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ABSTRACT 

Background: 

To develop and validate the stratify-hip algorithm (multivariable prediction models to predict those 

at low, medium, and high risk across in-hospital death, 30-day death, and residence change after hip 

fracture). 

Methods:  

Multivariable Fine-Gray and logistic regression of audit data linked to hospital records for older 

adults surgically-treated for hip fracture in England/Wales 2011-2014 (development n=170,411) and 

2015-2016 (external validation, n=90,102). Outcomes included time to in-hospital death, death at 

30-days, and time to residence change. Predictors included: age, sex, pre-fracture mobility, 

dementia, and pre-fracture residence (not for residence change). Model assumptions, performance, 

and sensitivity to missingness were assessed. Models were incorporated into the stratify-hip 

algorithm assigning patients to overall low (low risk across outcomes), medium (low death risk, 

medium/high risk of residence change), or high (high risk of in-hospital death, high/medium risk of 

30-day death) risk.  

Results: 

For complete-case analysis, 6,780 of 141,158 patients (4.8%) died in-hospital, 8,693 of 

149,258 patients (5.8%) died by 30-days, and 4,461 of 119,420 patients (3.7 %) had residence 

change. Models demonstrated acceptable calibration (observed:expected ratio 0.90, 0.99, and 

0.94), and discrimination (area under curve 73.1, 71.1 and 71.5; Brier score 5.7, 5.3, 5.6) for 

in-hospital death, 30-day death, and residence change, respectively. Overall, 31%, 28%, and 

41% of patients were assigned to overall low-, medium-, and high- risk. External validation 

and missing data analyses elicited similar findings. The algorithm is available at 

https://stratifyhip.co.uk. 

Conclusion:  

The current study developed and validated the stratify-hip algorithm as a new tool to risk stratify 

patients after hip fracture.  

KEYWORDS 

Stratification, classification, fracture neck of femur, fragility fracture, recovery 
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INTRODUCTION 

The age standardized rate of hip fracture ranges from lows of 2/100,000 in Nigeria (women) and 

35/100,000 in Ecuador (men), to highs of 574/100,000 in Denmark (women) and 290/100,000 in 

Denmark (men) (1). Even with surgery, up to 10% of patients die in hospital and 22% transition from 

living at home to care homes (2). Multidisciplinary and orthogeriatric led management is the optimal 

approach for acute hospital care after hip fracture, resulting in fewer deaths and transitions to care 

homes (risk ratio 0.88, 95% confidence interval 0.80, 0.98) (3). Early and frequent therapy input is 

also associated with an additional 2% of patients returning home and 4% of patients surviving to 30-

days (4). Yet, a demand-capacity mismatch often limits delivery of consistent orthogeriatric care (5) 

and therapy services in hospital after hip fracture (6).  This mismatch requires clinicians to prioritise 

their caseload based on perceived need. However, variation in national audit data (above what may 

be explained by differences in case-mix) may suggest a lack of consistency in this prioritisation (5, 6). 

A stratified approach to multidisciplinary care delivery may improve efficiency and reduce 

inconsistencies in prioritisation by identifying groups of patients at risk of poor outcomes to be 

matched to different treatments, acknowledging different needs and potential benefits from 

healthcare professional input. To achieve this, prediction models are necessary. Most previously 

published models have limitations in performance and/or implementation (7). In contrast, the 

Nottingham Hip Fracture Score has modest discrimination and adequate calibration for death and 

includes predictors which clinicians can collect prior to surgery (8). The Nottingham Hip Fracture 

Score was developed to inform consenting procedures, timing of surgery, access to pre/post 

operative higher level care, and audit (8). However, it was not designed to enable stratification of 

patients into different risk groups to be matched to different treatments.  

This study aimed to develop and validate the stratify-hip algorithm (comprised of three multivariable 

prediction models) using routinely collected data available on admission as a new tool to risk stratify 

patients after hip fracture. The algorithm sought to predict those at low, medium, and high risk 

across time to in-hospital death, death by 30-days, and time to change in residence, and to be able 

to discriminate between the groups. The stratify-hip algorithm and link to a freely available web-

based app to facilitate risk prediction is provided. 

METHODS 

This study is reported according to the transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD) statement (9). The study did not require ethical approval 

as it involved secondary analysis of pseudonymized data.  

Source of data 

The UK National Hip Fracture Database (NHFD) collates data on the characteristics of 95% of patients 

aged 60 years and older with hip fracture and the care they received during the acute hospital stay 

in England and Wales (5). Individual patient NHFD data were linked to electronic hospital records 

and the Office of National Statistics records for data on dementia diagnosis and death respectively. 

