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Abstract

This thesis revisits the topic of unitals in finite projective planes. A unital U in a projective
plane of order q2 is a set of q3 + 1 points, such that every line meets U in one or q+ 1 points.
Unitals are an important class of point-set in finite projective planes, whose combinatorial
and algebraic properties have been the subject of considerable study.

In this work, we summarise, revise, and extend contemporary research on unitals. Chap-
ter 1 covers the necessary prerequisites to study unitals and related objects in finite geometry.
In Chapter 2, we focus on Buekenhout-Tits unitals and answer some open problems regarding
their equivalence, stabilisers and feet. The results presented in Chapter 2 are also available in
a preprint paper [22]. Following this, Chapter 3 summarises recent results on Buekenhout-
Metz unitals, and presents a small result on the intersection of ovoidal-Buekenhout-Metz
unitals and Buekenhout-Metz unitals. Chapter 4 highlights Kestenband arcs and their re-
lationship to Hermitian unitals, and makes explicit a proof of their equivalence. Finally in
Chapter 5, we review our understanding of Figueroa planes. Beyond describing ovals and
unitals in Figueroa planes, we also suggest generalisations of their constructions to semi-ovals.
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Chapter 1

Background

1.1 Foreword

This thesis contains a number of results, both known and novel, as well as some known results
for which we present a novel proof. To distinguish novel theorems, anything presented as
a “Result” is known to the literature (see for example Result 1.1). By contrast, lemmas,
theorems and corollaries are always novel results (e.g. Theorem 2.3). Where a proof is novel
(or significantly clarified), but the result is known, we preface the proof with “Proof*” (see
for example Result 4.13).

1.2 Preliminaries

The reader is assumed to be familiar with the basic definitions and results of group theory
and field theory (for a reference see [31]). In this section, we highlight the key results we
make use of repeatedly.

Given a group G with binary operation · and set X, together with a binary operation
∗ : G×X → X, we call ∗ a group action of G on X if

1. for all x ∈ X we have e ∗ x = x,

2. for all a, b ∈ G and x ∈ X, the operation ∗ satisfies a ∗ (b ∗ x) = (a · b) ∗ x.

We may then define the orbit of G on x ∈ X as Gx = orbG(x) = {a∗x | a ∈ G}, and similarly
the stabiliser of x ∈ X asGx = stabG(x) = {a ∈ G | a∗x = x}. The Orbit-Stabiliser Theorem
relates the orbit of an element to its stabiliser.

Result 1.1 (Orbit-Stabiliser Theorem). Let G be a finite group acting on a set X. Then
for any element x ∈ X

|G| = | orbG(x)|| stabG(x)|. (1.1)

9
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Let G be a group acting on a set X. If for all x, y ∈ X, there exists an element ϕ ∈ G such
that ϕ∗x = y then we call G a transitive group action on x. If the element ϕ ∈ G mapping to
x to y is unique, then we say G is sharply transitive on X, or that G acts regularly on X. If
for two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of elements in X, there exists an element
ϕ ∈ G such that (ϕ ∗ x1, ϕ ∗ x2, . . . , ϕ ∗ xn) = (y1, y2, . . . , yn), then we call G n-transitive on
X. We may naturally extended the definition of sharply transitive, to sharply n-transitive.

Given two subgroups H,K of a group G, we call H conjugate to K if there exists an
element x such that xHx−1 = {xhx−1 |h ∈ H} = K. Conjugacy forms an equivalence
relation on subgroups of G. Similarly an element x ∈ G is conjugate to y ∈ G if there exists
an element a such that axa−1 = y. Conjugacy of elements forms an equivalence class on
G and the equivalence classes are referred to as conjugacy classes. Conjugate elements and
subgroups are relevant in the study of group actions, as the following result demonstrates.

Result 1.2. Let G be a group acting on a set X. If x, y ∈ X and there exists an element
ϕ ∈ G such that ϕ ∗ x = y then stabG(x) = ϕ stabG(y)ϕ−1.

We can also view conjugacy as a group action on elements (or subgroups) of G, that is
the group action ϕ ∗ x = ϕxϕ−1. In this context the normaliser of an element x ∈ G is the
stabiliser of x under the conjugacy group action.

Let G be a group. Then, the centre of G, denoted Z(G) is the set of all elements x such
that xy = yx for all y ∈ G; that is the centre of G is the set of elements that commute with
all members of G. For a specific element x ∈ G, the centraliser C(x) is the set of elements
in G commuting with x. The definition of centraliser naturally extends to the centraliser of
a subgroup H of G, we denote the centraliser of H as C(H).

The Sylow theorems concern the existence, conjugacy and size of prime power order
subgroups of finite groups.

Result 1.3 (Sylow’s First Theorem). Let G be a finite group of order n and let p be a prime
such that p|n. If k is the largest integer such that pk|n, then there exists a subgroup H of G
having order pk, called a Sylow p-subgroup.

Result 1.4 (Sylow’s Second Theorem). Let G be a finite group of order n and p be a prime
such that p|n. Then the Sylow p-subgroups of G are conjugate.

Result 1.5 (Sylow’s Third Theorem). Let G be a finite group of order n and p be a prime
such that p|n and write n = pkm where p - m. If N is the number of Sylow p-subgroups of
G, then:

1. the number of Sylow p-subgroups divides m;

2. we have N ≡ 1 mod p;
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3. if NG(S) is the normaliser of any Sylow p-subgroup of G, then N = |G : NG(P )|.

Let q be a prime power. Then there exists a unique finite field of order q, which we denote
Fq. The following result determines when one finite field may be a subfield of another.

Result 1.6. Let q be a prime power, then Fqk < Fql for some integers k, l ≥ 1 if and only if
k|l.

Recall that the automorphisms of a finite field Fpk form a cyclic group generated by the
Frobenius automorphism x 7→ xp. The group of automorphisms of a finite field Fqk fixing Fq
is denoted Aut(Fqk |Fq); it is a cyclic group generated by the automorphism x→ xq. Given
two finite fields Fq < Fqk we define the trace function TrF

qk
/Fq : Fqk → Fq as

TrF
qk
/Fq(x) =

k−1∑
i=0

xq
i

. (1.2)

We call TrF
qk
/Fq(x) the trace of x over Fq. If p is prime, then TrF

pk
/Fp(x) is the absolute

trace of x and is expressed as Tr(x). We require a few basic properties of the trace function.

Result 1.7. The following holds for all prime powers q:

1. For all x ∈ Fqk we have TrF
qk
/Fq(x) ∈ Fq.

2. If x, y ∈ Fqk , then TrF
qk
/Fq(x+ y) = TrF

qk
/Fq(x) + TrF

qk
/Fq(y).

3. If x ∈ Fqk and a ∈ Fq, then TrF
qk
/Fq(ax) = aTrF

qk
/Fq(x).

4. If Fq < Fqk < Fql and x ∈ Fql, then TrF
ql
/Fq(x) = TrF

qk
/Fq(TrF

ql
/F

qk
(x)).

5. If x ∈ Fqk , then TrF
qk
/Fq(x)q

i
= TrF

qk
/Fq(x) for all i.

Similarly the norm map NF
qk
/Fq : Fqk → Fq is defined as

NF
qk
/Fq(x) =

k−1∏
i=0

xq
i

. (1.3)

We call NF
qk
/Fq(x) the norm of x over Fq and, when q is prime, the absolute norm of x

over Fq. The absolute norm of x is expressed as N(x). We require the following elementary
properties of the norm function.

Result 1.8. The following holds for all prime powers q:

1. If x ∈ Fqk , then NF
qk
/Fq(x) ∈ Fq.

2. If x, y ∈ Fqk , then NF
qk
/Fq(xy) = NF

qk
/Fq(x) NF

qk
/Fq(y).



12 CHAPTER 1. BACKGROUND

3. If x ∈ Fqk and a ∈ Fq, then NF
qk
/Fq(ax) = ak NF

qk
/Fq(x).

4. If Fq < Fqk < Fql and x ∈ Fql, then NF
ql
/Fq(x) = NF

qk
/Fq(NF

ql
/F

qk
(x)).

5. If x ∈ Fqk , then NF
qk
/Fq(x)q

i
= NF

qk
/Fq(x) for all i.

Let σ be a generator of the automorphism group of Aut(Fqk |Fq). A linearised σ-
polynomial (or just σ-polynomial) over Fqk , is a polynomial of the form f(x) =

∑k−1
i=0 aix

σi .
As σ is an automorphism of Fqk , and σ fixes Fq, we have that f(x) is an Fq-linear function.
The roots of f therefore form an Fq-linear subspace of Fqk which we call the kernel of f .
Thus, we may define the nullity of f to be the rank of its kernel. Likewise, the image of f
forms an Fq-linear subspace of Fqk ; the rank of f may be defined to be the rank of its image.
We summarise these results in the following theorem.

Result 1.9. Let L(x) be a linearised σ-polynomial over Fqk . Then L(x) is an Fq-linear
function. If K = ker(L(x)) = {x ∈ Fqk |L(x) = 0} and I = Im(L(x)) then

1. the set K is an Fq-linear subspace of Fqk , and so |K| = qi for some 0 ≤ i ≤ k;

2. the set S is an Fq-linear subspace of Fqk , and so |S| = qj for some 0 ≤ j ≤ k.

To determine the rank of a linearised polynomial, we have the following result of Dickson.

Result 1.10. Let σ be an automorphism generating Aut(Fqk /Fq). If L(x) is a σ-polynomial∑k−1
i=0 aix

σi, then the rank of L(x) is equal to the rank of Dσ(f) where

Dσ(f) =


a0 a0 . . . ak−1

aσk−1 aσ0 . . . aσk−2
...

...
...

...
aσ

k−1

1 aσ
k−1

2 . . . aσ
k−1

0

 . (1.4)

Given a σ-polynomial L(x), the polynomial L(x)−α is called an affine polynomial. Given
two roots β1, β2 of an affine polynomial L(x) − α, we have that β1 − β2 is a root of L(x).
Thus an affine polynomial A(x) = L(x) − α may have at most as many roots as L(x). For
more information on linearised polynomials, refer to [31].

1.3 Projective Spaces

A projective plane of order n is a set of n2 + n+ 1 points and n2 + n+ 1 lines together with
an incidence relation I such that

1. Any two points lie on exactly one line.
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2. Any two lines meet in an unique point.

3. There exists four points, no three collinear.

The axioms of a projective plane are self-dual; exchanging the roles of points and lines swaps
axioms one and two, whilst preserving axiom three.

For some prime power q, the projective plane PG(2, q) is the plane whose points are the
lines of (Fq)3, and whose lines are the planes of V(3, q). More generally, the projective space
PG(k, q) is the incidence structure whose j-dimensional subspaces are the (j+1)-dimensional
subspaces of (F)k+1, with inherited incidence.

Desargues’ Theorem characterises PG(2, q) as the unique projective plane satisfying the
following.

Desargues Axiom: Let ABC and A′B′C ′ be two distinct triangles in a projective plane
Π. Then ABC and A′B′C ′ are in perspective from a point P if and only if they are in
perspective from a line l.

We may thus refer to PG(2, q) as Desarguesian. See Section 1.8 for some examples of non-
Desarguesian projective planes.

Alongside Desargues’ Theorem, Pappus’ Theorem is another other fundamental result of
classical projective geometry.

Result 1.11 (Pappus’ Theorem). Let (A,B,C;D,E, F ) be a tuple of points in PG(2, q)

such that A,B,C ∈ l\m and D,E, F ∈ m\ l for some distinct lines l 6= m. Then, the points
X = AE ∩DB, Y = AF ∩DC and Z = BF ∩ EC are collinear.

Homogeneous coordinates represent the points of PG(k, q) as (k + 1)-tuples, where

(x1, x2, . . . , xk+1) ≡ λ(x1, x2, . . . , xk+1)

for any λ ∈ F×q and xi ∈ Fq not all zero. There is a function ρ associated with PG(k, q)

that maps the point (a1, a2, . . . , ak+1) to the hyperplane with equation a1x1 + a2x2 + · · · +
ak+1xk+1 = 0, and generally maps the subspace spanned by points p1, p2, . . . , pj to the k− j
dimensional subspace ∩ji=1ρ(pi). The function ρ is a duality of PG(k, q). Thus we use the dual
coordinates [a1, a2, . . . , ak+1] to represent the hyperplane a1x1 + a2x2 + · · ·+ ak+1xk+1 = 0.

A collineation φ of a projective space S is an incidence-preserving bijection of points.
Any non-singular matrix A ∈ GL(k + 1, q) induces a collineation of PG(k, q) by mapping
the point P with homogeneous coordinates p to the point with homogeneous coordinates
Ap (with p expressed as a column vector). Such a collineation is called a homography or
projectivity of PG(k, q), and the group of homographies is PGL(k + 1, q). The collineation
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induced by A is the same as the collineation induced by λA where λ ∈ F×q . Hence, we find
PGL(k + 1, q) ≡ GL(k + 1, q)/Z, where Z = {λI |λ ∈ F×q }.

Any automorphism σ of Fq induces a collineation PG(k, q) mapping the point with ho-
mogeneous coordinates p to the point with homogeneous coordinates pσ, where pσ denotes
component-wise exponentiation. We define the group PΓL(k+1, q) to be semi-direct product
of the group of homographies and collineations of PG(k, q) induced by automorphisms.

The Fundamental Theorem of Projective Geometry establishes that the collineation group
of PG(k, q) is precisely PΓL(k + 1, q).

Result 1.12 (The Fundamental Theorem of Projective Geometry). Let ϕ be a collineation
of PG(k, q). Then ϕ is induced by a semi-linear transformation mapping the point P with
homogenous coordinates and σ is an automorphism of Fq.

A frame F of a projective space PG(k, q) is a set of k+2 points, such that no hyperplane
contains k+1 points of F . A frame of a projective plane is thus four points, no three collinear.
From the definition of PGL(k + 1, q) it therefore follows that PGL(k + 1, q) is transitive on
frames of PG(k, q). The fundamental frame of PG(k, q) is the frame {e1, e2, . . . , ek, j} where
(ei)j = δi,j, and j =

∑k
i=1 ei.

Suppose that ϕ is a collineation of PG(k, q) fixing a line ` point-wise. Then, considering
its action on lines, one finds a that ϕ must also fix a point P line-wise. Such a collineation
is called a perspectivity with centre P and axis `. We further classify perspectivities into
elations and homologies depending on whether P ∈ ` or P /∈ ` respectively.

A polarity ρ of a projective plane is an involution between the points and lines such that
p ∈ l if and only if ρ(l) ∈ ρ(p). As with collineations, polarities of PG(2, q) have a predictable
form. We highlight two of these in particular, the Hermitian polarity and orthogonal polarity.
A Hermitian polarity in the plane only exists in PG(2, q2), and maps the point P with
homogeneous coordinates p (expressed as a column vector) to the line given dually by Hpq

where pq, and H is a Hermitian matrix (HT = λq+1Hq for some λ ∈ Fq2). An orthogonal
polarity of PG(2, q) maps the point P with homogeneous coordinates p (expressed as a
column vector) to the line given dually by Ap, where AT = A (but A is not skew-symmetric
if q is even). A point p (line `) is considered absolute if p ∈ ρ(p) (ρ(`) ∈ `).

1.4 Arcs, Ovals, and Ovoids

A k-arc in a projective space is a set of k points, no three collinear.

Result 1.13 ([34]). Let A be a k-arc in a projective plane of order q. Then, if q is odd, then
k ≤ q + 1. If q is odd then k ≤ q + 2.
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Proof. Let A be a k-arc in a projective plane of order q. Consider a point P ∈ A, then each
of the q+ 1 lines through P meets A in at most one more point besides P . Hence, there are
at most q+ 2 points of A. Now suppose |A| = q+ 2. Because |A| = q+ 2 every line through
P ∈ A must meet A in a further point, so every line meets A in either 0 or 2 points. Let
R be a point not on A. As no line may be tangent to A, and because the lines through R
partition A, there are (q + 2)/2 secant lines through R. Hence, q is even. Thus, we have
k ≤ q + 1 if q is odd.

In a projective plane of order q a (q + 1)-arc is an oval. If q is even, a (q + 2)-arc is a
hyperoval. There is a fundamental distinction between ovals when q is even versus when q is
odd.

Result 1.14 ([34]). Let O be an oval in a projective plane π of order q. Then each point
P ∈ O lies on a unique tangent line. If q is odd, then each point R /∈ O lies on zero or two
tangents to O. If q is even, the tangent lines to an oval are concurrent.

Proof. For each point P ∈ O there are q lines through P meeting O \ {P} in exactly one
point and the remaining line is therefore tangent. Now suppose q is odd and let R /∈ O lie
on a tangent tP meeting O at P . Then, because q + 1 is odd, there must exist at least one
other tangent through R, and each point of tP \ {P}. As there are only q tangents to O
besides tP , every point of tP must therefore lie on exactly two tangents. Therefore, as tP
is arbitrary, if q is odd every point lies on either zero or two tangents. For q even, every
point R /∈ O lies on at least one tangent as q + 1 is odd, and lines through R partition O.
Suppose that N is the point of intersection of two tangents ` and m to O. Then, for each
line t through N either t is tangent or every point of t lies on a distinct tangent. Because
N = l ∩m ∈ t lies on two tangents, t must therefore be a tangent line. Thus, the tangents
to O are concurrent if q is even.

The point N at the intersection of all tangents to O is called the nucleus of O. From
Result 1.14, it follows that any hyperoval consists of an oval together with its nucleus.

A complete k-arc is a k-arc that is not contained in any (k + 1)-arc. In PG(2, q) for q
odd, an oval is an example of a complete arc. Ovals are not complete arcs when q is even,
as they are contained in hyperovals. It is not known what values for what values of k there
exist complete k-arcs.

A conic in PG(2, q) is a set of points with homogeneous coordinates (x, y, z) satisfying a
homogeneous equation of degree two,

ax2 + by2 + cz2 + fyz + gxz + hxy = 0. (1.5)
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For q odd, we may alternatively describe a conic as the absolute points of an orthogonal
polarity, that is points with homogenous coordinates x = (x, y, z) satisfying

xTAx = 0, (1.6)

where A is a symmetric matrix, and x is taken as a column vector. Segre establishes that
all ovals in PG(2, q), with q odd, are conics.

Result 1.15 ([36]). Let q be an odd prime power. Then, any oval of PG(2, q) is a conic.

When q = 2e ≥ 8, there exist ovals that are not conics. Translation ovals are one class
of examples. A translation oval is a set of points projectively equivalent to solutions of the
homogenous equation x2i − yz = 0, where gcd(i, e) = 1. A translation axis ` of a translation
oval O is a line tangent to O at P , such that there exists a group of elations with centre
Q ∈ ` \ {p} and axis ` stabilising O. Conics, being a special case of translation ovals, have
an additional identifying property.

Result 1.16. Let q be an even prime power, and O an oval in PG(2, q). Then O is a conic
if and only if O has two translation axes.

The remaining translation ovals can be shown to have a unique translation axis.

Result 1.17. Let q = 2h with h ≥ 3, and O = {(t, t2i , 1) | t ∈ Fq}∪{(0, 1, 0)} with gcd(i, h) =

1 and 1 < i < h− 1. Then O is a translation oval of PG(2, q), with unique translation axis
z = 0 and nucleus (1, 0, 0).

Proof. Let ` be a line of PG(2, q) containing (0, 1, 0). Then, ` either has the form x+ az or
z = 0 and these lines are easily seen to meet O in at most two points. Otherwise, ` is given
by the equation ax+ y + cz = 0. A point (t, t2

i
, 1) lies on ` when

at+ t2
i

+ c = 0. (1.7)

Because equation (1.7) is an affine polynomial, it has at most as many roots as at+ t2
i does.

The polynomial t2i+at = t(t2
i−1+a) has two roots because gcd(2i−1, 2h−1) = 2gcd(i,h)−1 = 1

so the map t → t2
i−1 is a bijection on Fq. Hence ` contains at most two roots and O is

therefore an oval. The nucleus of this oval is the intersection of the tangent lines z = 0 and
y = 0, that is the point (1, 0, 0).

The elation group stabilising O with axis z = 0 is easily seen to be the collineations
induced by the matrices

Ma =

1 0 a

0 1 a2
i

0 0 1

 , (1.8)

for each a ∈ Fq. This axis is unique as 1 < i < h − 1, so by Result 1.16, O is not a conic
and hence contains at most one translation axis.
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An ovoid of PG(3, q) is a (q2 + 1)-arc. The prototypical example of an ovoid is an elliptic
quadric. An elliptic quadric is a set of points projectively equivalent to the set of points with
homogeneous coordinates

O = {(x0, x1, x2, x3) |xi ∈ Fq and f(x0, x1) + x2x3 = 0} , (1.9)

where f is an irreducible binary quadratic form. For q odd, all ovoids are elliptic quadrics
[5].

Analogous to ovals, ovoids have the property that at each point p ∈ O there exists a
unique plane πp tangent to O at p. In addition to this, each line of PG(3, q) tangent to O
lies in πp. All other planes meet O in q + 1 points forming an oval.

If q = 22e+1 ≥ 8 then a second class of ovoid, the Tits ovoid, arises as the set of points

OT =
{

(1, x, y, xσ+2 + yσ + xy)
∣∣x, y ∈ Fq

}
∪ {(0, 0, 0, 1)} , (1.10)

where σ ∈ Aut(Fq) satisfies σ2 = 2 mod q − 1. Tits ovoids were first described in [40]. The
stabiliser of OT is found to be isomorphic to the Suzuki group Sz(q), which is 2-transitive
on its points. The stabiliser is also transitive on secant planes, so that secant sections of the
ovoid are projectively equivalent to the translation oval {(1, t, tσ) | t ∈ Fq} ∪ {(0, 0, 1)}.

The classification of ovoids in PG(3, q), q even, is an important open problem. It is
believed that all ovoids are either elliptic quadrics or Tits ovoids. Brown provides the
strongest characterisation of ovoids with the following theorem.

