜎 (−𝑙𝑜𝑔 ((
1

𝐶𝐶𝑚𝑖𝑛
)

0.5

)))

             𝑓𝑜𝑟 𝐶
𝐶𝑚𝑖𝑛

⁄ > 1  

 

where λ is the cut-off wavelength, k2 is the centre frequency for the Gaussian in the spatial frequency, 

Cmin is the asymptotic value of the contrast and σ is the standard deviation of the Gaussian in the 

spatial frequency domain. 

 

For both models we included parameters for the dual segment structure and for the different temporal 

frequencies. For the models reported here, there were approximately 5-20 data points per parameter, 

respectively. 
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For each model, the same functional form was used for the two segments, but with different 

parameters. Of the two solutions for each segment, the most sensitive one (i.e., the lowest cut-off 

wavelength) was used for each data point in the MLE optimisation algorithm, on the assumption that 

the visual system responds to the most sensitive of the available channels channel rather than adding 

the contributions of the two channels (“winner-takes-all” model) (Murray & Plainis, 2003; Pokorny, 

2011).  

 

If each data set had two segments, and given 4 temporal frequencies, then a full description of each 

individual’s dataset would require 25 parameters: 4 (temporal frequencies) x 2 (segments) x 3 

(parameters per segment), plus one additional parameter for the Gaussian link function used to 

compute the likelihood of the data under the model. However, inspection of the data suggested that 

for each participant, the underlying cut-off wavelengths for each segment were common across the 

temporal frequencies, whereas the minimum contrast sensitivity values were dependent on the 

temporal frequencies. Accordingly, models with fewer, common, parameters were investigated, on the 

assumption that the full-blown model is over-specified.  

 

The models investigated included a set of nested factors: Power law vs frequency Gaussian functions 

(labelled P1-P6 and G1-G6, respectively); single vs dual segment functions; and temporal frequency 

dependence vs independence. Given the large number of parameters, and that the MLE fitting 

process is non-deterministic, to ensure that the model was finding the minimum value I ran each 

model 64,000 times in blocks of 8000 so that I could check that the minimum values of the function 

were consistent for each model. The results of the model fitting are shown in Table A1 in Appendix A.  

 

For each model I calculated the corrected AIC values, together with the Akaike weights. To determine 

strength of evidence in favour of a particular model, I calculated the evidence ratios and normalised 

probabilities for the different models. The evidence ratios were calculated by summing the Akaike 

weights for one model class e.g., frequency Gaussian and dividing by the sum of the Akaike weights 

for the complementary model class e.g., Power Law. 

 

From this analysis, I was able to identify the Best and Next Best model fits for each participant, with 

the 12-parameter frequency Gaussian model with dual segment and frequency dependence (labelled 

G4) being the Best fit in each case and two other models being identified as the next best model 

depending on the participant:  G5 (13 parameter frequency Gaussian) for NM and P5 (12 parameter 

Power Law) for TH and JW. The results for the best and next best models are shown in Table 1  

below. 
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 Best Next Best   Evid ratio Norm prob Evid ratio Evid ratio Evid ratio 

Participants Model AW Model AW Best/Next Best/Next Gauss/Power Dual/Single Freq dep/ind 

JW G4 0.83 G5 0.17 4.8 0.83 84243 3.7E+14 5.1E+20 

NM G4 0.66 P5 0.18 3.8 0.79 4.6 2.9E+09 6.0E+15 

TH G4 0.65 G5 0.27 2.4 0.71 12.1 5.8E+02 1.6E+04 

 

Table 1. Comparison of the evidence ratios and normalised probabilities for the Best and Next Best 

models, and the evidence ratios for Gauss vs Power law, dual versus single curve, and frequency 

dependent vs frequency independent, for each participant. 

 

There are three key observations from this model fitting exercise.  First, across all three participants 

the frequency Gaussian function (model G4) is the preferred model.  Second, as this model includes 

dual segments this suggest that the data is best modelled with this feature.  And third, the evidence 

ratio for the model that includes temporal frequency dependence strongly supports the inclusion of 

this factor in the models. Overall, the most parsimonious fit is the 12-parameter dual-curve frequency 

Gaussian model. 

 

At this point, given the strong evidence for the 12-parameter frequency Gaussian model with dual 

segment and temporal frequency dependency (G4) for all three participants, I decided to determine if 

there was a simple systematic relationship between the visual responses of all three participants. I 

therefore combined the datasets of all three participants (for all temporal frequencies) into a single 

dataset and applied the same MLE model fitting process.  

 

 

2.6.2 Combined data set model fitting 

The starting model for this analysis was a 34-parameter frequency Gaussian which treated each 

participants’ data sets as an independent 12-parameter models as determined in the previous section 

(with 10 for TH’s data), albeit within the same MLE fitting function. Simplified models with reduced 

parameter sets were then investigated, based on the observation that the individual data sets could 

be approximately overlaid either by applying a scaling (multiplicative) factor to the cut-off wavelength 

values (movement along the cut-off wavelength x-axis), or by adding an offset (movement along the 

contrast y-axis), as can be seen by inspection of Figure 2. For these models I used the JW dataset as 

the base model with the minimum number of additional parameters for each of the other participants 

data sets (plus the standard deviation of the Gaussian link function). I also included three Power Law 

models (labelled P6-P8) for comparison to check whether the evidence ratio for the Gaussian models 

(labelled G6-G10) remained high. 

 

The results of the combined model fitting are shown in Table B1 in Appendix B. 
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To determine strength of evidence in favour of a particular model, I calculated the evidence ratios and 

normalised probabilities for the different models summarised in Table 2. I determined that the Best Fit 

model was the 16-parameter frequency Gaussian, dual segment, frequency dependent model with 

multiplicative factors, labelled G7. This is the same model that was selected for the individual 

participants with two additional parameters per participant to account for inter-participant differences. 

 

Best Next  Evid ratio 
Norm 
prob Evid ratio Evid ratio 

Model AW Model AW Best/next Best/next Gauss/Power Dual/single 

G7 0.71 G10 0.23 3.1 0.76 42.6 9.2E+09 
 

Table 2. Comparison for Best and Next Best models for full dataset, with evidence ratios for Gauss vs 

Power Law and Dual vs Single curve 

 

There are three key observations from the modelling of the combined data sets.  First, the preferred 

model (with an evidence ratio of 3.1 compared to the next best model) is the 16-parameter frequency 

Gaussian, with scale factors favoured for the additional participants (rather than additive terms). 

Second, the evidence ratio for Gaussian vs Power Law is 42.6, which is very strong evidence in 

favour of that model.  And third, as with the individual data, the evidence ratio for dual vs single 

segment curves strongly favours the dual curve model. 

 

At this point, I have identified a strong underlying functional model (16 parameter dual curve 

frequency Gaussian) that fits the combined data set of all three participants. The parameter set for the 

model is given in Table 3. This is the model and parameter set that is plotted in Figure 19. 
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 Units JW NM TH 

Centre frequency of Gaussian, k2 cpd 2.54   

Standard deviation of M pathway Gaussian, σM cpd 1.56   

Standard deviation of P pathway Gaussian, σP cpd 3.89   

Peak contrast sensitivity of M pathway at 2Hz, 1/CminM2  69.0   

Peak contrast sensitivity of M pathway at 10Hz, 1/CminM10  42.8   

Peak contrast sensitivity of M pathway at 30Hz, 1/CminM30  34.4   

Peak contrast sensitivity M pathway at 60Hz, 1/CminM60  37.8   

Peak contrast sensitivity P pathway at 2Hz, 1/CminP2  9.29   

Peak contrast sensitivity P pathway at 10Hz, 1/CminP10  7.13   

Peak contrast sensitivity P pathway at 30Hz, 1/CminP30  5.87   

Peak contrast sensitivity P pathway 60Hz, 1/CminP60  5.08   

Multiplicative factor M NM   1.26  
Multiplicative factor P NM   1.44  
Multiplicative factor M TH    1.73 

Multiplicative factor P TH    1.87 
 

Table 3. Parameter set for the best-fit 16 parameter scale frequency Gaussian model for the 

combined data set, based on Equation 9.  

 

Three important observations can be made regarding this model.  First, only two multiplicative factors 

(one for each segment) are required to fit each additional participant to the base frequency Gaussian 

functions (corresponding to the dual curves). Second, the peak contrast sensitivity for each temporal 

frequency and segment are common for all three participants. And third, these results strongly 

suggest a common underlying process determining the cut-off threshold measurements for all three 

participants. 

It should be noted that the 16-parameter model only has a single, common, parameter value for the 

centre frequencies of the two Gaussian functions (M and P). In practice, we would expect to have 

independent centre frequencies, and as such the 16-parameter model might be regarded as less 

realistic. Nevertheless, it appears that the current data did not warrant inclusion of separate centre 

frequencies, so we proceed with the 16-parameter model for the following analysis and discussion. 

