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Statistical feature training improves 
fingerprint‑matching accuracy in novices 
and professional fingerprint examiners
Bethany Growns1,2*   , Alice Towler3, James D. Dunn3, Jessica M. Salerno2, N. J. Schweitzer2 and Itiel E. Dror4 

Abstract 

Forensic science practitioners compare visual evidence samples (e.g. fingerprints) and decide if they originate 
from the same person or different people (i.e. fingerprint ‘matching’). These tasks are perceptually and cognitively 
complex—even practising professionals can make errors—and what limited research exists suggests that existing 
professional training is ineffective. This paper presents three experiments that demonstrate the benefit of perceptual 
training derived from mathematical theories that suggest statistically rare features have diagnostic utility in visual 
comparison tasks. Across three studies (N = 551), we demonstrate that a brief module training participants to focus on 
statistically rare fingerprint features improves fingerprint-matching performance in both novices and experienced fin-
gerprint examiners. These results have applied importance for improving the professional performance of practising 
fingerprint examiners, and even other domains where this technique may also be helpful (e.g. radiology or banknote 
security).
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Significance statement
Forensic science experts carry out ‘matching’ tasks in the 
criminal justice system to link or exclude suspects from 
crime scenes. Despite the importance of this high-stakes 
task, examiners do make errors that can contribute to 
wrongful convictions. Existing research has shown that 
some  current training  programmes in forensic science 
are  ineffective at improving performance in forensic sci-
ence disciplines. The current research found that training 
people  to focus on rare fingerprint features during fin-
gerprint-matching improves the performance of novices 
and practising fingerprint examiners. These findings have 
important implications for training new and existing 
fingerprint examiners, as reducing their errors will help 
avoid wrongful convictions within the justice system.

Introduction
Experts have skills and knowledge that give them a con-
siderable advantage over novices for tasks within their 
domain of expertise (Ericsson et al., 2018). For example, 
fingerprint examiners are more accurate than novices at 
determining whether two fingerprints originate from the 
same source (i.e. the same person or different people; 
Busey & Vanderkolk, 2005; Thompson & Tangen, 2014; 
Ulery et  al., 2011), and radiologists are more accurate 
at distinguishing between normal and abnormal radio-
graphs than novices, (Azevedo et  al., 2007; Evans et  al., 
2013; Treviño et al., 2020; Wu et al., 2019). In high-stakes 
‘real-world’ domains such as these where high accuracy 
is paramount, there is a need for training interventions 
that improve the effectiveness and efficiency of experts. 
Expertise in a domain typically takes years of experience 
and deliberate practice to develop (Ericsson et al., 2018). 
However, in some domains, short perceptual train-
ing interventions that teach people to focus on particu-
larly useful visual cues have been able to fast-track the 
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development of expertise (Dror et al., 2008; Towler et al., 
2021).

One method of identifying useful visual cues to include 
in perceptual training is an ‘expert knowledge elicita-
tion’ approach—where experts in a domain are stud-
ied to identify which cues they use so that those cues 
can then be taught to novices. An early example of this 
approach investigated the impact of perceptual training 
on a chicken sexing task (Biederman & Shiffrar, 1987)—a 
challenging task that requires fine discrimination of vis-
ual features. Researchers interviewed experienced pro-
fessional chicken sexers with 18–36  years’ experience 
and discovered a single important diagnostic feature 
that indicated a chicken’s sex: males had a convex genital 
bead, whilst females had a concave or flat genital bead. 
Only one minute of brief training to utilize this visual 
cue was needed to increase novices’ ability to sex chicks 
increased by nearly 40%.

More recently, researchers have used this approach to 
investigate the expertise of forensic facial examiners who 
distinguish between photographs of the same person 
and different people (Towler et al., 2021). This is another 
challenging perceptual task—particularly for unfamil-
iar faces (Megreya & Burton, 2006)—and facial examin-
ers are typically trained over many years of mentorship 
and experience (Towler et al., 2021). Researchers identi-
fied particularly diagnostic visual features in faces (e.g. 
ears, scars, and moles) that were predictive of examiners’ 
superior performance (Towler et  al., 2017)—and sub-
sequently trained novices to focus on these diagnostic 
features when matching faces (Towler et al., 2021). After 
only six minutes of training to focus on these features, 
novices’ face-matching accuracy increased by 6%—equiv-
alent to approximately half of facial expert examiners’ 
superiority in this task—and more effective than many 
industry training courses that take much longer to com-
plete (Towler et al., 2019).

An alternative method to eliciting useful visual cues to 
include in perceptual training for experts can be drawn 
from prominent mathematical theory. Information the-
ory suggests that rarer features can provide a useful diag-
nostic cue for discrimination or categorization (Busey 
et al., 2016; Shannon, 1948)—an approach also applicable 
to many other cognitive processes (e.g. attention and vis-
ual search; Bruce & Tsotsos, 2009; or perceptual learning; 
Gibson, 1969). For example, two fingerprints that share a 
rare fingerprint feature (e.g. a ‘lake’) would be more likely 
to come from the same person, than two fingerprints that 
share a common feature (e.g. a ‘bifurcation’; see also Gut-
ierrez-Redomero et al. (2011), Gutiérrez-Redomero et al. 
(2012 for fingerprint minutiae frequencies). In another 
study, researchers trained novices to focus on statisti-
cally rare features across a set of artificial patterns when 

deciding if the two patterns were the same or different 
(Growns & Martire, 2020a). After less than two minutes 
of statistical feature training, novices’ accuracy in this 
task improved by 13%, achieving better performance 
than untrained novices and forensic science examiners 
who complete similar comparison tasks professionally.

These studies demonstrate that perceptual training 
can improve performance in visual decision-making 
tasks—specifically the importance of utilizing particu-
lar visual cues that are diagnostic in a domain. Yet no 
research has focused on the potential importance of sta-
tistically derived training in real-world decision-making 
(e.g. fingerprint or face-matching). This is important as 
the expert-elicitation approach for developing training 
may not be possible in all domains—particularly when 
experts are not explicitly aware of the processes underly-
ing their decision-making (Ericsson et al., 2018). For this 
reason, perceptual training that exploits quantifiable sta-
tistical information offers a viable alternative pathway for 
developing programs that fast-track the development of 
expertise—especially in domains where existing training 
is ineffective (e.g. forensic science; Towler et al., 2019).

In this paper, we present three experiments that exam-
ine the benefit of statistical feature training on a visual 
comparison task with important applied implications: 
fingerprint comparison. We present two experiments 
that investigate the impact of statistical feature train-
ing on novices (Exps. 1–2) and professional fingerprint 
examiners (Exp. 3)—as limited research has explored the 
potential for perceptual training to improve expert deci-
sion-making. Although experts outperform novices in 
tasks within their domain of expertise, they do still make 
errors. For example, even professional fingerprint exam-
iners have error rates ranging from 8.8 to 35% in finger-
print comparison tasks—depending on task difficulty 
(Busey & Vanderkolk, 2005; Ulery et  al., 2011). There-
fore, there is still room to improve expert performance 
to further reduce mistakes that are made—particularly 
in real-world domains like forensic science where errors 
can result in life-altering consequences, such as wrongful 
convictions.

Experiment 1
Experiment 1 examined the impact of statistical feature 
training on novices’ fingerprint comparison performance. 
We also included face comparison as a baseline control 
task. We adapted the statistical feature training module 
from Growns and Martire (2020a) to include examples of 
statistically rare and common features in fingerprints and 
faces. We compared the impact of training on novices’ 
visual comparison performance by comparing the change 
between trained novices’ performance pre-to-post-train-
ing to untrained novices’ change in performance. We 
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investigated fingerprint and face comparison in the cur-
rent study as there is quantified statistical data available 
on the frequency of features in these domains, and the 
bulk of the research in forensic expertise has been con-
ducted in fingerprint and face comparison (see Growns 
and Martire (2020b) for review).

