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Generic Modal Design Variables for
Efficient Aerodynamic Optimisation

Laurence Kedward † ; C. Allen ‡ ; Daniel Poole § ; T. Rendall ¶

Department of Aerospace Engineering, University of Bristol, Bristol, UK

Orthogonal modes are an effective method for aerodynamic shape optimisation due to their

excellent design space compactness however all existing methods are generated from a database

of representative geometry. Moreover, application to high-fidelity design spaces is not possible

due to high-frequency shape components being insufficiently bounded leading to non-smooth

and oscillatory geometries. In this work, a new generic methodology for generating orthogonal

shape modes is presented based on a purely geometric derivation, eliminating the need for

geometric training data. The new method is a further development of the gradient-limiting

method developed previously for constraining the design space in a geometrically meaningful

way to reduce the effective degrees of freedom and improve optimization convergence rate

and final result. Here, the gradient-limiting methodology is reformulated by transforming the

constraints directly onto design variables to produce orthogonal shape modes with equivalent

constraints for ensuring smooth and valid iterates. The new generic methodology requires

no training data, can be applied to arbitrary topologies using different boundary conditions

and naturally includes translational modes as part of the orthogonal basis. When applied to

two standard aerodynamic test cases, the new method has superior performance compared

to library-derived modes. Importantly, the optimisation convergence rate is independent of

the number of design variables and the optimised objective at high design fidelities is greatly

improved by avoiding local minima corresponding to spurious geometries. A non-standard test

case is demonstrated, for which traditional library modes are not useable due to non-trivial

topology, and it is shown to benefit from the high-fidelity design space and translational mode

made possible with the novel methodology.
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Nomenclature

𝐶𝐷 = Drag coefficient

𝐶𝐿 = Lift coefficient

𝐶𝑀 = Pitching moment coefficient

ℎ̄ = Mean surface mesh spacing

𝑃 = Pressure

𝑉 = Internal volume

𝑥, 𝑧 = Cartesian coordinates

𝛾 = Ratio of specific heats

𝛿 = Undivided difference

𝜖 = Absolute constraint bound

𝜌 = Density

𝜎 = Singular value

` = Length scale constraint parameter

𝜶 = Design variable vector

𝑫 = Difference matrix

𝑸 = Matrix of eigenvectors

𝑼 = Matrix of left singular vectors

𝑽 = Matrix of right singular vectors

x = Discrete surface geometry vector

𝚲 = Matrix of eigenvalues

𝚺 = Matrix of singular values

𝝓 = Shape basis matrix

I. Introduction
Numerical shape optimisation has many applications across aerospace engineering, with optimal design objectives

such as aerodynamic drag, structural weight, aeroacoustic signature, mission endurance, electromagnetic stealth as

well as various multidisciplinary objectives. A shape optimisation framework comprises three main components: a

numerical analysis code; a geometry representation and manipulation method (including mesh deformation); and a

numerical optimisation method.

The choice of geometry control has particular influence on the number of optimisation iterations in shape optimisation

since it acts as the interface between the search algorithm, which operates on the vector of design variables, and

the analysis code, which is only concerned with the geometry. The conditioning of the shape control, which is here

defined as that of the geometric Jacobian, is of particular importance since it describes the quality of the mapping

between design variables and surface geometry; a poorly conditioned shape basis is one in which small design variable

changes produce large shape changes and conversely, shapes that are geometrically similar do not have similar design

variable vectors. Whereas a well-conditioned shape parameterisation does little to affect the conditioning of the overall

optimisation problem, based on the Hessian of the objective, empirical evidence indicates that a poorly-conditioned
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shape parameterisation can have a consequently detrimental effect [1, 2]. Similarly, the ability to arbitrarily refine shape

control is highly desirable for shape optimisation, however existing methods often exhibit poor optimisation performance

when shape control is refined due to degraded design space conditioning or the generation of non-smooth shapes

[3–5]. Without addressing shape smoothness, gradient-based optimisation methods naturally amplify high-frequency

shape components which can lead to poor convergence of the optimisation problem, with convergence rate exhibiting

dependence on the fidelity of shape-control. This phenomenon was identified in the early work of Drela [6] and Jameson

[3], the latter of which applied sensitivity smoothing as a solution.

Previous work by the authors [1, 7, 8] has demonstrated that the problem arises due to the discrete shape problem

being ill-posed since it naturally includes geometries that are invalid both in physicality (shape) and discretisation (mesh).

In this way the search space not only contains the physical solution(s) but also non-physical solutions, which manifest

as non-smooth shapes with wavelength of the numerical grid. The previous work developed a new gradient-limiting

approach to shape control using surface gradient constraints to bound the out-of-plane variations for smooth shapes as

well as the in-plane variations for mesh validity. This approach was shown to allow high-fidelity control since the surface

constraints exclude non-physical shapes from the design space making the shape problem well-posed. In this paper, the

same gradient-limiting methodology is further developed by exploiting its linearity to generate orthogonal shape modes.

Orthogonal modes extracted by singular value decomposition (SVD) [9] have been applied to aerofoil optimisation

[10] and shown to be highly effective when compared to other shape control methods [5, 11]. However, a notable

disadvantage of this method is its dependence on an initial geometry database. Hence, in this paper, the gradient-limiting

methodology is developed further and reformulated to produce generic orthogonal geometric shape modes, that do not

require a database of training geometry and that possess an equivalent surface smoothness constraint.

The contents of the paper is organised as follows: in the following section background is presented on shape

control for aerodynamic optimisation, and the challenges encountered at high-fidelity. In section III the singular value

decomposition and its application to deriving compact shape modes is reviewed. In section IV, background motivation

for the new generic methodology is presented followed by formulation and practical details. Finally sections VI and

VII present the methodology and results for applying the new generic shape modes to drag minimisation using a

gradient-based adjoint optimisation framework. Two standard test cases from the AIAA ADODG test suite are tackled

including the geometrically challenging and well-studied symmetric transonic aerofoil case. A non-standard multi-body

biplane test case is also presented which demonstrates the advantages of a high-fidelity design space and the inclusion

of pure translational modes that arise naturally out of the generic modes formulation.
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II. Background

Shape control methods

A variety of shape control methods are encountered in aerodynamic shape optimisation including: spline surfaces

[12]; volume splines[13–15]; and various other shape functions derived analytically (Hicks-Henne [16] and shape-class

functions [17]), from physical considerations (fictitous loads [18] ) or numerically (orthogonal modes [9]). All such

methods reduce the dimensionality of the continuous shape problem and introduce some smoothing, an advantage that

was emphasised by Braibant and Fleury when advocating the use of B-Splines for shape optimisation [12]. However

the reduction in dimensionality must be weighed against the need to represent the optimal shape. This trade-off is

investigated extensively by Masters et al. for several different parameterisation methods [5, 11].

The use of orthogonal modes for shape optimisation follows the reasoning of data reduction which aims to reduce

the degrees of freedom of some space while still retaining a suitable approximation to this space within a tolerance.

Robinson and Keane [19] derived a set of numerical basis functions by sequential least-squares fitting of a training

dataset of nine supercritical aerofoils, these functions were then orthogonalised by the Gram-Schmitt procedure. Toal et

al. [20] performed POD using eigenanalysis on training data generated artificially by sampling the design space of a

NURBS aerofoil representation. Significant work using SVD-based orthogonal aerofoil modes has been done by Poole

et al. [9, 21] who use an aerodynamic metric to select training aerofoils from a historical database. The SVD approach

is applied to aerodynamic shape optimisation [21] used in combination with RBF-FFD for surface and volume mesh

deformation. Allen et al. [22] applied the same combined SVD-FFD methodology to aerodynamic optimisation of the

MDO wing; here the aerofoil modes are applied sectionally along the span to FFD control points which ensure a smooth

spanwise blending of the sectional design variables. And in [23] the same methodology is applied to aero-structural

optimisation. By contrast Cinquegrana et al. [24] generate three-dimensional modes for a wing geometry by perturbing

the design variables of a CST parameterisation. Similarly, Ghoman et al. [25] generate a snapshot database of 22 wing

geometries by manually varying parameters such as taper and sweep.