Having established the most parsimonious fit, I can use the values of the peak contrast sensitivity as 

a function of temporal frequency (from Table 3) to plot the inferred temporal contrast sensitivity for 

both segments of the fitted function (Figure 20) at the peak frequency of 2.54 cpd. 
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Figure 20. Inferred peak temporal contrast sensitivity functions at 2.5 cpd based on the 16-parameter 

frequency Gaussian model for JW, NM, and TH combined dataset (Table 3). The blue curve is for the 

low-contrast segment, and the red curve is for the high-contrast segment. 

 

For both segments that the highest contrast sensitivity is observed for 2Hz temporal modulation, with 

the sensitivity dropping at higher temporal frequencies. The peak contrast sensitivity for the high-

sensitivity curve is approximately 8 times that of the low contrast sensitivity curve. 

 

In summary, I have demonstrated using these stimuli and methods that we can differentiate between 

two segments of the contrast sensitivity function. In addition, the inter-participant variation is 

described simply by two multiplicative parameters per participant, one for each segment, suggesting a 

common underlying functionality across all participants. In the next section I argue that two segments 

represent the M and P pathway contrast response, respectively. 

 

 

2.7 Discussion 

Having derived a parsimonious model that describes the dual segment contrast sensitivity data in the 

spatial frequency domain, we wanted to test the evidence that the two segments correspond to the M 

and P pathways. 

 

2.7.1 Does The Spatial CSF Data Support The Claimed Discrimination of the M and P 

Pathways? 

Previous psychophysical studies of discrimination acuity in the periphery (c. 25° eccentricity) have 

found cut-off frequencies ranging from 6 cpd (Anderson, Zlatkova, & Demirel, 2002; Koenderink, 

Bouman, Buenodemesquita, & Slappendel, 1978) for presentation of grating stimuli on displays to cut-



47 
 

off frequencies of up to 30 cpd in experiments using visometers to directly project gratings onto the 

retina (Thibos, Cheney, & Walsh, 1987; Zhu, Zele, Suheimat, Lambert, & Atchison, 2016). The data 

reported here is consistent with the values for the studies presenting grating stimuli on displays. 

 

However, where my results differ from the conventional contrast sensitivity function measurement is 

that I focused our data collection on the high-frequency side of the function. This was done in order to 

facilitate discrimination between the M and P pathways where the respective contributions would be 

most separable in a winner-takes-all model. Other differences in methodology include using: 

a) Tangential gratings rather than straight, parallel gratings. 

b) Linearly ramped fringe spacing in the stimuli to maximise sensitivity of the PSE function. 

c) Narrowly spaced increments in spatial wavelength (c. 0.02° per increment) to maximise 

sensitivity to any kink in response. 

d) A relatively large-area stimulus (c. 55° squared) 

e) Presentation of the stimuli in periphery (23.5°) where the visual acuity is dependent only on 

RGC spacing and not cone density. 

f) Stimuli presentation in single visual field (monocular, left nasal) to maximise sensitivity to the 

PSE function. 

 

It is proposed that these methodological differences are what has enabled the detection of the dual 

segment structure, which we can relate to the known spatial dimensions of RGC receptive fields. 

 

As discussed in the Introduction, Kaplan and colleagues hypothesised that the shape of the primate 

contrast sensitivity function could be explained by combining the known physiological contrast gain 

functions of P and M cells (Kaplan 2013) with the Difference of Gaussian (DoG) frequency response 

function arising from the centre-surround opponency (Rodieck 1965, Enroth-Cugell 1966). The 

relevant equations defining the relationship between the spatial frequency and spatial DoG functions 

are given in Section 1.2.3.2 (Equations 3a and 3b). 

 

Although the parsimonious model was a frequency Gaussian model, I was able to fit it to the DoG in 

the spatial frequency domain using equation 3b, as the functional shapes are similar in the spatial 

frequency range of interest. As the experimental set-up was optically uncorrected for off-axis imaging, 

in order to estimate the DoG for the underlying retinal ganglion cell geometry a representative 

modulation transfer function (MTF) first needed to be applied to the data. The MTF function used was 

a double-exponential function (Williams et al., 1996): 

(10) 

𝑀(𝑠) = (1 − 𝑐)𝑒−𝑎𝑓 + 𝑐𝑒−𝑏𝑓 

 

Where f is the spatial frequency and the coefficients a, b and c were taken from Table 1 of (Williams 

et al., 1996) corresponding to the circle of least confusion at 20° eccentricity. 
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Using the frequency DoG fit to the data, I was able to determine the corresponding full width half 

maximum (FWHM) values of the corresponding spatial DoG structures for the M and P pathways. The 

fit is shown in Figure 19. 

 

      
Figure 21. Top row is based on the MTF-corrected P pathway data. (A)  is the frequency Gaussian 

model (black dashed line) fitted to the frequency DoG (green line), with estimated centre and 

surround functions shown in mauve and blue, respectively. (B) is the equivalent spatial DoG structure. 

The bottom row is the same for the MTF-corrected M pathway data (C) and (D). 

 

The frequency DoG (green line) is a reasonable fit to the frequency Gaussian function (black dashed 

line) for both the P and the M pathways. However, in running the model fit it was clear that the centre 

and surround amplitudes and radii are poorly determined, as the lack of low frequency data means 

that the surround function is poorly constrained. That said, the DoG function is well-determined, such 

that the FWHM of both the frequency and the spatial DoGs can be calculated, and then compared to 

published data for RGC dendritic and receptive fields, as shown in Table 4. 
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Measurement  Dimensions Parameter References Eccentricity  

Psychophysical 

contrast sensitivity – 

population receptive 

field 

P = 0.07°- 0.13° 

M = 0.14°- 0.24° 

Spatial 

DoG 

FWHM 

This 

dissertation 

23.5° Values for JW, Nm 

and TH based on 

data in Table 3, 

corrected for MTF 

Dendritic field size 

in human retinas – 

single cell 

P = 0.12° - 21° 

M = 0.61° - 82° 

Diameter (Dacey & 

Petersen, 

1992) 

23° Values estimated 

from Figure 2 of 

ref. 

Receptive field 

sizes in primates 

(macaques) -single 

cell 

P = 0.14°-0.30° 

M = 0.30° - 

0.55° 

Spatial 

DoG 

FWHM 

(Croner & 

Kaplan, 1995) 

Averaged 

over the 

range 20°--

30° 

Derived from 

values from Table 

1 of ref. 

Dendritic field size 

in macaque retinas 

(nasal) – single cell 

P = 0.06° – 

0.22° 

M = 0.30° – 

0.70° 

Diameter (P. Martin & 

Grunert, 2003) 

 

23° Values estimated 

from Figure 26.4 

(modified from 

Watanabe 1989) 

 

Table 4. Comparison of the psychophysical FWHM spatial DOG estimates with physiological 

estimates of primate and human receptive field and dendritic field diameters. 

 

Note that the physiological data in Table 4 includes both human and macaque studies. Dacey 

reported that for eccentricities near 25 degrees the ratios of human to macaque dendritic field 

diameters were approximately 1.0 and 1.3 for P and M RGCs, respectively (Dacey & Petersen, 1992), 

I therefore consider both data types to be valid comparators. 

 

It can be seen from Table 4 that the psychophysical FWHM values are within a factor of two of the 

physiological data for the P pathway, and slightly higher for the M pathway. Given the significant 

differences in methodology, in particular the comparison of population RF estimate to single cell 

measurements, and that FWHM measurements are likely to underestimate visual estimates of 

dendritic field diameter, I consider that the comparative receptive field/dendritic field diameter data 

supports the identification of the dual segments as corresponding to the M and P pathways.  

 

2.7.2 Does the Temporal CSF Data Support the Claimed Discrimination of the M and P 

Pathways? 

Kelly (1984) studied the retinal spatiotemporal CSF across a range of eccentricities (using 

circular radial gratings with mean eccentricities of 0°, 3°, 6° and 12°). For all eccentricity 

values, when measured using the spatial frequency corresponding to the peak of each 

spatial CSF at 0.5Hz, the temporal CSF was a low pass response with a knee at 

approximately 10Hz, and a cut-off frequency of approximately 30-40Hz. For lower spatial 
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frequencies (i.e., a factor of five below the peak spatial frequencies), the temporal CSF was 

a bandpass response for all eccentricities, with the peak responses in the range 3-7Hz, 

dependent on eccentricity. A low-pass response at high spatial frequencies is consistent with 

other authors (Li, Gi and Wang, 2012; Robson, 1966; Virsu, Rovamo, Laurinen & Nasanen, 

1982). 

 

Kelly also noted for the lower spatial frequencies that there was an enhanced response (ie 

higher cut-off frequency) at higher eccentricities. Measurements using uniform, patternless, 

stimuli confirmed this enhanced flicker response at increasing eccentricity, which Kelly 

interpreted as being a purely temporal phenomenon, at zero spatial frequency. The 

extrapolated cut-off frequency was more than 50Hz. 