Result 1.18 ([11]). Let O be an ovoid in PG(3, q), q even. If there exists a plane meeting
O in a conic, then O is an elliptic quadric.

An oval cone in PG(3, q) is the set of of all points on lines joining the points of an oval
O in some plane Π of PG(3, q) to a point V /∈ Π. Likewise, an ovoidal cone C in PG(4, q)

is the set of all points on lines joining the points of an ovoid O in some hyperplane H to
a point V /∈ H. The point V is the vertex of C, and O is the base of the cone. The lines
joining the points of O to V are called generator lines.

The geometry of an ovoidal cone is worth discussing as it is highly relevant to later
constructions (see Section 1.9). The following lemma describes the possible intersections of
hyperplanes with an ovoidal cone.

Result 1.19. Let C be an ovoidal cone in PG(4, q) with vertex V , and base O contained in
a hyperplane H0, and generator lines vi for 1 ≤ i ≤ q2 + 1. A hyperplane H meets C in one
of four configurations:

1. a single generator line;

2. an oval cone or;
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3. an ovoid.

Moreover for each generator line vi of C there exists a unique hyperplane H such that H∩C =

vi.

Proof. Suppose that V ∈ H. Then because H ∩H0 is a plane contained in H0, it must meet
O in either 1 or q + 1 points. In the case where H ∩H0 is tangent to O, then C ∩H must
be a single generator line. In the case where |(H ∩H0) ∩ O| = q + 1, we have an oval cone.

Now suppose that V /∈ H and let O = H ∩ C. By a dimension argument we can see that
as vi * H, we must have |vi ∩ H| = 1 for all 1 ≤ i ≤ q2 + 1, so |O| = q2 + 1. Suppose
that there exists three collinear points of O on generator lines vi, vj, vk respectively. Then,
π = 〈V, vi, vj, vk〉 forms a plane, so π ∩H0 is a line containing three points of O, which is a
contradiction as O is an ovoid. Therefore, no line may contain three points of O, and O is
thus an ovoid.

Finally, any hyperplane H meeting C in precisely the generator line vi must contain V .
Moreover, H ∩H0 is the unique tangent plane to O at vi ∩ O. As a hyperplane of PG(4, q)

is uniquely determined by a plane and a point not on that plane, H is uniquely determined
by vi.

The q2 + 1 hyperplanes meeting C in generator lines are called tangent hyperplanes of the
ovoidal cone C.

We can also describe the intersection of planes of PG(4, q) with an ovoidal cone C.

Result 1.20. Let C be an ovoidal cone in PG(4, q) with vertex V , base O contained in a
hyperplane H0, and generator lines vi for 1 ≤ i ≤ q2 + 1. A plane π meets C in one of three
configurations:

1. a point;

2. a single generator line;

3. a pair of generator lines or;

4. an oval.

Moreover each plane meeting C in either a generator line vi or a single point p ∈ vi is
contained in the unique tangent hyperplane of C at vi.

1.5 Sublines and Subplanes

Let Π be a projective plane of order n with points P and lines L. A projective plane π
with points P ′ and lines L′ of order m ≤ n is a subplane of Π if P ′ ⊆ P and L′ ⊆ L. The
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plane π is a proper subplane if P ′ 6= P . The following theorem of Bruck bounds the size of
a subplane.

Result 1.21 (Bruck’s Theorem, [12]). Let Π be a projective plane of order n, and π a proper
subplane of order m. Then either m2 +m ≤ n or m2 = n.

Proof. Suppose that m2 + m > n. Let P be a point of Π, there are n + 1 < m2 + m + 1

lines through P and so there exists at least line of Π containing two points of Π. Hence,
every point P ∈ Π is contained in at least one line of π. Dually, every line of Π contains
at least one point of π. Now assume that P ∈ Π \ π. Then P is incident to at most one,
and hence exactly one, line of π. Counting the points of π on each line through P we find
n+m+ 1 = m2 +m+ 1 and so n = m2.

A subplane π ⊂ Π of order m such that m2 = n is called a Baer subplane. From the
proof of Bruck’s Theorem it follows that Baer subplanes are examples of blocking sets, a set
of points P in a projective plane Π such that every line contains at least one point of P .

Subplanes of PG(2, qk) can be naturally obtained through subfield embedding. For any
subfield Fqi < Fqk we may naturally embed PG(2, qi) in PG(2, qk) as the set of points with
Fqk-homogenous coordinates

{(x0, x1, x2) |x0, x1, x2 ∈ Fqi}. (1.11)

It is then clear that this set of points, together with the lines spanning these points form
a subplane of PG(2, qk) equivalent to PG(2, qi). The following result shows that the only
subplanes of PG(2, q) are those obtained from subfield embedding.

Result 1.22. Let π be a subplane of PG(2, pk) of order m, for some prime p and k ≥ 1.
Then π is projectively equivalent to PG(2, pi) for some i|k.

Proof. Let π be a Baer subplane of PG(2, pk). Then, there exists a projective frame of
PG(2, pk) contained in π. Because PGL(3, pk) is transitive on frames, there exists a collineation
ϕ such that π′ = ϕ(π) contains the fundamental frame. Then π′ must also contain

〈(0, 1, 0), (0, 0, 1)〉 ∩ 〈(1, 0, 0), (1, 1, 1)〉 = (0, 1, 1).

The line z = 0 contains some m + 1 points of the form (1, 0, a). We will show that the set
F = {a ∈ Fpk | (1, 0, a) ∈ π′} forms an additive subgroup of Fpk . Let a, b ∈ F , then

〈(1, 0, b), (0, 1, 0)〉 ∩ 〈(1, 0, 0), (1, 1, 1)〉 = (1, b, b),

and
〈(1, b, b), (0, 1, 0)〉 ∩ 〈(1, 0, 0), (0, 1, 0)〉 = (1, b, 0)
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lie in π′. Now the point

〈(1, b, 0) ∩ (0, 0, 1)〉 ∩ 〈(0, 1, 1), (1, 0, a)〉 = (1, b, a+ b)

is in π′ so
〈(0, 1, 0), (1, b, a+ b)〉 ∩ 〈(1, 0, 0), (0, 0, 1)〉 = (1, 0, a+ b) ∈ π′.

Thus F is an additive subgroup of (Fpk ,+) and so equal to (Fpi ,+) for some i|k. In addition,
m = pi.

A completely symmetric argument shows that the pi + 1 points of π′ the line z = 0

are {(1, a, 0) | a ∈ Fpi}, and the points on x = 0 are {0, 1, a} | a ∈ Fpi}. It now fol-
lows that 〈(1, a, 0), (0, 0, 1)〉 ∩ 〈(1, 0, b), (0, 1, 0)〉 = (1, a, b) ∈ π′ for all a, b ∈ Fpi . Thus
π′ = {(1, a, b) | a, b ∈ Fpi} ∪ {(0, 1, a) | a ∈ Fpi} ∪ {(0, 0, 1)}, which is precisely the subfield
embedding of PG(2, pi) in PG(2, pk).

The following corollaries are immediate from Result 1.22.

Result 1.23. All subplanes of PG(2, q) of the same order are uniquely determined by a
frame.

Result 1.24. If π is a Baer subplane of PG(2, q2), then there exists a unique collineation
φ ∈ PΓL(3, q2) of order two whose fixed points are precisely π.

Proof. There is a unique collineation fixing the subplane π0 obtained by embedding PG(2, q)

in PG(2, q2), namely the collineation φ mapping the point with homogeonous coordinates
x to the point with homogeneous coordinates xq. As all Baer subplanes are projectively
equivalent to π0, the result follows.

The unique collineation fixing the points of a Baer subplane π is called the Baer involution
of π.

We define a Baer subline of PG(1, q2) to be a set of points projectively equivalent to
PG(1, q) embedded within PG(1, q2). By definition therefore, a Baer subline is uniquely
determined by three distinct points of PG(1, q2).

1.6 Spreads

A t-spread of PG(n, q) is a partition of PG(n, q) into t-dimensional subspaces. Spreads play
an important role in the construction of unitals and non-Desarguesian planes (see Sections
1.7 and 1.9).

Result 1.25. Suppose there exists a t-spread of PG(n, q), then t+ 1 | n+ 1.
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Proof. Suppose there exists a t-spread of PG(n, q). Then, as any t-dimensional subspace of
PG(n, q) is equivalent to PG(t, q) we have,

|PG(t, q)| | |PG(n, q)|

⇒ qt+1 − 1

q − 1
| q

n+1 − 1

q − 1

⇒ qt+1 − 1 | qn+1 − 1

⇒ t+ 1 | n+ 1.

The following existence theorem demonstrates field reduction as a method to construct
spreads.

Result 1.26. There exists a t-spread of PG(n, q) if and only if t+ 1 | n+ 1.

Proof. The necessity that t+ 1 | n+ 1 is taken care of in Result 1.25.
To construct a t-spread for t such that t + 1 | n + 1, first let n = k(t + 1) − 1 for some

k ∈ Z+. Fix some basis {ε0, ε1, · · · , εt} for Fqk(t+1) over Fqk , so that each x ∈ Fqk(t+1) may be
expressed as x(0)ε0 + x(1)ε1 + · · · + x(t)εt where x(i) ∈ Fqk . Then consider the following map
ϕ : Fkqt → Fktq

ϕ((x0, x1, · · · , xk−1)) = (x
(0)
0 , x

(1)
0 , · · · , xt0, · · · , xtk−1). (1.12)

Clearly, ϕ is a bijective linear map, and so the image of a subspace of Fkqt is a subspace of Fktq .
Now let 〈x〉 be a point of PG(k− 1, qt), which is a line of Fkqt . Then, ϕ(〈x〉) is a subspace of
Fktq of cardinality qt and hence dimension t. Thus, ϕ(〈x〉) is a (t−1)-dimensional subspace of
PG(kt− 1, q). Because ϕ is a bijection, S = {ϕ(〈x〉) | 〈x〉 ∈ PG(k− 1, q)} is a (t− 1)-spread
of PG(kt− 1, q) = PG(n, q).

We are most interested in spreads of PG(3, q), for which the only non-trivial value of t
would be t = 1. A closely related object to a spread in PG(3, q) is a regulus. A regulus R
is a set of q + 1 lines of PG(3, q), mutually skew, such that any line meeting three lines of
R meets all lines of R. Reguli are uniquely determined by three mutually skew lines (see
Theorem 3.5 of [8]).

Let S be the spread of PG(3, q) obtained by field reduction from PG(1, q2). Then S has
the additional property that the unique regulus through every three lines of S is contained
in S. Such spreads are called regular.

Result 1.27. Any regular spread of PG(3, q) is projectively equivalent to the regular spread
S obtained by field reduction of PG(1, q2).
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1.7 The André/Bruck-Bose Construction

Certain projective planes of order q2 can be represented in PG(4, q) via the André/Bruck-
Bose construction. We use the shorthand ABB construction for brevity. Fix a hyperplane
H ' PG(3, q) within Σ = PG(4, q). Let S be a set of q2 + 1 lines of H that are pairwise
disjoint (a spread of H). Now define the incidence structure P(S) as follows.

1. The points of P(S) are the points of PG(4, q) \H, together with the lines of S.

2. The lines of P(S) are the planes of PG(4, q) not contained in H, meeting S in a spread
line, together with H.

3. Incidence in P(S) is inherited from PG(4, q)

Result 1.28. Let P(S) be the incidence structure produced by the ABB construction. Then,
P(S) is a projective plane.

Proof. Firstly, observe that for any two planes Π1,Π2 in PG(4, q), dim 〈Π1,Π2〉 ≤ 4, so we
have dim Π1 ∩ Π2 ≥ 0; no two planes can be disjoint in PG(4, q). Let Π1 and Π2 be two
distinct planes meeting H in spread elements `1 and `2. If `1 = `2 then Π1 ∩ Π2 = `1 and
so Π1 meets Π2 in one point of P(S). If Π1 ∩ Π2 is a line m, and `1 6= `2, then m and `1

are coplanar in Π1 and so meet, and likewise m and `2 meet in a point. However, this forces
m ⊂ H and hence Π1 = 〈`,m〉 ⊂ H which is a contradiction. So Π1 ∩Π2 is a point of P(S).
Clearly the line of P(S) represented by H meets any other line of P(s) in a point P(S).
Hence, any two distinct lines of P(S) meet in a unique point.

Let P and Q be any two points of PG(4, q) \H. Then ` = 〈P,Q〉 meets H in a point R
lying on a unique line m ∈ S. Thus, the plane Π = 〈`,m〉 is the unique plane through P

and Q. It is clear the plane containing a spread element m and P ∈ PG(4, q) \H is unique,
and that H is the unique line containing any two elements of S. Hence, any two points of
P(S) are contained in a unique line of P(S).

Finally the existence of four points, no three collinear follows from the existence of four
points of PG(4, q) \H, no three coplanar.

We have a standard construction of PG(2, q2) from PG(4, q) using the fixed hyperplane
H∞ : x4 = 0 and the spread S of H∞ obtained by field reduction of PG(1, q2). Associated
to this construction is a map φ, which we shall call the ABB map, that maps points of
PG(2, q2) to their representation in PG(4, q). Fix a basis {1, ε} of Fq2 over Fq. For some point
(a, b, c) ∈ PG(2, q2), scaled such that c ∈ Fq, denote (a, b, c)Fq as the point (a0, a1, b0, b1, c),
where a = a0 + a1ε and b0 + b1ε. We define φ as follows:

φ((a, b, 1)) = (a, b, 1)Fq (1.13)

φ((a, b, 0)) = {(ax, bx, 0)Fq |x ∈ Fq2}. (1.14)
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Note that φ((a, b, 0)) is the line of PG(4, q) contained in H∞ obtained from field reduction
of (a, b) in PG(1, q2). We denote the line of PG(2, q2) associated with H∞ as `∞.

With a fixed representation of PG(2, q2) we can investigate how Baer subplanes and Baer
sublines are represented in PG(4, q).

Result 1.29. Let Π be a plane of PG(4, q) meeting H∞ in a line ` not in S. Then the affine
points of Π, in addition to the q + 1 spread elements through the points of `, form a Baer
subplane B of PG(2, q2). Conversely, every Baer subplane of PG(2, q2) secant to `∞ has such
a representation in PG(4, q).

Proof. Clearly, if a plane Π′ of PG(4, q) contains two points of Π it contains a line of PG(4, q),
so each line of PG(2, q2) contains 0, 1, or q + 1 points of B. As no two planes are disjoint
in PG(4, q), no line of PG(2, q2) may be disjoint from B. Through two points P,Q ∈ B the
unique line through P and Q in PG(2, q2) meets B in q + 1 points. So there are exactly
q + 1 lines through each point of P secant to B, and it follows that B is a Baer subplane.
That every Baer subplane has such a representation follows from a counting argument (see
Theorem 3.13 of [8]).

The following results are then corollaries of Result 1.29.

Result 1.30. Let ` be a line of PG(4, q) meeting S in a point R on a spread line m. Then `
forms a Baer subline of PG(2, q2) contained in Π = 〈`,m〉. Conversely, every Baer subline
tangent to `∞ has such a representation.

Result 1.31. Let R be a regulus contained in S, then R represents a Baer subline of PG(2, q2)

contained in `∞.

1.8 Non-Desarguesian Projective Planes

Whilst we have thus far limited our discussion of projective planes to the Desarguesian plane
PG(2, q), there exist many examples of non-Desarguesian projective planes. The simplest
non-Desarguesian planes to describe are the translation planes. A translation plane Π has
the property that there exists a line ` and a group of elations with axis `, acting transitively
on Π \ `. Translation planes arise from the André/Bruck-Bose construction as the following
result demonstrates.

Result 1.32. Let S be a spread of a hyperplane H contained in PG(4, q). Then Π = P(S) is
a projective plane admitting a group of elations with axis `∞, that is transitive on the points
of Π \ `∞.
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Proof. Let ϕ be an elation of PG(4, q) with axis H and mapping P /∈ H to Q /∈ H. For each
point R in Π, let R̃ be the point (or spread line if R ∈ `∞) representing R in PG(4, q). Then
we may define ϕ̂ mapping a point R of Π to the point of Π representing ϕ(R̃) in PG(4, q).
It is clear that ϕ̂ must fix `∞ as φ fixes H point-wise. Lines of Π are represented as planes
meeting H in spread lines of S, and hence are preserved by ϕ̂. Thus, ϕ̂ is a collineation of
Π. Because ϕ fixes lines and so planes through PQ∩H, ϕ̂ fixes lines through P̃ Q̃∩ `∞, and
is therefore an elation of Π.

Bruck and Bose [13] show that the converse is also true; every finite translation plane is
derived from the ABB construction. Some of the better known translation planes include
Nearfield, Semifield and Moufang planes.

The Hughes plane and the Figueroa plane are two of the most well-known examples of
non-translation projective planes. The Figueroa plane is discussed in detail Chapter 5, and
the Hughes plane is constructed using a nearfield of order p2n. For more information on the
Hughes plane see [8].

1.9 Unitals

A unital U in a projective plane Π of order q2 is a set of q3 + 1 points such that each line of
Π meets U in either 1 or q+ 1 points. The Hermitian unital, or classical unital, is the set of
points that are the absolute points of a non-degenerate Hermitian polarity. That is the set
of points in PG(2, q2) with homogenous coordinates x such that

xTHx(q) = 0, (1.15)

where H is a non-singular Hermitian matrix, x is taken as a column vector, and x(q) is
component-wise exponentiation.

Result 1.33. Hermitian unitals are projectively equivalent to the set H(2, q2), which is all
points with homogenous coordinates (x, y, z) satisfying

xq+1 + yq+1 + zq+1 = 0. (1.16)

The group of collineations stabilisingH(2, q2) is PTU(3, q), and the homography subgroup
PGU(3, q) is induced by Hermitian matrices with entries in Fq.

Result 1.34. The group PGU(3, q) acts 2-transitively on points of H(2, q2).

It turns out that the secant lines of a Hermitian unital H meet in q + 1 points forming
Baer sublines.
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Result 1.35. Let H be a Hermitian unital in PG(2, q2), and ` a line of PG(2, q). Then
` ∩H is a Baer subline of `.

Proof. Using the equivalence of Hermitian curves we may assume that, if q is odd, the unital
H has the equation εxyq − εxqy + zq+1 = 0, where ε = ζ(q+1)/2 for some primitive element
ζ of Fq2 . If q is even, the points of H may be taken to satisfy xyq + xqy + zq+1 = 0. In
either case, we may assume our secant line ` is z = 0 which meets H in points satisfying
xyq − xqy = 0. Points on the line ` take the form (1, y, 0) or (0, 1, 0), and the points (1, y, 0)

on H have yq = y, so
` ∩H = {(1, y, 0) | y ∈ Fq} ∪ {(0, 1, 0)}. (1.17)

This clearly demonstrates ` ∩H is a Baer subline of `.

Given an arbitrary unital U and a point P /∈ U , we define the feet of P to be the set of
points on tangent lines through P . We denote the feet of P /∈ U as τP (U). The following
result shows that |τP (U)| = q + 1 for all P /∈ U .

Result 1.36. Let U be a unital in a projective plane of order q2. Then, |τP (U)| = q + 1 for
all P /∈ U .

Proof. Let U be a unital and P /∈ U . Then, there are q2 + 1 lines through P which partition
the points of U into sets of size 1 or q + 1. Let s be the number of secants through P to U .
We then have

s(q + 1) + (q2 + 1− s) = q3 + 1. (1.18)

Solving for s yields s = q2 − q. Therefore, there are q + 1 tangents of U through P , and so
τP (U) = q + 1.

Combinatorial characterisations of unitals are established from the properties of their
feet. We note that the Hermitian unital is characterised by the fact that its feet form Baer
sublines.

Result 1.37. Let H be a classical unital in PG(2, q2). Then the feet of points P /∈ H are
collinear.

Proof. Let H be classical unital in PG(2, q2). Then there exists a polarity ρ whose absolute
points are H. Suppose P is a point not in H. Then, for all Q ∈ τP (H), we have

P ∈ Qρ (1.19)

⇒ Q ∈ P ρ. (1.20)

So the feet of P are contained in P ρ.
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Thas [39] shows the converse is also true; if the feet of all points on two tangent lines to
U are collinear, then U is Hermitian.

Result 1.38. [39] Let U be a unital in PG(2, q2). If there exists two tangent lines l and m
to U , such that τP (U) is collinear for all P ∈ (l ∪m) \ U , then U is Hermitian.

The remaining known unitals in PG(2, q2) are Buekenhout unitals. Buekenhout unitals
are first described in [14]. The ovoidal-Buekenhout-Metz unitals arise from ovoidal cones C
in PG(4, q) via the ABB construction.

Result 1.39. Let H∞ be a fixed hyperplane of PG(4, q), fix a regular spread S of H∞, and
let C be an ovoidal cone such that H∞ ∩ C is a line p∞ of S. Then, the point set U obtained
via the ABB construction is a unital in PG(2, q2).

Proof. Let P∞ be the point associated with p∞ in PG(2, q2). Each line ` 6= `∞ of PG(2, q2)

containing P∞ therefore corresponds to a plane Π not contained in H∞ through p∞ in
PG(4, q). Because Π is not contained in H∞, it is not a part of the tangent hyperplane of
C at p∞. Thus, Π ∩ C = p∞ ∪m, where m 6= p∞ is another generator line of C. It therefore
follows that |` ∩ U | = q + 1, accounting for P∞ plus each of the q points associated with
m \H∞.

Now suppose that `′ 6= `∞ is a line of PG(2, q2) that does not contain P∞. Then the line
`′ is represented by a plane Π′ of PG(4, q) through a spread line of S \{p∞}. Because `′ does
not contain P∞, the plane Π′ is disjoint from p∞. Therefore Π′ does not contain a generator
line of C, as generator lines are concurrent at a point of p∞. Hence, Π′ meets C in either an
affine point or an oval consisting of affine points, and |`′ ∩ U | = 1 or q + 1.

Lastly it is clear that `∞, represented by H∞ in PG(4, q), meets C at precisely p∞ and is
thus tangent to U at P∞.