Shape smoothness and conditioning

As mentioned previously, shape control methods vary in the conditioning of the design space and their ability

to generate high-frequency shape components. Without addressing shape smoothness, gradient-based optimisation

methods naturally amplify high-frequency shape components, producing non-smooth search directions. The implication

for numerical optimisation is that both the search direction is poor and step size severely restricted resulting in slow

progress. This problem affects localised shape control methods, such as B-Splines, whereby as the number of design

variables increases the shape functions become more localised.

In contrast, for shape functions which exhibit a large zone of influence and remain smooth with refinement, the

conditioning of the shape control generally increases significantly as the number of design variables increases. Whereas
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local basis functions retain linear independence as they are refined, shape basis functions with large support suffer from

deteriorating linear independence such that increasing the number of design variables give diminishing additions to the

design space. This means that similar shapes do not have similar control vectors, i.e. shapes that are geometrically

similar do not lie close together within the design space. This is especially undesirable for gradient-based optimisers

which generate a sequence of solutions by stepping through the design space, the effect being that although convergence

is generally unaffected by increased control fidelity, the final attainable result of the optimisation is not improved. For

example, in [26] high-order Beziers (96 knots) became ‘saturated’ as the design variables hit their respective upper

bounds during optimisation and preventing further improvement.

Recent work by the authors [7, 8] addresses both shape smoothness and design space conditioning explicitly and

demonstrates that a sufficiently constrained and well-conditioned design space is all that is required for a well-posed

shape optimisation problem without limitation on the attainable design fidelity. In the previous work by the authors,

shape gradient constraints approximating a C2 continuity condition for discrete mesh points and cubic B-Spline curves

were derived, and demonstrated on a standard test case. The resulting shape optimisation problem is well-posed, as the

design space is sufficiently bounded, and well-conditioned since local control methods (mesh-points and B-Splines)

are used. The local control methods with two-dimensional (x,z) control provide high-fidelity shape-relevant control,

whereas the surface constraints exclude non-physical shapes from the design space. The gradient-limiting methodology

was tested on a standard aerodynamic optimisation test case defined by the AIAA aerodynamic design optimisation

discussion group. A value of 1.6 drag counts was achieved on the NACA0012 inviscid case; the lowest results published

for this case to the authors’ knowledge. Significantly, the regularised shape problem is shown to have an optimisation

convergence rate independent of shape control fidelity when using B-Splines, while still making use of increased

control fidelity to achieve improved results. As a result, high-fidelity shape optimisation is possible at a reasonable

computational cost.

A significant development on the gradient limiting methodology is presented in this work, whereby the linear

gradient constraints are used to derive generic orthogonal shape modes and design variable bounds are shown to

maintain surface smoothness in the same way. This formulation removes the requirement for a large number of linear

constraints and generalises the orthogonal modes concept to arbitrary shape optimisation problems.

III. Singular Value Decomposition
In this section, theory is first presented on the singular value decomposition, followed by how it can be used to

generate orthogonal shape modes for aerodynamic optimisation.
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A. Formulation

The singular value decomposition of an 𝑚 × 𝑛 matrix 𝑨 is a factorisation thereof into two orthonormal matrices 𝑼

and 𝑽, and a diagonal matrix Σ:

𝑨 = 𝑼𝚺𝑽𝑇 (1)

Matrix 𝑼 is of dimension 𝑚 × 𝑚, the columns of which comprise the left singular vectors. Similarly, matrix 𝑽 is of

dimension 𝑛 × 𝑛 and contains the right singular vectors. The diagonal matrix 𝚺 is of dimension 𝑚 × 𝑛, and contains

the singular values 𝜎𝑖 along the diagonal. The number of singular values is therefore the smaller of 𝑚, 𝑛 for an 𝑚 × 𝑛

matrix. It is customary for singular values to be arranged in order of decreasing magnitude, with the singular vectors

ordered correspondingly.

In generating an orthogonal modal basis with a corresponding diagonal matrix, the SVD resembles the eigendecom-

position:

𝑨 = 𝑸𝚲𝑸𝑇 (2)

with eigenvectors 𝒒 𝑗 and eigenvalues Λ𝑖𝑖 . The SVD can be viewed as a generalisation of the eigendecomposition since

it is applicable to both square and non-square matrices and the two are related in that the left singular values 𝑼 are the

eigenvectors of 𝑨𝑨𝑇 and the singular values 𝜎𝑖 are the square roots of the eigenvalues of 𝑨𝑨𝑇 .

Since the SVD is calculated numerically (at a cost of 𝑂 (𝑚𝑛2) operations), with finite precision arithmetic, a

numerical rank can be defined by specifying some cut-off tolerance for identifying the vanishing singular values. If 𝑨

is not of full rank (rank 𝑟 < min [𝑚, 𝑛]), then the there will be (min [𝑚, 𝑛] − 𝑟) vanishing singular values where the

corresponding right singular vectors span the null space of the matrix. Likewise, the left singular vectors corresponding

to the non-vanishing singular values represent the range of the matrix 𝑨, and can therefore be used as a basis. Moreover,

since the SVD extracts the dominant features of the matrix, indicated by the magnitude of the respective singular values,

then an efficient reduced-order basis can be constructed from 𝑼 simply by truncating the basis. The basis is efficient in

the sense that, if formed of the first 𝑘 modes, it is the best approximation of rank 𝑘 to the original matrix as measured by

the Frobenius norm [27].

B. Orthogonal Shape Modes

To demonstrate the SVD method, a library-based decomposition was first produced. The normalised aerofoil library

of Masters et al. [11] provides a large database of 1300 aerofoils∗ all defined by 301 points. Since all the aerofoils have

a common x distribution, only the z-ordinate (thickness) is used for modal analysis. The matrix 𝑨 is then constructed
∗Database available as supplementary material at: https://arc.aiaa.org/doi/suppl/10.2514/1.J054943 (accessed November 2019)
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simply by horizontal concatenation of the aerofoil z-ordinates:

𝑨 =

©«
𝑧1,1 𝑧2,1 · · · 𝑧𝑛,1

...
. . .

...

𝑧1,𝑚 𝑧2,𝑚 · · · 𝑧𝑛,𝑚

ª®®®®®®®¬
(3)

where 𝑧𝑖, 𝑗 is the 𝑗 th z-ordinate of the 𝑖th aerofoil. Taking the SVD of this matrix (equation 1) gives the orthogonal

shape modes contained in the left singular matrix 𝑼 and their relative importance within the library in the singular

value matrix 𝚺. Figures 1(b) and 1(a) show the singular values and first six normalised singular vectors produced from

singular value decomposition of the aerofoil library where each aerofoil consists of 𝑁 = 301 points.
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(a) First five singular vectors
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(b) Singular values

Fig. 1 Singular value decomposition of an aerofoil library

Note the initial rapid drop in singular values indicating the greater importance of the first 50 or so modes compared

to the remainder. Also note the last singular value is machine zero, indicating that the rank of the matrix 𝐴 is less than

its row dimension defined by the number of points discretising each aerofoil; this can be attributed to the repeated

trailing edge point giving redundancy. The singular vectors resemble oscillatory modes with fixed points at the leading

and trailing edges due to the library normalisation. As one progresses through the singular vectors, the wave number of

the mode increases corresponding to increasing shape resolution.
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C. Design Variables for Optimisation

There are two important benefits of using orthogonal modes from SVD as a basis for shape optimisation: first, the

shape control basis is guaranteed to be perfectly conditioned (condition number of one) since the basis is orthonormal.

