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Featured Application: In this study, the left and right footprint images were predicted based
on deep learning object detection models. YOLOv4 models are the most balanced deep learning
models in detecting left and right feet from footprint images. In different object detection models,
the right foot showed higher accuracy than the left foot.

Abstract: People with cerebral palsy (CP) suffer primarily from lower-limb impairments. These
impairments contribute to the abnormal performance of functional activities and ambulation. Foot-
prints, such as plantar pressure images, are usually used to assess functional performance in people
with spastic CP. Detecting left and right feet based on footprints in people with CP is a challenge
due to abnormal foot progression angle and abnormal footprint patterns. Identifying left and right
foot profiles in people with CP is essential to provide information on the foot orthosis, walking
problems, index gait patterns, and determination of the dominant limb. Deep learning with object
detection can localize and classify the object more precisely on the abnormal foot progression angle
and complex footprints associated with spastic CP. This study proposes a new object detection model
to auto-determine left and right footprints. The footprint images successfully represented the left and
right feet with high accuracy in object detection. YOLOv4 more successfully detected the left and
right feet using footprint images compared to other object detection models. YOLOv4 reached over
99.00% in various metric performances. Furthermore, detection of the right foot (majority of people’s
dominant leg) was more accurate than that of the left foot (majority of people’s non-dominant leg) in
different object detection models.

Keywords: cerebral palsy; YOLO; object detection; foot progression angle; complex footprints

1. Introduction

Cerebral palsy (CP) is a leading cause of physical disability in children. Currently,
the spastic type of CP is the most common occurrence: 50 to 60% of all cases of CP [1,2].
People with spastic CP suffer primarily from impairments such as increased tone, muscle
weakness, diminished selectivity, and joint contractures. These impairments contribute
to poor performance of functional activities in people with spastic CP [3]. Spastic CP also
affects ambulation ability, movement, and posture, with accompanying activity restrictions
that significantly burden people with CP, their families, and society [4].
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The impairment in neuromuscular control of the lower limb affects balance and
ambulation ability in people with spastic CP. Ankle–foot orthosis is the primary intervention
for improving balance and correcting asymmetrical gait [5]. The use of an orthosis reduces
the range of motion of hip internal rotation and improves postural stability during standing
and asymmetrical weight distribution over the foot, which results in better balance in
people with spastic CP [6]. After orthosis treatment management is provided to people
with spastic CP, a footprint can be used to evaluate balance and locomotion [7].

Identifying the dominant leg from the footprint can help evaluate orthosis treatment in
improved postural control in spastic CP patients [8]. Foot supination occurs in the dynamic
evaluation when the dominant leg transitions from heel contact to middle stance throughout
the gait cycle, which is related to the foot balance index in orthosis treatment [9]. In people
with spastic CP, the dominant leg was assumed to be ipsilateral [10]. Hence, proprioception
error was related to the non-dominant leg, which may induce complex footprints [11].
Therefore, an assessed CP complex footprint would be beneficial in managing orthosis
treatment to provide essential information on the dominant or non-dominant leg [12].

Precision detection of the left and right feet from complex footprints can positively
decrease energy expenditure in the dominant or non-dominant leg and monitor the associ-
ation between the maximum step length test and the walking efficiency in CP patients [13].
However, CP footprints have limitations derived from complex footprint features, which
would be incomprehensible in determining the left and right feet in clinics [14]. For exam-
ple, scissor gait and toe walking are prominent among CP patients [15]. Scissor gait, usually
walking with crossing legs due to spastic paraplegia or excessive contraction of hip ad-
ductor muscles [16], may lead to abnormal foot progression angle in footprint images [17].
Abnormal foot progression angle affects the recognition of left and right footprints [18]. The
other example is toe walking, a bilateral gait abnormality in which a normal heel strike is
absent, and weight-bearing occurs through the forefoot caused by limb-length discrepancy,
spastic equinus, and Achilles tendon contracture [19]. Determining the left and right feet
based on footprint images in toe walking conditions may be difficult if the full foot pressure
is not recorded, especially in the absence of the heel region on the footprint distribution.
Regarding scissor gait and toe walking foot problems, it would be challenging to determine
the left and right feet under abnormal foot progression angle and complex footprints in
people with spastic CP.

