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Abstract

This work addressed the automatic visual identification of mechanical objects
from 3D camera scans, and is part of a wider project focusing on automatic dis-
assembly for remanufacturing. The main challenge of the task was the intrinsic
uncertainties on the state of end-of-life products, which required a highly robust
identification system. The use of point cloud models implied also the need to deal
with significant computational overheads.

The state-of-the-art PointNet deep neural network was chosen as the classi-
fier system, due to its learning capabilities, suitability to processing 3D models,
and ability to recognise objects irrespective of their pose. To obviate the need for
collecting a large set of training models, it was decided that PointNet was to be
trained using examples generated from 3D CAD models, and used on scans of
real objects. Different tests were carried out to assess PointNet ability to deal with
imprecise sensor readings and partial views. Due to restrictions on access due to
the pandemic, it was not possible to collect a sufficiently systematic set of scans of
physical objects in the lab. Various tests were thus carried out using combinations
of CAD models of mechanical and everyday objects, primitive geometric shapes,
and real scans of everyday objects from popular machine vision benchmarks. The
investigation confirmed PointNet’s ability to recognise complex mechanical ob-
jects and irregular everyday shapes with good accuracy, generalising the results of
learning from geometric shapes and CAD models. The performance of PointNet
was not significantly affected by the use of partial views of the objects, a very
common case in industrial applications. PointNet showed some limitation when
tasked with recognising noisy scenes, and a practical solution was suggested to
minimise this problem.

To reduce the computational complexity of training a deep architecture using
large data sets of 3D scenes, a predator-prey coevolutionary scheme was devised.
The proposed algorithm evolves subsets of the training set, selecting for these
subsets the most difficult examples. The remaining training samples are discarded
by the evolutionary procedure, which thus reduces the number of examples that
are presented to the classifier. The experimental results showed that this economy
of training samples allows reducing the execution time of the learning procedure,
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without affecting the neural network recognition accuracy. This simplification
of the learning procedure is of general importance for the whole deep learning
field, since practical implementations are often hindered by the complexity of the
training process.
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Chapter 1

Introduction

With the rising concerns over environmental issues and the depletion of natural
resources, remanufacturing procedures have attracted increasing interest in engi-
neering (Harper et al., 2019). A crucial step in the remanufacturing process is
the disassembly of end-of-life (EOL) products. Due to the labour-intensive and
sometimes hazardous nature of disassembly operations, since the late 1990’s many
studies focused on the creation of automatic or robotic disassembly procedures
(Jovane et al., 1993; J. Li, Barwood, & Rahimifard, 2018).

The very first step in automatic disassembly is the identification of the ob-
jects, their pose, and their components. Unlike assembly, the disassembly task is
fraught with uncertainties on the integrity and state of the objects and their parts
(Vongbunyong & Chen, 2015). These can be stained, corroded, deformed, dam-
aged, or missing. Devices of different model and manufacturer might have to
be sorted. These uncertainties require robust sensing systems able to recognise
objects, shapes, and sub-assemblies (Wegener et al., 2015; Bdiwi et al., 2016).

Machine vision is customarily a primary source of information on the envi-
ronment. The increasing availability of affordable cameras, scanners, and related
hardware has created the conditions for its widespread use in engineering and be-
yond. In parallel, deep neural network (DNN) techniques raised the accuracy of
automatic recognition algorithms to levels never reached by traditional techniques
(LeCun et al., 2015). DNNs owe their popularity not only to their accuracy, but
also to the fact that they automate the labour-intensive and time-consuming steps
of image segmentation, feature extraction, and selection (Z.-Q. Zhao et al., 2019).

This thesis details a study on the identification of object and shapes from 3D
point cloud (PC) models. The application is the recognition of mechanical parts
for disassembly and remanufacturing. PointNet (Qi, Su, et al., 2017), a recently
developed DNN system for identification and segmentation of PC scenes, is the
object of the study. PointNet was chosen due to its ability to recognise objects irre-
spective of their pose, whereas the performance of many DNNs is not orientation
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invariant.
The first piece of research concerns the application of PointNet to the identi-

fication of mechanical parts of automotive devices. The first task in training any
kind of artificial neural network (ANN) is to collect a large and diversified set
of training examples. This task is time-consuming, and might need to be peri-
odically repeated as new products are introduced in the market (Krueger et al.,
2019; Börold et al., 2020). Therefore, it was decided to investigate the feasibility
of training PointNet using artificial scenes generated from computer-aided design
(CAD) models. For this purpose, a 3D camera simulator was developed to au-
tomatically generate the training examples. CAD models of twelve mechanical
parts from two types of internal combustion engine turbo-charger were used in
this study.

The performance of PointNet was evaluated in terms of its robustness to er-
ror (local sensor error in the simulated scanner readings), and partial view of the
objects. The experimental tests confirmed the feasibility of the approach, and re-
vealed some degree of sensitivity of PointNet to local depth scanning error. It was
also found that, in presence of local error in the scans, the accuracy of PointNet
could be improved by injecting some sensor error in the training scenes.

The second piece of research investigated the ability of PointNet to recognise
primitive shapes in everyday objects. This study has direct application to many
engineering problems, as is often the case that mechanical objects have fairly reg-
ular shapes (e.g. the head of a piston, the balls of a rolling bearing). In this
case, the performance of PointNet was tested on real scans of everyday objects
from the Yale-CMU-Berkeley (YCB) benchmark set (Calli et al., 2015), a popular
robotics benchmark. The use of real scans of physical objects constitutes a more
realistic setting than the CAD-generated images used in the previous tests, and
an advancement on similar tests performed on artificial scans by the creators of
PointNet (Qi, Su, et al., 2017). The fact that PointNet had never been evaluated
on real-life 3D PCs classification set was first pointed out by Garcia-Garcia et al.
(2017), and acknowledged by Uy et al. (2019) who manually built the ScanOb-
jectNN set. ScanObjectNN contains camera scans of physical objects grouped in
categories modelled on the popular ModelNet40 benchmark set. In their study,
Uy et al. (2019) reported very poor classification accuracy (32.2%) when the the
PointNet was trained using ModelNet40 and tested on the ScanObjectNN set.

In the work of this thesis, PointNet was trained using various sets of artificially
generated PCs of primitive shapes, and tasked with recognising the irregular shape
of the YCB models. These tests directly addressed the question on the possibility
of training PointNet on artificial data, and use it in real-life applications. The YCB
set contains 3D images captured from real-life objects using high-resolution RGB-
D cameras. It was originally designed for robotic manipulation research, and
contains PCs models of 77 daily-life objects divided in five main categories. From
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these objects, 28 instances were selected based on their shape. They were grouped
into three classes: boxes, cylinders, and spheres. Due to sensor imprecision and
the intrinsic irregularity of the objects (e.g. an orange as an instance of sphere),
the 28 models from the YCB set only approximated the ideal primitive shapes.
The results obtained using PointNet were compared with those obtained using
two shallow ANNs, using purpose-designed feature extraction algorithms. The
experimental results confirmed the overall good performance of PointNet, but also
some limitation in generalising the learning results to the irregular YCB shapes.
Also in this case, it was found that injecting imprecision (sensor error) in the
training models the accuracy of PointNet could be improved.

The third piece of research aimed at reducing the computational overheads of
training PointNet. Although targeted to the specific model considered in this the-
sis, this piece of research was relevant to the whole DNN field. At present, the
cost of training large and complex architectures on computationally demanding
2D images or 3D models, is one of the main hindrances to the wider application
of DNNs (Z.-Q. Zhao et al., 2019). Some authors tried to address this problem by
heuristically selecting the training examples based on their evaluation from loss
function (Loshchilov & Hutter, 2015). In this study, a meta-heuristic coevolu-
tionary predator-prey approach was investigated. In this scheme, an evolutionary
algorithm (EA) was used to select from the training set of examples, the most
difficult instances (prey), that is the yet not learned examples. These instances
were used to train PointNet (the predator) using the customary Adam optimiser
(Kingma & Ba, 2014).

Modelled on the Coevolutionary Genetic Algorithm (CGA) proposed by Pare-
dis (1995), and the CoEvolutionary ANN Training algorithm (CENNT) proposed
by Castellani (2018), the CoEvolutionary Selected Training (CEST) algorithm
could train PointNet using only a subset of the training models. It was demon-
strated that this economy of training instances allowed speeding up the execution
time of the PointNet learning process, without affecting its classification accuracy.

1.1 Background
In this section, the background of the research topics relevant to this thesis is
presented.

1.1.1 Robotic Disassembly for Remanufacturing
Mass production and advances in automatic manufacturing have brought a great
improvement into people’s life. Unfortunately, the larger is the quantity of prod-
ucts manufactured by factories, the larger is the amount of EOL products that will
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require disposal in the future. To address concerns on the environmental impact of
waste disposal, and the depletion of natural resources, interest in remanufacturing
of EOL products is rapidly rising (Harper et al., 2019).

Differently from recycling or refurbishing, remanufacturing is a more complex
procedure, but also environmental more sustainable (Kin et al., 2014). Formally,
remanufacturing is the process of disassembling, restoring, and re-assembling
EOL products, reverting them back to at least their original performance, with
the least environmental impact and financial cost (M. R. Johnson & McCarthy,
2014). In most cases, disassembly is the first step to remanufacturing.

Concerns about the management of EOL products generated the first remanu-
facturing studies in the 1990’s (Dario et al., 1994), when the first instances of au-
tomatic disassembly systems were proposed. Since then, the literature in robotic
disassembly gained momentum and attention. It will be discussed in Section 2.1.

Typical steps for automatic disassembly operations are in chronological order:
the identification of the object to be disassembled, its localisation (position and
orientation), the planning of robotic trajectories, and finally the manipulation and
taking apart of the object’s subsystems and components (Vongbunyong & Chen,
2015). The work reported in this thesis concerns the first step.

In traditional manufacturing procedures like automatic assembly lines, me-
chanical parts are newly manufactured without any damage or stain. However, in
remanufacturing EOL products are usually in unknown state, and can be dirty, cor-
roded, deformed or missing parts. Prior visual inspection is therefore of paramount
importance, usually challenging, and poor performance from the vision system is a
major limiting factor for the automation of disassembly processes (Vongbunyong
& Chen, 2015). For example, recent work reported by Wegener et al. (2015) fo-
cused on the disassembly of the battery pack of Audi Q5 vehicles. A human-robot
collaborative system was proposed, where the robotic component was employed
for unscrewing parts. The main weakness of the system was the conventional vi-
sion module, based on separated feature extraction and identification steps, which
only achieved 50% detection accuracy. A similar system for component unscrew-
ing was proposed by Bdiwi et al. (2016), implementing a region growing algo-
rithm over depth and colour information. Although in ideal conditions this system
nearly reached 90% accuracy on true positives, and only 15% rates of false posi-
tives, Bdiwi et al. (2016) reported poor performances when the screws were rusty.

In summary, given the uncertainties and high variability of conditions of EOL
products, state-of-the-art techniques are required for automated visual inspection
and recognition. This thesis will study the PointNet DNN as a tool for recognition
of mechanical objects and shapes.
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1.1.2 DNN Identification of Mechanical Parts

In recent years, DNN technology has brought great improvements in machine
vision tasks such as object identification and image segmentation. Some pioneer-
ing work has probed applications of deep learning to disassembly problems. For
example, Yildiz & Wörgötter (2019, 2020) applied a convolutional neural net-
work (CNN) for screw detection for automatic disassembly of electronic waste.
This kind of CNN required a huge number of examples to train the network, and
the authors collected in total 20,000 2D images from 500 samples of screw. The
recognition system achieved a 97% detection accuracy on the test set of examples,
and the whole pipeline (image pre-processing plus detection) an overall 75.7%
recognition rate. The main limitation of this approach was its reliance on a very
large number of training examples.

The requirement of a large training data set is a common problem in the imple-
mentation of DNN systems, and was reported by several other authors for imple-
mentations of 2D image classifiers in industrial applications (Weimer et al., 2016;
He et al., 2016; Krueger et al., 2019). This requirement is often a limiting factor in
the deployment of DNN systems in industry, where usually large number of parts
are involved.

In this thesis, a different approach was investigated: the DNN was trained
using artificial scenes created from CAD models of mechanical parts. The appli-
cation was the identification of mechanical objects or shapes in 3D PC scenes.
Differently from the real objects, 3D CAD models of mechanical parts are easily
available in industry, either from the production process, or from reverse engineer-
ing via laser scanners. Using custom-made software, a large amount of training
examples can be effortlessly produced from CAD models, including assemblies
with missing or deformed parts. Compared with 2D images, 3D images allow
more robust identification thanks to their depth information, particularly in the
case of superficial blemishes or damage like stain or corrosion.

To the author’s best knowledge, there is no previous work in the literature
trying to apply DNN directly on 3D images to address the identification problems
in industrial scenario like disassembly.

The main challenge of this approach was envisaged to be the accuracy of the
classifier, in relation also to the representativeness of CAD-generated models. For
the processing of 3D scenes, three main approaches can be identified in the DNN
literature: multi-view, volumetric based, and PC based.

The multi-view approach (Su et al., 2015), uses multiple images from different
angles of the object. These multiple views will be typically fed to a CNN for iden-
tification. The volumetric based approach firstly transforms the raw 3D images
(typically PCs) into 3D volumetric images, and then applies purpose-designed
convolutional layers for feature extraction (Wu et al., 2015; Maturana & Scherer,
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2015). The main drawback of this approach is the high computational overheads
implied (Qi et al., 2016). Finally, the PC based scheme directly feeds the DNN
with raw PC models from 3D camera scans (Qi, Su, et al., 2017).

In this thesis, the PC based scheme was adopted, due to its lower computa-
tional overheads and ease of implementation. The PointNet architecture, specif-
ically designed for processing PC models by Qi, Su, et al. (2017), was used as
recognition system. The main advantage of PointNet is its ability to recognise
patterns independently of their pose. Like all DNNs, it performs both feature ex-
traction and image identification tasks. A more detailed description of the DNN
is given in Section 3.1.1.

1.1.3 Evolutionary and Coevolutionary DNN Training
EAs are a class of meta-heuristic optimisation procedures mimicking the process
of natural evolution (Fogel, 2006). The main idea behind EAs is to think of can-
didate solutions as individuals, and evolve a population of them according to a
desired optimality criterion. The defining traits (features) of a solution are typ-
ically encoded as a string of parameters, which can be numerical or other data
structures. Applying mechanisms derived from biological evolution, such as se-
lection, recombination, and mutation, an EA manipulates the population, mix-
ing and altering the traits of the best solutions. EAs have been used in various
ANN training schemes, which can be generally classified into three categorises:
evolving the network weights, evolving the network architecture, and evolving the
training patterns (Yao, 1999).

Coevolutionary algorithms are based on two EAs (or other learning algo-
rithms) optimising two populations (species) for complementary purposes. The
idea is to mimic predator-prey interactions in a zero-sum game scheme (Hillis,
1990). A typical example is the co-evolution of ANN classifiers (predators) and
training data (prey) implemented in various algorithms like CGA (Paredis, 1995),
Co-adaptive ANN Training (CANNT) (Castellani, 2018), and CENNT (Castel-
lani, 2018). The goal of the procedure is to evolve subsets of the most difficult
training patterns, and use only them to train the classifier, thus reducing the com-
putational overheads of the training process. Experimentally, it was found that
coevolutionary algorithms are able to speed up the training process and increase
the performance of ANN (Paredis, 1995; Castellani, 2018).

In this thesis, coevolutionary training was used to reduce the computational
and time complexity of training PointNet. Indeed, training PointNet customarily
takes the repeated presentation to the DNN of a large number of PCs, each of them
containing thousands of points, and the periodic update of the very large number
of parameters that characterise the network response. The novel CoEvolutionary
Selected Training (CEST) algorithm was designed to minimise the number of
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training samples fed to the algorithm. CEST is presented and its performance
evaluated in Chapter 5

1.2 Aims of the Thesis
The aims of this thesis are the following:

• to implement a DNN-based automatic system for recognition of complex
mechanical parts from 3D PC models;

• to investigate the possibility of training the DNN using CAD-generated or
geometric models of objects and shapes, and use it on previously unseen
noisy scenes, partial views, and real-life scans;

• to systematically investigate the accuracy of the DNN, the consistency of its
learning procedure, and the effects of the parameterisation on the results of
the learning procedure;

• to create a novel coevolutionary scheme to reduce the complexity of the
DNN training procedure, by focusing the training effort on the most difficult
examples;

• to evaluate the performance of the new coevolutionary procedure.

1.3 Outline of this Thesis
The remaining of this thesis is organised as follows:

• Chapter 2 reviews the literature on automatic disassembly system, object
identification techniques in industry, feature-based and DNN-based PC clas-
sification, and evolutionary and coevolutionary ANN training;

• Chapter 3 presents the proposed DNN-based system for automatic identifi-
cation of mechanical objects from PCs. The chapter hinges on a case study
considering twelve mechanical parts from an automotive device;

• Chapter 4 presents a comprehensive examination of PointNet ability of
recognising primitive shapes in everyday objects, using a popular bench-
mark set of PCs and three custom-made artificial model sets;

• Chapter 5 describes the proposed coevolutionary CEST DNN training algo-
rithm, and its tuning and evaluation on three different model sets.
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Chapter 2

Literature Review

In this chapter, literature related to the studies in this thesis will be reviewed. In
Section 2.1, previous efforts over developing an automatic disassembly cell for
remanufacturing are illustrated. Section 2.2 will review the 2D object recognition
technologies used in industrial applications, from feature-based methods to deep
neural network based methods. In Section 2.3, the feature-based methods and
the deep neural network based methods for PC classification will be reviewed.
Section 2.4 will review the literature over EA based training and designing for
ANN and DNN. The coevolutionary algorithm based ANN training will also be
reviewed.

2.1 Automatic Disassembly for EOL Products

Early concerns over EOL can be found since 1990’s (Jovane et al., 1993), where
the challenges and the benefits of developing an automatic disassembly cell were
pointed out. Addressed by Dario et al. (1994), different from assembly, the main
challenge in automatic disassembly is to make the system understand the unstruc-
tured scene. To tackle the challenge, they simultaneously used vision from camera
and "pushing" motion of robot to recognise the target. The idea was derived from
a cooperating robot system built by Vischer (1992), which Dario et al. (1994)
recognised as the first trying to disassemble targets.

When it came to the late 1990’s, Kopacek & Kopacek (1999) pointed out the
urgency to have an automatic disassembly solution for massive number of elec-
tric wastes due to the great improvement in information technology and automatic
manufacturing technology. They mentioned the challenge in automatic disassem-
bly where the disassembly targets are in low volumes but multiple models. Thus,
they proposed to build a modular flexible disassembly cell which can disassemble
multiple models of one product. In their further research, Knoth et al. (2002) pro-

9
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posed and built a semi-automatic disassembly cell for printed circuit boards. The
printed circuit board was firstly disassembled from the product and fixed in the
semi-automatic cell by human-operators. The purpose-built semi-automatic dis-
assembly cell will finish the rest of the disassembly work. One of the key module
in their work is a vision system, which capable of recognising and localising the
target components with an accuracy of 0.1mm.

Similarly, a human-robot collaborative workstation was proposed by Karls-
son & Järrhed (2000) to automatically examine and disassemble the EOL electri-
cal motors. In their work, motors were firstly classified based on their electrical
properties into three different classes: re-used, disassemble, and unknown. The
developed vision sub-systems can automatically classify the type of motor with
95% accuracy, and localise the orientation of the motor with less than 10° er-
ror. Human-operators will then step in to remove the cover for disassembling
targets. It can be found that there are lots of approaches in the literature to build
the human-robot collaborative system (R. Li et al., 2020). One reason behind this
is the limited level of automation can be achieved. Differently, J. Huang et al.
(2020) proposed and established a human-robot collaboration system for high-
load disassembly process. In their case, the system will focus more on reducing
the safety risk to human operator by assigning the high-load operation to robotic
system.

Another massive numbers of wastes in early 21st century is the personal com-
puter. Torres et al. (2004) developed and presented an automatic system to dis-
assemble personal computer. The developed vision sub-system includes a stereo-
camera and a robot-armed camera. Using the feature based template matching
techniques and the 3D modelling information of the target computer, the vision
system can identify the model type of the target computer and also the relation-
ship between components in the target. The disassemble sequence will then be
planed and the robotic manipulation trajectory will also be generated. A further
research based upon (Torres et al., 2004) was made by Gil et al. (2007), where a
cooperative robot system for automatic disassembly was proposed. Researchers
pointed out one of the challenge in disassembly, which is the high uncertainties of
the target. To address the difficulty, the project fused multiple sources of sensors:
force sensors and a cameras on robot arm, and a stereo-camera on the scene, to es-
tablish a robust environmental recognition and detection system. Gil et al. (2007)
also proposed to use cooperative robots to increase the success rate of the proce-
dure. A hierarchical disassembly planning algorithm was also developed based
on Torres et al. (2003)’s work, taking account of the interaction between multiple
robots in the system.