This ensures that the shape parameterisation does not adversely affect the conditioning of the overall shape optimisation

problem which, as previously discussed, has been shown to be influenced by poorly-conditioned shape parameterisations

[1, 2]. However, it is emphasised that a well-conditioned shape parameterisation is no guarantee of a well-conditioned

shape optimisation problem. The second benefit is that a shape basis of arbitrary fidelity (number of design variables)

can be chosen by truncating the orthogonal basis. In the case of orthogonal modes generated from an aerofoil library

described above, the truncated basis is guaranteed to be the most efficient geometric representation for that number of

design variables [9, 11].

Once a set, or truncated subset, of the singular vectors has been generated, these can be used as a basis 𝝓 for shape

parameterisation. There are two standard approaches to parameterising shapes with a set of basis functions:

1) Constructive: Shapes are defined entirely by the basis:

x(𝜶) =
𝑁∑︁
𝑗=1

𝝓 𝒋𝛼 𝑗 (4)

2) Deformative: Shapes are defined by perturbations to an initial geometry where only the perturbations belong to

the basis:

x(𝜶) = x0 +
𝑁∑︁
𝑗=1

𝝓 𝒋𝛼 𝑗 (5)

The primary advantage of the deformative approach occurs when the initial geometry x0 cannot be accurately

represented by the basis 𝝓; this is often the case since the shape basis is ideally compact for shape optimisation whereas

the input geometry may be arbitrarily complex. Hence the deformative method gives better flexibility for different

problem types compared to the constructive approach which is constrained to geometry that can be represented by the

basis. A third approach exists [28] whereby the basis 𝝓 is augmented with those components of x0 not belonging to the

basis, thus converting the deformative formulation to a constructive one while retaining representation of the initial

geometry; this is advantageous when the input geometry may contain undesirable numerical features.

Shape basis functions derived from SVD can be used as either a constructive or deformative basis; in this work, the

deformative formulation (equation 5) is used, without loss of generality, where the basis 𝝓 is formed of a truncated set of

orthogonal modes and the initial geometry x0 is the NACA 0012 aerofoil. Figure 2 shows these orthogonal library-based

modes, applied as perturbations to the NACA 0012 aerofoil. Here it is much clearer how the SVD method can extract

the fundamental features from the aerofoil library using a combination of symmetric and non-symmetric modes which

can be interpreted as perturbations to thickness and camber respectively. The first two modes are recognisable as
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fundamental camber and thickness modes, and as the wave number increases in subsequent modes shorter wavelength

modifications are available. As can be expected, mode shapes generated in this manner from a geometry library can
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Fig. 2 Library-based mode shapes applied to NACA0012 aerofoil

represent similar geometry very accurately using few fundamental modes. However, this methodology is heavily reliant

on the existence of a database of representative geometry which is unlikely to exist for general problems. Even when a

geometry database exists, or is constructed artificially, the resulting numerical modes are dependent on which geometry

is present in the database and how that geometry has been parameterised and normalised. These limitations restrict the

application of orthogonal mode shapes to arbitrary problems, particularly those involving surfaces in three dimensions.

In the following section, an alternative derivation of orthogonal modes is presented which does not require a geometry

database and hence is not restricted in the same way.
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IV. Generic Modal Design Variables
The objective of the work here is to reformulate the gradient-limiting methodology to produce completely generic

design variables applicable to arbitrary shape optimisation problems. The approach developed has two significant

advantages: the large number of linear constraints in the gradient-limiting method are replaced by simple bound

constraints; and universal orthogonal modes can be produced that are completely independent of geometry. The

methodology for deriving the universal modal design variables is given in this section, starting with a brief description

of the original gradient-limiting method.

A. Shape gradient constraints

A gradient-limiting methodology has been developed by the authors [7, 8] to control smoothness during shape

optimisation; this is done by applying a linear constraint to the design variables which bounds the third derivative as

approximated by undivided differences or spline derivatives. Given a shape control basis 𝝓, derived from a local shape

control method such as grid-point control or cubic B-Spine, the discretised geometry x for analysis is given by:

x = 𝝓𝜶 (6)

where 𝜶 is the vector of design variables. The gradient-limiting methodology is implemented as a linear constraint:

−𝝐 ≤ 𝑫x ≤ 𝝐 (7)

where 𝑫 implements some form of discrete difference operator for a given order of smoothness. For example, an

approximate 𝐶2 condition is implemented using undivided third differences of grid point vertices or of spline derivatives;

for grid points on a simple periodic domain this takes the form:

𝑫 =

©«

−1 3 −3 1

−1 3 −3 1

. . .

. . .

. . .

3 −3 1 −1

ª®®®®®®®®®®®®®®®®®®®¬

(8)

Undivided differences are used since, as shown in [1], this leads to a formulation that enforces in-plane continuity for

the discretisation as well as out-of-plane smoothness for the shape. The equivalent using splines involves differences of
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spline control points weighted by the spline basis derivatives.

𝜖 is the constraint bound, which is expressed as:

𝜖 = `ℎ̄3 (9)

where ℎ̄ is the mean grid spacing distance and ` is the dimensionless constraint parameter with typical values in the

range 50 − 200. Smaller values of ` correspond to enforcing higher shape smoothness with a smaller overall design

space, and vice versa for larger values. Previous work [1, 7, 8] has shown this approximate 𝐶2 condition ensures

surface smoothness and mesh validity during shape optimisation which reduce the effective degrees of freedom in a

geometrically meaningful manner and thereby resulting in better optimisation performance.

Whereas the gradient-limiting methodology allows for a well-defined design space, this effectively comes at the

cost of increased conditioning of the search-direction subproblem (when using SQP) since the gradient constraint is

poorly conditioned. For small-medium problems this is desirable since solution of the quadratic subproblem, even when

poorly conditioned, is faster and more robust than optimising in a poorly-conditioned design space due to the high cost

of objective function (and gradient) evaluations. However for very large problems the number of gradient constraints

required is likely to cause the subproblems to be ill-conditioned.

The motivation for the work here is to exploit the linearity of the gradient constraints to transform the constrained

design space into one in which only bound constraints on the individual design variables are required. The resulting

problem will have no linear constraints and will hence not restrict the choice of search algorithm. This extends the

technique to application with global gradient-free search methods and importantly the method will be scalable to larger

more complex geometries in three-dimensions.

B. Gradient-limiting orthogonal modes

The undivided differences 𝜹, which are the gradient terms to be subject to linear constraints (equation 7), are given

by:

𝜹 = 𝑫x = 𝑫𝝓𝜶 (10)

One approach to removing the linear constraints would be to adopt the inverse, or pseudo-inverse, of the differencing

matrix as the shape control basis:

𝝓 = 𝑫−1 (11)

such that 𝜹 = 𝜶, i.e. the design variables directly specify the surface differences. This would effectively give an

implicit surface defined as that which satisfies the surface derivatives specified by the design variables. However, for the

approximate 𝐶2 condition, a quad-diagonal third-difference matrix is required the condition number of which grows

with the cube of its dimension.
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An alternative to the difference matrix inverse, which will be used here, is to factorise the difference matrix using

the singular value decomposition (SVD) of the difference matrix. Taking the SVD of the differencing matrix yields:

𝑫 = 𝑼𝚺𝑽𝑇 (12)

Choosing the shape control basis from the right singular vectors, 𝝓 = 𝑽, leads to the following reformulation of the

undivided differences:

𝜹 = 𝑫𝑽𝜶 (13)

which, after substituting the decomposition of 𝑫, becomes:

𝜹 = 𝑼𝚺𝑽𝑇𝑽𝜶 (14)

and then simplifying by orthonormality of 𝑽 gives:

𝜹 = 𝑼𝚺𝜶 (15)

Hence the left singular vectors 𝑼 are the normalised third differences of each mode given in 𝑽 where the magnitude of

the third differences are modulated by the corresponding singular value in 𝚺. i.e. the singular value 𝜎𝑗 gives a measure

of the ‘non-smoothness’ of the orthogonal mode 𝑽𝒋 .