Further details on data cleaning and linkage across databases are described elsewhere (10). Data 
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submitted to the NHFD for 170,411 patients surgically treated for a non-pathological first hip 

fracture between January 1st, 2011, and December 31st, 2014, were selected for development and 

internal validation (follow-up to 30-days post-admission or to December 31st, 2014). Data submitted 

for 90,102 patients treated between January 1st, 2015, and December 31st, 2016, were selected for 

external (temporal) validation (follow-up to 30-days post-admission or to December 31st, 2016). 

Differences between patients with and without complete predictor data are presented in 

Supplementary File, Table S1-2. Those with missing predictor data were more dependent (greater 

proportion with dementia [all outcomes] and admitted from nursing/residential care [in-hospital 

death and 30-day death]) than those without missing data.  

Outcomes 

Outcomes included (i) time to in-hospital death, (ii) death status at 30-days post admission and (iii) 

time to change in residence (among those admitted from home) as key performance indicators of 

safe and effective care (5), and which reflect the patient priority of returning home (11). Time to in-

hospital death was calculated as the number of days from admission to a coded discharge 

destination of death, treating discharge to another unit (loss to follow-up) or to day 30 (end of 

follow-up) as a censoring event, and discharge home or to nursing/residential care as a competing 

event. Thirty-day death was identified by a binary indicator (alive, dead) 30 days post admission. 

Time to change in residence (pre-fracture residence of home and discharge destination of 

nursing/residential care, Supplementary File, Table S3) was calculated as the number of days from 

admission to a residence change, treating discharge to another unit (loss to follow-up) or to day 30 

(end of follow-up) as a censoring event, and return to pre-fracture residence or in-hospital death as 

competing events.  

Predictors 

Five predictors were included: age (5-year age groups from age 60 years at admission), sex (male, 

female), pre-fracture mobility (no functional mobility, independent indoor mobility with/without aid, 

independent outdoor mobility with/without aid), dementia diagnosis (International Classification of 

Diseases 10th Edition code F00, F01, F02, F03, or G30 during the hip fracture admission or any 

admission in the year prior), and pre-fracture residence (own home/sheltered housing, 

nursing/residential care [not for time to change in residence outcome]). Predictors were defined a 

priori following evidence review (2, 12), interviews with patients (11) and healthcare professionals 

(13, 14), a public and patient involvement focus group, and which were available in the dataset. To 

optimize simplicity of future implementation of risk stratification, the number of predictors was kept 

to a minimum and to those which could be feasibly collected preoperatively by any healthcare 

professional either directly from the patient or an informal/formal carer.  

Sample size 

Similarity between the external and development datasets was anticipated in terms of distribution 

of patients by each predictor. The extent to which the external validation dataset sample size could 

be justifiable to perform a validation of our models was assessed. For the observed proportion of 30-

day deaths (5.8%), an estimated minimum of 13,751 patients (with 798 deaths at 30-days) was 

required for 1) a target standard error (SE) of the logarithm (observed/expected (O/E) ratio) of 0.245 
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with a target O/E ratio of 1; 2) a target area under the receiver operating characteristic curve (AUC) 

of 0.70 with SE(AUC) of 0.0225; and 3) and a target calibration slope of 1 with a SE of 0.051 (15).  

Statistical analysis methods 

Predictors were described by counts and proportions. 

Time-to-event outcomes 

Fine - Gray (16) regression was used to build a prediction model estimating the direction of the 

association between predictors and the cumulative incidence (risk) of in-hospital death and of 

residence change as functions of postoperative day, accounting for competing events (17). 

Discharges to another care setting and hospital stays exceeding 30 post-operative days were treated 

as right-censored observations. The model was fitted with R (18) software using RiskRegression 

packages (19) and cmprsk (20). The proportional hazards assumption was assessed by plotting 

Schoenfeld residuals against failure time with a scatterplot smoother for each covariate in the 

models (21). Model calibration was assessed by estimating the O/E ratio and plotting the mean 

predicted risk against observed risk for predicted risk deciles at 30-days from admission (22). Model 

discrimination was assessed by C-index statistics at 30-days (or AUC) (23). The Brier score was also 

calculated as the expected squared distance between predicted and observed risk at 30-days from 

admission (24). This score accounts for both calibration and discrimination with a lower score (scale 

0-100%) indicating a higher performing model (25). 

Binary outcome 

A five-predictors logistic regression model was used to predict the risk of death at 30-days. The 

presence of influential observations was examined by visualizing the Cook’s distance values (26). 

Multicollinearity among predictors was investigated using “vif” in the “rms” R package, which 

computes the variance inflation factors (VIF) (27, 28). Model calibration was assessed by quantifying 

the calibration slope and the O/E ratio (29, 30). The mean predicted risk against observed risk for 

predicted risk deciles (22) was also plotted and a generalized additive model with integrated 

smoothness presented (31). Discrimination was assessed by the C statistic (29) and both calibration 

and discrimination by the Brier score (29). The analyses were conducted with R (18) using rms 

packages (32).  

