

MULTIGRID BARRIER AND PENALTY
METHODS FOR LARGE SCALE TOPOLOGY
OPTIMIZATION OF SOLID STRUCTURES

by

ALEXANDER BRUNE

A thesis submitted to
University of Birmingham
for the degree of
PHD OF APPLIED MATHEMATICS

School of Mathematics
College of Engineering and Physical Sciences
University of Birmingham
February 2022

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

Abstract

We propose two algorithms for solving minimum compliance topology optimization

problems defined on finite element meshes with several million elements, where the

design geometry is parameterized on the discretized problem domain by an element-

wise constant density field and we use the variable thickness sheet formulation to

map the density to the material stiffness. The first method is an interior point (IP)

method and the second follows the penalty-barrier multiplier (PBM) or nonlinear

rescaling framework. To solve the linear systems arising in each optimization itera-

tion, we use a multigrid-preconditioned Krylov solver. We employ a reformulation

of the linear system to obtain a symmetric positive definite matrix that is amenable

to standard multigrid transfer operators. We test the performance of both our al-

gorithms on a wide range of numerical examples, comparing their performance to

each other and to that of the well-established optimality criteria (OC) method. Our

PBM algorithm proves to be more robust and efficient than both the IP and OC

method.

We then extend our approach to problems defined on unstructured meshes, which

necessitates switching to an algebraic multigrid preconditioner. Using the (adaptive)

smoothed aggregation method of Vaněk, Mandel, and Brezina, we propose and test

different non-standard setup strategies for the multigrid transfer operators in order

to identify the most efficient one for our type of problem.

The PBM method is applied to the dual of the compliance minimization problem,

which permits an easy integration of unilateral contact constraints. We include

examples featuring such constraints in our numerical experiments, both for problems

on uniform structured meshes and on unstructured meshes.

ACKNOWLEDGEMENTS

Mathematicians, according to people who are not mathematicians, are obsessed with

deriving detailed definitions and applying rigorous analysis. The common assump-

tion is that this purported obsession is not limited to mathematics but extends to

everything else. One might think, therefore, that I would relish the task of precisely

quantifying the many ways in which people have directly or indirectly influenced

my work or supported me. This is incorrect. Writing acknowledgements is nothing

like mathematics. There are no referees to flag missing references to a particular

colleague, friend or family member before publication; one cannot leave missed ac-

knowledgements for future work or hope that other researchers will pick up the

slack. Nevertheless, I shall attempt to treat this problem like a mathematical one.

I will limit myself to a few essential individual acknowledgements, beyond which I

will define comprehensive sets of people who have been relevant to my PhD at the

University of Birmingham. Specific examples of elements of these sets go beyond

the scope of this thesis and are left as an exercise for the reader.

First and foremost, I thank my supervisor Michal Kočvara for his support, guid-

ance and reassurance. Whether it was fixing bugs in my code or fences in your

garden, I truly enjoyed our collaboration.

I want to express my appreciation for the postgraduate community at the School

of Mathematics: all the wonderful people I have had the pleasure to share an office

(building) with, the sociable atmosphere, the inclusivity and the personal connec-

tions I have made. This community set my PhD experience at this university apart

from what I might have found anywhere else.

Outside of mathematics, I thank all of my friends and family for enduring my

never-ending laments about doing a PhD. Thank you to my mother for always

showing confidence that I was doing my best, and to my father for kindly nudging

me back on track when I really wasn’t. Thank you to my sister for keeping me

grounded and reminding me that there are worse things than writing a thesis –

namely, high school.

The research presented in this thesis was funded by the University of Birmingham

– and to some extent, although unofficially, by Erna Gründl, whose constant support

over the years has made the path that led me here much smoother.