Consider one row 𝑖 from this expression, which represents the gradient constraint at a single location on the geometry:

𝛿𝑖 =

𝑚∑︁
𝑗=1

𝑢𝑖 𝑗𝜎𝑗𝛼 𝑗 (16)

From this expression it is clear that the contribution of a specific mode 𝛼 𝑗 , from the new modal basis 𝝓 = 𝑽, to the

constraint 𝑖 is governed by its corresponding singular value 𝜎𝑗 such that if the design variables satisfy some reciprocal

function of the singular values, then upper bounds may be placed on 𝛿𝑖:

|𝛼 𝑗 | ≤
𝜖

𝑓 (𝜎𝑗 )
(17)

Note that whereas this condition is not equivalent to the original gradient-limiting linear constraint, a good approximation

can be made via an upper bound since the singular vectors 𝑼 are orthonormal. This is the motivation for deriving shape

modes from the differencing matrix 𝑫: bounds can be placed on the design variables that emulate the gradient-limiting

methodology to reduce the design space in a geometrically meaningful way by enforcing shape smoothness. The

formulation of such design variable bounds is presented in the next section as applied to aerofoils. In the remainder
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of this section, examples are given on a simple 1D periodic domain demonstrating the equivalency with Laplacian

eigenfunctions and the enforcement of useful geometric boundary conditions.

C. Example on a periodic domain

The simplest example is that of a one-dimensional discrete curve on a periodic domain discretised into 𝑁 piecewise

linear segments. In this case the third difference matrix, required for approximate 𝐶2 continuity, can be formed by

repeated application of the circulent first difference matrix 𝑫1:

𝑫1 =

©«

−1 1

−1 1

. . .

1 −1

ª®®®®®®®®®®®¬
(18)

The second are therefore:

𝑫2 = 𝑫𝑇
1 𝑫1 (19)

where the transpose product is used since 𝑫1 maps from nodal values to element values and vice versa. Similarly, the

third differences are:

𝑫3 = 𝑫1𝑫2 (20)

The matrices 𝑫1,𝑫2 and 𝑫3 are all dimension 𝑁 × 𝑁 where the first and third differences are associated with each of

the 𝑁 elements and the second differences are associated with the 𝑁 nodes. Since the domain is periodic the (𝑁 + 1)

node is identical to the first node.

Considering now the singular value decomposition of the first difference matrix 𝑫1:

𝑫1 = 𝑼𝚺𝑽𝑇 (21)

then, due to orthonormality of 𝑼, the second difference matrix is:

𝑫2 =(𝑼𝚺𝑽𝑇 )𝑇𝑼𝚺𝑽𝑇

𝑽𝚺𝑇𝑼𝑇𝑼𝚺𝑽𝑇

𝑽 (𝚺𝑇𝚺)𝑽𝑇

(22)

and similarly the third differences:

𝑫3 = 𝑼(𝚺𝚺𝑇𝚺)𝑽𝑇 (23)
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Therefore for the periodic case, the singular vectors of the first and third differences are identical and since 𝚺 is diagonal,

the singular values are simply powers of the first difference values. Furthermore, the right-singular vectors 𝑽 of the first

and third differences are the eigenvectors of the second difference matrix; these are known as the Laplacian eigenvectors.
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Fig. 3 Laplacian eigenmodes from undivided differences on a periodic domain

Figure 3(a) shows the first five modes for the periodic case considered here. In this and subsequent plots, the modes

are normalised by maximum amplitude. Since the difference matrices are circulent for this simple periodic case, the

resulting modes are just the Fourier modes. Physically, they may be interpreted as the sinusoidal vibrational modes of an

unconstrained infinite uniform string. Note also the inclusion of a purely constant mode corresponding to a rigid body

mode. Therefore, one way to interpret the singular vectors of undivided differences are as pseudo-structural modes.

Figure 3(b) shows the corresponding singular values. As the wave number of the mode increases the corresponding

singular value increases indicating a reduction in ‘smoothness’ of the mode as measured by the discrete difference

operator.

A significant advantage of shape modes derived in this manner is that they are dependent only on the connective

topology of the shape as defined by the terms of the difference matrix. Connective topology here refers to the connectivity

of elements as well as the presence of discrete features such as sharp points and edges which occur as boundary

conditions within the difference stencil. Significantly, and unlike most applications of proper orthogonal decomposition,

no database of training data is required—this extends the technique to a wider variety of unique shape problems
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particularly in three-dimensions. The application of the method in three-dimensions only requires defining a suitable

difference operator for the surface geometry such as using a uniform mesh Laplacian or differences along iso-parametric

lines. The ordering of modes in the three dimensional case may require additional consideration since the wave number

can vary in more than one dimension, however for a suitable difference operator the modes are still expected to be

ordered by increasing frequency in some sense. The discussion of such surface operators is beyond the scope of this

paper, but importantly there is no fundamental limitation on the choice of difference operator used to generate modes for

shape control.

The use of undivided differences here allows for consistency with the previous gradient-limiting approach. An

unintuitive advantage of using undivided differences, which is found to be useful for the test cases demonstrated later, is

that it naturally localises the basis functions in physical space at areas of high mesh density. Hence, more local control is

automatically achieved in areas where the flow or geometry are more complex. Moreover, the nature of the mode shapes

in the limit of mesh refinement is unaffected since such refinement only adds to the number of higher frequency modes

which are typically not used for shape control due to truncation of the basis. There is, however, no limitation on the

form of differences used and mesh-dependent differences may also be used to produce mesh-independent mode shapes.

An advantage of the Laplacian eigenfunctions generated in this manner is that they are tailored to the shape and

boundary conditions of the particular domain; for example, rectangular domains give rise to sines and cosines, spherical

domains give the spherical harmonics and on a cylinder they are Bessel functions. This is particularly advantageous

for three-dimensional shape optimisation in which a wide variety of possible topologies are possible. Moreover, this

methodology naturally produces a pure translational mode, or an equivalent set of piecewise linear modes depending on

the boundary conditions used, while retaining an orthogonal basis.

In this work, the Laplacian eigenfunctions are not calculated by eigen-decomposition of the Laplacian, but instead

equivalent modes are extracted using singular value decomposition of the third difference matrix since this gives greater

flexibility for enforcing geometric boundary conditions while retaining orthogonality in the resulting basis.

In the remainder of this section, two important boundary conditions are considered:

1) Sharp condition

2) Interpolating condition

D. Sharp condition

The sharp condition allows points to be specified with zero-order continuity only (connectedness). This is particularly

useful for sharp features such as trailing edges, but generalises to surface creases and features in 3D. The sharp condition

is formulated by modifying the difference scheme around specified points such that the second difference at such points

always evaluates to zero. This corresponds to setting the 𝑖th row of 𝑫2 to zero.

