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Abstract

Background Higher concentrations of cholesterol-containing low-density lipoprotein

(LDL-C) increase the risk of cardiovascular disease (CVD). The association of LDL-C with

non-CVD traits remains unclear, as are the possible independent contributions of other

cholesterol-containing lipoproteins and apolipoproteins.

Methods Nuclear magnetic resonance spectroscopy was used to measure the cholesterol

content of high density (HDL-C), very low-density (VLDL-C), intermediate-density (IDL-C),

as well as low-density lipoprotein fractions, the apolipoproteins Apo-A1 and Apo-B, as well as

total triglycerides (TG), remnant-cholesterol (Rem-Chol) and total cholesterol (TC). The

causal effects of these exposures were assessed against 33 outcomes using univariable and

multivariable Mendelian randomization (MR).

Results The majority of cholesterol containing lipoproteins and apolipoproteins affect coronary

heart disease (CHD), carotid intima-media thickness, carotid plaque, C-reactive protein (CRP)

and blood pressure. Multivariable MR indicated that many of these effects act independently of

HDL-C, LDL-C and TG, the most frequently measured lipid fractions. Higher concentrations

of TG, VLDL-C, Rem-Chol and Apo-B increased heart failure (HF) risk; often independently of

LDL-C, HDL-C or TG. Finally, a subset of these exposures associated with non-CVD traits such

as Alzheimer’s disease (AD: HDL-C, LDL-C, IDL-C, Apo-B), type 2 diabetes (T2DM: VLDL-C,

IDL-C, LDL-C), and inflammatory bowel disease (IBD: LDL-C, IDL-C).

Conclusions The cholesterol content of a wide range of lipoprotein and apolipoproteins

associate with measures of atherosclerosis, blood pressure, CRP, and CHD, with a subset

affecting HF, T2DM, AD and IBD risk. Many of the observed effects appear to act inde-

pendently of LDL-C, HDL-C, and TG, supporting the targeting of lipid fractions beyond LDL-C

for disease prevention.

https://doi.org/10.1038/s43856-022-00234-0 OPEN

A full list of author affiliations appears at the end of the paper.

Plain language summary
It is known that increases in the

amount of certain fats and proteins in

the blood can lead to heart attacks.

These increases are also found in

people with other diseases. Here, we

looked at inherited differences in

some fats and proteins in blood to

explore whether these could be

associated with various diseases. We

found that some fats and proteins in

blood were associated with heart

disease (including heart failure),

blood pressure, blockages in blood

vessels, and to a lesser extent with

diabetes, Alzheimer’s disease, and

inflammatory bowel disease. These

findings suggest that changes to

lipids and proteins in the blood might

lead to various diseases, including

some that are not normally asso-

ciated with changes in the blood.

Monitoring these changes could

improve diagnosis and treatment of

these diseases.
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C irculating concentrations of cholesterol-containing lipo-
proteins have been linked to risk of atherosclerotic car-
diovascular disease (CVD)1, in particular coronary heart

disease (CHD). Certain circulating lipids have also been impli-
cated in other disorders such as dementia2, type 2 diabetes
(T2DM)3, Crohn’s disease (CD)4, rheumatoid arthritis5, and
some forms of cancers6.

The major blood lipid components, free cholesterol, choles-
teryl-esters, and triglycerides are transported by lipoprotein par-
ticles. Large lipoprotein particles are triglyceride-rich and
encompass chylomicrons derived from dietary fat, and very-low
density lipoproteins synthesised in the liver. These particles carry
a single apolipoprotein B (Apo-B) on the surface (Apo-B 48 for
chylomicrons and Apo-B 100 otherwise), and are progressively
depleted of triglycerides, through the action of lipoprotein lipase,
becoming smaller, denser, and proportionately richer in choles-
terol. Lipoproteins, are involved in the process of transporting
cholesterol to peripheral tissues (endogenous transport), and are
classified according to density gradient centrifugation as (VLDL)
very-low-density-, (IDL) intermediate-density- and (LDL) low-
density-lipoproteins. Reverse cholesterol transport, from
tissues to liver, is mediated by high-density lipoprotein (HDL)
particles that are synthesised and released from the liver in nas-
cent form, and which possess membrane-bound apolipoprotein
A1 (Apo-A1).

Evidence from non-randomized (i.e., observational) studies,
monogenic disorders (FH)7, and randomized trials of LDL-C
lowering drugs8,9 have convincingly shown that higher con-
centrations of LDL-C increase CHD risk. While non-randomized
studies have provided similar evidence10,11 of a CHD association
with HDL-C and total triglyceride (TG, the aggregate across all
lipoprotein particles) concentrations, the lack of successful drugs
targeting these blood lipids casts doubt on their potential causal
role in CHD. For example, the protective CHD effect of the
recently marketed ANGPTL3-inhibitor evinacumab was attrib-
uted to its LDL-C reducing ability, despite evinacumab showing
strong TG reducing and HDL-C increasing effects12.