Deep learning has been used in footprints with image features to auto-detect foot
identification [20]. Object detection is a popular deep learning method that trains on images
and directly optimizes performance when making predictions [21]. Object detection can
obtain good accuracy based on image features in the footprint, even under the limitation
of CP footprint features such as abnormal foot progression angle and complex footprints.
Due to the models’ use of hierarchical feature extraction, the multi-layered representations
from pixel to high-level semantic features are learned by a sequential structure [22].

Furthermore, the object detection method can optimize auto-identification by com-
bining classification and bounding box regression into a multi-task learning manner.
As a result, the auto-detected foot identification in the left and right feet of CP patients can
be beneficial, reducing clinical workloads, increasing cost-efficacy, standardizing treatment,
and improving patient care [23].

Based on the above description, CP primarily has lower-limb impairments, causing
abnormal functional performance of activities of daily living and ambulation. Orthosis
can effectively manage lower-limb impairments. Clinical deficiencies, such as dominant
or non-dominant leg proprioception error in spastic CP, might cause complex footprints.
Identifying the dominant leg can help evaluate foot balance index related postural control.
Detecting the left and right feet can provide information on positive changes in decreased
energy expenditure in the dominant or non-dominant leg in CP patients. Determining the
left and right feet might also improve the efficacy of dominant-leg orthosis in CP treatment.
Unusual footprints may impede left and right foot identification in spastic CP, caused by
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complex footprints resulting from foot problems such as scissor gait with abnormal foot
progression angle and toe walking

Deep learning based on object detection can perform many tasks such as localizing,
tracking, and image discrimination in defective footprints. Thus, initial research is essential
to analyze healthy people’s foot profiles in left and right detection, providing a basis for
understanding incomplete foot profiles in specific cases of CP. This study is a primary
investigation in discovering new information on deep learning performance of defective
footprint detection in CP. In addition, this study may have implications for providing new
solutions for assessing the efficacy of ankle–foot orthosis in people with spastic CP.

2. Materials and Methods

In this study, we used the plantar pressure to present the footprint. The data used to
develop this study were gathered from the AIdea website by the Industrial Technology
Research Institute (ITRI) of Taiwan (https://aidea-web.tw, accessed on 21 February 2021).
We randomly split 974 plantar pressure images into 70% (681 images) for the training
set and 30% (293 images) for the validation set. Each image is sized 120 × 400 pixels.
Furthermore, a senior expert in plantar pressure images determined the left and right foot,
set as ground truth.

Based on our dataset that contained image features, this study used various object
detection models: Residual Neural Network with 50 layers (ResNet-50), Dense Convolu-
tional Network (DenseNet), and You Only Look Once (YOLO) v3, v4, v5s, v5m, v5l, and
v5x to compare the network performances. As the most popular model used for plantar
pressure images, the ResNet-50 used the deeper networks that support the feature extrac-
tion and achieved high accuracy in recognizing the plantar pressure images in different
conditions [24] (Figure 1A). DenseNet is a deep neural network model which transmits the
input data features from the convolution layer to the following layers that are popularly
used in plantar pressure images [25] (Figure 1B). To classify images, Dewi et al. [26] intro-
duced that multiscale feature maps can be effectively combined for YOLOv2 detection and
classification of DenseNet and ResNet-50 to prevent performance loss. In this study, we
used DarkNet-19 as the backbone to support DenseNet and ResNet-50 as a classifier with
a YOLOv2 detector.
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YOLO is a state-of-the-art deep learning framework for real-time object recognition
with single-stage detection. YOLO supports real-time object detection and precision in
predicting the bounding box based on footprint images [18]. YOLO has several versions,
including YOLOv1, v2, v3, v4, and v5 series. However, the current, more popular object de-
tection algorithms are YOLOv3, YOLOv4, and YOLOv5 (YOLOv5l, YOLOv5m, YOLOv5s,
YOLO5x) models [21].

