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Abstract
The Coupled Model Intercomparison Project Phase 6 (CMIP6) model ensemble projects climate
change emerging soonest and most strongly at low latitudes, regardless of the emissions pathway
taken. In terms of signal-to-noise (S/N) ratios of average annual temperatures, these models
project earlier and stronger emergence under the Shared Socio-economic Pathways than the
previous generation did under corresponding Representative Concentration Pathways. Spatial
patterns of emergence also change between generations of models; under a high emissions
scenario, mid-century S/N is lower than previous studies indicated in Central Africa, South Asia,
and parts of South America, West Africa, East Asia, and Western Europe, but higher in most other
populated areas. We show that these global and regional changes are caused by a combination of
higher effective climate sensitivity in the CMIP6 ensemble, as well as changes to emissions
pathways, component-wise effective radiative forcing, and region-scale climate responses between
model generations. We also present the first population-weighted calculation of climate change
emergence for the CMIP6 ensemble, quantifying the number of people exposed to increasing
degrees of abnormal temperatures now and into the future. Our results confirm the expected
inequity of climate change-related impacts in the decades between now and the 2050 target for
net-zero emissions held by many countries. These findings underscore the importance of
concurrent investments in both mitigation and adaptation.

1. Introduction

Achieving net-zero emissions by the mid-2050s is
required to limit global warming to less than 1.5 K
(with limited overshoot) (IPCC 2022), and several
countries have set net-zero targets for the decade
2041–2050 (Hale et al 2022). Whether or not sub-
stantive action is taken to reduce emissions, the cli-
mate will continue to change until the point net-
zero emissions are reached (Allen et al 2009, Zickfeld
et al 2012, MacDougall et al 2020). Understanding

when and how the climate change signal emerges
from the noise of natural variation during this period
is important for assessing the likely impacts of climate
change and how tomitigate, prepare for, and adapt to
them.

Signal-to-noise (S/N) ratio is an established met-
ric for emergence (Hawkins and Sutton 2012, Frame
et al 2017, Hawkins et al 2020). S/N has commonly
been applied to seasonal or longer-term average tem-
peratures to assess when and how the impacts of cli-
mate change will be experienced, indicated by the
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time at which areas exceed S/N thresholds or themag-
nitude of the S/N ratio at a given time (e.g. Mahlstein
et al 2011, Hawkins and Sutton 2012). This approach
has also been applied to projections of precipitation,
drought, and ocean parameters (Giorgi and Bi 2009,
King et al 2015, Chen et al 2021 section 1.4.2.2), and
to observational data (Mahlstein et al 2012, Hawkins
et al 2020). Annual average temperature S/N has
been found to be strongest in the tropics due to the
lower internal variability in these regions (figure S1,
Mahlstein et al 2011, Harrington et al 2017). Because
local ecosystems are adapted to the lower variability
in these regions, the same increase in annual temper-
atures can lead to greater impacts (Walther et al 2002,
Williams et al 2007, Beaumont et al 2011, Mora et al
2013). We note that emergence occurs much sooner
in average annual temperatures than, say, monthly or
daily, due to smaller internal variability as timescales
lengthen (Harrington 2021).

Frame et al (2017) analysed data from 25 models
in theCoupledModel IntercomparisonProject, phase
5 (CMIP5) alongside population data to assess when
the world would be exposed to annual average tem-
peratures that crossed S/N ratio thresholds (i.e. num-
bers of standard deviations from the mean) of 1, 2,
and 3, relative to a recent baseline of 1986–2005. The
authors designated these thresholds ‘unusual’, ‘unfa-
miliar’, and ‘unknown’ climates, respectively. They
found that the world’s population would be exposed
to different climates faster than the surface area on
average and that the changes would be experienced
earlier and more severely in lower-income regions.
Hawkins et al (2020) added the designation ‘incon-
ceivable’ for S/N values above 5.

Many updates have been made to the ensemble of
global climate models between CMIP5 and CMIP6.
These include increased resolution, more participat-
ing models, and updated parameterisations of sub-
gridcell-scale physical processes that more closely
align with the latest understanding of climate drivers
such as radiative transfer, cloud microphysics, aer-
osol chemistry, sea ice dynamics, land cover, and
stochasticity (Chen et al 2021 section 1.5.3.1, Eyring
et al 2021 section 3.8.2). These have led to better
agreement with observational datasets and reanalyses
(Bock et al 2020). Past warming over the instru-
mental period is often well simulated by these mod-
els, with the multi-model average being close to
the best estimate from observations and reanalyses
(Arias et al 2021), although many higher sensitiv-
ity models struggle to simulate aspects of the satel-
lite period and deep-time paleoclimate periods (Bock
et al 2020, Kageyama et al 2021, Otto-Bliesner et al
2021). CMIP6 models exhibit a wider range of effect-
ive climate sensitivity (ECS), primarily due to updates
in the representation of extratropical cloud feedbacks
and aerosol interactions (Meehl et al 2020, Zelinka

et al 2020). Such a range of model responses repres-
ents the main source of uncertainty for projections of
future temperatures under high-emissions scenarios,
whereas uncertainty in the effects of short-lived for-
cings like aerosols dominate for low-emissions scen-
arios (Arias et al 2021). The emissions pathways spe-
cified for the Shared Socio-economic Pathways (SSPs)
for CMIP6 were not intended to reproduce those in
the Representative Concentration Pathways (RCPs)
for CMIP5 (O’Neill et al 2016), though the net radiat-
ive forcing is very similar over time in corresponding
scenarios (Gidden et al 2019). However, forcing due
to individual components can be considerably differ-
ent due to the different emissions pathways of each
(see Meinshausen et al 2020 and figure S2). Consid-
ering the changes in greenhouse gas (GHG) emissions
pathways between CMIP5 and CMIP6, the CMIP6
scenarios exhibit higher projected CO2 emissions rel-
ative to their CMIP5 counterparts formost of the cen-
tury. CH4 emissions are slightly higher for SSP1-2.6
and SSP2-4.5, and considerably lower for SSP5-8.5.
N2O emissions are generally lower for all scenarios,
particularly so in SSP5-8.5. The net effect of these
changes is not immediately apparent, and will differ
from model to model and across timescales.