In fact most lipid lowering drugs, including PCSK9 inhibitors,
affect lipid fractions beyond LDL-C8,13,14. This highlights an
inferential challenge, where an exposure may affect disease
through multiple independent pathways its (marginal) effect
reflects the sum of all pathways and is referred to as the total
effect. To consider the potentially distinct causal effect of each
pathway, mediation analyses can be used to decompose a total
effect into multiple, pathway-specific effects; for example into
CHD effects attributable to LDL-C, HDL-C and TG (see Fig. 1 for
an illustrative example).

Genome-wide association studies (GWAS)15 of lipoprotein
subfractions quantified by nuclear magnetic resonance (NMR)
spectroscopy have identified genetic variants that can be used to
undertake Mendelian randomisation (MR) analyses to help
ascertain their causal relevance for common disorders. By lever-
aging genetic variants associated with the exposure(s) of interest,
and in the absence of horizontal pleiotropy, MR protects against
bias due to confounding16 and reverse causation, biases which
may befall non-randomized studies. Multivariable MR (MVMR)
can additionally account for a genetic variant affecting multiple
exposures (e.g., LDL-C as well as HDL-C concentrations),
increasing the plausibility of the no-horizontal pleiotropy
assumption, as well as identifying the direct effects of the con-
sidered exposures17–19.

In the current study, we use genetic associations on NMR-
measured metabolites and apply two-sample MR to determine the
causal relevance of the cholesterol content on different lipopro-
tein subfractions (including remnant-cholesterol (Rem-Chol), the
lipoprotein cholesterol not transported by LDL and HDL), as well

as Apo-A1 and Apo-B, on a range of cardiovascular (CVD)
outcomes, disease biomarkers, measures of organ or systems
function as well as late-in-life non-CVD conditions. MVMR is
subsequently performed to ascertain whether causal effects might
be independent of the routinely measured blood lipids LDL-C,
HDL-C, and TG. We specifically focussed on outcomes with prior
evidence of possible lipid involvement including CVD, metabolic
disease, inflammatory disease, neurological and oncological
disease.

Here, we show that the majority of the considered cholesterol-
containing lipoprotein and apolipoproteins affect measures of
atherosclerosis, blood pressure, C-reactive protein (CRP), and
CHD. We additionally find that a subset of these exposures
associate with heart failure (HF), T2DM, Alzheimer’s disease
(AD), and inflammatory bowel disease (IBD). MVMR analyses
suggest that many of the observed effects act independently of
clinically measured lipid fractions: LDL-C, HDL-C and TG.

Methods
Available NMR data. To evaluate the consequences of elevated
concentration of circulating cholesterol-containing lipoproteins
and apolipoproteins, we sourced genetic associations from meta-
analyses of Kettunen et al.15 and UCLEB20 (n= 33,029) utilizing
NMR-based measurements made using the Nightingale platform
on VLDL-C, IDL-C, LDL-C, HDL-C, Rem-Chol, TC, TG, Apo-
A1, and Apo-B. Independent replication data on LDL-C, HDL-C,
and TG, were available from the Global Lipids genetics
Consortium (GLGC21, n= 188,577) based on clinical chemistry
measures. While the UK biobank (UKB) has NMR measurements
available for a large sample of participants, it is also a major
contributor to the outcome data (see the data availability section).
In the presence of sample overlap, weak-instruments may
result in anti-conservative behaviour (due to an inflated false
positive rate). We therefore used the relatively smaller UCLEB-
Kettunen data, which closely follows a two-sample paradigm,
where weak-instrument settings do not erroneously inflate the
false positive rate22.

Fig. 1 Illustrating the difference between total, direct, and indirect
effects, using a hypothetical diagram of intermediate-density lipoprotein
cholesterol, low-density lipoprotein cholesterol and coronary heart
disease. IDL-C intermediate-density lipoprotein cholesterol, LDL-C low-
density lipoprotein cholesterol, CHD coronary heart disease, and common
causes (confounders) represented by U.
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Selection of genetic instruments for lipoproteins and apoli-
poproteins. Genetic instruments were selected from throughout
the genome using a F-statistic >24 and a minor allele frequency
(MAF) of at least 0.01. Variants were clumped to a linkage dis-
equilibrium (LD) R-squared threshold of 0.10 based on a random
sample of 5000 unrelated UKB participants of European ancestry.