Internal validation 

For internal validation, 100 bootstrap samples were generated with replacement from the 

development dataset (33). Each sample included the same number of patients as the development 

dataset. Performance was assessed from each bootstrap model in each bootstrap sample (apparent 

performance) and the performance of each bootstrap model in the development dataset (test 

performance) (34). Optimism (overestimation bias often due to overfitting) was calculated as the 

average difference between apparent and test performance across bootstrap samples (34). 

Optimism adjusted measures of performance (AUC and Brier scores) were estimated by subtracting 

the estimate of optimism from the development model performance estimates (34).  
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Risk groups 

Patients were clustered into three risk groups (low, medium, high) for each outcome by applying K-

means clustering algorithm (an algorithm which partitions n observations into k clusters in which 

each observation belongs to the cluster with the nearest mean) (35). The number of groups was 

defined a priori to balance risk assignment with the feasibility of designing future matched 

treatments for each risk group. Following clustering for each outcome, patients were assigned to 

one of three groups: overall low (low risk across outcomes), overall medium (low risk of death but 

medium or high risk of change in residence), and overall high (high risk of in-hospital death, high or 

medium risk of 30-day death) risk across outcomes (Figure 1).  

Sensitivity analyses 

Multiple chained equations (MICE) was used to determine the sensitivity of findings to data 

missingness (36). Twenty distinct datasets were generated for efficient and stable estimates (36). 

Missing predictor values were replaced iteratively with values from multiple regression models 

within the MICE in addition to auxiliary variables Charlson comorbidity index, American Society of 

Anaesthesiologists Classification, deprivation (Index of Multiple Deprivation decile groups), and type 

of surgery (arthroplasty, hemiarthroplasty, internal fixation) to minimise bias and optimise power of 

the imputations (37). As in the main analysis, either Fine - Gray or logistic regression models were 

used, as appropriate, to predict the risk of each outcome. The optimism corrected values of AUC and 

Brier score for each model within the 20 imputed datasets was estimated prior to generation of 

pooled values and their confidence intervals (CI) across imputed datasets (38). 

The influence of age groups on model performance was assessed by treating age as a continuous 

variable in a sensitivity analyses of the development dataset.  

External validation 

The three models generated in the development dataset were applied to the external validation 

dataset to estimate the predicted risk. Performance was estimated through the AUC and Brier score. 

Risk groups were subsequently generated as described above.  

Model access  

The final model is accessible via a freely-available web-based app. Nomograms were also generated 

for each outcome to be used alongside Figure 1 for settings where internet access is not available 

(39). Nomograms were generated with R (18) packages rms (32) and cmprsk (20). 

RESULTS  

Participants 

Among 170,411 patients, 141,158 (83%), 119,420 (70%), and 149,258 (88%) had complete data for 

predictors and in-hospital death, 30-day death, and change in residence, respectively. The majority 

were women, admitted from home and were able to ambulate outdoors pre-fracture (Table 1). 

More than half were over 80 years of age, and one quarter had a diagnosis of dementia.  
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Development and internal validation 

In-hospital death 

Among 141,158 patients, 6,780 (4.8%) died in-hospital, 72,401 (51.3%) were discharged, 48,798 

(34.6%) were discharged to another unit, and 13,179 (9.3%) had stays longer than 30 days. Dementia 

and pre-fracture residence had non-constant residuals across time indicating a potential violation to 

the proportional hazard assumption. However, further exploration of an interaction with time 

indicated no major violation for these predictors (Supplementary File, Figure S1).  

The predicted risk of in-hospital death was calculated using the "predict.crr” function in the cmprsk 

package which uses the formula:  

                   

where 0.9909 is the baseline 30-day survival estimate and the linear predictor (LP1) is equal to 

                                                                            

            

 1: 65-69 years: 0.3917426; 70-74 years: 0.6325601; 75-79 years: 0.8231233; 80-84 years: 1.2006534; 85-90 years: 

1.5429587; 90-94 years: 1.8768660; 95 or more years: 2.2821073.  2: 0.6993337.   3: Indoor: 0.6518865; no function: 

0.7273951.  4: -0.1337233.   5: 0.1670263. 

The model was well calibrated as evidenced by a calibration plot of predicted against observed risk 

across deciles of predicted risk (Figure 2), with an overall calibration measured by the O/E ratio of 

0.90 (from 0.89 to 1.36 across risk deciles) with a weaker fit for those in the risk groups (3%-3.3%) 

(4.2%-5.2%) and (5.9%-7.9%). AUC and Brier scores were similar for development and internal 

validation with optimism adjusted AUC and Brier scores of 73.1% (95% CI, 72.6-73.7) and 5.66% (95% 

CI, 5.57-5.79) respectively (Table 2). 