Considering aerosol emissions, the CMIP6
ensemble exhibits a greater spread in projected emis-
sions across scenarios (Gidden et al 2019). SO2 emis-
sions are generally lower in SSP1-2.6 and generally
higher in SSP2-4.5 and SSP5-8.5, while black car-
bon (BC) emissions are generally lower in SSP1-2.6,
higher in SSP5-8.5, and vary in SSP2-4.5. Aerosols
are not well-mixed in the atmosphere, and so have
regional impacts on temperature. Recent studies have
assessed the forcing due to aerosols prescribed for
CMIP6, taking into account transport (e.g. Lund et al
2019), though directly comparable studies between
model generations that account for differing model
responses are not yet available.

The CMIP5model ensemble exhibited systematic
biases in their response to climate forcings, including
a warm bias in the Southern Ocean attributed to defi-
ciencies in cloud processes (Hyder et al 2018).Model-
ling groups implemented different improvements to
address biases, such as new planetary boundary layer
and convection schemes in the NASA GISS model
(Stanfield et al 2015), updated aerosol optical prop-
erties and natural emission rates in CanESM5 (Swart
et al 2019), and including aerosol indirect effects in
the BCC-CSMmodel (Wu et al 2019). These changes
have resulted in improved agreement with observa-
tions in aerosol- and cloud-related metrics (Cherian
and Quaas 2020), but quantifying overall improve-
ment between model generations remains challen-
ging (Szopa et al 2021 section 6.4). Models’ responses
to individual forcing agents can, however, be quan-
tified in terms of effective radiative forcing (ERF), a
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Table 1.Number of realisations analysed for CMIP6 models. ECS values in bold are within the CMIP5 range of 2.08–4.67 K. Shaded cells
indicate models with aerosol optical depth data used in the analysis.

Model

SSP Experiments

ECS Reference1–1.9 1–2.6 2–4.5 3–7.0 5–8.5

ACCESS-CM2 0 3 3 3 3 4.72 Dix et al (2019)
ACCESS-ESM1-5 0 10 19 10 10 3.87 Ziehn et al (2019)
AWI-CM-1-1-MR 0 1 1 5 1 3.16 Semmler et al (2019)
BCC-CSM2-MR 0 1 1 1 1 3.04 Xin et al (2019)
CAMS-CSM1-0 2 2 2 2 2 2.29 Rong (2019)
CanESM5 50 50 50 50 50 5.62 Swart et al (2019)
CAS-ESM2-0 0 2 2 2 2 3.51 Chai (2020)
CESM2 0 3 3 3 3 5.16 Danabasoglu (2019a)
CESM2-WACCM 0 1 5 3 5 4.75 Danabasoglu (2019b)
CMCC-CM2-SR5 0 1 1 1 1 3.52 Lovato and Peano (2020)
CMCC-ESM2 0 1 1 1 1 — Lovato et al (2021)
CNRM-CM6-1 0 6 10 6 6 4.83 Voldoire (2019b)
CNRM-CM6-1-HR 0 1 1 1 1 4.28 Voldoire (2019a)
CNRM-ESM2-1 5 5 10 5 5 4.76 Seferian (2019)
EC-Earth3 10 11 11 11 18 4.30 Consortium (EC-Earth) (2019)
EC-Earth3-Veg 3 7 8 6 8 4.31 Consortium (EC-Earth) (2019)
EC-Earth3-Veg-LR 3 3 3 3 3 — Consortium (EC-Earth) (2020)
FGOALS-f3-L 0 1 1 1 1 3.00 Yu (2019)
FGOALS-g3 1 4 4 5 4 2.88 Li (2019)
GFDL-ESM4 1 1 3 1 1 2.60 John et al (2018)
GISS-E2-1-G 6 11 20 18 11 2.72 NASA/GISS (2020a)
GISS-E2-1-H 2 10 10 6 10 3.11 NASA/GISS (2020b)
IITM-ESM 0 1 1 1 1 — Panickal and Narayanasetti (2020)
INM-CM4-8 0 1 1 1 1 1.83 Volodin et al (2019a)
INM-CM5-0 0 1 1 5 1 1.92 Volodin et al (2019b)
IPSL-CM6A-LR 6 6 11 11 6 4.56 Boucher et al (2019)
KACE-1-0-G 0 3 3 3 3 4.48 Byun et al (2019)
MCM-UA-1-0 0 1 1 1 1 3.65 Stouffer (2019)
MIROC-ES2L 4 10 30 10 3 2.68 Tachiiri et al (2019)
MIROC6 1 10 50 3 50 2.61 Shiogama et al (2019)
MPI-ESM1-2-HR 0 2 2 10 2 2.98 Schupfner et al (2019)
MPI-ESM1-2-LR 0 8 10 10 7 3.00 Wieners et al (2019)
MRI-ESM2-0 1 1 10 5 1 3.15 Yukimoto et al (2019)
NorESM2-LM 0 1 3 3 1 2.54 Seland et al (2019)
NorESM2-MM 0 1 2 1 1 2.50 Bentsen et al (2019)
TaiESM1 0 1 1 1 1 4.31 Lee and Liang (2020)
UKESM1-0-LL 5 16 17 16 5 5.34 Good et al (2019)

simulation-derived measure of the effect of an agent
on the earth’s radiative budget.

