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Abstract

We consider the flow of a viscoplastic fluid on a horizontal or an inclined surface with a flat and
an asymmetric topography. A particular application of interest is the spread of a fixed mass – a block
– of material under its own weight. The rheology of the fluid is described by the Bingham model
which includes the effect of yield stress, i.e. a threshold stress which must be exceeded before flow
can occur. Both the plastic viscosity and the yield stress are modelled with temperature-dependent
parameters. The flow is described by the lubrication approximation, and the heat transfer by a depth-
averaged energy conservation equation. Results show that for large values of the yield stress, only the
outer fraction of the fluid spreads outward, the inner fraction remaining unyielded. We also present
an analysis which predicts the threshold value of the yield stress for which partial slump occurs.

1 Introduction

As the name suggests, a viscoplastic fluid can either behave as a viscous fluid, which deforms
continuously when subject to a sufficiently strong mechanical load, or as a solid which undergoes no
deformation. As an illustrative example, a volume of viscous fluid deposited on a flat surface will
spread under its own weight until the gravity and capillary forces are at equilibrium. A viscoplastic
fluid, on the other hand, will only start spreading if the gravity force is strong enough to overcome the
fluid cohesive force, which explains why a lump of toothpaste rests on a surface without spreading.
The flow/no flow boundary for a viscoplastic fluid is dictated by the yield stress, a rheological property
of the fluid. Flow can only occur when the stress within the fluid exceeds the yield stress. Viscoplas-
tic fluids appear in a wide range of contexts including food products (e.g. ketchup, chocolate, peanut
butter), healthcare products (e.g. toothpaste, creams), the petroleum industry, cosmetics, geophysical
flows, and many others. Lava is a geophysical fluid known to have a viscoplastic behaviour Griffiths
(2000), Balmforth et al. (2014). A better understanding on the rheology of lava is the motivation
behind the work presented here. Specifically, by comparing model results and laboratory/field mea-
surements, we aim to indirectly infer rheological properties of the lava, which would otherwise be
difficult if not impossible to measure using standard rheometry techniques. A challenge, however, is
that as the lava flows downhill from the eruption site, it cools down by radiation to the surroundings
and conduction to the ground and many rheological parameters are temperature-dependent. Building
on the work of Bernabeu et al. (2016), we develop and implement, a mathematical model describing
the flow of a non-isothermal viscoplastic fluid either spreading under its own weight on a horizontal
surface or draining down an inclined plane. Of particular interest here is the effect of heat transfer on
the spreading and rest state of a viscoplastic slump.
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2 Mathematical model

A two-dimensional, gravity driven, free surface slump of fluid described by the Bingham rheo-
logical law was analysed under isothermal and non-isothermal conditions. Three-dimensional and
two-dimensional isothermal thin-film flows of a viscoplastic material have been studied extensively
in the past, with a vast range of applications and conditions for its validity, for example see Balm-
forth & Craster (1999), Balmforth et al. (2000), Mei & Yuhi (2001), Balmforth et al. (2007), Hogg
& Matson (2009), Mitsoulis & Tsamapolous (2017), Hinton & Hogg (2022) and references therein.
Recently, Bernabeu et al. Bernabeu et al. (2016) considered the temperature-dependent thin-film flow
of a Herschel-Bulkley fluid to model lava flow down an arbitrary topography. In order to average and
reduce the heat-balance equation, a closure relation is necessary. They assumed that the temperature
in the vertical direction can be modelled by a polynomial function of degree three, leading to greater
freedom for the temperature profile but also requiring more information to constrain the solution. In
this work, we follow instead the original idea of López et al. López et al. (1996), where they assume
a second degree polynomial dependence for the vertical temperature. The result of this assumption
appears as a linear reaction term in (2). We found the difference between these approaches to be
minimal and controlled via the Péclet number. The resulting unsteady one-dimensional model is

ht +∂x

[
−h2

c [3h−hc]