Following Schmidt et al. 202023, we repeated the Apo-B
and Apo-A1 genome-wide MR analyses, additionally applying a
cis-MR approach, which is arguably more robust to possible
horizontal pleiotropy. For cis-MR analysis, variants were
selected from within a 50kbp window surrounding APOB
(ENSG00000084674) and APOA1 (ENSG00000118137). Given
the lower number of candidate instruments in a cis region
(compared to genome-wide MR) we decreased the F-statistic
threshold to 15.

Previous MR studies have often applied a significant p value
threshold of 5 × 10−8 (approximately equal to a F-statistic of 30)
to identify instruments with a sufficiently strong exposure
association. While this conservative threshold protects against
weak-instrument bias, applying a lower F-statistic threshold may
beneficially increase the number of available variants and thereby
decrease the type 2 error rate. To ensure the results remained
sufficiently protected against weak instrument bias, the MR
analyses leveraged two distinct exposure GWAS (from UCLEB
and GLGC) where the large sample size diminished the influence
of potential weak-instrument bias. Additionally, should weak-
instrument bias occur the two-sample design prevents erroneous
inflation of the false positive rate22. Furthermore, we note that in
large sample size settings (where the estimated F-statistic
approximates the true F-statistic), the multiplicative inverse of
the estimated F-statistic approximates the amount of bias24: in
our case this is between at most 7 and 4% for an F-statistic of 15
and 24, respectively.

Statistical analyses. Residual LD was modelled through gen-
eralised least squares (GLS)25,26 implementations of the inverse
variance weighted (IVW) and MR-Egger estimators. Here the
univariable MR methods provide total effect estimates, and
multivariable MR (MVMR) implementations of IVW and MR-
Egger (both implemented as GLS) were used to estimate direct
effects, independent from combinations of LDL-C, HDL-C and
TG. Additionally, addressing the growing interest in Apo-B as a
fundamental cause of atherosclerosis, we explored a MVMR
model with Apo-B conditioned on HDL-C and TG, excluding
LDL-C due to its high correlation (0.90) with Apo-B (Supple-
mentary Fig. 1).

To minimize the potential influence of horizontal pleiotropy
we excluded variants with large leverage or outlier statistics23,27

and used the Q-statistic to identify possible remaining
violations27,28. A model selection framework28 was applied to
select the most appropriate estimator (IVW or MR-Egger) for
each specific exposure–outcome relationship; the Egger correc-
tion is unbiased even in the extreme setting where 100% of the
selected variants affect disease through horizontal pleiotropy but
has markedly less power. The model selection framework
(originally developed by Gerta Rücker29) utilizes the difference
in heterogeneity between the IVW Q-statistic and the Egger Q-
statistic, preferring the latter model when the difference is larger
than 3.84 (i.e., the 97.5% quantile of a Chi-square distribution
with 1 degree of freedom).

Multivariable methods, such as MVMR, may falter when
considering (conditionally) multicollinear variables—whose
inclusion leads to numerically unstable models with noticeably
lower precision30, which may result in conditionally weak-
instrument settings31. For example, the strong correlation

between LDL-C and Apo-B (Supplementary Fig. 1) would be
anticipated to destabilize a model that includes both. While there
are methods specifically designed to address such highly
correlated data they assume a complete absence of horizontal
pleiotropy, which is unlikely to hold31,32 and are computationally
prohibitive31. We therefore identified and downweighed results
likely affected by multicollinearity. Dubious results were identi-
fied by gradually extending the MVMR models to first consider
the influence of each single covariate (genetic instruments with
LDL-C, HDL-C, or TG only), before fitting a fully conditional
MVMR model including all three blood lipids. After filtering on
significance (at an alpha of 0.05), unstable estimates were
removed by focussing on exposure-outcome relationships with
60% or higher directional concordance (i.e., significant, and
directionally concordant in 3 out of 5 models). The five models
constituted estimates of (i) the total effect (from the univariable
MR models), and direct effects adjusting for (ii) LDL-C, (iii)
HDL-C, or (iv) TG, and (v) all three exposures jointly. When
LDL-C, HDL-C, or TG was the exposure of interest, adjustments
were made for the two remaining exposures only. After
prioritizing the available MR results on significance and model
stability (at least 60% directional concordance), we summarized
prioritized results using forest plots, and as a network encoding
exposure and outcome traits as nodes, with associations
represented as arcs. See Supplementary Table 1 for a summary
of the methods.

Under the null-hypothesis the p values of a group of tests
follow an uniform distribution between zero and one33. Hence to
explore the influence of multiplicity, we evaluated the overall null-
hypotheses using Kolmogorov-Smirnov (KS)-tests33, grouping p
values by exposure or outcome.