Here, we present an analysis of population-based
exposure to unusual climates, updating the approach
used in Frame et al (2017) with results from CMIP6.
The SSPs provide projections for country-level popu-
lation estimates that vary over time and scenario. This
level of detail was not available for the RCPs.We show
how the climatic and population changes projected in
the SSPs interact, how analysis using these updated
data compares to the findings of earlier studies, and
what factors cause the observed changes.

2. Methods

We obtained monthly average temperature climate
model output data from the World Climate Research
Programme’s CMIP (Phase 6) (Eyring et al 2016).

We selected five scenarios from ScenarioMIP (O’Neill
et al 2016) that span the range of future outcomes:
SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-
8.5. Three of these have corresponding scenarios from
the previous generation of RCPs: RCP2.6, RCP4.5,
and RCP8.5. Other scenarios represented by fewer
than 15 models were excluded. The first two SSP
scenarios (SSP1-1.9 and SSP1-2.6) result in global
warming of approximately 1.5 and 2.0 K at 2100,
respectively, in line with Paris Climate Agreement
targets. Results for all scenarios plus the historical
and pre-industrial control (piControl) simulations
were available for 37 climate models, with the excep-
tion of SSP1-1.9, for which only 15 models’ results
were available. The CMIP6 models used are listed in
table 1.

For comparison, we analysed results for 29 cli-
mate models from the CMIP5 generation that used
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Table 2. Number of realisations analysed for CMIP5 models. Shaded cells indicate models with aerosol optical depth data used in the
analysis.

Model

RCP Experiments

ECS References2.6 4.5 8.5

BNU-ESM 1 1 1 4.04 Ji et al (2014)
CCSM4 6 6 6 2.94 Meehl et al (2012)
CESM1-CAM5 3 3 3 — Gent et al (2011)
CESM1-WACCM 3 3 3 — Calvo et al (2012)
CNRM-CM5 1 1 5 3.25 Voldoire et al (2013)
CSIRO-Mk3-6-0 10 10 10 4.09 Rotstayn et al (2012)
CanESM2 5 5 5 3.70 Arora et al (2011)
EC-EARTH 2 11 8 — Hazeleger et al (2012)
FGOALS-g2 1 1 1 3.38 Li et al (2013)
FIO-ESM 3 3 3 — Qiao et al (2013)
GFDL-CM3 1 3 1 3.97 Donner et al (2011)
GFDL-ESM2G 1 1 1 2.43 Dunne et al (2012)
GFDL-ESM2M 1 1 1 2.44
GISS-E2-H 3 16 5 2.31 Schmidt et al (2006)
GISS-E2-R 3 17 5 2.12
HadGEM2-AO 1 1 1 — Martin et al (2011)
HadGEM2-ES 4 4 4 4.61 Collins et al (2011)
IPSL-CM5A-LR 4 4 4 4.13 Dufresne et al (2013)
IPSL-CM5A-MR 1 1 1 4.12
MIROC-ESM 1 1 1 4.67 Watanabe et al (2011)
MIROC-ESM-CHEM 1 9 1 —
MIROC5 5 5 5 2.72 Watanabe et al (2010)
MPI-ESM-LR 3 3 3 3.63 Giorgetta et al (2013)
MPI-ESM-MR 1 3 1 3.46
MRI-CGCM3 1 1 1 2.61 Yukimoto et al (2012)
NorESM1-M 1 1 1 2.80 Iversen et al (2013)
NorESM1-ME 1 1 1 —
bcc-csm1-1 1 1 1 2.83 Wu (2012)
bcc-csm1-1-m 1 1 1 2.89

the RCPs (Taylor et al 2012), listed in table 2. To
assess the statistical significance of changes between
model ensembles, we applied a two-sided student’s
T-test with a 90% threshold at each gridpoint and
adjusted the threshold to account for spatial auto-
correlation using a false discovery rate control pro-
cedure, following Wilks (2016). To help diagnose
the causes of changes between CMIP generations,
we also repeated the analysis using the 25 CMIP6-
era models with published ECS within the same
range as CMIP5-era models (2.08–4.67 K). We selec-
ted these 25 models based on ECS values published
by Meehl et al (2020), Nijsse et al (2020), Schlund
et al (2020)and Zelinka et al (2020). ECS values were
not published for three of the 37 models, which
we excluded. Fyfe et al (2021) used two generations
of the CanESM model to disentangle the effects of
changes in the model parameterisation and the for-
cings applied fromCMIP5 to CMIP6, finding that the
different forcings have significant impacts. We simil-
arly disentangled causes for the observed differences
by calculating signal and noise on three sets of results:
CanESM2 run on CMIP5 forcings, CanESM5 run
on CMIP5 forcings, and CanESM5 run on CMIP6
forcings.

We processed monthly mean, near-surface (2m)
air temperature data to create continuous timeseries
from January 1850 to December 2100. We defined
noise and signal following Frame et al (2017): noise
at each gridpoint is the standard deviation in annual
temperatures from the last 200 years of each model’s
piControl simulation, and signal is degrees Kelvin
change from a 1986–2005 baseline. We addition-
ally de-trended the piControl data before calculat-
ing noise, as we found that multiple models exhibited
unexpected, statistically significant trends in annual
temperatures, possibly due to insufficient spin-up
time in the control simulation (figure S3). The choice
of baseline will affect results, with higher S/N ratios
for earlier baselines. Our choice of a relatively recent
baseline aligns with prior work and expresses change
relative to living memory for a large proportion of
the world’s population. We tested sensitivity to this
choice by alternatively using an earlier baseline of
1961–1990. Signal, noise, and S/N are calculated for
each realisation of a given model and emissions scen-
ario before averaging across realisations. The global
mean surface temperature (GMST) signal (change
in annual average GMST since this same baseline)
against which local data are regressed is smoothed
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Table 3. Country groupings.