YOLOv3 has advantages in its three detectors that affect the prediction more pre-
cisely [27] (Figure 2A). YOLOv4 with its spatial pyramid pooling and path aggregation net-
work may improve feature extraction to localize and classify the object [28] (Figure 2B). The
latest YOLO series is the YOLOv5 algorithm, divided into four models named YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x, according to the depth and width of the network [21].
Unlike other versions, YOLOv5 uses an adaptive anchor strategy; the backbone part uses
a focus structure and cross-stage partial connections (CSP) structure. In addition, the
YOLOv5 series has an advantage in terms of run speed that may affect real-time detection
in clinical workload [29] (Figure 2C).
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Furthermore, this study used manual labeling of the left and right feet regarding
the foot pressure profiles. After the manual labeling, we input the data into ResNet-50,
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DenseNet, YOLOv3, YOLOv4, and YOLOv5 series models to obtain a suitable model for
detecting foot profiles (Figure 3). The detection was built in Windows 10 using Python
3.7.6 (YOLOv3, YOLOv4, DenseNet, and ResNet-50) and PyTorch 1.7.0. (YOLOv5 series).
The model’s parameters were as follows: The batch size was 8; the momentum and weight
decay were 0.937 and 0.0005, respectively; the initial learning rate was 0.01, and the epoch
was 100. All experiments were carried out using a computer configured with the following
hardware: Core I7 10,700 CPU, 32 GB RAM, and an NVIDIA RTX 3080 GPU.
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Figure 3. The illustration of foot profile box for left and right feet in plantar pressure image detection
with the ResNet-50, DenseNet, YOLOv3, YOLOv4, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x
models.

2.1. Labeling Strategy

For determining the left and right feet, a senior expert in plantar pressure images with
more than 15 years of experience in footprint imaging supervised the process (the 487 left
foot images 487 and right foot images). The abnormal foot progression angle in the plantar
pressure image may complicate the recognition of the left and right feet. Furthermore, the
defective footprint features may introduce complications due to an incomplete footprint
pattern, particularly in the plantar region, that challenge the prediction of the left and
right feet [30]. Nevertheless, object detection achieved good results in medical images [22].
For the plantar pressure, this study used bounding box annotation to determine the left
and right feet through different object detection models to achieve better accuracy [18,24].
The bounding box is used to localize and classify the left and right feet based on manual
labeling to obtain a prediction.

The labeling process depends on the footprint features; labeling in the maximum
area of plantar pressure images is recommended to make predictions more precise [29]
(Figure 4A). However, abnormal foot progression angle and defective footprints proved
challenging. Part of the plantar pressure images was an abnormal foot progression angle
wherein the direction of foot placement was more or less than 15◦ [18]. On the other hand,
defective footprint patterns cannot provide the full pressure distribution of the footprint
pattern, and sometimes the plantar pressure images cannot provide full footprint patterns
during locomotion [31]. For example, plantar pressure images with pressure in the rearfoot
and forefoot in the metatarsal have limitations such as incomplete toe or forefoot area
(Figure 4B) and abnormal foot progression angle with high pressure on the forefoot and
midfoot and less pressure on the rearfoot (Figure 4C). Defective footprint images with high
pressure on heels lost pressure in the midfoot and on the rear and forefoot (Figure 4D).
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Figure 4. The examples of labeling the maximum area of plantar pressure image dataset with
a different condition; (A) The footprint images with pressure in the full foot. (B) Complex footprint
images with pressure in the rearfoot and midfoot but loss of pressure in the forefoot. (C) The
abnormal foot progression angle with high pressure on the forefoot and midfoot and less pressure
on the rearfoot. (D) Defective footprint images with high pressure on the heels, lost pressure on the
midfoot and forefoot.

2.2. Deep Learning Performance

Average precision can be used as a comprehensive evaluation index to balance the
effects of precision and recall and evaluate a model more thoroughly. The precision and
recall curve area is the average precision value, and a larger value indicates better model
performance [20].