In the field of automotive, Büker et al. (2001) pointed out the increasing de-
mands of building an automatic disassembly station while there are about 10 mil-
lions of cars were wrecked each year in the EU. In their understanding, there are
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two important tasks for the disassembly automation, which are object recognition
and localisation, and robotic manipulation respectively. They focused on wheel
disassembly, and developed a stereo-camera based vision system with a special
designed unbolting tool. The developed stereo-camera vision system can recog-
nise and localise the target wheels and bolts, with a success rate of 98% within
15 seconds. Highlighted by Büker et al. (2001), with the robustness of the vision
system and the special designed unbolting tool, their final developed automatic
disassembly cell can be applied on various models of wheel.

Researchers also rose the concerning over the battery and motor in electric
vehicles in recent decade. Wegener et al. (2014, 2015) proposed and developed a
cooperative robotic cell for automatic vehicle batteries disassembly. Similarly, the
challenges of uncertainties in disassembly scenario such as unpredictable screw
type, and variants of battery designs were pointed out by the authors. To address
the problems, the developed system was equipped with an automatic tool chang-
ing module and a vision module. Specifically, the vision system is based on 2D
feature-based Haar Cascade technologies (Viola & Jones, 2001), and can only
achieve 50% detection accuracy over target screws. Bdiwi et al. (2016) developed
an automatic disassembly cell for motors of electric vehicles. Using two Kinect
cameras, the developed system can ensure the safety for human activities, as well
as the detection of screws on the target. The proposed feature-based screw de-
tection algorithm will return the type and the location of the screw with no prior
knowledge of the motor model. The algorithm can achieve about 90% accuracy
with about 85% precision. Similarly, DiFilippo & Jouaneh (2017) proposed to
combine vision with force data to identify screws on personal computer. Based on
Gaussian blur and edge detection, the proposed system achieve 96.5% detection
accuracy.

The above mentioned vision systems were based on traditional feature-based
technology. In many cases, the use of this technology limited the performance
of the vision system, and hence the whole disassembly procedure (Büker et al.,
2001; Torres et al., 2004; Gil et al., 2007; Wegener et al., 2014, 2015; Bdiwi et al.,
2016; DiFilippo & Jouaneh, 2017).

In recent years, researchers applied deep neural network based vision tech-
nology to disassembly problems, attracted by their high accuracy and robustness.
Yildiz & Wörgötter (2019, 2020) developed a screw detection and classification
system based on a deep convolutional neural network, and demonstrated its effec-
tiveness in a hard drive disk disassembly case study. Their algorithm was able to
detect the screws in the scene with an 80.23% average accuracy, and identify their
type and size with 75.7% average accuracy. The creation of the neural network
training set of examples entailed a large effort, where 20,000 sample images of
500 screw elements were collected from 50 hard disk drives.

Foo et al. (2021) used deep learning for screw detection in an LCD monitor
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disassembly application. The system used an image preprocessing procedure, an
ontology reasoning module, and a Fast-RCNN network (Ren et al., 2015). The
training dataset was built combining numerous images of screws acquired via an
extensive Google search, plus 356 manually acquired images. A total of 1,496
bounding boxes around the screw samples had to be manually labelled in the im-
ages. The Fast-RCNN network was pre-trained using the COCO dataset (Lin et
al., 2014), using transfer learning (Weiss et al., 2016) to speed up the screw detec-
tion training procedure. The trained system achieved 91.8% precision and 83.6%
recall rates.

Similarly, X. Li et al. (2021) applied the fast Region-Convolution neural net-
work (R-CNN) to detect screws on motherboards of mobile phones for disassem-
bly. Trained with 72 samples, the vision system achieved a classification accuracy
of 99.64% over another set of 72 previously unseen samples. Brogan et al. (2021)
proposed a vision system based on the Tiny YOLO v2 (Tiny-You Only Look Once
v2) pretrained DNN architecture, to identify screws on electrical waste for disas-
sembly. The system achieved over 92% recognition accuracy using 900 manually
collected training images. Rehnholm (2021) used a YOLO v4 architecture to build
the vision system for a battery package disassembly application. The trained DNN
obtained a final classification precision of 93.8%, with A recall rate of over 80%.

In summary, efforts towards automated recycling of EOL products started in
the 1990’s, and became a major research topic in the recent decade. Most re-
searches addressed machine vision as a priority for building automatic disassem-
bly cells, due to the uncertainties on EOL products. Vision is the first step in
automatic disassembly, and should allow accurately recognising and localising
objects to make sure the success of the full disassembly procedure. In recent
years, some researchers proposed to apply DNN technology to address the ma-
chine vision challenge. However, their work required a significant effort for data
preparation, image capture, and image labelling.

2.2 Object Recognition In Industry
In recent decades, most of the object recognition implementations in industry de-
pends on template matching technologies over 2D images. In specific industrial
case, special manual-designed algorithm will be applied to extract features from
target images to ensure efficiency and reliability at the same time.

However, not every case has an efficient solution in feature extraction, not
to mention the robustness of the solution. Consequently, researchers are looking
for an efficient and reliable solution for the general feature extraction algorithm.
Lowe (1999) proposed a feature extraction method namely Scale Invariant Fea-
ture Transform (SIFT) for 2D images. Specifically, the extracted features are in-
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variant to the image rotation and scaling. Using nearest-neighbour indexing and
some search algorithm, like best-bin-first search algorithm (Beis & Lowe, 1997)
in Lowe (1999)’s original effort, the matched candidate class from templates can
be determined. Proposed by Bay et al. (2006), SURF (Speeded Up Robust Fea-
tures) feature descriptor brings an improvement to the SIFT, regarding computing
speed and robustness. Although both SIFT and SURF brought a great leap in the
robustness for novel feature descriptor algorithms, they are still far away from be-
ing implemented in the real-time application in industry. Further researches like
FAST (Rosten & Drummond, 2006), BRIEF (Calonder et al., 2010), and ORB
(Rublee et al., 2011), were all trying to improve the computing speed comparing
SIFT and SURF.

ANN is a well-known machine learning technology for function modelling
and pattern classification, especially after the propose of back-propagation learn-
ing algorithm (Rumelhart et al., 1985). Early approaches of ANN in object clas-
sification and pattern recognition require feature extraction in the pre-processing
steps. The ANN only works as a classifier, which takes the extracted features
as input, and outputs the recognised class (Pham & Liu, 1995; Pham & Alcock,
1996; Packianather, 1997; Pham & Alcock, 1999).

After the publication of AlexNet (Krizhevsky et al., 2012), the power of Con-
volutional Neural Networks (CNN) had then been found by researchers. A boom-
ing in researches in the CNN can be seen from AlexNet to GoogleNet (Szegedy
et al., 2015), VGGNet (Simonyan & Zisserman, 2014), ResNet (He et al., 2016),
DenseNet (G. Huang et al., 2017) and so on. Different from the traditional feature-
based recognition methods, CNN can perform feature extraction in the hidden
layer automatically. This property makes the CNN a great candidate to build a
general, robust and accurate object recognition vision system in industry.

Weimer et al. (2016) proposed an application using CNN in defect detection
for industrial manufacturing. The advantage of automatic feature extraction from
CNN, and the high average detection accuracy (99.2%) were highlighted by the
author. However, the drawback of using CNN can also be seen, requiring a large
dataset. Weimer et al. (2016) constructed a dataset containing 1,299,200 exam-
ples for 12 different categories. Krueger et al. (2019) used CNN for mechanical
and electrical parts recognition. The constructed dataset contains 144,000 images
from 4,000 parts from automobile. Using pre-trained CNN structure ResNet-152
(He et al., 2016) and transfer learning method, the final performance of the net-
work can achieve 82.0% average classification accuracy. Börold et al. (2020)
pointed out the challenge of using CNN in the industry, which is the requirement
of large training dataset. The research group used the free and open source 3D
software Blender to generate artificial 2D images captured from 3D models of 24
automotive parts. Specifically, the 3D models of the targets were created based on
3D scanning from the real objects. The CNN were trained using artificial images
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and tested with real captured images, which achieved about 80% average accu-
racy. Other trying of CNN in industry can also be found with work (Yildiz &
Wörgötter, 2019, 2020; Foo et al., 2021; X. Li et al., 2021; Brogan et al., 2021;
Rehnholm, 2021) which described in Section 2.1.

In summary, the main drawback of CNN for industrial applications can be
identified: requiring a huge training dataset. Additionally, the original CNN can
only work with 2D images but 3D images.

2.3 Point Cloud Classification
With the development of 3D sensors like RADAR (radio detection and ranging),
LiDAR (light detection and ranging), and RGB-D (red, green, blue, and depth
channels) camera, the 3D data can be easily obtained from field. The 3D data
gives more information for object classification task, but also brings challenges
to the current classification algorithms. Typically, the raw data captured from 3D
sensors is in form of PC. PC is a 3D data structure contains a set of points rep-
resented in three-dimensional Cartesian coordinates (X, Y, Z). Specifically these
coordinates in PCs are stored in unordered list and without structure (no fixed
grid), and distributed irregularly in the space, which give a big challenge to the
recognition algorithm.

2.3.1 Hand-crafted Feature Descriptors
Similar with 2D image recognition, most early approaches in PCs classification
depends on hand-crafted features extracted from PCs. Researches were focusing
on developing a general and robust feature descriptor for PCs (Guo et al., 2016;
Han et al., 2018).

For example, work done by Chua & Jarvis (1997) extracted the information
from a principle curvature based on the selected point, naming point signatures.
The proposed method generates features which are invariant from the rotation and
translation, though consumes huge computing resources. Similar approach can be
found like the surface signatures descriptor proposed by Yamany & Farag (2002).
Another popular used descriptor is the spin-image proposed by A. E. Johnson &
Hebert (1998). In order to generate the spin-image, firstly a base point is selected.
Coordinate and surface normal of the base point will then be used to generate a
new cylindrical coordinate system. Lastly, all the remaining points in the PCs
will be transfer into the generated cylindrical coordinate system. However, in
their further work, A. E. Johnson & Hebert (1999) pointed out that spin-image
is lack of robustness when encountering the noise. To address the problem of
noisy and cluttered scenes in 3D recognition, Frome et al. (2004) proposed the 3D
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shape contexts descriptor. The 3D shape context descriptor is derived from the
2D shape context descriptor proposed by Belongie et al. (2002). The main idea
of 3D shape context is to use the a sphere shape support region to extract features
from points in different bins. Matei et al. (2006) pointed out the drawback of 3D
shape context descriptor when the input image has unknown rotation. Thus, they
adopted spin-image descriptor for their 3D recognition system. R. B. Rusu et al.
(2008) proposed a method called point feature histograms (PFH). The features
of each point is calculated based on relation between its k neighbour-points. By
introducing varying scalar to the neighbourhood size, a set of local features will
be generated. The four geometric features for each point were split into two parts,
and a histogram was then built. Based on the local feature histograms, a subset
of important points will be computed and selected as representation for the PC.
Using the selected subset features will reduce computing time, and on the other
hand increase the significance of the extracted features. In their further research,
R. B. Rusu et al. (2009) proposed fast point feature histograms (FPFH) method to
increase computing speed.

2.3.2 DNN-based Point Cloud Classification
In recent years, the DNN has shown its outstanding performance in 2D image clas-
sification, thus, some researchers tried to applied DNN over 3D PC images. At the
first place, researchers were facing the problem of PC’s unstructured characteris-
tic, while CNN can only be applied on structured data. To solve this challenge,
Wu et al. (2015) proposed and tried to re-organise PCs into volumetric represen-
tation. Similar with pixels stored in a 2D image, volumetric image contains a
set of 3D voxels stored in a regular 3D grid. With similarity between 2D im-
ages and 3D volumetric images, convolutional layer can be applied over the target
3D images. Their proposed 3D ShapeNet is a deep convolutional brief network,
which achieved 77.32% accuracy over ModelNet40 benchmark (Wu et al., 2015).
Some further researches are sharing the same idea, like the VoxNet proposed by
Maturana & Scherer (2015). Followed by two 3D-convolutional layers, a max
pooling layer, and a full connected layer, the VoxNet can achieve 83% accuracy
on ModelNet40 benchmark.

Differently, Su et al. (2015) tried to solve the problem of unstructured char-
acteristics of PCs in a brutal way. In their work, multiple simulated 2D cameras
will be applied in the simulation to capture 2D images from the target 3D images.
Later, their proposed multi-view CNN (MVCNN) architecture will be applied on
2D images using the state-of-art CNN method. Although MVCNN achieved a
promising classification accuracy, it interacted with 2D images but 3D PCs. Sim-
ilar work can also be seen in (Shi et al., 2015).

A full comparison between MVCNN and volumetric CNN was illustrated by
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(Qi et al., 2016). They pointed out the over-fitting in 3D ShapeNet model set, and
proposed a multi-task volumetric CNN architecture, which can learn to predict
by partial image. They also proposed a multi-orientation volumetric CNN (MO-
VCNN) architecture, which combined the idea of MVCNN and volumetric CNN.
Both the proposed architecture gave outstanding performance compared with the
original ones.

Y. Li et al. (2016) pointed out the drawback of volumetric CNN: an cubically
increasing computational complexity with the growing of voxel resolution. To
address the problem, Y. Li et al. (2016) proposed the field probing filter to reduce
the unwanted computation. The field probing filter was implemented by the field
probing layer in the network, which contains three different layers: Sensor Layer,
DotProduct layer, and Gaussian Layer respectively. The field probing layer can
detect the surface of the volumetric object and transform the image into an inter-
mediate representation. Although the proposed FPNN (field probing based neural
network) architecture solved the problem of booming computational complexity
for volumetric CNN with increasing voxel resolution, it still restricted with volu-
metric representation but PC.

Klokov & Lempitsky (2017) proposed to use space-partitioning data structure
to address this challenge. They proposed the Kd-Networks architecture based on
the 3D indexing structure kd-tree. Using kd-tree data structure, the Kd-Networks
can apply convolutional kernel over PCs without building an uniform 3D grids.
This will increase the scalability of the network and avoid the booming computa-
tional complexity when dealing with large number of data. Similar approaches im-
plemented with octree data structure can be found in OctNet proposed by Riegler
et al. (2017), and O-CNN proposed by P.-S. Wang et al. (2017). However, the
drawback of using convolutional network as network’s skeleton is obvious, which
is the non-invariance with data rotation.

Moreover, some approaches were proposed to apply CNN in PCs based on
graph representation. Simonovsky & Komodakis (2017) proposed the ECC (edge-
conditioned convolution) architecture based on graph convolutions. In ECC, the
graph was constructed by downsampling the PCs using VoxelGrid algorithm R. Rusu
& Cousins (2017). Then the proposed ECC kernel will be applied on the nearest
neighbour points of each graph. Different from using static graph, Y. Wang et
al. (2019) proposed the Dynamic Graph CNN (DGCNN) architecture based on
dynamic graph. In DGCNN, a special designed EdgeConv kernel was proposed,
which can take the coordinates from its neighbour points in the feature space
and compute the output feature. Specifically, in every epoch, nearest neighbours
method is applied in feature space to reconstruct the graph and compute the new
neighbours, thus naming Dynamic Graph CNN. With this special characteristics,
the DGCNN is invariant to permutation.

Then it comes to the remarkable work of Qi, Su, et al. (2017), where a pi-
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oneer DNN architecture namely PointNet which directly interacts with PCs was
proposed. Different from works like MVCNN which takes 2D images as input,
or volumetric CNN should transform PC into volumetric representation, or works
like KD-Networks which changes the data structure of PCs, PointNet takes the
raw 3D PCs as input without any heavy-duty preprocessing. Specifically, two
shared-weights deep multilayer perceptrons (MLPs) in PointNet were designed
to perform the feature extraction function, and extract global features from coor-
dinates of all points. A max-pooling layer was utilised to summarise the global
features from the feature space. The last MLP in the network takes the extracted
global features and perform the object classification. More details of PointNet
will be illustrated in Section 3.1.1. Due to its special characteristics, PointNet can
also be used for PCs segmentation, the point wise classification. Another great
feature of PointNet is the rotation and translation invariant, which is quit impor-
tant for PC classification in real scenario. All the special properties of PointNet
makes it require less data preprocessing from raw 3D images, and also robust with
unknown environment.

The propose of PointNet is an pioneer in extracting point-wise features from
PCs using deep neural networks. However, the drawback of PointNet is obvious:
being lack of local features, thus, in their further research, (Qi, Yi, et al., 2017)
proposed an upgrade architecture PointNet++. Instead of simply extracting global
features from PCs, PointNet++ used hierarchical structure to extract both global
and local features from multiple neighbour size.

Inspired by the breakthrough achievement of PointNet, many researchers in
the following years were focusing on the similar approaches: trying to propose
a kernel which can extract both global and local features from points and their
neighbours. For example, inspired by PointNet, J. Li, Chen, & Lee (2018) pro-
posed the SO-Net architecture. SO-Net aims to extract hierarchical features from
raw points in PC based on SOM (self-organizing map). SO-Net firstly uses SOM
to learn the spatial distribution of the points in PC. Following by k-nearest neigh-
bour search over the nodes of SOM, the SO-Net then gather batches of points for
local feature extraction. Then an architecture similar with multiple deep MLPs
in PointNet will apply to the found local batches, extract the global features, and
classify the target PC. Y. Li et al. (2018) proposed the PointCNN architecture
which based on a layer of MLP to transform PCs into a grid feature space, namely
χ-transformation. The traditional CNN will then be applied over feature space
for further classification. Xu et al. (2018) proposed the SpiderCNN architecture
which applied a specially designed SpiderConv kernel over each points to extract
features. In SpiderConv, neighbour points of target point were determined by
nearest neighbour search. Different from PointNet which applies MLPs over the
(X, Y, Z) coordinates, SpiderConv kernel used a designed filter based on Taylor
expansions to extract more information from each point. After that, traditional
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CNN will be applied over feature space for further classification.
In recent years, in order to boost the classification accuracy of the network, in-

stead of simply extracting the local features from points, researchers try to extract
the geometrical relation information between target point and its neighbours. One
example trying is the RS-CNN architecture proposed by Liu et al. (2019). High-
lighted by Liu et al. (2019), RS-CNN is focusing on extract relation information
from the geometric topology constraints in the local batch. Specifically, a CNN
layer was designed to learn the predefined low-level relation of each point. In their
experiments, different types of low-level relations were tested, including 3D Eu-
clidean distance and normal vectors. Similarly, H. Zhao et al. (2019) proposed the
PointWeb architecture with a special designed module namely the Adaptive Fea-
ture Adjustment, which can extract relation information between paired points.
In PointWeb, all the local neighbour points will be linked and a fully-linked web
will be constructed. Utilising Adaptive Feature Adjustment module, the extracted
information from PCs will also include the feature-space difference between the
paired points. And a PointNet-like feature processing and classification MLPs will
be applied to do the further work. Qiu et al. (2021b) tried to enrich the pre-defined
low-level geometric information that fed into CNN, and proposed the GBNet ar-
chitecture. Instead of using normal vector and Euclidean distance in Liu et al.
(2019), Qiu et al. (2021b) used the information from triangular faces constructed
by the target point and two nearest neighbour points. The constructed geometric
descriptor is a 14-dimensional vector made by 6 geometric vectors from triangular
face. Qiu et al. (2021a) pointed out the drawback of local searching techniques
like Ball Query and K-nearest-neighbour algorithm: sensitive to the density of
PC and the pre-defined parameters, thus, proposed a novel grouping algorithm,
namely Adaptive Dilated Point Grouping. With Adaptive Dilated Point Grouping,
the size of neighbourhood will be learnt and determined accordingly and automat-
ically.

2.4 Evolving Artificial Neural Network
In this section, the literature of the previous work over EA based ANN training and
designing will be reviewed. The EA based automatic DNN architecture designing
will also be reviewed. Last but not the least, coevolutionary algorithm based ANN
training will also be reviewed.

2.4.1 Evolving Network Weights
The popular used back-propagation training algorithm can boost the training speed
for ANN, but also can easily lead to a local optimum network. While the train-
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ing procedure of the ANN can be tackled as an optimisation problem of finding
the best combination of weights, some researchers proposed to apply optimisa-
tion algorithm like EA into ANN training procedure to avoid the local optimum
results.

Genetic Algorithm (GA) is a typically used evolutionary approach to evolve
the weights for ANN (Goldberg & Holland, 1988; Montana & Davis, 1989; Whit-
ley, 1989). Traditional GA can be summarised with the following steps: popu-
lation initialisation, parent selection, off-spring generation (cross-over and muta-
tion), and new population determination. Generally, the weights of the network
will be encoded with either a binary representation or a real-number representa-
tion (Yao, 1999). The main challenge in evolving ANN weights is usually around
choosing the appropriate representation schemes and operators. For example, if
the weights are encoded with real-number, the cross-over step will bring a huge
variation into the network, consequently cross-over will be abandoned in this case
(Montana & Davis, 1989). To address the problem, Fogel et al. (1990) proposed
to apply evolution programming (EP) algorithm. EP is a simplified GA, which
has only mutation and selection operators. With such architecture, EP is suit-
able for optimising continuous problems. One drawback of using EA in evolving
the weights of ANN is the high computing time. Some researchers applied hy-
brid training scheme, where back-propagation training was utilised as an opera-
tor within the evolution process to accelerate the convergence speed (Montana &
Davis, 1989; Belew et al., 1991; Lee, 1996).