Software. Analyses were conducted using Python v3.7.4 (for
GNU Linux), Pandas v0.25, Numpy v1.1529, Seaborn v0.11.5, R
v4.0.334 (for GNU Linux), ggforesplot35, and Cytoscape v3.8.2
(for GNU Linux). Results were presented as mean difference
(MD, for continuous traits) or odds ratio (OR, for binary traits)
with 95% confidence interval (95%CI) for increasing blood lipid
or lipoprotein concentration, scaled to one standard deviation
(Supplementary Table 2).

Institutional review board approval. All GWAS summary sta-
tistics were publicly available, with download URLs provided in
the data availability section. For all included genetic association
studies, all participants provided informed consent and study
protocols were approved by their respective local ethical com-
mittee. This research has been conducted using the UK Biobank
Resource under Application Number 12113.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Phenotypic correlation and correlation between genetic effect
estimates. Aside from an inverse correlation of HDL-C and Apo-
A1 with TG and VLDL-C blood concentration, the remaining
exposures were strongly and positively correlated (Supplementary
Fig. 1). The correlation between the genetic effect estimates for
these lipid exposures followed a similar pattern as blood con-
centrations (Supplementary Fig. 1). See the supplementary
results.

Univariable MR: cardiovascular events and risk factors. Higher
concentrations of LDL-C, TC, TG, VLDL-C, IDL-C, and Rem-
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Chol, were associated with higher CHD risk (OR range: 1.29 to
1.79 per SD), while higher HDL-C concentration decreased CHD
risk; OR 0.75 (95%CI 0.70; 0.80). HF risk increased with higher
concentrations of TG, OR 1.12 (95%CI 1.08; 1.17), VLDL-C, 1.10
(95%CI 1.06; 1.15) and Rem-Chol, OR 1.11 (95%CI 1.06; 1.16);
see Fig. 2. Elevated cholesterol-containing lipoproteins were
associated with imaging measures of carotid artery atherosclerosis
(cIMT and carotid plaque), as well as with SBP and DBP.

Univariable MR: metabolic events and risk factors. Higher
concentration of VLDL-C was associated with increased T2DM
risk (OR 1.04 95%CI 1.01; 1.08), while higher IDL-C decreased
the risk of T2DM (Fig. 2). A one SD higher LDL-C, IDL-C, and
Rem-Chol concentration was associated with lower CRP con-
centration, while higher HDL-C, TG, and VLDL-C were asso-
ciated with higher CRP concentration.

Univariable MR: inflammatory and neurological events. Higher
LDL-C concentration was associated with increased the risk of
inflammatory bowel disease (OR 1.15 95%CI 1.07; 1.22), ulcera-
tive colitis (UC, OR 1.37 95%CI 1.15; 1.63), and CD (OR 1.10
95%CI 1.00; 1.20). Higher IDL-C and TC had a similar risk
increasing effect on IBD and UC. A one SD higher HDL-C
decreased Alzheimer’s disease risk (OR 0.98, 95%CI 0.97; 0.99),
while AD risk increased with higher concentrations of VLDL-C
(OR 1.02, 95%CI 1.00; 1.03) and ILD-C (OR 1.06, 95%CI 1.04;
1.08). Please see the supplementary results and Supplementary
Fig. 2 for independent replication of the univariable (total effects)
for LDL-C, HDL-C, and TG concentration.

Univariable MR: Apo-B and Apo-A1 concentrations. Higher
Apo-B concentration was positively associated with the risk of
CHD, (ischaemic) stroke, CD, AD, and with cIMT, carotid plaque
and SBP. Conversely, increased Apo-B concentration was asso-
ciated with lower HbA1c concentration as well as with pancreatic
cancer and arthritis risk (Fig. 2). Higher ApoA-1 concentration
decreased the risk of CHD, T2DM, carotid plaque, and DBP,
while increasing CRP concentrations (Fig. 2). Please see the
Supplementary results and Supplementary Fig. 2 for a technical
replication using cis instruments for Apo-A1 and Apo-B.

Multivariable MR: to identify effects independent of LDL-C,
HDL-C and TG. We applied multivariable MR (MVMR) to
investigate whether the above-described causal effect acted
independent of the more commonly measured lipids LDL-C,
HDL-C, and TG (Supplementary Figs. 3–6).