The risk of in-hospital death was estimated at 32.0% for a man over the age of 94 years admitted 

from residential care with no pre-fracture mobility and a history of dementia. The risk of in-hospital 

death was estimated at 0.9% for a woman aged between 60 and 64 years admitted from home with 

outdoor mobility pre-fracture and no history of dementia.   

Change in residence 

Among 119,420 patients, 4,461 (3.7 %) had a change in residence, 51,178 (42.9 %) were discharged 

to their pre-fracture residence, 5,699 (4.8%) died in-hospital, 47,329 (39.6%) were discharged to 

another unit, and 10,753 (9.0%) had stays longer than 30 days. There was no evidence of violation to 

the proportional hazard assumption (Supplementary File, Figure S2).  

The predicted risk of change in residence was calculated using the "predict.crr” function in the 

cmprsk package using the formula: 

                       

where 0. 9800114 is the baseline survival estimate for no change in residence and the linear 

predictor (LP2) is equal to 
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 6: 65-69 years: 0.07259374 ; 70-74 years: 0.49701280 ; 75-79 years: 0.74251183; 80-84 years: 0.98564585 ; 85-90 years: 

1.20026245; 90-94 years: 1.34492377; 95 or more years: 1.46828028.  7: -0.23046984.   8: Indoor: .10857114; no 

function: 0.48041962.  9: 0.65983936.   

The model displayed a tendency towards underfitting for those in the 7th to 9th risk deciles (6.5% - 

11.0%) as evidenced by a calibration plot of predicted against observed risk across deciles of 

predicted risk (Figure 2) with an overall calibration measured by the O/E ratio of 0.94 (range from 

0.86 to 1.31 across risk deciles). AUC and Brier scores were similar for development and internal 

validation with optimism adjusted AUC and Brier scores of 71.5% (95% CI 70.8 – 72.5) and 5.5% (95% 

CI 5.4 – 5.7) respectively (Table 2). 

The risk of change in residence was estimated to be 24.0% for a woman over the age of 94 years 

with no pre-fracture mobility and a history of dementia. The risk of a change in residence was 

estimated to be 1.6% for a man aged between 60 and 64 years with outdoor mobility pre-fracture 

and no history of dementia.   

30-day death 

Among 149,258 patients, 8,693 (5.8%) died by 30-days. Variance inflation factors indicated no 

collinearity (Supplementary File, Table S4). The standardized residual error presented in 

Supplementary File, Figure S3 revealed 16 data points (<0.5%) with an absolute standardized 

residuals above 3 which were investigated as possible outliers. 

The predicted risk of in-hospital death was calculated by the formula: 

 

          
  

where the linear predictor (LP3) is equal to 

 4.6851772                                                      

                                          

 10: 65-69 years: 0.3213738; 70-74 years: 0.4358315; 75-79 years: 0.6889942; 80-84 years: 0.9946787; 85-89 years: 

1.3435684; 90-94 years: 1.6353948; 95 or more years: 2.0773348. .  11: 0.7301712.  12: Indoor: 0.6327345; no function: 

0.7915023.  13: 0.1929848.  14: 0.3310316. 

The model displayed no tendency to under- or over-fitting as evidenced by a calibration plot of 

predicted against observed risk (Figure 2, Supplementary File Figure S4) with an overall calibration 

measured by the O/E ratio of 0.99 (ranged from 0.83 to 1.00 across risk deciles). AUC and Brier 

scores were similar for development and internal validation with optimism adjusted AUC and Brier 

scores of 71.1% (95% CI 70.6-71.6) and 5.30% (95% CI 5.20-5.40) respectively (Table 2). An optimism 

of 1.00 (95% CI 0.99-1.00) was identified for the calibration slope. 

The risk of 30-day death was estimated to be 36.3% for a man over the age of 94 years admitted 

from residential care with no pre-fracture mobility and a history of dementia. The risk of in-hospital 

death was estimated to be 0.9% for a woman aged between 60 and 64 years admitted from home 

with outdoor mobility pre-fracture and no history of dementia.   
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Risk groups 

Patients were clustered into low-, medium-, and high- predicted risk groups for each of the 

three outcomes using K-means clustering prior to assignment to mutually exclusive overall 

low (31% [n =44,364]), medium (28% [n =39,542]), and high (41% [n =57,251]), risk across 

all three outcomes (Figure 1). Patients in the overall low risk group were typically less than 

80 years old with the majority female (66%), admitted from home (91%), with outdoor 

mobility pre-fracture (83%) and no dementia diagnosis (95%) (Table 3). Compared to the 

overall low risk group, a greater proportion of patients in the overall medium risk group were 

older (94% aged 80 years or more), female (99%) and had a dementia diagnosis (14%) (Table 

3). Compared to the overall medium risk group, patients in the high-risk group were of a 

similar age (94% aged 80 years or more), however, a greater proportion were male (37%), 

with indoor/no mobility (69%), admitted from nursing/residential care (40%) with a dementia 

diagnosis (50%) (Table 3). The stratify-hip algorithm can be calculated online at: 

https://stratifyhip.co.uk. Nomograms for calculating the algorithm offline are available in 

Supplementary File, Figure S5.   