We classify ovoidal-Buekenhout-Metz unitals by the base of the ovoidal cone.

1. If the base of C is an elliptic quadric, the resulting unital is a Buekenhout-Metz unital.

2. If q = 22e+1, and the base of C is a Tits ovoid, then the resulting unital is a Buekenhout-
Tits unital.

An additional class of Buekenhout unital arises via the ABB construction applied to an
elliptic quadric meeting the spread at infinity in a regulus.

Result 1.40 ([14]). Let H∞ be a fixed hyperplane of PG(4, q), fix a regular spread S of H∞,
and let E be an elliptic quadric such that H∞ ∩ E is a regulus. Then E represents a classical
unital U secant to `∞ in PG(2, q2).
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We finish our overview of unitals by describing the feet of ovoidal-Buekenhout-Metz
unitals for points P ∈ `∞.

Result 1.41. Let U be a ovoidal-Buekenhout-Metz unital constructed as per Result 1.39.
The feet of all points P ∈ `∞ \ U are Baer sublines.

Proof. This immediately follows from Result 1.30.

1.10 Codes of Projective Planes

Let F be a finite set of q symbols. A q-ary code C is a set of sequences of elements in F ,
called codewords. If all sequences in C have the same length, then C is a q-ary block code.
We are interested in q-ary block codes C where q is some prime power, and C is a subspace
of (Fq)n. Such a code is called a linear code.

Given a q-ary linear code C, and a codeword v ∈ C we may define the weight of v to
be the number of non-zero entries in v. If codewords in C have length n, the subspace
C ⊆ (Fq)n has dimension k, and the minimum weight codeword in C has weight d, then C
is an [n, k, d]-linear q-ary code (or just an [n, k, d]-code if q is clear from context).

Let Π be a projective plane with order q = pk for some prime p, and integer k ≥ 1. Fix an
ordering of the points of Π as P1, P2, · · · , Pq2+q+1. We define the characteristic vector of a set
S of points in Π to be the vector vS ∈ Fq where (vS)i = 1 if Pi ∈ S and (vS)i = 0 otherwise.
The p-ary linear code Cp(Π) is the subspace of Fq2+q+1

p spanned by the characteristic vectors
of all lines in Π.

We now present a few theorems regarding Cp(PG(2, pk)). The results discussed here are
explored in detail in [2].

Result 1.42. Let Π be a projective plane of order q = pk for some prime p and integer
k ≥ 1. Then Cp(Π) is an [q2 + q + 1, k, q + 1]-code. Moreover, the minimum weight vectors
of Cp(Π) are the scalar multiples of the characteristic vectors of lines of Π.

Result 1.43. The dimension of Cp(PG(2, pk)) is
(
p+1
2

)k
+ 1.

The determination of codewords in Cp(PG(2, q)) is an area of ongoing research. The fol-
lowing result characterises the Hermitian as the only unital that is a codeword of Cp(PG(2, q)).

Result 1.44 ([9]). Let q = pk for some prime p and integer k ≥ 1. Then a unital U of
PG(2, q2) is a codeword if and only if U is classical.

We do not have an explicit expression for vH(2,q2) as a sum of characteristic vectors of
lines in PG(2, q2) for arbitrary q; an expression for q even has since been discovered (see
Section 4.4).
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Chapter 2

Buekenhout-Tits Unitals

The aim of this chapter will be to summarise what is known about Buekenhout-Tits unitals,
and to present the following results:

1. A proof that all Buekenhout-Tits unitals are projectively equivalent. This addresses
an open problem in [8].

2. A description of the stabiliser group of a Buekenhout-Tits unital in PΓL(3, q2). Ebert
[20] only provides a description of stabiliser of the Buekenhout-Tits unital in PGL(3, q2).
The stabiliser of the classical unital is PΓU(3, q), and the stabiliser of the Buekenhout-
Metz unital in PΓL(3, q2) is described in [21] for q even and [4] for q odd.

3. If U is a Buekenhout-Tits unital, then a line ` meets the feet of a point P /∈ `∞ ∪U in
at most 4 points. Moreover, there exists a point P and line ` such that the feet of P
meet ` in exactly three points. This highlights a difference between Buekenhout-Metz
unitals and Buekenhout-Tits unitals.

2.1 Prior Results

It was Ebert [20] who first gave coordinates for the Buekenhout-Tits unital in PG(2, q2),
here we reproduce his work. Let q = 22e+1, for some e ≥ 1. Recall from equation (1.10) that
the points

O = {(0, 0, 0, 1)} ∪
{

(1, s, t, sσ+2 + tσ + st)
∣∣ s, t ∈ Fq

}
, (2.1)

form a Tits ovoid in PG(3, q). The following is then an ovoidal cone with vertex Q =

(0, 0, 0, 1, 0) with base a Tits ovoid, tangent to H∞ : x0 = 0:

C = {(0, 0, 0, 0, 1)} ∪ {(0, 0, 0, 1, λ) |λ ∈ Fq}
∪
{

(1, s, t, r, sσ+2 + tσ + st)
∣∣ r, s, t ∈ Fq

}
.

(2.2)

29
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Now fix the hyperplane at infinity H∞ : x0 = 0. Via the ABB construction described in
Section 1.7, the cone C cosrresponds to the following Buekenhout-Tits unital in PG(2, q2),

UBT = {(0, 0, 1)} ∪
{

(1, s+ tε, r + (sσ+2 + tσ + st)ε)
∣∣ r, s, t ∈ Fq

}
. (2.3)

Where {1, ε} forms a basis for Fq2 over Fq. Without loss of generality we may assume that ε
is a root of xq + x+ 1, and that 1 6= δ = ε2 + ε is an element of Fq2 with absolute trace one.
This assumption can be made because xq +x+ 1 factors over Fq as the product of x2 +x+α

for each α in Fq with absolute trace one (see [31]).
Using the coordinates of the Buekenhout-Tits unital in Equation (2.3), Ebert describes

the homography stabiliser of U . We provide here an expanded proof of his result,

Result 2.1 (Ebert [20]). Let G denote the group of projectivities stabilising U . Then G is
an abelian group of order q2, consisting of projectivities induced by the matrices

Mu,v =


1 uε v + uσε

0 1 u+ uε

0 0 1


∣∣∣∣∣∣∣u, v ∈ Fq

 . (2.4)

Proof. By direct calculation we see that

(1, s+ tε, r + (sσ+2 + tσ + st)ε)Mu,v =

(1, s+ (t+ u)ε, r + v + su+ tuδ + (sσ+2 + (t+ u)σ + s(t+ u))ε), (2.5)

and thus the collineation induced by Mu,v is in G.
Now suppose a matrix M induces a collineation ϕ ∈ G. As ϕ stabilises U , we know that

ϕ must fix P∞ = {(0, 0, 1)} and the line at infinity `∞ : x = 0. Therefore, M is of the
following form,

M =

1 a b

0 e c

0 0 f

 . (2.6)

where a, b, e, c, f ∈ Fq2 . Let a = a1 + a2ε, b = b1 + b2ε and so on for e, c and f . The points
(1, 0, 1) and (1, 0, 0) lie on U , so (1, 0, 1)M = (1, a, b+ f) and (0, 0, 1)M = (1, a, b) lie on U .
Hence f ∈ Fq and f2 = 0.

Next, let Pr,s,t = (1, s+ tε, r + (sσ+2 + tσ + st) ε) denote any point of U \ {P∞}, where
r, s, t ∈ Fq are arbitrary. Then Pr,s,tM ∈ U implies that(

1, a+ e(s+ tε), b+ c (s+ tε) + f
(
r + sσ+2 + tσ + st

)
ε
)
∈ U. (2.7)

We now have,
a+ e (s+ tε) = (a1 + e1s+ e2tδ) + (a2 + (e1 + e2)t) ε. (2.8)
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Let s′ = a1 + e1s+ e2tδ and t′ = a2 + e2s+ (e1 + e2) t. Then if Pr,s,tM ∈ U we have

b2 + (c1 + c2) t+ c2s+ f1
(
sσ+2 + tσ + st

)
= s′

σ+2
+ t′

σ
+ s′t′,

This must hold for all values of s and t. Letting s = t = 0, so that s′ = a1 and t′ = a2 we
find

a1a2 + aσ+2
1 + aσ2 = b2.

Now letting t = 0 and leaving s arbitrary so that s′ = a1 + e1s and t′ = a2 + e2s we find(
eσ+2
1 + f1

)
sσ+2 + (eσ2 + aσ1e

σ
1 ) sσ +

(
e1e2 + aσe

2
1

)
s2 + (a2e1 + a1e2 + c2) s = 0 (2.9)

which must hold for all s ∈ Fq. The last line of the reduction is a polynomial in s, with
degree at most 2(e+1)/2 + 2 < q as e ≥ 3. To have q roots the polynomial must be identically
zero. This forces

f1 = eσ+2
1

eσ2 = a21e
σ
1

e1e2 = aσ1e
2
1

a2e1 + a1e2 = c2.

Similarly, letting s = 0 and t be arbitrary we find the following polynomial in t,

eσ+2
1 δσ+2tσ+2 +

(
f1 + (e1 + e2)

σ + eσ2a
2
1δ
σ
)
tσ

+
(
e2 (e1 + e2) δ + aσ1e

2
2δ

2
)
t2 + (c1 + c2 + (e1 + e2) a1 + e2a2δ) t = 0 (2.10)

Thus, we get a second set of constraints,

eσ+2
2 δσ+2 = 0

f1 = eσ1 + eσ2 + a21e
σ
2δ

σ

aσ1e
2
2δ

2 = (e1 + e2) e2δ

c1 + c2 = a2e2δ + a1 (e1 + e2) .

From both sets of constraints, and because δ 6= 0 we have eσ+2
2 = 0, and so e1 6= 0 because

e 6= 0 (this is required so M is invertible). As eσ2 = a21e
σ
1 and e2 = 0 we have a1 = 0 because

e1 6= 0. Then we find c1 + c2 = 0 so c1 = c2. On the one hand we have f1 = eσ+2
1 and on the

other we have f1 = eσ1 +eσ2 +a21e
σ
2δ

σ = eσ1 , so e
σ+2
1 = eσ1 . Simplifying this implies e21 = e1, and

as e1 6= 0 this implies f1 = e1 = 1. Because a2e1 + a1e2 = c2 we have c1 = c2 = a2e1 = a2.
Finally from a1a2 + aσ+2

1 + aσ2 = b2 we have b2 = aσ2 . Letting u = c1 = c2 = a2, b2 = uσ, and
b1 = v for some arbitrary Fq we find

M =

1 uε v + uσε

0 1 u+ uσε

0 0 1

 .
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This completes the proof.

We now obtain the following corollary.

Corollary 2.1. Let G be the homography stabiliser group of U as described in Result 2.1.
Then, G fixes P∞, has q orbits of size q2 on U \ {P∞}, has q orbits of size q on `∞ \ {P∞},
and has q2 − q orbits of size q2 on PG(2, q2) \ (U ∪ `∞).

Proof. From Result 2.1 we know G fixes P∞. If (0, 1, z) ∈ `∞ \ {P∞}, then the G-stabiliser
of this point is all homographies of the form1 0 b

0 1 0

0 0 1

 , (2.11)

where b ∈ Fq. Hence we have q orbits of size q on `∞ \ P∞. Otherwise, the point (1, a, b) is
mapped to (1, a+uε, (a+1)u+(vσ+au)ε+b), so points not on `∞ have a trivial G-stabiliser.
Hence the q4 points of PG(2, q2) \ `∞ are partitioned into q2 orbits of order q2, q of these
orbits being contained in U \ P∞.

2.2 On the Projective Equivalence of Buekenhout-Tits
Unitals

In this section, we show that all Buekenhout-Tits unitals are projectively equivalent to the
unital UBT given in equation (2.3).

Remark 2.1. The authors of [23] give this result without proof and state it can be derived
using the same techniques employed by Ebert in [20]. Ebert however, lists the equivalence of
Buekenhout-Tits unital as an open problem in [8] which appeared about ten years after his
original paper [20].

It is easy to see that the Buekenhout-Tits unital UBT is tangent to the line `∞ : x = 0 in
the point P∞ = (0, 0, 1). From the ABB construction it follows that P∞ has the following
property with respect to UBT.

Property 2.1. Given any unital U , a point P ∈ U has Property 2.1 if all secant lines
through P meet U in Baer sublines.

It is shown in [7] that if two different points of U have Property 2.1, then U is classical.
Hence, the point P∞ is the unique point of UBT admitting this property. We will count all
Buekenhout-Tits unitals tangent to `∞ at a point P∞ having Property 2.1.
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Lemma 2.1. There are q4(q2 − 1)
2 unitals projectively equivalent to UBT in PG(2, q2) tangent

to `∞ : x = 0, and containing the point P∞ = (0, 0, 1) with Property 2.1.

Proof. First note that any projectivity mapping UBT to a unital tangent to `∞ in P∞ nec-
essarily is contained in the group H of projectivities fixing `∞ line-wise and P∞ point-wise.
The elements of H are induced by all matrices of the following form,1 x12 x13

0 x22 x23

0 0 x33

 ,
where x22x33 6= 0 and matrices act on homogeneous coordinates by multiplication on the
right. It follows that |H| = (q2 − 1)

2
q6. Furthermore, from the description ofG = PGL(3, q2)UBT

in Result 2.1, we know that HUBT
= G, and hence, HUBT

has order q2. By the orbit-stabiliser
theorem, we find that there are (q2 − 1)

2
q4 unitals in the orbit of UBT under H.

Consider PG(2, q2) modelled using the ABB construction with fixed hyperplane H∞. Let
p∞ be the spread line corresponding to P∞. Then any Buekenhout-Tits unital U tangent to
`∞ at P∞ with Property 2.1 corresponds uniquely to an ovoidal cone C meeting H∞ at p∞.

Lemma 2.2. There are q4(q2 − 1)
2 ovoidal cones C in PG(4, q) with base a Tits ovoid, such

that C meets H∞ in the spread element p∞.

Proof. Let V be a point on the line p∞, and H 6= H∞ a hyperplane not containing V . Then,
H meets H∞ in a plane containing a point R ∈ p∞ \ {V }. Any ovoidal cone C with vertex
V and base a Tits ovoid, such that C meets H∞ precisely in p∞, meets H in a Tits ovoid
tangent to H ∩H∞ at the point R. We will count all cones of this form, for all V ∈ p∞.

Consider the pairs of planes Π and Tits ovoids O, (Π,O), where Π,O ⊂ H and Π is tan-
gent toO. On the one hand, there are |PGL(4, q)|/|OPGL(4,q)| = (q + 1)2q4(q − 1)2(q2 + q + 1)

Tits ovoids in PG(3, q), and each has q2 + 1 tangent planes. On the other hand, PGL(4, q) is
transitive on hyperplanes of PG(3, q), so each plane is tangent to the same number of Tits
ovoids. It thus follows, that there are

(q + 1)2q4(q − 1)2(q2 + q + 1)(q2 + 1)

q4 + q3 + q2 + q + 1
= (q − 1)2q4(q + 1)(q2 + q + 1)

Tits ovoids tangent to H ∩H∞ conitained in H.
Furthermore, since PGL(4, q)H∩H∞ is transitive on points ofH∩H∞, each point ofH∩H∞

is contained in the same number of Tits ovoids O, so it follows that the number of Tits ovoids
tangent to H ∩ H∞ at R = p∞ ∩ H is (q − 1)2q4(q + 1). Hence, there is an equal number
of ovoidal cones with base a Tits ovoid, vertex V , and meeting H∞ at p∞. As the choice of
V was arbitrary, and there are q + 1 points on p∞, there are (q2 − 1)

2
q4 ovoidal cones with

base a Tits ovoid, and meeting H∞ at p∞.
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Theorem 2.1. All Buekenhout-Tits unitals in PG(2, q2) are PGL-equivalent.

Proof. From Lemmas 2.1 and 2.2, we see that the number of ovoidal cones with vertex a
Tits ovoid, tangent to H∞ at p∞ is equal to the number of Buekenhout-Tits unitals that are
PGL equivalent to UBT and tangent to l∞ at P∞ with Property 2.1. The result follows.

Corollary 2.2. Let U be a Buekenhout-Tits unital, then the projectivity group stabilising U
is isomorphic to the group G in Theorem 2.1.

In showing that all Buekenhout-Tits unitals are projectively equivalent, we may use UBT

to verify statements about general Buekenhout-Tits unitals.

2.3 On the Stabiliser of the Buekenhout-Tits Unital

We now describe the stabiliser of the Buekenhout-Tits unital UBT in PΓL(3, q2).

Lemma 2.3. Let Mu,v,Ms,t be matrices inducing collineations of G as defined in Result 2.1,
then Mu,vMs,t = Mu+s,t+v+suδ.

Proof. Using equation (2.4), we find

Mu,vMs,t =

1 (s+ u)ε (t+ v + suδ) + (s+ u)σ

0 1 (u+ s) + (u+ s)ε

0 0 1

 . (2.12)

Thus, we have Mu,vMs,t = Mu+s,t+v+suδ.

Corollary 2.3. The order of any collineation of G induced by a matrix Mu,v as defined in
Result 2.1 is four if and only if u 6= 0, and two if and only if u = 0 and v 6= 0.

Proof. Firstly note that M0,0 = I. Direct calculation shows that M2
u,v = M0,u2δ, M3

u,v =

Mu,v+u2δ and M4
u,v = M0,0.

Corollary 2.4. The stabiliser group G as defined in Result 2.1 is isomorphic to (C4)
2e+1.

Proof. Recall from Result 2.1 that |G| = q2 = 24e+2. From Corollary 2.3, we have that
G ≡ (C4)

k(C2)
l for some integers k, l such that 22k+l = |G| = 24e+2, and hence,

l = 2(e+ 1− k). (2.13)

Furthermore, we see that the number of elements of order four inG is q2−q as they correspond
to all matrices Mu,v with u, v ∈ Fq and u 6= 0. The number of elements of order four in a
group isomorphic to (C4)

k(C2)
l is (4k − 2k)2l. Thus,

(4k − 2k)2l = 42e+1 − 22e+1. (2.14)

Using (2.13), we find that k = 2e+ 1, and therefore G ≡ (C4)
2e+1.
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Theorem 2.2. Let q = 22e+1. Then the stabiliser group of UBT in PΓL(3, q2) is the order
q2(4e+ 2) group GK, where K is a cyclic subgroup of order 16e+ 8 generated by

ψ : x 7→ x2

1 1 ε

0 δσ/2(1 + ε) δσ/2(1 + ε)

0 0 δσ+1

 . (2.15)

(Here, x denotes the row vector containing the three homogeneous coordinates of a point,
and x2 denotes its elementwise power.)

Proof. From Lemma 2.2, we have that the number of Buekenhout-Tits unitals is q4(q2 − 1)
2.

Since all of those unitals are PGL-equivalent by Theorem 2.1, and PGL(3, q2) / PΓL(3, q2),
we have that

q4(q2 − 1)
2

=
|PGL(3, q2)|
|PGL (3, q2)U |

=
|PΓL(3, q2)|
|PΓL (3, q2)U |

. (2.16)

So PΓL(3, q2)U must have order q2(4e + 2). Direct calculation shows that ψ stabilises
UBT. We have ψ4e+2 ∈ G as x24e+2

= xq
2

= x. Hence, |ψ| = (4e + 2)|ψ4e+2|. From
Corollary 2.3, it follows that |ψ4e+2| ∈ {1, 2, 4}, with |ψ4e+2| = 4 if and only if ψ4e+2 is
induced by Mu,v for some u 6= 0. Hence, |ψ4e+2| = 4 if and only if ψ4e+2(0, 1, 0) 6= (0, 1, 0) as
(0, 1, 0)Mu,v = (0, 1, u + uε). Consider the point (0, 1, z) for some arbitrary z ∈ Fq. Direct
calculation shows that ψ(0, 1, z) = (0, 1, 1 + µz2), where µ = δσ+1

δσ/2(1+ε)
= δσ/2ε. Thus,

ψk(0, 1, z) = (0, 1,
k∑
i=0

µ2i−1 + zg(z)) (2.17)

for some polynomial g(z) depending on k. If z = 0 and k = 4e+ 2 we thus find:

ψ4e+2(0, 1, 0) = (0, 1,
4e+2∑
i=0

µ2i−1) (2.18)

= (0, 1,
Tr(µ)

µ
). (2.19)

Recall that εq = ε+1, so TrFq2 /Fq(ε) = 1. We have that, TrFq2 /F2(δ
σ/2ε) = TrFq /F2(TrFq2 /Fq(δ

σ/2ε)) =

TrFq /F2(δ
σ/2 TrFq2 /Fq(ε)) = TrFq /F2(δ

σ/2) = 1. Hence, ψ((0, 1, 0)) 6= (0, 1, 0), so |ψ4e+2| = 4

and |ψ| = 16e+ 8. Let K = 〈ψ〉, because |K ∩G| = 4, it follows that |GK| = q2(4e+ 2) and
thus GK = PΓL (3, q2)U .
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2.4 On the Feet of the Buekenhout-Tits Unital

The feet of the Buekenhout-Tits unital UBT are first described by Ebert in [20]. He shows
that the feet of a point P = (1, y1 + y2ε, z1 + z2ε) is the following set of points:

τP (UBT) = {(1, s+ tε, s2 + t2δ + st+ y1s+ y1t+ y2δt+ z1 + (sσ+2 + tσ + st)ε)

| s, t ∈ Fq, sσ+2 + tσ + st = y2s+ y1t+ z2}. (2.20)

If the line ` has equation αx + y = 0, where α ∈ Fq2 , Ebert shows that |` ∩ τP (UBT)| ≤ 1.
Otherwise, ` has equation (a1 +a2ε)x+ (b1 + b2ε)y+ z = 0, with a1, a2, b1, b2 ∈ Fq, and Ebert
shows that ` meets τP (UBT) in the points Pr,s,t ∈ UBT, where r, s, t ∈ Fq satisfy

s2 + δt2 + st+ (y1 + b1)s+ (y1 + y2δ + b2δ)t+ z1 + a1 = 0, (2.21)

sσ+2 + tσ + st = b2s+ (b1 + b2)t+ a2, (2.22)

y2s+ y1t+ z2 = b2s+ (b1 + b2)t+ a2. (2.23)

We will show that for all choices of points P /∈ `∞ and lines `, |τP (UBT) ∩ `| ≤ 4.