MVMR results were ranked based on the number of times a
lipid subfraction appeared to affect an outcome (based on the in
the “Methods” described prioritization strategy), which is
reflected in Fig. 3 as the number of ingoing arcs: CHD, CRP,
SBP, carotid plaque, cIMT, HF, AD, T2DM, HbA1c, IBD, lung
cancer, rectal cancer, estimated glomerular filtration rate (eGFR),
and DBP. The 8 most frequently associated outcomes were
presented in Figs. 4 and 5, with all of the MVMR results provided
as Supplementary Data 1–12. MVMR results were typically
comparable to the univariable analyses, with HDL-C and Apo-A1
decreasing CHD risk, and the remaining lipid exposures
increasing CHD risk (Fig. 4). HF risk increased with higher
concentrations of VLDL-C OR 1.10 (95%CI 1.02; 1.19), Rem-
Chol, Apo-B and TG OR 1.06 (95%CI 1.00; 1.12) (Figs. 3 and 5).
AD risk was associated with higher concentration of LDL-C, IDL-
C, and Apo-B, while higher HDL-C decreased AD risk: OR 0.97
(95%CI 0.96; 0.98). We also found evidence to support an
independent role for VLDL-C increasing T2DM risk OR 1.11

Fig. 2 Mendelian randomization estimates of the total effects of a one SD
increase in cholesterol-containing lipoprotein and apolipoprotein
concentrations. Cells are coloured by the effect direction multiplied by
-log10(p value), with the point estimate (the mean difference or log odds
ratio) provided for results with p values smaller than 0.05. The p values
were truncated at 1 × 10−8 for display purposes. Analyses are based on a
33,029 subject meta-analysis of Kettunen15 and UCLEB20. LDL-C low-
density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol,
TG triglycerides, VLDL-C very-low-density lipoprotein cholesterol, IDL-C
intermediate-density lipoprotein cholesterol, Rem-chol remnant-
cholesterol, TC total cholesterol, Apo-B apolipoprotein-B, Apo-A1
apoliprotein-A1. CHD coronary heart disease, HF heart failure, AF atrial
fibrillation, T2DM type 2 diabetes mellitus, CKD chronic kidney disease,
IBD inflammatory bowel disease, CD Crohn’s disease, UC ulcerative colitis,
ALS amyotrophic lateral sclerosis, MS multiple sclerosis, PBL primary biliary
liver cirrhosis, DBP and SBP diastolic and systolic blood pressure, CRP
c-reactive protein, HbA1c glycated haemoglobin, BUN blood urea nitrogen,
eGFR estimated glomerular filtration rate, cIMT carotid artery intima media
thickness.
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(95%CI 1.04; 1.20), while higher LDL-C (OR 0.90 95%CI 0.88;
0.93) and IDL-C (OR 0.85 95%CI 0.74; 0.97) decreased T2DM
risk. We found ubiquitous effects of cholesterol containing
lipoproteins and apolipoproteins on CRP, cIMT, carotid plaque,
and SBP (Figs. 4, 5).

Assessing the overall null-hypothesis. To assess to what extent
the described results were driven by multiple testing we use
Kolmogorov-Smirnov tests (KS-tests) comparing the empirical
p values distributions against a uniform distribution33 (Fig. 6),
suggesting results were robust to multiple testing.

Discussion
We used Mendelian randomization (MR) to catalogue, and
prioritize, the biomedical consequences of elevated concentra-
tions of cholesterol-containing lipoproteins beyond LDL-C, HDL-
C, and total triglycerides (TG), including remnant cholesterol,
IDL-C and VLDL-C, as well as apolipoproteins A1 and B.
Findings include that CHD is affected by all of the major
cholesterol-rich lipoproteins including HDL-C, IDL-C, VLDL-C,
Rem-Chol as well as apolipoproteins A1 and B, and TG, with
similar ubiquitous effects observed for cIMT, carotid plaque, and
blood pressure. Additionally, we found strong evidence linking
higher concentrations of TG, VLDL-C, Apo-B, and Rem-Chol to