Modifying the simple periodic example presented previously such that the central point is sharp gives the basis
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functions shown in Figure 4. The basis functions are now no longer simple sinusoids, but more complex where continuity

reduces to 𝐶0 at the central point for those modes that are anti-nodal there. Application of the 𝑫2 difference operator on

these modes verifies that the parametric curvature, measured by the second differences, is zero at the sharp point.
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Fig. 4 First five generic modes (normalised) with a sharp condition

When the sharp condition is specified at 𝑛 > 1 points, then the rigid body mode is replaced by 𝑛 piecewise linear

modes as shown in Figure 5. Note that rigid body motion is still possible using a weighted combination of the piecewise

linear modes.
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Fig. 5 First five generic modes (normalised) with two sharp points

E. Interpolating Condition

When the modal basis is used to parameterise perturbations to an initial geometry (deformative parameterisation,

equation 5) it can be useful to specify locations on the initial geometry that should remain unperturbed. This can be

used for constraining geometry features such as a wing root section or leading and trailing edge locations.

To interpolate the discrete point with index 𝑖, the third difference matrix 𝑫3 is modified such that the cartesian unit

vector 𝒆𝒊 lies within the null space of 𝑫3. This is achieved trivially by replacing the 𝑖th column in 𝑫3 with the zero

vector. The cartesian unit vector replaces the rigid body mode in the null-space of 𝑫3 however it is not included in the

generic modal basis since the role of the rigid body mode is fulfilled by the initial geometry x0 when parameterising

perturbations.

Again modifying the simple periodic example now such that the central point is interpolating yields the basis

functions shown in Figure 6. Note that all modes now pass through zero at the central point such that this point remains

16



unperturbed by the basis.
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Fig. 6 Generic modes with an interpolating condition

Finally, Figure 7 shows the resulting basis functions when combining the sharp condition with the interpolating

condition at the central point. As in Figure 6, all modes pass through zero at the central point, however now modes one,

three and five, which are anti-nodal at the central point, see a reduction in continuity such that this point is always sharp

in the new basis.
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Fig. 7 Generic modes with a sharp interpolating condition

V. Orthogonal Modes for Optimisation
In this section, detail is given on how the generic modal basis derived previously can be applied to aerodynamic

shape optimisation. The resulting design variables are assessed by demonstrating geometric shape recovery of a

library of aerofoils. Finally design variable bounds are formulated using the singular values in order to emulate the

gradient-limiting methodology and thereby ensure a well-posed optimisation problem.

A. Implementation

To generate orthogonal modes for aerodynamic shape optimisation, the third difference matrix is first constructed for

the particular geometry; this can be done using the individual grid points or by using a spline approximation and using

the spline derivatives. To exploit the interpolating condition for the leading and trailing edges, generic modes are used in

a deformative parameterisation where aerofoils are constructed from perturbations to the NACA 0012 aerofoil. For the

aerofoil topology studied in this work the difference matrix is constructed for the individual points of the aerofoil surface
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grid and interpolating conditions are used for the leading and trailing edge points with an additional sharp condition at

the trailing edge also. Figure 8 shows the resulting modes where grid points are enumerated counter-clockwise starting

from the trailing edge such that the leading edge point is at half-way. Note the presence of 𝐶2 continuity around the

leading edge but not at the trailing edge.
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Fig. 8 Generic modes for the aerofoil topology

Plotting the generic modes as perturbations to the NACA 0012 aerofoil, shown in Figure 9, there is a clear

resemblance to orthogonal modes derived from the aerofoil library (Figure 2) where there is a general increase in wave

number and a combination of symmetric and non-symmetric mode shapes.

The first mode has the longest wavelength and hence lowest singular value (highest parametric smoothness); this

mode can be clearly interpreted as a general symmetric thickness mode. Similarly, the mode two resembles a general

camber mode with subsequent modes increasing in wave number.
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Fig. 9 Generic aerofoil modes shown as displacements to the NACA0012 aerofoil
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B. Design Space Coverage

As with other such decompositions, the modal basis generated with this formulation can be truncated to form a

compact representation of the original space. This is particularly advantageous for shape optimisation which can have a

high dimension search space. For the methodology presented here, it is the last 𝑚 modes that are extracted from 𝑽,

assuming the usual convention of ordering the SVD basis by decreasing singular value magnitude. This is because

the methodology essentially seeks to maximise smoothness in the reduced basis and hence modes are chosen in order

of increasing singular value. Therefore modes are enumerated starting from the ‘smoothest’ mode in the last column

vector of 𝑽 (mode 1).

To assess the suitability of the resulting generic modes for aerodynamic shape optimisation, a large database test is

performed in which a library of over 1000 aerofoils is matched using a varying number of modes. The same library as

in section III.B is used here for shape matching.

A least squares fit is used to match the aerofoil thickness distribution using the SVD basis and the maximum error is

checked against Kulfan’s tolerance (8 × 10−4) [29]. Only the thickness distribution (𝑧 ordinate) is matched in these tests

since all aerofoils in the database used here have the same horizontal (𝑥) point distribution. The fitting procedure is

performed using modes derived from both the aerofoil library (section III.B), shown previously in Figure 2, and modes

derived using the new generic approach. In both cases, the least-squares fitting procedure only requires a transpose

matrix product since the modal basis is orthonormal. In this first section, note that the fitting procedure for the generic

modes is unconstrained; it does not include the design variable bounds derived in section IV.B.
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Fig. 10 Recovery of an aerofoil library using varying numbers of orthogonal modes

Figure 10 shows the percentage of library aerofoils that were matched to Kulfan’s tolerance for increasing number of
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SVD basis modes using orthogonal modes derived from both methods. Orthogonal modes generated by both methods

are able to recover the entire library with at least 25 modes. The modes generated from the library perform better

overall than modes generated from differences in that fewer such modes are required for equivalent accuracy. This is

expected since these modes are generated directly from the library and hence represent the most compact representation

thereof. Importantly, the modes generated from differences perform comparable well considering they represent only

connectivity information for the aerofoil surface. 90% of the library is represented within Kulfan’s tolerance using 20

gradient-limiting modes and 17 library modes.

These results represent the coverage performance of the modes without any form of modal filtering by design

variable bounds. In the next section, design space coverage for the new generic modes is investigated under the design

variable constraints proposed in section IV.B with the goal to demonstrate the effect of the constraint bound magnitude

and give an indication of a suitable range of values.

C. Design Variable Bounds

The motivation for deriving orthogonal design variables from a differencing operator is to enforce some form of

gradient-limiting methodology which seeks to ensure a well-posed optimisation problem by reducing the design space

in a geometrically meaningful way.

In this work, gradient-limiting design variable bounds (equation 17) are approximated using a simple reciprocal

relation with the singular values of the third difference matrix:

|𝛼 𝑗 | ≤
𝜖

𝜎𝑗

(24)

The singular values, derived from a third difference operator, represent the degree of ‘non-smoothness’ in a particular

mode as measured by the same difference operator; hence non-smooth modes with higher singular values are constrained

more than smooth modes with low singular values. Alternatively, these variable bounds can be viewed as constraining

the total shape ‘energy’ as specified by the singular values. Importantly these bound constraints are much easier to

handle than the linear constraints of the original gradient-limiting approach, thereby placing no restriction on the type of

search algorithm to be used.

As with the original gradient-limiting approach, 𝜖 is defined by a dimensionless parameter `:

𝜖 = `ℎ̄3 (25)

where ℎ̄ is the mean grid spacing distance. Smaller values of ` correspond to enforcing higher shape smoothness with a

smaller overall design space, and vice versa for larger values.

20



A suitable range of values for the parameter ` can be determined using the same aerofoil library and the least-squares

fitting presented in the previous section. However in this section, the focus is on the effect of the constraint parameter `

and finding values thereof for which design space coverage is not negatively impacted. A suitable value for ` is the

smallest such value that permits the length scales of interest for the shape optimisation problem while excluding all

spurious length scales smaller than this. By performing a sweep in ` across a library of historic aerofoils, the aerofoil

length scale of interest can be easily determined in terms of the length scale parameter.
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Fig. 11 Recovery of an aerofoil library for varying values of the constraint parameter

Figure 11 shows the percentage of library aerofoils for which the least-squares fit using generic modes satisfies the

bound constraint (equation 24) for varying values of the constraint parameter ` and varying number of modes used.