Lemma 2.4. Let G be the group of projectivities stabilising the Buekenhout-Tits unital as
described in Result 2.1. Then, the set of q2 − q points {Pa,b = (1, a, bε) | a, b ∈ Fq, b 6= aσ+2}
are points from q2 − q distinct point orbits of order q2 under G.

Proof. Suppose there exists a collineation ofG induced by a matrixMu,v such that Pa,bMu,v =

Pc,d. Then,

(1, a, bε)

1 uε v + uσε

0 1 u+ uε

0 0 1

 = (1, c, dε) .

However, it is clear that Pa,bMu,v = (1, a+ uε, v + uσε+ a (u+ uε) + bε), so a + uε = c.
Therefore, a = c and u = 0. If u = 0, then v+bε = dε, and we have b = d. Hence, Pa,b = Pc,d

and the lemma follows.

There are q4 − q3 = q2(q2 − q) points of PG(2, q) not on `∞ or UBT. By Lemma 2.4,
each of these points lies in the orbit of a point of the form (1, a, bε). Therefore, in order to
study the feet of a point P , we may assume that the point P = (1, y1 + y2ε, z1 + z2ε) has
y2 = z1 = 0.

The following lemma shows that the feet of a point P = (1, y1, z2ε) meets almost all lines
in at most 2 points.

Lemma 2.5. Let ` : αx + βy + z be a line in PG(2, q2), where α = a1 + a2ε, β = b1 + b2ε

and a1, a2, b1, b2 ∈ Fq. Let P = (1, y1, z2ε), with y1, z2 ∈ Fq such that z2 6= y1. Unless b2 = 0,
y1 = b1 and a2 = z2, we have |τP (UBT) ∩ `| ≤ 2.
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Proof. From the description given in (2.20), we see that the points Pr,s,t ∈ τP (UBT) satisfy
sσ+2+tσ+st = y1t+z2, and this equation has q+1 solutions. Substituting this into equation
(2.22), the points Pr,s,t ∈ τP (UBT) ∩ ` have s, t satisfying

s2 + δt2 + st+ (y1 + b1) s+ (y1 + b2δ) t+ a1 = 0 (2.24)

b2s+ (y1 + b1 + b2) t+ a2 + z2 = 0 (2.25)

sσ+2 + tσ + st+ y1t+ z2 = 0. (2.26)

Recall that the points (1, s, t, sσ+2 + tσ + st), where s, t ∈ Fq are the q2 affine points of a Tits
ovoid. Hence, (2.26) represents an affine section of a Tits ovoid. Since it has q + 1 points,
it is an oval projectively equivalent to the translation oval Dσ = {(1, t, tσ) | t ∈ Fq}. Unless
b2 = 0 and y1 = b1, equation (2.25) represents a line in AG(2, q) which meets the oval (2.26)
in at most two points, so we have at most two solutions to the system. If b2 = 0, y1 = b1,
and a2 6= z2, then equation (2.25) has no solutions.

Remark 2.2. Lemma 2.5 is a refinement of [8, Theorem 4.33], where Barwick and Ebert
rework Ebert’s earlier proof in [20] that the feet of a point P /∈ (`∞ ∪UBT) are not collinear.
This reworked proof asserts that the feet cannot be collinear because the line given by equation
(2.25) and the conic from equation (2.24) cannot have q + 1 common solutions. However,
we can see that this logic is not complete, and leaves an interesting case to examine when
equation (2.25) vanishes. Ebert’s original proof in [20] does not contain this error, instead
arguing that equations (2.24) and (2.26) cannot have q + 1 common solutions.

It follows from Lemma 2.5 that the feet of a point P /∈ (`∞ ∪UBT) is a set of q+ 1 points
such that every line meets τP (UBT) in at most two points except for a set of q concurrent
lines.

To this end, assume that b2 = 0, y1 = b1 and a2 = z2. In this case, equation (2.25)
vanishes. The system describing ` ∩ τP (UBT) is thus

s2 + δt2 + st = y1t+ a1 (2.27)

sσ+2 + tσ + st = y1t+ z2. (2.28)

The lines that produce these cases are the lines with dual coordinates [a1 + z2ε, y1, 1]. These
lines are concurrent at the point (0, 1, y1) which lies on `∞. We will show in Corollary 2.5
that these latter lines meet τP (UBT) in at most four points.

We require the following lemma, which adapts arguments found in [15, Lemma 2.1].

Lemma 2.6. Let O be a translation oval in PG(2, q) projectively equivalent to Dσ, and let
C be a non-degenerate conic. If the nucleus of O is also the nucleus of C, then |O ∩ C| ≤ 4.
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Proof. Without loss of generality we may take O = Dσ, so that the nucleus of O is N =

(0, 1, 0). If N is also the nucleus of C, then C is a conic of the following form,

a1x
2 + a2y

2 + a3z
2 + xz = 0, (2.29)

for some a1, a2, a3 ∈ Fq with a2 6= 0. Suppose that (0, 0, 1) /∈ C. Then a3 6= 0, and the point
(1, t, tσ) ∈ O if and only if t satisfies

a1 + a2t
2 + a3t

2σ + tσ = 0, (2.30)

that is
0 =

(
a1 + a2t

2 + a3t
2σ + tσ

)σ/2
= a

σ/2
1 + a

σ/2
2 tσ + t2 + t. (2.31)

Therefore,

tσ =

(
a3
a2

)2e

t2 +
1

a2
e

2

t+

(
a1
a2

)2e

(2.32)

and substituting into equation (2.30), we find that this equation has at most four solutions.
If instead (0, 0, 1) ∈ C, then a3 = 0 and arguing as above we find that equation (2.30) has at
most two solutions, so |O ∩ C| ≤ 3.

Corollary 2.5. The feet of a point P /∈ (`∞ ∪ UBT) meet a line ` in at most four points.

Proof. From Lemma 2.5, we know we can restrict ourselves to the case b2 = 0, y1 = b1, a2 = z2

which means we are looking at the points Pr,s,t ∈ τP (UBT) ∩ ` have s, t satisfying

s2 + δt2 + st = y1t+ a1 (2.33)

sσ+2 + tσ + st = y1t+ z2, (2.34)

where equation (2.33) represents a conic C, and equation (2.34) represents an oval O in
AG(2, q). If the conic is degenerate, it’s easy to see that the oval and conic have at most
four points in common. So we may assume that the conic is non-degenerate. The nucleus of
C is N = (y1, 0, 1). We now show that N is the nucleus of the oval O. The line t = 0 goes
through N and meets the oval (2.34) when sσ+2 = z2, which has one solution as σ + 2 is a
permutation of Fq. The line s+ y1 = 0 through N meets the oval (2.34) when tσ = yσ+2 + z2

which has one solution for t. Therefore, N is the nucleus, as it is the intersection of two
tangent lines to the oval. It now follows from Lemma 2.6 that equations (2.33) and (2.34)
have at most four common solutions.

We now show the existence of a point P /∈ (UBT ∪`∞) and a line ` such that |`∩τP (UBT)| =
3, and demonstrate that our bound is sharp.
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Lemma 2.7. Let y1 = 0, then the points of the oval given by equation (2.34) are{
Pu =

(
z
1−σ/2
2 uσ

1 + u+ uσ
,
z
σ/2
2 (1 + uσ)

1 + u+ uσ

)∣∣∣∣∣u ∈ Fq

}
∪
{(
z
1−σ/2
2 , z

σ/2
2

)}
. (2.35)

Proof. If y1 = 0, then equation (2.34) reduces to

sσ+2 + tσ + st+ z2 = 0 (2.36)

Using the properties of σ described in Section [[*Prior Results]], one can show the point
(z

1−σ/2
2 , z

σ/2
2 ) satisfies equation (2.36). Furthermore, the points Pu = (z

1−σ/2
2 uσ, z

σ/2
2 (1 +

uσ), 1 + u + uσ), where u ∈ Fq, are projective points satisfying the following homogeneous
equation

xσ+2 + yσz2 + xyzσ + z2z
σ+2 = 0. (2.37)

Because Tr(u + uσ) = 0, and Tr(1) = 1 when q = 22e+1, we have uσ + u + 1 6= 0 for all
u ∈ Fq. Thus, normalising so z = 1, the points Pu have the form (s, t, 1) where s and t

satisfy equation (2.36).

Corollary 2.6. Let y1 = 0 and consider the points Pu as described in Lemma 2.7. A point
Pu lies on the conic given by equation (2.33), if and only if u is a root of the following
polynomial

a
σ/2
1 uσ + (zσ−12 + δσ/2z2 + z

σ/2
2 + a

σ/2
1 )u2 + z

σ/2
2 u+ δσ/2z2 + a

σ/2
1 (2.38)

Proof. By directly substituting Pu into equation (2.33) we have

(z2−σ2 + δzσ2 + z2 + a1)u
2σ + z2u

σ + a1u
2 + (δzσ2 + a1) = 0 (2.39)

Raising both sides of equation (2.39) to the power of σ/2 yields our result.

Theorem 2.3. Let U be a Buekenhout-Tits unital in PG(2, q2). The feet of a point P /∈
(`∞ ∪ U) meet a line ` in at most four points. Moreover, there exists a line ` and point P
such that |` ∩ τP (U)| = k for each k ∈ {0, 1, 2, 3, 4}.

Proof. By Theorem 2.1 we may assume that U = UBT. The first part of the proof comes
from Corollary 2.5. Let P = (1, y1, z2ε). All lines through P meet τP (U) in at most one
point by definition, so it is clear that there exists lines ` such that |`∩ τP (U)| is zero or one.
Because the points of τP (U) are not collinear, there exists a pair of points Q,R ∈ τP (U)

such that the line QR does not contain (0, 1, y1). Hence, the line QR meets in precisely two
points by Lemma 2.5.

Now consider a line ` with equation (δ + ε)x + z = 0 and let P be the point (1, 0, ε)

(that is, a1 = δ, a2 = 1, b1 = b2 = y1 = 0, z2 = 1). The number of points of ` ∩ τP (U) is the
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same as the number of solutions to equations (2.27) and (2.28). By Lemma 2.7 the points
Pu satisfying equation (2.28) lie on the conic (2.27) when

δσ/2uσ + u = u(δσ/2uσ−1 + 1) = 0, (2.40)

which has two roots as σ−1 is a permutation of Fq. It can also be shown that (z
1−σ/2
2 , z

σ/2
2 ) =

(1, 1) satisfies both equations. Hence, the intersection of the feet of the point (1, 0, ε) and `
has exactly three points.

Finally, consider the point P (1, 0, 1
δσ
ε) and the line ` with dual coordinates [1

δ
+ 1

δ2
ε, 0, 1].

By Corollary 2.6, the number of feet of P on the line ` is the number of solutions to the
equation (2.38), where a1 = 1

δ
and z2 = 1

δσ
which is

1

δσ/2
uσ + (

1

δ2−σ
+

1

δ
)u2 +

1

δ
u = 0. (2.41)

Since equation (2.41) is a F2-linearised polynomial, and there are at most 4 roots, we have
that equation (2.38) has 1, 2, or 4 roots. We will show that, under the condition Tr(δ) = 1,
it has four roots. Multiplying equation (2.41) by δ yields δ1−σ/2uσ + (δσ−1 + 1)u2 + u = 0

and now substituting a = δσ−1 + 1 gives

(aσ/2 + 1)uσ + au2 + u = 0. (2.42)

We find that u = 0 and u = 1
a1+σ/2

are solutions to equation (2.42). Now consider

uσ + au2 + 1 = 0. (2.43)

Any solution to equation (2.43) also satisfies (uσ + au2 + 1)σ/2 + uσ + au2 + 1 = 0 which
is precisely equation (2.42). Multiply equation (2.43) with aσ+1, then we find (aσ/2+1u)σ +

(aσ/2+1u)2 + aσ+1 = 0, and letting z = (aσ/2+1u)2,

zσ/2 + z + aσ+1 = 0, (2.44)

which is known (see [32]) to have solutions if and only if Tr(aσ+1) = 0. As z = 0 and
z = 1 are not solutions of equation (2.44), no solutions of equation (2.44) correspond to the
solutions u = 0 or u = 1

a1+σ/2
of equation (2.41). Furthermore, recall that equation (2.41) has

1, 2 or 4 solutions and that we have assumed that Tr(δ) = 1. Since δσ−1 = a + 1, it follows
that δ = (a + 1)σ+1 and Tr(δ) = Tr(aσ+1 + aσ + a + 1) = Tr(aσ+1) + Tr(1) = Tr(aσ+1) + 1.
Hence, the conditions Tr(δ) = 1 and Tr(aσ+1) = 0 are equivalent, and we find exactly four
roots to equation (2.41).



Chapter 3

Buekenhout-Metz Unitals

This chapter covers Buekenhout-Metz unitals in detail. The goals of the chapter are to:

1. Summarise our current understanding of Buekenhout-Metz unitals.

2. Examine recent work on the feet of Buekenhout-Metz unitals, and approach the prob-
lem with the same techniques we employed for Buekenhout-Tits unitals.

3. Show some new (albiet small) results on the intersection of Buekenhout-Metz unitals
with ovoidal-Buekenhout-Metz unitals.

3.1 Prior Results

Baker and Ebert [4] find explicit coordinates of Buekenhout-Metz unitals in planes of odd
order. They also establish that not all Buekenhout-Metz unitals are equivalent, and give a
standard representation for the unitals in each projective equivalence class. We now present
their work.

Lemma 3.1. Let ζ be a primitive element of Fq2 for q odd and let ε = ζ(q+1)/2. Then
εq + ε = 0 and ε2 = ω is a primitive element of Fq.

Proof. Let ζ be a primitive element of Fq2 and ε = ζ(q+1)/2. Then

x2 − NFq2 /Fq(ζ) (3.1)

is a polynomial over Fq whose roots are precisely±ε. Hence, εq = ±ε. Because q+1 - (q+1)/2,
we know ε /∈ Fq so εq = −ε. Finally, because ζ is a primitive element of Fq2 , we have ε2 = ζq+1

is a primitive element of Fq.

41
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Result 3.1 ([4]). Let Uα,β = {(x, αx2 + βxq+1 + r, 1) |x ∈ Fq2 , r ∈ Fq} ∪ {(0, 1, 0)}. Then
Uα,β is a Buekenhout-Metz unital of PG(2, q2) for q odd if and only if (βq−β)2 + 4αq+1 ∈ Fq
is non-square.

Proof. Let H∞ : x4 = 0 be a fixed hyperplane of PG(4, q), and S to be the regular spread
of H∞ obtained by field reduction of PG(1, q2). By Result 1.39, if Uα,β has a representation
in the ABB construction as an elliptic cone tangent to H∞, then Uα,β is a unital. Thus, we
shall show that the ABB representation of Uα,β is an elliptic cone tangent to H∞ if and only
if (βq − β)2 + 4αq+1 is a non-square element of Fq.

Let ζ be a primitive element of Fq2 . Then, by Lemma 3.1, the element ε = ζ(q+1)/2

satisfies εq = −ε and ε2 = ω is a primitive element of Fq. We can see that the point (x, y, 1)

lies on Uα,β if and only if αx2 + βxq+1 − y ∈ Fq. Express x, y, α and β with respect to the
basis {1, ε} of Fq2 over Fq as x0 + x1ε, y0 + y1ε, a0 + a1ε, and b0 + b1ε. Then, let H∞ : x4 = 0

and S the spread of H∞ obtained by field reduction from PG(1, q2). A point (x, y, 1) such
that αx2 + βxq+1 − y ∈ Fq is therefore represented in the ABB construction as the point
(x0, x1, y0, y1, 1) of PG(4, q) such that:

a1x
2
0 + a1x

2
1ω + 2a0x0x1 + b1x

2
0 − b1x21ω + y1 = 0. (3.2)

We obtain condition (3.2) by expanding αx2 +βxq+1− y over the basis {1, ε} as r0 + r1ε and
setting r1 = 0. The line in H∞ representing (0, 1, 0) is 〈(0, 0, 1, 0, 0), (0, 0, 0, 1, 0)〉. Therefore,
the points of Uα,β are represented in the ABB construction as a set of points (x0, x1, y0, y1, z)

satisfying the homogeneous polynomial

a1x
2
0 + a1x

2
1ω + 2a0x0x1 + b1x

2
0 − b1x21ω + y1z = 0. (3.3)

Based on equation (3.3), we can see these points form a cone with vertex (0, 0, 1, 0, 0) having
generator lines 〈(0, 0, 1, 0, 0), (x0, x1, 0, y1, z)〉 where x0, x1, y1, z satisfy equation (3.3). This
cone is an elliptic cone if and only if the quadratic form

f(x0, x1) = a1x
2
0 + a1x

2
1ω + 2a0x0x1 + b1x

2
0 − b1x21ω (3.4)

is irreducible. The discriminant of this form is 4a20−4(a1+b1)(a1−b1)ω = 4(a0−a21ω)+4b21ω =

(βq − β)2 + 4αq+1 and the result follows.

For q even, we get a different discrimination condition from the same analysis. Let
ε ∈ Fq2 \Fq be a solution of εq + ε + 1 = 0, such that ε2 + ε + δ = 0 for some δ 6= 1 with
trace one. Then (x + yε)q = y and (x + yε)q+1 = x2 + xy + y2δ. The following theorem
(see [21]) describes when Uα,β = {(x, αx2 + βxq+1 + r, 1) |x ∈ Fq2 , r ∈ Fq} ∪ {(0, 1, 0)} is a
Buekenhout-Metz unital in PG(2, q2).
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Result 3.2 ([21]). Let q ≥ 4 be an even prime power, then Uα,β is a Buekenhout-Metz unital
in PG(2, q2) if and only if β /∈ Fq and d = αq+1/(βq + β)2 has trace zero.

Proof. By the same analysis as in Result 3.1, the point set Uα,β is represented as an elliptic
cone in PG(4, q) if and only if

f(x0, x1) = b1x
2
0 + b1x0x1 + (a0 + a1 + a1δ + b1δ)x

2
1 = 0 (3.5)

is an irreducible quadratic form. The discriminant condition for equation (3.5) to be irre-
ducible is

Tr((a1 + b1)(a0 + a1 + a1δ + b1δ)/b
2
1) = 1. (3.6)

Now, using the fact that Tr(x2 + x) = Tr(x2) + Tr(x) = 0 we see

Tr

(
(a1 + b1)(a0 + a1 + a1δ + b1δ)

b21

)
= Tr

(
a0a1 + a0b1 + a1b1 + a21 + (a21 + b21)δ

b21

)
(3.7)

= Tr

(
a0a1 + a0b1 + a1b1 + a21 + (a21 + b21)δ

b21

)
+ Tr

(
a0 + a1
b1

+

(
a0 + a1
b1

)2
)

(3.8)

= Tr

(
a20 + a0a1 + (a21 + b21)δ

b21

)
(3.9)

= Tr

(
αq+1 + (βq + β)2δ

(βq + β2)2

)
(3.10)

= Tr

(
αq+1

(βq + β2)2
+ δ

)
(3.11)

= Tr

(
αq+1

(βq + β2)2

)
+ 1. (3.12)

Hence equation (3.6) is equivalent to Tr
(

αq+1

(βq+β2)2

)
= 0.

The stabiliser of Buekenhout-Metz unitals is computed separately for q odd [4] and q

even [21]. We summarise their results here without proof.

Result 3.3 ([4]). Let q = pe be an odd prime power, and G the PΓL-stabiliser of a
Buekenhout-Metz unital Uα,β in PG(2, q2). Let d = (βq − β)2/4αq+1, and m = [Fq2 : Fp(d)].
Then

1. The unital Uα,β is classical and G ≡ PΓU(3, q2) (and so |G| = mq3(q2 − 1)) or;

2. We have β ∈ Fq and |G| = 2mq3(q − 1);

3. Otherwise, |G| = mq3(q − 1).
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The homography subgroup G0 = G ∩ PGL(3, q2) has index m in G. The group G acts
transitively on points of Uα,β \ P∞, acts transitively on points of `∞ \ {P∞}, and has either
one or two orbits on PG(2, q2) \ (Uα,β ∪ `∞), where P∞ has coordinates (0, 1, 0) and `∞ has
dual coordinates [1, 0, 0].

For q even we have fewer cases.

Result 3.4 ([21]). Let q ≥ 4 be an even prime power, and Uα,β be a Buekenhout-Metz
unital in PG(2, q2). Let G be the PΓL-stabiliser of Uα,β. Then if d = αq+1/(βq + β)2 and
m = [Fq2 : F2(d)], either

1. The unital Uα,β is classical and G ≡ PΓU(3, q2) (and so |G| = mq3(q2 − 1)) or;

2. The order of G is mq3(q − 1).

The group G0 = G ∩ PGL(3, q2) has index m in G. The group G acts transitively on
Uα,β \P∞, acts transitively on `∞ \{P∞}, and has one orbit on PG(2, q2)\ (Uα,β∪`∞), where
P∞ has coordinates (0, 1, 0) and `∞ has dual coordinates [1, 0, 0].

The difference in the possible group orders for q odd and q even motivates investigating
Uα,β in PG(2, q2) with q odd and β ∈ Fq. In this case we can say something about the
structure of the unital.

Result 3.5 ([8]). Let Uα,β be a Buekenhout-Metz unital in PG(2, q2) with q odd. Then if
β ∈ Fq, the unital Uα,β is a union of irreducible conics.

Proof. Ebert [4] demonstrates that all unitals Uα,β with β ∈ Fq are equivalent to Uα,0, which
is easily seen to be the union of the conics Cr : αx2 + rz2 − yz for all r ∈ Fq. These conics
mutually intersect at the point (0, 1, 0).