Sensitivity analysis 

For imputation results and where age was treated as a continuous predictor, summary performance 

statistics were comparable to performance estimates in the complete case analysis.  Full results of 

sensitivity analyses are available in Supplementary file, Tables S5-6. 

External (temporal) validation 

Among the 90,102 patients in the validation dataset, 84,096 (93%), 87,144 (97%), and 87,414 (97%), 

had complete data for predictors and in-hospital death, 30-day death, and change in residence 

respectively. The majority were women, admitted from home and were able to ambulate outdoors 

pre-fracture (Table 1). More than half were over 80 years of age and one third had a diagnosis of 

dementia (Table 1). 

In-hospital death 

Among 84,096 patients, 3,752 (4.5%) died in-hospital, 44,348 (52.7%) were discharged, and 35,996 

(42.8%) were censored by 30-days. Similar to the development dataset, a weaker fit was observed 

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad053/7031782 by guest on 10 February 2023



Acc
ep

ted
 M

an
us

cri
pt

 

- 10 - 

for those in the risk groups (4.2%-6.8%) (Figure 2). AUC and Brier scores were comparable to the 

development dataset at 73.1% (95% CI, 72.7%-74.2%) and 5.26% (95% CI, 5.09%-5.43%) respectively. 

Change in residence 

Among 70,319 patients, 2,712 (2.1%) had a change in residence, 31,239 (24.6%) were discharged to 

their pre-fracture residence, 3,187 (2.5%) died in-hospital and 33,181 (26.1%) were censored by 30-

days. Similar to the development dataset, the model displayed a tendency towards underfitting for 

those in the 7th to 9th risk deciles (6.5% - 11.0%) (Figure 2). AUC and Brier scores were comparable to 

the development dataset at 71.7% (95% CI 70.6 to 72.7) and 5.7% (95% CI 5.5 – 5.9) respectively. 

30-day death 

Among 87,414 patients, 4,790 (5.5%%) died by 30-days. Similar to the development dataset, the 

model displayed no tendency to under- or over-fitting as evidenced by a calibration plot of predicted 

against observed risk (Figure 2). AUC and Brier scores were comparable to the development dataset 

at 71.2% (95% CI 70.5%-0.71.9%) and 5.00% (95% CI 4.95-5.13) respectively (Table 2). 

Risk groups 

The distribution of patients to overall low (33% [n =27,566]), medium (31% [n =25,669]), and high 

(36% [n =30,861]), risk across outcomes and differences in the distribution of characteristics of 

patients across overall risk group were similar to the development dataset (Supplementary File, 

Table S7).  

DISCUSSION  

Main findings  

This study developed and validated multivariable prediction models for in-hospital death, 30-day 

death and change in residence among 260,513 patients who underwent hip fracture surgery. The 

models enable the prediction of patients at low, medium, and high risk across the three outcomes. 

The models were well calibrated with acceptable discrimination between the groups consistently 

estimated during development, and internal and external validation. The stratify-hip algorithm 

(comprised of three multivariable prediction models) and link to a freely available web-based app to 

facilitate risk prediction is provided. 

Comparison with other literature 

Model performance measures for 30-day death were comparable between the current model and 

the Nottingham Hip Fracture Score (8). Similar to this score, older age, male sex, admission from a 

care home, and presence of dementia were predictive of 30-day death (8). The current model noted 

poorer pre-fracture mobility was also predictive of 30-day death. This predictor is not employed by 

the Nottingham Hip Fracture Score, which uses admission haemoglobin concentration, number of 

comorbidities and malignancy as its final three predictors (8). A direct comparison of model 

performance was not possible due to the absence of admission haemoglobin from the current 

dataset. For the current model, it was also noted pre-fracture mobility together with age, sex, pre-

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad053/7031782 by guest on 10 February 2023



Acc
ep

ted
 M

an
us

cri
pt

 

- 11 - 

fracture residence and dementia, was predictive of time to in-hospital death and change in 

residence. Although the predictors selected for inclusion in the current models have previously been 

associated with poor outcomes(11-13), here an algorithm is provided for considering prediction of 

these outcomes together at the point of admission. This outcome driven stratify-hip algorithm 

generated distinct risk groups whereby a patient with a given set of predictors (collected at the point 

of admission) is allocated to one risk group.  

Interpretation  

In the stratify-hip algorithm, the risk of short-term death was prioritised over changing residence. 