This paper shows the model’s performance by average precision, recall, and precision.
This experiment set a confidence threshold of 0.5 [18]. The algorithm performance eval-
uation metrics chosen are precision (P), recall (R), average precision (AP), mean average
precision (mAP), and F1-score. Moreover, mAP is an essential index for evaluating the
model’s performance, which can reflect the overall performance of the network model
and avoid the problem of extreme performance of some categories and weakening of
the performance of other types in the evaluation process. Furthermore, we use a simple
average F1-score with the average precision value to show the methods’ performance on
the complete dataset for the convenience and intuitiveness of the calculation. Finally, after
obtaining all the metrics’ values of left and right foot detection, we compared the P, R, AP,
mAP, and F1-score to achieve a stable model based on our manual labeling.

3. Results
3.1. Experimental Results

In this study, we randomly split 974 plantar pressure images into 70% for the training
and 30% for the validation set. According to Table 1 and Figures 5 and 6, our proposed
method can detect the foot profiles and classify them with over 60% accuracy without
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overfitting. YOLOv4 has the best comprehensive performance evaluation out of all the
models. YOLOv4 was the model that exhibited persistent accuracy gains across various
performance evaluations, including mAP (99.45%), P (99.00%), R (100.00%), and F1-score
(99.00%). Meanwhile, ResNet-50 showed the lowest performance in various evaluation met-
rics, including mAP (66.00%), P (66.00%), R (50.00%), and F1-score (57.00%). Furthermore,
ResNet-50 achieved the lowest mAP in our study. Moreover, the YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x obtained mAP values of 91–93%, which were lower than those of
YOLOv3 and YOLOv4 (99%).

Table 1. Performance evaluation of object detection models.

Models

Model Performance Evaluation

AP
mAP

Precision Recall F1-Score

Left Right

YOLOv3 99.80% 99.81% 99.80% 94.00% 99.00% 97.00%
YOLOv4 99.62% 99.28% 99.45% 99.00% 100.00% 99.00%
YOLOv5s 89.80% 93.70% 91.70% 99.58% 99.64% 100.00%
YOLOv5m 89.30% 95.10% 92.18% 99.62% 99.64% 100.00%
YOLOv5l 91.40% 94.60% 92.98% 99.42% 99.64% 100.00%
YOLOv5x 90.20% 93.10% 91.66% 91.84% 87.92% 89.00%
DenseNet 90.06% 89.17% 89.62% 56.00% 97.00% 71.00%
ResNet-50 61.88% 70.13% 66.00% 66.00% 50.00% 57.00%

Note: AP, Average Precision; mAP, Mean Average Precision.
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The average AP on different object detection models was 89.01% and 91.86% on the left
foot and right foot, respectively. The average AP on YOLO models was 93.35% on the left
foot and 95.93% on the right foot. The right foot showed higher accuracy than the left foot
in average AP in all YOLO series, as well as DenseNet and ResNet-50 models. Furthermore,
in the YOLOv3 model, the highest AP was 99.80% and 99.81% on the left foot and right
foot, respectively. However, the ResNet-50 model’s lowest AP was 61.88% and 70.13% on
the left foot and right foot, respectively.

3.2. Testing Samples

We tested the images from the validation set as a prediction sample to evaluate the
performance of the YOLOv4 network on several images. However, the unusual distribution
of plantar pressure images decreased the accuracy. There were four frequency examples:
the defective plantar pressure images on the midfoot (Figure 7A); the complex plantar
pressure on the forefoot and midfoot (Figure 7B); the complex plantar pressure with less
pressure at the full foot (Figure 7C); and the plantar pressure image on the forefoot with
abnormal foot progression angle (Figure 7D).
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4. Discussion

The deep learning performance evaluation on different object detection models showed
our excellent results using plantar pressure images to identify the left and right footprints.
YOLOv4 performed well in various metrics such as mAP, P, R, and F1-score (Table 1 and
Figure 6). Furthermore, the right foot detection achieved a higher average AP than the left
foot detection (Figure 5).