Note that a Buekenhout-Metz unital Uα,β in PG(2, q2) with q even cannot contain any
oval as the q2+1 tangents to the oval would also be tangents to Uα,β and would be concurrent
at a point which contradicts the fact that each point must lie on either one or q+ 1 tangent
lines.

3.2 Feet of Buekenhout-Metz Unitals

Ebert [8] presents a proof that the feet a point P of a non-classical Buekenhout-Metz unital
Uα,β are collinear if and only if P /∈ Uα,β ∪ `∞. We build on this work to describe how many
points of τP (Uα,β) may lie on a line `. Firstly, we need a description of the tangent lines to
Uα,β — which we give without proof and refer to [8].
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Lemma 3.2 ([8]). Let Uα,β be a Buekenhout-Metz unital in PG(2, q2) for some prime power
q (even or odd). Then, the tangent line to the point P ∈ Uα,β with homogeneous coordinates
(x, αx2 + βxq+1 + r, 1) has dual coordinates [−2αx+ (βq − β)xq, 1, αx2 − βqxq+1 − r].

Result 3.6 ([8]). Let Uα,β be a Buekenhout-Metz unital in PG(2, q2), where q is odd. Then
the feet of a point P /∈ Uα,β ∪ `∞ are not collinear unless α = 0.

Proof. Let ε be a primitive element of Fq2 such that εq = −ε and ε2 = ω. The PΓL-stabiliser
of Uα,β has at most two orbits on PG(2, q2) \ (Uα,β ∪ `∞), with representatives (0, ε, 1) and
(0, ωε, 1). We consider only P = (0, ε, 1) as the other case is completely analogous. By
Lemma 3.2, the q + 1 tangent lines through P have dual coordinates of the form [−2αx +

(βq−β)xq, 1, αx2−βqxq+1−r] where x ∈ Fq2 and r = ε+αx2−βqxq+1 ∈ Fq, and the associated
point on this tangent line is (x, 2αx2+(βq−β)xq+1+ε, 1). Expressing α = a0+a1ε, β = b0+b1ε

and x = x0 + x1ε, and expanding each coordinate of (x, 2αx2 + (βq − β)xq+1 + ε, 1) with
respect to the basis {1, ε}, we see that the feet of P are a subset of the points

(x0 + x1ε, 2a0x
2
0 + 2a0ωx

2
1 + 4a1ωx0x1 + ε, 1) (3.13)

where x0, x1, a0, a1 ∈ Fq. Then by letting r = ε + αx2 − βqxq+1 = r0 + r1ε, with r0, r1 ∈ Fq,
and setting r1 = 0 so that r ∈ Fq, we see that feet of P are points in the form of equation
3.13 such that

(a1 + b1)x
2
0 + (a1 − b1)ωx21 + 2a0x0x1 + 1 = 0. (3.14)

The condition on the feet, regarded as a equation in x0 and x1, represents an ellipse in
AG(2, q) as it has q + 1 solutions for each point of τP (Uα,β), and none of these points lie at
infinity.

We shall proceed to show that no line can contain all the points of τP (Uα,β). Suppose
that a line ` with dual coordinates [s0 + s1ε, 1, t0 + t1ε] contained the set τP (Uα,β). Then a
point with coordinates in the form of (3.13) meets ` if and only if s1x0 + s0x1 + t1 − 1 = 0.
Thus if ` contains τP (Uα,β), then

(a1 + b1)x
2
0 + (a1 − b1)ωx21 + 2a0x0x1 + 1 = 0, (3.15)

2a0x
2
0 + 2a0ωx

2
1 + 4a1ωx0x1 + s0x0 + s1ωx1t0 = 0, (3.16)

s1x0 + s0x1 + t1 − 1 = 0, (3.17)

for all feet of (0, ε, 1). If α = 0, s0 = s1 = 0, t1 = 1 and t0 = 0, then equations (3.16) and
(3.17) vanish. So if α = 0 the feet of (0, ε, 1) lie on the line ` with dual coordinates [0, 1, ε].
Now assume that α 6= 0. Regarding equation (3.16) and equation (3.17) as equations in x0
and x1, we see that equation (3.16) represents a conic in AG(2, q), and equation (3.17) a line
of AG(2, q). If ` contains τP (Uα,β), we need q + 1 solutions to equations (3.16), (3.15) and
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(3.17) simultaneously. If equation (3.17) does not vanish, it has at most two solutions in
common with equation (3.15). Thus, s0 = s1 = 0 and t1 = 1. Hence to have q + 1 common
solutions, equation (3.16) must represent the same ellipse as equation (3.15). Comparing
equation (3.16) with equation (3.15) we have a0t0 = 2ωa1 and a1t0 = 2ωa0. Because α 6= 0

we find a0 6= 0 and a1 6= 0 so 2a0/a1 = 2a1ω/a0 and therefore a20 − ωa21 = 0. This last
condition is equivalent to αq+1 = 0 which contradicts α 6= 0. So no such line contains the
feet of P .

Now suppose that ` has the form [1, 0, t0 + t1ε]. Then, we have x0 = −t0 and x1 = −t1.
So lines of this form contain at most one point of the feet of P . Thus, no line ` may contain
the feet of τP (Uα,β), unless α = 0, and the result follows.

We have the following immediate corollary.

Result 3.7. Let Uα,β be a Buekenhout-Metz unital in PG(2, q2), with q odd. Then, Uα,β is
classical if and only if α = 0.

In fact, similar analysis will show that this result holds for q even too.

Result 3.8. Let Uα,β be a Buekenhout-Metz unital in PG(2, q2), with q even. Then, Uα,β is
classical if and only if α = 0.

Abarzua, Pomareda and Vega [1] further improve Ebert’s results, to provide the following
bound on the feet of Buekenhout-Metz unitals, similar to the work in Section 2.4.

Result 3.9 ([1]). Let Uα,β be a Buekenhout-Metz unital, and P /∈ Uα,β ∪ `∞, then a line m
meets τP (Uα,β) in 0, 2, or 4 points.

This result compares to Theorem 2.3 in the notable exclusion of a line that meets the
feet of a point of Uα,β in at most three points.

Theorem 3.1. Let Uα,β be a Buekenhout-Metz unital in PG(2, q2) with q odd and β ∈ Fq.
Then the feet of a point P /∈ Uα,β ∪ `∞ lie on a conic, and in particular are an arc.

Proof. In this case, the results of Theorem 3.3 tell us the points of PG(2, q2) \ (Uα,β ∪ `∞)

form a single orbit under the stabiliser group of Uα,β, so without loss of generality we let
P = (0, ε, 1). Consider the argument deriving equation 3.13 we find the feet form a subset
of the points (x, 2αx2 − ε, 1) which lie on the conic 2αx2 + εz2 − yz = 0. The result now
follows.

The results in [1] on the feet of Buekenhout-Metz unitals are derived without reference
to Ebert’s original proof that the feet of affine points are not collinear. Using the same
techniques as in Section 2.4 however, we can derive a part of the work in [1] in a straight
forward fashion.
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Theorem 3.2. Let Uα,β be a Buekenhout-Metz unital in PG(2, q2) with q odd. Then the feet
of a point P /∈ Uα,β ∪ `∞ meet any line m in at most four points. Moreover, all lines m that
meet τP (Uα,β) in four points are concurrent.

Proof. Consider again the system of equations that Ebert produces in Theorem 3.6.

(a1 + b1)x
2
0 + (a1 − b1)ωx21 + 2a0x0x1 + 1 = 0, (3.18)

2a0x
2
0 + 2a0ωx

2
1 + 4a1ωx0x1 + s0x0 + s1ωx1 + t0 = 0, (3.19)

s1x0 + s0x1 + t1 − 1 = 0. (3.20)

We can firstly see that because the equation (3.18) represents an ellipse and equation
(3.20) a line in AG(2, q2) unless it vanishes the whole system has no more that two solutions.
If the line vanishes, we have s0 = s1 = 0 and t1 = 1 so that the line [s0 + s1ε, t0 + t1ε, 1]

must contain (1, 0, 0). It then follows that because equation (3.18) is an irreducible conic,
if equation (3.19) is reducible the system has at most four points as the intersection of two
lines with an irreducible conic contains at most four points. Lastly if equation (3.19) is
irreducible then equations (3.18) and (3.19) have at most four common solutions.

Recently Barwick, Jackson, and Wild [6], using extensions of the techniques we employ
in Theorem 3.2 expands our understanding of the feet of Buekenhout-Metz unitals.

Result 3.10 ([6]). Let Uα,β be a non-classical Buekenhout-Metz unital in PG(2, q2), with q
odd. Let P /∈ Uα,β ∪ `∞. Then, the feet τP (Uα,β) are contained in a Baer pencil with vertex
a point on `∞. Moreover,

1. if α is non-square in Fq2, then τP (Uα,β) is an arc;

2. if α is a non-zero square in Fq2, then

(a) the feet τP (Uα,β) form a set of class (0, 1, 2, 4),

(b) there are at least (q − 3)/2 lines meeting τP (Uα,β) in four points,

(c) every 4-secant of τP (Uα,β) contains the point vertex of the Baer pencil containing
τP (Uα,β).

Remark 3.1. In Result 3.10, a set of class (a1, a2, . . . , am) is a set of points S in PG(2, q)

such that for all lines `, |` ∩ S| ∈ {a1, a2, . . . , am} and for each ai there exists a line ` such
that |` ∩ S| = ai. For comparison, the feet of Buekenhout-Tits unitals either lie on a line or
are a set of class (0, 1, 2, 3, 4).

Result 3.11 ([6]). Let Uα,β be a non-classical orthogonal Buekenhout-Metz unital in PG(2, q2),
with q even. Let P /∈ Uα,β∪`∞. Then, the feet of P form an arc contained in a Baer subpencil
with vertex a point on `∞.
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3.3 Intersections of Ovoidal-Buekenhout-Metz Unitals

The intersection of unitals is a mostly open problem. In this section we will slightly extend
known results on the intersection of ovoidal-Buekenhout-Metz unitals.

The most general result on the intersection of unitals states that if q = pe, then |H∩U | ≡
1 mod p for all Hermitian unitals H and any unital U in PG(2, q2).

Result 3.12 ([8]). Let H be a Hermitian unital of PG(2, q2) and U any unital, then |H∩U | ≡
1 mod p.

Proof. As H is a codeword in PG(2, q2), we see that vH =
∑t

i=1 v
mi for some lines mi. As

vH · vH = |H| = q3 + 1, we have

vH · vH ≡ vH · (
t∑
i=1

vmi) mod p (3.21)

≡
t∑
i=1

vH · vmi mod p (3.22)

≡
t∑
i=1

1 mod p (3.23)

≡ t. (3.24)

So t ≡ 1 mod p. Now,

vU · vH ≡ vU · (
t∑
i=1

vmi) mod p (3.25)

≡ t mod p (3.26)

≡ 1 mod p. (3.27)

To produce our novel result we require the following lemma concerning cones in PG(4, q).

Lemma 3.3. Let C and C ′ be ovoidal cones with base an elliptic quadric in PG(4, q), both
tangent to a hyperplane H∞ at a shared generator line l. Then, there exists a collineation
ψ ∈ PGL(5, q) mapping C to C ′ stabilising H∞ and l.

Proof. All ovoidal cones with base an elliptic quadric are projectively equivalent (this follows
from the equivalence of elliptic quadrics in PG(3, q)), so there exists a collineation ψ ∈
PGL(4, q) mapping C to C ′. If ψ(l) = l then ψ(H∞) = H∞ as H∞ is the unique tangent
hyperplane at l for both C and C ′. Thus, assume that ψ(l) 6= l and let H be a hyperplane
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such that C ′ ∩H = O is an elliptic quadric. Then, as the stabiliser group of O is transitive
on points of O, there exists a collineation ϕ ∈ PGL(4, q) mapping ψ(l) ∩ O to l ∩ O. There
exists a collineation ϕ ∈ PGL(5, q) fixing the vertex V ′ of the cone C ′ such that ψ |H agrees
with ψ. It then follows that ϕ ◦ ψ is precisely a collineation of PGL(5, q) mapping C to C ′

stabilising l and H∞.

Recall from Section 1.9 that an ovoidal-Buekenhout-Metz unital is any unital constructed
from the Buekenhout construction in PG(4, q) using an ovoidal cone tangent to a fixed hyper-
plane H∞ with some ovoid of H∞ as a base. The class of ovoidal-Buekenhout-Metz unitals
includes all Buekenhout-Metz unitals as well as Buekenhout-Tits unitals. We make use of
the behaviour of the collineation described in Lemma 3.3 to produce a novel result on the
intersection of Buekenhout-Metz unitals with ovoidal-Buekenhout-Metz unitals, leveraging
Result 3.12.

Theorem 3.3. Let U be a Buekenhout-Metz unital, and U ′ an ovoidal-Buekenhout-Metz
unital, both in PG(2, q2). Suppose U meets U ′ in a point P such that:

1. the tangent line to U at P is also tangent to U ′;

2. secant lines of U containing P meet U in Baer sublines;

3. secant lines of U ′ containing P meet U ′ in Baer sublines.

Then |U ∩ U ′| ≡ 1 mod p.

Proof. Without loss of generality, we may assume that U and U ′ meet at the point P =

(0, 1, 0) lying on `∞ : z = 0, and that `∞ is tangent to both U and U ′. Fix the hy-
perplane H∞ : x4 = 0, and the spread S obtained by field reduction from PG(1, q2)

into H∞. Then under the ABB construction, the point P corresponds to the line p =

〈(0, 0, 1, 0, 0), (0, 0, 0, 1, 0)〉, and the unitals U and U ′ correspond to ovoidal cones C and C ′

tangent to H∞ at p. By Lemma 3.3, there exists a collineation ϕ of PG(4, q) mapping C to
the cone representing the Hermitian unital U0,β for some β ∈ Fq2 , stabilising the line p and
H∞. The collineation ϕ induces a ϕ bijection of the points of PG(2, q2) \ `∞. Define the
bijection ψ on points of PG(2, q2)

ψ(Q) =

Q Q ∈ `∞,

ϕ(Q) otherwise.
(3.28)

Because ψ fixes P and agrees with ϕ at points Q /∈ `∞, it follows that ψ(U) is a set of points
whose ABB representation is ϕ(C) in PG(4, q). Likewise ψ(U ′) is a set of points with ABB
representation ϕ(C ′) in PG(4, q). Hence, ψ(U) and ψ(U ′) are both still unitals in PG(2, q2)
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and, as ϕ(U) is an ovoidal cone corresponding to a Hermitian unital, we also know that ψ(U)

is a Hermitian unital. It now follows from Theorem 3.12 that |ψ(U)∩ ψ(U ′)| ≡ 1 mod p and
so |U ∩ U ′| ≡ 1 mod p as ψ is a bijection.

For the standard Buekenhout-Metz unitals Uα,β we have a stronger result. Note the
condition on |Uα,β ∩ Uα′,β′ | changes from |Uα,β ∩ Uα′,β′ | ≡ 1 mod p in Theorem 3.3 to |Uα,β ∩
Uα′,β′ | ≡ 1 mod q.

Theorem 3.4. For any pair of Buekenhout-Metz unitals Uα,β and Uα′,β′, we have |Uα,β ∩
Uα′,β′ | ≡ 1 mod q. Moreover for any Uα,β we have |Uα,β ∩ UBT | ≡ 1 mod q, where UBT is the
Buekenhout-Tits unital given in Section 2.1.

Proof. The unitals Uα,β and Uα′,β′ are unitals corresponding to ovoidal cones C and C ′ in
PG(4, q) with a common vertex V = (0, 0, 1, 0, 0). For each point Q ∈ C ∩ C ′ not in H∞ :

x4 = 0 the line QV ⊆ C∩C ′. It now follows that |Uα,β∩Uα′,β′ | = 1+qk where k is the number
of generator lines in common with C and C ′, so |Uα,β ∩ Uα′,β′| ≡ 1 mod q. The argument is
similar for Uα,β ∩ UBT .



Chapter 4

Kestenband Arcs

This chapter concerns Kestenband arcs, a family of complete (q2 − q + 1)-arcs in PG(2, q2)

for q > 2. These arcs have a fascinating connection with Hermitian unitals, which we will
discuss. In this chapter, we aim to:

1. Present a proof that all Kestenband arcs are equivalent. References to this result exist
in the literature, we make the proof explicit.

2. Show that Hermitian unitals are codewords in C2(PG(2, q2)) for q even using cyclic
spreads and dual Kestenband arcs.

3. Show that a unital stabilised by a group of order q2− q+ 1 is a Hermitian unital, using
a clever method first presented by Giuzzi making use of Kestenband arcs.

4.1 Kestenband Arcs from Singer Groups

In this section we will construct Kestenband arcs as orbits of cyclic groups of order q2−q+1.
To do this, we first briefly introduce the field model of PG(2, q).

Let β be a generator of F×q3 . Then β
q2+q+1 is a generator for F×q . Let ∼ be an equivalence

relation on Fq3 , where x ∼ y if and only if x = βi(q
2+q+1)y for some i. Define (x)Fq to be the

equivalence class of x ∈ Fq3 under ∼.
We define the set Trα as the set of equivalence classes (x)Fq3 such that TrFq3 /Fq(αx) = 0.

The set Trα is well-defined because if (x)Fq3 ∈ Trα, we have

TrFq3 /Fq(β
i(q2+q+1)αx) = βi(q

2+q+1) TrFq3 /Fq(αx) = 0,

so TrFq3 /Fq(αy) = 0 for all y ∈ (x)Fq .

Result 4.1. Let P = {(x)Fq |x ∈ F×q3} and L = {Trα |α ∈ F×q3}. Then Π = (P ,L), together
with natural incidence, forms a Desarguesian projective plane of order q.

51
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Proof. To show that P and L form a Desarguesian projective plane, we find an incidence
preserving bijection of points and lines to PG(2, q).

Let {1, ε, ε2} be a basis for Fq3 over Fq. Then, we can uniquely express x ∈ Fq3 as
x0 + x1ε+ x2ε

2 for some xi ∈ Fq. Define ϕ : Fq3 → (Fq)3 to be the bijection

ϕ(x0 + x1ε+ x2ε
2) = (x0, x2, x3).

Clearly, ϕ is additive and Fq-linear, and so it is an isomorphism of the Fq-vector spaces Fq3
and (Fq)3. As ϕ(λx) = λϕ(x) for all λ ∈ Fq, the map ϕ∼((x)Fq) = 〈ϕ(x)〉 from P to points
of PG(2, q) is well-defined. Moreover, as ϕ is bijective, the map ϕ∼ is also a bijection from
P to PG(2, q).

If Trα ∈ L, then define ϕ∼(Trα) = ∪(x)Fq∈Trαϕ∼((x)Fq). As the kernel of TrFq3 /Fq(αx) is an
Fq-linear subspace of Fq3 with dimension two, the map ϕ sends ker(Tr(αx)) to a hyperplane
of (Fq)3. Hence ϕ∼ is a bijection from L to the lines of PG(2, q).

Let P ∈ P and ` ∈ L. Then, by the definition of ϕ∼, we see that P ∈ ` if and only
if ϕ∼(P ) ∈ ϕ∼(`). So ϕ∼ is an incidence preserving bijection, and Π is a Desarguesian
projective plane of order q.

The following corollary follows immediately from the description of ϕ∼.

Result 4.2. The line in PG(2, q) spanning two points ϕ∼((x)Fq) and ϕ∼((y)Fq) contains all
points ϕ∼((z)Fq) such that z = δx+ γy where δ, γ ∈ Fq.

A Singer group of a projective plane of order q is a cyclic group of collineations S of
order q2 + q+ 1 acting sharply transitively on the points (and hence lines) of the plane. The
generator β of F×q3 induces the collineation θ : (x)Fq 7→ (βx)Fq . The action of θ is sharply
transitive, so 〈θ〉 is a Singer group.

Now consider PG(2, q2) and let β be a generator for F×q6 . Then β
q4+q2+1 is a generator for

F×q2 , and the relation ∼ is defined as before. Let θ be the collineation induced by β. Then
the following set of points defines a Kestenband arc,

A =
{

(βi(q
2+q+1))Fq2

∣∣∣ i = 0, 1, . . . , q2 − q
}
. (4.1)

The set A is simply the orbit of the point (1)Fq2 under 〈θq2+q+1〉.

Result 4.3 ([10]). The set A =
{

(βi(q
2+q+1))Fq2

∣∣∣ i = 0, 1, . . . , q2 − q
}

is a (q2 − q + 1)-arc.

Proof. Suppose that A contains three distinct collinear points. By the transitivity of θq2+q+1,
assume these points to be (1)Fq2 , (βi(q

2+q+1))Fq2 and (βj(q
2+q+1))Fq2 with i 6= j. Then by

Result 4.2, we have 1 + αβi(q
2+q+1) = δβj(q

2+q+1) for some α, δ ∈ Fq2 . Because (δq
3+1)q

3
=

δq
3+1, we obtain δq

3+1 ∈ Fq3 ∩Fq2 = Fq. In addition, βj(q2+q+1)(q3+1) = NFq6 /Fq(β
j) ∈
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Fq. Hence, (1 + αβi(q
2+q+1))q

3+1 = (δβj(q
2+q+1))q

3+1 ∈ Fq. Likewise, αq+1βi(q
2+q+1)(q3+1) =

NFq2 /Fq(α)NFq6 /Fq(β
i) ∈ Fq. Therefore,

(1 + αβi(q
2+q+1))q

3+1 − 1− αq+1βi(q
2+q+1)q3 = (1 + αβi(q

2+q+1))q
3

(1 + αβi(q
2+q+1)) (4.2)

= (1 + αqβi(q
2+q+1)q3)(1 + αβi(q

2+q+1))

− 1− αq+1βi(q
2+q+1)q3 (4.3)

= 1 + αβi(q
2+q+1) + αqβi(q

2+q+1)q3+

αq+1βi(q
2+q+1)q3 − 1− αq+1βi(q

2+q+1)q3 (4.4)

= αβi(q
2+q+1) + αqβi(q

2+q+1)q3 , (4.5)

is a member of Fq. Hence f(x) = (x−αβi(q2+q+1))(x−αqβi(q2+q+1)q3) is a quadratic polynomial
over Fq, with αβi(q

2+q+1) as a root. This implies αβi(q2+q+1) ∈ Fq2 , so (αβi(q
2+q+1))Fq2 = (1)Fq2 ,

which is a contradiction. Thus the points (1)Fq2 , (βi(q
2+q+1))Fq2 , and (βj(q

2+q+1))Fq2 are not
collinear, and A is an arc.