This ‘outcome-driven’ approach was guided by an expectation the clinical needs of patients will vary 

according to which outcomes they are at risk of incurring. The approach mirrors the likely priority 

order of in-hospital care to reduce death risk and subsequently the risk of changing residence. This is 

potentially controversial for those admitted from home, given a study from 2000 indicated 80% of 

194 women at risk of hip fracture indicated they would rather be dead than admitted to a care home 

(40). K-means clustering was considered for the overall group assignment. However, this approach 

does not generate ‘mutually exclusive’ groups  a key requirement for employing the algorithm to 

inform a future stratified approach) and the analysis would need to be on the same population for 

all three outcomes  but ‘changing residence’ is only applicable to those admitted from home).  

Given the weighting of the algorithm towards the high-risk group (Figure 1), it was surprising this 

group only constituted between 36% (external validation) and 41% (development) of the population. 

This is promising for the potential future clinical utility of the algorithm as it supports the hypothesis 

of distinct groups of patients within the population who may benefit from different care approaches. 

Indeed, the characteristics of patients exhibited an increasing level of dependency from low- to high- 

risk groups. For example, those in the low-risk group were the youngest and had the lowest 

proportion with dementia while those in the high-risk group were the oldest and had the highest 

proportion with dementia. This was to be expected given those with greater dependency are more 

likely to be at risk of short-term death (and high-risk assignment).   

Future research  

Predictors were selected based on existing evidence and to optimize simplicity of future 

implementation of the approach to risk stratification. Previously published models which 

incorporated more predictors yielded similar performance (7). The exception is the Orthopaedic 

Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity with a 

reported area under the curve of 83%; however, this score requires collection of physical (e.g., 

bloods, electrocardiogram) and operative (blood loss) severity data limiting implementation. As 

model performance was deemed acceptable with the five predictors identified, additional predictors 

were not explored here.  

The type and intensity of clinical care may vary depending on the needs of an individual patient and 

organisational culture (3). The stratify-hip algorithm presented here is a first step in developing a 

stratified approach to care. The next step is to match risk groups to interventions tailored to their 

needs. Indeed, the risk groups likely benefit from differing in-hospital care (type, intensity, 

professional input) which may help to mitigate the demand-capacity mismatch for orthogeriatric and 
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therapy input and reduce inconsistencies in prioritisation (5, 6). For example, patients in the high risk 

group may require interventions which explicitly target risk factors for short-term death such as 

closer monitoring/managing perioperative medical complications (41), early mobilisation (42), 

and/or consideration of end-of-life care (43). Conversely, those not at risk of short-term death but at 

risk of changing residence (medium-risk group) may be more appropriate for early supported 

discharge (44). The goal of such an approach is to optimise outcomes across the entire population by 

ensuring equitable access to person-centred care, and not to ration care based on poorer prognosis. 

Any future stratified approaches should be assessed for feasibility, acceptability, and effectiveness in 

randomized controlled trials (45). 

Previous research highlighted challenges in communicating prognosis with patients, particularly in 

end-of-life care (46). These challenges were attributed to low confidence in prognostic estimates 

which was improved with the use of prediction models (46). The acceptability of the stratify-hip 

algorithm to patients, carers, and professional as a tool to support shared decision making should be 

explored in future research. If deemed acceptable, the algorithm may be used by professionals to 

help set expectations for recovery in a timely manner with patients and their informal/formal carers.  

The current study focused on short-term outcomes. It may be hypothesised short-term risk of death 

and/or changing residence may be related to longer-term risk of mobility loss, changing residence, 

and/or death. Future research may assess model performance in predicting longer-term outcomes, 

which in turn may inform community care.  

Limitations 

Age was treated in 5-year increments and not as continuous with the intention of enabling paper-

based implementation which may have led to a loss of power (47). However, similar model 

performance was noted when age was treated as continuous in a sensitivity analysis. Dementia was 

based on the absence or presence of a formal diagnosis code in hospital records which may be 

subject to under diagnosis and subsequent misclassification in our models (48). However, the data 

source employed here recently had the highest reporting of dementia diagnoses across three UK 

data sources (48) and the ascertainment rate of 25-30% is in keeping with the expected rate among 

older adults admitted to hospital with hip fracture (49). Date of death was not available limiting the 

ability to consider death at 30-days (inclusive of deaths after discharge) as a time-to-event outcome 

or to employ a multivariate analysis. There was a high proportion of right censored observations for 

time-to-event outcomes due to discharges to other care setting. These observations are unlikely 

independent of the predictor-outcome association given patients admitted with no mobility may be 

less likely discharged to inpatient rehabilitation than those admitted with mobility prefracture. 

Groups were defined using K-means clustering algorithm which relies on researchers assumptions to 

a greater extent than other methods that rely on formal tests e.g., latent class analysis (50). 