Appl. Sci. 2022, 12, 8885 9 of 13

The YOLOv4 model showed good performance in detecting the left and right feet.
Referring to Table 1. the results of YOLOv4 were balanced over 99.00% in various per-
formance evaluations (mAP, P, R, and F1-score). YOLOv4 showed an R value of 100.00%,
indicating that the detection was similar to the ground truth. Our results were identical to
Jiang et al. [32]. In their study, YOLOv4 was sorted out, tried all possible optimizations in
the entire process, and found the best effect in each permutation and combination, affecting
overall performance. As far as we know, YOLOv4 models employ a CSP DarkNet-53
classifier and spatial pyramid pooling (SPP) that connects the YOLOv3 head [33]. YOLOv4
has the advantage of high detection accuracy and precise positioning of the bounding
box [18].

The YOLOv4 results indicate that the model may have advantages in multi-color
channel imaging detection [34]. Compared with YOLOv4, YOLOv3 was more accurate in
grayscale medical images [22]. Furthermore, YOLOv5 is beneficial in sequential imaging
such as visual audio or video [35]. Our study aimed to identify the left and right feet;
YOLOv4 performed more significantly than YOLOv3 and YOLOv5.

Conversely, YOLOv4 has advantages in localizing and classifying multi-object and
multi-color channel image features. In our study, YOLOv4, in plantar pressure image
detection, showed high performance; this may be the result of plantar pressure images
with multi-color features. Our results are similar to Dewi et al. [36]. They investigated
state-of-the-art object detection systems for detecting traffic sign images using YOLOv3,
YOLOv4, ResNet-50, and DenseNet. They found that the YOLOv4 model exhibited higher
accuracy due to multi-color imaging. The advantages of YOLOv4’s performance were
beneficial for predicting the left and right feet in plantar pressure images.

On the other hand, DenseNet and ResNet-50 have limitations in object detection.
DenseNet has more powerful uses in medical image segmentation [37]. However, plantar
pressure is not under medical images, and the DenseNet used for object detection produces
a simple transition layer structure of dimensionality reduction. Therefore, it is difficult for
a single sensory field to capture multilevel features of the dense block layers [38]. Mean-
while, ResNet-50 may also be influential in medical image categorization using residual
networks in the same-sized object on an image [39]. In object detection with plantar pres-
sure, images have more unusual object sizes, and loss of the image features may challenge
ResNet-50 networks. Therefore, DenseNet and ResNet-50 may not be suitable models for
plantar pressure image detection.

The abnormal foot progression angle and complex footprint images complicated the
identification of left and right feet via plantar pressure images [18]. Furthermore, plantar
pressure images are needed for bounding box annotation to specify the location of the
object, which can help recognize the foot features [40].

In this study, detection of the left and the right feet was conducted by deep learning.
According to Chen et al., deep learning was used to determine the flatfoot in left and
right feet using 413 right foot samples and 422 left foot samples; this study achieved
over 80.00% for the classification accuracy in left and right feet (Table 2). Chen et al.
and Dose et al. showed that left foot detection is higher than that of right feet [41,42].
Meanwhile, Nadeem et al. and our results showed accuracy of the left foot was lower than
for right feet [43].

Table 2. The comparison of studies in left and right foot prediction using deep learning approach.

References Data Acquisition Tools Model Dataset
Model Performance

Left Right

Dose et al. (2020) [41] Electroencephalogram CNN 64 EEG channels 79.90% 78.60%
Chen et al. (2019) [42] Smart insole TGINN 835 images 82.35% 81.93%
Nadeem et al. (2020) [43] Video frames ANN 2391 images 94.00% 95.00%
Our Study Plantar pressure YOLO 974 images 93.35% 95.93%