Here it is clear that the number of representable aerofoils is dependent on the number of modes in the basis, as shown

in the previous section, as well as the value of the constraint parameter. As expected, small values of the constraint

parameter, corresponding to a tighter smoothness condition, restrict how many aerofoils can be represented within the

generic modal design space. As the constraint parameter is loosened (increased) the number of aerofoils within the

constrained design space increases, where in the limit of ` → ∞ each design fidelity curve tends to the corresponding

value in Figure 10 for the unconstrained case. At a value of ` ≥ 150, all aerofoils can be represented within tolerance

when using at least 20 modes.

VI. Optimisation Methodology
In this section, detail is given on the tools and methods used for the aerodynamic shape optimisation test cases

presented in the next section.
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A. Flow solver: SU2

For this work the Stanford University Unstructured (SU2) [30] flow solver is adopted. This open-source software

was constructed with aerodynamic shape optimisation in mind and hence has both continuous and discrete adjoint

implementations [31]. The main flow solver implements both the compressible Euler and RANS equations using

an unstructured finite volume method. For those test cases requiring the RANS equations, the one equation Spalart

Allmaras turbulence model [32] is used as implemented in SU2.

Multigrid acceleration is available as well as MPI parallel processing. The SU2 suite also includes other modules

for tasks such as shape parameterisation, mesh adaption and mesh deformation, however only the CFD module with

continuous adjoint is used here for obtaining flow solutions and objective sensitivities. During optimisation, the primal

and adjoint solutions are converged down to an absolute residual of 10−8 on density (and corresponding dual), except in

cases where the primal has restarted from a previous solution when a tighter tolerance of 10−10 is used.

B. Volume mesh handling

High quality structured meshes are are generated here by a conformal mapping approach, with an orthogonality

smoothing algorithm. O-meshes are used for inviscid cases, and C-meshes for viscous cases. Figure 12 shows the

coarse viscous mesh used for the RAE2822 case, and Figure 15 shows three views of the complete 513 × 257 mesh,

used for the NACA0012 case; the leading and trailing edge images have the same window size and Figure 15(a) shows

every other point in each direction for clarity. During shape optimisation, mesh deformation is used to produce new

meshes for the displaced surface geometry from the initial volume mesh. Not only is this computationally cheaper than

regenerating a mesh for each geometry iteration but it also maintains consistency of the discretisation error which is

highly desirable during iterative numerical optimisation.

In this work interpolation using multiscale radial basis functions (RBFs) [33] is used. Interpolation using radial

basis functions (RBFs) has recently become a prominent mesh deformation method boasting excellent robustness and

quality-preserving characteristics [34–36]. Moreover, the method is completely generic, operating on point-clouds alone,

and is perfectly parallel. The multiscale RBF method [33] is particularly effective, both increasing the computational

efficiency and improving the system conditioning over conventional or reduced datapoint RBF methods, by using

variable length scales depending on boundary point locations.

C. Search algorithm: SNOPT

The SNOPT [37] (Sparse Non-linear Optimiser) package is used here for gradient-based optimisation. This package

implements a Sequential Quadratic Programming (SQP) algorithm for solving general non-linear constrained optimisation

problems. The power of this package lies in its ability to efficiently and robustly handle large problems ( ≈ 1000s of

variables and constraints) while allowing precise constraint satisfaction.
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The SQP algorithm operates iteratively whereby successive search directions are found from the solution of a

quadratic programming (QP) sub-problem and a line-search is used to determine step length. In this work a non-derivative

line-search is chosen. The sub-problems are formed from quadratic approximations to the augmented objective function

(Lagrangian) and linearisations of the constraints. The quadratic approximation is initialised with an identity matrix and

BFGS updates are used to approach the Hessian of the Lagrangian. The quadratic sub-problems are well-posed and the

function values and derivatives thereof are easily evaluated; difficulty is not usually encountered when solving these

sub-problems.

The use of the continuous adjoint for numerical gradients means that strict optimality convergence is not achievable

and instead for this work optimisation is terminated by SNOPT when no further step can be taken. For all test cases

here, the resulting solutions achieved at least an order of magnitude reduction in optimality and are feasible within a

geometric tolerance of 1 × 10−6 and an aerodynamic tolerance of 1 × 10−4 (0.1 lift count).

D. Shape control

For compatible test cases, optimisation is performed using both the new generic modes and the traditional library-

derived modes in order to assess the former in comparison with the latter. The mode shapes are used for deformative

shape parameterisation where each design variable controls the amplitude of perturbation for an individual mode. In

all cases, the mode shapes are used to parameterise both vertical and horizontal perturbation such that the number of

design variables is twice the number of modes. All configurations are run across a range of control fidelities to assess

the impact of the number of design variables, where the truncated basis is formed by taking the 𝑁 modes corresponding

to the lowest wave-numbers first.

Unless specified otherwise, the generic modes are run with the regularisation constraint which bounds the magnitude

of design variables according to the singular value. Note that no equivalent constraint can be derived for the library-based

modes since the corresponding singular values do not have a geometric meaning like in the case for the generic modes.

Based on previous work with the gradient-limiting method [1] and the results of section V.C, the constraint parameter

for the regularised generic modes is chosen to be ` = 150 which gives a balance between geometric flexibility in

representing all aerofoils while still constraining the design space by limiting contributions from small-wavelength

modes.

VII. Aerodynamic Optimisation Results
In this section, three aerodynamic drag minimisation test cases are presented using the new generic modes for shape

control. The focus of this work is the further development of the SVD modal approach to shape control, which is

compared directly to the existing library-based state-of-the-art. For a comprehensive comparison of SVD modes to

other shape control methods, the reader is directed to the work of Masters et al. [5, 11]. First, a standard aerofoil
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drag minimisation in viscous transonic flow is considered, where the new generic modes are compared with the

library-based modes and shown to be as effective despite requiring no geometry database. Second, the generic modes

are demonstrated on a well-known academic test case highly reputed for its challenging geometry and flow behaviour.

Again, the generic modes are compared with library-based modes and the effect of the design variable constraints is

clearly demonstrated. Finally, a multi-body test case is presented with a geometry that does not conform to the standard

aerofoil topology–where topology is used here in the general sense to include discrete surface features such as sharp

points–and hence the library-based methodology is not applicable. Importantly, this demonstrates the flexibility of the

new modal parameterisation by not requiring a geometry database and therefore being able to represent any geometry.

A. Test case 1: viscous aerofoil drag reduction

This standard aerofoil test case is one of several benchmark cases laid out by the AIAA Aerodynamic Design

Optimisation Discussion Group (ADODG†) to aid in the collaborative evaluation and comparison among shape-

optimisation practitioners. The case is defined as the drag minimisation of the RAE 2822 aerofoil in Mach 0.734 flow at

a Reynolds number of 6.5 × 106 subject to constraints on volume (𝑉), lift (𝐶𝐿) and moment (𝐶𝑀 ):

min
𝜶

𝐶𝐷

s.t. 𝐶𝐿 ≥ 0.824

𝑉 ≥ 𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐶𝑀 ≥ −0.092

(26)

Multiblock C-Grids extending to 100 chords are generated by transfinite interpolation with improved orthogonality

and smoothness [38]. Three grid densities are considered here, summarised in Table 1, and shown in Figure 12 for the

lowest density. Table 2 also shows the computed loads on the three meshes.