However, K-means clustering based on assumed three groups, led to the identification of three 

groups whose characteristics are likely amenable to different matched treatments which was the 

purpose of the algorithm. There is the potential for bias due to missing data. The sensitivity of the 

complete case analysis to missingness was assessed by imputation which estimated similar 

performance. This was not surprising given imputed datasets were predominantly comprised of 

complete data (88%). 
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The stratify-hip algorithm may not be generalisable to settings where hospital stay varies from the 

average UK length of stay 15 days (5). Temporal external validation was completed and yielded 

similar performance. Further external validation for more recent years (given implications of 

changes in social care funding for discharge destinations and in death rates over time), for different 

settings (given implications of health systems on outcomes) and using different definitions and/or 

measurements in similar patients is required to determine the international utility of the model.  

CONCLUSIONS 

The current study details the new stratify-hip algorithm (comprised of three multivariable prediction 

models) enabling the identification of three distinct groups (low- 31%, medium- 28% and high- 41% 

risk) at differing risk of poor outcome after hip fracture surgery. The multivariable prediction models 

were well calibrated with acceptable discrimination during development and validation. Future 

research should seek to develop and test the feasibility and acceptability of the algorithm to group 

patients and match them to interventions. External validation beyond temporal validation is also 

recommended.  
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Table 1. Characteristics of patients surgically treated for non-pathological first hip fracture for development and internal validation, and 

external validation, datasets. 

  Inhospital death 30-day death Change in residenced 

  Developmen

t and 

internal 

validation  

(2011-14) 

External 

validation 

(2015-16) 

 

Development and internal 

validation  

(2011-14) 

External 

validation 

(2015-16) 

Developmen

t and 

internal 

validation  

(2011-14) 

External 

validation 

(2015-16) 

  n=141,158 n=84,096 n=149,258 n=87,414 n=119,420 n=70,319 

Age at  60-64 4618 (3.3) 2641 (3.1) 4910 (3.3) 2772 (3.2) 4616 (3.9) 2586 (3.7) 

admission  65-69 7867 (5.6) 5108 (6.1) 8348 (5.6) 5346 (6.1) 7711 (6.5) 4910 (7.0) 

(years) 70-74 11453 (8.1) 7239 (8.6) 12117 (8.1) 7560 (8.6) 10965 (9.2) 6847 (9.7) 

 75-79 19816 (14.0) 11629 

(13.8) 

20927 (14.0) 12108 (13.9) 

18249 (15.3) 

10500 

(14.9) 

 80-84 31517 (22.3) 18010 

(21.4) 

33370 (22.4) 18698 (21.4) 

27515 (23.0) 

15447 

(22.0) 

 85-89 34903 (24.7) 20537 

(24.4) 

36871 (24.7) 21348 (24.4) 

28337 (23.7) 

16579 

(23.6) 

 90-94 23524 (16.7) 14001 

(16.6) 

24856 (16.7) 14490 (16.6) 

17339 (14.5) 

10225 

(14.5) 

 >94 7460 (5.3) 4931 (5.9) 7859 (5.3) 5092 (5.8) 4688 (3.9) 3225 (4.6) 

Sex Female 104905 

(74.3) 

60987 

(72.5) 

110927 (74.3) 63402 (72.5) 

87758 (73.5) 

50485 

(71.8) 

 Male 36253 (25.7) 23109 38331 (25.7) 24012 (27.5) 31662 (26.5) 19834 
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a Among the development dataset for model prediction of inhospital death outcome only one patient had missing 30 death outcome and missing change in residence 

outcome. No missing data in the validation dataset for this model. 
b Among the development and validation datasets for the model prediction of 30 days death 7578 (5%)  and 3045 (4%) have missing inhospital death outcome  
c Among the development and validation datasets for model prediction of change in residence outcome 3276 (3%) and 1486 (2%) have missing inhospital death outcome 

respectively. No patient has missing 30 days death outcome. 
            d For the model prediction of change in residence outcome, study population includes only patients admitted from home/sheltered housing 

(27.5) (28.2) 

Prefracture  Outdoor mobility 86719 (61.4) 63293 

(75.3) 

92021 (61.7) 65861 (75.3) 

83780 (70.2) 

57616 

(81.9) 

mobility Indoor mobility 51573 (36.5) 19716 

(23.4) 

54237 (36.3) 20430 (23.4) 

34338 (28.8) 

12169 

(17.3) 

 No mobility 2866 (2.0) 1087 (1.3) 3000 (2.0) 1123 (1.3) 1302 (1.1) 534 (0.8) 

Prefracture  Home/sheltered 

housing 

114534 

(81.1) 

68522 

(81.5) 

121573 (81.5) 71419 (81.7) 

119420(100) 

70319 

(100) 

residence Nursing/residential 

care 

26624 (18.9) 15574 

(18.5) 

27685 (18.5) 15995 (18.3) 

0.0 0.0 

Dementia Yes 36503 (25.9) 25224 

(30.0) 

38145 (25.6) 26015 (29.8) 

18410 (15.4) 

13844 

(19.7) 