2.4.2 Evolving Network Architecture
Apart from the previous implementation, EAs can also be applied to evolve neural
architecture (Yao, 1999; Floreano et al., 2008; Azzini & Tettamanzi, 2011).

Even until now, there is no systematic methods can explain or instruct the
design of a well-performed neural network for a given problem. Thus, many re-
searchers tackled the design of network architecture as an optimisation problem,
and tried to use optimisation methods to solve it automatically (Azzini & Tetta-
manzi, 2011). The evolution of neural architectures usually defined as evolving
the topological structure of the network. However, in some case, the definition
can be extended to find the optimal transfer function between nodes, or learning
hyper-parameters like learning rate, dropout rate, and so on. Typically there are
two kinds of encoding scheme, that is, direct encoding scheme and indirect en-
coding scheme (Yao, 1999). With direct encoding scheme, all the information of
the network will be encoded into the genome, including every nodes, connections,
weights, transfer functions and so on. On the other hand, the indirect encoding
scheme will only encode the most important parameters representing the architec-
ture, like number of layers, and number of nodes. For example, proposed by Yao
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& Liu (1997), the EPNet addressed the network architecture optimisation prob-
lem as a continuous optimisation problem with respect to topological structure,
and used evolutionary programming scheme to solve the problem. In this work,
the mutation operator was designed to search the optimal topological structure of
network. Simultaneously, back-propagation and simulated annealing algorithm
were introduced to accelerate the searching for connection weights. Specifically
pointed out by Yao & Liu (1997), the proposed EPNet evolved the network ar-
chitecture and weights at the same time which enhanced the performance of the
network training. Similar conclusions about the benefit of simultaneous evolution
can also be found in (Andersen et al., 2002; Castellani, 2006).

Evolving DNN Architecture

In recent years, DNNs have shown outstanding performance compared with tra-
ditional shallow neural networks (SNNs). Similar with researches in SNN, re-
searches in the area of DNN also have the same challenge in network design.
Different from situation in SNN, the training of DNN consumes more computing
resources, and the architecture of a DNN is much more complex, which brings
more challenges into DNN architecture design. Thus, a booming interest was
arisen to automatically design the architecture of DNN using optimisation meth-
ods (X. Zhou et al., 2021). Some researchers proposed to extend the EA ap-
proach into DNN for automatic topological structure searching (Elsken et al.,
2019; X. Zhou et al., 2021). In DNN, there are two main factors to determine
the network architecture, which are the kernel unit and topological structure. The
kernel unit will determine the type of kernel operation applied over the input data
flow, and also determine the shape of output features by repeated times of kernels
applied. On the other hand, the topological structure will determine the flow of
the information in the network. For example, Real et al. (2017) encoded the CNN
with graph representation. In the graph, each vertex represents a convolutional
layer, while edges represent connections and activation functions between layers.
Specifically, each vertex are encoded with hyper-parameters of a convolution ker-
nel like dimensions of tensor and the channel of the kernel. With such presenta-
tion, the proposed method used the tournament selection and a mutation operator
to evolve the population. In the experiments, the proposed EA based automatic
CNNs architecture designing method achieved a state-of-art performance without
any human efforts, but in a huge computing cost. Pointed by their further research
(Real et al., 2019), the tournament selection will greatly waste the computing re-
source while less complex individuals will be idle and waiting. To address the
problem, Real et al. (2019) introduced an age parameter into individual, which
reduce the number of new individuals generated from old people.
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2.4.3 Evolving Input Features and Sub-dataset

Evolving the subsets of training data or fed features is also one of the application
of EA in ANN training, namely feature selection. Generally there are three types
of feature selection approaches in the literature of machine learning: wrapper ap-
proach, filter approach, and embedded approach (Blum & Langley, 1997). The
feature selection procedure in ANN training aims to accelerate the training speed
and increase the network performance simultaneously, by inducting the irrelevant
features or examples. The filter-based feature selection is the most common strat-
egy, while it only require one step of preprocessing. Thus, the filter approach can
easily benefit from fast computation speed. However, this manually determined
algorithm can easily fail due to complexity of the dataset. Wrapper feature selec-
tion approach is the common used EA approach (Castellani, 2006). Specifically,
all the candidate features will be encoded into the EA. Example can be found like
work done by Zhang et al. (2005). In their work, 14 features were encoded in the
chromosome of the population with a 14 dimensional binary string. GA was used
as its EA scheme, with 1-point crossover and binary mutation operators. Pointed
out by Castellani (2006), the wrapper approach has one drawback, that is, con-
suming huge computing efforts with lengthy training procedures. To address this
problem, Castellani (2006) proposed a specially designed embedded approach.
In his work, each individual contains two chromosome, representing both feature
space and network weights. Similar with Zhang et al. (2005)’s work, the feature
space chromosome was encoded with binary string and evolved with two-point
crossover and binary mutation operators (Castellani, 2006). With the embedded
approach, the network weights and selected features will be evolved at the same
time within each individual with a better performance.

2.4.4 Co-evolving ANN Training

The coevolutionary approach was firstly proposed by Hillis (1990). He pointed
out two types of limitation faced by evolutionary searching algorithm: local min-
imal trap and inefficient testing procedure. To overcome the limitation, some
researchers tried to vary the testing cases during evolution, thus Hillis (1990)
proposed the co-evolution idea to automatically perform data selection. In his
research, the benefit of utilising co-evolution was derived from the biological
aspect, where the core idea behind is the predator-prey interaction model. The
predator-prey interaction model can increase the efficiency of searching procedure
by eliminating easy individuals and focusing on the difficult individuals. On the
other hand, by varying the interacting individuals, two species can easily escape
from local minimal and achieve a better performance.
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Paredis (1995) extended the co-evolution searching idea of Hillis (1990) and
proposed Coevolutionary Genetic Algorithm (CGA) for ANN training. Similarly,
the skeleton of CGA is the predator-prey model. The major difference between
GA and CGA is the number of population. In CGA, there will be two types of
population, representing potential solutions and testing subsets. These two species
represent the predator and prey in the nature. General GA method will be applied
on each population individually. A specially designed interaction model will con-
nect two species by selecting and encountering individuals from each side and
assigning interaction fitness to each individual. The individuals in prey (popu-
lation of testing subsets) which are difficult to be captured by predator (popu-
lation of ANN solution) have higher chance to survive in the following genera-
tion. However, in CGA, the population of testing dataset was not evolved during
the procedure, but only selected based on fitness. In CGA, GENITOR (Whitley,
1989) was used as the general GA method, including fitness ranking selection,
adaptive mutation, two-point cross-over, and steady-state replacement. To address
a continuously evolving fitness, the life-time fitness evaluation (LTFE) (Paredis,
1994) method was used to evaluate the fitness for predators. Specifically, in LTFE
method, the fitness of each solution is calculated based on the results of last 20
interactions: the classification accuracy in the latest 20 tasks. Results of new clas-
sification tasks in the coming epoch will be inserted into the head of history list,
while the oldest classification history will be eliminated.

Technically speaking, CGA is not a complete co-evolution process, only ex-
tending the idea of predator-prey model into ANN against test dataset. Similar
approaches can be found like the coevolutionary between candidate neural net-
works to play checkers game (Chellapilla & Fogel, 1999). In this research, the
predator-prey model was extended among neural networks. Each neural network
represents an strategy agent who can play checkers in the population. Specifi-
cally, neural network is an intelligent agent who can evaluate all the possible steps
found by minimax search strategy, thus, to guide the game. Different from CGA,
the predator-prey interaction is among two candidate agents. The won neural net-
work agent will gain higher fitness compared with the loss one. The higher fitness
the network agent gets in one training epoch, the higher the chance it will survive
into next generation. On the other hand, network training is based on mutation
operation over the weights. However, pointed out by Watson & Pollack (2001)
there are few potential drawbacks when utilising coevolutionary: losing gradient,
losing general ability, and red queen dynamics.

Based on CGA, Castellani (2018) extended and full-filled more experiments
over coevolutionary based ANN training. Highlighted and cleared by Castellani
(2018), the purpose of coevolutionary based ANN training is to have ANN trained
with most difficult sub-dataset, and as a consequence achieving higher training ef-
ficiency and accuracy. As mentioned above, in CGA, the population of prey was
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not evolved, thus, Castellani (2018) proposed CoEvolutionary ANN Training al-
gorithm (CENNT), which evolved predator and prey module simultaneously with
GA. Castellani (2018) then did a comprehensive comparison between standard
back-propagation based training, EA based training, CGA based training, and
CENNT based training on MLP. Experimental results show that coevolutionary
based ANN training is benefit from faster training speed and higher classification
accuracy especially with noise-corrupted and unbalanced dataset.



2.4. EVOLVING ARTIFICIAL NEURAL NETWORK 24



Chapter 3

Automatic Identification of
Mechanical Parts for Robotic
Disassembly Using the PointNet
Deep Neural Network

The very first manipulation task in automatic disassembly and remanufacturing is
the identification of the target mechanical parts. The challenges in this process
amount to the uncertain conditions of the objects (e.g. dirty surfaces or miss-
ing parts), incomplete vision capturing due to the pose of objects, and error from
sensors. Additionally, a typical problem in remanufacturing is that not only me-
chanical parts need to be identified from different types, but also from different
models of the same type.

This chapter presents an identification system based on the deep neural net-
work PointNet, and a developed depth camera simulator, which are described in
Section 3.1. A case study on the identification of twelve parts from two turbo-
chargers from automotive engines has been carried out, to examine the feasibility
and performance of the proposed identification system. The generation of the ex-
perimental model sets is described in Section 3.2, whilst the design and results of
the experiments is discussed in Section 3.3 and Section 3.4.

3.1 The Identification System
The proposed system was designed with the goal of carrying out accurate and reli-
able identification of mechanical parts for manipulation in disassembly processes.
The objective is to train the identification system using 3D CAD models of the
mechanical parts, and use it to identify real objects in real scenes. Fundamental

25
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requisites of the system will be tolerance to error from the sensors, the ability to
recognise the objects in previously unseen poses (rotations and positions), and the
ability to recognise similar parts of different brands.

The identification system will constitute the very first module of the automatic
disassembly system. It can be used to recognise entire objects to disassemble, the
components of an object, and separate parts once the object has been taken apart.
Once the desired object has been recognised, its pose can be understood (Besl &
McKay, 1992) and robotic manipulation can be carried out. Additionally, once
the parts of a product have been located, an optimal disassembly sequence can be
sought and applied.

As the core of the proposed identification system, a DNN architecture was
chosen. The benefits of using DNNs instead of traditional feature based recog-
nition algorithms were discussed in the review on DNN-based object recognition
by Z.-Q. Zhao et al. (2019). After careful consideration, the PointNet (Qi, Su, et
al., 2017) DNN architecture was chosen as the recognition algorithm. The main
benefit of PointNet is that it was explicitly designed for handling PC models. That
is, it can be fed directly with the PCs captured from the scenes, without time-
consuming data pre-processing. Additionally, PointNet is able to perform object
recognition regardless of the rotation and position of the object, and is tolerant to
error in the input data. Finally, once trained PointNet can also be used for scene
segmentation, that is to locate different objects in one scene. This feature would be
valuable to recognise the individual components of the object to be disassembled.

The main drawback of using DNN architectures (and applying machine learn-
ing in general) is the need of acquiring of a rich and variegate set of training data.
The data preparation process is time- and labour-consuming, whilst the number of
identification targets (object classes) can be very large. For example, it took half
a year to Krueger et al. (2019) to create a model set of 4,000 mechanical parts.
For each part, four sets of nine different perspectives were captured, for a total of
144,000 2D images.

To address the problem, a model set generation scheme based on 3D CAD
models of the mechanical parts is proposed. These models can be easily acquired
from the manufacturer, or from reverse engineering of the objects. A depth-
camera simulator was developed and deployed to generate the training data. The
simulator mimics the data capturing procedure in real-life, and thus provides a
realistic set of training examples to the DNN. Using the 3D CAD models of the
mechanical parts, the simulator software can be used to generate different kinds
of models, varying the number of cameras, the sensor error level, and chang-
ing the rotation and position of the objects. Using the proposed data generation
scheme, the training model set can be automatically generated for any number of
mechanical parts. The details of the developed camera simulator are shown in
Section 3.1.2.
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In summary, the proposed identification system trains the DNN PointNet based
on training data generated from 3D CAD models of objects, utilising the devel-
oped depth camera simulator.

3.1.1 The PointNet Deep Neural Network

PointNet was proposed by Qi, Su, et al. (2017) for the purpose of object classifica-
tion and part segmentation for PC models. It is a deep neural network constructed
by multiple neural layers as shown in Figure 3.1. It can be summarized as three
key modules.
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Figure 3.1: Main structure of PointNet

The first module is designed to map the input space to a higher-dimensional
representation (embedding space), and makes the procedure invariant to rigid
transformations of the object’s pose. Differently from the Spatial Transformer
proposed by Jaderberg et al. (2015), a mini-network (T-Net) is used in PointNet
(Qi, Su, et al., 2017). The T-Net takes all the points from the PC as input, and pre-
dicts the affine transformation matrix that aligns the object to a canonical space
before feature extraction. Additionally, another T-Net (“feature transform” in Fig-
ure 3.1) is used to further align the embedding space.

The second module is the feature extraction module composed of a set of
multi-layer perceptrons (MLPs) and a max pooling function (Qi, Su, et al., 2017).
The MLPs are used as feature detectors that are applied to the higher-dimensional
embedding space, whilst the max pooling layer is used to aggregate the feature
detection result. The overall action of the first two modules is to transform the
input information into a feature set. That is, it implements a symmetric function
that maps the spatial information in the PC to the feature space, irrespective of the
object pose.
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Parameter Value

β1 0.9
β2 0.999
ϵ̂ 1× 10−7

Table 3.1: Parameters of Adam optimisation algorithm in PointNet

The third module of PointNet is a fully connected layer that takes the feature
information and generates the identification result.

In summary, when a PC consisting of (n) points is fed to PointNet, the coor-
dinates of all its (n× 3) points are mapped into the feature space through the first
and second modules of the network. The third module of the network is a standard
classifier that takes the features extracted in the previous layers, and outputs the
classification score for the input scene.

The customary stochastic gradient descent based Adam optimiser (Kingma &
Ba, 2014) was used to train PointNet. Adam updates the network weights based
on gradients calculated from randomly picked mini-batches of PCs of predefined
size. The batch-size is an important hyper-parameterr of the algorithm. The error
gradients are calculated in parallel, and the calculations accelerated by graphic-
processing-units (at the expense of precision). Thus, the Adam optimisation algo-
rithm implements a trade-off between training speed and accuracy. The core idea
behind Adam is to compute an adaptive learning rate for each weight, by estimat-
ing the first and second moments of the error gradient, in order to achieve faster
training speed and improved accuracy (Kingma & Ba, 2014):

wt = wt−1 − αt ·mt/(
√
vt + ϵ̂) (3.1.1)

αt = α ·
√

1− βt
2/(1− βt

1) (3.1.2)

where t is the batch; wt is the weight value at time t; αt is the adaptive learning
rate. The parameter αt is based on an initial learning rate α, and two parameters
β1 and β2. The parameters mt and vt are respectively the estimated first and
second order moments; and ϵ̂ is a correction constant for numerical stability in
case the denominator becomes zero. A recommended configuration for the three
parameters mt, vt, and ϵ̂ is given by Kingma & Ba (2014) and adopted by Qi, Su,
et al. (2017). It is reported in Table 3.1.

PointNet uses an exponential learning rate decay scheme with minimum clip-
ping (Qi, Su, et al., 2017):

α = max {αinit · rαn/sα , αmin} (3.1.3)

where, max is a maximum function; n is the learning step, corresponding to the
total number of fed PCs; α is the calculated decayed learning rate; αinit is the
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initial learning rate; αmin is the predefined minimum clipping learning rate; rα is
the decay rate parameter; and sα is the decay step parameter.

Using the decay scheme, the learning rate in PointNet slowly decreases dur-
ing the training, from αinit to a lower bound of αmin. By applying the learning
rate decay scheme to the Adam optimiser, as shown in Equation (3.1.2) and Equa-
tion (3.1.3), the adaptive learning rate in Adam is constrained within a lower and
upper bound, and can not become too large with the number of training steps.

Batch Normalisation (Ioffe & Szegedy, 2015) is also part of the standard Adam
training procedure. Its purpose is to eliminate the internal covariate shift and
speed up the training process. The Adam stochastic optimisation algorithm feeds
mini-batches of inputs to the ANN, and updates the network weights at the end of
the presentation of each batch. The main idea behind Batch Normalisation is to
normalise the activation inputs in each layer based on the fed mini-batch inputs.
For example, given a mini-batch input B in a layer with m inputs {x1, x2, ..., xm},
the Batch Normalisation procedure transforms, scales, and shifts each activation
into:

yi = BNγ,β(xi) (3.1.4)

where, γ, β are two trainable parameters for scaling and shifting; yi is the activa-
tion after Batch Normalisation; BN is the Batch Normalisation module.

More specifically, the mean µB and variance σ2
B of the batch inputs B are

calculated firstly:

µB =
1

m

m∑
i=1

xi (3.1.5)

σ2
B =

1

m

m∑
i=1

(xi − µB) (3.1.6)

Then, the original activation inputs xi are normalised into x̂i:

x̂i =
xi − µB√
σ2
B + ϵ

(3.1.7)

where ϵ is a constant for numerical stability.
Finally, the normalised outputs x̂i are scaled by γ, shifted by β and, generate

the final outcome yi:

yi = γ · x̂i + β (3.1.8)

However, the mean µB and variance σ2
B cannot be calculated in the test phase

when there is usually one set of inputs. Thus, these two variables are designed to
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be updated and stored at each step during training, namely ’running mean’ µ′
B and

’running variance’ σ′2
B . Specifically, they will be updated based on values calcu-

lated in the current batch step t and previous batch step (t− 1) with momentum
λ:

µ′
B[t] = λ · µ′

B[t− 1] + (1− λ) · µB[t] (3.1.9)
σ′2
B [t] = λ · σ′2

B [t− 1] + (1− λ) · σ2
B[t] (3.1.10)

Additionally, to achieve a more stable training, PointNet adopts a varying
scheme based on exponential decay for the momentum λ:

λ[t] = min {1− λinit · rλt·m/sλ , λmax} (3.1.11)

where, λinit and λmax are initial momentum and maximum momentum; rλ and sλ
are decay rate and decay step; t is the batch step; and m is the batch size.

3.1.2 The Depth Camera Simulator
The purpose-built depth camera simulator was developed based on program devel-
oped by Bohg et al. (2014). The idea is to mimic the depth capturing procedure of
a Time-of-Flight (ToF) depth sensor. The simulator emits artificial beams of light
from the position of the virtual camera in the simulated scene. In real life, each
beam is reflected by the object being scanned, and the returning light is captured
by an array of photosensors. From the difference in time between the emitted and
returned light, and knowing the speed of light, a 3D spatial model of the scene can
be created.

In the simulator, the process is simplified by recording the coordinates (x,y,z)
of the points where the simulated beams of light first hit the surface of the object.
A fixed world Cartesian coordinate system was used to describe the location of
the points in the cloud. In the simulations, the object is measured in terms of
millimeter units, to reflect the size of the real objects as well as the parameters of
the camera. The camera parameters mimic those of a real device, in this case a
Microsoft Kinect camera. The simulator allows also building models out of partial
scenes from multiple cameras with a user-defined layout. The source code of the
simulator is available at the following Github repository: https://github
.com/jerryzsj/ToF_camera_simulator.

To simplify the simulation process, the camera is always placed directly facing
the origin of the coordinate system. Namely,s the position of the camera, the
center of the array of photosensors, and the origin of the coordinate system are
always collinear. Additionally, the target object will always be placed with its
center of gravity (COG) at the origin of the coordinate system with a user-defined
orientation.

https://github.com/jerryzsj/ToF_camera_simulator
https://github.com/jerryzsj/ToF_camera_simulator
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Due to the limited perspective view of one single camera, in real-life a full
object model can only be obtained by placing multiple cameras to capture partial-
views (PCs) from different angles, and merging these partial views. In practice,
often only a small number of cameras can be placed around the object due to
limitations in the work space, resulting in incomplete captures. To create the
model sets, three cameras were employed in the simulation to mimic a realistic
(partial-view) image capturing system. To determine the effect of the limited
number of cameras on the recognition ability of PointNet, a second model set with
full-view of the objects was generated, simulating the simultaneous capture from
twelve cameras. In the full-view setting, complete 3D information of the target is
obtained. In both cases, it was assumed that partial views of the mechanical parts
could be perfectly merged. That is, that there was no uncertainty in the registration
method.