CONTENTS

List of Figures i

List of Tables iii

Notation v

1 Introduction 1

2 Background 10

2.1 Optimization ... 11

2.1.1 Optimality Conditions ... 14

2.1.2 Convexity and Duality ... 18

2.1.3 Interior Point Methods ...23

2.1.4 Nonlinear Rescaling and Penalty-Barrier Multiplier Methods . 28

2.2 Finite Element Method for Linear Elasticity ... 33

2.2.1 Unilateral contact ... 43

2.3 Minimum Compliance Topology Optimization 46

2.3.1 The Variable Thickness Sheet Problem 52

2.3.2 The Variable Thickness Sheet Problem with Unilateral Contact 71

2.3.3 The Optimality Criteria Method ... 76

2.4 Iterative Methods for Linear Systems ... 79

2.4.1 Krylov Subspace Methods.. 82

2.4.2 Multigrid Methods ... 90

3 Multigrid Barrier Methods for Minimum Compliance Optimiza-

tion 108

3.1 Optimization Algorithms ... 109

3.1.1 Primal-Dual Interior Point Method for the VTS Problem 109

3.1.2 Penalty-Barrier Multiplier Method for the Dual VTS Problem 117

3.1.3 Including Unilateral Contact Constraints 124

3.1.4 Multigrid Preconditioner for MINRES and CG 125

3.2 Numerical Results ... 129

3.2.1 Comparison of Optimization Methods and Solvers 135

3.2.2 Large Scale Problems ... 143

3.2.3 Unstructured Meshes and Algebraic Multigrid 149

3.2.4 Detailed Comparison of MINRES and CG 162

3.3 A Note on Density Penalization .. 167

4 Conclusions 172

Bibliography 175

Appendices 188

A.1 Methods and Solvers: Additional Tables and Graphs 188

A.2 Aggregation Strategy Statistics ... 192

i

LIST OF FIGURES

2.1 FE mesh ... 41

2.2 Contact constraint ... 44

2.3 Two-grid hierarchy .. 92

3.1 Sparsity structure of system matrices .. 127

3.2 Optimization scenarios: structured meshes ... 131

3.3 Compare lower density bounds for OC and IP: δ̃ vs. optimization

iterations ... 133

3.4 MBB 8-2-0-6 for different stopping criteria ... 136

3.5 Compare PBM, IP, OC: δ̃ vs. CPU time ... 141

3.6 Compare PBM, IP, OC: solver vs. Newton iterations 142

3.7 Cantilever 8-2-2-7 optimal design .. 146

3.8 Bridge 8-2-2-7 optimal design .. 147

3.9 MBB 8-2-2-7 optimal design ... 147

3.10 Clamped cantilever scenario ... 148

3.11 Clamped cantilever optimal design ... 148

3.12 Optimization scenarios: unstructured meshes 156

3.13 Knee 3-8 optimal design ... 161

3.14 Lug 3-6 optimal design ... 161

3.15 Crack 3-6 optimal design .. 162

3.16 MBB 8-2-0-6 (SIMP) ... 169

3.17 Sparsity structure of system matrices .. 171

ii

A.1 Compare PBM, IP, OC: δ̃ vs. Newton iterations 190

A.2 Compare PBM, IP, OC: δ̃ vs. solver iterations 191

iii

LIST OF TABLES

3.1 Compare PBM, IP, OC: Cantilever 4-2-2-6 ..138

3.2 Compare PBM, IP, OC: Bridge 4-2-2-6 ...138

3.3 Compare PBM, IP, OC: MBB 4-2-2-6 ..138

3.4 Compare PBM, IP, OC: Cantilever 16-2-2-5 ..139

3.5 Compare PBM, IP, OC: Bridge 16-2-2-5 ...139

3.6 Compare PBM, IP, OC: MBB 16-2-2-5 ...139

3.7 Large-scale Cantilever mx-my-mz-L ... 144

3.8 Large-scale Bridge mx-my-mz-L ... 145

3.9 Large-scale MBB mx-my-mz-L ... 145

3.10 PBM, GMG-MINRES: Detailed statistics ... 152

3.11 AMG: default aggregation ... 152

3.12 AMG: aggregation on K(ρ) ..153

3.13 AMG: single aggregation on all-solid K(ρ)...154

3.14 Aggregation strategies: test problems ... 157

3.15 Aggregation strategies: solver iterations ... 158

3.16 Aggregation strategies: CPU time ... 158

3.17 Unstructured large-scale problems ... 160

3.18 Iterations required by the MG preconditioned CG and MINRES solvers

for the final PBM system. .. 163

3.19 CPU time (in seconds) required by the MG preconditioned CG and

MINRES solvers for the final PBM system. Time values are rounded

and do not include prolongation operator setup time. 164

iv

3.20 Iterations required by the MG preconditioned CG and MINRES solvers

for final IP system. .. 164

3.21 CPU time (in seconds) required by the MG preconditioned CG and

MINRES solvers for the final IP system. Time values are rounded

and do not include prolongation operator setup time. 165

3.22 Approximate condition numbers for the final PBM and IP system

matrices. .. 166

A.1 IP: CG vs. MINRES, L = 5 .. 188

A.2 IP: CG vs. MINRES, L = 6 .. 189

A.3 PBM: CG vs. MINRES, L = 5 ... 189

A.4 PBM: CG vs. MINRES, L = 6 ... 192

A.5 Aggregation strategies: solver time ... 192

A.6 Aggregation strategies: multigrid setup time .. 193

v

(

NOTATION

Scalars, vectors and matrices

a ∈ R Real scalars (italicized)

a ∈ Rn n–dimensional real vectors (bold)

(a, b, c) Compound vector, equivalent to aT, bT, cT T

aI = (ai)i∈I ∈ R|I| Set-indexing notation for vectors a ∈ Rn and sets

I ⊂ {1, . . . , n}

a ≤ b ai ≤ bi for all i

A ∈ Rn×n Matrices (uppercase, upright)

AIJ = [aij]i∈I,j∈J ∈ R|I|×|J | Set-indexing notation for matrices

AI:, A:J Like above, with J , I = {1, . . . , n}, resp.

A 0 A is positive definite, i.e. dTAd > 0 for all d ∈ Rn \ {0}

A 0 A is positive semi-definite, i.e. dTAd ≥ 0 for all d ∈ Rn

Canonical vectors and matrices

1 = (1, . . . , 1)T Vector of ones of appropriate dimension

0 Zero vector

V = diag{v} Diagonal matrix produced by a vector

I = diag{1} Identity matrix of appropriate dimension

0 Zero matrix of appropriate dimension

1

CHAPTER 1

INTRODUCTION

Perhaps the earliest work that can be credited as a contribution to the field of

structural optimization is the article by Michell [87]. In it, Michell identified the

shape of truss structures to support a given set of external forces using a minimal

amount of material, without exceeding prescribed stress limits in any of the bars.