Inhospital deatha  6780 (4.8) 3752 (4.5) 6810 (4.6) 3770 (4.3) 4815 (4.0) 2744 (3.9) 

30-day deathb  8311 (5.9) 4632 (5.5) 8693 (5.8) 4790 (5.5) 5551 (4.6) 3080 (4.4) 

Change in 

residencec 

     

4461 (3.7) 2712 (3.9) 
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Table 2. Development, internal validation and external (temporal) validation of multivariable prediction models for inhospital and 30-day death, and change in 

residence for patients after hip fracture surgery, complete case analysis 

 Development, internal validation External validation 

 In-hospital death Change in residence 30-day mortality In-hospital death Change in residence 30-day mortality 

n events
a
(%) 6,780 (4.8) 4,461 (3.7) 8,693 (5.8) 3,752 (4.5) 2,712 (2.1) 4,790 (5.5) 

30-day CIF 

% (95% CI) 

7.1 (6.9 – 7.2) 6.2 ( 6.0– 6.4)  5.9 (5.8–6.1) 6.4 (6.1 – 6.6)  

AUC
b
  

% (95% CI) 

72.9 (72.2 – 73.7) 71.4 (70.3 – 72.7) 71.1 (70.6 – 71.6) 73.1 (72.7-74.2) 71.7 (70.6 – 72.7) 71.2 (70.6 – 72.0) 

Brier Score
b
  

% (95% CI) 

5.7 (5.5 – 5.9) 5.6 (5.3 – 5.8) 5.3 (5.2 – 5.4) 5.3 (5.1-5.4) 5.7 (5.5 – 5.9)  5.0 (5.0– 5.1) 

Optimism adjusted AUC  

% (95% CI) 

73.1 (72.6 – 73.7) 71.5 (70.8 – 72.5) 71.1 (70.5 – 71.6)    

Optimism adjusted Brier 

Score  

% (95% CI) 

5.7 (5.6-5.8) 5.6 (5.4 - 5.7) 5.3 (5.2-5.4)    

CIF, cumulative incidence function; CI, confidence interval; AUC, area under the curve 
a By 30 inpatient days for in-hospital death and change in residence. 
b Apparent performance statistics. 
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Table 3. Characteristics of patients surgically treated for non-pathological first hip fracture according to the overall risk group based on 

outcome driven classification  

  All Low Medium High 

  N=141,157 N=44,364 N=39,542 N=57,251 

Age at admission  60-64  4618 (3.3)) 4590 (10.3) 9 (0.0) 19 (0.0) 

(years) 65-69  7867 (5.6) 7641 (17.2) 5 (0.0) 221 (0.4) 

 70-74  11453 (8.1) 10447 (23.5) 576 (1.5) 430 (0.8) 

 75-79  19816 (14.0) 15359 (34.6) 1783 (4.5) 2674 (4.7) 

 80-84  31517 (22.3) 5933 (13.4) 17937 (45.4) 7647 (13.4) 

 85-89  34902 (24.7) 394 (0.9) 13160 (33.3) 21348 (37.3) 

 90-94  23524 (16.7) 0 (0.0) 6072 (15.4) 17452 (30.5) 

 >94  7460 (5.3) 0 (0.0) 0 (0.0) 7460 (13.0) 

Sex Female  104904 (74.3) 29465 (66.4) 39212 (99.2) 36227 (63.3) 

 Male  36253 (25.7) 14899 (33.6) 330 (0.8) 21024 (36.7) 

Prefracture  Outdoor mobility  86719 (61.4) 36895 (83.2) 34390 (87.0) 15434 (27.0) 

mobility indoor mobility  51572 (36.5) 7152 (16.1) 4806 (12.2) 39614 (69.2) 

 No mobility  2866 (2.0) 317 (0.7) 346 (0.9) 2203 (3.8) 

Prefracture  home/sheltered housing  114533 (81.1) 40383 (91.0) 39542 (100.0) 34608 (60.4) 

residence Nursing/residential care  26624 (18.9) 3981 (9.0) 0 (0.0) 22643 (39.6) 

Dementia No  104655 (74.1) 42216 (95.2) 33866 (85.6) 28573 (49.9) 

 Yes  36502 (25.9) 2148 (4.8) 5676 (14.4) 28678 (50.1) 
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FIGURE CAPTIONS 

Figure 1: Stratify-hip algorithm to enable patient assignment to three overall risk groups based on 

predicted risk of in-hospital death, 30-day death and change in residence. 

Figure 2: Calibration plots of predicted and observed risk of in-hospital death, change in residence, and 

30-day death after hip fracture surgery for development and internal validation, and external validation. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/advance-article/doi/10.1093/gerona/glad053/7031782 by guest on 10 February 2023



Acc
ep

ted
 M

an
us

cri
pt

 

- 28 - 

Figure 1 
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Figure 2 
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