Rem-chol

Apo-B

Apo-A1

LDL-C

HF

Large artery stroke

cIMT

Carotid plaque

Glucose

HbA1c

T2DM

CRP

SBP

DBP

PBL

eGFR

IBD

UC

CD

Alzheimer

Pancreatic cancer

Rectal cancer

Melanoma

Lung cancer

HDL-C

CHD

TG

TC

VLDL-C

IDL-C

Fig. 3 A causal network of phenotypic consequences of higher cholesterol-containing lipoprotein and apolipoprotein blood concentration. The network
represents highly supported pathways that likely act independently of LDL-C, HDL-C and TG (which are included as reference). Arcs belonging to the
endogenous pathway (VLDL-C, IDL-C, LDL-C, and Apo-B) were coloured yellow, arcs for HDL-C and Apo-A1, belonging to the reverse cholesterol transport
pathway were depicted in blue, TC and TG arcs were represented as black and green, respectively. An increasing effect of a higher exposure concentration
was mapped to a double lined arc, a decreasing effect to a dashed arc. An arc was included when the MR effects were significant at an alpha of 0.05 and
showed directionally concordant results in at least three of out five potential models (four for LDL-C, HDL-C, and TG): I) total effects, the direct effects
conditional II) on LDL-C, III) on HDL-C, IV) on TG, and V) all three blood lipids; see “Methods”. Please see the Fig. 2 for a definition of the abbreviations.
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increased HF risk. Cholesterol-containing lipoproteins, apolipo-
proteins, as well triglycerides also affected non-CVD traits such as
T2DM, CRP, IBD, and AD. Multivariable MR was used to con-
firm many of these associations act independently of the three
widely measured lipid subfractions: LDL-C, HDL-C, and TG.

There has been considerable debate on higher HDL-C poten-
tially reducing CHD risk. The imprecise (univariable MR) OR
estimate of 0.93 per SD (95% CI 0·68;1·26) by Voight et al.36 is
often cited as definitively proving that HDL-C does not affect
CHD risk. We note that our estimate OR 0.75 per SD (95%CI
0.70; 0.80) falls completely within the 95%CI provided by Voight
et al. Hence our results, suggesting a protective CHD effect
of higher HDL-C concentration, are consistent with previous
findings. The major difference here is the added precision, as
indicated by the confidence interval width, offered by the avail-
able larger sample size data (12 K CHD cases by Voight et al. vs
60 K in the current paper). To contextualise the observed HDL-C

association with CHD we have collated results from previous
univariable and multivariable MR studies (Supplementary
Data 13). We find that while there is some variability in statistical
significance, results are identical in effect direction, further
supporting the observed protective association between higher
HDL-C and CHD. Potential explanations for the observed dif-
ference in significance include an increase in sample size of the
available HDL-C and CHD GWAS’, and the instrument selection
strategies (Supplementary Data 13). For example, Holmes et. al.
removed HDL-C variants which associated with TG or LDL-C
using an p value threshold of 0.01, limiting the analysis to 19
variants. It is worth noting that the Richardson et al. study37 is
the only MVMR study which did not find a statistically significant
HDL-C association, which is also the only study that conditioned
on both Apo-A1 and HDL-C. Richardson et al. suggested that the
univariable association between HDL-C and CHD (OR 0.80 per
SD, 95%CI 0.77; 0.89) was attributable to Apo-B. While the

Fig. 4 Mendelian randomization effect estimates of a standard deviation change in cholesterol-containing lipoprotein or apolipoprotein concentration
on coronary heart disease (CHD), c-reactive protein (CRP), carotid intima media thickness (cIMT), and carotid plaque. Prioritized results reflect
associations depicted in the causal network of Fig. 3, where 3 out of 5 (or 4 for LDL-C, HDL-C, and TG) estimates were significant at an alpha of 0.05 and
directionally concordant. Total: the total lipid effect, Conditional effects either, represent the blood lipid effect of LDL-C, HDL-C or TG singularly, or off all
three blood lipids in a single multivariable MR (fully adjusted) model. Fully adjusted models for LDL-C, HDL-C, or TG exposures only conditioned on two of
the three blood lipids (e.g., the fully conditional model for LDL-C exposure only conditioned on HDL-C and TG). Analyses were based on a 33,029 subject
meta-analysis of Kettunen15 and UCLEB20. Estimates are provided as odds ratio (OR) or mean difference (MD) with 95% confidence intervals (95%CI).
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regulation of cholesterol homoeostasis is complex, VLDL-C, IDL-
C and LDL-C (which all carry Apo-B) play a major role in the
endogenous cholesterol transport pathway, whereas HDL-C and
Apo-A1 play a dominant role in reverse cholesterol transport38,
arguing against a strong link between HDL-C and Apo-B con-
centrations. Empirically, the concentration of HDL-C is only
weakly positively correlated to that of Apo-B (0.10, Supplemen-
tary Fig. 1) and strongly correlated to Apo-A1 (0.90, Supple-
mentary Fig. 1). As such it seems unlikely that HDL-C exerts its
effect on CHD primarily by decreasing Apo-B. Rather, the lack of
association between HDL-C and CHD observed by Richardson
et al. after adjustment for Apo-B, is more likely a result of forcing
two nearly collinear variables (Apo-A1 and HDL-C) into the
same multivariable model—a concern acknowledged by
Richardson et al. To illustrate this we conducted a MVMR ana-
lysis jointly conditioning HDL-C on Apo-B, replacing the
Apo-A1 variable by TG (Supplementary Data 12). This analysis
confirmed independent CHD associations for HDL-C (OR per

SD 0.80, 95%CI 0.74; 0.86) and Apo-B (OR per SD 1.81, 95%CI
1.64; 1.99), where the comparability between the univariable
HDL-C association with CHD (OR per SD 0.75, 95%CI 0.70;
0.80) and the HDL-C estimate conditional on Apo-B and TG
implies a lack of mediation by these co-variables.