Method
Design
We used a 2 between-subjects (training: statistical fea-
ture or control) × 2 within-subjects (time: pre-training 
or   post-statistical feature training) mixed design. The 
pre-registration, data, and analysis scripts can be found 
at https://​osf.​io/​jpxwe/.

Participants
We recruited 143 participants online via Prolific Aca-
demic based on an a priori power analysis for detecting 
a medium effect (f = 0.25) in our design with 80% power 
(including an additional 10% to account for attrition) 
using the WebPower package in R (Zhang & Yuan, 2018). 
This effect size was chosen as previous studies examin-
ing the impact of similar training on visual comparison 
performance have identified medium effects (e.g. Growns 
& Martire, 2020a; Towler et al., 2017). To be eligible for 
the study, participants were required to have normal or 
corrected-to-normal vision, to live in the USA, to have a 
Prolific approval rating of 95% + , and to have completed 
the experiment on a tablet or computer (not a cellular 
device). Participants were excluded if they failed at least 
three (out of five) attention-check questions (n = 44).1

Participants in the final sample (n = 99) were 32.4 years 
(SD = 11.1, range = 18–68), and about half (52.5%) self-
identified as male (45.4% as female and 2% as gender 
diverse). Each participant was compensated US$5.20 for 
completing the approximately 50-min experiment.

Materials
Comparison tasks
Participants completed face and fingerprint comparison 
tasks both before and after training and completed each 
pre-training and post-training task with different trials.

Face comparison Participants completed a standard-
ized test of face comparison as a baseline control task: 
the Glasgow Face-Matching Task-2 (GFMT2-SA and SB; 
White et al., 2021, p. 2; see upper panel of Fig. 1) where 
participants view two faces side by side and were asked 
‘are these images of the same person or two different 

people?’ on each trial. They responded by selecting one 
of two buttons (‘same’ or ‘different’) at the bottom of the 
screen. Participants completed 80 face comparison trials 
in total: 40 trials pre-training and 40 trials post-training 
in a randomized order. Participants completed 40 differ-
ent trials (20 match and 20 non-match different trials at 
each time period) pre-training and post-training.

The GFMT2 was designed to be a challenging and rep-
resentative task of face comparison accuracy by calcu-
lating item-to-test correlations for each trial, and the 40 
match and 40 non-match trials with the highest correla-
tions were then selected and divided into two equally dif-
ficult forms of the test.

Fingerprint comparison Participants completed a 
standardized test of fingerprint comparison: we devel-
oped this test using the same psychometric method used 
to develop the GFMT2 (see below for more detail; adapt-
ing trials from Growns and Kukucka (2021); see lower 
panel of Fig.  1). On each trial, participants viewed two 
fingerprints side by side and were asked ‘are these finger-
prints from the same person or two different people?’ on 
each trial. They responded by selecting one of two but-
tons (‘same’ or ‘different’) at the bottom of the screen. 
Participants completed 80 fingerprint comparison trials 
in total: 40 trials pre-training and 40 trials post-training 
(20 match and 20 non-match at each time period) in a 
randomized order. Participants completed 40 different 
trials (20 match and 20 non-match different trials at each 
time period) pre-training and post-training.

Are these fingerprints from the same person or two different people?

Are these images of the same person or two different people?

Fig. 1  Example ‘match’ trials for both matching tasks (face: upper 
panel; fingerprint: lower panel)

1  Four questions (‘Please select the “same/different” option below’) embedded 
during each matching task and one additional harder attention-check ques-
tion designed to prevent bots from participating (‘Please enter the second 
word in this sentence in the textbox below’).

https://osf.io/jpxwe/
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Fingerprint comparison trials were drawn from a data-
base of over 1,000 fingerprints that were recorded by a 
qualified fingerprint examiner (see Growns & Kukucka, 
2021 for additional detail). Fingerprints in this database 
were clear, rolled exemplar fingerprints and latent fin-
gerprints collected from a variety of different surfaces 
(e.g. plastic or glass) and developing techniques (e.g. 
aluminium, black, or magneto flake powder). Each trial 
consisted of one exemplar and one latent fingerprint: 
match trials consisted of one exemplar and one latent fin-
gerprint from the same individual, and non-match trials 
consisted of one latent fingerprint and one similar exem-
plar fingerprint identified via an Automated Fingerprint 
Identification System (AFIS; Dror & Mnookin, 2010).

Trials were selected using the same method used to cre-
ate the GFMT2—we calculated item-to-test correlations 
for each trial (i.e. how well accuracy on each trial predicts 
each participants’ overall performance) using pilot data 
from Growns and Kukucka (2021). We then selected the 
80 trials (40 match and 40 non-match) that had the high-
est item-to-test correlations and then divided the trials 
into two equally difficult versions of the test (comprising 
20 match and 20 non-match trials each). We used this 
method as it identifies trials that are most predictive of 
overall test performance and provides an overall estimate 
of a trial’s contribution to test reliability (Guilford, 1954; 
see also White et al, 2021 and Wilmer et al., 2012).

It is also important to note that we did not deliber-
ately select trials that contained rare minutiae as it was 
not feasible for the examiner who collected the stimuli 
to identify all minutiae in each fingerprint (e.g. a single 
fingerprint can contain between 40 and 100 minutiae; 
Zaeri, 2011). We were thus unable to calculate the total 
proportion of all rare and common minutiae contained 
in the fingerprint participants viewed. We instead elected 
to select trials that were most predictive of performance 
(as described above). Nevertheless, the fingerprint trials 
used in the present study did contain rare minutiae—for 
example, the ‘lakes’, ‘fragments’, and ‘dots’ that can be 
seen in Fig. 2 (see also Fig. 3 for additional examples).

Training module
Participants were randomly assigned to either complete 
the statistical feature training module or the control 
training module.

Statistical feature training  Participants completed an 
adaption of the statistical feature training from Growns 
and Martire (2020a, 2020b; see Supplementary Analyses 
on OSF for full transcript) where participants were trained 
to use statistically rare and common features in faces and 

fingerprints. The training was adapted to include real-
world examples of statistical features in faces and finger-
prints and took approximately five and a half minutes to 
complete (M = 339 s, SD = 7 s).

Participants were first asked to imagine they were a 
police officer needing to compare photographs of people 
(Section  1 of the training). They viewed two hypotheti-
cal cases: one where two photographs shared a statisti-
cally rare feature (i.e. a large scar; Case 1), and one where 
two photographs shared a statistically common feature 
(i.e. brunette hair; Case 2). They were asked which case 
was more likely to show the same person (Case 1 or 2) 
and were provided with corrective feedback (Case 1 was 
correct).

In  Section 2 of the training, they were then informed 
that statistically rare features helped in comparison tasks 
and were instructed to use similar rare features in faces 
in their decisions, rather than common features (e.g. bru-
nette hair). They were shown visual examples of rare and 
common features in individual faces (although we used 
the term ‘distinctive’ rather than ‘diagnostic’ to reduce 
jargon in the experiment; see Fig.  3). Statistically rare 
(e.g. moles, scars, crooked noses, dimples, or widow’s 
peaks) and common (e.g. brunette hair) features in faces 
were chosen.

In  Section  3 of the training, participants were then 
informed a similar theory applied for fingerprint compar-
ison and were shown visual examples of different finger-
print features (e.g. bifurcations, enclosures, or dots; see 
Fig. 4). They were instructed to look for and use statisti-
cally rare features in fingerprints in their decisions, rather 
than common features. They were then shown visual 
examples of rare and common features in individual fin-
gerprints (see Fig.  4). Rare (e.g. enclosures or dots) and 
common features (e.g. bifurcations) in fingerprints were 
chosen (see Gutierrez-Redomero et al., 2011; Gutiérrez-
Redomero et al., 2012 for fingerprint minutiae frequency 
data).