From Result 4.3, it follows that at each point P ∈ A there are precisely q2 − q secants
and q + 1 tangent lines to A.

Kestenband arcs are examples of complete arcs for q even and q odd, as the following
result demonstrates.

Result 4.4 ([10]). Let θ be a Singer cycle of order q2 − q + 1, and A = orb〈θ〉(P ) for some
point P in PG(2, q2). If q ≥ 4, then A is a complete (q2 − q + 1)-arc.

Proof. Suppose there exists a point Q such that A∪ {Q} is an arc. Then, every line joining
Q to a point of A is tangent to A. As θ stabilises A, every line joining Qθi to a point of A is
tangent to A, for any i = 0, 1, . . . , q2− q. Because A′ = orb〈θ〉(Q) is also an arc, each tangent
of A contains at most two points of A′. Thus, counting the lines joining each point of A′ to
P , there are at least (q2 − q + 1)/2 tangent lines to A at P . This is a contradiction as there
should be q+ 1 tangents through any point of A, and (q2− q+ 1)/2 > q+ 1 if q ≥ 4. Hence,
A is complete.

4.2 Kestenband Arcs from Classical Unitals

Kestenband [30] describes Kestenband arcs as the intersection of Hermitian unitals. In this
section, we describe his work.

Recall that a matrix H, with entries in Fq2 , is Hermitian if Hq = HT . For some non-
singular Hermitian matrix H, we will denote UH to be the unital induced by H. A corollary
of Kestenband’s work is the following:
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Result 4.5 ([30]). Suppose H is a Hermitian unital in PG(2, q2) consisting of points with
homogeneous x such that xHxT = 0 for some Hermitian matrix H with entries in Fq2. Then
H meets the Hermitian unital UI in a complete (q2−q+1)-arc if and only if the characteristic
polynomial of H is irreducible over Fq2.

The proof of Result 4.5 relies on a couple of lemmas.

Result 4.6 ([30]). Let H1 and H2, be two non-singular Hermitian matrices such that H1 6=
cH2 for all c ∈ Fq2. Then H1 and H2 induce Hermitian unitals H1 and H2. Suppose H3 and
H4 are unitals induced by some distinct pair of non-zero Hermitian matrices r1H1 + r2H2,
s1H1 + s2H2 such that

det

[
r1 r2

s1 s2

]
6= 0.

Then, H1 ∩ H2 = H3 ∩ H4. Moreover, for all P ∈ PG(2, q) there exists r, s ∈ Fq such that
the Hermitian variety induced by rH1 + sH2 contains P .

Proof. Consider the system of equations describing the points of H3 ∩H4

xT (s1H1 + s2H2)x
(q) = 0, (4.6)

xT (r1H1 + r2H2)x
(q) = 0. (4.7)

Some rearranging shows, [
s1 s2

r1 r2

][
xTH1x

(q)

xTH2x
(q)

]
= 0, (4.8)

and by assumption this equation has only the trivial solution. Thus,[
xH1x

T

xTH2x
(q)

]
= 0, (4.9)

so H1 ∩H2 = H3 ∩H4.
Let P ∈ PG(2, q) be a point with homogeneous coordinates x. If xTH1x

(q) = m and
xTH2x

(q) = n, and (m,n) 6= (0, 0), then the variety induced by the matrix nH1 − mH2

contains P .

Remark 4.1. The Hermitian matrices nH1 −mH2 may not be full rank, depending on H1

and H2, and hence may not determine Hermitian unitals in general. In particular if the
characteristic polynomial of a Hermitian matrix H has a root λ ∈ Fq, then H − λI is not
full rank.

We can now discuss the intersection of a particular family of Hermitian unitals.
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Result 4.7 ([30]). Suppose H is a Hermitian matrix with characteristic polynomial p(x)

that is irreducible over Fq2. Let S = {UH−λI |λ ∈ Fq}∪{UI}. Then, | ∩H∈SH| = q2− q+ 1.

Proof. Because p(x) is irreducible over Fq2 , the matricesH−λI are full rank for all λ ∈ Fq and
hence induce Hermitian unitals. By Result 4.6, the set ∪H∈SH contains all points of PG(2, q)

and the unitals in S mutually intersect in the same k points. Thus, (q + 1)(q3 + 1) − qk =

q4 + q2 + 1, which implies that k = q2 − q + 1.

Another useful lemma shows that if two Hermitian unitals share three collinear points,
they share a Baer subline.

Result 4.8. Let H1 and H2 be two Hermitian unitals such that H1∩H2 contains three points
on a line `. Then ` ∩H1 = ` ∩H2.

Proof. The secant line ` meets H1 and H2 in Baer sublines b1 and b2 respectively. If b1 and
b2 share three common points, then b1 = b2, as Baer sublines are uniquely determined by
three collinear points. Thus ` ∩H1 = ` ∩H2.

We can now show that the unitals in S as defined in Result 4.6 meet in a (q2− q+ 1)-arc.

Result 4.9 ([30]). Suppose H is a Hermitian matrix with characteristic polynomial p(x) that
is irreducible over Fq2. Let S = {UH−λI |λ ∈ Fq}∪{UI}. Then, ∩H∈SH is a (q2− q+ 1)-arc.

Proof. Let A = ∩H∈SH. It follows from Result 4.7 that |A| = q2− q+ 1. Suppose that a line
` meets A in three points. Then, by Lemma 4.8, for each H,H′ ∈ S we have `∩H = `∩H′.
Hence, the set ∪H∈SH does not contain `, and so does not contain all points of PG(2, q2).
This contradicts Result 4.6, so ` cannot meet A in more than two points.

4.3 Equivalence of Kestenband Arcs

In Section 4.1, we saw that we could construct Kestenband arcs as the orbit of cyclic groups of
order q2−q+1. It is then natural to ask if different choices of such groups lead to projectively
inequivalent arcs. The answer to this question is no, and this section will demonstrate this.

We first show that all cyclic subgroups of PΓL(3, q2) of order q2 − q + 1 are conjugate.
As a consequence, every point-orbit of these cyclic subgroups is equivalent.

To begin, we require the following well-known theorem from number theory. We give the
result here without proof.

Result 4.10 (Zsigmondy’s Theorem [41]). Let a > b > 0 be coprime integers. Then, for
any integer n ≥ 1, there exists a prime p such that p | an − bn and p - ak − bk for all k < n

with the following exceptions:
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• If n = 1 and a− b = 1.

• If n = 2 and a+ b is a power of two.

• If n = 6, a = 2 and b = 1.

The same result holds when replacing an− bn with an + bn, with the sole exception of 23 + 13.

We also require some group representation theory. A linear representation of a group G
is a pair (V, π), where V is a vector space and π : G → GL(V ) a group homomorphism. A
linear representation (V, π) is reducible if there exists a subspace W ⊂ V such that for all
g ∈ G and w ∈ W , π(g)w ∈ W .

Let (V1, π1) and (V2, π2) be two representations of a group G. A G-intertwining map
f : V1 → V2 (or just intertwining map if G is clear from context) is a map such that
π2(g) ◦ f = f ◦ π1(g) for all g ∈ G. Schur’s Lemma constrains f when the representations
are both irreducible.

Result 4.11 (Schur’s Lemma). Let (V1, π1), and (V2, π2) be two irreducible F -linear repre-
sentations of a group G. If f is an intertwining map between π1 and π2, then either f is
zero or f is an isomorphism from V1 to V2.

Proof. Let x ∈ ker(f) ⊂ V1, then

(f ◦ π1(g))(x) = (π2(g) ◦ f)(x) (4.10)

= π2(g)0 (4.11)

= 0. (4.12)

So ker(f) is an invariant subspace of V1. As (V1, π1) is irreducible we have either ker(f) = V1

(i.e. f is the zero map) or ker(f) = ∅. In the latter case, let y ∈ f(V1) ⊂ V2, then

π2(g)y = (π2(g) ◦ f)(x) (4.13)

= (f ◦ π1(g))(x). (4.14)

So f(V1) is an invariant subspace of V2. Therefore, f(V1) = V2 as ker(f) = ∅.

We then obtain the following immediate corollary.

Lemma 4.1. Suppose that G is a subgroup of GL(k, q) acting irreducibly on (Fq)k. Then,
the set C(G) ∪ {0} is isomorphic to a subfield of Fqk under the usual operations of addition
and multiplication.
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Proof. Let G be a subgroup of GL(k, q) acting irreducibly on (Fq)k. Let A,B ∈ C(G) with
A+B 6= 0. We now have

(A+B)X = X(A+B)

for all X ∈ G. Therefore, f(x) = (A + B)x is an intertwining map from (Fq)k to itself.
By Result 4.11 f(x) is invertible, and so A + B ∈ GL(k, q). As A + B ∈ GL(k, q), and
A + B commutes with all X ∈ G, we have A + B ∈ C(G). Hence C(G) is closed under
addition and multiplication, and F = C(G)∪{0} forms a finite division algebra. As all finite
division algebras are fields, the division algebra F is a field. All finite fields are isomorphic,
so F = C(G)∪{0} is isomorphic to a finite field Fqi (since it must contain Z(GL(k, q)) ' F×q ).

Let ϕ be an isomorphism from Fqi to F , and let α ∈ Fqi be a generator. Then, ϕ(α) ∈
GL(k, q) is a k × k matrix that, by the Cayley-Hamilton Theorem, is a root of its own
characteristic polynomial f ∈ Fq[x] of degree at most k. Moreover f is irreducible as α is a
generator. It now follows that f(α) = 0, and so α ∈ Fkq . Thus F is isomorphic to a subfield
of Fqk .

We can now show that Singer groups are conjugate.

Result 4.12. Let q = pe, then any two Singer subgroups of PΓL(k, q) are conjugate, except
if k = 2 and q = 8.

Proof*. We first show that any two Singer cyclic groups are conjugate in PGL(k, q). Let S
be a Singer cyclic group of PG(k, q). Then, barring a few trivial cases we won’t consider here
(see Remark 4.2), we have by Result 4.10 a prime r that divides qk − 1 but not qi− 1 for all
i < k. Therefore, r divides qk−1

q−1 and so there exists a Sylow r-subgroup in S, let R be such
a subgroup. Because [PGL(k, q) : S] =

∏k−1
i=0 q

i(qk−i − 1), we see that r - [PGL(k, q) : S].
Thus, R is also a Sylow r-subgroup in PGL(k, q).

Consider now the centraliser C(R). As S is cyclic (and therefore abelian) it follows that
S ⊂ C(R). Let π be the natural homomorphism from GL(k, q) to PGL(k, q). We then have
π−1(R) = R̂ × Z, where Z is the group of invertible of diagonal matrices and R̂ is a Sylow
r-subgroup of GL(k, q). Note that π−1(C(R)) = C(R̂).

The subgroup π−1(S) acts sharply transitively on (Fq)k, and hence R̂ acts freely on (Fq)k.
Suppose that U ⊂ (Fq)k is a proper invariant subspace of R̂. Then R̂ partitions U into orbits
of length |R̂| because R̂ acts freely on U . Thus, |R̂| | |U | and in particular r | |U |. However,
|U | = qi for some i < k and r - qi because gcd(qi, qk − 1) = 1 and r | qk − 1. So R must act
irreducibly on (Fq)k.

By Result 4.1, the centraliser C(R̂) is isomorphic to the multiplicative group of Fqk .
Because π−1(S) ⊂ C(R̂) is isomorphic to F×

qk
, we conclude C(R̂) = π−1(S). It now follows

that C(R) = S in PGL(k, q). Because Sylow r-subgroups are conjugate, their centralisers
are also conjugate. Hence all Singer groups in PGL(3, q) are conjugate.
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To extend the result to show that all Singer cyclic groups are conjugate in PΓL(k, q), let
r be again a prime that divides qk − 1 but not qi − 1 for all 0 ≤ i < k and let S be a Singer
group of PΓL(k, q). Then r - e, as otherwise if r = es,

qk ≡ 1 mod r (4.15)

pke ≡ 1 mod r (4.16)

pkrs ≡ 1 mod r (4.17)

pks ≡ 1 mod r (4.18)

so r|pks − 1, which is a contradiction as ks < ke. Thus, the Sylow r-subgroup R in S is still
contained in PGL(k, q). Let π be the natural homomorphism from ΓL(k, pe) to PΓL(k, pe),
and let R̂ = π−1(R), and Ŝ = π−1(S). Then, as ΓL(k, pe) embeds in GL(ke, p), we may
regard R̂ as a subgroup of GL(ke, p). As before, R̂ acts irreducibly and C(R̂) ≡ Ŝ. So the
conjugacy of Singer groups in PΓL(k, q) follows.

Remark 4.2. There are exceptional cases to Result 4.12, where Result 4.10 does not apply.
The first is PGL(6, 2), and this can be dealt with computationally. The second is k = 2 and
q+ 1 a power of two. Let G be a Singer cyclic group of PGL(2, q), where q+ 1 is a power of
two. In this case, |PGL(2, q)| = (q−1)q(q+ 1). Because q+ 1 is a power of two, there exists
a Sylow 2-subgroup R of PGL(2, q) containing G. Because 2 | (q + 1) but not q or q− 1, the
Sylow 2-subgroup R has order 2(q + 1) and G / R. We thus obtain R ≡ Dq+1 and so G is
the unique subgroup of R having order q + 1. The result now follows from the conjugacy of
Sylow 2-subgroups. In extending the results to PΓL(k, q) we have two additional exceptions to
Theorem 4.10, namely q = 4 and k = 3 as well as q = 8 and k = 2. The conjugacy of Singer
groups in PΓL(3, 4) is easily checked by computer. In PΓL(2, 8) there are two conjugacy
classes of Singer groups.

Result 4.13. Let q = pe, any two cyclic subgroups of order q2 − q + 1 in PΓL(3, q2) are
conjugate, except if q = 2.

Proof*. By Zsigmondy’s Theorem, there exists a prime divisor r of q6 − 1 that does not
divide qk − 1 for any k < 6. Thus, as q6 − 1 = (q3 − 1)(q3 + 1), we see that r | q3 + 1. As
q2− 1 = (q− 1)(q+ 1), we find that r | q+ 1. It follows that r | (q3 + 1)/(q+ 1) = q2− q+ 1

and r | (q2− q+ 1)(q2 + q+ 1) = (q6− 1)/(q2− 1). As in Result 4.12, r does not divide e or
qi for all 1 ≤ i < 6.

Now let S be a Singer group, and K the unique subgroup of order q2− q+ 1 contained in
S. Then, because r | q2− q+ 1, there exists a Sylow r-subgroup R contained in K. Because

[PΓL(3, q2) : K] = eq6(q4 − 1)(q2 − 1)(q2 + q + 1),
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it follows that r does not divide [PΓL(3, q2) : K]. Hence, R is also a Sylow r-subgroup in
PΓL(3, q2). By the same arguments of Lemma 4.12, we obtain C(R) = S.

Finally let K ′ be an arbitrary cyclic subgroup of order q2 − q + 1. It contains a Sylow
r-subgroup R′ that must be conjugate to R. Let ϕ ∈ PΓL(3, q2) be the map such that
ϕRϕ−1 = R′. Then, ϕC(R)ϕ−1 = C(R′). As both ϕKϕ−1 and K ′ are subgroups of order
q2 − q + 1 in C(R′), and C(R′) is cyclic, we need ϕKϕ−1 = K ′. Hence, all cyclic subgroups
of order q2 − q + 1 in PΓL(3, q2) are conjugate.

Remark 4.3. Result 4.13 does not hold for PΓL(3, 4), where there are three conjugacy classes
of groups of order q2 − q + 1 = 3.

As a consequence, we have also shown the following

Result 4.14. All Kestenband arcs are PΓL-equivalent.

The natural extension of this question is whether all complete (q2−q+1)-arcs in PG(2, q2)

are projectively equivalent. Exhaustive searches of complete arcs in PG(2, q) for q ≤ 29 have
been made by computer (see for instance [17]) and have thus verified that all (q2−q+1)-arcs
in PG(2, q2) are projectively equivalent for q ≤ 5. The next largest case PG(2, 36) seems out
of reach for the time being. These arcs appear to be unique for even q, which is remarkable
considering that there are inequivalent ovals in PG(2, q2) for even q. In Section 4.4 we show
some conditions on the structure of an arbitrary complete (q2 − q + 1)-arc.

4.4 Kestenband Arcs and Cyclic Spreads of Hermitian
Unitals

The relationship between Kestenband arcs and Hermitian unitals has been explored in Sec-
tion 4.2. In this section, we show that the tangent lines to a Kestenband arc dualise to a
Hermitian unital when q is even, and that a Kestenband arc is a dual cyclic spread of some
Hermitian unital. These two facts are well known. For instance, the tangent line result was
first mentioned in [29].

A spread of a unital U is a set of q2 − q + 1 lines that partition the points of U . To
introduce this concept we give an example of a trivial spread of a Hermitian unital.

Result 4.15. Let H be a Hermitian unital with associated polarity ρ of PG(2, q2), and
P /∈ H. Let `1, `2, . . . , `q2−q be the secant lines of H through P . Then, the set of q2 − q + 1

lines S = {`1, `2, . . . , `q2−q, P ρ} form a spread of H.

Proof. To show that S is a spread, we show the lines of S do not meet in H. As `i∩`j = P /∈
H, we need only consider `i ∩ P ρ. Because (`i ∩ P ρ)ρ = 〈P, `ρi 〉, and P /∈ `i ∩H, (`i ∩ P ρ)ρ

is a secant line of U and hence `i ∩ P ρ is not a point of H. Thus, S is a spread of H.
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Hermitian unitals admit another kind of spread, the cyclic spreads. These spreads are
constructed by taking the orbit of a particular secant line ` of H under a cyclic group of
order q2 − q + 1 stabilising H. The motivation for looking at cyclic spreads is the following
theorem, which gives an explicit description for vH as the sum of lines in a cyclic spread for
q even.

Result 4.16 ([19]). Let H be a Hermitian unital of PG(2, q2) with q even admitting a cyclic
spread S = {`i | i = 1..q2 − q + 1}. Then, vH =

∑q2−q+1
i=1 v`i.

Proof. We aim to show that vH =
∑q2−q+1

i=1 v`i . Let P ∈ H, then P lies on precisely one line
of S. It is clear that S is a dual Kestenband arc, being the orbit of a line under a group of
order q2−q+1. So if P /∈ H, P either lies on zero or two lines of S. Thus, if u =

∑q2−q+1
i=1 v`i ,

uP = 1 mod 2 and uP = 0 mod 2 if P ∈ H and P /∈ H respectively. Hence, u = vH and
the result follows.

We now establish the existence of cyclic spreads of Hermitian unitals for q even. Let β
be a generator for Fq6 , and let θ be the collineation of PG(2, q2) induced by β, when viewing
PG(2, q2) in the field model. We may partition PG(2, q2) into B = {Bi | i = 0 . . . q2 − q}
where

Bi = {(βi+t(q2−q+1))Fq2 | t = 0 . . . q2 + q + 1}. (4.19)

Note that B0 is the Baer subplane obtained by canonically embedding PG(2, q3). The set B
is the orbit of B0 under 〈β〉.

A second partition of PG(2, q2) is obtained by considering A = {Ai | i = 0 . . . q2 + q},
where

Ai = {(βi+t(q2+q+1))Fq2 | t = 0 . . . q2 − q + 1}. (4.20)

The set A0 is a Kestenband arc, and A is the orbit of A0 under 〈β〉. To show there exists
a unique cyclic spread of H stabilised by θ we use the following lemmas dealing with the
intersection of lines ` with arcs in A and Baer subplanes in B.

Lemma 4.2. Let A = {Ai} and B = {Bj} be as defined in equation (4.20) and Equation 4.19
respectively. Then, |Ai ∩Bj| = 1 for all i and j.

Proof. As B and A are orbits under β, assume that Bj = B0. Suppose that |Ai ∩ B0| ≥ 0.
Then (βi+t(q

2+q+1))Fq2 ∈ B0 for some 0 ≤ t ≤ q2 − q, and so βi+t(q2+q+1) ∈ Fq3 . If 0 ≤ k <

q2 − q + 1 and (βj+(t+k)(q2+q+1))Fq2 ∈ B0, then βk(q
2+q+1) = βj+(t+k)(q2+q+1)/βt(q

2+q+1) ∈ Fq3 .
However, this is true if and only if q3 +1 | k(q2 +q+1) and because gcd(q3 +1, q2 +q+1) = 1

this implies q3+1 | k. So k = 0 as k < q3+1. Therefore, |Ai∩B0| ≤ 1 and hence |Ai∩Bj| ≤ 1

for all i, j. There are q2− q+ 1 points of Ai and q2− q+ 1 Baer subplanes in B partitioning
the plane, so |Ai ∩Bj| = 1 for all i, j.
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We may also prove that secant lines of the Baer subplanes are tangent lines of the arcs.

Lemma 4.3. Let B = {Bi | i = 0 . . . q2− q+ 1} be defined as in equation (4.19). Let P ∈ Bi,
and let Aj be the arc meeting Bi at P . Then the q+1 secant lines of Bi are the tangent lines
of p ∈ Aj.

Proof. Again assume that Bi = B0. We further assume that P = (1)Fq because the
collineation induced by βq

2−q+1 is transitive on B0, and stabilises both B and A. The
unique arc through P is A0. Suppose that some secant line of B0 through p and (x)Fq ∈ B0

meets A0 in a point (βi(q
2+q+1))F2

q
. Then, we have 1 + δx = γβi(q

2+q+1) for some δ, γ ∈ Fq2 .