Top View

Front View

1 4

1 6 45

7

8

6

3

9

5

2

7 9

10 12

22.5° 

Figure 3.2: Layout of designed scene (Zheng et al., 2022)

The arrangement of the cameras (partial-view and full-view) is shown in the
multiview projection in Figure 3.2, which contains a top view and front view of the
simulated vision system. Figure 3.2 shows three cameras in yellow color, Camera
7, 8, and 9, placed above the target model, inclined 22.5 degrees with respect to
the Z-axis and 120 degrees one from the other. These three cameras simulate a
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real industrial scenario where only a partial-view of the scene is obtainable. Based
on this arrangement, PCs of objects will be generated. These PCs will contain a
number of points varying from 3,000 to 200,000, depending on the size of the
objects.

The full-view setting contains all twelve cameras shown in Figure 3.2, includ-
ing Camera 7, 8, and 9 placed above the target, and another three cameras Camera
10, 11, and 12 placed below the target, symmetrically to Camera 7-9. The last six
cameras Camera 1-6, in light blue, were placed on the X-Y plane around the target
at 60 degrees one from the other.

All cameras are placed at same distance from the target, which lays on the
origin of the Cartesian system. This distance was set to 500mm for most of the
mechanical parts, and 200mm for small items (socket, hex, and nut), in order to
capture a reasonable number of points and mimic a real-life industrial scenario.

3.2 The Mechanical Objects Model Set
Two types of turbocharger (henceforth called model A and model B) were used to
generate the model sets. CAD models of these two turbochargers are shown in
Figure 3.3. These two turbochargers have a similar structure, with a main body
containing from top down the compressor housing, turbine, and turbine housing.
Model A has an additional wastegate. In total, twelve parts can be disassembled
from the two turbochargers. They are shown in Figure 3.4. The goal of the exper-
imental tests is to train the PointNet to correctly identify the 12 parts.

Although some parts share a similar shape, they can all be distinguished by
peculiar features in their design, like for example Blade A and Blade B in Fig-
ure 3.4. Nonetheless, due to the similarity of their structure, there is potential for
misclassification from the PointNet.

(a) Turbocharger model A (b) Turbocharger model B

Figure 3.3: Two turbochargers used in experiments (Zheng et al., 2022)

Two model sets were generated from the CAD models of the twelve mechan-
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(a) C-housing A (b) Bearing A (c) T-housing A

(d) C-housing B (e) Bearing B (f) T-housing B

(g) Blade A (h) Blade B (i) Wastegate A

(j) M3 Socket (k) M6 Hex (l) M6 Nut

Figure 3.4: Twelve mechanical parts used in experiments (Zheng et al., 2022),
where: C-bearing represents compressor bearing; T-housing represents turbine
housing
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ical parts, one constituted by partial-views and one by full-views of the objects as
mentioned in section 3.1.2. Each part was represented in different poses, and for
each pose one partial-view and one full-view was taken. The two data sets thus
differed only from the completeness of the capture. The details of the model sets
are described below.

3.2.1 The Clean model set
The designed scenes (partial-view and full-view) were based on an ideal situation
where there is no sensor error. A typical case is when the PointNet is trained us-
ing synthetic PCs generated from the CAD models of the parts. The set of PCs
captured without any sensor error will be henceforth called clean data. For each
mechanical part, 300 PCs have been generated and saved, each representing a
different pose of the object. These scenes were created rotating the CAD model
randomly along the three coordinate axes (roll, pitch,yaw) with uniform distri-
bution in the [0, 365] range. Of these 300 PCs, 200 were used for training the
PointNet, and the remaining 100 PCs to test the learning results.

In summary, the clean model set contains the following two training and test
subsets:

• partial-view training set: 200 PCs× 12 objects = 2400 PCs

• partial-view test set: 100 PCs× 12 objects = 1200 PCs

• full-view training set: 200 PCs× 12 objects = 2400 PCs

• full-view test set: 100 PCs× 12 objects = 1200 PCs

3.2.2 Down-sampling
A very large number of points customarily characterises PCs acquired from real
world scenes. Although this large number of points provides detail that may pro-
mote accurate recognition rates from the neural network, it does constitute a large
input vector that may require a large architecture, and increases the PC process-
ing time. Additionally, it should be noted that objects of different size will be
described by a different number of points, and this variability is usually incom-
patible with the fixed structure of neural networks. For the above reasons, a ran-
dom uniform down-sampling of the PCs was performed to standardise the size
of the input vector fed to the neural network, and to obtain reasonably fast scene
processing times.

PointNet uses weight-sharing MLPs as feature detectors for each cloud point,
and a max-pooling layer to extract global feature information from the whole PC.
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PointNet treats PCs as unordered sets of points, and regards the number of points
that is fed to the input layer as a hyper-parameter set by the user. Originally, this
hyper-parameter was optimised to handle the 2048 point PCs of the ModelNet40
benchmark set (Wu et al., 2015; Qi, Su, et al., 2017), or 1024 point PCs. In
this study, following preliminary tests, this hyper-parameter was optimised for
ease of implementation and performance of the classifier to 1000 points. The
generated PCs were down-sampled accordingly. This setting will be consistently
used throughout all the experiments reported in this thesis.

3.2.3 Normalisation
Normalisation was applied on the PCs before they were fed to the PointNet. The
normalisation step re-scaled all PCs into a size 1 bounding box centered at the
origin and aligned to the axes of symmetry of the objects. This procedure was
introduced to crop out the empty space due to partial-view, and resize the PCs
into a limited space. In is important to notice that the normalisation does not
rescale the objects to a standard size, since the size after normalisation depends
not only on the view but also the orientation of the objects. For example, the size
of a cuboid will be largest when all its sides are aligned to the coordinate axes,
and smallest when one of its diagonals is aligned to the coordinate axes. Most
of the parts used in this study are between 12cm and 18cm long in all the three
dimensions, except for the M3 Socket, M6 Hex and M6 Nut which are between
3cm to 5cm.

3.2.4 The Error model set
The normalisation process described in the previous section makes it also pos-
sible to introduce a consistent error level into the models of the data set. That
is, the error level was set as a fraction of the side of the bounding box (which
size is 1). For example, a 10% error level indicates that the coordinate of each
point was perturbed of a random amount uniformly drawn within the interval
I = [−0.05,+0.05] ∈ R. Examples of PCs with different levels of error are
shown in Figure 3.5.

Due to the normalisation of the PC models, the level of added error is not
constant, and depends on the size and orientation of the objects. For example, the
error applied on the three small parts (M3 Socket, M6 Hex and M6 Nut) simulates
a level of sensor imprecision that is one order of magnitude smaller than the error
on the other parts. This case is not realistic, since the scanning error in PCs
largely depends on the sensor used and the pre-processing (registration) of the
model. Yet, the main purpose of the experiments was to examine the ability of
PointNet to deal with different levels of imprecision in the scans. For this purpose,
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a. with 0% error b. with 5% error c. with 10% error

Figure 3.5: Visualisation of PCs of C-housing-A with 1000 points and corrupted
with different level of error (visualised with Open3D (Q.-Y. Zhou et al., 2018))

the 12 mechanical components used in the tests could be as well thought of as
dimensionless objects of complex shape.

3.3 Experimental Design
Three sets of experiments were designed to verify the performance of the proposed
identification system. They were carried out using the open-source PointNet code
made available by Qi, Su, et al. (2017) on Github 1, keeping most of the hyper-
parameters unchanged.

The full list of hyper-parameters used in the experiments is given in Table 3.2.
Based on preliminary tests, it was decided to train the PointNet for 200 learning
epochs, using a batch size of 100 samples, instead of the 250 learning epochs and
32 samples used by Qi, Su, et al. (2017). The above choice of parameters was ob-
served to optimise PointNet accuracy in the fastest learning time. The remaining
hyper-parameters were set according to the default values employed by Qi, Su, et
al. (2017). The complete list of hyper-parameters is given in Table 3.2. For a full
description of the hyper-parameters the reader is referred to Section 3.1.1.

3.3.1 Partial View and Sampling
The difference in classification accuracy when dealing with model sets generated
by partial-view and full-view scenes was examined first. The experiments were
designed to compare the performance of the PointNet when incomplete infor-
mation from the object in the real scene was used (partial-view), and when full
information (full-view) was used. Additionally, one further test was carried out to

1https://github.com/charlesq34/pointnet.

https://github.com/charlesq34/pointnet
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Parameter Value

learning epoch 200
batch size 100
initial learning rate 0.0001
minimum learning rate 0.00001
learning rate decay rate 0.7
learning rate decay step 200,000
initial Batch Normalisation momentum 0.5
maximum Batch Normalisation momentum 0.99
Batch Normalisation momentum decay rate 0.5
Batch Normalisation momentum decay step 200,000

Table 3.2: Hyper-parameters of PointNet used in the experiments

assess the variation in the classification performance when a different number of
points was fed to the input layer. The results of this experiment will be used to
fix the size of the input vector to the PointNet. In total, the proposed first set of
experiments included the following three cases:

• full-view clean set with 1000 input points

• partial-view clean set with 1000 input points

• partial-view clean set with 2000 input points

To deal with the stochastic nature of the PointNet learning procedure, 10 indepen-
dent learning trials were performed, and the results statistically analysed.

3.3.2 Tolerance to Error
A second set of experiments was carried out to identify the performance of the
PointNet when dealing with sensor imprecision, that is, data with error. This
experiment simulates the case where the neural network is trained using perfect
images generated from the CAD models ( clean model set), and used for recogni-
tion of real images acquired through imprecise sensors (error model set). That is,
PointNet was trained using the clean model set and its performance tested using
the error model set. In this second set of experiments, different levels of sensor
error were simulated. The experiments were carried out using the partial-view
images, mimicking a real industrial scenario.

This set of experiments tested also the possibility of increasing the robustness
to error of PointNet by training it using noisy versions of the training PCs, where
artificial error was injected.
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In summary, the following cases were included in the second set of experi-
ments:

• training set with zero error, and test set with error from zero to 10% in
unitary steps

• training set with 5% error, and test set with error from zero to 10% in unitary
steps

Also in this second set of experiments, 10 independent training trials were carried
out for each experiment, and the results statistically analysed.

3.3.3 Part Specific Classifiers
The third set of experiments was performed to identify the performance of a set
of 12 independent PointNet classifiers, each one trained to recognise one specific
mechanical part. This set of classifiers could then be used independently to guide
robots or robot operations, focusing on the manipulation of only one component,
or they could be combined together to form an ensemble classifier (Rokach, 2010).

In this set of experiments, each PointNet was thus used as a binary classifier,
and trained to output a value of ’1’ for the mechanical part it was tasked to recog-
nise, or a ’0’ for any of the other 11 parts. The experiments were carried out using
the partial-view clean model set, and tested on model sets containing different
levels of error:

• training set with zero error, and test set with zero error

• training set with zero error, and test set with 5% error

• training set with zero error, and test set with 10% error

It should be noted that in this set of tests the classifiers had to face a data imbalance
problem, since the training set is constituted of 200 positive instances, and 11 ×
200 = 2200 negative instances of the sought mechanical part. As in the previous
experiments, the classifiers were tested on the results of 10 independent learning
trials.

3.4 Experimental Results
This section presents the results of the sets of experiments described in Sec-
tion 3.3. The specifications of the hardware employed for the experiments are
given in Table 3.3
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Item Detail

CPU Intel i7-8700k
Motherboard Asus Prime Z370A
RAM Corsair CMK16GX4M2A2400C16 16GB
GPU-0 Nvidia GTX-1080-FE
GPU-1 Nvidia RTX-3090-FE

Table 3.3: Details of the computer used for experiments

The results of the 10 learning trials are summarised using the median of the
classification accuracy. When useful, box-plots were used to visualise the results.

Each box-plot visualises the five-number summary of the accuracy results ob-
tained in the 10 independent learning trials performed in the experiment. The
five-number summary includes the following statistical values: minimum, first
quartile, median, third quartile, and maximum. Using the box-plot, the spread of
the results can be visualised as the size of the box in the plot, that is, the interquar-
tile range (IQR):

IQR = Q3−Q1 (3.4.1)

where, Q3 is the third quartile of the distribution of the results, and Q1 is the first
quartile.

To ascertain the statistical significance of the differences in the accuracy re-
sults obtained in different sets of learning trials, pairwise two-tailed Mann-Whitney
tests were performed at a significance level of 1%. The choice of using non-
parametric statistical measures (median or five-number summary, Mann-Whitney
tests) was motivated by their robustness to outliers and skewed distributions.

3.4.1 Partial View and Sampling
The classification accuracies obtained in the first set of experiments are sum-
marised in Figure 3.6 using box-plots. The accuracy of the classifier was cal-
culated as the ratio of the correctly classified samples (true positives) to the total
number of samples (true and false positives) in the test set (Grandini et al., 2020):

accuracymulti−class =
T1 + T2 + ...+ Tn

T1 + F1 + T2 + F2 + ...+ Tn + Fn

(3.4.2)

where n is the total number of classes in the dataset, and Ta and Fa are the true
and false positives for class a.
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Figure 3.6: Classification accuracy of experiments using PCs from full-view
(12cam) and partial-view (3cam) scenes and with different number of sampled
points: 1000 (1k) and 2000 (2k) points

Model Set
Training Time

Accuracy(%)(in minutes using GPU)
(GTX-1080) (RTX-3090)

partial-view-1k ∼80 ∼16 98.88%
partial-view-2k ∼160 ∼32 98.79%

Table 3.4: Training time and accuracy obtained in the exper-
iments where PointNet was trained using the partial-view-1k
and partial-view-2k model sets. The training time was recorded
from one sample training procedure with PC described in Ta-
ble 3.3

Table 3.4 details the accuracy and total execution time of the learning pro-
cedure for the two experiments using PCs of different size (number of sampled
points). To be noted, the execution time was measured based on codes running
under two Graphics Processing Unit (GPU) models: GTX-1080 and RTX-3090
respectively. The learning curves obtained in the experiments where PointNet
was trained using the partial-view-1k and partial-view-2k model sets are shown in
Figure 3.7 and Figure 3.8. The curves were generated using the median training
accuracy from 10 independent experiments. The plots show that the classification
accuracy on the training set approaches 100% and stabilises after approximately
120 leaning cycles circa in both cases.

When the PointNet was fed using 1000 input points, Figure 3.6 shows that
there were significant differences in accuracy between the networks trained and
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tested using the full-view and partial-view model sets. The significance of these
differences was confirmed by the p-value (p = 0.0002) of the pairwise Mann-
Whitney test. However, it should be noted that in absolute terms the magnitude of
the differences in accuracy is modest (1% to 2%), whilst the classification accu-
racy is in both cases close to 100%.
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Figure 3.7: Learning curve of networks trained by partial-view clean set with
1000 sampling points
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Figure 3.8: Learning curve of networks trained by partial-view clean set with
2000 sampling points

The learning results achieved by PointNet using 2000 sampled points are com-
parable to those obtained sampling 1000 points from the PCs (Figure 3.7 and
Figure 3.8). The main difference in the test accuracy seems to be in a smaller
spread of the results, which might indicate that an increase in the consistency of
the learning results when more data points are used. The p-value (p = 0.5708) of
the Mann-Whitney test confirmed there are no statistically significant differences
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between the results of the learning trials carried out using 1000 and 2000 input
points. Another difference between the two experiments is their computational
complexity: the network trained with 2000 input points needed about twice the
time needed for training the network using 1000 input points (Table 3.4).

Considering the trade-offs between accuracy and computational complexity,
1000 sampled points will be used for the remainder of the experiments in this
thesis.

3.4.2 Tolerance to Error
Figure 3.9 shows the accuracy results obtained on test sets characterised by dif-
ferent levels of artificial additive error, when the PointNet was trained using the
clean model set. The performance of PointNet remains close to 100% as long as
the error level is within 4%. A significant decline in accuracy is seen as the addi-
tive error level increases, and falls below acceptable standards (less than 80%) as
the error level reaches 7%.

Figure 3.10 is similar to Figure 3.9, with the difference that this time the Point-
Net was trained using PCs corrupted by a 5% level of error. The new figure shows
clearly that the added error in the training set positively boosts the ability of the
trained PointNet to deal with imprecise readings. Indeed, for nearly all levels of
additive error (0% to 8%), a high accuracy (above 90%) was achieved. For the re-
maining two experiments where the error level is most severe (9% and 10% error
level), the classification performance is still acceptable (over 80%).
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Error level Training Set
P-value

in test set clean 5%-error

0% 98.88 91.92 0.0002
1% 98.67 93.46 0.0002
2% 98.54 95.83 0.0002
3% 98.25 97.58 0.0284
4% 97.25 98.42 0.0343
5% 94.08 98.63 0.0009
6% 87.00 98.29 0.0002
7% 76.58 97.25 0.0002
8% 63.58 93.67 0.0002
9% 52.92 88.04 0.0002

10% 45.92 79.63 0.0002

Table 3.5: Average (median) accuracies (%) obtained training the PointNet using
the clean and 5%-error training sets, and tested on model sets with different levels
of error. The last column reports the p-values of pairwise Mann-Whitney tests.
Where statistical significance was found (p-value smaller than 0.01), superior ac-
curacy results were highlighted in bold

Table 3.5 compares the performance of the networks trained using the clean
and 5% error model sets, for each of the 10 the test sets of different error level.
As above, Mann-Whitney tests were conducted to reveal statistically significant
differences in the results. The results of the tests confirm that if sensor imprecision
is expected, the performance of PointNet in the recall phase can be significantly
improved by perturbing the training set with error. As Figure 3.10 shows, the
improvement is maximum when the level of the error that is injected in the training
set is closest to the level of error in the test set (i.e. the level of sensor error).

Finally, Figure 3.11, Figure 3.12, and Figure 3.13 show the evolution of the
training and testing accuracy against the training epochs. The plots refer to three
different experiments where PointNet was trained using model sets containing
different levels of error and tested with the 5%-error set. The curves were gen-
erated based on the median values of the training and testing accuracy from 10
independent learning trials. The three curves show that the ability of PointNet to
generalise to unseen examples is maximum when the level of error in the training
set corresponds to the level of error in the test set.
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Figure 3.11: Plots of training and testing accuracies of PointNets trained with
clean set and tested with 5%-error set
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Figure 3.12: Plots of training and testing accuracies of PointNets trained with 5%-
error set and tested with 5%-error set

40%

50%

60%
70%

80%

90%

100%

0 20 40 60 80 100 120 140 160 180 200

A
cc

ur
ac

y

Training Epoch

train_acc

eval_acc

Figure 3.13: Plots of training and testing curves of PointNets trained with 10%-
error set and tested with 5%-error set
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3.4.3 Part Specific Classifiers

The results of the third set of experiments are shown in Tables 3.6 to 3.8. The
tables include the classification accuracy, precision and breakdown of the classifi-
cation results on the test set for each mechanical part. The breakdown of the clas-
sification results in Tables 3.6 to 3.8 shows the average counts (statistical median
from the 10 independent learning trials) of the true positives (TP), false positives
(FP), true negatives (TN), false negatives (FN). Keeping in mind the composition
of the test set, a perfect classifier would score a true value TP = 100, a true neg-
ative TN = 1100, and zero false positives and false negatives (FP = FN = 0).

In detail, the accuracy of each binary classifier was calculated as the ratio of
all true positives and negatives (TP+TN) versus the total classification attempts
(TP+FP+TN+FN) (Grandini et al., 2020):

Accuracytwo−class =
TP + TN

TP + FP + TN + FN
(3.4.3)

The precision represents the ratio of true positives versus all positive predic-
tions (TP+FP):

Precision =
TP

TP + FP
(3.4.4)
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Name of classifier
Breakdown of results Precision Accuracy
TP FP TN FN (%) (%)

Compressor Housing A 99.7 17.3 1082.7 0.3 85.21 98.53
Compressor Housing B 94.4 60.4 1039.6 5.6 60.98 94.50

Bearing A 100.0 10.0 1090.0 0.0 90.91 99.17
Bearing B 99.9 0.5 1099.5 1.0 99.50 99.88

Turbine Housing A 97.2 11.6 1088.4 2.8 89.34 98.80
Turbine Housing B 94.3 61.7 1038.3 5.7 60.45 94.38

Blade A 99.5 7.1 1092.9 0.5 93.34 99.37
Blade B 99.3 4.3 1095.7 0.7 95.85 99.58

Wastegate 99.9 2.4 1097.6 0.1 97.65 99.79
M6 Hex 97.9 13.4 1086.6 2.1 87.96 98.71
M6 Nut 100.0 3.2 1096.8 0.0 96.90 99.73

M3 Socket 99.9 6.7 1093.3 0.1 93.71 99.43

Median - - - - 92.13 99.27

Table 3.6: Performance of classifiers trained using clean set, and tested on data
with zero error (clean set)

In consideration of the imbalanced distribution of the class instances (see Sec-
tion 3.3.3), the overall classification accuracy was mainly determined by the per-
formance on the largest class (the negative instances). For example, when tested
with 10% error corrupted PCs, part specific classifiers show a good classification
accuracy (92.68% in median) in Table 3.8. This good performance was mostly
limited to the ability to recognise negative instances (TN) of the desired parts.
This limitation can also be identified from a low precision in the results. For ex-
ample, Compressor Housing B and Turbine Housing B have precision lower than
61% in both three set of tests in Tables 3.6 to 3.8.