Fig. 2  Examples of rare minutiae in the fingerprint comparison task
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Control training  Participants completed a brief conflict 
resolution course as a control training module adapted 
from Towler et  al. (2021). Participants were informed 
about different styles of conflict and strategies for conflict 
resolution. The control training module took approxi-
mately four minutes to complete (M = 244 s, SD = 18 s).

Procedure
Participants completed the experiment via the online 
survey platform Qualtrics (2005). Participants were ran-
domly assigned to training conditions (statistical feature 
or control) and then completed the pre-training face and 
fingerprint comparison tasks in a randomized order. Par-
ticipants completed one set of trials in the pre-training 
phase of the experiment and then completed a different 
set of trials in the post-training phase. All participants in 
both conditions completed the same set of trials in each 
phase to minimize any potential error variance that could 
be introduced by participants completing different tri-
als during different stages of the experiment (see Mollon 
et al., 2017 for discussion, and note our analyses control 
for trial-level variance—see Appendix).

At the beginning of each comparison task, participants 
received brief task instructions and completed two prac-
tice trials where they were given corrective feedback (one 
match and one non-match). Participants in the statisti-
cal feature training condition then completed the train-
ing module (henceforth trained novices), whilst those 
in the control training condition completed the conflict 
resolution module (henceforth untrained novices). There-
after, all participants completed the post-training face 
and fingerprint comparison tasks in a randomized order 
between participants. Upon completion of the compari-
son tasks, participants provided demographic informa-
tion and then viewed a debriefing statement.

Dependent measures
Comparison performance in each task was assessed via 
signal-detection measures of sensitivity (d’) and bias 
(C) (Phillips et  al., 2001; Stanislaw & Todorov, 1999). 
Higher d’ values indicate higher sensitivity to the pres-
ence of a target stimulus, and higher values are typi-
cally interpreted as higher ‘accuracy’ in a task. Positive 
C values indicate an increased tendency to judge stimuli 
pairs as a ‘non-match’, whilst negative C values indicate 
an increased tendency to judge stimuli pairs as a ‘match’. 

Fig. 3  Examples of diagnostic and less diagnostic facial features shown to participants in the statistical feature training module
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Fig. 4  Examples of diagnostic and less diagnostic fingerprint features shown to participants in the statistical feature training module. Note the size 
of these images has been scaled for the manuscript and the images participants viewed were larger
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We also pre-registered analyses examining raw accuracy 
which are reported in Table 1 in Appendix.

Results
We conducted logistic mixed-effects regression mod-
els to explore fingerprint and face comparison using the 
lme4 and lmerTest packages in R (Bates et al., 2014, p. 4; 
Kuznetsova et al., 2017), with the emmeans package used 
to explore any follow-up comparisons (Russell, 2018). We 
predicted sensitivity and response bias from the inter-
action between time (pre-training or post-training) and 
condition (trained novices who received statistical fea-
ture training or untrained novices in the control condi-
tion who received the conflict resolution training), with a 
random effect included for participant (see Fig. 5).

Fingerprint comparison performance
Sensitivity
Trained novices’ (M = 0.92, SD = 0.75) finger comparison 
sensitivity was significantly higher than untrained novices 

(M = 0.37, SD = 0.56; b = 0.37, t(140.80) = 2.71, p = 0.008, 
95% CI[0.10, 0.63]), and there was also a small significant 
increase in all participants’ sensitivity pre-to-post-train-
ing (pre: M = 0.67, SD = 0.64, post: M = 0.68, SD = 0.80; 
b = − 0.19, t(97) = 2.22, p = 0.029, 95% CI[− 0.37, − 0.02]). 
The interaction of interest between time and condition 
was also significant (b = 0.37, t(97) = 3.13, p = 0.002, 95% 
CI[0.14, 0.60]). Trained novices’ sensitivity significantly 
increased pre-to-post-training (pre: M = 0.84, SD 0.71, 
post: M = 1.01, SD = 0.79; t(141) = 5.46, p < 0.001), whilst 
untrained novices significantly decreased (pre: M = 0.47, 
SD = 0.50, post: M = 0.28, SD = 0.61; t(141) = 2.71, 
p = 0.008).

Response bias
The interaction of interest between time and condition 
for fingerprint comparison response bias was signifi-
cant (b = 0.23, t(97) = 3.15, p = 0.002, 95% CI[0.09, 0.37]). 
Trained novices’ response bias significantly shifted posi-
tively pre-to-post-training (pre: M = − 0.08, SD = 0.40, 

Fig. 5  Sensitivity (upper panel) and response bias (lower panel) in the fingerprint (left panel) and face (right panel) comparison tasks by time 
and condition in Experiment 1. Raincloud plots depict (left-to-right) the jittered participants’ averaged data points, box-and-whisker plots, means 
(represented by diamonds) with error bars representing ± 1 SE, and frequency distributions
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post: M = 0.08, SD = 0.38; t(97) = 3.24, p = 0.002), indi-
cating a greater likelihood to say the fingerprints were 
from different people after training, whilst untrained 
novices’ bias did not significantly differ pre-to-post-
training (pre: M = 0.01, SD = 0.42, post: M = − 0.06, 
SD = 0.46; t(97) = 1.31, p = 0.195). The main effects of time 
(b = − 0.07, t(97) = 1.31, p = 0.195, 95% CI[− 0.17, 0.04]) 
and condition (b = − 0.10, t(97) = 1.40, p = 0.256, 95% 
CI[− 0.26, 0.07]) were not significant.

Face comparison performance
Sensitivity
Trained novices’ (M = 2.43, SD = 0.73) face compari-
son sensitivity was significantly higher than untrained 
novices (M = 1.89, SD = 0.89; b = 0.47, t(152.69) = 2.90, 
p = 0.004, 95% CI[1.69, 2.17]). However, the main effect of 
time was not significant (b = -0.08, t(97) = 0.65, p = 0.520, 
95% CI[− 0.31, 0.16]), nor was the interaction of interest 
between time and condition for face comparison sensitiv-
ity (b = 0.13, t(97) = 0.79, p = 0.431, 95% CI[− 0.19, 0.44]). 
This indicates that training had no impact on partici-
pant’s face sensitivity pre-to-post-training.

Response bias
The main effects of time (b = − 0.10, t(148.56) = 1.06, 
p = 0.293, 95% CI[− 0.10, 0.17]) and condition (b = 0.03, 
t(97) = 0.50, p = 0.620, 95% CI[− 0.29, 0.04]) were not 
significant for face comparison response bias, nor was 
the interaction between time and condition (b = − 0.03, 
t(97) = 0.31, p = 0.756, 95% CI[− 0.21, 0.15]). This indi-
cates that training had no impact on participant’s face 
response bias pre-to-post-training.

Discussion
Experiment 1 examined whether statistical feature train-
ing improves novices’ face and fingerprint comparison 
performance. Whilst training was ineffective in improving 
face comparison performance, it did improve fingerprint 
comparison performance. Trained novices’ fingerprint 
comparison performance increased pre-to-post-train-
ing compared to untrained novices overall—whose per-
formance actually decreased pre-to-post-training. This 
decrease in untrained novices’ performance may be due to 
possibly distracting participants by asking them to focus 
on irrelevant information (further investigated in Experi-
ment 2). Nevertheless, trained novices’ performance did 
increase—a performance boost that was largely driven 
by accuracy in non-match trials (see Table 1 and Fig. 10 
in Appendix) and an increased conservatism in their ten-
dency to respond ‘non-match’. Given that the statistical 
feature training module took only five and a half minutes 
to complete, this suggests that this type of training could 

be a fast and effective way to boost performance in new 
fingerprint trainees—particularly on the type of compari-
son that can result in the wrongful conviction of innocent 
people (i.e. non-match errors).