 

Kelly’s study did not specifically differentiate between potentially different pathways 

(magnocellular and parvocellular) but treated the measured CSFs as a single pathway. In 

contrast, Merigan et al (1993) used lesion studies to differentiate between the spatiotemporal 

characteristics of the M and P pathways in macaques. These studies demonstrated that the 

M pathway primarily transmits high temporal/low spatial frequency luminance information, 

and the P pathway transmits primarily low temporal/high spatial frequency luminance 

information. Therefore, within the overall temporal CSF envelope, and for a given spatial 

frequency, the M pathway contributes the high temporal frequency response, and the P 

pathway contributes the low temporal frequency response. 

 

Therefore, based on the Kelly and Merigan studies, the predictions for the temporal CSFs 

reported in this chapter would be that: 

 

a) Given that the value of the contrast sensitivity at each temporal frequency was 

determined at the spatial frequency of the peak of the spatial CSF response (i.e., 2.5 

cpd), the temporal CSF function of the M pathway in Figure 20 should be a low pass 

response with a knee at approximately 10 Hz, with a peak contrast sensitivity of 

approximately 100.  

 

b) The P pathway CSF should also be a low pass response but with a knee below 10 

Hz, with a peak contrast sensitivity of approximately 10. 

 

c) There should not be an enhanced flicker response for the M pathway, as the 

luminance values of sinusoidal grating stimuli were symmetric around the 50% level, 
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such that there should be no average luminance signal over the whole patch which 

might trigger the flicker response. 

 

Comparison of these predictions with the results shown in Figure 20 is limited given the poor 

temporal resolution (i.e., data points only at 2Hz, 10 Hz, 30Hz and 60Hz). However, we 

observe in Figure 20 that: 

 

i) The M pathway temporal CSF does have a low pass response down to 30Hz, the 

peak sensitivity is approximately 100, but an enhanced response is visible at 60 

Hz which obscures any knee which might be present at 10Hz.  This could be due 

to a flicker response arising from a residual luminance signal i.e., if the grating 

stimuli peaks and troughs were not in practice perfectly balanced around 50% 

luminance. 

 

ii) The P pathway temporal CSF also has a low pass response, the peak sensitivity 

is approximately 10 but the knee is significantly higher than 10 Hz, which is 

inconsistent with the Merigan data. This could be due to aliasing from the RGCs 

sampling array, although no evidence of aliasing was observed by participant JW 

at threshold, although it was observed well above threshold. 

 

Therefore, the M and P pathway temporal CSF functions plotted in Figure 20 do not 

conclusively support the claimed discrimination of the M and P pathways but may include 

contributions from enhanced flicker detection and aliasing, respectively. Further research 

would need to be carried out to resolve this uncertainty. 

 

 

2.7.3 Other Questions 

The results raise some additional questions.   

 

First, what underlies the differences in multiplicative factors determined for the participants in the 

experiment? The simplest argument is that the relative multiplicative factors arise from differences in 

the individual RF sizes (and hence implied RGC spacing). The variation of data reported here is 

consistent with reported variation of inter-participant RGC spacings (McKendrick & Johnson, 2000; 

Wilkinson, Anderson, Bradley, & Thibos, 2016) and of inter-participant V1 cortical magnification 

values (Himmelberg, Winawer, & Carrasco, 2020). 

 

 



52 
 

Secondly, there is the question of why the M and P pathway physiological parameters have the 

values that they do? One way to think about this question is to consider what the limiting physical 

factors are that arise from the geometry of the lens of the eye, combined with the sampling density of 

the retinal ganglion array.   It was hypothesised by Williams (Williams et al., 1996) that aliasing of 

fringe stimuli arising from the Nyquist sampling limit of the P RGC array at high eccentricities would 

largely, but not completely, be suppressed by the effect of the MTF for off-axis measurements. As 

such, this combination of physical effects might be the limiting envelope for peripheral visual acuity. I 

therefore compared the combination of MTF/aliasing with the frequency Gaussian model (Figure 22).  

 

    
 

 
Figure 22. Comparison of MTF/aliasing model (red) (assuming a simple Gaussian function for the low-

frequency curve and a 6.3 cpd Nyquist frequency for the pathway (Williams et al., 1996)) to the 

frequency Gaussian model (blue). 

 

The two models are similar across the range of spatial frequencies, except close to cut-off. As such, 

the measured M and P physiological response is a close match to the limits arising from the physics 

of the lens and RGC array spacing. One might therefore argue that the M and P pathway detection 

sensitivities are evolved to be well-matched to both the optics of the eye and the limits imposed by the 

sensor array. 

 

 

 

2.8 Conclusions 

In the introduction, I described the challenge of psychophysical differentiation of the spatial and 

temporal frequency characteristics of the M and P channels, and the consequent development of 

more indirect methods. However, the results reported here suggest that it is possible to 
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psychophysically discriminate the hypothesised dual-segment characteristic of the contrast sensitivity 

function using independently spatially and temporally varying stimuli. Using a discrimination paradigm, 

I have shown that this behaviour is both reproducible across multiple participants and consistent with 

the known contrast gain and spatial physiological characteristics of the P and M pathways in the 

primate visual system. The results support the hypothesis that the measured psychophysical 

achromatic contrast sensitivity function of the primate visual system can be explained by combining 

the P and M retinal ganglion cell responses (Kulikowski, 1989; Kaplan, 1990). The results are also 

consistent with previous observations that the overall system response is that of the most sensitive of 

the two channels, rather than summing the two channel responses 
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Chapter 3 Image Analysis and Visualisation of the Contribution of the M and P Pathways 

 

3.1 Introduction 

In the previous chapter, I reported on the direct psychophysical discrimination of the M and P 

pathways at an eccentricity of 23.5 degrees in the left nasal visual field. I determined both the spatial 

frequency response and the contrast sensitivity of each pathway. Using this data and the known 

contrast gain functions, I was able to infer the spatial scale of the receptive fields of the M and P 

retinal ganglion cells, described in terms of difference of Gaussian functions. 

 

In principle, this information can be used to understand how these channels differentially respond to 

natural images projected onto the periphery of the retina. The differential responses will depend on 

the characteristic scale for each channel, and the contrast gain function. Therefore, the first step is to 

understand how natural images are characterised in terms of the local contrast as a function of scale. 

Using that local contrast information, we can then model the impact of the pathway contrast gain 

characteristics on the images to determine the differential response. 

 

This chapter is split into two sections. In the first section, I present a novel technique for determining 

local contrast as function of scale. I use this technique to analyse both sinusoidal fringe images and 

natural images in terms of contrast and mean luminance, and then relate those results to the known 

characteristics of the images and published studies. Having demonstrated that the technique is valid, 

in the second section I use the model to apply the relevant contrast gain functions at the characteristic 

scale for each channel, and then map the localised contrast response images (which are the contrast 

response function of the model mechanism) onto the original images. This generates a visualisation 

of the characteristic responses in the periphery of the two pathways. 

 

3.2 The Statistics of Natural Images 

The statistics of natural images has been extensively studied, exploring general statistics (Peli, 1990; 

Ruderman, 1994), the relationship between image statistics and cellular responses (X. W. Cao, 

Merwine, & Grzywacz, 2011; Field, 1987), correlation between local luminance and contrast (Frazor & 

Geisler, 2006; Geisler, 2008; Lindgren, Hurri, & Hyvarinen, 2008; Peli, 1990), image statistics and 

higher level responses (Ghodrati, Ghodousi, & Yoonessi, 2016; Scholte, Ghebreab, Waldorp, 

Smeulders, & Lamme, 2009) and more recently high-level characterisation of images in large 

databases based on contrast and luminance statistics (Harrison, 2022). In general, these studies 

have analysed the population statistics of complete images or image sets, with limited analysis of 

contrast and luminance within the images as a function of local scale and position. 

 

For this study, I wanted to be able to visualise how the M and P pathways in the periphery 

differentially respond to local contrast on actual images, rather than simply establishing the overall 

statistics for a set of images. To do this, I needed to be able to quantify contrast as a function of local 

scale, for a fixed array of cells (or patches) across each image. This enabled me to both analyse how 
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contrast varies with local scale, and to then model how the differential contrast gain characteristics of 

the two pathways modulate the perceived image as a function of position. 

 

I therefore decided to develop a simple algorithm to first determine the local contrast variation across 

images, and then use these contrast maps with the known contrast gain characteristics of the two 

pathways to transform the images into contrast response images, effectively modelling the spatial 

distribution of retinal ganglion cell (RGC) outputs for both M and P peripheral pathways. 

 

The starting point of the image analysis process is determination of the local contrast. 

 

3.3 Determination of Local Contrast 

Local contrast can be defined in three ways, namely: 

(11) 

Michelson contrast:  Cm= (Lmax - Lmin)/(Lmax+Lmin) 

         (12) 

Weber contrast:   Cw = (Lmax – Lmin)/Lbackground 

(13) 

RMS contrast:   CRMS = LRMS/Lmean 

 

Where Lmax and Lmin are the maximum and minimum luminance in a specified array of luminance 

values Lbackground is the background luminance, LRMS is the standard deviation of the luminance and 

Lmean is the mean luminance. 