3.5 Discussion
This chapter aimed to evaluate the ability of PointNet to identify complex mechan-
ical parts from PCs. The experiments showed that PointNet achieved a very good
performance when trained with partial-view images of the desired parts. This abil-
ity of identifying targets based on partial-views suggests that PointNet may also
be capable of recognising objects with missing parts, a common occurrence in re-
manufacturing. Additionally, the PointNet needed only a small randomly sampled
fraction of the points in the PCs to achieve successful identification.

The addition of error to the test set of models affected the performance of
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Name of classifier
Breakdown of results Precision Accuracy
TP FP TN FN (%) (%)

Compressor Housing A 92.6 13.6 1086.4 7.4 87.19 98.25
Compressor Housing B 98.2 175.6 924.4 1.8 35.87 85.22

Bearing A 97.9 23.0 1077.0 2.1 80.98 97.91
Bearing B 100.0 2.3 1097.7 0.0 97.75 99.81

Turbine Housing A 96.8 80.9 1019.1 3.2 54.47 92.99
Turbine Housing B 66.9 94.8 1005.2 33.1 41.37 89.34

Blade A 90.9 1.5 1098.5 9.1 98.38 99.12
Blade B 90.2 0.1 1099.9 9.8 99.89 99.18

Wastegate 96.9 0.3 1099.7 3.1 99.69 99.72
M6 Hex 78.8 67.0 1033.0 21.2 54.05 92.65
M6 Nut 87.6 0.6 1099.4 12.4 99.32 98.92

M3 Socket 87.7 0.0 1100.0 12.3 100.00 98.98

Median - - - - 92.47 98.59

Table 3.7: Performance of classifiers trained using clean set, and tested on data
with 5% error

Name of classifier
Breakdown of results Precision Accuracy

TP FP TN FN (%) (%)

Compressor Housing A 24.9 9.1 1090.9 75.1 73.24 92.98
Compressor Housing B 86.7 284.3 815.7 13.3 23.37 75.20

Bearing A 74.3 61.2 1038.8 25.7 54.83 92.76
Bearing B 99.9 10.1 1089.9 0.1 90.82 99.15

Turbine Housing A 90.6 381.1 718.9 9.4 19.21 67.46
Turbine Housing B 8.4 250.3 849.7 91.6 3.25 71.51

Blade A 21.2 0.1 1099.9 78.8 99.53 93.43
Blade B 15.5 0.0 1100.0 84.5 100.00 92.96

Wastegate 60.9 0.0 1100.0 39.1 100.00 96.74
M6 Hex 8.8 96.3 1003.7 91.2 8.37 84.38
M6 Nut 5.3 0.0 1100.0 94.7 100.00 92.11

M3 Socket 11.1 0.0 1100.0 88.9 100.00 92.59

Median - - - - 82.03 92.68

Table 3.8: Performance of classifiers trained using clean set, and tested on data
with 10% error
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PointNet. The identification accuracy was satisfactory (above 95%) until a 5% or
more level of error was applied to the models of the test set. In a factory environ-
ment, the error level of the captured images will be determined by camera quality,
lighting status, denoising algorithms, etc. For situations with appreciable levels
of error (more than 5%), the experiments in this study indicated that the identifi-
cation performance can be significantly improved by training PointNet with PCs
corrupted by artificial error.

The experimental results also find that training one PointNet to identify each
mechanical part can achieve a good recognition accuracy. However, a low preci-
sion was also observed. Specifically, the classification accuracy was mainly lim-
ited to the ability of recognising false negatives. In general, it can be suggested
that part-specific classifiers can be a useful solution for situations where one spe-
cific mechanical object needs to be picked up from a batch of different objects.
Further work should be done to systematically evaluate the possibility of form-
ing an identification system based on an ensemble of classifiers. For example, a
multi-machine voting system can be designed to summarise results from all the
classifiers for decision making.

Additionally, if one unique classifier is used for all mechanical parts, any ad-
dition or removal of parts requires the re-training of the whole system. Using an
ensemble of classifiers only one new classifier would have to be trained to identify
a new object, or one classifier would have to be removed if identification of an old
object is no longer needed, whilst the rest of the system would remain unchanged.
Further study can perform to identify if an ensemble of classifiers is easier to add
new objects or remove old ones to the recognition task.

3.6 Conclusions
This chapter proposed an identification system to recognise complex mechanical
parts for remanufacturing applications. The proposed system was based on the
recently introduced deep neural network PointNet.

The preparation of the training data for deep neural network applications is
often time- and labour-intensive. This chapter evaluated the viability of using
artificially generated PCs from 3D CAD models to train the PointNet, and perform
object identification from previously unseen and possibly imprecise 3D scans.
A purpose-built depth camera simulator was developed to generate the PointNet
training and test model sets. The developed simulator is capable of building scenes
with objects in desired orientation and position, and with a pre-defined number
and layout of cameras. The model sets included partial-view scenes taken by
simulating three cameras placed above the target object, which mimicked a real
industrial scenario.
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Experimental evidence showed that the PointNet was capable of identifying
mechanical parts with high accuracy, although the results tended to deteriorate
as simulated sensor error was increased. However, on objects of size larger than
100mm (as it was the case for most of the turbocharger parts), and a simulated
camera precision better than +/-2mm, viz. for an error level less than 2%, the
identification system would be able to perform with satisfactorily good accuracy.
Additionally, if the PointNet is trained using PCs where error is artificially added,
the performance can be significantly raised on corrupted scenes (i.e. real-life im-
ages affected by sensor error).

This chapter explored also the viability of using one separate classifier to iden-
tify each of the twelve mechanical parts. Experimental results suggested that, if
implemented in an ensemble of classifiers, the recognition system can show a
good classification accuracy but limited precision. Further work is required to
systematically evaluate the performance of an ensemble of classifiers.



Chapter 4

A Detailed Evaluation of PointNet
Capabilities

Reliable object manipulation procedures are a fundamental prerequisite for the
robotic handling of parts in disassembly and remanufacturing. The literature on
grasping and manipulation includes methods based on properties of the objects
like their geometry (Kopicki et al., 2016) or dynamics (Mavrakis et al., 2016).
Regardless of the method used, the shape of the target object must be estimated.

In many industrial applications, it is possible to approximate the shape of me-
chanical parts with geometric primitives such as spheres, boxes, and cylinders.
This chapter reports a thorough investigation on the ability of PointNet to recog-
nise shape primitives in real-life objects. The main difficulty in this task comes
from the fact that the shape of everyday objects is often not perfectly regular. Er-
ror and occlusion (partial view) contribute to the difficulty of the recognition task.
In the case of PointNet, the results of Chapter 3 indicated that the performance of
PointNet is sensitive to the level of error in the PCs.

Most of the literature on PointNet focuses on the recognition of objects from
clean PCs generated from CAD models. For example, Qi, Su, et al. (2017)
tested PointNet on PCs generated from ModelNet40, a large benchmark contain-
ing 12,311 CAD models from 40 object categories (Wu et al., 2015). In their
study, Qi, Su, et al. (2017) only cursorily examined PointNet ability to deal with
error corrupted scenes.

This chapter reports a thorough investigation on the performance of the Point-
Net classifier. In particular, the aim is to assess the feasibility of training Point-
Net using a set of primitive shapes (cylinders, spheres, etc.), and use the trained
network to recognise real-life objects of similar shapes. The study aims also to
evaluate whether shape recognition can be performed using simpler classifiers
like shallow ANNs. To answer this question, the performance of PointNet was
compared to the performance of two popular shallow neural networks: a MLP

51
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(Rumelhart et al., 1985) and a radial basis function network (RBFN) (Broomhead
& Lowe, 1988).

The model sets used in the experiments are described in Section 4.1. The
two shallow ANNs take as input a vector of numerical descriptors of the scenes.
The shallow neural network architectures and the feature extraction scheme are
described in Section 4.2. The experimental set up and results are reported in Sec-
tion 4.3. The outcomes of the tests are discussed in Section 4.4, whilst Section 4.5
concludes the Section.

4.1 Data Sets Used
In this section, the details of the model sets used in the experiments are presented.
The goal of the work described in this chapter was to evaluate the ability of Point-
Net to recognise shape primitives in real objects, after having been trained on
samples of artificial primitive shapes. For this purpose, three model sets were
used. All the PCs in the model sets were normalised before being fed to the Point-
Net and feature extraction routine (for the shallow neural networks). At present,
there is no available benchmark of real 3D scanning of mechanical objects like
those studied in Chapter 3. For this study, a popular benchmark of 3D models
of real-life objects was used: the Yale-CMU-Berkeley (YCB) model set (Calli et
al., 2015). Twenty-eight models from this set were selected, namely YCB-28, and
used to evaluate the performance of the trained PointNet and shallow ANNs. The
YCB model set was originally created for robotic manipulation instead of classi-
fication. For this reason, for each of the models used in the experiments, a target
classifier output was created. This output corresponded to one of three basic prim-
itive shapes: box, cylinder, and sphere. The full details of the YCB scenes used
are given in Section 4.1.1. To train the classifiers, two artificial model sets were
used. They are presented in Section 4.1.2 and Section 4.1.3.

4.1.1 The Yale-CMU-Berkeley (YCB) Object and Model Set
The Yale-CMU-Berkeley object and model set was created by Calli et al. (2015)
for research in robotic manipulation. Calli et al. (2015) used two series of depth
cameras (BigBIRD Object Scanning Rig and Google Scanners) to capture PCs
from several real-life objects from multiple angles of views. PCs captured from
each object were then merged and de-noised to create mesh models. Only one
mesh model was created for each object.

Differently from large classification sets like ModelNet40 (Wu et al., 2015),
which contains 12,311 items from 40 different categories, the YCB set contains
PCs and mesh models from only 77 daily-life objects. These objects were broadly
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classified by Wu et al. (2015) in 5 main categories: food items, kitchen items, tool
items, shape items, and task items. In this study, the objects were grouped by their
shape, and samples of appearance reasonably close to the following three primi-
tive shapes were picked: box, cylinder, and sphere. In total, 28 samples were cho-
sen, namely 9 models of box-shaped objects, 8 models of cylinder-shaped objects,
and 11 models of sphere-shaped objects. The names and IDs of the twenty-eight
models are shown in Table 4.1, and their pictures and mesh models are shown in
Figures 4.1 to 4.3. The test model set for all the experiments in this chapter was
generated from these twenty-eight models.

003 Cracker box 004 Sugar box 008 Pudding box 009 Gelatin box

010 Potted meat can 026 Sponge 036 Wood block

061 Foam brick 077 Rubiks cube

Figure 4.1: The the nine selected box-like objects (images and meshes) from YCB
set

001 Chips can 002 Master chef can 005 Tomato soup can 007 Tuna fish can

007 Tuna fish can 019 Pitcher base 040 Large marker 065 Cups

Figure 4.2: All the eight selected cylinder-like objects (images and meshes) in
YCB-28 from YCB set
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012 Strawberry 014 Lemon 015 Peach 017 Orange

018 Plum 054 Softball 056 Tennis ball

058 Golf Ball 063 Marble

055 Baseball

057 Racquetball

Figure 4.3: All the eleven selected sphere-like objects (images and meshes) in
YCB-28 from YCB set

Box Cylinder Sphere

003-cracker box 001-chips can 012-strawberry
004-sugar box 002-master chef can 014-lemon

008-pudding box 005-tomato soup can 015-peach
009-gelatin box 007-tuna fish can 017-orange

010-potted meat can 019-pitcher base 018-plum
026-sponge 025-mug 054-softball

036-wood block 040-large marker 055-baseball
061-foam brick 065-a-cups 056-tennis ball
077-rubiks cube 057-racquetball

058-golf ball
063-a-marble

Table 4.1: IDs and names of the selected 28 objects from YCB set

The original PCs in the YCB model set were raw data captured by depth sen-
sors, which contain sensor error and environment noise. The authors of the YCB
model set created de-noised mesh models out of the raw PCs of the objects, us-
ing the Truncated Signed Distance Function method (Curless & Levoy, 1996) and
Poisson reconstruction (Kazhdan et al., 2006). Despite the de-noising and recon-
struction steps, the mesh models still contain a certain level of sensor error, which
is visible in Figures 4.1 to 4.3.

The test set was generated using the mesh models of the 28 selected objects,
and is henceforth named YCB-28 model set. The procedure used to generate it
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consisted of the three steps detailed below.
The first step was to randomly sample with uniform probability 1,000,000

points from the mesh model of each object. This initial large point set was called
the point pool. The second step was to create 20 PCs by randomly sampling 1,000
out of the 1,000,000 points from the point pool. Each of the 20 PCs created from
one object model contained a different sample of points. Given that the sampling
rate was (1/1000), it is reasonable to think that any two of the 20 PCs had very
little sampled points in common. Finally, in the third and last step each PC was
centred on the origin and the shape randomly rotated (roll-pitch-yaw rotation). In
detail, the YCB-28 model set contained the following PCs:

• box: 9 objects× 20 PCs = 180 PCs

• cylinder: 8 objects× 20 PCs = 160 PCs

• sphere: 11 objects× 20 PCs = 220 PCs

• Total: 560 PCs

In summary, the YCB-28 model set contains 560 PCs sampled from 28 mesh
models generated from real scenes, and was created for final performance test.

4.1.2 Artificial Primitive Shapes

The Artificial Primitive Shapes (APS) model set was chosen to train the classifiers.
It was originally created by Baronti et al. (2019) for research on primitive shape
fitting, and can be found in the first author’s GitHub repository 1.

The APS model set contains objects of the following three shapes: box, cylin-
der, and sphere. Baronti et al. (2019) created 591 different artificial shapes by
changing their height (H), width (W), breadth (B), and diameter (D). In detail, the
model set was created from a full-factorial combination of the parameters defining
each shape:

• box: 220 PCs with H, W, B ∈ {1, 2, ..., 10} (H ≥ W ≥ B)

• cylinder: 190 PCs with D ∈ {0.5, 0.75, ..., 5} and H ∈ {1, 2, ..., 10}

• sphere: 181 PCs with D ∈ {1, 1.05, 1, 10, ..., 10}

• Total: 591 PCs

1https://github.com/lucabaronti/BA-Primitive_Fitting_Dataset.

https://github.com/lucabaronti/BA-Primitive_Fitting_Dataset
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a. with 0% error b. with 5% error

Figure 4.4: Example of created box-shape PC with 1000 points, from left to right:
PC without any error, and PC with 5% error (visualised with Open3D (Q.-Y. Zhou
et al., 2018))

Given that the PCs represent artificial objects, the H, W, B, and D parameters are
dimensionless. It is worth mentioning that the elements of the above model set are
not corrupted by any sensor error. Henceforth this set will be called APS-clean.

Baronti et al. (2019) made also available a tool to inject error (local impreci-
sion simulating sensor inaccuracy) into the PCs, as shown in Figure 4.4. In the
experiments, 5% of error was added into the APS-clean model set to create the
APS-error model set.

All the shapes were placed with their centers in the origin, and with random
orientations. Finally, a test set containing 200 PCs for each primitive shape was
created. These shapes had random dimensions (H,W,B,D) and contained no sen-
sor error. Henceforth, this set will be called APS-clean-test.

In summary, three model sets were created for the experiments: APS-clean
and APS-error for training the classifiers, and APS-clean-test for test purposes.

4.1.3 YCB-similar Artificial Primitive Shapes

One last artificial PCs model set was created based on the features of the YCB-28
set. This model set contains artificial primitive shapes of features (H,W,B,D) sim-
ilar to the objects in YCB-28. The motivation for building this set is to simulate the
case where some knowledge about the expected shape of the objects is available.

Specifically, the Open3D open-source library (Q.-Y. Zhou et al., 2018) was
obtained to enquire the shape features from the mesh models of the twenty-eight
objects selected from the YCB set. Each mesh model was firstly visualised using
visualiser in Open3D. The shape features (H,W,B,D) of the objects were measured
from the coordinates of manually picked key points from the visualised model.
Three examples of the manually measured shape features are shown in Table 4.2,
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whilst the complete table of all the measured shape features from twenty-eight
selected YCB mesh models is detailed in Appendix A.

036-wood_block Mesh model of 036 Hand-crafted PC for 036

002-master_chef_can Hand-crafted PC for 002

012-strawberry Mesh model of 012 Hand-crafted PC for 012

Mesh model of 002

Figure 4.5: Comparison of YCB meshes and hand-crafted PCs

Afterwards, twenty PCs without additive sensor error, were generated for each
of the twenty-eight selected objects based on their measured shape features, using
the code developed by Baronti et al. (2019). For each of the twenty PCs created
for each object, a randomly generated modification was made to each of the shape
features (H,W,B,D) independently. Specifically, for each PC model, each feature
K ∈ (H,W,B,D) received a randomly generated modification in the range of
(-5%,+5%) of ita size:

K ′ = [ 1 + Uniform_Random(−5%,+5%) ] ×K (4.1.1)

where, Uniform_Random(−a, a) is a random number generator with uniform
probability in the range (−a, a). Thus, each element of the set of generated PCs
was similar in shape, although not the same, to the twenty-eight selected objects
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ID-Name Shape H W B D

036-wood block box 190.35 80.52 75.81 -
002-master chef can cylinder 129.79 - - 96.09

012-strawberry sphere - - - 48.52

Table 4.2: Manually measured shape features of three mesh models from YCB-28
set

in YCB-28. Figure 4.5 shows examples of artificially created PCs near the YCB-28
mesh models that they simulate. Henceforth, this new model set will be named
YCB-similar.

The structure of the YCB-similar model set is as below:

• box: 9 objects× 20 PCs = 180 PCs

• cylinder: 8 objects× 20 PCs = 160 PCs

• sphere: 11 objects× 20 PCs = 220 PCs

• Total: 560 PCs

In summary, the generated PCs of the YCB-similar model set simulate the
shapes of objects in YCB-28. They contain no sensor error, and will be used for
training the classifiers.

4.1.4 All-in-One Set
In the previous subsections, three artificial PC model sets for network training
have been created and described for the YCB-28 classification problem. They
include generic geometric shapes (APS-clean and APS-error), and shapes mim-
icking the features of the real objects (YCB-similar). These three data sets have
been grouped into one unique model set called APS-all. This experiment simu-
lates a situation where only a limited batch of real shapes is available, and the
training examples are beefed up with generic synthetic shapes.

4.2 Shallow Neural Network Architectures
Shallow neural networks (SNNs) have a longer history than DNNs. Compared to
DNNs, SNNs are known to be faster to train, and are less likely to overfit the train-
ing data because they use a much smaller number of parameters (weights). Their
main limitation is that they need a pre-processing step to extract the vector of input
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features (variables). In DNNs, feature extraction is performed by the first layers
of the architecture, and is optimised by the learning procedure together with the
classifier proper (the last layers of the architecture). Nonetheless, when fed with
a descriptive set of features, SNNs are known to reach accuracies comparable to
those obtained by DNNs (Dominguez et al., 2018) in PC classification problems.

In this study, the performance of two classical SNN models will be compared
to the performance of PointNet. The first SNN is the widely used Multi-Layer
Perceptron (MLP), which is described in Section 4.2.1. The second is the Radial
Basis Function Network (RBFN), which is described in Section 4.2.2. Both SNNs
were fed features extracted using the method described in Section 4.2.3.

4.2.1 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a popular feed-forward and versatile neural
network used for classification and modelling problems (Andina & Pham, 2007).
The MLP is usually trained using the back-propagation learning algorithm, which
was firstly proposed by Rumelhart et al. (1985). The versatility of the MLP stems
from its ability to approximate any function to any desired degree of accuracy
(Hornik et al., 1989).

In its standard configuration, an MLP contains one input layer (which acts as a
buffer), one or two hidden layers, and one output layer. Each layer contains a num-
ber of neuron units, which are fully connected to the neurons of the previous (in-
coming connections) and next (outgoing connections) layer. Each neuron gathers
the outputs of the neurons of the previous layer (or the input vector of variables)
via the incoming connections, combines and processes them, and broadcasts to all
the neurons of the next layer (or the user) its output. Each connection between two
neurons modulates the magnitude of the signal via an adjustable weight. These
weights are changed by the learning algorithm, and encode the ’knowledge’ of the
network. The mapping of a standard neuron unit j can be fully described by the
following equation:

yj = f(hj) = f(
N∑
i=1

wjixi + wj0) (4.2.1)

where yj is the response (output) of neuron j; xi is the output of the ith neuron
in the previous layer; N is the number of units in the previous layer; wji is the
weight of the connection between neuron nj and ni; wj0 is a parameter called the
bias term; and f represents the transfer function.