Group Full name States
Approx. 2010
population Description

ASEAN Association of Southeast
Asian Nations

10 650 000 000

AOSIS Alliance of Small Island
States

39 61 000 000

GEM Global Emerging Markets 23 3 700 000 000 Those countries in the
G20 that are not in
OECD90

LDC Least Developed Countries 58 1500 000 000 Countries with 2020
Human Development
Indices lower than
India’s (Conceição
2020)

OECD90 Organisation for
Economic Co-operation
and Development (1990)

24 1000 000 000 Member states of the
OECD as of 1990

using a fourth-order polynomial fit. We tested sens-
itivity to this smoothing approach by alternatively
using two other techniques: a 20 year rolling aver-
age and a 41 year lowess filter, as per Hawkins et al
(2020). We compared results against a global one-
eighth degree gridded population dataset with pro-
jections for each of the SSPs (Jones and O’Neill 2016,
v1.01). For the RCPs, we applied the population path-
way of the corresponding SSP. Data processing is fur-
ther described in Supplementary Data.

Following the categorisations in Frame et al
(2017), we assessed exposure to S/N thresholds
for different socioeconomic and geographic group-
ings of countries. These groupings are outlined in
table 3. There is some overlap between groupings
(e.g. Indonesia is in both Association of South-
east Asian Nations and Global Emerging Markets
(GEMs)).

3. Results and discussion

3.1. Mid-century S/N
Figure 1 depicts the geospatial emergence of tem-
perature S/N in the mid-twenty-first century, 2040–
2060 (M21C). The findings are qualitatively similar to
previous studies that used earlier model generations
(e.g. Mahlstein et al 2011, Hawkins and Sutton 2012,
Frame et al 2017) in that S/N is most pronounced
in low latitudes due in large part to these areas’ low
inter-annual variation (noise) in annual mean tem-
peratures. Despite the greater absolute warming near
the poles, these regions also exhibit higher noise, res-
ulting in comparatively low S/N ratios (e.g. Hawkins
et al 2020). See figure S1 for noise and signal cal-
culated individually. In low and mid-latitudes, both
signal and noise are greater over land than the adja-
cent ocean, resulting in less land/sea contrast for S/N
than for signal or noise individually. Scenarios with

higher radiative forcing exhibit predictably higher
M21C S/N across all regions.

These results hold qualitatively when S/N is com-
puted for the warmest monthly average temperat-
ures each year instead of annual average (figure S4),
though the magnitude is depressed due to higher
variation in monthly temperatures, especially over
land. Figure S5 shows equivalent results for CMIP5
models and RCPs, and figure S6 shows equival-
ent results for the late-twenty-first century period
of 2071–2100 used in previous studies. Using the
earlier baseline of 1961–1990 uniformly increases sig-
nal across the globe in all scenarios, due to the lower
GMST at that time (not shown). The results are
slightly sensitive to the GMST smoothing technique.
Using the alternative 41 year lowess filter approach
resulted in faster apparent emergence. Global-average
M21C S/N is 12% higher for SSP1-1.9 and 4% higher
for SSP5-8.5 using this approach. However, sim-
ilar changes apply to the RCPs, and the spatial pat-
terns of emergence remain unchanged. We report
results using the 4th-order polynomial approach
throughout.

The range of results across the ensemble of mod-
els is represented in figure 1 by the columns with
the 16th, 50th, and 84th percentile results. The
16/50/84th-percentile S/N values are calculated and
displayed at each gridpoint, as opposed to showing all
gridpoints for the model with 16/50/84th-percentile
global-average S/N values. Comparing results across
columns in figure 1 thus provides a conservative
estimate of model uncertainty. See figure S7 for the
percent of gridpoints represented by each model in
the 16/50/84th-percentile plots. More sensitive mod-
els are more represented in the 84th-percentile plot
and less sensitive models in the 16th-percentile plot,
but most models contribute data to all plots. There is
generally a bigger difference in S/N between results
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Figure 1.Multi-model signal-to-noise ratios in 2040–2060 average annual temperatures. From left to right, the columns show the
16th, 50th (median), and 84th percentile results across models, and the fourth column shows country-averaged S/N (median) in
population-weighted cartograms. The rows, from top to bottom, show results for SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and
SSP5-8.5. Since both S and N have dimensions of K, S/N is dimensionless, but can be expressed as multiples of the noise
(i.e. numbers of standard deviations, σ). Colours correspond to the named S/N ratio thresholds of 1, 2, 3, and 5, i.e. ‘unusual’,
‘unfamiliar’, ‘unknown’, and ‘inconceivable’ climates.

in adjacent columns than between those in adja-
cent rows, which are representative of scenario uncer-
tainty. While other percentiles and scenarios could
validly be chosen, this indicates that model uncer-
tainty is comparable to or greater than scenario
uncertainty as of mid-century. Scenario and model
uncertainties have been found to be equal at around
50 years from outset when calculating global, long-
term, mean near-surface air temperature for CMIP3
(Hawkins and Sutton 2009) and CMIP6 (Lehner et al
2020).

Figure 2 shows the differences in multi-model
median noise and M21C signal and S/N between
the CMIP6 and CMIP5 ensembles across the
globe. Global, area-weighted average changes are
summarised in table 4: noise increases by 2.9% in
CMIP6 and signal increases by 6.9%–27% (depend-
ing on the scenario), resulting in S/N increases of
2.7%–22%. Overall, M21C S/N is higher in the newer
generation of models. Table 4 and figure S8 include
the same values calculated for the sub-population of
25 CMIP6 models with ECS in the range of CMIP5
models.

The first column of figure 2 shows that between
the CMIP5 RCP scenarios and the correspond-
ing CMIP6 SSPs, variability increases slightly across
much of the globe (most strongly in the North-
ern Atlantic), and decreases in the Southern Ocean.
These changes are statistically significant in a few
regions, including the North Atlantic. Over land, this
includes a decrease inWestern Australia and increases
in Southern Europe and the northern Middle East,
Africa just south of the Sahel, and an area near the
China–Russia–Mongolia border. On a global average
basis, variability changes very little, as reported in
table 4.