 

Michelson contrast is most relevant where the images area well-defined sine waves (such as Gabor 

patches), Weber contrast for letter stimuli and RMS contrast for natural images (Pelli 2013). 

Therefore, for this study I have used RMS contrast. 

 

The image processing was carried out using MATLAB (Mathworks Inc., Natick, MA, USA).  For 

determination of the standard deviation I utilised: 

 

stdfilt(A, nhood) which applies standard deviation filtering of an image array A. Each pixel of 

the output array is the standard deviation of a nhood x nhood array. So, for example if I set 

nhood =3, “stdfilt” will determine the standard deviation of a 3x3 set of elements around each 

pixel. The parameter nhood effectively sets the scale over which the standard deviation 

function is evaluated. The output is an array the same size as the input array, with each 

element of the array being the local standard deviation. 

 

For the evaluation of the mean, I utilised: 
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imgaussfilt(A, sigma) which calculates the Gaussian weighted mean of a range of cells 

defined by a standard deviation of sigma.  

 

Using the MATLAB matrix functionality, for an luminance image array defined a A(i,j), I can define 

local RMS contrast L(i,j) as  

           (14) 

J = stdfilt(A, m) 

(15) 

K = imgaussfilt(A, m/C1) 

(16) 

L = C2.* J./L 

 

Where J defines the local standard deviation of the luminance for an m x m array, K defines the 

Gaussian weighted mean of the luminance and L is the local RMS contrast. The constant C1 is 

necessary to approximately match the dimensions of the square m x m array used by stdfilt to the 

Gaussian weighting with a standard deviation of m/C1 used by imgaussfilt. The constant C2 is to 

calibrate the calculated contrast values defined by equation (6) to accurate Michelson values of 

contrast when evaluating simple sinusoidal fringe images. 

 

In practice, the contrast value L(i,j) defined using equation 6 determines the contrast for every pixel in 

an array. However, I want to determine the contrast values for non-overlapping cells of differing scale. 

I do this by extracting the centre value for a given cell size. 

 

3.3.1 Extraction of Central Values 

For example, consider the following image: 

A      B 

 

Figure 23 (A) Example RGB image. (B) Luminance image based on (A) cropped to remove the 

reference ball in the lower left-hand corner. 
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Evaluation of the local RMS contrast values L(I,j) in Figure 23(B) using Equation 6 at a scale of m = 3 

for the top left-hand corner gives: 

 

ans = 7×7 

    0.6423    0.6437    0.6441    0.6453    0.6468    0.6480    0.6491 

    0.6509    0.6522    0.6525    0.6537    0.6551    0.6563    0.6573 

    0.6606    0.6619    0.6622    0.6633    0.6647    0.6658    0.6669 

    0.6671    0.6684    0.6687    0.6696    0.6705    0.6713    0.6722 

    0.6693    0.6705    0.6706    0.6706    0.6710    0.6715    0.6724 

    0.6695    0.6706    0.6702    0.6702    0.6705    0.6710    0.6719 

    0.6684    0.6696    0.6693    0.6691    0.6693    0.6698    0.6706 

 

Table 5 Contrast values determined for the top left-hand corner of the luminance image in Figure 

23(B). 

 

Each value shown is the local contrast for each pixel (i,j) in the array. In order to determine the central 

values of an array of cells of scale 3 x 3, I need to extract the values at (2,2), (2,5,) (2,8) etc, as 

highlighted in yellow. As such, starting with a pixel-based array L(i,j) of overlapping contrast values we 

can determine a smaller cell-based array B(p,q) of non-overlapping contrast values for each cell of 

width 3 x 3. 

 

Having defined the local contrast for a scale of 3x3 pixels, we can then use a “for” loop to determine 

local contrast over a range of scale values set by m to generate a contrast heat map. 

 

3.4 Algorithm for Calculating the Contrast Heat Map 

Using a for loop, for each value of m, 

• Start with the luminance image array A(i,j) 

• Calculate the pixel-based local contrast array L(I,j) using equation (6). 

• Calculate the cell-based local contrast array B(p,q) by extracting the values at the centre of 

each cell 

• Calculate a histogram of the cell-based contrast values in the range 0-1 

• Save the bin count values from the histogram as one row in a contrast map array. These bin 

count values describe the frequency distribution of the cell contrast values in the range 0-

100%, for this value of scale set by m 

• Iterate the process with for incremented values of m, in order to define an array or map of 

how the local contrast varies across the range of scale values. 

 

The scale of the map is calibrated in degrees, based on the experimental set-up described in Chapter 

2. For that experiment I used a display with a pixel spacing of 0.25 mm at a viewing distance of 800 

mm, such that the subtended angle of each pixel was 0.016 degrees (allowing for the cosine error). I 
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therefore use the value of 0.016 degrees per pixel to set the scale in degrees for the images analysed 

here e.g., a 3x3 pixel array is equivalent to a subtended angle of 0.05 degrees, assuming that the test 

image was projected on a screen at 800mm and viewed at a peripheral angle of 23.5°. 

 

This algorithm was used to calculate the contrast heat maps of images as viewed in peripheral vision. 

The scale range I used is 3-121 pixels, equivalent to 0.05°-2.0°, which is the range of interest for the 

M and P pathways evaluated in Chapter 2 and similar to relevant papers (Frazor & Geisler, 2006) 

 

The first step was to test the algorithm with luminance images of sine waves of fixed contrast and 

spatial wavelength, to determine if the algorithm correctly modelled these known parameters. 

 

3.5 Evaluation of the Contrast Heat Map Methodology 

The reference image used for the initial evaluation of the is shown in Figure 24. It consists of a single 

sine wave (full image) with a wavelength of 0.34° and a Michelson contrast of 20%. 

 

 
 

 

Figure 24 (A) Full-image sine wave (wavelength = 21 pixels/0.34°) and 20% Michelson contrast. (B) 

Contrast versus scale, with the Z axis showing the bin count. (C) Standard deviation vs scale. (D) 

Mean luminance vs scale. 

A 

D C 

B 
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Figure 24(B) shows the contrast map derived using Equation 6. There are several observations to be 

made: 

 

a) The known contrast of the sine wave (Michelson contrast = 20%) has been used to determine 

the constant C2 in Equation 16. This value is used for C2 = 1,412 in all subsequent modelling. 

 

b) The contrast value is constant at 20% from large scale (2°) down to a scale of 0.34° (the 

wavelength of the sine wave). Below this scale, the calculated contrast declines to zero at 

zero scale. This is not a defect in the algorithm but is a result of determining the standard 

deviation of a sine wave over a distance shorter than the wavelength. The standard deviation 

(and hence RMS contrast) tends to zero for zero sampling distance. Interestingly, this looks 

like a 1/f function if plotted as spatial frequency (1/scale) rather than scale. However, this is 

not a feature of the image statistics (as the image is a simple sine wave) but a feature of the 

algorithm (which is modelling the function of the RGC). 

 

As such, for any image analysed for local contrast and presented as a contrast map in this 

form, there will always be a peak in low apparent contrast at low scale. However, as will be 

seen later, this low contrast/low scale signal is outside the sensitivity bands of the M and P 

pathways, and thus is not perceived. 

 

c) The contrast value is not precisely constant at 20% as al values of scale. There is a small 

variation which blurs the contrast value (approximately +-0.5%) periodically. This arises 

because the calculated value for the contrast is only independent of the phase of the sine 

wave when the sampling scale is a multiple of the wavelength. Intermediate values of scale 

have a small error in the contrast arising from the variable phase. This phase error can be 

minimised by, for example, dividing the sine wave image into four quadrature-shifted sine 

waves. However, for simplicity I have not done this, as natural images do not typically have 

fixed phase relationships across the image, so this effect should not be significant.  

 

Figure 24(C) shows the standard deviation (Equation 14) as a function of scale. The structure in the 

contrast value is predominantly due the standard deviation term. Figure 24(D) shows the luminance 

as a function of scale. As with the standard deviation and contrast maps, there is a small periodic 

level of variation on the luminance value due to the same phase effect. One noticeable difference is 

that the mean luminance is constant down to a scale of 0.17° (half the sine wave wavelength), as only 

half a cycle of a sine wave is required to determine the mean value accurately. 

 

At this point, the algorithm has generated a plausible contrast map for a single sine wave. The next 

figure shows the contrast map for a test image with four sine waves. 
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Figure 25. (A) Four sine waves (wavelengths/contrast: 0.74/4.5%, 0.34/14.5%, 0.18/34.5%, 

0.11/64.5%) (B) Contrast versus scale, with the z axis showing bin count. (C) Standard deviation vs 

scale. (D) Mean luminance vs scale. 