The number of units in the input and output layers correspond to the number
of input variables to the neural network and the dimensionality of the output.
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The number of hidden layers and neuron units in each hidden layer are hyper-
parameters which depend on the problem domain, and are often experimentally
defined. The details of the hyper-parameters used in the experiments reported in
this chapter are described in Section 4.3.

4.2.2 Radial Basis Function Network
The Radial Basis Function Network (RBFN) was firstly proposed by Broomhead
& Lowe (1988) in 1988. Like the MLP, the RBFN is a popular feed-forward
neural network used for modelling and classification problems (Andina & Pham,
2007). the RBFN has a strictly defined architecture, featuring one input layer,
one hidden layer, and one output layer. The activation function of the hidden
layer is the radial basis function. The input layer of an RBFN acts as a buffer, and
broadcasts the input vector to each neuron in the hidden layer. The hidden neurons
process the input vector via the activation function (radial basis function), whilst
the output neurons perform a linear summation of the weighted outputs of the
hidden neurons.

The radial basis function is a real-valued function with output: [0,∞) → R.
Specifically, the radial basis function uses a radial kernel to transfer the Euclidean
distance between the input vector (x) and a predefined center point (c) into a
strictly positive real-value. A general definition of a radial basis function can be
described by the following equation:

φc(x) = φ̂(∥x− c∥) (4.2.2)

where, φc(x) is a basis function with predefined center point c over input vector
x; φ̂ is a radial kernel, typically a non-linear strictly positive definite function;
∥x− c∥ calculates the Euclidean distance between input vector x and predefined
center point c.

In this work, a Gaussian function was chosen as the applied radial kernel. If
the Euclidean distance between the input vector x and predefined center point c is
denoted as r, the radial basis function with Gaussian kernel is defined as follows:

φc(x) = φ̂(r) = e−(σr)2 (4.2.3)

where, σ is a parameter that scales the kernel input r.
Thus, the mapping performed by the whole RBFN can be described by the

following equation:

yj = f(x) =
N∑
i=1

wjiφci(x) (4.2.4)
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where, yj is the output of output neuron j; x is the input to the neural network;
N is the number of hidden neurons; wji is the weight of the connection between
hidden neuron i and output neuron j; and function φci is a radial basis function
applied on hidden neuron i with predefined center point ci.

Combining Equations (4.2.2) to (4.2.4), the output of an output neuron in an
RBFN defined with Gaussian radial kernel becomes:

yj = f(x) =
N∑
i=1

wji · e−[σi(∥x−ci∥)]2 (4.2.5)

where ci and σi are respectively the centre and spread of the basis function φci .
The parameters ci, σi, wji are changed by the learning procedure. The details
of the RBFN used in experiments reported in this chapter are described in Sec-
tion 4.3.

4.2.3 Numerical Feature Generation

A PC is a data structure containing an unordered list of x-y-z coordinates. Differ-
ently from PointNet, the MLP and RBFN treat the input as vector, and are thus
sensitive to the ordering of its elements. Thus, the PCs cannot be fed directly
into the MLP or RBFN. In this section, a feature generation scheme to extract
numerical features from the PCs is described.

In the tests, it is assumed that the objects are in unknown orientation. Thus,
the extraction process starts with aligning the shapes with the coordinate axes.
For this purpose, principal component analysis (Pearson, 1901; Hotelling, 1933)
was used to extract the eigenvectors of the PC. The PC is then placed with its
centroid in the origin, and its eigenvectors are aligned with axes of the Cartesian
coordinates. Since the eigenvectors broadly correspond with the main axes of the
shapes, this method was proven to align with reasonable accuracy the PC.

In real-life, a human eye can recognise a primitive shape from its orthogonal
projections onto the three planes x = 0, y = 0, and z = 0. Namely, a cube with its
sides aligned with the Cartesian axes will create three rectangular shapes (one per
plane), a sphere will generate three disks, and a cylinder will create two rectangu-
lar shapes and one disk. In summary, recognising the three 3D primitive shapes
boils down to recognising two 2d shapes (rectangle and disk) in their projections.
This idea is exploited as follows.

After principal component analysis alignment, the points in the cloud are pro-
jected onto the three planes x = 0, y = 0, and z = 0. For example, the projection
of a point of coordinates z = (x, y, z) onto the z = 0 plane is z = (x, y, 0). For
each 2D projection on a plane:
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1. The coordinates of all the points are transformed into 2D polar-coordinates:
(r, θ)

2. The plane is divided into 64 sectors (intervals of θ).

3. For each of the 64 sectors, the radius r of the most distant point from the
origin is taken as representative of the interval. Namely, the representative
of interval 1 ≤ j ≤ 64 is mj = max(ri) where 1 ≤ i ≤ N indicates one of
the N points of the cloud.

4. the arithmetic mean and standard deviation of the 64 representatives mj of
the interval are calculated for each plane

The features extracted from one PC form a 6-dimensional vector:

(mx, δx, my, δy, mz, δz)

where mk and δk (k = x, y, z) are respectively the mean and standard deviation of
the 64 representatives on the planes x = 0, y = 0, and z = 0. In a perfect PC with
out error, all the most distant points of a disk will be at the same distance from the
origin, hence mx = my = mz and δx = δy = δz = 0. Also, the most distant points
of a rectangle will not be at the same distance from the origin, δx,y,z ̸= 0, and in
general mx ̸= my ̸= mz. This will hold as long as the error level is reasonable,
namely that it won’t completely blur the shapes of the projections, and when the
model has been cleaned of sensor error.

4.3 Experiments and Results
This section will describe the experimental set up and the results obtained by
PointNet and the two SNNs. Three artificial model sets, APS-clean model set,
APS-error model set, and YCB-similar model set, were used for network training.
The final performance of trained network was examined using YCB-28 model set.
In all experiments 10 independent learning trials were performed, and the results
were statistically analysed.

All the experiments were run using the hardware described in Table 3.3. The
experimental results will be displayed using the multi-class accuracy and box-
plots described in Section 3.4.

The PointNet architecture used in the experiments was obtained from open-
source code made available by Qi, Su, et al. (2017) in their Github repository 2.
Following some preliminary tests, the structure and most of the hyper-parameters

2https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet
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Parameter Value

training algorithm Adam
decay rate β1 in Adam 0.9
decay rate β2 in Adam 0.999
numerical constant ϵ̂ in Adam 1× 10−7

initial learning rate 0.0001
minimum learning rate 0.00001
learning rate decay rate 0.7
learning rate decay step 200,000
initial Batch Normalisation momentum 0.5
maximum Batch Normalisation momentum 0.99
Batch Normalisation momentum decay rate 0.5
Batch Normalisation momentum decay step 200,000

Table 4.3: Hyper-parameters of PointNet used in the experiments (please refer to
Section 3.1.1 of a detailed description of these parameters)

of PointNet were kept as originally designed by Qi, Su, et al. (2017), or manu-
ally optimised. They are shown in Table 4.3. The MLP and RBFN SNNs were
implemented using the C++ code made available by Castellani (2013). The MLP
was trained using the standard BP algorithm with momentum term (Pham & Liu,
1995), whilst the RBFN was trained using first a KNN-based algorithm for a broad
brush optimisation of the RBF parameters, and then a fine tuning of the whole net-
work parameters using the BP algorithm. The hyper-parameters of the SNNs, and
their learning procedure were optimised by trial and error. They are detailed in
Table 4.4.

Parameter MLP RBFN

training algorithm back propagation back propagation
number of inputs 6 6
number of hidden layers 1 1
number of hidden neurons 15 20
number of outputs 3 3
learning rate 0.01 0.01
training epoch 2,000 5,000

Table 4.4: Hyper-parameters of MLP and RBFN used in the experiments

Two learning hyper-parameters, the batch size and number of training epochs,
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have the largest effect on the results. Section 4.3.1 describes the procedure fol-
lowed for their experimental optimisation. This procedure was carried out using
the artificial APS-clean model set. After optimisation, since the PointNet was
always tested on the same benchmark problem (YCB-28), the hyper-parameters
were fixed for all the experiments.

Once trained using one of the APS-clean, APS-error, YCB-similar, and APS-
all sets, depending on the experiment, the classifiers (PointNet, MLP and RBFN)
were tested using the YCB-28 model set, and the experimental results are reported
in Section 4.3.2.

4.3.1 Hyper-parameters Optimisation for PointNet
PointNet was trained using the APS-clean model set, and the results validated
using APS-clean-test set (Section 4.1.2). This corresponds to training the DNN
with perfect shapes as for example those obtained from CAD models.

Batch Size Optimisation

To optimise the batch size of PointNet, tests were performed with batch size varied
from 10 to 100 in steps of 10, using a fixed training epoch of 200. Ten learning
trials were performed for each batch size setting.
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Figure 4.6: Performance of PointNet on the APS-clean model set as the batch size
setting is varied

The experimental results are shown using box-plots in Figure 4.6. The red line
within the box indicates the median result of the 10 independent learning trials. In
terms of median accuracy, the performance improves noticeably when the batch
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size is increased from 10 (93.34% median accuracy) to 20 (97.67%), and from
40 (98.0%) to 50 (99.33%). Both improvements are statistically significant at an
α = 0.01 confidence level: the p-value is 0.0343 for the difference between the
results obtained using batch sizes of 10 and 20, and p = 0.0006 for the difference
between the results obtained using batch sizes of 40 and 50.

Beyond a size of 50, the statistical analysis suggests there are no benefits in
any further increase of the batch size. However, as the batch size increases, the
training procedure appears to become more consistent (smaller width of the box
plots), and for this reason a batch size 100 was chosen. Although this choice is the
most computationally intensive, the training process can be sped up using GPU
acceleration.

Since the number of PCs constituting the model sets used in the experiments
is not a multiple of 100, the number of training examples in the last batch fed to
the Adam optimiser had to be brought to 100. This was achieved by duplicating
randomly picked PCs from the whole model set. For example, the APS-error
set contained 591 PCs, which were fed in 6 batches of 100 PCs each. The last
batch was formed by the remaining unused 91 examples, and 9 randomly picked
duplicates.

Training Epoch Optimisation

After the batch size had been fixed at 100, the number of training epochs was opti-
mised by trial and error. Experiments were were performed increasing the number
of epochs from 20 to 200 in steps of 20. The results are shown in Figure 4.7.
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Figure 4.7: Performance of PointNet on the APS-clean model set as the number
of training epochs is varied
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A progressive improvement in the performance of PointNet as the number of
training epochs is increased until 160 can be seen in Figure 4.7. Pairwise Mann-
Whitney statistical tests indicated that, the performance of PointNet trained with
160 epochs is significantly superior to the performance obtained using any smaller
number of training epochs (from 200 to 140 epochs). Further increases of the
number of training epochs beyond the 160 epochs did not yield any significant
improvement in performance. Consequently, the number of training epochs was
fixed to 160.

A similar experiment was done to optimise the number of training epochs
for the case where PointNet is trained using the APS-all. Slightly different from
previous experiments, this group of experiments were tested using YCB-28. The
results are visualised in Figure 4.8. From examination of Figure 4.8, a training
duration of 160 epochs seems satisfactory in terms of accuracy and consistency.
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Figure 4.8: Performance on the YCB-28 model set of PointNet trained using the
APS-all set with different training epoch

4.3.2 Experimental Results - Artificial Model Sets
As mentioned in Section 4.3, three instances of PointNet were trained using three
artificial model sets: APS-clean, APS-error, and YCB-similar, using the hyper-
parameters listed in Table 4.3 and discussed in Section 4.3.1. The performance
of the trained PointNets was evaluated on their accuracy on the YCB-28 model
set, and compared to that of two SNNs: an MLP and an RBFN. The results of
the experiments are visualised using box-plots in Figure 4.9. Each box visualises
the five-number summary of the accuracy results attained in the 10 independent
learning trials, each performed using a given classifier and training set.
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Figure 4.9: Accuracy results obtained on the YCB-28 model set by the three clas-
sifiers when trained using different sets: APS-clean (Clean), APS-error (Error)
and YCB-similar (Similar)

Figure 4.9 shows that PointNet can be trained to achieve an average (median)
accuracy of 86% circa training the DNN on the APS-error model set. Pairwise
Mann-Whitney tests indicated that this result is significantly superior to the ac-
curacy results obtained using any other combination of classifier and training set.
PointNet did not perform equally well when trained using the APS-clean and APS-
similar model sets, although the performance on the latter (81% circa average
accuracy) was still adequate.

Despite the unsophisticated feature extraction method used, the MLP per-
formed remarkably well. Trained using the APS-clean model set, it achieved
nearly 83% training accuracy, and slightly less (82%) when trained using the
APS-error set. Compared to PointNet, the MLP obtained more consistent learning
results, as shown by the width of the box plots. The RBFN was the clear under-
performer of the three tested classifiers. Finally, training the classifiers on the
YCB-Similar did not provide any visible benefit, particularly for the two SNNs.

The accuracy obtained training the PointNet on the APS-error set represents
the best-so-far result. This result was compared with the accuracy attained when
PointNet was trained using the APS-all model set (Section 4.1.4). The comparison
is visualised using box-plots in Figure 4.10. Each box visualises the five-number
summary of the accuracy results attained in the 10 independent learning trials.

Despite using a roughly three times larger training set, the PointNet trained
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Figure 4.10: Performance comparison on the YCB-28 model set of PointNet
trained using the APS-error (Error) and APS-all (All) set

using the APS-all set did not improve the performance obtained by the PointNet
trained using the APS-error set. A pairwise Mann-Whitney suggests there is no
significant difference (p = 0.257) between the results obtained training PointNet
using the APS-all and APS-error model sets.

4.4 Discussion
This chapter presented a study aiming to evaluate the ability of PointNet to cor-
rectly recognise objects from real-life scenes, after being trained on artificial ge-
ometric models. The hyper-parameters of PointNet were tuned using artificial
models. The study aimed also at testing whether simple SNNs were able to obtain
results comparable to those obtained by the much more complex PointNet.

The experimental tests showed that, in terms of accuracy, PointNet had indeed
an edge, albeit small, on a standard shallow MLP classifier. However, the MLP
showed more consistent training results. The tests also confirmed that PointNet
performs best when trained on scenes that were perturbed with some level of ran-
dom error. Training PointNet using images of features (size, proportions between
dimensions) similar to those to the real images, instead of training it with more
general artificial shapes, did not improve the accuracy of the classifier.

The above results can be interpreted remembering the outcomes of the exper-
iments in the previous chapter Section 3.5: namely that the recall accuracy of
PointNet is sensitive to error in the scenes. If the irregularities of real-life scans
are interpreted as error, then a PointNet trained on uncorrupted shapes is bound to
perform poorly. Training PointNet on models of features that are closer to those of
the real-life objects (YCB-Similar) does not make a difference, because the YCB-
Similar shapes are still clean geometric shapes. The YCB-Similar model set did
not generate any improvement in accuracy even when combined with the other
two data sets. The only solution that brought improvements to the accuracy of
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PointNet was to perturb the artificial shapes with some local error.
The overall conclusion of this set of experiments is that PointNet indeed pro-

vides some moderate improvement in performance respect to a basic MLP shallow
architecture, although at the price of slightly less consistent learning results.

The main advantage of PointNet is that the data from the raw point clouds do
need only minimal pre-processing (normalisation and down sampling). In partic-
ular, they do not need the feature extraction process required by the MLP. The
feature extraction process is embedded in the first block of layers of the Point-
Net, and optimised simultaneously to the classifier block by the DNN learning
algorithm. In particular, the concurrent optimisation of the feature extraction and
classification procedures is likely to account for the superior accuracy of PointNet
respect to the MLP. In the latter case, the feature extraction process has been car-
ried out prior to the classifier training procedure, and it is possible that the criterion
of the former did not perfectly match the inductive and representational biases of
the latter. Compared to other DNNs, the recognition accuracy of PointNet is also
invariant to rotation and translation of the shapes.

The above properties make PointNet preferable for object shape recognition,
although its sensitivity to sensor error must be taken into account given the high
level of variability and potentially imprecise sensing in remanufacturing applica-
tions.

4.5 Conclusions
This chapter presented a study on the possibility of training PointNet to recognise
primitive geometric shapes in PCs, and use it to identify similar shapes in 3D scans
of everyday objects. The performance of PointNet was evaluated on a subset of
28 models selected from YCB model set. The tests focused on three types of
primitive shapes: boxes, cylinders, and spheres.

The experimental results confirmed the feasibility of the task. If trained on
perfect geometric primitives, PointNet confirmed its difficulty to generalising to
noisy of moderately irregular shapes. However, if the training set is perturbed
with some noise, PointNet is able to learn the task with high accuracy. Compared
to a shallow MLP ANN, PointNet performed with higher accuracy but slightly
lower consistency. Overall, the main advantage of PointNet is its embedded fea-
ture extraction ability, irrespective of the pose of the objects. It was concluded
that PointNet is indeed a good candidate for object primitive shape recognition,
provided that the samples of the training set take into account possible sensor error
in real-life scenarios.
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Chapter 5

Coevolutionary Deep Neural
Network Training

The success of the DNN structure AlexNet (Krizhevsky et al., 2012) had a huge
impact on the research community, contributing to nowadays’ popularity of deep
learning in machine vision. AlexNet obtained dramatically superior accuracy in
object recognition tasks, compared to traditional shallow and other early DNN
structures. The strength of AlexNet was in the depth and complexity of its struc-
ture, and the use of GPUs to make its high computational complexity manageable
in real time.

Most of the research on DNNs in the last decade focused on the architec-
ture and learning algorithms, to improve the network performance and execu-
tion speed, and on the GPU implementation to further accelerate computations.
Fast execution is of particular concern in DNN practice during the training phase,
which often entails many cycles of repeated processing of a large amount of com-
plex training examples, and the periodic update of millions of connection weights.
For example, in their seminal paper, (Krizhevsky et al., 2012) trained AlexNet for
90 cycles, each cycle consisting of the presentation of 1.2 million high-resolution
images and the update of 60 million weights (Krizhevsky et al., 2012).

To exacerbate the problem, due to the increasing availability and sophistica-
tion of sensing and imaging equipment, the size and complexity of machine vision
tasks is constantly growing. For example, the 2D ImageNet benchmark repository
was firstly established with 3.2 millions of images in 2009 (Deng et al., 2009). By
2015, its number of images had increased to around 14 millions (Russakovsky et
al., 2015). Increasing the size of the ImageNet set did facilitate the attainment of
increasingly robust performances from the classifiers, but also introduced redun-
dant data and increased the computational complexity of the learning process.

The computational complexity of training a DNN makes it also problematic
to use alternative training methods to the standard gradient-based algorithms. The

71
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literature on learning algorithms based on computationally intensive global opti-
misation techniques is so far minimal. Implementations of EAs for deep learning
are scarce, and often limited to simple data structures like the 28 × 28 pixel 2D
images of the MNIST data set (LeCun, 1998) used by Martín et al. (2018). Parti-
cle Swarm Optimisation, an instance of swarm optimisation algorithm, was used
by M. Li et al. (2019), but in this case the complexity of the DNN was very low.
Perhaps the only instances of evolutionary DNN training that are comparable in
complexity to PointNet, are the systems created by Young et al. (2017) and Real
et al. (2017). Despite being massively parallelised, the authors of both evolution-
ary DNNs reported long training times. Sun et al. (2019) also reported execution
times in the order of several days for their evolutionary DNN implementation.

In this chapter, it will be investigated how to reduce the computational com-
plexity of the learning task for a PointNet classifier in an evolutionary scheme,
without compromising its final accuracy. The idea is to reduce the number of PCs
at each training cycle, adaptively focusing on yet unlearned examples.

5.1 Coevolutionary ANN Training
In the CGA proposed by Paredis (1995), shallow ANN classifiers were evolved in
a predator-prey scheme. Namely, the ANN classifiers were considered as preda-
tors, whilst the training samples were seen as the preys. The fitness of the preda-
tors was determined by the amount of prey that they were able to capture (i.e.
correctly classify), whilst the fitness of the prey was calculated on their ability to
avoid predation (i.e. how difficult it was for the classifiers to correctly identify
them). Predators and preys were randomly picked and paired, and the outcome of
the encounter was used to incrementally update their fitness based on the life time
fitness evaluation (Hillis, 1990) procedure. Complementary fitness is an important
concept in predator-prey schemes: success for the predator (correct classification
of the prey) corresponds to failure for the prey, and vice versa.

The CGA evolved the population of predators using the GENITOR, a GA pro-
posed by Whitley (1989). The preys were not evolved, but their fitness was used to
determine their chances to be picked up and paired to a predator (Paredis, 1995).
The aim of the procedure is to create a tug of war between the best classifiers and
the most difficult training examples.