The finest grid is used for optimisation which is performed using both the new generic modes and the library-based

modes. The generic modes are produced for a standard aerofoil topology with a single sharp point at the trailing edge

and an interpolating condition at the leading edge and trailing edges as described in section V.A. See Figures 8 and 9 for

the resulting mode shapes.

Table 2 summarises the optimised results obtained by each method across a sweep in number of modal design

variables. Optimisation histories are shown in Figure 13 and the final optimised shapes and pressure distributions are

shown in Figure 14. For this simple aerofoil case, it is clear that only a small number of design variables is required to

parameterise the change in shape required. With only four modes, the upper surface shock is significantly weakened,

and higher design fidelities are able to completely remove the shock within a small number of optimisation steps. With
†https://sites.google.com/view/mcgill-computational-aerogroup/adodg [retrieved July 2021]
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Fig. 12 (257 + 130) x 97 C-Grid around RAE2822 aerofoil, near-field view.

Table 1 RAE 2822 at 𝑴 = 0.734, 𝑹𝒆 = 6.5 × 106

Grid size
𝐶𝐿 𝐶𝐷(𝑛𝑠𝑢𝑟 𝑓 + 2 × 𝑛𝑤𝑎𝑘𝑒) × 𝑛 𝑗

(257 + 130) × 97 0.8240 0.0214
(385 + 194) × 145 0.8240 0.0206
(513 + 258) × 193 0.8240 0.0199

16 modes, the optimised pressure distribution is noticeably smooth with a monotonic compression after the suction peak.

This demonstrates the ability of the regularisation constraints to bound contributions from high-frequency shape modes

while still making use of those modes for precise shape modifications.

With four modes (eight design variables), the library-based modes perform better than the new generic modes; this

is expected since, as shown previously, the library-based modes have optimal compactness for the aerofoil database

and hence can represent aerofoils with a very small number of design variables. However, at eight modes (sixteen

design variables) and higher, the generic modes match the optimised result from the library-based modes. Interestingly

the optimised solutions produced with the constrained generic modes achieve better feasibility tolerances than those

produced with the unconstrained library-based modes; a possible explanation for this is that the constrained design

space is smaller and hence the SQP method is better able to determine and satisfy the active set of constraints. Both

the library-based modes and generic modes see little improvement in the optimised result beyond 12 modes, which

reflects the simplicity of the shape change required for this test case. Importantly, for this representative aerofoil case,

the generic modes have a similar design space compactness compared to the library-based modes but without requiring

a geometry database. Hence, while not the focus of the current work, a comparison of the new SVD method with

other shape control methods is expected to perform as well as the original library based approach, see [5, 11]. In the
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following subsections, two non-trivial test cases are investigated where a database of representative geometry would not

be suitable or available.

Table 2 Case 1 optimisation results

Number of modes
Drag (counts) Non-linear feasibility

Library modes Generic modes Library modes Generic modes
4 115.3 127.0 1.9 × 10−6 7.1 × 10−6

8 115.2 114.7 1.7 × 10−5 3.5 × 10−8

12 114.2 114.2 8.9 × 10−5 2.9 × 10−8

16 114.1 113.7 3.8 × 10−5 6.9 × 10−7
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Fig. 13 Optimisation convergence for test case 1 using generic modes
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B. Test case 2: inviscid transonic drag reduction

(a)

(b) Leading edge (c) Trailing edge

Fig. 15 513 × 257 O-Mesh generated around NACA 0012 aerofoil

This case, also from the ADODG set of benchmarks, is defined as minimising the inviscid drag at Mach 0.85 and

0 degree incidence subject to the constraint that the solution shape must lie outside the profile of the initial shape, a

NACA0012 aerofoil:

min
𝜶

𝐶𝐷

s.t. 𝑧 ≥ 𝑧0

(27)

This case is chosen since it has been studied extensively in the literature due to the unique aerodynamic and

geometric challenges it poses. In fact, from a geometric standpoint it is one of the most challenging test cases possible

and so makes an ideal benchmark to demonstrate the current method. Despite being an inviscid problem this does not

restrict applicability to RANS-based objectives, as shown for test case 1, which generally present as better-conditioned
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optimisation problems than Euler-based ones due to the additional physical modelling and removal of non-unique

solutions. This problem was formulated by Vassberg [39] specifically for studying different optimisation methods since

it permits a large design space and requires only moderate computational expense. The case only exhibits drag due to

shocks, with Vassberg stating that a shock-free design is anticipated to be impossible. Starting from a baseline of 469

drag counts, Vassberg achieved an optimised result of 103.8 drag counts while also identifying a pathological nature in

the symmetric problem in the form of asymmetric instability. A detailed study by Destarac et al. [40] additionally

demonstrated Mach hysteresis in various optimised shapes due to the existence of non-unique flow solutions. In addition

to these numerical challenges, the associated geometric problem is demanding, requiring a high-fidelity and flexible

design space as well as a robust and quality-preserving mesh deformation method.

Poole et al. [41] used orthogonal modes extracted by singular value decomposition, achieving 85.6 drag counts with

only 15 design variables. Carrier et al. [26] apply several different optimisation frameworks, eventually obtaining a

result of 36.7 drag counts, 1.1 drag counts of which they show corresponds to spurious drag. He et al. [42] use a volume

B-Spline obtaining a result of 7.60 drag counts with 50 design variables, the lowest published result for comparable

mesh resolution (131K cells).

Masters et al. compared six different parameterisations on the benchmark problem [5] as well as applying a

multilevel subdivision parameterisation [43]. The authors achieved a result of 27.8 drag counts on a 257 × 257 mesh

using single-level B-Splines (16 design variables) and a result of 15.7 drag counts on the same mesh using multilevel

subdivision curves; when performed on a 1025 × 513 mesh the multilevel subdivision scheme was able achieve 4.2

drag counts. Two distinct solution shapes were observed by the authors differing in boat-tail angle and thickness,

where the thicker shapes with larger-boat tail angles corresponded to different trailing-edge flow structures with lower

overall inviscid drag. Previous work by the authors using the gradient-limiting methodology achieved a value of 7.88

drag counts on a 513 × 257 grid and a value of 1.60 drag counts on a 1025 × 513 grid [1]. Two techniques found

to be particularly effective by Masters et al. [43] for this test case are also used here: first, the explicit imposition

of a symmetry boundary condition on the volume mesh to stabilise convergence of the flow; and second, the use of

flow-restarts during optimisation to minimise the influence of flow hysteresis during line-searches.

Table 3 Case 2 optimisation results

Number of modes Drag (counts)
Library modes Generic modes Generic modes

(unconstrained) (constrained)
8 67.16 15.00 25.46
16 13.42 9.16 7.64
32 24.31 74.10 5.44
64 178.58 82.72 5.15
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Fig. 16 Optimisation convergence for test case 2

Figure 16 shows the mode shapes produced for both the new generic modes and the traditional library-based modes

applied as thickness perturbations to the NACA 0012 aerofoil. Figure 17 shows the optimisation convergence and Table

3 summarises the optimised results for three different shape control approaches: library-based modes; the new generic

modes without bound constrains and; the new generic modes with bounds constraints. It is immediately evident that the

singular value regularisation constraints improve the optimisation both in terms of convergence rate as well as final

result. As was shown for the original gradient-limiting approach, the additional geometric constraints result in the

optimisation convergence rate being largely independent of the number of design variables and also better results at high

control fidelity by avoiding spurious local minima. Hence the geometrically-derived generic modes with singular value

constraints are able to regularise the optimisation problem by constraining the design space in the same way as the

original gradient-limiting approach. In comparison, the traditional library-based modes perform similarly to the generic

modes without regularisation constraints, suffering from deteriorated convergence rate at higher fidelities and premature

termination at local minima with non-physical geometries.