Statistical feature training did not improve novices’ face 
comparison accuracy—on either match or non-match 
trials. This is in contrast to the success of statistical fea-
ture training for fingerprint comparison and to previ-
ous research showing that face comparison is improved 
by focusing on similar diagnostic features derived via 
expert-elicitation methods (Towler et  al., 2021). There 
is some overlap between the diagnostic features used in 
the current statistical feature training (e.g. facial marks 
and scars are featured in statistical feature training in 
Towler et al. (2021)), but also some differences (e.g. ears 
are not in statistical feature training, but are in Towler 
et al., 2021). Different features may be useful in different 
visual comparison tasks. For example, visual cues elicited 
via expert-elicitation methods might be more useful in 
familiar visual tasks (i.e. faces), whilst statistically derived 
methods are more useful in unfamiliar visual tasks (i.e. 
fingerprints).

To explore this possibility, we conducted a pilot experi-
ment where we added a single slide to the training mod-
ule instructing participants to specifically pay attention 
to the expert-derived diagnostic features from Towler 
et al. (2021): ears and facial marks (i.e. scars, freckles, and 
blemishes). Importantly, this training module improved 
both face and fingerprint comparison performance (see 
Pilot Study on OSF for full details). Therefore, it is impor-
tant to ensure that training modules designed to improve 
visual comparison performance include the appropriate 
visual cues that will assist decision-making.

In Experiment 2 , we investigate whether the train-
ing effects observed in Experiment 1  are the result of 
domain-specific (i.e. fingerprint-specific training improv-
ing fingerprint comparison) or domain-combined (i.e. 
face and fingerprint-specific information). As expertise is 
typically regarded as narrow and domain-specific (Chase 
& Simon, 1973; Ericsson et al., 2018) and rarely general-
izes beyond an expert’s domain of experience, we sought 
to investigate whether novices could benefit from only 
domain-specific training, or whether domain-specific 
(i.e. fingerprint) and domain-general (i.e. face) combined 
information is needed to improve performance. To do so, 
we compared the effect of domain-specific training alone 
versus domain-combined training alone on pre-to-post-
performance, compared to control.

Experiment 2
Experiment 2 examined whether the benefit of statisti-
cal feature training modules on novices’ fingerprint com-
parison performance is contingent on the combination of 
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both domain-specific and domain-general statistical fea-
ture information. To assess this, participants were either 
given domain-combined statistical feature training (i.e. 
face and fingerprint information combined; henceforth 
domain-combined trained novices), domain-specific sta-
tistical feature training (i.e. fingerprint information only; 
henceforth domain-specific trained novices) or control 
training (i.e. untrained novices who completed the con-
flict resolution module from Experiment 1).

Design
We used a 3 between (training: absent, domain-com-
bined or domain-specific) × 2 within-subjects (time: pre-
training or post-training) design. The pre-registration 
(including an update to our pre-registration to denote 
the collection of the additional data, data, and analysis 
scripts can be found at https://​osf.​io/​jpxwe/.

Participants
We recruited 348 participants online via Prolific Aca-
demic based on two a priori power analyses as in Experi-
ment 1 for detecting medium effects (f = 0.25) in the 
study design with 80% power, including an additional 10% 
to account for attrition (see below for further discussion 
of data collected at two time periods). Participants were 
required to meet the same selection criteria as in Experi-
ment 1 to be eligible for the study and were not eligible to 
participate if they had completed Experiment 1. Partici-
pants were excluded if they did not correctly pass at least 
two (out of three) attention-check questions (n = 7).

Participants in the final sample (n = 348) were 
32.7 years old on average (SD = 14.0, range = 18–73), and 
the majority (65.80%) self-identified as female (33.05% 
male; 1.15% gender diverse). Each participant was com-
pensated US$3.25 for completing the approximately 
25-min experiment.

Materials and analyses
Participants completed the experiment via the online 
survey platform Qualtrics (2005). Participants completed 
the same pre-training and post-training tasks (n = 40 
trials per task) from Experiment 1. Participants in the 
control condition completed the same conflict resolu-
tion module from Experiment 1, and participants in the 
domain-combined training condition completed the 
entire module from Experiment 1. Participants in the 
domain-specific condition completed an adapted version 
containing only Sections 1 (i.e. the introduction portion) 
and 3 (i.e. the domain-specific portion) from the module 
from Experiment 1.

We collected data over two time periods: the first data 
collection contained participants from the domain-com-
bined and domain-specific training conditions only, and 

the second data collection contained participants from 
all three conditions  (see Pre-Registration on OSF). We 
collected  the additional data from untrained novices in 
the second data collection period to ensure we had an 
appropriate control condition in Experiment 2 and col-
lected additional data in both training conditions at the 
same time so that time period and condition were not 
confounded. We collected participants based on two 
separate power analyses for detecting medium effects in 
each study design at each time point (n = 141 in the 2 × 2 
design and n = 174 in the 3 × 2 design in first and second 
data collection periods, respectively, plus 10% for data 
attrition in each experiment).

To simplify analyses, we pooled the data from the two 
time periods for time periods for analysis and conducted 
further analyses to control for any potential impact of 
sample collected during the first and second data collec-
tion periods on the results. As sample was not significant 
in any of these analyses and the pattern of results was 
consistent between this analysis and the pooled analysis 
(see Supplementary Analyses on OSF), we reported the 
pooled analyses in-text.

We also collected exploratory data in the second 
data collection period to examine whether participants 
reported using the statistical feature strategy during the 
post-training task. The majority of participants in both 
training conditions found the statistical feature strat-
egy helpful (domain-specific 87.10%, domain-combined: 
88.71%, whilst the majority in the control condition 
reported that conflict resolution training was not helpful 
(55.56%; see Supplementary Analyses on OSF).

Procedure
Participants were randomly assigned to training condi-
tions (control, domain-specific, or domain-combined), 
received brief instructions, and then completed the 
pre-training fingerprint comparison task including the 
two practice trials from Experiment 1. Participants then 
completed the training module relevant to their con-
dition and subsequently the post-training fingerprint 
comparison task. Thereafter, all participants completed 
the post-training fingerprint comparison task, provided 
demographic information, and then viewed a debriefing 
statement.

Results and discussion
Fingerprint comparison performance
We conducted linear mixed-effect models on fingerprint 
comparison sensitivity and response bias from the inter-
action between time (pre-training or post-training) and 
condition (untrained novices, domain-combined trained 
novices, or domain-specific training novices), with a ran-
dom effect included for participant (see Fig. 6). We also 

https://osf.io/jpxwe/
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conducted analyses with sample included as a fixed effect 
and it was not significant in either analysis, and the pat-
tern of results in this analysis was consistent with those 
reported in text (see Supplementary Analyses on OSF). 
We also pre-registered analyses examining raw accuracy 
which are reported in Table 2 in Appendix.

Sensitivity
The interaction between time and condition (untrained 
and domain-specific trained novices) was significant 
(b = 0.21, t(344) = 2.13, p = 0.034, 95% CI[0.02, 0.40]) 
such that domain-specific trained novices significantly 
improved pre-to-post-training (pre: M = 0.80, SD = 0.62; 
b = − 0.20, t(344) = 3.73, p < 0.001), but untrained nov-
ices did not (pre: M = 0.76, SD = 0.63, post: M = 0.75, 
SD = 0.72; b = 0.01, t(344) = 0.07, p = 0.943). The interac-
tion between time and condition (untrained and domain-
combined trained novices) was also significant (b = 0.20, 
t(344) = 2.01, p = 0.046, 95% CI[0.01, 0.39]) such that 
domain-specific trained novices significantly improved 
pre-to-post-training (pre: M = 0.78, SD = 0.62; b = − 0.19, 
t(344) = 3.51, p = 0.001), compared to untrained novices.