 

The four sine waves have the following wavelengths and contrast values: 

A. 45 pixels = 0.74° at 4.5% contrast 

B. 21 pixels = 0.39° at 14.5% contrast 

C. 11 pixels = 0.18° at 34.5% contrast 

D. 7 pixels = 0.11° at 64.5% contrast 

 

For Figure 25(B) (contrast) the following observations can be made  

a) For each of the sine waves, the measured contrast values are close to the known value (with 

the addition of the phase effect discussed above). 

b) The point of inflection at low scale where the constant contrast value transitions to the low 

scale/low contrast function equates to the known wavelength of each sinewave, except for the 

longest wavelength sinewave (nominally 0.74°) which is low by about 10%. 

c) There are some faint diagonal lines between the lines of constant contrast. These arise from 

the boundaries between the four sine wave segments, such that cells that overlap a boundary 

see an intermediate value of the contrast values on either side of the boundary. As such, the 

A 

C 

B 

D 
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algorithm is correctly capturing the actual contrast variation as a function of local scale and 

position. 

 

In conclusion, the algorithm is correctly mapping the local contrast for simple images composed of 

multiple sine waves. The next is to use the algorithm to evaluate natural images in terms of local 

contrast and scale, which is described in the next section. 

 

3.6 Analysis of Natural Images 

The images used for this analysis are from the “Barcelona Calibrated Images Database” (Vasquez-

Corrall, 2009). The images were collected using a standard process with a grey reference sphere for 

illuminant recovery and were calibrated to give a set of standardised CIE1931 XYZ pixels, saved as 

MATLAB data files. The 350 images in the dataset were categorised as Urban Scenery, Forests and 

Motorways, Snow and Sea and Naturalistic. This meant that I was able to analyse both individual 

images and averages over multiple images, for several categories (Urban, Naturalistic (based on the 

Natural04 set), Beach and Forest). 

 

For each image, the Y component was extracted as the luminance image array. The XYZ file was 

also converted to an RGB file for visualisation, although the RGB files were not used for any analysis. 

The next section shows some examples of the images and their contrast maps. 
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The first example is a beach scene with widely varying contrast profiles (Figure (24).  

A     B 

       

 C     D 

  

 E     F 

  

 
 

Fig 26. The top row shows the RGB (A) and luminance image (B). The middle row shows the cell-

based contrast maps, with (C) showing the raw data and (D) having a small amount of Gaussian 

filtering applied to reduce the noise. The bottom row shows (E) the raw standard deviation data and 

(F) the mean luminance data. 
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Figures 26(A) and 26(B) are the RGB and luminance images, respectively, with the latter normalised 

to use the full gray scale. Figure 26(C) is the raw contrast data. For improved visualisation, I have a 

applied a low level of Gaussian filtering (σ = 0.1), to give the contrast map shown in Figure 26(D). 

There are two strong contrast features at 35% and 50% contrast, with a third, weaker feature at 20%. 

The inflection points at the critical wavelengths of around 0.3 and 0.4 degrees for the two higher 

contrast features. The higher contrast feature corresponds to the footprints in the sand in the centre of 

the image, with the mid contrast feature being the sea and lowest contrast the smooth area of the 

beach. The low contrast/low scale feature arising from the under-sampling peak is clearly visible. 

 

Figure 26(E) shows the standard deviation map, mirroring the contrast map. Figure 26(F) shows the 

mean luminance map, with a strong low value structure which corresponds to the sea, with a more 

diffuse structure at a higher mean luminance value that corresponds to the middle strip of sand. 

Overall, the mean luminance is essentially primarily independent of scale down to 0.1°. 

 

As another example, Figure 27 shows the contrast maps for an image of a forest scene. 

A     B 

     

 C     D 

  

 
 

 



64 
 

 E     F 

  

 

Fig 27. The top row shows the RGB (A) and luminance image (B). The middle row shows the cell-

based contrast maps, with (C) showing the raw data and (D) having a small amount of Gaussian 

filtering applied to reduce the noise. The bottom row shows (E) the raw standard deviation data and 

(F) the mean luminance data. 

 

The contrast map (Figure 27(D)) shows a broader, more diffuse variation of contrast, with some 

structure above 1°. The mean luminance has low structure and is essentially scale invariant down to 

0.1°. 

 

Considering the maps for both images, there are two main observations: 

 

a) The mean luminance is essentially scale-invariant down to 0.1°. 

b) The variation in the contrast map structure is therefore determined primarily by the standard 

deviation distribution, which in the two images discussed have features at large scale but 

which tend to the origin (low contrast/low scale) at low scale. 

 

These two observations are consistent with the findings of Frazor and Geisler (Frazor & Geisler, 

2006), who analysed local scale dependence of luminance and contrast in natural images, for a 

number of image segment categories, summarised in Figure 28. 
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     Patch half-height (degrees)      Patch half-height (degrees) 

 

Figure 28 (A) Luminance as a function of scale for segments of images categorised as Rural, Foliage, 

Ground, Sky, Backlit and Urban. (B) RMS variation as a function of scale for the same segments. 

Note that the x axis scale is patch radius in degrees. (Reproduced from Frazor & Geisler, 2006) 

 

The scale range is 0.3-2.0° (diameter), which is consistent with my model. The mean luminance 

values are essentially scale invariant over this range, with differing absolute values for each segment 

type. The RMS contrast values have the characteristic of having a small positive slope at large scale, 

with a point of inflexion in the diameter range of 0.5-1.0°. At low scale values, the contrast tends to 

zero. As such, the contrast maps generated by the algorithm are consistent with Frazor’s results, 

albeit Frazor does not ascribe the shape of the contrast function to any underlying statistics, but refers 

to it a “monotonically increasing” (Frazor & Geisler, 2006) 

 

Typically, the statistics of an image are characterised in the spatial frequency domain. Therefore, the 

data from Figure 27D (contrast versus scale) was re-plotted as contrast versus spatial frequency 

(defined as 1/scale) as shown in Figure 29 (in log10-log10 format). 

 

A B 
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 Figure 29. Plot of Figure 27(D) as log10(Contrast) vs log10(spatial frequency). The red dashed line is 

a 1/f slope, and the green dashed line is a 1/fα slope where α = 0.5.  

 

The red dashed line has a slope of 1/f, which is consistent with the slope determined for the sine 

wave images, and is what would be expected if the image contrast values were uncorrelated i.e. 

noise. However, as can be seen the data looks to be better estimated by a slope of 1/fα where α = 0.5. 

Ruderman reports a value of α = 0.2 (Ruderman, 1994) for his specific image set, and Balboa 

reported values of α = 0.5 to 0.7 (estimated from (Balboa & Grzywacz, 2003). As such, the α values 

determined using the contrast algorithm model are consistent with these papers. 

 

For completeness, Figure 30 shows average contrast maps for five random images from each of the 

four groups, together with an example image and contrast map for each group. 
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       A                  B          C    

 
    D         E        F 

 
   G         H       I 

 
   J        K      L 

 
Figure 30. Contrast maps for example images from each category, with each row showing an 

example RGB image from the group (Sand, Natural, Forest and Urban), the corresponding contrast vs 

scale plot, and the contrast vs scale plot averaged over 5 images from the group.   

 

Each of the contrast maps for the individual images are quite different, which is expected given their 

different object and texture distributions. However, overall, it can be seen can be seen that the 

average contrast maps have three dominant features: 
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a) A diffuse structure with a 1/fα scale dependence, arising from the underlying image statistics 

and the under-sampling characteristic of the contrast measurement. 

 

b) Low-contrast (<10%) scale-invariant structures (<0.1degrees) e.g., sea, sky, concrete plazas 

 

c) Medium contrast structures with scale dependence greater than 1.0° 

 

Typically, each image is composed of a combination of these three components. 

 

 

3.6.1 Conclusions from the Natural Image Analysis 

At this point, I have demonstrated that the contrast map algorithm generates accurate maps for sine 

wave test images with defined parameters. Tests of the algorithm on a range of natural images have 

also shown it to be consistent with other studies. I therefore used the same algorithm to visualise the 

characteristic responses of the M and P pathways differentially respond to the local contrast variations 

in natural images. 

 

 

3.7 Visualising the Differential Responses of the M and P Pathways  

Application of the contrast map algorithm for visualisation of the M and P pathways uses the following 

steps: 

a) Determine for each pathway what the cell-based contrast image looks like at the 

characteristic scale of that channel (calculated from the spatial frequency response). 

 

b) Use the known contrast sensitivity (in terms of impulses/% contrast) of each pathway to 

determine the output for each cell (based on its local contrast). 

 

c) Plot an image of the contrast response image ((which is the contrast response function of the 

model mechanism). 

 

Note that these contrast response images are not representative of what would be perceived over the 

full eccentricity range corresponding to width of the image, which that would require a linearly 

increasing cell size across the window, with the relevant scale factor for each pathway. Instead, for 

simplicity I have used a fixed characteristic scale for the whole image. As such, these images 

represent is what the contrast response images would look like at the eccentricity of 23.5 degrees. 

However, the images still have value in showing us the differential response of the two pathways to 

natural images. 