The temperature change signal (column 2)
increases across almost all the globe for all scenarios,
excepting decreases in South Asia. These changes
are more statistically significant in the lower emis-
sions scenarios, with very little of the change in signal
passing the significance test for SSP5-8.5. The M21C
S/N ratio (column 3) generally increases fromCMIP5
to CMIP6, with geographic differences arising from
the changes in noise and signal. The changes aremore
heterogeneous under higher emissions scenarios;
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Figure 2. Changes in baseline-period noise (column 1), 2040–2060 average signal (column 2), and S/N ratio (column 3) from
CMIP5 RCP scenarios to corresponding CMIP6 SSPs (multi-ensemble, multi-model medians, as per figure 1). Areas are hatched
where the change is not statistically significant under a two-sided student’s T-test at the 90% level, adjusted for spatial
autocorrelation. No such testing is applied to the S/N ratio, an inherent measure of significance. Results are multi-model medians
for SSP1-2.6 - RCP2.6 (top row), SSP2-4.5 - RCP4.5 (middle row), and SSP5-8.5 - RCP8.5 (bottom row). The fourth column
shows changes in S/N as a percentage of CMIP5-era S/N. The regions outlined in blue in the top left panel are the North Atlantic
and Southern Ocean regions discussed throughout.

Table 4. Global (area-weighted) average changes from CMIP5 to CMIP6 in baseline-period noise and 2040–2060 average signal and S/N
ratio. Absolute and percent changes are shown. Each CMIP5 RCP scenario is paired with its corresponding CMIP6 SSP scenario based
on nominal radiative forcing. Global-average signal and noise values for CMIP5 and CMIP6 are also shown in figure S1.

CMIP6 ensemble Scenario ∆ Noise - K (%) ∆ Signal - K (%) ∆ S/N - σ (%)

All CMIP6 models (37) SSP126-RCP26 0.0099 (2.9%) 0.23 (27%) 0.44 (22%)
SSP245-RCP45 — 0.16 (13%) 0.23 (8.6%)
SSP585-RCP85 — 0.12 (6.9%) 0.075 (2.7%)

ECS in CMIP5 range (25) SSP126-RCP26 0.012 (4.1%) 0.20 (22%) 0.28 (15%)
SSP245-RCP45 — 0.13 (10%) 0.058 (3.1%)
SSP585-RCP85 — 0.069 (3.9%) −0.17 (−3.2%)

SSP5-8.5 (and to a lesser extent, SSP2-4.5) shows
higher S/N inmost land areas, but lower S/N in Cent-
ral and West Africa, Western Europe, South and East
Asia, and some areas of South America. Many ocean
areas also exhibit decreases in S/N. These patterns of
reduced S/N arise in areas with increased noise and
small (if any) increases in signal.

3.2. Drivers of differences betweenmodel
generations
Figure 2 captures the result of changes to both
external forcing and model response. The depressed
signal in the North Atlantic may be due in part to the
greater weakening of the exhibited across the CMIP6
ensemble (Weijer et al 2020). Less transport of warm
water from low to high latitudes results in a smal-
ler temperature increase in the high-latitude North
Atlantic. In the SouthernOcean, theCMIP6 ensemble
projects lower noise, increased signal, and a resulting
higher S/N ratio compared to the CMIP5 ensemble,
for all scenarios. However the changes in signal are
not statistically significant for most of the region. The

SouthernOcean changesmay be due to developments
in cloud process representation, an identified source
of the warm bias in this region (Hyder et al 2018),
and/or improvements in ocean circulation and sur-
face winds compared to CMIP5, including a weaker
Antarctic Circumpolar Current (ACC) (Beadling et al
2020). CMIP6 models, on average, exhibit a more
positive shortwave feedback for extratropical clouds
(Zelinka et al 2020, Arias et al 2021). It is notable
that from CMIP5 to CMIP6, in most parts of the
globe, an increase in noise accompanies an increase
in signal, resulting in a smaller increase to the S/N
ratio.

The highest magnitude of change in noise
is observed in high-latitude oceans, suggesting a
possible sea-ice influence. We compared available sea
ice area data in the piControl period for 21 CMIP5
and 30 CMIP6 models. There were changes in both
the average amount and inter-annual variation of
sea ice area, but these were not statistically signi-
ficant and were not consistently correlated with the
observed changes in the noise field.We also compared
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Figure 3. 2040–2060 average aerosol optical depths at 550 nm for CMIP5 models, CMIP6 models, and the difference between
these. Areas are hatched where the change is not statistically significant under a two-sided student’s T-test at the 90% level,
adjusted for spatial autocorrelation. Results are multi-model medians for SSP1-2.6 - RCP2.6 (top row), SSP2-4.5 - RCP4.5
(middle row), and SSP5-8.5 - RCP8.5 (bottom row).

ACC strength in both model generations, but did
not find any correlation with noise in the South-
ern Ocean region. One of the main changes between
the piControl simulations for CMIP5 and CMIP6 is
that the latter includes a protocol for volcanic aer-
osols (Fyfe et al 2021). We compared average aer-
osol optical depths for these two ensembles, as per
figure 3. There were changes between model genera-
tions, including a slight increase in aerosol variability
in the North Atlantic and a slight decrease in the
Southern Ocean, but these were not found to be stat-
istically significant. The differences in noise, then,
are likely driven more by the differing responses to
aerosols and other forcing agents between the model
generations.