The main effects of time (b = 0.01, t(344) = 0.07, 
p = 0.943, 95% CI[− 0.17, 0.22]) and condition were not 
significant (post-domain-specific: b = 0.04, t(541.97) = 0.42, 
p = 0.672, 95% CI[− 0.15, 0.24]; post-domain-combined: 
b = 0.02, t(541.97) = 0.21, p = 0.836, 95% CI[− 0.17, 0.22]).

Response bias
The main effects of time (b < − 0.01, t(344) = 0.04, p = 0.967, 
95% CI[− 0.09, 0.09]) and condition were not significant 
(post-domain-specific: b = − 0.07, t(541.73) = 1.30, p = 0.193, 
95% CI[− 0.12, 0.07]; post-domain-combined: b < 0.01, 
t(541.73) = 0.02, p = 0.985, 95% CI[− 0.19, 0.04]). The inter-
actions between time and condition were also not sig-
nificant (post-domain-specific: b = 0.10, t(344) = 1.72, 
p = 0.086, 95% CI[− 0.01, 0.20]; post-domain-combined: 
b = 0.08, t(344) = 1.44, p = 0.152, 95% CI[− 0.03, 0.19]).

These results are consistent with Experiment 1: domain-
combined training improves novices’ fingerprint com-
parison sensitivity—an effect that is due to an increase in 
accuracy on non-match trials only (see Table 2 and Fig. 11 
in Appendix). Experiment 2 also extended these results to 
reveal that domain-specific (i.e. fingerprint only) informa-
tion is sufficient to also increase sensitivity via an improve-
ment on non-match accuracy trials. It is important to note 
that we also did not see any decrease in our control condi-
tion in Experiment 2—indicating that the decrease seen in 
Experiment 1 may be spurious or due to the pre-existing 
differences between groups seen in this experiment. In 
sum, it is likely that conflict resolution training does not 
decrease fingerprint comparison performance.

In Experiment 3, we investigate whether statistical fea-
ture training can also improve the performance of prac-
tising fingerprint examiners. This is important as there is 
limited research about effective perceptual training pro-
grams in professional domains. We further investigate 
the impact of training content on fingerprint comparison 
performance by comparing the impact of domain-spe-
cific (i.e. fingerprint only) and domain-general (i.e. face 
only) training between novices and fingerprint examiners 
to investigate whether domain-general information can 
generalize to increase performance. If statistical feature 
training does improve performance, we would observe 
examiners’ performance improving pre-to-post-training 
(either domain-specific or domain-general). Conversely, 
examiners may already possess and rely on statistical 
information to facilitate their work and thus we could 
also observe no improvement from pre-to-post-training.

Experiment 3
Experiment 3 examined the benefit of statistical feature 
training on examiners’ and novices’ fingerprint compari-
son performance. We were also interested in whether 

Fig. 6  Sensitivity (upper panel) and response bias (lower panel) in 
the fingerprint comparison task by time and condition in Experiment 
2. Raincloud plots depict (left-to-right) the jittered participants’ 
averaged data points, box-and-whisker plots, means (represented 
by diamonds) with error bars representing ± 1 SE, and frequency 
distributions
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the domain-general (i.e. face only) or domain-specific 
(i.e. fingerprint only) training section of the statistical 
feature training module enhanced fingerprint-matching 
performance.

Method
Design
We used a 2 between-subjects (group: novices or examin-
ers) × 3 within-subjects (time: pre-training, post-domain-
specific training, or post-domain-general training) mixed 
design (see    Fig. 7). The pre-registration, data, and anal-
ysis scripts can be found at https://​osf.​io/​jpxwe/.

Participants
Fifty-two fingerprint examiners were recruited via 
a snowball-sampling method, and 52 novices were 
recruited from Prolific Academic. The sample size was 
determined by the number of fingerprint examiners 
recruited during our pre-registered time period for data 
acquisition and the subsequent sample-size-matched 
group of novices.

Initially, 95 participants were recruited through a 
snowball-sampling method via emails sent to forensic 
organizations and mailing lists. Based on our pre-reg-
istered criteria, all forensic practitioners who reported 
that fingerprint examination was not their primary 
area of training or specialization were excluded from 
the study (n = 40). These participants were excluded 
to ensure the homogeneity of the practitioner sample. 
Three additional participants were also excluded from 
the study as they reported having zero years’ experi-
ence (n = 2) or did not provide any information on their 
professional qualifications or practice to classify them 
as a fingerprint examiner (n = 1).

We then recruited the same number of novices 
(n = 52) via Prolific Academic who were required to 

meet the same criteria to qualify for the study as in 
Experiment 1.

Fingerprint examiners in the final sample (n = 52) were 
43.3  years of age on average (SD = 9.16, range = 27–67) 
and about half reported they were male (53.9%; 
female = 44.2%, and gender diverse = 1.9%). Fingerprint 
examiners self-reported an average of 13.2 years profes-
sional experience (SD = 7.79, range = 1.5–37), having 
written an average of 1,147 court reports over the past 
ten years (SD = 1,858, range = 0–10,000), and the major-
ity reported working for a police forensic laboratory 
(67.3%), 28.8% for a government forensic institution, 1.9% 
for a private forensic laboratory, and 1.9% for a university.

Novices in the final sample (n = 52) were 36.4 years of 
age on average (SD = 9.94, range = 21–69), and about 
half reported they were female (53.9%; 46.2% male). No 
participants from either sample failed our pre-regis-
tered attention-check criteria of not correctly answer-
ing three (out of four) attention-check questions.

Novices were paid $4.87 for participation in the 
approximately 45-min study, and examiners were not 
paid for their involvement. To motivate performance, 
all participants had the chance to win one of ten 
US$500 VISA gift cards that were awarded to the top 
ten performers across all tasks.

Materials
Fingerprint comparison task
The fingerprint comparison trials from previous experi-
ments were used, and we also added extra trials to 
create three fingerprint tasks for  the pre-training, post-
domain-general training, and post-domain-specific train-
ing phases with equal numbers of trials in each. To do so, 
we divided the trials from Experiment 1 (n = 80) and 10 
additional trials (the 10 next highest item-to-test corre-
lations from the Growns and Kukucka (2021) pilot data; 
Guilford (1954); see also White et al. (2021) and Wilmer 

Randomised Order

Pre-Training Fingerprint 
Comparison Task

Domain-General 
Training

↓

Post-Training 
Fingerprint Comparison 

Task

Domain-Specific 
Training

↓

Post-Training 
Fingerprint Comparison 

Task

Fig. 7  Procedure of tasks in Experiment 3

https://osf.io/jpxwe/
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et al. (2012) into three equally difficult tasks (N = 90; 30 
trials per task). It is important to note that the rare minu-
tiae may not have occurred in this task at the exact same 
frequencies as they do in the general population (e.g. 
Gutierrez-Redomero et  al., 2011; Gutiérrez-Redomero 
et  al., 2012). However, examiners may already have 
some underlying sense of these base rates as research 
demonstrates that fingerprint examiners can estimate 
the frequency of fingerprint stimuli better than novices 
(Growns et al., 2022; Mattijssen et al., 2020).