While the considered cholesterol-containing lipoprotein and
apolipoproteins have a predominant cardiac and atherosclerotic
fingerprint, we found that specific subfractions affected non-CVD
diseases including T2DM, AD, and IBD. The association between
higher LDL-C concentration and lower risk of diabetes has been
observed previously, an effect also observed in meta-analyses of
statin trials39,40 which may be mediated by effects on adiposity or
intracellular metabolism resulting in increased insulin resistance.
In the current analysis we now show that IDL-C and VLDL-C
affect T2DM independently of LDL-C. Altered cholesterol
metabolism has frequently been implicated as a potential risk
factor for Alzheimer’s disease through accumulation of phos-
phorylated tau and amyloid-beta41,42. Our MR results suggest

Fig. 5 Mendelian randomization effect estimates of a standard deviation change in cholesterol-containing lipoprotein or apolipoprotein concentration
on heart failure (HF), systolic blood pressure (SBP), Alzheimer’s disease (AD), and type 2 diabetes (T2DM). Prioritized results reflect associations
depicted in the causal network of Fig. 3, where 3 out of 5 (or 4 for LDL-C, HDL-C, and TG) estimates were significant at an alpha of 0.05 and directionally
concordant. Total: the total lipid effect, Conditional effects either, represent the blood lipid effect of LDL-C, HDL-C or TG singularly, or off all three blood
lipids in a single multivariable MR (fully adjusted) model. Fully adjusted models for LDL-C, HDL-C, or TG exposures only conditioned on two of the three
blood lipids (e.g., the fully conditional model for LDL-C exposure only conditioned on HDL-C and TG). Analyses were based on a 33,029 subject meta-
analysis of Kettunen15 and UCLEB20. Estimates are provided as odds ratio (OR) or mean difference (MD) with 95% confidence intervals (95%CI).
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changes in LDL-C, IDL-C, Apo-B and HDL-C might be parti-
cularly important for AD, potentially leading to interventional
targets. For example, the CETP-inhibitor Obicetrapib, which is
known to affect the aforementioned lipids, is currently being
tested for AD. Cholesterol metabolism is known to interact with
inflammatory pathways (marked in our analyses by a CRP
association) with oxidized lipoproteins such as LDL-C trigger-
ing an immune response43. This provides a further (potential)
avenue demonstrating how altered lipid metabolism may affect
AD risk44, as well as explaining the observed LDL-C and IDL-C
association with IBD.

This study has employed MR to determine two types of effects
(1) the total effect which consists of a direct and indirect effect
(where both, or either could be zero), and (2) the direct effect
accounting for any potential mediation by the routinely measured
lipid fractions LDL-C, HDL-C, and TG (Fig. 1). Both the total
effects (e.g., presented in Figs. 2, 4 and 5) and direct effects (e.g.,

presented in Figs. 3–5) are valid causal effects, and the absence of
a direct effect should not be interpreted as disqualifying any
observed total effect, or vice versa. We had access to two distinct
sets of instruments for LDL-C, HDL-C, and TG, the first from
GLGC on about 188,000 participants, and a second set from
UCLEB (on about 33,000 participants). Separate analyses using
instruments from the two datasets resulted in similar MR esti-
mates (Fig. 2, Supplementary Fig. 2), implying that the presented
findings were robust against choices of instruments, as well as
source data. It is important to highlight that our genetics
instruments were selected on F-statistic >24 which protects
against weak instrument bias which (due to the two-sample
design) is expected to act towards a null-effect. We specifically
utilized MVMR to explore to what extent the observed total effect
acted independently from the thoroughly studied exposures LDL-
C, TG, or HDL-C. Because MVMR performs a conditional ana-
lysis it becomes relevant to also consider conditional F-statistics
(Supplementary Table 3), which suggest that MVMR models
jointly accounting for LDL-C, HDL-C, and TG, were especially
vulnerable conditional weak-instruments. Because of this, ana-
lyses were conducted in a two-sample setting, and MVMR-Egger
was employed to protect against any potential horizontal pleio-
tropy not captured by MVMR, ensuring any bias would act
towards the null, resulting in conservative findings. While this
minimizes the false-positive rate, it also implies (even more than
usual) that one should not overinterpret non-significant findings
as proof of a null-effect45.