Castellani (2018) further developed and investigated the coevolutionary ap-
proach to ANN training, developing two new coevolutionary algorithms: the co-
adaptive CANNT algorithm, and the coevolutionary CENNT algorithm.

CANNT was inspired by the CGA, and evolved only the predator population.
Like in CGA, the prey population was not evolved but the fitness of the indi-
viduals was used to determine their likelihood of being picked and paired to a
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Figure 5.1: Flow chart of CENNT proposed by Castellani (2018)

predator. Differently from the CGA, CANNT matched each predator to a batch
of randomly picked preys at each generation, and evolved the predator popula-
tion using an evolutionary scheme based on generational replacement, mutation,
and the fitness ranking selection scheme. CANNT did not feature genetic cross-
over, whilst employed Lamarckian learning (Cortez et al., 2002) to accelerate the
training process.

CENNT evolved both predators and preys, respectively ANN classifiers and
subsets of the training set. CENNT used the same algorithm used in CANNT to
evolve the predator population. The prey population was encoded as a binary vec-
tor, where the value of each element defined whether the corresponding learning
example was selected for a given training subset or not. The prey population was
evolved using a standard GA. Complementary fitness was again used: a preda-
tor (ANN) and a prey (training examples subset) were randomly paired up, and
whilst the fitness fp of the predator was equal to its accuracy a on the prey subset
of examples, the fitness of the prey was equal to fv = 1− a.

Trained on a number of benchmarks, CANNT and CENNT brought improve-
ment to the classifier accuracy and training speed, in comparison to traditional
GA-based training. Due to the large reduction of used data samples, the speed of
the co-evolutionary algorithms was comparable to that of the much faster back-
propagation algorithm on the largest training sets. In this chapter, a new coevolu-
tionary approach is proposed to speed up the PointNet training procedure.
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5.2 Coevolutionary Selected Training (CEST)

This section introduces the Co-Evolutionary Selected Training (CEST) algorithm,
a novel coevolutionary scheme aiming to increase the speed and accuracy of the
PointNet training procedure.
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Figure 5.2: Flow charts of CEST

CEST is based on one Predator (DNN) against a population of Prey (subsets
of training data). The flowchart of the proposed CEST algorithm is shown in
Figure 5.2. The Predator module of CEST is in reality the standard PointNet with
Adam optimiser. In all experiments, the PointNet implementation by Qi, Su, et al.
(2017) was used.

The Prey module of CEST is where the true evolutionary process takes place.
It takes the classification results (fitness evaluations) from the Interaction module,
and uses them to evolve subsets of the most difficult examples. Very much like
the interaction module of CENNT, the Interaction module of CEST takes a set
of training examples from the Prey module, and uses it to train the PointNet and
evaluate its classification accuracy. This set of training examples is built concate-
nating the subsets evolved in the Prey module. Since the most difficult examples
are likely feature in many of the subsets forming the population of the Prey mod-
ule, and the most easy examples in none, the set of PCs fed to PointNet is likely
not to contain all the examples of the training set, and several duplicate examples.
The training patterns from the Prey module are shuffled before being fed into the
DNN for training.
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CEST can be thought of as two learning algorithms opposed one another.
Whilst the Predator module uses the standard Adam optimiser to improve the
accuracy of the classifier, the Prey module uses evolutionary optimisation to gen-
erate subsets of difficult examples.

The Prey module is based on a traditional GA. Candidate solutions (subsets
of the training set of PCs) are encoded as binary vectors (chromosomes in GA
terminology), where each element of the vector (gene in GA terminology) takes
the value of ’1’ if the associated PC is used to train and evaluate the PointNet,
’0’ otherwise. These strings are evolved via standard genetic operators (Goldberg
& Holland, 1988): fitness proportionate selection with elitism, 2-point crossover,
bit-flip mutation, and generational replacement. The size Ne of the elite set of
individuals that will be copied into the next generation is a user-set system param-
eter.

A particularity of CEST is that, in addition to the fitness of the individuals
(sets of PCs), it keeps also track of the fitness of each gene (the individual PCs).
At the end of each training cycle, the fitness of a gene is calculated as follows:

fi(t) = wc ·
mi(t)

ai(t)
+ wo · fi(t− 1) (5.2.1)

where, i is the gene index; t is the training cycle; ai(t) is the number of times the
classifier (predator) tried to classify the ith PC; mi(t) is the number of times the
ith PC was misclassified, and wc and wo are two user-defined hyper-parameters
which respectively define the weight of the current evaluation and the trace of the
previous evaluations. The default values for wc and wo are respectively 0.2 and
0.8. If ai(t) = 0, mi(t)

ai(t)
is set to 1.

The fitness of an individual (a subset of PCs) is equal to the average fitness
of its ’on’ genes (those of value ’1’). Namely, the fitness Fp(t) of individual p,
defined by the chromosome string gp = (gp1, ..., gpNg) of length Ng (total number
of PCs in the training set), at training cycle t, is calculated as follows:

Fp(t) =

∑j=Ng

j=1 gpj · fj(t)∑j=Ng

j=1 gpj
(5.2.2)

where

gpj =

{
0 gene index j is ’off’
1 gene index j is ’on’

(5.2.3)

In addition, the history of the last Lh fitness evaluations is stored for each gene
in a 2D matrix FH of size Ng × Lh. The default value for Lh is 12. The history
matrix FH bears similarities with the life time fitness evaluation used by Paredis
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(1995), and is used by a novel forget operator designed for CEST. This operator is
applied to a new individual after it has been created via crossover by two parents.
The forget operator first calculates for each gene the average fitness Aj in the last
Lh training cycles:

Aj =

i=Lh∑
i=1

FHji

Lh

=

i=Lh−1∑
i=0

fj(t− i)

Lh

(5.2.4)

Then the forget operator sets to ’0’ all the values of the genes in the chromosome
that have an average history Aj below a predefined threshold Θ. The purpose
of the operator is to weed out (forget) training samples that are not frequently
misclassified. At the beginning of the evolutionary process, the elements of the
matrix FH are set to ’1’.

The hyper-parameters related to the management of the genes are listed in
Table 5.1 with example default values used in the experiments. Specifically, the
genes initial fitness f init

gene is the initial fitness for each gene in the history fitness
matrix FH.

Name Symbol Default

number of genes Ng -
genes initial fitness f init

gene 1.0
weight of fitness trace wo 0.8
weight of current fitness wc 0.2
history span Lh 12

Table 5.1: Hyper-parameters related to the management of
the genes in CEST

The remaining evolutionary hyper-parameters are listed in Table 5.2. The
evolutionary algorithm is a typical GA using fitness proportionate selection and
generational replacement with elitism. These procedures are defined by hyper-
parameters like the population size Np, number of offspring Nc, and elite size Ne.
At the end of each evolution epoch (generation, in EA parlance), the new popula-
tion is made of the Ne elite individuals from the last epoch, and the Np −Ne fittest
individuals of the Nc offspring population. There are two types of SCindividual ini-
tialisation procedure for the individuals of the prey module: full initialisation sets
all the gene values to ’1’, random initialisation sets all the gene values to ran-
domly drawn values. Preliminary tests indicated that the former supports early
exploration of the solution space, and hence reduces the likelihood of sub-optimal
convergence. As previously mentioned, the forget operator in a new individual
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Name Symbol Default

population size Np -
number of children Nc -
elite size Ne -
individual init scheme SCindividual full
selection scheme SCselection roulette wheel
crossover scheme SCcrossover two-point crossover
forget operator threshold Θ 0.1
mutation rate for individuals mi -
mutation rate for genes mg -
learning cycles E -

Table 5.2: GA hyper-parameters of the prey module in CEST

switches off all the genes of average fitness Aj < Θ, based on the history ma-
trix FH. Mutation is implemented via the standard flip-bit operator, and depends
on two parameters: the probability mi that an individual is selected for mutation
(mutation rate for individuals), and the probability mg that a gene of an individual
selected for mutation is changed (mutation rate for genes).

5.3 Experimental Model Sets
The learning task in the experiments will be PC classification over three different
model sets: Artificial Primitive Shapes (APS, Chapter 4), Mechanical Objects
(Chapter 3), and the Princeton ModelNet40 set (Wu et al., 2015). As mentioned
in the previous chapters, the three model sets differ by size (respectively 600,
2,400, and 9,840 PCs) and number of classes (respectively 3, 12, and 40).

In the experiments discussed in Chapter 4, the best results were obtained train-
ing the PointNet using the APS-error model set, where the shapes are perturbed
with a 5% error. This model set was retained for the first set of experiments re-
ported in this chapter. In addition, the APS-all model set was retained too, because
of its size and the competitive learning results obtained when employed to train
PointNet. Like in Chapter 4, the YCB-28 set was used to test the performance of
the trained PointNet.

A noticeable feature of ModelNet40 is that it is an unbalanced model set, that
is, the 40 classes are represented by a different number of samples. In previous
study, Castellani (2018) demonstrated that coevolutionary approaches are intrin-
sically suited to tackle the problems created by such sets. The experiments in this
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APS-error APS-all YCB-28

Training/Test training training test
Artificial/Real artificial artificial real
Clean/Error error mix -
Set Size 591 1,742 560
Classes 3 3 3

Table 5.3: Details of employed APS and YCB model sets

MEch12-clean MEch12-error ModelNet40 ModelNet40

Training/Test training test training test
Artificial/Real artificial artificial artificial artificial
Clean/Error clean error clean clean
Set Size 2,400 1,200 9,843 2,468
Classes 12 12 40 40

Table 5.4: Details of MEch12 and ModelNet40 model sets

chapter will also test this hypothesis.

The main details of the model sets used in the first set of experiments are
summarised in Table 5.3. The experiments contain also a study on the effect of
the parameterisation on the functioning and performance of CEST.

For the second set of experiments, the training set containing 2,400 PCs of
clean partial views of mechanical objects described in Section 3.2.1 was used to
train PointNet. Henceforth, this model set will be called MEch12-clean. The
1,200 error-corrupted partial-views test set described in Section 3.3.2 was used
for testing. Henceforth, this second model set will be called MEch12-error.

Finally, in the third set of experiments the well-known 3D CAD model model
set ModelNet40 was used. ModelNet40 contains 12,311 artificial CAD models
from 40 object categories. The training set contains 9,843 models, whilst the test
set contains 2,468. From the surface of the CAD models, Qi, Su, et al. (2017)
uniformly sampled points to build PCs. In this study, the scenes with 1,024 points
made by Qi, Su, et al. (2017) were used.
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Parameter Value

decay rate β1 in Adam 0.9
decay rate β2 in Adam 0.999
numerical constant ϵ̂ in Adam 1× 10−7

initial learning rate 0.0001
minimum learning rate 0.00001
learning rate decay rate 0.7
learning rate decay step 200,000
initial Batch Normalisation momentum 0.5
maximum Batch Normalisation momentum 0.99
Batch Normalisation momentum decay rate 0.5
Batch Normalisation momentum decay step 200,000

Table 5.5: Hyper-parameters of PointNet used in the experiments (please refer to
Section 3.1.1 of a detailed description of these parameters)

5.4 Experimental Results
In this section, the results of the experimental work are presented. All the exper-
iments are conducted based on PointNet DNN architecture developed by (Qi, Su,
et al., 2017) in his Github repository 1. The applied PointNet will be in its original
architecture and with most of its original parameters as shown in Table 5.5.

All the experiments were run using the hardware described in Table 3.3. The
results were summarised using the multi-class accuracy described in Section 3.4.
The experimental results are analysed using the median accuracy value of 10 inde-
pendent learning trials, and in some cases displayed using box-plots (Section 3.4).
The statistical significance of the difference in the results obtained in different ex-
periments is evaluated using pairwise Mann-Whitney tests at a 1% level of signif-
icance. The next three sections present the results obtained respectively the APS
and YCB, MEch12, and ModelNet40 model sets.

5.4.1 Artificial Primitive Shapes and YCB-28
PointNet was trained using the CEST algorithm using the APS-error and APS-all
model sets, and tested on the YCB-28 model set. The hyper-parameters of the
CEST algorithm were experimentally set as reported in Tables 5.6 and 5.7.

As discussed in Section 4.3.1, the Adam algorithm trained PointNet employing

1https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet
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Name Symbol Value

number of genes Ng 591
genes initial fitness f init

gene 1.0
weight of fitness trace wo 0.8
weight of current fitness wc 0.2
history span Lh 6
population size Np 16
number of children Nc 80
elite size Ne 4
forget operator threshold Θ 0.1
mutation rate for individuals mi 0.5
mutation rate for genes mg 0.7
learning cycles E 10

Table 5.6: Setting of CEST hyper-parameters used for
training PoinNet using the APS-error model set and
testing its performance on the YCB model set

Name Symbol Value

number of genes Ng 1,742
genes initial fitness f init

gene 1.0
weight of fitness trace wo 0.8
weight of current fitness wc 0.2
history span Lh 10
population size Np 8
number of children Nc 40
elite size Ne 2
forget operator threshold Θ 0.1
mutation rate for individuals mi 0.5
mutation rate for genes mg 0.7
learning cycles E 10

Table 5.7: Setting of CEST hyper-parameters used for
training PoinNet using the APS-all model set and test-
ing its performance on the YCB model set
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a batch-size of 100 for 160 training epochs. When the size of the training set was
not a multiple of 100, the number of training examples in the last batch size was
brought to 100 using the procedure described in Section 4.3.1. Accordingly, the
APS-error set (591 PCs) was fed to the Adam optimiser in 6 batches of 100 exam-
ples each (the last containing 9 duplicates), for a total of 6× 100× 160 = 96, 000
shapes during the 160 epochs of the learning trial. Likewise, the APS-all set (1742
PCs) was fed to the Adam optimiser in 18 batches of 100 examples each (the last
containing 58 duplicates), for a total of 18× 100× 160 = 288, 000 shapes in the
160 training epochs.

The learning results obtained using CEST were compared with those obtained
using the standard Adam optimiser. The latter are described in detail in Sec-
tion 4.3.2. The results are detailed in Table 5.8 and visualised in Figure 5.3.
Table 5.9 reports the p-values of pairwise Mann-Whitney tests performed on the
accuracy results obtained using the various combinations of training algorithms
and model sets.

Training Set

APS-error APS-error APS-all APS-all

Training Algorithm Adam CEST Adam CEST

Training Epochs 160 10 160 10

Fed Examples 96,000 54,950 288,000 79,900

Fed Examples (%) 100% 57.24% 100.0% 27.74%

Training Time
3.34 2.02 9.86 2.83

(minutes under RTX-3090)

Median Accuracy 85.98% 82.85% 84.02% 87.59%

Interquartile Range (IQR) 2.59% 8.26% 4.29% 6.25%

Table 5.8: Experimental results obtained training PointNet on different model
sets, and testing its accuracy on the YCB-28 set

Although CEST did not improve in statistically significant fashion the results
obtained using the Adam optimiser, it obtained a clearly superior median accuracy.
The most noticeable result is the reduction in the number of PCs (fed shapes) em-
ployed in the training procedure. Despite training PointNet using a population of
prey, where several PCs are potentially duplicated, CEST significantly reduced
the sampling of the training set, whilst obtaining accuracy results at least com-
parable to those obtained by the Adam optimiser. This result has a major impact
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Figure 5.3: Box-plot of the classification results obtained training PointNet on
different model sets, and testing its accuracy on the YCB-28 set

error-Adam error-CEST all-Adam all-CEST

error-Adam - 0.241 0.257 0.385
error-CEST 0.241 - 0.650 0.151

all-Adam 0.257 0.650 - 0.131
all-CEST 0.385 0.151 0.131 -

Table 5.9: Matrix of p-values of pairwise Mann-Whitney tests per-
formed on the learning results of different combinations of training
sets and algorithms. The medians of the accuracy results are reported
in Table 5.8

on the execution time of the training procedure. Castellani (2018) estimated the
sampling of the training set to the roughly proportional to the execution time. The
results in Table 5.8 roughly confirm this estimate.

5.4.2 Effect of the Parameterisation on CEST Performance

To understand the effect on the performance of the parameterisation of CEST, and
to better understand the functioning of the algorithm, a number of further tests was
carried out. For this purpose, the main hyper-parameters of CEST were grouped
into population parameters, history fitness parameters, and mutation rates, and
within each group different combinations of parameters were tested. The three
groups of parameters are shown in Table 5.10. All the parameterisation experi-
ments used APS-all for training, and YCB-28 for performance testing. Each ex-
periment was repeated 10 times, and compared with the results obtained using the
original Adam training algorithm as in Table 5.8.
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Population History Fitness Mutation

Np Lh mi

Nc wo mg

Ne wc

Table 5.10: The three groups of parameters in
CEST

Population Parameters

The total number of PCs employed in a learning trial is equal to the population
size, i.e. the number of training subsets that are fed to the classifier at each training
cycle, times the complexity of the individuals, i.e. the size of the training subsets.
The latter parameter will be highest at the beginning of the coevolutionary process,
since the initial population is seeded to include all the samples of the training set
(full initialisation scheme).

Experimentally (Table 5.8 and Table 5.9), the best performing combination
of parameters featured a total number of offspring per learning cycle equal to 40
(five times the population size), and the elite size was set to Ne = 2 (one quarter
of the population size). The optimal number of training epochs was empirically
determined as: E=80÷Np. It is important to notice that the number of training
epochs is inversely proportional to the population size, keeping the overall time
complexity constant. The trade-off is therefore whether to perform the evolution-
ary process with a small population for many iterations, or a large population for
a few iterations. Finally, the history length was determined as 60% of the duration
of the algorithm: Lh=0.6×E.

Name Np Nc Ne Lh E Fed Examples Accuracy IQR P-value

P4-R1-E20 4 20 1 12 20 26.22% 84.11% 3.13% 0.850
P6-R1-E15 6 30 1 9 15 30.42% 85.71% 7.68% 0.791
P6-R2-E15 6 30 2 9 15 30.61% 80.80% 10.45% 0.496
P8-R2-E10 8 40 2 6 10 27.74% 87.59% 6.25% 0.131
P10-R2-E8 10 50 2 5 8 29.17% 83.30% 8.30% 0.821
P10-R3-E8 10 50 3 5 8 29.18% 82.95% 14.02% 0.910

Table 5.11: Experimental design and results for varying population parameters,
where the p-value was calculated against results made by PointNet trained with
APS-all using Adam algorithm as shown in Table 5.8



5.4. EXPERIMENTAL RESULTS 84

A new set of 6 different CEST parameterisations was tested, keeping the above
empirically determined ratios. For each parameterisation, 10 independent learning
trials were performed. The results of the tests are reported in Table 5.11: for
each setting they include the median of the 10 obtained classification accuracies,
the spread of the classification accuracies (upper minus lower quartile), and the
median of the number of sampled PCs. Additionally, the total number of used
PCs per training epoch is plotted in Figure 5.4.
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Figure 5.4: Plots of number of PCs used per epoch to train and evaluate PointNet,
in relation to different settings of population parameters

The experiments confirm the optimality of the settings previously found. The
fact that the population size is inversely proportional to the number of training
epochs effectively constrains the exploration capability of the algorithm. To sup-
port exploration, high mutation rates could be used. This scenario will be tested
in the following of this section.

Finally, the plots in Figure 5.4 clearly show that CEST quickly reduces the
usage of the training examples. Given the high classification accuracies obtained,
this result suggests that CEST is able to quickly narrow down the training process
to a small number of difficult scenes.

Mutation Parameters

The sampling opportunities for the CEST algorithm are severely constrained due
to the need of reducing as much as possible the number of used scenes. It is thus
important to understand the consequences of the exploration-exploitation trade-
off (Berger-Tal et al., 2014) on the quality of the solutions. The mutation operator
plays a major role in addressing this trade-off, and its role will be investigated.