Note: ANN, Artificial Neural Networks; CNN, Convolutional Neural Network; EEG, Electroencephalogram;
TGINN, Triple Generalized-Inverse Neural Network; YOLO, You Only Look Once; our study value was average
from YOLO series.
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According to the Rein et al. study, the dominant right leg showed higher accuracy
(80%) than the dominant left leg (20%) [44]. In our results, the left and right feet have
different results of AP due to the side difference between the dominant and non-dominant
legs. The dominant leg may induce higher accuracy in the right foot. The dominant
leg contributes more significantly to producing the plantar pressure distribution image
pattern toward forwarding propulsion, while the non-dominant leg contributes toward
support [45]. It is concluded that the dominant leg bearing the main body weight may
affect the pressure and lead to loss of the foot features in plantar pressure images on
the non-dominant leg (left foot). This may be affected by the short walking time that
requires a more dominant leg (right foot). It produces more pressure on the footprint
images, for determining the left and right foot results is more accurate than long-time
walking [46]. Loss of foot features in plantar pressure images may affect the left foot YOLO
series detection.

We compared our results with other studies that used deep learning to detect the
left and right feet. Our study used plantar pressure images to identify the left and right
feet. Furthermore, object detection with bounding box annotation was used to localize and
classify the left and right feet. On the other hand, several models are used to identify left
and right feet in deep learning. Nadeem et al. (2020) used the artificial neural network
(ANN) model to classify the human body part’s movement, including determining the left
and right feet [43]. Dose et al. (2018), used a convolutional neural network (CNN) classify
foot type using heterogeneous pressure data; many variations in human pose and image
quality introduced complications [41]. Chen et al. (2019) used a triple generalized-inverse
neural network (TGINN) to classify the left and right feet under a flat foot using a smart
insole [42] (Table 2).

However, the above three studies did not use the object detection method and showed
around a 0%-16% range from object detection. Therefore, the main reason for our research
was to select the object detection method that can localize and classify the image features of
plantar pressure images. As a result, it can achieve a higher accuracy (over 93%) with small
datasets. Furthermore, object detection may be suitable for determining where objects are
located in a given image and which category each object belongs to [47].

We used the smallest dataset with the multi-color channel in this study. The data
acquisition tools may affect the accuracy of left and right foot detection. According to
the studies’ comparison in Table 2 our study showed high accuracy (93.35%) in left and
(95.93%) right foot detection based on the data acquisition tools in plantar pressure images.
Furthermore, based on the video-recorded dataset, the ANN models obtained over 90.00%
accuracy with 2391 sequential images. In addition, the smallest dataset (835 images) of
left and right feet based on smart insoles was predicted using TGINN and achieved over
80.00% accuracy.

Conversely, the left and right foot classification conducted from the electroencephalo-
gram signal achieved around 78.00% precision. However, the left and right foot detection
results show differentiation values, possibly due to the side difference between the dom-
inant and non-dominant foot. In addition, the data acquisition tools in plantar pressure
under a few images in the dataset may have high accuracy due to the multi-color channel
in image features [34].

However, there are several limitations to the current work which could be used
to develop future improvement directions. The first limitation is the different sizes of
footprint patterns in plantar pressure images [48]. Serightcond, the diversity of data
acquisition conditions, especially in complex target age testing in spastic CP, still needs to
be studied [49]. Finally, using meta-learning or few-shot classification [50] and applying
fusion of multi-modal physiological data in prediction may solve the different footprint
sizes and complex target age limitations in future works [51].



Appl. Sci. 2022, 12, 8885 11 of 13

5. Conclusions

This study aimed to determine the left and right feet in people with spastic CP using
different object detection models to obtain a suitable detector based on the footprint image
dataset. Our results showed that the different object detection models achieved different
performances; YOLOv4 outperformed in detecting left and right feet through plantar
pressure images. Compared with other models, YOLOv4 reached over 99.00% in various
performance evaluations. In addition, the right foot obtained a higher accuracy prediction
than the left foot. Therefore, the auto-detection of left and right feet may have implications
in discovering new information about footprint images with defective features in people
with CP and provide new solutions through beneficial information to manage the treatment
strategy of orthosis in people with spastic CP.
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