Training module
Participants in the domain-specific training condition 
completed the domain-specific training from Experi-
ment 2 (i.e. the introduction Section 1 and the domain-
specific Section 3 from Experiment 1). Participants in the 
domain-general training condition completed an adapted 
version of the training in Experiment 1   containing only 
the introduction Sections  1 and the domain-general 
Section 2.

Procedure
All participants completed the experiment via Qualtrics 
(2005). They first provided brief demographic and pro-
fessional practice information, received brief instruc-
tions, and then completed the pre-training fingerprint 
comparison task including the two practice trials from 
Experiment 1. Participants then completed two training 
modules, the domain-specific training (i.e. fingerprint-
training) and the domain-general training (i.e. face-
training), which were each proceeded by a post-training 
fingerprint comparison task. The order that these two 
training modules and the post-training fingerprint com-
parison task were completed was randomized. Finally, 
participants answered questions about their use of 
feature-comparison techniques in their work and were 
debriefed.

Results and discussion
We conducted linear mixed-effect models on finger-
print comparison sensitivity and bias from the interac-
tion between time (post-domain-general training or 
post-domain-specific training, with pre-training as the 
reference category) and group (examiners or trained nov-
ices), with a random effect included for participant (see 
Fig. 8). As per our pre-registered analyses, we also con-
ducted models with order of training (domain-specific 
or domain-general first) included as a fixed factor, but 
it was not significant in either model, and the pattern of 
results in this analysis was consistent with those reported 
in-text (see Supplementary Analyses on OSF). We also 
pre-registered analyses examining raw accuracy which 
are reported in Table 3 in Appendix. We also conducted 

exploratory analyses excluding trials with extreme values 
for any potential impact on our results but note that the 
pattern of results does not differ between these analyses 
(see Supplementary Analyses on OSF).

Fingerprint comparison performance
Sensitivity Fingerprint examiners’ (M = 3.08, SD = 0.49) 
finger comparison sensitivity was significantly higher 
than trained novices (M = 0.68, SD = 0.80; b = 2.34, 
t(172.17) = 18.16, p < 0.001, 95% CI[2.09, 2.69]), and 
the interaction between time (pre-training and post-
domain-specific) and group was also significant (b = 0.35, 
t(204) = 3.16, p = 0.002, 95% CI[0.13, 0.57]). Examiners’ 
sensitivity significantly increased pre-to-post after receiv-
ing domain-specific training (pre: M = 3.03, SD = 0.46, 
post: M = 3.30, SD = 0.45; t(204) = 3.39, p = 0.003), whilst 
trained novices’ sensitivity did not significantly differ 
pre-to-post-domain-specific training (pre: M = 0.69, 
SD = 0.69, post: M = 0.60, SD = 0.88; t(204) = 1.08, 
p = 0.527).

The interaction between time (pre-training and post-
domain-general training) and group was not significant 
(b = − 0.19, t(204) = 1.66, p = 0.099, 95% CI[− 0.41, 0.03]), 
nor were the main effects of time (post-domain-general 
training: b = 0.08, t(204) = 0.98, p = 0.327, 95% CI[− 0.08, 
0.23]; post-domain-specific: b = − 0.09, t(204) = 1.08, 
p = 0.281, 95% CI[− 0.24, 0.07]).

These results suggest fingerprint examiners signifi-
cantly outperformed novices and that domain-specific 
training improved fingerprint examiners’ performance—
but not novices. However, domain-general training did 
not significantly improve either examiners’ or novices’ 
performance.

Response bias
Fingerprint examiners’ (M = 0.21, SD = 0.25) finger-
print response bias was significantly higher than trained 
novices (M = − 0.01, SD = 0.41; b = 0.25, t(205.39) = 3.12, 
p = 0.002, 95% CI[0.08, 0.33]). The main effect of time 
(post-domain-specific training) was also significant 
such that on average, bias towards conservatism signifi-
cantly increased pre-to-post after receiving domain-spe-
cific training (pre: M = 0.08, SD = 0.33, post: M = 0.09, 
SD = 0.33; b = 0.09, t(204) = 2.06, p = 0.040, 95% CI[0.01, 
0.19]), but not after receiving domain-general train-
ing (b = 0.− 0.18, t(204) = 0.38, p = 0.707, 95% CI[− 0.11, 
0.07]).

The interaction between time (pre-training and post-
domain-general training) and group was also significant 
(b = 0.16, t(204) = 2.42, p = 0.016, 95% CI[0.03, 0.29]). 
Examiners’ bias significantly shifted more conserva-
tively pre-to-post after receiving domain-general train-
ing (pre: M = 0.12, SD = 0.26, post: M = 0.32, SD = 0.23; 
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t(204) = 3.05, p = 0.007), whilst novices did not signifi-
cantly differ pre-to-post-domain-general training (pre: 
M = − 0.03, SD = 0.36, post: M = − 0.05, SD = 0.45; 
t(204) = 0.38, p = 0.925). Whilst the interaction between 
time (pre-training and post-domain-specific training) 
and group was also significant (b = − 0.15, t(204) = 2.34, 
p = 0.020, 95% CI[− 0.28, − 0.03]), neither of the follow-
up comparisons were significant (novices: t(204) = 2.06, 
p = 0.100; examiners: t(204) = 1.25, p = 0.426). These 
results suggest that examiners displayed a tendency to 
respond ‘non-match’ more than novices (even increas-
ing after domain-general training), and all participants’ 
response bias also shifted pre-to-post-domain-specific 
training but not after domain-general training.

We also conducted an exploratory analysis of the total 
time taken to complete the experiment between nov-
ices and examiners. We did so to explore whether this 
could be a potential explanation for the differences seen 
between the groups. We did not collect trial-level time 
data as response latencies can be unreliable and difficult 
to measure via online platforms like Qualtrics (Barn-
hoorn et  al., 2015; Keller et  al., 2009), and it was not 
the primary research question of interest in the present 
study. However, we did collect data on the total time 
taken to complete the survey. We, therefore, conducted 
a linear regression model to predict the time taken to 
complete the survey from group (novices or examiners) 
in a linear regression model. The time taken to complete 

Fig. 8  Sensitivity (upper panel) and response bias (lower panel) in the fingerprint comparison task by time and group in Experiment 3. Raincloud 
plots depict (left-to-right) the jittered participants’ averaged data points, box-and-whisker plots, means (represented by diamonds) with error bars 
representing ± 1 SE, and frequency distributions
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the survey did not significantly differ between groups 
(b = 24,862, t(102) = 1.91, p = 0.060).

Overall, Experiment 3 found that domain-specific sta-
tistical feature training improved fingerprint examiners’ 
comparison sensitivity—specifically on match trials (see 
Table 3 in Appendix). It is possible that fingerprint exam-
iners’ non-match accuracy cannot be further improved 
by training as fingerprint examiners already perform 
exceptionally well on non-match trials (Thompson & 
Tangen, 2014). Further, fingerprint examiners’ response 
bias was generally more conservative than novices. This 
is consistent with previous research demonstrating that 
forensic science practitioners do typically have a more 
conservative response style than novices (Manner-
ing et  al., 2021; Towler et  al., 2018; although note that 
accuracy is optimized when response bias is neutral). 
Domain-specific training did not shift either novices’ or 
examiners’ response bias, but domain-general training 
further increased examiners’ conservative response bias 
(although this did not have any corresponding shift in 
sensitivity).

However, training did not improve novices’ perfor-
mance-which is inconsistent with the results of Experi-
ments 1 and 2. To resolve this discrepancy, we pooled 
together the data from Experiments 1–3 and conducted 
an analysis of the data from all the experiments to exam-
ine the weight of evidence supporting the benefit of 
domain-specific and domain-combined training.