Table 4 and figure S8 show model inter-
generational changes considering just the sub-
population of 25 CMIP6 models with ECS in the
same range as CMIP5 models. Comparing these
results to the earlier ones shows the changes due
primarily to differences in the emissions pathways (if
we assume that model parameterisation differences
manifest as changes in ECS). In the sub-population,
noise changes similarly to the full ensemble, and the
temperature change signal still increases for all scen-
arios. On a global-average basis, noise increases by
4.1% in CMIP6 and signal increases by 3.9%–22%

(depending on the scenario), resulting in S/N changes
of −3.2 to +15%. Figure S1 shows separate plots of
noise and signal. These results show that the increases
in temperature for the CMIP6 ensemble are due to
both increased ECS and changes to the emissions
pathways. This agrees with single-model and reduced
complexity model studies that have isolated the dif-
ference due to emissions pathways (Nicholls et al
2020, Wyser et al 2020, Fyfe et al 2021). For changes
in S/N ratios, forcing differences are more significant
for the lower-emissions scenarios. For the high emis-
sions scenario, global-average S/N even decreases
slightly (see table 4).

We repeated signal and noise calculations on res-
ults from two generations of the CanESM model run
on both generations’ emissions to disentangle for-
cing and model response influences. For signal, for-
cing changes account for 44%, 54%, and 38% of
the model inter-generational differences on a global
average basis in SSP1-2.6, 2-4.5, and 5-8.5, respect-
ively. The differences in noise are generally less sig-
nificant (see figure 2), but on a global-average basis,
forcing differences account for 88% of change. In
the regions of greatest change in noise, however,
(the North Atlantic and Southern Ocean regions),
changes in model response account for 105 and
103% of the difference in noise, respectively. While
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these results are just from one modelling centre,
they illustrate that changes to both applied forcings
and model parameterisation are significant between
CMIP5 and CMIP6.

In order to control for global model response and
so assess regional differences, we compared noise,
signal, and S/N ratios across model generations at
global warming levels (GWLs) of 1.5, 2.0, 2.5, and
3.0 K (see figures S9 and S10). We compared aver-
age temperatures for the 20 years preceding the year
at which the backwards-looking 20 year rolling aver-
age crosses each GWL, averaging across all scenarios
for which this occurs. The spatial patterns of S/N
across GWLs closely match those across emissions
scenarios, with emergence strongest in low latitudes
(figure S9). Comparing S/N between model gener-
ations at the same GWLs largely controls for sig-
nal, so the spatial patterns in changes to the S/N
ratio are dominated by the changes in the noise field
(figure S10).

Aerosol emissions have regional impacts on sur-
face temperature due to their short atmospheric res-
idence time. There remains considerable uncertainty
in themagnitude of aerosol forcing, which has a signi-
ficant impact onmodelled global temperature (Dittus
et al 2020). While different aerosol species have dif-
ferent direct and indirect effects on net radiation bal-
ance, aerosols in aggregate lower insolation, so one
would expect greater aerosol concentrations to cause
lower temperatures, all else being equal (Zelinka et al
2014, Smith et al 2020, Szopa et al 2021 section 6.4).
To assess the impacts of changes in aerosol forcing
between model generations, we calculated geospatial
differences in M21C-average ambient aerosol optical
depth at 550 nm as a proxy for aerosol concentration.
Figure 3 shows the multi-model median results for
the two model generations. Note that only a subset of
models used in the temperature analysis had optical
depth data available (see tables 1 and 2). Noting this
limitation, there are notable consistencies between
the aerosol and temperature fields. Compared to
CMIP5, CMIP6 models exhibit statistically signific-
ant increases in aerosol optical depth above regions
in South and East Asia, South America, and south-
western Africa, particularly in the moderate and high
emissions scenarios. These changes are due to changes
in both the prescribed aerosol emissions and the
models’ handling of aerosols (e.g. circulation, depos-
ition, chemistry, etc). The slight decreases in signal
and more pronounced decreases in S/N in South Asia
shown in figure 2 correlate well with the aerosol pat-
tern. The significant aerosol increases in South Amer-
ica and East Asia correspond less well with changes in
S/N. InNorth andCentral Africa, while the changes in
aerosol optical depth are not statistically significant,

they do correspond well with the observed changes in
S/N. It is reasonable to conclude that changes in aer-
osol loading are responsible for a significant part of
the regional differences in S/N ratios between model
generations.

The changes in the GHG and aerosols emissions
pathways betweenmodel generations have competing
effects and differ between scenarios (e.g. higher CO2

and lower CH4 under SSP5-8.5 compared to RCP8.5,
versus comparable emissions of both under SSP1-2.6
and RCP2.6). Methods to aggregate these effects rely
on singular measures of ERF for each forcing agent
(e.g. Meinshausen et al 2020), though it has been
shown that these differ by model (Zelinka et al 2014,
2020, Smith et al 2020).

Considering aerosol forcing, Zelinka et al (2014)
estimated ERF due to year-2000 aerosol emis-
sions compared to pre-industrial in the CMIP5
ensemble, while Smith et al (2020) performed the
equivalent analysis for the CMIP6 ensemble (albeit
with more models and 2014-level emissions). Both
studies calculated ERF in terms of shortwave and
longwave aerosol-radiation interactions and aerosol-
cloud interactions. Comparing the two, net aero-
sol ERF is less negative in the CMIP6 ensemble:
−1.01± 0.23Wm−2 versus −1.17± 0.30Wm−2

(±1σ). This is due primarily to less negative short-
wave aerosol-cloud interactions, in line with Zelinka
et al (2020). While a less negative aerosol ERF could
contribute to the greater warming we identified in
the CMIP6 ensemble, these studies are not directly
comparable. 2014-prescribed BC and sulphur emis-
sions were 25% higher and 2.5% lower, respect-
ively, than the 2000-prescribed emissions (Moss
et al 2010, Riahi et al 2017, Gidden et al 2019).
New experiments that directly compare ERF for
CMIP5 and CMIP6 models would assist in dia-
gnosing the drivers of model inter-generational
differences.