The population parameters were fixed to the four best performing settings from
Table 5.11, that is P4-R1-E20, P6-R1-E15, P8-R2-E10, and P10-R2-E8. The pro-
posed investigation will focus on the mutation rates mi and mg, testing a number
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Name Np mi mg Fed Examples Accuracy IQR P-value

P4-I3-G3 4 0.3 0.3 29.10% 82.50% 2.59% 0.064
P4-I3-G5 4 0.3 0.5 27.24% 85.80% 8.53% 0.162
P4-I5-G3 4 0.5 0.3 27.93% 87.05% 9.87% 0.521
P4-I5-G5 4 0.5 0.5 27.07% 83.84% 7.05% 0.850
P4-I5-G7 4 0.5 0.7 26.22% 84.11% 3.13% 0.850

P6-I5-G5 6 0.5 0.5 30.94% 83.57% 7.32% 0.791
P6-I7-G5 6 0.7 0.5 29.79% 81.25% 5.85% 0.427
P6-I5-G7 6 0.5 0.7 30.42% 85.71% 7.68% 0.791
P6-I7-G7 6 0.7 0.7 29.36% 74.64% 8.75% 0.096

P8-I5-G5 8 0.5 0.5 30.73% 82.95% 5.62% 0.199
P8-I7-G5 8 0.7 0.5 28.87% 82.59% 5.00% 0.186
P8-I5-G7 8 0.5 0.7 27.74% 87.59% 6.25% 0.131
P8-I7-G7 8 0.7 0.7 26.75% 84.29% 4.33% 0.345

P10-I5-G7 10 0.5 0.7 29.17% 83.30% 8.30% 0.821
P10-I7-G7 10 0.7 0.7 27.14% 85.71% 4.60% 0.850
P10-I5-G9 10 0.5 0.9 25.64% 81.43% 9.82% 0.496

Table 5.12: Experimental design and results for varying mutation parame-
ters, where p-value was calculated against results of error-Adam Table 5.8

Name Np Mi Mg Fed Examples Accuracy IQR P-value

P4-I1-G1 4 0.1 0.1 38.77% 88.66% 5.67% 0.082
P4-I1-G3 4 0.1 0.3 36.42% 85.36% 5.71% 0.571
P4-I3-G1 4 0.3 0.1 34.70% 84.29% 7.81% 0.678
P4-I3-G3 4 0.3 0.3 30.02% 82.50% 4.06% 0.496

P2-I05-G05 2 0.05 0.05 36.88% 85.45% 12.95% 0.597
P2-I05-G1 2 0.05 0.1 36.75% 85.09% 4.11% 0.364
P2-I1-G05 2 0.1 0.05 36.56% 86.43% 11.38% 0.597
P2-I1-G1 2 0.1 0.1 35.02% 87.14% 4.20% 0.049
P2-I3-G3 2 0.3 0.3 27.92% 78.93% 8.21% 0.089

Table 5.13: Experimental results for low mutation rates and small population
sizes
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of combinations of the parameters as shown in Table 5.12. The statistics were
calculated over 10 independent learning trials. The plots of the number of PCs
utilised per epoch for training and testing PointNet are shown in Figure 5.5 for
different combinations of parameters.

The most noticeable effect in the plots of Figure 5.5 is that a high mutation
rate does speed up the convergence of the evolutionary process towards a small
subset of PC samples. This setting should help when the chosen strategy is to
perform a small number of training cycles with a large population. Vice versa,
when a small population was used and let to evolve for several cycles, the best
results were obtained using a medium or low mutation rate.

One more set of experiments was performed further decreasing the mutation
rate, and keeping a small (Np = 4, Nc = 20, Nr = 1, and E = 20) or very
small (Np = 2, Nc = 20, Nr = 1, and E = 30) population size. The results
of these last experiments are detailed in Table 5.13 and visualised in Figure 5.6.
The statistics were calculated over 10 independent learning trials, and the p-values
were calculated against the results obtained by PointNet when trained on the APS-
all set using the Adam algorithm (Table 5.8). In this latter case, the mutation rate
was too small to play a major part in the reduction of the number of training
examples, and the sharp late drop in the plots is due to the action of the Forget
operator.

Due to the late drop in the number of utilised training patterns, in many of
the tests in Figure 5.6, the CEST algorithm used a total number of training exam-
ples slightly superior to the previous experiments. However, the number of fed
examples is still very low, roughly one third of the examples used by the Adam
optimiser. Despite using less examples, the CEST algorithm can still train Point-
Net to reach a classification accuracy comparable to the accuracy obtained using
the Adam optimiser.

Fitness Weights

This set of experiments evaluated the impact of varying the contribution of the last
fitness evaluation to the determination an an individual overall fitness. Namely,
the effect of varying the wc and wo parameters in Equation (5.2.1) is the object of
the experiments.

The CEST algorithm was run using various settings which could be sum-
marised as: medium level mutation rates for large populations (P8-R2-I5-G5-
E10 and P10-R2-I6-G6-E8), and low level mutation rates for small populations
(P4-R1-I1-G1-E20 and P2-R1-I1-G1-E40) as shown in Table 5.14. The settings
are slightly different from those used in the previous experiments, to allow for
slightly higher use of the examples in the training set. The parameterisation of
CEST and the experimental results are detailed in Table 5.15 and visualised in
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Figure 5.5: Plots of training samples utilised per training epoch for different mu-
tation rates
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Figure 5.6: Number of employed training patterns per training epoch in experi-
ments with small populations and low mutation rates
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Name Np Nc Nr mi mg E

P10-R2-I6-G6-E8 10 50 2 0.6 0.6 8
P8-R2-I5-G5-E10 8 40 2 0.5 0.5 10
P4-R1-I1-G1-E20 4 20 1 0.1 0.1 20
P2-R1-I1-G1-E40 2 20 1 0.1 0.1 40

Table 5.14: Basic hyper-parameters of experiments
studying fitness weights

Figure 5.7. The statistics were calculated over 10 independent learning trials, and
the p-values were calculated against results made by PointNet trained with APS-
all using Adam algorithm as shown in Table 5.8. The plots indicate that when
more emphasis is placed on the current fitness evaluation, CEST is able to react
more quickly to the learning results, and the Forget operator is triggered earlier.

Overall, the results confirm that the CEST algorithm is capable of training the
PointNet DNN to achieve a comparable or even significantly better classification
accuracy than the Adam optimiser, using less training examples. The best results
in terms of accuracy and consistency of the learning procedure, were obtained
using low population sizes, and values of wc and wo close to the default values
indicated in Section 5.2.

Results Achieved by Tuned CEST over APS and YCB-28 Sets

This set of experiments are conducted based on expertise gained from the parametri-
sation experiments above, and trail and error. A comparison of the best experi-
mental results of PointNet trained with both CEST and Adam are illustrated in
Table 5.16, and the obtained parameters for CEST are shown in Table 5.16.
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Figure 5.7: Plots of number of training scenes used per epoch for different settings
of the fitness weights
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Name Np Lh wo wc Fed Examples Accuracy IQR P-value

P2-O5-C5 2 24 0.5 0.5 32.48% 83.39% 5.80% 0.910
P2-O6-C4 2 24 0.6 0.4 32.80% 87.05% 5.98% 0.226
P2-O7-C3 2 24 0.7 0.3 33.96% 88.21% 1.52% 0.001
P2-O8-C2 2 24 0.8 0.2 35.02% 87.14% 4.20% 0.049
P2-O9-C1 2 24 0.9 0.1 41.27% 85.54% 7.72% 0.326

P4-O5-C5 4 12 0.5 0.5 32.71% 86.70% 5.58% 0.257
P4-O6-C4 4 12 0.6 0.4 32.14% 83.30% 10.18% 1.000
P4-O7-C3 4 12 0.7 0.3 35.66% 83.57% 6.56% 0.791
P4-O8-C2 4 12 0.8 0.2 38.77% 88.66% 5.67% 0.082

P8-O6-C4 8 6 0.6 0.4 29.44% 88.39% 9.11% 0.151
P8-O7-C3 8 6 0.7 0.3 28.97% 87.68% 3.17% 0.034
P8-O8-C2 8 6 0.8 0.2 30.43% 85.63% 7.32% 0.257

P10-O6-C4 10 5 0.6 0.4 29.57% 78.13% 9.46% 0.450
P10-O7-C3 10 5 0.7 0.3 29.13% 85.98% 6.29% 0.385
P10-O8-C2 10 5 0.8 0.2 29.88% 82.14% 9.87% 0.226

Table 5.15: Experimental design and results for fitness weights

Training Set

APS-error APS-error APS-all APS-all

Training Algorithm Adam CEST Adam CEST
Training Epochs 160 40 160 40

Fed Examples 96,000 75,750 288,000 97,800
Fed Examples (%) 100% 78.91% 100.0% 33.96%

Training Time
3.34 2.69 9.86 3.41

(minutes under RTX-3090)
Median Accuracy 85.98% 89.20% 84.02% 88.21%

IQR 2.59% 2.50% 4.29% 1.52%
P-value 0.019 0.001

Table 5.16: The best-so-far experimental results obtained training PointNet on
APS-error and APS-all sets, and testing on the YCB-28 set
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Model Set Np Nc Nr mi mg Lh Θ wo wc E

APS-error 4 20 2 0.05 0.05 24 0.1 0.8 0.2 40
APS-all 2 20 1 0.1 0.1 24 0.1 0.7 0.3 40

Table 5.17: Best-tuned CEST parameters setting for APS sets

As shown in Table 5.16, the CEST algorithm was able to largely reduce the
number of model samples used in the training procedure, and consequently ex-
ecuted in much faster times. A significantly better classification accuracy (p ≤
0.01) was achieved on the APS-all set compared to the network trained using the
standard Adam optimiser. On the APS-error set the improvement in performance
was noticeable but not significant at a 1% level of confidence. CEST also gave
more consistent learning results (smaller IQR) than Adam on the APS-all set, and
a comparable spread of the results on the APS-error set.

5.4.3 MEch12 and ModelNet40
In this last set of experiments, the CEST algorithm was tested on the MEch12 and
ModelNet40 model sets. As detailed in Section 5.3, these two sets are more com-
plex than YCB-28 in terms number of classes and set size. The CEST parameters
were set based on the expertise gained in the previous tests, and trial and error.

Model Set Np Nc Nr mi mg Lh Θ wo wc E

MEch12 16 48 1 0.6 0.6 12 0.125 0.8 0.2 20
ModelNet40 16 48 1 0.6 0.6 12 0.1 0.8 0.2 20

Table 5.18: CEST parameters setting for the experiments on the MEch12
and ModelNet40 model sets

The accuracy results obtained using CEST and the standard Adam optimiser
are detailed in Table 5.19, and visualised Figure 5.8, whilst the used CEST pa-
rameters are illustrated in Table 5.18. In both sets of experiments, the PointNets
will use parameters shown in Table 5.5.

The experiments reported in Chapter 3 indicated that a high classification ac-
curacy (94%) was attainable on the MEch12 set. On ModelNet40, a preliminary
test was performed reproducing the experimental settings reported by Qi, Su, et
al. (2017). The test confirmed that, trained using the Adam optimiser, PointNet is
able to reach a median accuracy of 88% circa.
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Model Set Algorithm Fed Examples Time Accuracy P-value
(minutes)

MEch12 Adam 480,000 (100%) ∼16 94.16%
0.5453

MEch12 CEST 419,500 (87.40%) ∼14 95.00%

ModelNet40 Adam 2,460,000 (100%) ∼89 88.37%
0.9097

ModelNet40 CEST 1,658,688 (67.32%) ∼62 88.43%

Table 5.19: Results obtained by training PointNet using the CEST and Adam
optimisers, on the MEch12 and ModelNet40 model sets; where Time is the
measured real execution time of one training epoch under RTX-3090 GPU
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Figure 5.8: Box-plot of the classification accuracies obtained on the MEch12 and
ModelNet40 sets with Adam and CEST learning algorithm, whilst median accu-
racies are shown within parentheses

On both model sets, CEST obtained statistically indistinguishable results from
those obtained by Adam. However, CEST used less training set samples, the dif-
ference between the two algorithms being particularly noticeable for the tests in-
volving the largest ModelNet40 set (saving one third of training time), as shown
in Table 5.19.

In conclusion, the CEST algorithm has the potential to increase the training
speed of DNN without affecting its original performance by evolving the subsets
of training data.

5.5 Discussion

The main research question in this study was whether the computational over-
heads of training a complex DNN on a set of 3D models could be reduced via
coevolutionary learning. One of the primary reasons for the complexity of the
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task, is the large amount of PCs that needs to be processed by the DNN structure.
The current availability of cheap 3D scanners is creating an increasing need to
deal with large sets of PCs.

The envisaged answer to the above research question was CEST, a predator-
prey system where a standard gradient-based optimisation algorithm (Adam) was
fed training examples selected by an EA. The goal of the EA was to pick the most
difficult examples of the training set, namely those which hadn’t been yet learned
by DNN. By focusing the learning process on a small subset of critical examples,
CEST was able to obtain top learning accuracies whilst reducing the computa-
tional overheads and hence the time of the training procedure. The answer to the
research question was therefore positive.

In terms of classification accuracy, CEST obtained superior and more consis-
tent learning accuracies. This result is likely due to the ability of CEST to focus
the learning process on problematic examples, which towards the end drive the
training procedure.

Although CEST gives emphasis during the training process to a limited subset
examples, its performance was found to be robust to error in the training patterns.

On the imbalanced ModelNet40 model set, the classification accuracy attained
training PointNet via CEST was undistiguishable from the accuracy obtained us-
ing the standard Adam optimiser. In terms of accuracy, the coevolutionary ap-
proach didn’t seem to give any advantage respect to the standard training method
on the unbalanced model set. However, CEST employed only about two-thirds
of the training examples used by Adam. Further tests should evaluate whether in-
creasing the sampling of the training set (the prey population size or the number of
evolution cycles), the performance of CEST can be improved beyond the current
accuracy.

Investigation of the effects on the learning process of CEST parameterisation
suggested that very small prey population sizes can still provide acceptable re-
sults, when the mutation rate is increased to support the exploration capabilities
of the algorithm. Overall, CEST reacted predictably to changes in the parameter
settings. If confirmed by further studies, this latter feature would make CEST easy
to optimise to the desired problem domain.

5.6 Conclusions
In this chapter, the novel CEST algorithm was presented. Experimental evidence
showed that CEST was able to attain top classification accuracies, whilst reducing
the use of the training set of examples. These savings in training examples im-
plied a reduction in the computational overheads from running the procedure, and
hence a reduction in execution times. A number of tests were also performed to in-
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vestigate the effects of the parameterisation of CEST on the evolutionary learning
process, and yielded some improvements in performance.

The proposed algorithm is expected to increase the applicability and afford-
ability of DNN systems, with particular regard to computationally intensive ma-
chine vision applications.



Chapter 6

Conclusions

The work of this thesis investigated the automatic identification of objects in PC
models, with a view on its application to visual inspection of EOL mechanical
devices for disassembly. A system based on the PointNet DNN was proposed. To
reduce the effort of gathering a large set of scans of objects for the DNN train-
ing procedure, a 3D model generation scheme was proposed. This scheme was
based on 3D CAD models, and a purpose-built depth camera simulator. A first
set of experiments based on artificial model sets indicated that PointNet is able to
recognise with good accuracy complex mechanical parts. The ability of the DNN
to deal with partial views and noisy sensors was tested. The study revealed some
limitation of PointNet in dealing with error in the scans. The extent of this limita-
tion could be greatly reduced by injecting the training patterns with some level of
local noise.

A second set of experiments investigated the ability of PointNet to recognise
primitive shapes in objects. This work has important applications in the field
of robotic pick-up and handling. The performance of PointNet was tested on
three artificial model sets, and the YCB benchmark model set featuring scans of
real-life everyday objects. The results suggest that PointNet can be trained on
geometric or CAD-generated models, and recognise with good accuracy the real-
life YCB scans. The performances obtained by PointNet were equal or better
than those obtained using a SNN classifier, justifying thus the use of the more
complex deep architecture. The experimental study showed also the effect of the
parameterisation of the learning procedure on the accuracy of the DNN classifier.
Finally, the tests revealed that, also in this case, the performance of PointNet can
be improved by injecting some local noise in the training PCs.

Finally, the last set of experiments demonstrated the accuracy of the novel
CEST coevolutionary procedure, and its ability to quickly narrow down the train-
ing procedure to a subset of mainly not yet learned examples. CEST addressed
the problem of the computational complexity of DNN training algorithms, which
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makes their implementation reliant on powerful and fast hardware. The work has
potential impact on the whole DNN field.

6.1 Summary of Achievements
The presented work was done by the author of this thesis for the degree of Doctor
of Philosophy. The following scientific contributions have been made:

• the feasibility of applying the state-of-the-art PointNet DNN to the recog-
nition of complex mechanical parts was proven. The system was able to
distinguish the different parts of an engine turbocharger, as well as similar
parts of different maker;

• a novel training data generation scheme based on 3D CAD models and a
purpose-built 3D camera simulator was created;

• the possibility of training PointNet to recognise primitive shapes in real life
scans of everyday objects using models created from geometrical shapes or
CAD models, was proven;

• the ability of PointNet to recognise objects and shapes from imprecise scans
and partial views was evaluated;

• the novel coevolutionary CEST algorithm was proposed. CEST sped up the
training procedure of PointNet by focusing it on the most difficult training
examples;

• the performance of CEST was tested on several benchmark model sets of
various origin, complexity, and size. Despite using less the instances of
the training set, CEST excelled in terms of accuracy and consistency of the
learning results.

6.2 Limitations and Future Work
This thesis addressed the challenge of building an automatic identification sys-
tem for robotic disassembly in remanufacturing. Various problems ranging from
the cost of acquiring training data, to the computational complexity of the train-
ing procedure were addressed. The study included an in-depth evaluation of the
ability of PointNet to cope with imprecision in the scans and partial view of the
objects. This evaluation was made on a combination of custom-made model sets
of simulated scenes, and real scans of everyday (non mechanical) objects.
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Due to the lack of access to the robotic lab during the pandemic, a detailed
evaluation on real scans of mechanical objects could not be performed. For the
experiments of Chapter 4, the YCB dataset was used as benchmark for the shape
approximation challenge (Kopicki et al., 2016; Mavrakis et al., 2016). Although
the results of the performed tests were promising, the proposed system has not
been tested yet on lab conditions that closely reproduce a real-life industrial sce-
nario. Further work should fill this gap, extending the experiments to scans ac-
quired from industrial-grade 3D cameras over real mechanical parts.

Also, the proposed work was conceived in 2018 when PointNet was the state-
of-the-art architecture for processing 3D scenes. There are now more DNN archi-
tectures which showed higher classification accuracies than PointNet on bench-
mark model sets. The proposed study should be extended to the new DNN archi-
tectures that emerged in the last three years.

Chapter 5 presented the new CEST algorithm for DNN training. Tests per-
formed during the development of the algorithm suggest that the Forget operator
plays a major role in the convergence of the algorithm to the set of most diffi-
cult training examples. Further work should be carried out to investigate when a
pattern can be safely discarded, and optimal ways of taking into account of the
history of the pattern’s fitness evaluations.

Finally, further work should be done to investigate the performance and gen-
eralisation of CEST on other data sets and problem domains.

6.3 Publications Arisen from this Thesis
Part of the work described in this thesis has already been presented in conferences,
and resulted in the following publications:

• Zheng, S., Lan, F., Baronti, L., and Castellani, M., 2018. "Automatic Iden-
tification of Mechanical Parts for Robotic Disassembly Using Deep Neu-
ral Networks." II International Workshop on Autonomous Remanufactur-
ing (IWAR) Wuhan, China. (DISTINGUISHED INDUSTRIAL APPLI-
CATION PAPER AWARD)

• Zheng, S. and Castellani, M., 2019. "Identification of mechanical parts for
robotic disassembly from point cloud scenes." III International Workshop
on Autonomous Remanufacturing (IWAR) Albacete, Spain.

• Zheng, S., Lan, F., Baronti, L., Pham, D., and Castellani, M., 2022. "Au-
tomatic identification of mechanical parts for robotic disassembly using the
PointNet deep neural network." International Journal of Manufacturing Re-
search (IJMR), Volume 17, Issue 1, Page 1-21.
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• Zheng, S., Castellani, M., 2021. “Primitive Shape Recognition from Real-
Life Scenes Using the PointNet Deep Neural Network”, Submitted to The
International Journal of Advanced Manufacturing Technology (IJAMT).
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Manually Measured Shape Features
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ID-Name Shape-Type H W B D

003-cracker box box 216.23 149.82 57.04 -
004-sugar box box 162.50 82.58 32.32 -

008-pudding box box 97.80 79.34 29.38 -
009-gelatin box box 73.70 65.62 23.73 -

010-potted meat can box 80.16 76.26 39.73 -
026-sponge box 95.09 60.03 14.20 -

036-wood block box 190.35 80.52 75.81 -
061-foam brick box 63.68 54.29 43.36 -
077-rubiks cube box 57.35 48.56 46.12 -
001-chips can cylinder 237.27 - - 69.33

002-master chef can cylinder 129.79 - - 96.09
005-tomato soup can cylinder 92.34 - - 64.63

007-tuna fish can cylinder 38.44 - - 80.25
019-pitcher base cylinder 226.75 - - 128.13

025-mug cylinder 101.24 - - 84.78
040-large marker cylinder 103.09 - - 14.81

065-a-cups cylinder 57.36 - - 43.53
012-strawberry sphere - - - 48.52

014-lemon sphere - - - 63.59
015-peach sphere - - - 73.05
017-orange sphere - - - 74.81
018-plum sphere - - - 52.29

054-softball sphere - - - 97.03
055-baseball sphere - - - 75.46

056-tennis ball sphere - - - 69.18
057-racquetball sphere - - - 60.41

058-golf ball sphere - - - 47.36
063-a-marble sphere - - - 39.92

Table A.1: Manually measured shape features of the twenty-eight selected objects
from YCB set
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