In conclusion, we have catalogued and prioritized the pheno-
typic consequences of cholesterol-containing lipoprotein and
apolipoprotein blood concentrations, finding that many of these
exposures appear to act independently of the commonly mea-
sured blood lipids: LDL-C, HDL-C and TG. We found evidence
that CHD and related traits, such as cIMT, carotid plaque, CRP,
blood pressure, and HF, are causally affected by many lipid
fractions typically including LDL-C, HDL-C, VLDL-C, IDL-C,
TG, and apolipoproteins B and A1. Our analyses additionally
identified certain non-CVD traits that are more exclusively
affected by smaller subset of exposures, such as Alzheimer’s
disease (HDL-C, LDL-C, IDL-C, Apo-B), IBD (LDL-C, IDL-C),
and T2DM (VLDL-C, IDL-C and LDL-C). The observed pleio-
tropic effects, where multiple blood lipids affect a single trait,
suggest a holistic consideration of lipid metabolism perturbation
with respect to disease may be beneficial.

Data availability
Summary genetic effect estimates for outcomes were extracted from publicly accessible
GWAS on glucose and HbA1c, and C-reactive protein all from the UKB (nealelab.is/uk-
biobank; removing low confidence variants), as well as blood pressure (systolic and
diastolic), available from Evangelou et al.46 (https://www.ebi.ac.uk/gwas/publications/
30224653). The CKDGen consortium provided GWAS associations on blood urea
nitrogen, estimated glomerular filtration rate, and chronic kidney disease47 (https://
ckdgen.imbi.uni-freiburg.de/). Genetic associations with primary biliary cirrhosis were
available from Jostins et al.48 (https://www.ebi.ac.uk/gwas/publications/26394269). A
meta-analysis of CHARGE49 and UCLEB20 provided genetic associations with carotid
artery intima media thickness and plaque (https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000930.v6.p1; accession phs000930.v6.p1). CHD data
were available for 42,335 cases from CardiogramplusC4D50 (http://www.
cardiogramplusc4d.org/data-downloads/); 40,585 stroke cases (including four subtypes)
from MEGASTROKE51 (https://www.megastroke.org/index.html); 47,309 heart failure
cases from HERMES52 (https://www.ebi.ac.uk/gwas/publications/31919418), 60620 atrial
fibrillation cases from Nielson et al.53 (https://www.ebi.ac.uk/gwas/publications/
30061737), 74,124 type 2 diabetes54 cases from DIAGRAM (https://diagram-consortium.
org/downloads.html), 32,637 cases of inflammatory bowel disease55, 5956 cases of
Crohn’s disease56 and 6,687 cases of ulcerative colitis57 from IIBDGC (https://www.
ibdgenetics.org/), 29,880 rheumatoid arthritis cases from Okada et al.58 (https://www.ebi.
ac.uk/gwas/publications/24390342), 14,498 cases of multiple sclerosis59 from the IMSG
consortium (https://imsgc.net/), 15,156 amyotrophic lateral sclerosis cases from Rheenen
et al.60 (https://www.ebi.ac.uk/gwas/publications/27455348), 71,880 cases of Alzheimer’s

Fig. 6 Kolmogorov-Smirnov overall-null hypothesis tests. Kolmogorov-
Smirnov goodness-off-fit tests were used to compare an empirical p value
distribution against the continuous uniform p value distribution expected
when the strict null-hypothesis holds. A Here we grouped the empirical
p values by exposure and explored whether their distribution agreed with
the expected p value distribution when all test would be false-positive.
B Here we grouped the empirical p values by outcome and explored
whether their distribution agreed with the expected p value distribution
when all test would be false-positive. The horizontal lines represent the
multiplicity corrected p value threshold, dividing an alpha of 0.05 by the
number of exposures or outcomes (the number of bars).
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disease from Jansen et al.61 (https://ctg.cncr.nl/software/summary_statistics), and 56,306
cases of Parkinson’s disease from Nalls et al.62 (https://www.ebi.ac.uk/gwas/publications/
31701892). Finally, we sourced data on pancreatic cancer, colon cancer, rectal cancer,
lung cancer and melanoma from Rashkin et al.63 (https://github.com/Wittelab/
pancancer_pleiotropy). The source data underpinning the figures presented in the main
text can be accessed here: https://doi.org/10.5522/04/21647210.v1, with the raw genetic
data used in these analyses presented in Supplementary Data 14–15 with a separate
readme provided as Supplementary Data 16.
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