The increase in annual average temperature sig-
nal from CMIP5 to CMIP6 shown in figure 2 and
table 4 is also consistent with findings from Zelinka
et al (2020). There, authors applied a radiative kernel
technique to calculate ECS and ERF due to a doub-
ling of CO2 in the CMIP5 and CMIP6 ensembles
and decomposed the feedbacks to diagnose the factors
influencing the changes between generations. They
found that ECS increased in both mean and variance,
while ERF increased slightly in mean and decreased
slightly in variance. The increase in ECS was due
primarily to stronger positive feedbacks in extra-
tropical low clouds. Based on this alone, we should
expect a warmer globe in the CMIP6 ensemble at the
same concentration of CO2, which aligns with our
results.
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Figure 4. Crossing of average annual temperature S/N thresholds of 1, 2, 3, and 5 over time, shown as a proportion of Earth’s land
area (left column) and population (middle column). Median results are shown as solid lines, and the ranges between the 16th and
84th percentile results are shown as the shaded regions. Median results for corresponding CMIP5 RCPs are shown as dashed lines,
and the global population over time is shown as a dotted grey line. The right column compares S/N emergence by area and
population by plotting the median results against each other. Results for 2022, 2030, and 2050 are shown as dots, and the 1:1 line
is shown in black.

3.3. Population exposure
Figure 4 integrates S/N across the globe but adds
the dimension of time to show when different pro-
portions of the globe’s land area (left column) and
population (middle column) cross different S/N
thresholds. Also shown is global population over time
under each of the five scenarios. Under a moderate
emissions scenario (SSP2-4.5), most models agree,

nearly half of the population (48%) will be experien-
cing ‘unknown’ (S/N> 3) annual mean temperatures
by 2050, withmore than 90%of people over the ‘unfa-
miliar’ threshold of S/N> 2. The fraction of the pop-
ulation exposed to an unknown climate at 2050 var-
ies from 10% under SSP1-1.9 to 87% under SSP5-8.5,
again emphasising the significant influence of emis-
sions pathway on the projected mid-century climate.
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As the historical data under CMIP6 extend only
to the end of 2014, the values shown for 2022 are
projections. The multi-model median projections are
that 52%–95% of the global population is currently
experiencing an unusual climate (S/N> 1) as of 2022,
depending on the scenario. Some (1.2%–17%) are
already experiencing an unfamiliar climate (S/N> 2)
by this scale. This is compared to a recent baseline of
1986–2005, which emphasises the rapidity of change
that we are experiencing. (Using an earlier baseline of
1961–1990 gives higher S/N values, with 87%–99%
of the population already experiencing S/N> 1 and
11%–22% with S/N> 2, not shown.) A version of
figure 4 with the higher emissions scenarios exten-
ded to 2100 is included as Supplementary figure S11.
The results shown in figure 4 are not very sensitive to
the GMST smoothing technique until mid-century.
However, when emissions turn net-negative in the
lower-emissions scenarios, the choice of technique
does affect exposure calculations.

Comparing scenarios, it appears that the high
emissions scenarios have lower associated uncer-
tainty. This is in part an artefact of the threshold
selection; under a higher emissions scenario, these
thresholds are passed earlier in time, and all mod-
els agree that the lower thresholds are passed before
2050. The lower emissions scenarios, in contrast,
pass the thresholds later and have S/N peaks that
are close to the threshold values. A similar abso-
lute spread between scenarios at 2050 thus appears
as a greater uncertainty for the low emissions scen-
arios. This illustrates an important point: we can have
more confidence that a high emissions future will lead
to ‘inconceivable’ climates than that low emissions
future will prevent ‘unknown’ ones. This highlights
the importance of investing concurrently in bothmit-
igation and adaptation.

The right column of figure 4 compares S/N emer-
gence by area and population. Most scenarios show
that temperatures will rise for the global popula-
tion faster than for overall land area, shown by S/N
threshold exceedances falling mostly below the 1:1
line. That is, average annual temperatures will change
faster in areas where people live than where they do
not, in agreement with Frame et al (2017). Increased
temperature change where people live compared to
the global average is more often explored in terms
of the land-sea contrast (e.g. Joshi et al 2013), so it
is noteworthy that this holds when only comparing
to overall land area. This trend is most pronounced
for SSP5-8.5 and least pronounced for SSP3-7.0,
with the difference mainly due to population projec-
tions; under SSP3-7.0, the GEMs grouping of coun-
tries exhibits continued growth through the century,
unlike in the other scenarios. The Least Developed
Countries (LDCs) grouping is the other major driver
of global population; its population grows under all
scenarios.

Comparing the results to the corresponding RCPs
from CMIP5, figure 4 shows that SSP1-2.6 and SSP2-
4.5 project more rapid emergence of unusual to
unknown climatic conditions by land area than do
the previous generation of RCPs, while SSP5-8.5 is
broadly comparable. Both RCP4.5 and RCP8.5 show
more rapid emergence by population than their cor-
responding SSPs for lower thresholds. This is due to
the different spatial pattern of emergence; these two
RCPs project stronger and more rapid emergence of
unknown annual temperatures in the heavily popu-
lated regions of South Asia, West/Central Africa, and
parts of Western Europe, as shown in figure 2.

Figure 5 shows S/N values and the proportion
of global population exceeding them as of M21C,
broken into the five groupings from table 3. Using
S/N in annual average temperatures as a proxy for cli-
mate change impacts, this figure illustrates the dispar-
ity in impacts between different socioeconomic and
geographic groups. The position of each curve along
the x-axis indicates the degree of impacts experienced,
and the slope of the curve is a measure of the uni-
formity of impacts across the group. From this we can
see that the Organisation for Economic Co-operation
and Development (1990) (OECD90) grouping has
both the lowest impacts and the most equally distrib-
uted impacts across its population.