 

 

3.7.1 Determining the contrast images at the characteristic scale for each pathway 
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The starting points for the contrast images are the characteristic spatial frequency responses of the 

two pathways from the 16-parameter frequency Gaussian model (summarised in Table 3). 

Superimposing the frequency responses of the two pathways on to a contrast sensitivity map (plotting 

contrast sensitivity (defined as 1/contrast) versus spatial frequency (defined as 1/scale) shows the 

relative contribution of the two channels (Figure 31). 

          

Figure 31. Plot of Figure 30(K) as log10(1/contrast) vs log10(1/scale) overlaid with the contrast 

sensitivity functions for the M pathway (black dotted line) and P pathway (red dotted line) at 2Hz 

temporal modulation frequency.  

 

Figure 31 is the standard format for plotting the contrast sensitivity function. We can make a number 

of observations: 

 

a) Both pathways see most of the contrast signal at low contrast/ low frequency. (Area B) 

b) The differential M response is high contrast sensitivity/low spatial frequency (area A) and the 

differential P response is low contrast sensitivity high frequency (area C) 

c) Neither pathway sees the low contrast/high frequency (low scale) signal that arises from the 

sub-sampling of the luminance (area D) 

 

We can infer that the actual pathway responses are an efficient match to the available contrast 

information in the images, whilst minimising any response to the low contrast/high frequency signal 

arising from the under-sampling of low spatial frequency signals. 

 

The next step is to build the contrast image based on the characteristic scale for each pathway.  

A 

B 

D 

C 
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3.7.2 Contrast images at the characteristic scale for each pathway 

Using the same equation for local contrast (Equation 13) as used for the contrast maps (Section 3.4), 

I determined the contrast images for each pathway by setting the scale to the characteristic scale for 

each pathway (equal to the spatial DoG FWHM diameters derived from the characteristic frequency 

responses without MTF correction): 

 

M pathway: 0.16° equivalent to 10.0 pixels, rounded up to the nearest odd integer (11 pixels) 

P pathway: 0.10° equivalent to 6.1 pixels, rounded up to the nearest odd integer (7 pixels). 

 

Note that the contrast data is held as the central value for each cell. In order to plot full sized images, 

the cell-based data needs to be padded such that, for a cell of size m x m, each pixel is assigned the 

central contrast value of that cell.  

 

Figures 32(C) and 32(D) show the P pathway and M pathway contrast images, respectively, for an 

example image.  

A       B 

 

C       D 

  

Figure 32. (A) RGB image. (B) Luminance image. (C) P contrast image (0.10 °characteristic scale). 

(D) M pathway contrast image (0.16° characteristic scale). 
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The following can be observed:  

a) The underlying structure of the square, non-overlapping cells. 

b) Both images show a level of edge enhancement, as we would expect for contrast images 

(Johnson (1994). 

 

However, these images are based only on the spatial characteristics of the RGCs in the pathways. 

The next step is to determine the differential effect of the respective contrast gain responses of the 

two pathways. 

 

3.7.3 Modelling the Contrast Response Image for Each Pathway 

The contrast gain function for the M and P pathways were specified in Section 1.3.2.1 (Equation 2).  

Using the relevant equation for each pathway, the nominal output (impulses per second) for each cell 

in the contrast image is calculated based on its contrast value and the relevant threshold value. The 

resultant contrast response images are shown as greyscale images in Figure 31 for four example of 

luminance images from the Sand, Natural, Forest and Urban image sets. 
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 1         A – Luminance Images      B – P pathway contrast image  C – M pathway contrast image D – P pathway contrast response  E – M pathway contrast response 

2  

3  

4  
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Figure 33. Luminance, contrast image, and contrast response image for five different images. Column 

(A) are luminance images. Column (B) are P pathway contrast images. Column (C) are M pathway 

contrast images. Column (D) are P pathway contrast response images. Column (E) are M pathway 

contrast response images. The red dashed circles highlight regions of edge enhancement. 

 

Visual inspection of the contrast response images in column (D) suggests that a key characteristic of 

the P pathway is edge enhancement, determined by the linear contrast response function, and by the 

relatively high contrast threshold (11%). It appears to be an efficient edge enhancement process, as it 

extracts the edges of the window in Figure 31 (row 4 column A) despite the strong shadow. Note that 

the “break” in the edge on the RHS of the window and the stripes on the top and bottom are artefacts 

from using non-overlapping square cells, combined with the window edges not being parallel to the 

cell axes. Allowing some overlap of the cells and an irregular array would minimise these artefacts. 

This edge enhancement can be seen in all the P pathway images, with examples highlighted by red 

dashed circles, albeit less dramatically due to the lack of sharp edges in these natural images. 

 

The M pathway has a key characteristic of contrast enhancement at low contrasts (determined by the 

non-linear contrast response and low threshold), enhancing the detail in the shadows inside the room 

and the archways of Figure 33 (row 4 column D)). Similar examples in the other images are 

highlighted with blue dashed circles. 

 

. 

Overall, the visualisation can be interpreted as indicating that the P and M pathways perform different 
filter functions of edge enhancement and contrast enhancement, respectively. 
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3.7.4 How efficient is the P pathway for Edge Enhancement? 

We can visually compare the edge enhancement of the P pathway contrast response image with the 

standard Sobel and Canny edge detection algorithms in MATLAB. Figures 34(A) and 34(B) show the 

Sobel and Canny edge enhancement detection algorithms, respectively, applied to the luminance 

image of Figure 33(D). Figure 34(C) shows the equivalent P pathway contrast response function, with 

a two-level quantisation of the cell values (with a 50% threshold).  

A      B 

 

C      D 

 

Figure 34. (A) Application of Sobel filter (pixel based).  (B) Application of Canny filter (pixel based). 

(C) Cell-based P pathway based on Figure 33(4 D) with a 50% threshold applied. (D) Pixel-based P 

pathway (also with 50% thresholds applied). 

 

Visual inspection suggests that the cell-based P pathway edge enhancement process is more efficient 

than the Sobel in enhancing the edge in deep shadow, given that al the edges of the window in the 

top left had corner are recovered. However, further analysis would be required to formally quantify the 

relative efficiency of the two algorithms.  For completeness I have also shown a pixel-based version of 

the P pathway filter, which does not have the “square array” artefacts of the basic cell-based model.. 
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Overall, both the cell-based and pixel-based P pathway responses are efficient edge-enhancement 

filters relative to the standard Sobel filter. 

 

 

 

3.8 Conclusions 

A simple algorithm for has been demonstrated for determining local contrast as a function of scale in 

natural images, allowing the derivation of contrast maps. The algorithm was validated using simple 

sine wave images and the results on natural images were consistent with previous studies, confirming 

scale invariance for the mean luminance values (<0.1 degrees) and a 1/fα type contrast variation 

arising from both the underlying image statistics and a 1/f dependence from the under sampling of the 

contrast measurement process. 

 

Having confirmed that the algorithm correctly maps local contrast, I then used the same algorithm to 

plot contrast images at the characteristic scales of the M and P pathways, which allowed visualisation 

of the spatial contrast responses of two pathways at an eccentricity of 23.5 degrees. Visual inspection 

suggested that both pathways have an edge-enhancement characteristic arising from the contrast 

measurement (Johnson, 1990). 

 

I subsequently compared the contrast images of the two pathways by applying the known contrast 

gain functions (impulses/second as a function of contrast) to determine a contrast response image, 

which effectively visualised the RGC activity level across the image. The visualisation can be 

interpreted as indicating that the two pathways perform different filter functions: 

 

P pathway: Edge enhancement  

M pathway: Contrast enhancement at low contrast levels  

 

These results are similar to previous analysis of M and P filters ((Lourens, 1995) but that study 

considered foveal images and physiological rather than psychophysics data.  

 

From a perceptual perspective, given the known edge-detection functions present in V1 and higher (), 

it could be argued that the peripheral P pathway is effectively pre-processing for these later stages. 

The M pathway contrast enhancement could be argued to aid peripheral detection of potential targets 

for attention, such as predators in shadows.  

 

Finally, I compared the P pathway edge enhancement performance (with two level quantisation) to 

standard Sobel and Canny edge filters. The results suggested that the P pathway performed better 

than the Sobel filter for edge detection, especially in the pixel-based implementation of the P pathway 

filter. 
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Chapter 4 Discussion and Conclusions 

 

4.1 Discussion 

The primary aim of the project was to demonstrate direct psychophysical discrimination of the spatial 

and temporal characteristics of the retinal magnocellular and parvocellular pathways using stimuli 

tailored to the underlying physiology of the retinal ganglion cells (Kaplan et al., 1990; J.J. Kulikowski, 

1987).   

 

The secondary aim of the project was to use the measured characteristics of the two pathways to 

visualise the differential visual signals transmitted from the retina via the RGCs to the LGN, and 

higher visual levels. The visualisation required developing a contrast mapping algorithm that 

determines local image contrast of natural images as a function of scale and position in the image. 