Exploratory meta‑analyses of experiments 1–3
Given the differences between the efficacy of training for 
novices in Experiment 3 and the first two experiments, 
we aimed to formalize the level of support for the impact 
of domain-specific and domain-combined training on 
novices’ performance. To do so, we pooled together the 
data from all the experiments and conducted a meta-
analysis comparing the pre-to-post-training effects: 1) 
novices who received domain-combined training (Exper-
iments 1 and 2; N = 213) and 2) novices who received 
domain-specific training (Experiments 2 and 3; N = 165). 
Note that we only included novices from Experiment 3 
in the meta-analysis that completed the domain-specific 
training first.

Given these three experiments examined the same 
hypothesis (i.e. the impact of training on pre-to-post-fin-
gerprint performance) and recorded standardized meas-
ures of d’, we were able to observe the cumulative effect 
of training on each group across experiments. To do so, 
we conducted a Bayesian analysis with default Cauchy 

priors to examine the likelihood of the data under the 
null hypothesis (i.e. no difference in performance pre-
to-post-training) compared to the alternative hypothesis 
(i.e. an increase in performance pre-to-post-training).

The cumulative support for the hypothesis that per-
formance improved pre-to-post-domain-combined 
training compared to the null hypothesis, as each par-
ticipant was added to the analysis, can be seen in Fig. 8. 
There was support in favour of the hypothesis that both 
domain-combined (BF10 = 296.00) and domain-specific 
(BF10 = 39.47) training improved novices’ performance 
(see Fig.  9)—providing decisive support for the former 
and very strong support for the latter (Wetzels et  al., 
2011). This indicates the data observed across Experi-
ments 1 and 2 were 296 times more likely to occur in the 

Fig. 9  Accumulated evidence for/against the one-tailed hypothesis 
that fingerprint comparison sensitivity improves pre-to-post-training 
for novices who received domain-specific training (upper panel) or 
domain-combined training (lower panel)
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case that domain-combined fingerprint comparison sen-
sitivity improved pre-to-post-training and 40 times more 
likely to occur in the case that domain-specific training 
also improved sensitivity, than if there was no perfor-
mance difference pre-to-post-training.

Overall, these results provide support for the conclu-
sion that both domain-specific and domain-combined 
training improves novices’ fingerprint comparison per-
formance. It is possible that the inconsistency in novices’ 
performance between Experiments 2 and 3 is spurious 
or due to an underpowered sample in the novice group 
in ‘Experiment 3’  (N = 52), compared to Experiment 3 
(N = 143).

General discussion
In this paper, we presented the results from three experi-
ments that investigated whether statistical feature train-
ing improves the fingerprint comparison performance 
of novices and professional fingerprint examiners. In 
contrast to expert-elicited perceptual training that has 
previously been successful in increasing performance 
in visual decision-making tasks (Biederman & Shiffrar, 
1987; Towler et al., 2021), we investigated the benefit of 
perceptual training derived from mathematical theory: 
training individuals to use statistically diagnostic features 
in visual comparison as statistically rare features provide 
important diagnostic information.

We found that statistical feature training improved 
both novice and professional performance in fingerprint 
comparison. The meta-analysis of the pooled data across 
experiments revealed that both domain-combined and 
domain-specific training improved fingerprint compari-
son performance—and both modules improved novices’ 
performance to a similar degree (domain-combined: 9.5% 
averaged over Exps. 1 and 2; and domain-specific 9.0% 
in Exp. 2; see Tables 1, 2 and 3 in Appendix). And whilst 
training improved novices’ non-match accuracy, domain-
specific training resulted in a smaller but nevertheless 
important 4.3% increase in examiners’ match accuracy. 
Although examiners’ performance boost was smaller 
than novices, this increase could nevertheless result in 
avoiding important potential errors in practice (e.g. 4 out 
of 100 decisions). These results also suggest that domain-
specific training may be sufficient to increase perfor-
mance without the domain-general (i.e. face information) 
portion of the module.

Our results also revealed that training impacted nov-
ices’ and examiners’ performance in qualitatively dif-
ferent ways. Whilst statistical feature training improves 
both novices’ and examiners’ overall sensitivity, this 

performance increase was driven by an increase in nov-
ices’ non-match accuracy but an increase in examiners’ 
match accuracy (see Tables 1, 2 and 3 in Appendix). This 
differential impact may not be surprising given that pre-
vious research has demonstrated that there is a limited 
relationship between individual performance in match 
and non-match trials (Megreya & Burton, 2007). It is 
also consistent with research demonstrating that similar 
training improves only novices’ non-match accuracy in 
face comparison (Towler et  al., 2021). Statistical feature 
training may differentially sensitize novices and examin-
ers to the relative similarity and dissimilarity of features 
that are diagnostic of same or different source exemplars. 
However, it is also possible that we did not observe any 
impact of training on examiners’ non-match accuracy 
due to ceiling effects as professional examiners typically 
already have very high non-match accuracy (Thompson 
& Tangen, 2014; see also Table 3 and Fig. 12 in Appen-
dix). Nevertheless, statistical feature training does 
improve both novice and professional fingerprint com-
parison performance.

These results are also consistent with previous research 
demonstrating that training novices to focus on diag-
nostic features in visual decision-making can improve 
task-specific performance (Biederman & Shiffrar, 1987; 
Towler et al., 2021). They are further consistent with pre-
vious research demonstrating that instructing novices to 
focus on statistically diagnostic features can improve vis-
ual comparison performance (Growns & Martire, 2020a). 
Developing perceptual training via expert-elicitation 
methods requires a significant investment of time and 
effort. In contrast, statistically derived methods provide 
a new and efficient way of developing perceptual training 
in domains where statistical databases exist. Although 
such databases are only beginning to emerge in some 
domains (particularly in forensic science; Growns & Mar-
tire, 2020b; Growns et al., under review; Mnookin, 2008), 
this method of developing perceptual training provides 
an important and efficient avenue for future research.

Given that our perceptual training module takes only 
five and a half minutes to complete, this could also pro-
vide an efficient and cost-effective way to improve the 
professional performance of both new fingerprint train-
ees and existing practitioners. Further, as existing practi-
tioners’ performance improved after training, this is also 
something that could be implemented in current practice 
to improve performance. Whilst research into the efficacy 
of existing forensic training is only beginning to emerge 
in some disciplines (e.g. facial examination Towler et al., 
2019), no research has yet investigated this in fingerprint 
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analysis. It is therefore not known whether existing train-
ing improves professional performance or the content of 
such training. It is possible that existing training does not 
include information on the relationship between statisti-
cal frequency and diagnosticity—and why our training 
improved professionals’ fingerprint comparison perfor-
mance. Nevertheless, it provides a possible resource that 
could be used to improve the professional performance 
of fingerprint examiners—possibly by inclusion with reg-
ular ‘refresher’ training (e.g. Ludwig & Fraser, 2014; Men-
nell, 2006).

However,  future research must  replicate and further 
investigates the impact of such training on fingerprint 
comparison performance. One limitation of the present 
studies is that we had a restricted database of stimuli to 
test the efficacy of training. The magnitude of the train-
ing efficacy effect is contingent upon the stimuli used 
(see Towler et al., 2021 for similar results in face compar-
ison)—and even what exemplars experience in casework. 
This technique is therefore most useful when fingerprints 
contain rare minutiae and is likely less effective in situa-
tions where they are not visible—but it is important to 
note that any boost in performance has the potential to 
reduce important real-world errors.