Considering just the two low-emissions scen-
arios, SSP1-1.9 and SSP1-2.6 (which are consist-
ent with temperature rises of 1.5 K and 2.0 K,
respectively) gives an indication of the difference in
impacts between two aspirational warming levels.
The impacts for the OECD90 grouping at 2.0 K are
comparable to those for the LDCs grouping at 1.5 K,
and lower than those for the Association of Southeast
Asian Nations (ASEANs) and Alliance of Small Island
States (AOSISs) groupings at 1.5 K (see supplement-
ary figure S12).

These findings agree with earlier studies in find-
ing that climate change impacts are expected to be
unequally distributed, with less developed countries
and those with higher projected population growth
rates experiencing greater changes than developed
ones, on average (Frame et al 2017, 2019, Harrington
et al 2017, Harrington and Otto 2018, King and
Harrington 2018). The grouping with the most
unusual M21C climate is AOSIS, closely followed by
ASEAN. Both groupings are characterised by relat-
ively small land masses, proximity to the equator,
and having many states located in the maritime con-
tinent, with climates dominated by the surrounded
ocean. The ocean’s thermal inertia contributes to this
region having generally lower noise (and so higher
S/N) than, say equatorial Africa or South America
(see figure S1). The small island nations are also par-
ticularly vulnerable to rising sea levels (Hooijer and
Vernimmen 2021). The risk of compounding impacts
is thus particularly acute for these states.
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Figure 5. The proportion of population exposed to various levels of 2040-2060 average S/N for annual average temperature.
Results are shown across five groupings of countries (defined in table 3: ASEAN, AOSIS, GEM, LDC, and OECD90. Results for
each of five SSPs are distinguished by colour, and results for corresponding CMIP5 RCPs are shown as dashed lines. Unusual,
unfamiliar, unknown, and inconceivable annual temperatures are indicated by the background shading. The geographic
distribution of the groupings is shown bottom right, with countries in more than one grouping coloured by the first
alphabetically.

4. Conclusions

We analysed the emergence of unknown annual aver-
age temperatures due to climate change projected
by the SSPs of CMIP6. The results showed expec-
ted patterns of stronger and earlier emergence under
higher emissions scenarios, with the emergence pat-
tern strongest in the tropics. All scenarios project that
a significant proportion of the world’s population
was already experiencing ‘unusual’ (S/N> 1) annual
temperatures as of 2022, and most models agree
that around half of the globe will be experiencing

‘unknown’ annual temperatures (S/N> 3) by 2050
under the moderate emissions scenario of SSP2-4.5.
Inter-model uncertainty suggests we can have more
confidence that a high emissions future will lead to
an ‘unknown’ climate by mid-century than that a low
emissions future will prevent this.

In general, CMIP6 shows earlier and stronger
emergence of anomalous annual mean temperatures
(higher S/N ratios) than the corresponding scenarios
from CMIP5, though there are notable decreases at
the regional level. CMIP6 models exhibit lower S/N
in Central Africa and South Asia under all scenarios,
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and the higher emissions scenarios also show lower
S/N over parts of South America, West Africa, West-
ern Europe, and East Asia. These regional decreases in
densely populated areas mean than population-based
emergence is actually slightly weaker and later under
SSP5-8.5 than it was under RCP8.5. Noise increases
in most areas, accompanying increases in the signal.
Differences in S/N between generations arise from
changes in bothmodel responses and applied forcing,
with the newer models using emissions pathways of
the SSPs and the older using RCPs. To separate the
effect of the higher mean and range of ECS in CMIP6
models, we repeated the analysis for a subset of mod-
els with ECS in the same range as that of CMIP5.
We found that the increase in temperature is not due
solely to increased model sensitivity. Other factors
that explain some of the observed differences include
changes to aerosol optical depths (particularly for
Central Africa and South Asia), different GHG emis-
sions, changes in the ERF of models to radiative for-
cing agents, and large-scale climate responses such as
Southern Ocean cloud behaviour and weakening of
the AMOC. None of these causes alone accounts for
all the observed differences, and quantifying their rel-
ative influence is the task for targeted experiments,
coordinated across modelling groups.

We also incorporated nation-scale, dynamic pop-
ulation datasets aligned with emissions pathways to
assess exposure to climate change. We found that
unusual annual temperatures emerge earlier in areas
where people live than where they do not, and that
the nations least equipped to adapt to climate change
will be disproportionately affected, regardless of the
emissions pathway taken. That this conclusion holds
despite more granular projections demonstrates that
earlier findings were likely not a result of oversim-
plification or overly broad assumptions about future
population distributions.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
github.com/hdouglas/CMIP6emergence (Douglas
2022). CMIP6 simulation results: https://esgf-
node.llnl.gov/projects/cmip6/. CMIP5 simulation
results: https://esgf-node.llnl.gov/projects/cmip5/.
Emissions data: https://esgf-node.llnl.gov/search/
input4mips/, IIASA RCP Database, Version 2.05:
https://tntcat.iiasa.ac.at/RcpDb/dsd, IIASA SSP
Database, Version 2.0: https://secure.iiasa.ac.at/web-
apps/ene/SspDb/. Global one-eighth degree grid-
ded population dataset, v1.01: https://sedac.ciesin.
columbia.edu/data/set/popdynamics-1-8th-pop-
base-year-projection-ssp-2000-2100-rev01. Geopol-
itical boundary shapefiles: www.naturalearthdata.
com/downloads/ (Natural Earth 2021). Human
Development Index data: http://hdr.undp.org/en/
content/download-data. Region masking algorithm:

https://github.com/regionmask/regionmask (Hauser
2016). Regridding algorithm: https://github.com/
JiaweiZhuang/xESMF (Zhuang 2020).
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