 

The measured peripheral contrast sensitivity functions for all participants at most temporal 

frequencies exhibited a dual-segment structure that was indicative of two individual pathways and 

was consistent with the “winner takes all” model (Kaplan et al., 1990). Initial model fitting showed that 

a common model based on a frequency Gaussian function (non-zero peak frequency) was the most 

parsimonious description for each individual data set. This finding suggested that there was a single 

underlying model that could describe the combined data set of all the participants, which proved to be 

the case. The most parsimonious model for the combined data set was also a frequency Gaussian 

function. The combined model required 11 parameters to fit the data of the first participant, with only 

two more parameters required for each additional participant. The model showed that the peak 

contrast sensitivity values were common for each participant, and that the spatial frequency cut-offs 

were also related, scaled by a simple multiplicative constant for each pathway.  

 

Having determined the best fit for the spatial frequency responses of the M and P pathways, the 

equivalent spatial structures for each of the pathways could be derived. Comparison with published 

data for RGC dendritic field and receptive field data showed that the experimental values were 

consistent with those data. However, evaluation of the temporal CSF derived from the peak contrast 

sensitivity values at each temporal frequency did not conclusively support the discrimination of the 

two pathways.  

 

As such, based on the contrast sensitivity, spatial and temporal characteristics derived from the 

parameters of the combined model, I concluded that the dual segment structure of the measured 

contrast sensitivity function could be attributed to the individual P and M pathways as hypothesised by 

Kaplan and Kulikowski (Kaplan et al., 1990; J.J. Kulikowski, 1987). The experimental evidence is also 

consistent with the hypothesis that the visual system uses a “winner-takes all” model when combining 

the input of the two pathways (Kaplan et al., 1990). This is a novel result for a psychophysical 

experiment using simple spatially and temporally varying stimuli. 
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Having shown that the peripheral contrast sensitivity function can be interpreted as deriving from the 

two discrete M and P pathways, I was curious to understand how those two pathways differentially 

transmit information from the retina to the LGN, SC and the higher visual cortex. In particular, I was 

interested in representing this differential behaviour using natural images, in order to visualise it. 

 

While there is a large body of research on the statistic of natural images (Ghodrati et al., 2016; Peli, 

1990; Ruderman, 1994; Scholte et al., 2009), most of the studies are concerned with population 

statistics for whole images or groups of images, rather than within images as a function of local scale. 

In addition, the majority of published data is for luminance statistics rather than contrast (e.g. (To, 

Lovell, Troscianko, & Tolhurst, 2010)).  Therefore, to implement a visualisation methodology, I needed 

an algorithm for determining contrast as a function of local scale whilst retaining position information. 

This would enable the creation of contrast-based images of each of the images, from which I could 

create contrast response images by applying the relevant contrast gain functions of the M and P 

pathways to plot contrast response images at threshold (assuming that the suprathreshold were 

equivalent to the threshold characteristics). 

 

I developed a simple model based on RMS contrast to generate contrast maps over a scale range of 

0.05°-2°. I evaluated the model using sinusoidal images of fixed wavelength and contrast and showed 

that the contrast map algorithm recovered the correct values for those two parameters.  

 

Application of the model to calibrated natural images gave results that were consistent with published 

data, namely the mean luminance being essentially scale invariant over the scale range, and the 

contrast having a 1/fα type dependence, with an inflexion point at about 1.0° (Frazor & Geisler, 2006). 

 

Having established that the contrast map algorithm gave results consistent with previous studies, I 

then used the same model to generate contrast response functions at the characteristic scale of the 

peripheral P and M pathways (at 23.5°). The contrast response functions suggested that the 

peripheral P pathway characteristic is that of edge-enhancement (which is a feature of contrast 

measurement (Johnson, 1990)) and that of the M pathway was enhancement of low-contrast 

information. The edge enhancement of the P pathway was effective, in that it accurately extracted 

edges in the presence of harsh shadows. Visual comparison with standard Sobel and Canny filters 

indicated that the P pathway response was at least equivalent to the Sobel filter.  

 

In summary, the results presented in this dissertation suggest that psychophysical discrimination of 

the M and P pathways in peripheral vision is possible using simple spatially and temporally varying 

stimuli. I have also demonstrated a visualization methodology that suggests that the function of 

achromatic P pathway in peripheral vision is edge enhancement, and that of the M pathway is 

contrast enhancement. 
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4.2 Other observations and questions 

One of the key characteristics of the visual system is the dramatic data compression that takes place 

between the photoreceptors that generate information at approximately 100 MB/s and the higher 

levels of the visual cortex where the bit rate is only 0.1 MB/s (Zhaoping, 2018). Given the edge and 

contrast enhancement characteristics of the two pathways, if the P signals were thresholded to give a 

binary response, and if the M signals were clipped at high output impulse rates, the data compression 

for peripheral information would be significant for both channels. As such, the contrast images 

algorithm provides a potential explanation for how data compression naturally arises in the periphery. 

 

I note that the information transmitted by the peripheral RGCs is contrast and not luminance i.e., the 

LGN and higher visual areas only receive contrast information. The luminance contribution is removed 

by the various adaptation processes in the eye, and unless the adaptation parameters are transmitted 

separately, the luminance information loss would seem to be irrecoverable. 

 

The visual system exhibits a number of constancies, including colour, luminance and size (Hatfield & 

Allred, 2012). A key characteristic of the stimuli used in this study was the linearly varying fringe 

spacing as a function of eccentricity, which matches the underlying physiology of the RGC arrays. 

The linear dependence of the spacing means that the resolution of a fixated image on the retina in 

terms of the number of RGCs sampling it is constant as the object moves further away. This arises 

because the edges of the image fall nearer the fovea, so although the image gets smaller, the linear 

density of the RGCs increases, thus keeping the number of RGCs constant. This may contribute to 

size constancy.  

 

The observed ‘winner takes all’ response described above relates to the visual system responding to 

the most sensitive of two achromatic pathways. However, a similar characteristic has been 

demonstrated for combined achromatic/chromatic images, where the visual system responds most 

strongly to a high-resolution achromatic signal, such that luminance edges in an image are perceived 

to enhance the apparent resolution of low-resolution chrominance stimulus (Jennings & Kingdom, 

2017). This effect is known as the “watercolour” effect (Pinna, 2005) and is illustrated in Figure 35. 
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Figure 35. Image of watercolour painting by Abraham Walkowitz. 

 

The water colour effect is the perception that the low-resolution chromatic areas appear to follow the 

high-contrast black lines, even though close inspection shows that the boundaries of the paint are 

detached from the lines. It could be argued that the “winner takes all” characteristic provides some 

perceptual enhancement when only low-resolution information is available, and therefore partially 

compensates for the data compression described above. 

 

Although the results described in this dissertation have been modelled in terms of the low-level 

characteristics of the RGCs (contrast gain, spatial dimensions), the psychophysics paradigm 

necessarily involves high-level functions, including use of working memory, decision making and 

motor control. However, based on the earlier discussion relating critical scale factor of a visual 

process to identification of the level in the visual cortex where the process is executed, the low scale 

factor measured (S = 0.0075) places the key process in this instance at the level of the RGCs (or 

LGN). That said, the actions required of the participants are simple and repetitive and are therefore 

likely to be constant for each stimulus at the higher levels of the visual, cognitive and motor areas. 

The likeliest higher level visual area to be involved is V1 (scale factor = 0.15), where edge detection 

would be a key function in the detection task. However, the fact that the measured scale factor is 
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significantly lower suggests that the detection task has a constant response independent of the detail 

of the stimuli at V1 as well. 

 

 

4.3 Limitations 

The experimental design used stimuli with spatial frequencies in the range of 1-20 cpd, which was a 

pragmatic choice in order to maximise the resolution on the high frequency side of the CSF. This did 

however mean that there was no low frequency data for the contrast sensitivity functions, such that a 

DoG model could not be fitted directly to the experimental data. However, extension of the spatial 

frequency range below 0.3 cpd (given the 5.5° horizontal stimulus width) would introduce a luminance 

artefact for this particular setup. 

 

Linearly varying fringe spacing stimuli were used to match to the underlying spatial structure of the 

RGCs, on the assumption that this would give a more sensitive measure of the PSE threshold, as all 

the RGCs within the stimulus window would reach threshold at the same time. However, while this 

was a plausible assumption, I did not directly compare the performance with these stimuli against 

convention Gabor patch stimuli with fixed wavelengths and this probably merits further investigation.  

 

In determining the spatial dimensions of the M and P RGCs inferred from fitting the model parameters 

to a DoG, I used representative data for the MTF of the human eye for off-axis imaging. The 

correction was significant for both M and P 60% ie calculated P spatial DoG with MTF correction vs 

no MTF correction was 0.10° vs 0.16° respectively. As such, there was potential for a systematic error 

if the correction applied was not the best fit for the participants individual responses.  Best practice 

would be to measure the off-axis MTF functions of each participant to avoid this potential source of 

systematic error. 