Figures 18 shows the optimised shapes produced across all configurations. In the cases of the unconstrained

generic modes and the traditional library-based modes the difficulties encountered as the control fidelity increases
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Fig. 17 Optimisation convergence for test case 2

become clear. In particular, non-smooth geometries are produced which here refers specifically to the presence of

pathological short-wavelength features and surface oscillations. The latter are particularly evident when considering

the corresponding pressure distributions, shown in Figure 19, due to the relationship between surface curvature and

pressure distribution variation. Similarly, the unconstrained configurations are seen to result in a feature forming at

the trailing edge in response the the initial shock location. This undesirable geometric feature invariably leads to a

strong local minima and a suboptimal result. By contrast, the generic modes in combination with the singular value

regularisation constraints lead to a well-defined solution with a visually smooth pressure distribution.

Figure 20 shows the regularisation constraint bound and design variable values for the constrained generic modes at

the highest fidelity case 𝑁𝑚𝑜𝑑𝑒 = 64 where the effect of the regularising constraint bound is made clear in constraining

the magnitude of modal design variables in an inverse relation to the wave number of the mode.
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Fig. 18 Optimised shapes for test case 2
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C. Test case 3: inviscid biplane drag reduction

This test case, the drag minimisation of a fixed-area biplane profile at Mach 2.0, originally derives from a result

presented by Busemann at the 5th Volta conference on high speed flows [44] showing that wave drag can be cancelled

using a biplane configuration. More recently, this test problem has been applied uniquely to the investigation of

aerodynamic topology optimisation [28, 45] where the number of aerodynamic bodies and the presence of discrete

features are represented in a unified parameterisation. Formally, the case is defined as minimising the inviscid drag at

Mach 2.00 and 0 degree incidence subject to the constraint on total internal volume:

min
𝜶

𝐶𝐷

s.t. 𝑉 ≥ 𝑉0

(28)

In this work, the two-body symmetric biplane configuration is investigated where the shape of a single plane is

parameterised for drag minimisation. The resulting single plane geometry is meshed using a block structured mesh with

a symmetry plane at 𝑧 = 0 to simulate the symmetric biplane configuration. The initial baseline geometry is chosen to

be a parabolic profile with internal volume matching that of the constraint and a separation of 0.6 chords between the

two planes.

This test case is chosen since it represents an unconventional geometric configuration for which there is no historic

database that can be used to generate traditional SVD modes. Unlike typical aerofoils, each plane in the configuration

has two discrete features, a sharp point at the leading and trailing edges, and hence can’t be parameterised easily with

modes derived from an aerofoil database. This highlights the flexibility and generality afforded by the new generic

modes which can be derived for any shape or topological configuration. Following the formulation given in section

IV.D, discrete sharp points are easily incorporated into the generic modal basis at the leading and trailing edges. Unlike

the previous test cases, this test case does not have any fixed-points and hence piecewise linear modes are produced in

the modal basis that allow shearing and uniform translation of all surface points.

For low values of the internal volume constraint 𝑉0, there is an optimum non-lifting profile known as the Busemann

Biplane which exploits shock cancellations that can occur between the two planes. This biplane formulation lends itself

well to numerical optimisation, particularly for higher values of 𝑉0 where a trade-off is required between exploiting

shock cancellations and avoiding choking of the flow and the consequent generation of a large bow shock. Consequently,

a higher value of 𝑉0 = 0.12 is chosen here for which the Busemann profile is not optimal due to choking of the flow.

As previously, the optimisation is performed across a sweep in the number of design variables to assess the effect of

design fidelity on the optimisation process and final result. Figure 21 shows the optimisation objective convergence

history for each design fidelity tested and figure 22 shows the resulting optimised shapes. Table 4 summarises the final

optimised objectives and non-linear feasibilities for each case. For all cases the volume constraint is satisfied within
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the geometric tolerance (1 × 10−6). For this test case, the final result is dependent on the chosen design fidelity where

increasing the number of design variables leads to a monotonic improvement in the optimised objective. As with the

previous test cases, the initial rate of optimisation convergence is independent of the number of design variables.

Table 4 Case 3 optimisation results

Number of modes Objective Feasibility
(Drag counts)

8 234.34 1.00E-06
16 213.00 1.00E-06
32 192.30 4.35E-08
64 145.84 1.04E-07
96 130.86 1.10E-08

From the corresponding optimised shapes (Figure 22) it is clear that increasing the design fidelity provides better

resolution for the inside geometry of the biplane. In particular, the higher fidelity provided by the shorter wavelength

modes allows better resolution of the angular-type features used for shock cancellations between the two planes.

Moreover, the optimisation has exploited the two piecewise linear modes that allow rigid-body motion to alter the

vertical position of the biplane in order to better align the internal shocks and expansions. Importantly, and unlike other

shape control methods, these translation-enabling modes arise naturally as part of the generic methodology such that

they incorporate the specified boundary conditions while remaining orthogonal to the full basis. At the highest fidelity

(96 modes) the optimised shape resembles the triangular Busemann biplane but with a curved external surface instead

of a flat one which is required to avoid choking the flow between the two planes. Figure 23 shows the resulting flow

fields for the initial geometry and the optimised one with 96 modes where cancellation of the leading-edge shock is

shown clearly. The effect of shock cancellations can also be visualised by the entropy generation that occurs across the

biplane configuration; this is shown in Figure 24 for each design fidelity level where the change in entropy is expressed

non-dimensionally by:
𝑃/𝜌𝛾

𝑃∞/𝜌𝛾∞
− 1 (29)

Here the effect of increasing design fidelity is clear where there is progressively less of an increase in entropy for the

optimised design compared to the baseline as the number of design variables increases.
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(c) Optimised, 𝑁𝑚𝑜𝑑𝑒 = 16 (d) Optimised, 𝑁𝑚𝑜𝑑𝑒 = 32

(e) Optimised, 𝑁𝑚𝑜𝑑𝑒 = 64 (f) Optimised, 𝑁𝑚𝑜𝑑𝑒 = 96

Fig. 24 Change in entropy for test case 3
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VIII. Conclusions
A new methodology for generating orthogonal shape modes for aerodynamic optimisation has been presented

which does not require training data and which generalises to arbitrary topologies. The new methodology is a further

development of the gradient-limiting method of the authors which aims to regularise high-fidelity shape optimisation

problems using a surface smoothness constraint. Importantly, since the modes are derived entirely from a surface

differencing operator, no training database is required and there is no restriction on the topology for which modal design

variables can be generated. Despite requiring no training data, the generic modes can form a compact basis for geometric

data as demonstrated here on an aerofoil library. The geometry based derivation naturally leads to translational modes

as part of the orthogonal basis and can be easily extended to produce mode shapes for surfaces in three-dimensions

using a differencing operator for the surface representation.

Moreover, derivation of the mode shapes from a geometric differencing operator leads to a natural design variable

bound for constraining surface smoothness during optimisation. As with the original gradient-limiting approach, this has

the effect of regularising the shape optimisation problem by constraining the design space in a geometrically meaningful

manner.

Applying the new shape control methodology on standard aerodynamic optimisation test cases demonstrates the

regularising design variable bounds to have an equivalent effect to that of the previous gradient limiting approach; the

optimisation convergence rate is independent of the number of design variables and the optimised objective at high

design fidelities is greatly improved by avoiding local minima corresponding to spurious geometries. As a result, the

new generic shape modes used with regularising design variable constraints achieves 5.15 drag counts for the AIAA

ADODG test case 1, which is the lowest result published for equivalent mesh resolution. The generic modes have also

been applied to a non-standard aerodynamic test case, highlighting the geometric flexibility of the new method for

non-standard configurations and the efficacy of high-fidelity shape parameterisations for aerodynamic optimisation.
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