Our results also provide some support for the role of 
two distinct cognitive processes that lead to expertise in 
fingerprint identification (see Towler et al., 2021 for simi-
lar discussion in face identification). Previous research 
has largely posited that fingerprint expertise largely relies 
on non-analytical and holistic processing where examin-
ers quickly and automatically make decisions (Busey & 
Vanderkolk, 2005; Growns & Martire, 2020b; Searston & 
Tangen, 2017; Thompson & Tangen, 2014). This hypoth-
esis is largely  based on research showing that examin-
ers have  higher fingerprint comparison performance in 
time-limited conditions (e.g. 2-s) than novices (Busey 
et  al., 2016; Thompson & Tangen, 2014)—providing 
support for quick and automatic processing. However, 
examiners also show a greater advantage than novices 
when given more time to make decisions  (Thompson & 
Tangen, 2014) and thus have the potential to engage ana-
lytical processing. Similar effects are also seen with other 
forensic science examiners (i.e. facial examiners; Towler 
et al., 2017, 2021). Unfortunately another limitation of the 
present studies is that we were unable to collect trial-level 

response latency data,  and we cannot directly determine 
whether training increased time taken to compare fin-
gerprints pre-to-post-training  (and thus opportunity to 
engage analytical processing). Nevertheless, the results 
from these studies suggest that  featural, analytical pro-
cessing could play an important role in fingerprint exper-
tise. It will be important for future research to continue 
to investigate the relative contribution of analytical and 
non-analytical processing in forensic science expertise.

Overall, the studies reported here provide the first 
evidence for training that can improve both novices’ 
and professional fingerprint examiners’ comparison 
performance. It demonstrates that this improvement is 
achieved in qualitatively different ways between nov-
ices and professionals—improving novices’ non-match 
accuracy but examiners’ match accuracy. These results 
have important implications for the professional prac-
tice of fingerprint examiners and after demonstrat-
ing a benefit to existing experts and already provide a 
new resource to improve professional performance. 
They also have important theoretical implications 
for research investigating the cognitive mechanisms 
underpinning forensic science expertise and routes for 
how this expertise develops. Further research needs to 
examine whether similar statistical feature-based train-
ing modules can be derived for other forensic compari-
son domains (e.g. document or ballistics analysis), as 
well as other domains where this technique could be 
useful (e.g. radiology or banknote security; see van der 
Horst et al. (2021)).

Appendix
Analyses below were logistic mixed-effects regression 
models to explore fingerprint comparison accuracy 
separately on match and non-match trials using the 
lme4 and lmerTest packages in R, with the emmeans 
package used to explore any follow-up comparisons. 
We predicted raw accuracy at the trial level from the 
interaction between time (pre-training or post-train-
ing) and condition (relevant to each experiment), with 
random effects included for participant and trial which 
allows values to vary between participants and stimuli 
(Judd et al., 2012).
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See Table  1

Table 1  Means, standard deviations (in brackets), and analyses on match and non-match trials pre-training and post-training between 
conditions in Experiment 1

Match trial means Non-match trial means

Fingerprint task Pre-training Post-training Pre-training Post-training

Untrained novices 0.59 (0.49) 0.57 (0.50) 0.59 (0.49) 0.53 (0.50)

Trained novices 0.65 (0.48) 0.67 (0.47) 0.61 (0.49) 0.69 (0.40)

Face task Pre-training Post-training Pre-training Post-training

Untrained novices 0.82 (0.38) 0.80 (0.40) 0.76 (0.43) 0.77 (0.42)

Trained novices 0.90 (0.30) 0.90 (0.30) 0.81 (0.40) 0.81 (0.39)

b t p 95% CI

Fingerprint comparison analysis (match trials)

Condition 0.45 20.42 0.016 [0.09, 0.81]

Time 0.06 0.17 0.867 [− 0.62, 0.73]

Condition* time 0.03 0.19 0.854 [− 0.27, 0.32]

Fingerprint comparison analysis (non-match trials)

Condition 0.88 40.61 < 0.001 [0.51, 1.26]

Time 0.34 10.07 0.284 [− 0.28, 0.97]

Condition* time − 0.74 40.98 < 0.001 [− 1.03, − 0.45]

Face comparison analysis (match trials)

Condition 0.96 30.60 < 0.001 [0.44, 1.48]

Time 0.15 0.66 0.509 [− 0.30, 0.61]

Condition* time − 0.16 0.20 0.432 [− 0.54, 0.23]

Face comparison analysis (non-match trials)

Condition 0.29 1.16 0.245 [− 0.20, 0.79]

Time < 0.01 < 0.01 0.999 [− 0.50, 0.50]

Condition* time − 0.03 0.160 0.873 [− 36, 0.31]
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See Fig. 10

See Table  2

Fig. 10  Fingerprint (upper panel) and face (lower panel) match and non-match accuracy pre-to-post-training between untrained and trained 
novices in Experiment 1

Table 2  Means, standard deviations (in brackets), and analyses on match and non-match trials pre-training and post-training between 
conditions in Experiment 2

Match trial means Non-match trial means

Pre-training Post-training Pre-training Post-training

Untrained novices 0.64 (0.48) 0.64 (0.48) 0.63 (0.48) 0.62 (0.49)

Trained novices (Specific) 0.67 (0.47) 0.68 (0.47) 0.61 (0.49) 0.67 (0.49)

Trained novices (Combined) 0.64 (0.48) 0.64 (0.48) 0.63 (0.48) 0.68 (0.47)

b t p 95% CI

Match trial analysis

Condition (Specific) 0.20 1.53 0.125 [− 0.05, 0.45]

Condition (Combined) 0.05 0.41 0.684 [− 0.20, 0.30]

Time − 0.07 0.18 0.859 [− 0.80, 0.67]

Condition (Specific) * time − 0.03 0.22 0.824 [− 0.25, 0.20]

Condition (Combined) * time − 0.03 0.26 0.797 [− 0.25, 0.20]

Non-match trial analysis

Condition (Specific) 0.24 1.79 0.735 [− 0.02, 0.51]

Condition (Combined) 0.32 2.38 0.017 [0.06, 0.51]

Time 0.06 0.20 0.840 [− 0.56, 0.69]

Condition (Specific) * time − 0.30 2.69  = 0.007 [− 0.54, − 0.08]

Condition (Combined) * time − 0.32 2.91  = 0.004 [− 0.52, − 0.08]
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See Fig. 11

See Table 3

Fig. 11  Fingerprint match and non-match accuracy pre-to-post-training between untrained novices, domain-specific trained novices, and 
domain-combined trained novices in Experiment 2

Table 3  Means, standard deviations (in brackets) and analyses on match and non-match trials pre-training and post-training between 
groups in Experiment 3

Match trial means Non-match trial means

Pre-training Post-specific training Post-general training Pre-training Post-specific training Post-general training

Trained novices 0.64 (0.48) 0.58 (0.49) 0.65 (0.48) 0.61 (0.49) 0.62 (0.49) 0.61 (0.49)

Fingerprint examiners 0.90 (0.30) 0.94 (0.24) 0.86 (0.24) 0.97 (0.17) 0.99 (0.11) 0.99 (0.10)

b t p 95% CI

Match trial analysis

Time (Post-specific training) − 0.27 0.65 0.515 [− 1.07, 0.54]

Time (Post-general training) 0.09 0.21 0.834 [− 0.72, 0.89]

Group 1.97 9.63 < 0.001 [1.57, 2.38]

Time (Specific) * group 1.09 4.45 < 0.001 [0.61, 1.56]

Time (General) * group − 0.51 2.50 0.013 [− 0.92, − 0.11]

Non-match trial analysis

Time (Post-specific training) 0.08 0.27 0.788 [− 0.52, 0.69]

Time (Post-general training) 0.02 0.07 0.945 [− 0.58, 0.62]

Group 3.88 11.21 < 0.001 [3.20, 4.56]

Time (Specific) * group 0.66 1.57 0.117 [− 0.16, 1.48]

Time (General) * group 0.95 2.12 0.034 [0.07, 1.83]
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