6µ
( fx +hx)

]
= ws, (1)

h [θt + ūθx]−ws(1−θ)− 1
Pe

[2a2hθ] = 0, (2)

where h(x, t) is the height of the thin film, θ(x, t) the temperature, f (x) the topography, ws(x) the
source term, and Pe the Péclet number is defined as

Pe =
LUρcp

k
, (3)

where L and U are the characteristic length and velocity scales, ρ the density, cp the specific heat
capacity, and k the thermal conductivity. Motion only occurs below the critical height, hc(x, t), with

hc = max
(

0,h− B
| fx +hx|

)
. (4)

The rheological parameters are the viscosity, µ(θ), and Bingham number, B(θ), which are defined by

µ = eαµ(1−θ), (5)

B = BieαB(1−θ), (6)

where αµ, αB and Bi are constant coefficients. The Bingham number is the ratio between yield stress
and viscous stress, and is defined by

B =
τyH
µpU

, (7)

where τy is the yield stress, H the characteristic height scale, and µp the plastic viscosity. The averaged
velocity, ū(x, t), is given by

ū =−h2
c(3h−hc)

6µh
( fx +hx). (8)
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The coefficient a2(x, t) in equation (2) is calculated by solving the following system of equations.

[( f +h)2 +2( f +h)− f 2]a2(x, t)+ [h+1]a1(x, t) = 0,[
( f +h)3 − f 3

3
− f 2h

]
a2(x, t)+

[
( f +h)2 − f 2

2
− f h

]
a1(x, t) = h. (9)

We consider homogeneous Dirichlet boundary conditions at the ends of the block for both height,
h, and temperature θ. The initial conditions for both the height, hinit, and temperature, θinit, were
prescribed by

r(x) =

{
1 −0.5 ≤ x ≤ 0.5
0 otherwise.

3 Numerical method

A first order implicit-explicit scheme was employed for time integration, second order derivatives
in space were treated implicitly, and expressions (4) to (9) were evaluated explicitly. A second order
central difference scheme for equation (1) was used. Equation (2) is hyperbolic, and in order to obtain
a stable numerical scheme, the upwind discretisation was applied for the first derivative. The node
spacing was ∆x = 10−2 and the time step was ∆t = 10−3 for all of the cases. The simulations were
run until the block length reached a steady state; determined by evaluating the difference between two
successive time steps and comparing with a specified tolerance of 10−7.

4 Results

The rheological coefficients for the non-isothermal cases were αB = αµ = 0.5, whereas the tem-
perature dependence was removed for the isothermal cases by setting αB = αµ = 0.We let ws(x) = 0,
and fix Pe = 500, which indicates an advection dominated flow.

4.1 Horizontal and inclined flat topography

In this section we consider isothermal and nonisothermal flows in flat topographies.

4.1.1 Isothermal steady state and numerical validation

First we present steady state analytical solutions for the isothermal case for the horizontal surface
topography. For Bingham fluids, it is known that an arrested state exists, i.e. when all of the material
exhibits a balance between the gravitational force, pressure gradient and yield stress. For an extensive
discussion about the arrested state see Balmforth et al. (2007), Hogg & Matson (2009). The arrested
state is fully described by equation (4)

h∞ | fx +hx|= Bi, (10)

which is true for any domain or topography the material is on. Note that by satisfying the balance in
equation (10), the yield surface, hc, is equal to zero over the whole domain and there is no flow.

For the case of a flat horizontal and flat topography we have fx = 0 and the flow if symmetric. Two
scenarios exist in this configuration, either the material fully slumps or only partially deforms. In the
latter case, part of the material remains unyielded and a yield-point exists. We present the two cases
below,
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1. For a full slump, the solution satisfies

h∞(x f ,∞) = 0,∫ x f ,∞

0
h∞(x)dx =

1
2
. (11)

Therefore
h∞(x) =

√
2Bi(x f ,∞ − x), (12)

with

x f ,∞ =

(
3

25/2

)2/3

B−1/3
i , (13)

where x f ,∞ is the position of the front of the slump.