 

The modelling of the contrast maps used the “stdfilt” function in MATLAB that determined the 

standard deviation over an m x m array of pixels. As such, the sampled array was square as opposed 

to a more physically realistic circular sample shape. (Note that this does not apply to the imgauss 

function as this applies a Gaussian envelope to the sample). It would therefore have been more 

realistic if a new function had been written which sampled a circular array of pixels, or a similar 

weighted distribution. However, the image statistics obtained using the algorithm were consistent with 

published data, supporting this use of “stdfilt”. 

 

With regards to the contrast maps and contrast response functions, the model cell array was a regular 

structure with cubic symmetry. A more realistic approach would have been to use a random array, 

potentially with a degree of overlap of the cells. A further improvement would be to make contrast 

maps and contrast response functions with a linearly increasing spacing (scale factor) of the cells, 

such that the visualisation would be more realistic in covering a range of eccentricities, rather than 
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being the representation at the single eccentricity (23.5 degrees). However, the choices made were 

pragmatic to keep the project tractable in the time available. 

 

4,4 Future Research 

The experiment was conducted using tangential gratings in a detection task. This enabled the 

identification of the M and P pathways by direct comparison of the measured spatial DoGs with 

published physiological data. This is a novel result, and it would be valuable to cross-check the result 

using a different paradigm. A future study could achieve this by switching to a resolution task using 

both the tangential fringe set and a radial fringe set (which is orthogonal to the tangential gratings). 

The radial gratings can be designed with an equivalent scale factor (for the angular spacing of the 

gratings) to match the assumed underlying distribution of the RGC arrays. The use of a resolution 

task would probe the RGC array spacing rather than the DoG structure of the individual RGCs, as the 

Nyquist frequency is independent of contrast. This would allow direct determination of the underlying 

array spacing which could be compared with published visual acuity studies (Wilkinson et al., 2016), 

and hence support the identification of the two pathways. 

 

An exciting potential clinical application of this work relates to how peripheral vison plays an important 

role in day-to-day living for patients with macular degeneration and other forms of low vision. In these 

conditions, the fovea is damaged so that central vision is significantly impaired. In such 

circumstances, the patients make best use of parafoveal and peripheral vison to manage their daily 

tasks. A typical practical aid is the use of large fonts for magazines, books etc, attempting to offset 

reduced resolution with larger objects. However, this can be self-defeating if the individual image 

elements occupy too large a part of the remaining working retina. A more interesting idea is to utilise 

the edge-enhancement functionality of peripheral vision together with the “winner takes all” response 

of the visual system. The latter is relevant to red suits in playing cards (and large areas of chromatic 

information in images) as the loss of foveal cones particularly impacts colour vision. If we can 

emphasise the luminance edges of objects, this should preferentially stimulate the P pathway for 

achromatic information and potentially improve chromatic vision via the ‘water colour’ effect. The 

necessary image processing could be simply done using existing smart phone functionality for 

physical objects such as books or playing cards or built into streaming video services. 
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4.5 Final Conclusions 

Direct psychophysical discrimination of the spatial and temporal characteristics of the retinal 

magnocellular and parvocellular pathways in the primate visual system has proved elusive. However, 

the results of the experiment reported here suggest that such discrimination is possible using stimuli 

tailored to the underlying physiology of the M and P retinal ganglion cells.  To maximise the 

sensitivity, the visual stimuli used were tangential sinusoidal gratings with a linearly varying spacing 

matched to the retinal ganglion cell spacing.  The results support the hypothesised dual-segment 

characteristic of the contrast sensitivity function and are consistent with the known contrast gain and 

spatial physiological characteristics of the P and M pathways in the primate visual system. The results  

are consistent with previous observations that the overall system response is that of the most 

sensitive of the two channels at a given contrast, rather than summing the two channel responses. 

 

In order to visualise how the two pathways transmit visual information to the LGN and the higher 

visual areas, I developed a simple algorithm for determining local contrast as a function of scale in 

natural images, allowing the derivation of contrast heat maps. The algorithm was validated using 

simple sine wave images and the results on natural images were consistent with previous studies.  I 

then used the same algorithm to plot contrast response functions at the characteristic scales of the M 

and P pathways, which allowed visualisation of the spatial contrast responses of two pathways at an 

eccentricity of 23.5 degrees. The visualisation can be interpreted as indicating that the P and M 

pathways perform different filter functions of edge enhancement and contrast enhancement, 

respectively. 
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Appendix A  

 

 
Model Function Curve Freq dep Paras n AICc ΔAICc AW 

JW G1 Freq Gauss Single Ind 4 71 -296.6 164.2 0.00 

 
G2 Freq Gauss Single Dep 7 71 -364.7 96.1 0.00 

 
G3 Freq Gauss Dual Ind 7 71 -346.3 114.5 0.00 

 
G4 Freq Gauss Dual Dep 12 71 -460.8 0.0 0.83 

 
G5 Freq Gauss Dual Dep 13 71 -457.7 3.1 0.17 

 
P1 Power law Single Ind 4 71 -355.1 105.7 0.00 

 
P2 Power law Single Dep 7 71 -394.1 66.7 0.00 

 
P3 Power law Dual Ind 7 71 -365.8 95.0 0.00 

 
P4 Power law Dual Dep 12 71 -437.9 22.9 0.00 

 
P5 Power law Dual Dep 13 71 -435.9 24.9 0.00 

          
NM G1 Freq Gauss Single Ind 4 55 -228.1 78.7 0.00 

 
G2 Freq Gauss Single Dep 7 55 -263.7 43.1 0.00 

 
G3 Freq Gauss Dual ind 7 55 -227.1 79.7 0.00 

 
G4 Freq Gauss Dual Dep 12 55 -306.8 0.0 0.66 

 
G5 Freq Gauss Dual Dep 13 55 -304.0 2.8 0.16 

 
P1 Power law Single Ind 4 55 -233.1 73.7 0.00 

 
P2 Power law Single Dep 7 55 -259.9 46.9 0.00 

 
P3 Power law Dual Ind 7 55 -233.7 73.1 0.00 

 
P4 Power law Dual Dep 12 55 -294.2 12.6 0.00 

 
P5 Power law Dual Dep 13 55 -304.1 2.6 0.18 

          
TH G1 Freq Gauss Single Ind 4 44 -192.6 39.8 0.00 

 
G2 Freq Gauss Single Dep 6 44 -206.0 26.3 0.00 

 
G3 Freq Gauss Dual Ind 7 44 -204.6 27.8 0.00 

 
G4 Freq Gauss Dual Dep 10 44 -232.4 0.0 0.65 

 
G5 Freq Gauss Dual Dep 11 44 -230.6 1.8 0.27 

 
P1 Power law Single Ind 4 44 -213.7 18.7 0.00 

 
P2 Power law Single Dep 6 44 -220.4 11.9 0.00 

 
P3 Power law Dual Ind 7 44 -208.4 24.0 0.00 

 
P4 Power law Dual Dep 10 44 -227.7 4.7 0.06 

 
P5 Power law Dual Dep 11 44 -224.2 8.2 0.01 
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Table A1. Comparison of the AICc values and Akaike weights for each model, for the three 

participants, with the “Best” model highlighted in green, and the “Next Best” in yellow. G1, P1 etc are 

model labels referring  to the model type (Gaussian or Power Law), as shown in the next column, 

Single/Dual refers to single or dual-segment functions, Ind/Dep refers to whether the model is 

independent or dependent on temporal frequency, Paras defines the number of parameters in the 

model, n is the number of datapoints, AICc is the corrected Akaike Information content coefficient, 

ΔAICc is the difference between the model AIC value and the lowest value in the set and AW is the 

Akaike Weight. 
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Appendix B 

 

Model Function Curve 

Freq 

dep/ind Multi/Add Paras n AICc ΔAIC AW 

G6 Freq Gauss Single Dep Multi 9 170 -830.9 67.5 0.00 

G7 Freq Gauss Dual  Dep Multi 16 170 -898.4 0.0 0.71 

G8 Freq Gauss Dual  Dep Multi 17 170 -892.6 5.8 0.04 

G9 Freq Gauss Dual  Dep n/a 34 170 -885.4 13.1 0.00 

G10 Freq Gauss Dual  Dep Add 16 170 -896.1 2.3 0.23 

P6 Power law Single Dep Multi 9 170 -853.2 45.2 0.00 

P7 Power law Dual Dep Multi 16 170 -887.0 11.4 0.00 

P8 Power law Dual Dep Multi 17 170 -891.3 7.1 0.02 

          

 

Table B1. Comparison of AICc values and Akaike weights for Gaussian and Power Law base models, 

with multiplicative or additive parameters for the other two participants (NM, TH) for the full 

(combined) dataset, with the “Best” model highlighted in green, and the “Next Best” in yellow. The 

column headings have the same meanings as for Table 1, with the addition of Multi/Add which defines 

whether the two additional parameters per participant are multiplicative or additive fits to the cut-off 

wavelength values. Note that for model G9 (32 parameters) there are no scale/add corrections, as 

this model fully describes each individual participants data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 