Because (γβi(q
2+q+1))

q3+1 ∈ Fq,

(1 + δx)q
3+1 = (1 + αx)(1 + αx)q

3

(4.21)

= (1 + αx)(1 + αqx) (4.22)

= 1 + (αq + α)x+ αq+1x2 (4.23)

⇒ 0 = (1 + δx)q
3+1 + 1 + (αq + α)x+ αq+1x2. (4.24)

Since αq + α = TrFq2 /Fq(α) ∈ Fq and αq+1 = NFq2 /Fq(α) ∈ Fq, it follows that x satisfies
a quadratic equation over Fq and is hence in Fq2 . Therefore, we have (x)F2

q
= (1)F2

q
. This is

a contradiction of the assumption that (x)F2
q
was a distinct point to (1)F2

q
, so all lines of B0

through P are tangent to the arc A0.

The following characterisation of lines tangent to arcs in A is immediate.

Corollary 4.1. Let A = {Ai} and B = {Bj} be as defined in equation (4.20) and Equa-
tion 4.19 respectively. Then a line ` is tangent to some Ai if and only if it is the secant line
of some Bj.

We can then prove the following result,

Lemma 4.4. Let B = {Bi} be as defined in equation (4.19). Then a line ` is secant to
precisely one Baer subplane Bi.

Proof. There are q2 + 1 points on `, and the Baer subplanes of B partition the points of `
into subsets of size 1 or q + 1. Let t be the number of Baer subplanes secant to `, then

q2 + 1 = t(q + 1)− (q2 − q + 1− t),

whence t = 1 follows.

We have all the pieces now to show our main theorem,



62 CHAPTER 4. KESTENBAND ARCS

Corollary 4.2. Let A = {Ai} and B = {Bj} be the arcs and Baer subplanes as defined in
equation (4.20) and Equation 4.19 respectively. Then any line ` ∈ PG(2, q2) is tangent to
exactly q + 1 arcs in A, forming a Baer subline of PG(2, q2).

Proof. By Lemma 4.3 and Lemma 4.4, a line ` is a secant line to exactly one Baer subplane
of B, and therefore tangent to exactly q + 1 arcs in A.

Theorem 4.1. Let H be a classical unital in PG(2, q2), with q even, having a cyclic stabiliser
K of order q2− q+ 1, partitioning H into q+ 1 Kestenband arcs AH. Then every secant line
` of H is tangent to all arcs of AH or precisely one arc of AH. Moreover, there are exactly
q2 − q + 1 lines of the former kind, forming a cyclic spread of H.

Proof. We may view AH as a subset of a partition of the whole plane PG(2, q2) into Kesten-
band arcs A. As K is a cyclic group of order q2 − q + 1, it is contained in a Singer group
of order S, inducing a partition of PG(2, q2) into Baer subplanes B as in equation (4.19).
Suppose that ` is a secant line meeting two arcs in AH . Then because |` ∩H| = 1 mod p,
we must have ` tangent to at least three arcs in AH . At the same time, ` is tangent to
precisely q+ 1 arcs in A, and the points of tangency form a Baer subline. As a Baer subline
is uniquely determined by three points this Baer subline must be ` ∩H, and so ` is tangent
to all arcs in AH . Let S be the set of all lines tangent to all arcs in AH . The Hermitian
unital meets each Baer subplane in exactly one Baer subline (see Theorem 6.21 of [8]), and
each such line must be tangent to all arcs in AH . So |S| = |B| = q2 − q + 1. The other
lines are tangent to at least (and hence exactly) one arc as |` ∩H| = q + 1 ≡ 1 mod p and
|`∩Ai| ≤ 2. The lines tangent to all arcs AH then must be a single orbit under K, as if ` is
tangent to all arcs in AH then `θ is tangent to all arcs in AH for all θ ∈ K.

We will now show that given any complete (q2 − q + 1)-arc A, the dual to its tangent
lines forms a Hermitian unital. To show this, we need the following result about arcs (given
without proof, see [28] for details).

Result 4.17. Let K be a k-arc in PG(2, q) with q even. Then the tk tangents of K where
t = q + 2− k belong to an algebraic envelope Γt of class t with the properties:

1. Γt is unique if k > t, that is, k > q/2 + 1;

2. Γt contains no secant of K and so no pencil with vertex P in K;

3. each tangent of K is counted exactly once in Γt.

Remark 4.4. In this context, an algebraic envelope Γt of class t is the dual of an algebraic
curve with degree t. In particular, a point lies on at most t lines of Γt.
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Result 4.18 ([29]). Let A be a complete (q2− q+ 1)-arc in PG(2, q2), and let Γ be the q3 + 1

tangents to A. Then Γ is a dual Hermitian unital.

Proof. Label the points of PG(2, q2) \A in some order as {xi | i = 1, 2, . . . , q4 + q}. For each
xi /∈ A, let si be the number of tangents to A incident to xi. We first double count ordered
pairs (xi, `), with xi ∈ ` and ` ∈ Γ. On the one hand each point xi ∈ PG(2, q2)\A is incident
to si tangents, so there are S =

∑
i si ordered pairs (xi, L). For each ` ∈ Γ, there are q2

points on ` \ A and so

q4+q∑
i=1

si = S = |Γ|q2 = (q + 1)(q2 − q + 1)q2.

We now count ordered triples (xi, `, `
′), where xi = ` ∩ `′ /∈ A for distinct `, `′ ∈ Γ. On

the one hand for a given xi ∈ PG(2, q2)\A, there are si(si−1) ordered pairs (`, `′) such that
xi = `∩ `′. Hence, there are S ′ =

∑
i si(si − 1) ordered triples. On the other hand there are

|Γ|(|Γ| − (q + 1)) ordered pairs (`, `′) such that ` ∩ `′ /∈ A, so

q4+q∑
i=1

si(si − 1) = S ′ = (q + 1)(q2 − q + 1)((q + 1)(q2 − q + 1)− (q + 1)).

It now follows that

q4+q∑
i=1

(si − 1)(si − (q + 1)) (4.25)

=

q4+q∑
i=1

si(si − 1)− (q + 1)

q4+q∑
i=1

si + (q + 1)(q4 + q) (4.26)

= (q + 1)2(q2 − q + 1)(q2 − q)
− (q + 1)2(q2 − q + 1)q2 + (q + 1)(q4 + q)

(4.27)

= 0. (4.28)

As Γ is an algebraic envelope of class q + 1 and q2 − q + 1 is odd, 1 ≤ si ≤ q + 1 and we
have (si − 1)(si − (q + 1)) ≤ 0 for all i. Because

∑q4+q
i=1 (si − 1)(si − (q + 1)) = 0, we have

(si− 1)(si− (q+ 1)) = 0 for all i. So each point xi /∈ A lies on 1 or q+ 1 tangents lines to A.
Denote Γ∗ to be the dual of Γ. Then as every point lies on either one or 1 or q + 1 tangents
to A, every line meets Γ∗ in 1 or q + 1 points. Hence, Γ∗ is a unital, and because Result
4.16 gives an expression for Γ∗ as a codeword in PG(2, q2), we see that Γ∗ is a Hermitian
unital.

Theorem 4.18 has some implications for an arbitrary complete (q2 − q + 1)-arc A when
q even is even, namely:
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1. the tangents to A form a dual Hermitian unital;

2. the stabiliser group of A is a subgroup of PGU(3, q2) (the stabiliser group of any
Hermitian unital);

3. the tangents to any point P ∈ A are a Baer subpencil, a set of lines forming a pencil
in a Baer subplane;

4. the arc A is a dual spread of a dual Hermitian unital H.

These facts, combined with the computational evidence, suggest that A is likely not some
arbitrary arc, and further motivates Conjecture 4.1.

Conjecture 4.1. All complete (q2 − q + 1)-arcs in PG(2, q2), with q even, are projectively
equivalent to a Kestenband arc.

4.5 The Arc and Unital Plane Model

In this section we aim to relay a succinct proof of the following theorem, due to [25],

Result 4.19 ([25]). A unital U is classical if and only if it is stabilised by a cyclic group of
order q2 − q + 1.

Originally, Theorem 4.19 was shown in [18] using cyclic partitions of the projective plane
into Baer subplanes, and a careful embedding of PG(2, q2) inside PG(2, q6). The method of
Giuzzi, which we now illustrate, employs a construction of the Desarguesian projective plane
PG(2, q) using Kestenband arcs and Hermitian unitals.

Consider the field model for the projective plane PG(2, q2) with β as the generator for
Fq6 , and θ the corresponding collineation. Let Ai = {(βi+t(q2+q+1))Fq2 | t = 0, 1, . . . , q2 − q}.
For each α ∈ Fq3 , we define the form sα(x, y) = TrFq6 /Fq2 (αxyq

3
).

Result 4.20 ([25]). For each α ∈ Fq3, the form sα is a reflexive non-degenerate Hermitian
form.

Proof. We first show sα is non-degenerate. As y 7→ αyq
3 is a permutation of Fq6 , the form

sα is degenerate if and only if TrFq6 /Fq2 (xz) = 0 is degenerate. Because trace pairing is a
non-degenerate form, so too is sα(x, y). Because TrFq6 /Fq2 (αxyq

3
)q

3
= TrFq6 /Fq2 (αxq

3
y) we

see that sα(x, y) is both reflexive and Hermitian.

The Hermitian polarity associated with sα(x, y) is the map Tα(x) = TrFq6 /Fq2 (αxq
3+1).

The absolute points Hα of Tα form a Hermitian unital by definition. Let P = {Ai | i =

0, 1, . . . , q2 − q}, and L = {Hα |α ∈ Fq3}. Then, together with natural incidence, we will
show (P ,L) forms a Desarguesian projective plane of order q.
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Result 4.21 ([25]). Let L = {Hα |α ∈ Fq3}. Then |L| = q2 + q + 1.

Proof. Because Fq3 ∩Fq2 = Fq, it follows that Hα1 = Hα2 if and only if α1/α2 ∈ Fq. There-
fore, |L| = (q3 + 1)/(q − 1) = q2 + q + 1.

Result 4.22 ([25]). Let Hα and Hα′ be two distinct unitals, then Hα ∩Hα′ is a Kestenband
arc stabilised by θ.

Proof. As Hα and Hα′ are two unitals stabilised by θ, their intersection is stabilised by θ,
so Hα ∩ Hα′ is stabilised by θ. Because Hα and Hα′ are codewords, they meet in 1 mod p

points (Result 3.12), and hence their intersection is the union of at least one Kestenband
arc stabilised by θ. However, 2(q2 − q + 1) > (q + 1)2 as q ≥ 4 so Hα ∩Hα′ is precisely one
Kestenband arc stabilised by θ.

The following is an immediate corollary of Result 4.21 and 4.22.

Result 4.23. [25] Let P = {Ai | i = 1, . . . , q2− q} and L = {Hα |α ∈ Fq3}. Then, the set P
and L together with natural incidence form a projective plane of order q.

The projective plane constructed with Result 4.23 is Desarguesian.

Result 4.24 ([25]). Let P = {Ai | i = 0, 1, . . . , q2 − q} and L = {Hα |α ∈ Fq3}. The
projective plane with points P, lines L and natural incidence is Desarguesian.

Proof. If Ai is contained inHα, then TrFq6 /Fq2 (βi(q
3+1)α) = TrFq3 /Fq(β

i(q3+1)α). On the other
hand if TrFq3 /Fq(β

i(q3+1)α) = 0 then since β(q2−q+1)(q3+1) is a generator for Fq,

TrFq3 /Fq(β
i(q3+1)+t(q2−q+1)(q3+1)α) = βt(q

2−q+1)(q3+1) TrFq3 /Fq(β
i(q3+1)α) (4.29)

= 0. (4.30)

The incidence described is identical to incidence in the field model of PG(2, q), and so the
projective plane with points P , lines L and natural incidence is Desarguesian.

As an application of what we have just shown, we prove that any unital stabilised by a
cyclic group of order q2 − q + 1 is classical. This proof is the work of [25], and makes use of
the following trivial result about blocking sets.

Result 4.25. Let S be a blocking set of PG(2, q) with |S| = q + 1. Then, S is a line of
PG(2, q).

Proof. Let P,Q be two points of S, and suppose that there exists a point R ∈ 〈P,Q〉 not in
S. Then, as there are exactly q + 1 points of S and q + 1 lines through R, if S is a blocking
set each line through R contains exactly one point of S. However, the line 〈P,Q〉 contains
R and at least two points of S, so by contradiction R cannot exist and S = 〈P,Q〉.
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Result 4.26 ([25]). Let U be a unital of PG(2, q2). Then, U is classical if and only if it is
stabilised by a cyclic group of order q2 − q + 1.

Proof. As the classical unital is stabilised by PGU(3, q2), which does contain a cyclic group
of order q2 − q + 1, we only need to show the converse. Let U be a unital stabilised by a
cyclic group K of order q2 − q + 1. By Result 4.13, there exists a collineation ϕ such that
〈θ〉 = ϕKϕ−1. Therefore, the cyclic group 〈θ〉 stabilises U ′ = ϕ(U). Partition the plane
PG(2, q2) into q2 + q+ 1 Kestenband arcs P = {Ai | 0, 1, . . . , q2− q}, and q2 + q+ 1 classical
unitals L = {Hα |α ∈ F×q3} to form a projective plane of order q as in Result 4.23. Because
〈θ〉 stabilises U ′, the unital U ′ is the disjoint union of q + 1 Kestenband arcs Ai. By Result
3.12, U ′ meets each Hα in at least one point and so at least one Kestenband arc — as θ
stabilises both U ′ and Hα. Hence, U ′ is a blocking set of order q + 1 in the projective plane
formed by P and L. By Lemma 4.25, U ′ ∈ L and therefore U = Hα for some α. Because U ′

is classical, and U = ϕ−1(U ′), it follows that U is classical.



Chapter 5

Unitals and Ovals in Figueroa Planes

This chapter looks at unitals and ovals in Figueroa planes, a family of non-translation pro-
jective planes. In this chapter we will:

1. Provide a detailed background of Figueroa planes.

2. Introduce the known ovals and unitals in Figueroa planes, and understand the similar-
ities in their construction.

3. Attempt to generalise the construction of ovals and unitals, outlining some difficulties
in doing so.

5.1 Background

The Figueroa plane of order q3, for some prime power q, is a non-translation plane first de-
scribed by Figueroa [24]. Figueroa constructs Figueroa planes for q 6≡ 1 mod 3 and describes
incidence in an algebraic fashion. Grundhöfer [26] later describes Figueroa planes of order q3

for all prime powers q using a synthetic description of incidence. We present Grundhöfer’s
work.

Let α be an order 3 collineation of PG(2, q3). We classify points into three types with
respect to α.

Type-I points Points fixed by α.

Type-II points Points P such that P , Pα, Pα2 are collinear.

Type-III points Points P such that P , Pα, Pα2 are not collinear.

Lines may be dually classified as type-I, type-II or type-III. If α is clear from context, we
may simply say P is type-I, type-II or type-III as opposed to type-I, type-II or type-III with
respect to α.

67
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Result 5.1 ([26]). Suppose α is a collineation of order 3. Let µ be the function defined as
µ(P ) = PαPα2 for any type-III point P and µ(l) = lα ∩ lα2 for any type-III line l. Then µ

is an involution mapping type-III points to type-III lines.

Proof. Suppose that P is type-III. Then since the points P, Pα, Pα2 are not collinear, the
line l = PαPα2 is a type-III line. Dually, if l is a type-III line, then µ(l) is a type-III point.
As µ(µ(P )) = µ(PαPα2

) = (PPα2
) ∩ (PPα) = P , µ is an involution of type-III points and

lines.

The following result constrains the structure of a collineation α of order three.

Result 5.2 ([26]). Let α be an order three collineation of PG(2, q3). Then either α is a
perspectivity of PG(2, q) or α fixes a subplane of order q point-wise.

The Figueroa plane will be constructed using µ to modify incidence for type-III points
and lines. We require the following important lemma that describes when a type-II line may
contain two type-III points.

Result 5.3 ([26]). Let α be an order three collineation of PG(2, q3). Suppose that P and
Q are two type-III points of PG(2, q3) with respect to α. Then PQ is type-II if and only if
P µ ∩Qµ is type-II.

Proof. Let P and Q be two type-III points. Let R = PαPα2 ∩ QαQα2
= P µ ∩ Qµ. By

Desargues’ Theorem, the triangles {P, Pα, Pα2} and {Q,Qα, Qα2} are in perspective from a
point V = PQ∩PαQα if and only if R, Rα and Rα2 are collinear. If PQ, PαQα and Pα2

Qα2

are concurrent at V , then V = V α = V α2 and so V is type-I. Hence PQ is type-II if and
only if P µ ∩Qµ is type-II.

We also require the following useful corollary of Desargues’ Theorem.

Result 5.4 ([26]). Let l be a fixed line containing three distinct points P0, P1 and P2, and
consider two further distinct lines m and n meeting at a point Z. Let R be the set of points
R0 for which there exists R1 ∈ m and R2 ∈ n forming a triangle, such that P0 ∈ R1R2,
P1 ∈ R0R2 and P2 ∈ R0R1. Then, the points of R are collinear on a line s containing Z.

Proof. Let R0, R1, R2 and R′0, R′1, R′2 be a pair of triples as described in the statement of
the result. Then, the triangles {R0, R1, R2} and {R′0, R′1, R′2} are in perspective from the
line l in the points P0, P1, P2. So they must also be in perspective from a line s containing
R1R

′
1 ∩ R2R

′
2 = m ∩ n = Z. If R′′0, R′′1 and R′′2 is a further triple of points, then because

the triangle {R′′0, R′′1, R′′2} is in perspective with both {R0, R1, R2} and {R′0, R′1, R′2} from l,
R′′0 ∈ R0R

′
0 = s.
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Result 5.5 ([26]). Let α be a collineation of PG(2, q3) of order 3 contained in PΓL(3, q3) \
PGL(3, q3), and let µ be the involution defined in Result 5.1. The set of points P, and lines
L form a projective plane Figα(q3) of order q3 where:

1. the set of points P is the set of points in PG(2, q3);

2. for each type-I or type-II line ` of PG(2, q3) there is a corresponding Figueroa line
`Fα ∈ L containing all points of `;

3. for each type-III line ` of PG(2, q3) there is a corresponding Figueroa line `Fα ∈ L
containing all type-II points of `, and all type-III points P such that P µ 3 `µ.

Proof. To show that Figα(q3) is a projective plane, we must show the axioms of a projective
plane hold.

Let P and Q be two points of Fig(q3). If both P and Q have type-I or type-II then
` = PQ is the unique line of PG(2, q3) such that `Fα contains both P and Q. If P is type-I
and Q is type-III, then any line containing both P and Q is type-II. So the line ` = PQ is
again the unique type-II line containing both P and Q. Now assume that P and Q have
type-III. By Result 5.3, the line ` = PQ is type-II if and only if P µ ∩ Qµ is type-II. The
point R = P µ ∩ Qµ is the unique point such that R ∈ P µ and R ∈ Qµ. Hence the unique
line containing P and Q is (`)Fα if ` is type-II, and ((P µ ∩Qµ)µ)Fα otherwise.

Suppose that P is type-II andQ is type-III. Consider all triangles with vertices (R0, R1, R2)

where R1 ∈ QQα2 and R2 ∈ QQα, such that Pα2 ∈ R0R1, Pα ∈ R0R2 and P ∈ R1R2. By
Result 5.4, the points R0 lie on a unique line m containing Q. Let X = m ∩ Qµ. Then
the points X ′ = XPα2 ∩ QQα2 and X ′′ = XPα ∩ QQα are the unique points such that
{X,X ′, X ′′} is a triple of the form (R0, R1, R2). This implies that {X,X ′, X ′′} is an orbit
under α. Hence, X = m ∩ Qµ is the unique point such that X ∈ Qµ and P ∈ Xµ. If X is
type-III, then (Xµ)Fα contains both Q and P . We will show that X is type-III if and only
if PQ has type-III, thus ensuring that Xµ is the unique line such that P,Q ∈ (Xµ)Fα .

Assume that X is type-II. Then P ∈ XαXα2
= XXα and Pα ∈ Xα2

X = XXα. So
XXα = PPα and thus X ∈ PPα. Therefore, the lines m, PPα and Qµ are concurrent in
X. If P ∈ QQα or P ∈ QQα2 then the unique Figueroa line spanning P and Q is just
((Qα)µ)Fα or ((Qα2

)µ)Fα respectively. So we may assume P /∈ QQα and P /∈ QQα2 . Now
let l = Pα2

(PQα ∩ Pα2
Qα2

) (see Figure 5.1) — note that this line exists as P does not lie
on QQα or QQα2 . The point R0 = l ∩ PαQα, together R1 = Qα2

Q ∩ l and R2 = Qα are
the vertices of a triangle (R0, R1, R2) with R1 ∈ QQα2 , R2 ∈ QQα, Pα2 ∈ R0R1, Pα ∈ R0R2

and P ∈ R1R2. So by Result 5.4, we must have R0 ∈ m and so m ∩ PαQα = l ∩ PαQα.
Hence, the line l contains the points Pα2 , PQα ∩ QQα2 , and m ∩ PαQα. By Result 1.11
applied to the tuple (Qα, Qα2

, X;Pα2
,m ∩ PαQα, PQα ∩ QQα2

), we obtain that P , Q, and
PαQα ∩ Pα2

Qα2 are collinear. Hence, PQ is type-II.
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X

Qα2

Qα = R2

Q

Pα2

P

Pα

C

m

l

Qµ

R0

R1

Figure 5.1: Illustration of the configuration in Result 5.5.

Now suppose that PQ is type-II. Then, PQ, (PQ)α and (PQ)α
2 are concurrent at a point

C. Then, applying Result 1.11 again to the hexagon {C,P,Q;Pα2
, PQα∩QQα2

,m∩PαQα},
we find that the points Qα, Qα2 , and PPα ∩m are collinear. So X = Qµ ∩m = PPα ∩m
must have type-II as it lies on the type-I line PPα. Thus, the unique line `Fα ∈ L spanning
P and Q is (PQ)Fα if PQ is type-II and (Xµ)F otherwise. We conclude that there is a
unique line of L spanning any two distinct points P and Q of Figα(q3).