2. For a partial slump we require

h∞(xc,∞) = 1,
h∞(x f ,∞) = 0,∫ x f ,∞

0
h∞(x)dx =

1
2
, (14)

thus,

h∞(x) =

{√
1−2Bi(x− xc) for xc,∞ < x ≤ x f ,∞

1 for 0 ≤ x ≤ xc,∞
(15)

with
xc,∞ =

1
2
− 1

3Bi
, x f ,∞ =

1
2
+

1
6Bi

. (16)

Here, xc,∞ is steady state the position of the yield point and when it is equal to zero, it provides the
required condition to find a critical Bingham number Bi,c, that is the minimum Bingham number for
which we have a partial slump, which in this case is Bi,c = 2/3.

In order to validate our numerical method we set Bi = 1, run the isothermal case to steady state
and compare with (15). The results are presented in table 1. The method is first order accurate, and
converges to the analytical solution.

∆x ||h−h∞||∞
0.02 0.0153
0.01 0.0079

0.005 0.0041
0.0025 0.0021

Table 1. Validation of numerical model, listing the difference between the solution of h(t = 300) with the
analytical steady state h∞ from equation (15) under isothermal conditions with Bi = 1.

4.1.2 Evolution of height and temperature profiles

In this section we compare results of isothermal and nonisothermal spreading dynamics on a hori-
zontal surface, figure 1, and an inclined surface, f = m(xmax − x) in figure 2. In figures 1(a)-1(d) we
present results for the isothermal case for two Bingham numbers, Bi = 0.6, 1. As we can see arrested
state was reached for both Bingham numbers, clearly hc → 0 as t → ∞, see figures 1(b) and 1(d). Note
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Figure 1. Horizontal surface topography ( f = 0), showing the thin film height h(x), critical height hc(x), and
temperature θ(x) profiles for times t = 0, 0.3, 3, 30, 300. Isothermal case: Bi = 0.6 for (a) and (b), Bi = 1 for
(c) and (d). Non-isothermal case: Bi = 0.6 for (e) to (g), Bi = 1 for (h) to (j).

that for the smaller Bingham number (Bi = 0.6) the whole block slumps and spreads until reaching
steady state. Conversely, for Bi = 1, part of the block remains static for all time, i.e. does not deform.
As shown in the previous section, there are two flow regimes: (i) no yield point exists and the whole
block deforms, figure 1(a), and (ii) xc > 0 and there is a partial slump, figure 1(c). This is consistent
to our previous results since Bi,c = 2/3.

The non-isothermal horizontal profiles of h(x) and hc(x), shown in figures 1(e), 1(f), 1(h) and 1(i),
exhibit similar behaviour to the isothermal case. Note that as hc → 0 the average velocity ū → 0.
Therefore, we expect θ → 0 as t → ∞, which is clearly the case. The Péclet number provides an
indication of the ratio between advective and diffusive time scales. The problem analysed in this
work is treated as an advected dominated flow, hence a large Pe. The temperature distribution in
figures 1(g) and 1(j) has not obtained a steady state even after the film has reached an arrested state.
This behaviour is driven by the large but finite Péclet number.

The results for an inclined surface with m = 0.2 are shown in figure 2, where there is no longer
a symmetric profile for any of the variables, however, the flow characteristics are similar to the hori-
zontal topography. We confirm previous published results, see Hogg & Matson (2009), and show that
an arrested state also exists if Bi ̸= 0. The length of the slump, either full or partial, is larger than in
the horizontal problem; true for both the isothermal and non-isothermal cases.

Now we are in a position to investigate the effects that a temperature-dependent rheology has on
Bi,c. The maximum height of the block occurs at x = 0, and the height h(0) at steady state, effectively
h∞(0), is shown in figure 3(a) for Bingham numbers in the neighbourhood of Bi = 2/3. The non-
isothermal critical Bingham number is less than 2/3. Therefore, the non-isothermal slumps should
be shorter in length than the isothermal ones. In order to corroborate this assertion, the length of
the steady block as a function of Bingham number for the case of a horizontal surface is shown in
figure 3(b). Finally, the influence that the slope m has on the length of the block was explored for both
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Figure 2. Inclined surface topography ( f = m(xmax − x) with m = 0.2), showing the thin film height h(x),
critical height hc(x), and temperature θ(x) profiles for times t = 0, 0.3, 3, 30, 300. Isothermal case: Bi = 0.6
for (a) and (b), Bi = 1 for (c) and (d). Non-isothermal case: Bi = 0.6 for (e) to (g), Bi = 1 for (h) to (j).

isothermal and non-isothermal problems by fixing Bi = 1, as shown in figure 3(c). Not surprisingly,
as m grows, the length grows in what seems to be a power law manner. Further investigations are
underway and remain as future work.

4.2 Asymmetric topography

In this section we consider the case of an asymmetric topography, which consists of two equidistant
bumps with different heights. Hence, f (x) is defined in the following way,

f (x) = ale−(x−bl)
2/c2

+are−(x−br)
2/c2

. (17)

We have now centred the block at x = 0.5 and chosen al = 0.1, bl = −0.1, ar = 0.2, br = 1.1,
and c = 0.1. The values for al and ar are carefully chosen such that the lubrication approximation in
equation (1) remains valid, see Kalliadasis et al. (2000).

In figure 4 we present the results of our simulations. Based on results from previous sections, it is
clear that we are asymptotically close to the arrested state if t ≥ 300. Therefore, we plot height, h(t,x),
and temperature, θ(t,x) only for t = 300. We fix Bi = 2/3 which is the critical Bingham number for
the isothermal case. As we can see in figure 4a the symmetry is broken and two distinct yield-points
exist. As the block starts to slump, fx(x) has opposite sign than hx(t,x) at both fronts. This increases
yield-stress effects and part of the block never moves, i.e. the critical Bingham number, Bi,c is less
than 2/3 now. Clearly, the “new” critical Bingham number will depend on the derivative of f (x).
As the block spreads, it “climbs” the bumps and stops before reaching the flat ground. Now, even
though the sign of fx(x) is the same as hx(t,x) at the front, is not enough to overcome the effects of
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Figure 3. (a) Maximum block height (h(0)) at steady state for Bingham number close to Bi,c. (b) Steady state
block length as a function of Bingham number. (c) Steady state block length for increasing slope and fixed
Bingham number Bi = 1. Isothermal problem (black line) and non-isothermal problem (red line).

the yield-stress. Something similar happens for the nonisothermal case, presented in figures 4b and
4c. The cooling effects increase the unyielded region, where h(t,x)≡ 1 for all t, and the spreading of
the block slows. As we can see, the block now stops almost a the top of the bumps. Just as in previous
sections, thermal effects have an effect in the flow dynamics. This is corroborated in figure 4d where
we plot the time series of the length of the block for both cases. As we can see, spreading has reached
steady state for both cases and the length of the block for the nonisothermal case is about 6% smaller
than the isothermal one.

5 Conclusions

The critical Bingham number for the temperature-dependent rheology was smaller than the isother-
mal counterpart which has Bi,c = 2/3. The length of the viscoplastic block was shorter for higher
Bingham numbers and for the non-isothermal case, and longer for steeper inclined slopes. We also
investigated the case of an asymmetric topography. As in previous results, thermal effects have the
greatest effect on the flow dynamics. The dependence of the arrested state on the non-isothermal be-
haviour, topographical features, and Bingham numbers has implications for the spreading dynamics
of viscoplastic flows.
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