We shall show that two lines in L meet in a unique point dually. Suppose that P is a
point of PG(2, q3) with homogeneous coordinates (x, y, z). Then recall (Section 1.2) that the
dual of P is a line P ρ with dual coordinates [x, y, z]. It therefore follows that (P ρ)α = (Pα)ρ

and, if P and ` are type-III, P µ ∈ `µ if and only if (`ρ)µ ∈ (P ρ)µ. Thus, if lFα ,mFα ∈ L, we
have P ∈ lFα ∩mFα if and only if (P ρ)Fα = (lρmρ)Fα and so P exists and is unique as there
is a unique Figueroa line spanning two points.

Lastly we show there exists four points of Fig(q3), no three lying on a line of L. As
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α ∈ PΓL(3, q3) \ PGL(3, q3), the type-I points of α are an order three subplane of PG(2, q3)

by Result 5.2. Because this subplane contains four points no three collinear, there exists
four type-I points of Figα(q3), no three lying on a line `Fα ∈ L.

The usual choice for α is the collineation mapping the point P is the collineation induced
by the automorphism x → xq of Fq3 . The fixed points of α are precisely the points of the
order q subplane PG(2, q) canonically embedded into PG(2, q3).

The following results are corollaries of Result 5.8.

Result 5.6. Let Π be a subplane of PG(2, q3) of order q. The group of collineations fixing
Π point-wise is a group of order three.

Proof. Let Π0 be the subplane obtained by canonically embedding PG(2, q) in PG(2, q3). Let
α be the collineation induced by the automorphism x→ xq of Fq3 . The group of collineations
fixing PG(2, q) point-wise is clearly the group of order three generated by the collineation
α. By Result 1.22, the subplane Π is projectively equivalent to Π0. Hence the point-wise
stabiliser of Π is isomorphic to the point-wise stabiliser of Π0.

Result 5.7. Let α and β be two order three collineations in PΓL(3, q3) \ PGL(3, q3). Then
Figα(q3) is isomorphic to Figβ(q3).

Proof. By Result 5.2, the collineations α and β both fix subplanes Π and Π′ of order q
respectively. As in Result 5.1, let µα and µβ be the involutions induced by α and β respec-
tively. By Result 1.22, there exists a collineation ψ mapping Π to Π′. Then, ψ ◦α ◦ψ−1 is a
collineation whose fixed points are precisely the points of Π′. By Result 5.6, ψ ◦α ◦ψ−1 = β

or ψ◦α◦ψ−1 = β2. We will assume that ψ◦α◦ψ−1 = β as the other case is similar. Suppose
that P is type-I with respect to α, then ψ(P ) = ψ(Pα) = ψ(P )β, so ψ(P ) is type-I with
respect to β. Likewise P , Pα and Pα2 are collinear if and only if ψ(P ), ψ(P )β, and ψ(P )β

2

are collinear; the collineation ψ is a type-preserving bijection of points and lines. We now
see

ψ(P µα) = ψ(PαPα2

) (5.1)

= ψ(Pα)ψ(Pα2

) (5.2)

= ψ(P )βψ(P )β
2

(5.3)

= ψ(P )µβ (5.4)

for any point P that is type-III with respect to α. Because ψ is a type-preserving collineation
of PG(2, q3), if P is a point and ` a line, and both are not type-III with respect to α then
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P ∈ `Fα if and only if ψ(P ) ∈ ψ(`)Fβ . If P and ` have type-III,

P ∈ `Fα (5.5)

⇔ `µα ∈ P µα (5.6)

⇔ ψ(`µα) ∈ ψ(P µα) (5.7)

⇔ ψ(`)µβ ∈ ψ(P )µβ (5.8)

⇔ ψ(P ) ∈ ψ(`)Fβ . (5.9)

Hence ψ is an incidence preserving bijection of points and lines between the points and lines
of Figα(q3) and Figβ(q3) and the planes are isomorphic.

Result 5.7 justifies the notation Fig(q3) to refer to the Figueroa plane of order q3.
The collineation group of the Figueroa plane is determined by Hering and Schaeffer [27].

Result 5.8 ([27]). Let q = pe. Then the collineation group of Fig(q3) is isomorphic to
PGL(3, q) n 〈τ〉 where τ is the automorphism x→ xp.

It is useful to know the number of type-I, type-II and type-III points, as well as the
number of points on lines of Fig(q3) of each type.

Result 5.9. Let α ∈ PΓL(3, q3) \ PGL(3, q3) be a collineation of order 3. Then, PG(2, q3)

has q2+q+1 type-I points, (q2+q+1)(q3−q) type-II points and q6−q5−q4+q3+q2+q+1 =

(q3 − q)(q3 − q2) type-III points with respect to α.

Proof. By Result 5.2, the fixed points of α form a subplane of order q. It follows that
there are q2 + q + 1 type-I points and lines. For each type-II point P , the collineation α

fixes the line PPα. So each type-II point lies on a type-I line. Any two type-I lines meet
in a type-I point because the fixed points of α are a subplane of PG(2, q3). Hence, the
type-I lines partition the type-II points. As each of the q2 + q + 1 type-I lines contains
q + 1 type-I points, there are q3 − q type-II points on each type-I line. Thus, there are
(q2 + q + 1)(q3 − q) type-II points in PG(2, q3). The number of type-III points is then
q6 + q3 + 1− (q2 + q + 1)(q3 − q) = (q3 − q)(q3 − q2).

Result 5.10. Let `F be a line in Fig(q3), where ` is a line in PG(2, q3).

1. If ` is type-I, then there are q + 1 type-I and q3 − q type-II points incident with `F .

2. If ` is type-II, then there is one type-I, q2 type-II and q3 − q2 type-III points incident
with `F .

3. If ` is type-III, then there are q2 + q+ 1 type-II and q3− q2− q type-III points incident
with `F .
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Proof.

1. If ` is type-I, then `F = `. We have already seen in Result 5.9 that the number of
type-II points on ` is q3 − q. The remaining q + 1 points are all type-I as ` is a secant
line of a subplane of order q.

2. If ` is type-II, then again `F = `. The point `α ∩ ` is the unique type-I point lying on
`. Then, it follows that each type-I line not through `α∩ ` meets ` in a distinct type-II
point. Thus there is one type-I, q2 type-II and q3 − q2 type-III points on ` = `F .

3. If ` is type-III, then because `∩ `F is the set of type-II points of `, then ` contains the
same number of type-II (and hence also type-III) points as `. The line ` has q2 + q+ 1

type-II points corresponding to its intersection with each type-I line. The remaining
q3 − q2 − q points have type-III as no type-III line ` may contain a type-I point, since
type-I points lie only on type-I and type-II lines. So `F contains q2 + q+ 1 type-II and
q3 − q2 − q type-III points.

Result 5.11. Let G be the collineation group of Fig(q3). Then all points of the same type
are equivalent under G.

Proof. By Result 5.7, we may take α to be the collineation induced by x→ xq. As PGL(3, q)/

G, and PGL(3, q) acts transitively on the canonically embedded PG(2, q), the action of G is
transitive on type-I points.

Let P be a type-II point. Then, any element of PGL(3, q)P fixes P , Pα and Pα2 and
hence fixes the type-I line ` = PPα point-wise. Therefore, the group PGL(3, q)P is precisely
the group of perspectivities with axis ` and has order q(q − 1)(q + 1). Thus, by the orbit-
stabiliser theorem, we have |PGL(3, q)P | = |PGL(3, q)|/q(q−1)(q+1) = (q2 + q+1)(q3−1)

and so PGL(3, q) is transitive on type-II points.

Likewise, if P is a type-III point, the point-wise PGL(3, q) stabiliser of P fixes the points
Pα and Pα2 . As PGL(3, q) is sharply transitive on frames, an element σ ∈ PGL(3, q)P is
uniquely determined by its image on a single type-I point. Hence, we obtain |PGL(3, q)P | ≤
q2+q+1. Again the orbit-stabiliser theorem implies |PGL(3, q)P | ≥ |PGL(3,q)|

q2+q+1
= (q3−q)(q3−

q2), which is equal to the number of type-III points. It now follows that |PGL(3, q)P | =

(q3 − q)(q3 − q2) and so all type-III points are equivalent under PGL(3, q).
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5.2 Ovali di Roma

Ovali di Roma are the only known ovals in Fig(2, q3) with q odd. An Ovale di Roma is
constructed using a polarity ρ of PG(2, q3) that commutes with α.

Result 5.12. Let ρ be a polarity in PG(2, q3) commuting with a collineation α ∈ PΓL(3, q3)\
PGL(3, q3) of order 3. Let Ω0 denote the absolute points of ρ of type-I and type-II, and Ω1

the absolute points of ρ of type-III. Define the involution ρFα of points and lines to map
P ρFα = (P ρ)Fα for all points P and `ρFα = (`ρ)Fα. Then ρFα is a polarity in Figα(q3) with
absolute points Ω0 ∪ {P ρµ |P ∈ Ω1}.

Proof. Because ρ commutes with α, we can see that ρFα is a type-preserving bijection
of points and lines of Figα(q3). In particular Pα = P if and only if (P ρ)α = P ρ and
P, Pα, Pα2 is collinear if and only if P ρ, (P ρ)α, (P ρ)α

2 are concurrent. It also follows that
P µρ = (PαPα2

)ρ = (P ρ)α(P ρ)α
2

= P ρµ. Hence, if P and Q do not both have type-III,
P ∈ QρFα if and only if Q ∈ P ρFα . For type-III points P and Q, P ∈ QρFα if and only if
Qρµ ∈ P µ but as µ commutes with α,

P ∈ QρFα (5.10)

⇔ Qρµ ∈ P µ (5.11)

⇔ P µρ ∈ Qρµρ (5.12)

⇔ P ρµ ∈ Qµ (5.13)

⇔ Q ∈ P ρFα . (5.14)

Thus, ρFα is a polarity of Figα(q3), whose absolute points are Ω0 ∪ {P ρµ |P ∈ Ω1}.

We now require the following result of Seib [37] and Baer [3].

Result 5.13 ([37]). Let ρ be a polarity of a projective plane of order n. Then,

1. If ρ has n + 1 absolute points, then the absolute points of ρ form a line if n is even,
and an oval if n is odd.

2. If n = m2 and ρ has m3 +1 absolute points, then the absolute points of ρ form a unital.

The following theorem is now a corollary of Results 5.12 and 5.13. It establishes that
Ovali di Roma are ovals of Fig(q3).

Result 5.14 ([16]). Let ρ be a polarity in PG(2, q3) commuting with a collineation α ∈
PΓL(3, q3) \PGL(3, q3) of order 3. Let Ω0 denote the absolute points of ρ of type-I and type-
II, and Ω1 the absolute points of ρ of type-III. Then ρ induces a polarity ρFα in Figα(q3),
whose absolute points Ω0 ∪ {P µρ |P ∈ Ω1} form an oval of Figα(q3).
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We know little of Ovali di Roma aside from their existence. Here are some simple results.

Result 5.15. Let α be the order 3 collineation induced by the automorphism x → xq, and
suppose O is an Ovale di Roma of Figα(q3) constructed from a conic C in PG(2, q3). If G is
the collineation group of Figα(q3), then GO = (PGL(2, q3)C ∩ PGL(2, q)) n 〈α〉.

Proof. This follows from the characterisation of the collineation group of the Figueroa plane
in Result 5.8 and the construction of the Ovale di Roma.

Lemma 5.1. Let α be the order three collineation induced by the automorphism x → xq of
Fq3. A polarity ρ of PG(2, q3) commutes with α if and only if ρ is induced by a non-singular
matrix M such that M q = λM .

Proof. Suppose that ρ is a polarity commuting with α. Because ρ is a polarity of PG(2, q3),
there exists a matrix M inducing ρ of the form

M =

a b c

d e f

g h i

 . (5.15)

Consider the points P0, P1, P2, P3 with homogeneous coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1)

and (1, 1, 1) respectively. Then the condition that P ρα = Pαρ for all points P ensures

M

1

0

0


q

= λ1

M
1

0

0



q

(5.16)

M

0

1

0


q

= λ2

M
0

1

0



q

(5.17)

M

0

0

1


q

= λ3

M
0

0

1



q

(5.18)

M

1

1

1


q

= λ4

M
1

1

1



q

. (5.19)

These conditions are then equivalent to

(a, d, g) = λ1(a
q, dq, gq) (5.20)

(b, e, h) = λ2(b
q, eq, hq) (5.21)

(c, f, i) = λ3(c
q, f q, iq) (5.22)

(a+ b+ c, d+ e+ f, g + h+ i) = λ4(a
q + bq + cq, dq + eq + f q, gq + hq + iq). (5.23)
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Combining these equations yieldsaq bq cq

dq eq f q

gq hq iq


λ1λ2
λ3

 =

aq bq cq

dq eq f q

gq hq iq


λ4λ4
λ4

 , (5.24)

whence λ1 = λ2 = λ3 = λ4 follows. So M q = λM .

All our discussion has been limited to ovals in Fig(q3) for q odd, however it is worth
considering the case where q is even. Here, the work of de Resmini and Hamilton [35] shows
us that hyperovals in q even can actually be inherited into the Figueroa plane.

Result 5.16 ([35]). Let α ∈ PΓL(3, q3) \ PGL(3, q3) be an order three collineation and
suppose H is a regular hyperoval in PG(2, q3) for q > 2 even. If H is stabilised by α, then
H is also a hyperoval in Figα(q3).

5.3 Unitals in the Figueroa Plane

Unitals have been shown to exist in a number of non-Desarguesian planes. In the Figueroa
plane know of exactly one class of unitals, called the Figueroa unitals. Their construction is
similar to the Oval di Roma.

Result 5.17 ([35]). Let H be a Hermitian unital in PG(2, q6) with a Hermitian polarity ρ
commuting with a collineation α ∈ PΓL(3, q6) \ PGL(3, q6). If H0 is the set of type-I and
type-II points of H and H1 the set of type-III points of H, then H∗ = H0 ∪ {P ρµ |P ∈ H1}
is unital in Figα(q6).

Proof. The proof follows from Results 5.12 and 5.13.

Tai and Wong [38] demonstrate that Figueroa unitals contain O’Nan configurations. An
O’Nan configuration is a collection of four distinct secant lines, meeting each other in six
distinct points. The presence of an O’Nan configuration in the Figueroa unital is significant
as it provides evidence towards a conjecture of Piper [33] that the Hermitian unital is the
only unital that does not contain an O’Nan configuration. Let ρ be the Hermitian polarity
of PG(2, q6) induced by the automorphism x → xq

3 of Fq6 and let α be the order three
collineation induced by the automorphism x → xq

2 . Then, ρ commutes with α and so
induces a polarity ρFα of Figα(q6), whose absolute points are a unital H∗.

Result 5.18 ([38]). The Figueroa unital H∗ of Figα(q6) contains an O’Nan configuration
for all q.
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Recall that the Hermitian unital is characterised as the only unital that is a codeword of
PG(2, q2). A natural question to then ask is if the Figueroa unital is also a codeword of the
code of the Figueroa plane. Unfortunately establishing this in general would require knowing
more about the structure of the code of Figα(q6). However, for q = 2 we can simply check
and see that the Figueroa unital H∗ does indeed lie in the code of Figα(64). We can also see
that C2(Figα(64)) ∩ C2(PG(2, 64)) is precisely the code generated by the type-I and type-II
lines of PG(2, 64). Extending these computational results much further than the smallest
case, to q = 3, requires computing a matrix of dimensions roughly 500000 × 500000, which
is unfortunately is too big for available hardware without a more sophisticated approach.

5.4 Semiovals in the Figueroa Plane

The Figueroa unital and Ovali di Roma are both constructed using a polarity commuting
with α. The natural question to then ask is if such a construction can be generalised.

A semi-oval is a set of points O such that each point P ∈ O has a unique tangent tP to
O at P . Both ovals and unitals are examples of semi-ovals. A natural generalisation of the
Figueroa construction would then be to start with a semi-oval O stabilised by some order 3

collineation α ∈ PΓL(3, q3) \ PGL(3, q3), keep all type-I and type-II points, and replace the
type-III points P of O with tµP .

Unfortunately there are problems with this generalisation, chiefly the fact that a type-III
point may not have a type-III tangent, and µ is a only a bijection on the type-III points
and lines of PG(2, q6). A suitable semi-oval O would have the property that if P ∈ O, then
P , Pα, and Pα2 are collinear if and only if tP , tPα and tPα2 are concurrent. A Hermitian
unital H stabilised by α satisfies this property because the feet of any point P /∈ H are
collinear. However, we have seen that this is not true of Buekenhout-Tits and Buekenhout-
Metz unitals. So it is unlikely that the generalised semi-oval construction we outline makes
sense for such unitals.

One important class of semi-ovals are the vertex-less triangles. A vertex-less triangle in
a projective plane Π is the union of three distinct, non-concurrent lines l, m and n, without
the points l ∩m, m ∩ n and l ∩ n. We will show that if q is even and ` is a type-III line,
then the generalised semi-oval construction does produce semi-ovals in the Figueroa plane
Figα(q3) when applied to a vertex-less triangle with sides `, `α and `α2 .

Lemma 5.2. Let l, m, and n be distinct non-concurrent lines in a projective plane Π of
order q > 2. Then S = (l ∪m ∪ n) \ {l ∩m,m ∩ n, l ∩ n} is a semi-oval.

Proof. Let P ∈ S, we will assume that P ∈ l as the argument is the same for P ∈ m and
P ∈ n. Each line through P is uniquely determined by its intersection with m. The line
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P (m ∩ n) is tangent to S at the point P . Each point Q ∈ m \ {l ∩m,m ∩ n} determines
a unique line PQ through P that is not tangent to S. Lastly, the line (l ∩m)P = l is not
tangent to S as S ∩ l = l \ {l ∩m, l ∩ n} has q − 1 > 1 points. Hence, the line P (m ∩ n) is
the unique tangent line to S at P .

Let α be the order three collineation of PG(2, q3) mapping the point P with homogeneous
coordinates (x, y, z) to the point Pα with homogeneous coordinates (zq, xq, yq). If ` is a type-
III line with respect to α, then S = (` ∪ `α ∪ `α2

) \ {` ∩ `α, ` ∩ `α2
, `α ∩ `α2} is a semi-oval of

PG(2, q3). It turns out that the generalised Figueroa semi-oval construction does work for
S if q is even.

Lemma 5.3. Let α be the order three collineation of PG(2, q3) mapping the point P with
homogeneous coordinates (x, y, z) to the point Pα with homogeneous coordinates (zq, xq, yq).
Let ` be a type-III line with respect to α and S = (` ∪ `α ∪ `α2

) \ {` ∩ `α, ` ∩ `α2
, `α ∩ `α2}.

Then if q is even, the tangent line to P ∈ S is the same type as P . Otherwise, if q is odd,
the tangent line to P ∈ S is type-III if P is type-II, and type-II or type-III if P is type-III.

Proof. By Result 5.11, type-III lines are equivalent under a group of type-preserving collineations
commuting with α. Hence, we may assume that ` has equation x = 0. So S = (`∪ `α∪ `α2

)\
{` ∩ `α, ` ∩ `α2

, `α ∩ `α2} is the set of points

{(1, a, 0) | a ∈ F×q } ∪ {(1, 0, b) | b ∈ F×q } ∪ {(0, 1, c) | c ∈ F×q }. (5.25)

A point P = (1, a, 0) is type-II if and only if

det

 1 a 0

0 1 aq

aq
2

0 1

 = 0. (5.26)

Equation (5.26) is equivalent to aq2+q+1 = −1. The line tangent to S at (1, a, 0) is 〈(1, a, 0), (0, 0, 1)〉
and has equation ax− y = 0. This line is type-II if and only if

det

 a −1 0

0 aq −1

−1 0 aq
2

 = 0. (5.27)

Equation (5.27) is equivalent to aq2+q+1 = 1. If q is even, then −1 = 1 and so a point with
coordinates (1, a, 0) is type-II if and only if it’s tangent line is type-II. On the other hand if
q is odd, a type-II point P ∈ S with coordinates (1, a, 0) has a type-III tangent to S at P .
If P has type-III and q is odd, then P has type-II if aq2+q+1 6= 1 and type-III otherwise.



5.4. SEMIOVALS IN THE FIGUEROA PLANE 79

Theorem 5.1. Let q be even, and let α be the order 3 collineation as described in Lemma
5.3. Suppose ` is a type-III line, so that S = (` ∪ `α ∪ `α2

) \ {` ∩ `α, ` ∩ `α2
, `α ∩ `α2} is

a semi-oval in PG(2, q3). Let S0 be the type-II points of S, and S1 the type-III points of
S. Then, the set S∗ = S0 ∪ {tµP |P ∈ S1} is a semi-oval of Figα(q3). Moreover, S∗ =

(`Fα ∪ `αFα ∪ `
α2

Fα) \ {`Fα ∩ `αFα , `Fα ∩ `
α2

Fα , `
α
Fα ∩ `

α2

Fα}.

Proof. As in Result 5.11, we assume that ` has equation x = 0. Let P be a type-III point of S
with coordinates (1, a, 0). By Lemma 5.3, the tangent line tP to S at P is type-III. Because
`µ = (0, 0, 1), and tP = 〈(0, 0, 1), (1, a, 0)〉 contains `µ, by definition tµP ∈ `F . Similarly
tµQ ∈ `αF and tµR ∈ `α

2

F for all type-III points Q ∈ `α and R ∈ `α2 . Hence,

S∗ = (`F ∪ `αF ∪ `α
2

F ) \ {`F ∩ `αF , `F ∩ `α
2

F , `
α
F ∩ `α

2

F }. (5.28)

By Lemma 5.2, the set S∗ is a semi-oval in Fig(q3).
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