This is but one of many possible examples of a structural optimization problem: one

aims to find the specifications of a physical structure that is optimal with respect

to a certain objective, such as the amount of material used or the overall stiffness,

while at the same time satisfying a set of constraints. The latter are given by the

governing equations of the mathematical model of the underlying physical scenario

and any other quantifiable restrictions on the structure. The problem also needs to

define parameters that we can adjust in order to optimize the structure, which are

called design variables. They typically parameterize the geometry of the structure,

but can comprise other properties, such as material constants. The choice of pa-

rameterization leads to different types of structural optimization problems. If the

design variables specify the dimensions of pre-defined structural features, such as

the width, length or cross-sectional area of ribs or trusses, for example, we speak of

sizing optimization. Allowing for a more general variation of the boundary of an ini-

tial design brings us into the territory of shape optimization. If the design variables

determine the structure’s geometry in an even more flexible manner, by prescribing

2

material distribution, for instance, then we are dealing with topology optimization.

The contributions of this thesis fall into this last category. The distinctions between

the sub-disciplines of structural optimization are not always clear cut and the brief

definitions given here may by many be seen, rightfully, as oversimplifications. For a

comprehensive introduction to structural optimization, see for example [62], or the

much-cited book by Bendsøe and Sigmund [22], a standard reference, in particular

for topology optimization.

After the article by Michell, it was not until the 60s and 70s that academic interest

in this subject picked up. These early contributions were predominantly analytical

treatments of structural optimization problems, see for example [63]. Research ef-

forts began to focus on numerical methods for topology optimization on discretized

design domains in the 80s, e.g. [21], which also saw the introduction of the popular

solid isotropic material with penalization (SIMP) method for the approximation of

material behaviour in designs with voids [18].

Promising research in algorithms and increased availability of computing power

prompted the development of commercial software for structural optimization in

the 90s. Topology optimization, in particular, has gained importance for practical

applications in light of recent advances in additive manufacturing, which facilitates

the realization of complex optimal designs, see for example [28, 41]. The scope

of topology optimization has greatly expanded in recent decades. Various types of

structural responses have been successfully incorporated as objectives or constraints,

and problems are taken from a wide range of areas beyond solid mechanics, such

as fluid dynamics, thermodynamics, or multi-physics, among others [22]. While

there is naturally still some discrepancy between academic research and widespread

commercial applications, topology optimization is nowadays utilized in many areas

of engineering, in particular in the automotive industry [37] and the aircraft industry

[137].

The specific parameterization of the design topology has a profound influence on

3

the resulting mathematical problem, its properties and the efficiency of the methods

used to solve it. The most common approach is to model the material distribution

by density values ρi assigned to each element in the mesh that is used for the numer-

ical analysis of the structural response, usually via the finite element (FE) method

[94]. Discretizing the design in this way gives us a finite-dimensional problem. We

further relax it so that instead of enforcing a strict distinction between void (ρi = 0)

and solid (ρi = 1) elements, we allow density values within the range [0, 1], so that

the problem becomes continuous. In order to still obtain an optimal solution that

approximates a 0 − 1 design, the SIMP method [18, 19] uses a nonlinear function to

map element density to material constants so that intermediate density values are

penalized. If we instead prescribe a linear relation between density and stiffness, we

arrive at the variable thickness sheet (VTS) problem [110, 97, 22]. In two dimen-

sions, the VTS formulation models a sheet under plane stress with varying thickness

parameterized by the design variables. This physical interpretation does not extend

to three dimensions, in which case the VTS problem can be seen as a further re-

laxation of the SIMP-based topology optimization problem. Although the SIMP

method is much more prevalent in academic as well as industrial applications, the

VTS formulation permits the use of more efficient optimization algorithms. We will

consider the latter in this thesis and address limitations in regards to an extension

to the SIMP formulation.

Other approaches than the above should be mentioned for the sake of complete-

ness. One can adhere to the element-based paradigm of the SIMP or VTS approach,

but assign more than a single variable per element, which are typically related to

the material constants in some way. Examples are homogenization methods, see for

example [21], or free material optimization, e.g. [138]. Going along a different route

entirely, level-set methods have also become popular for topology optimization, see

for example the review by Dijk et al. [42], or the much-cited papers by Allaire, Jouve,

and Toader [7] and Wang, Wang, and Guo [127].

4

In spite of the technological advance in computer hardware seen since the early

days of topology optimization, the large computational cost remains one of the main

challenges in its application. Obtaining a detailed design requires a high resolution of

the discretization of the problem domain, which corresponds directly to the number

of variables in the structural analysis and optimization problem. The linear systems

that arise in each iteration of the optimization algorithm are accordingly very large,

so that constructing and, in particular, solving them constitutes a significant part

of the overall computational work. A prominent example of the resource demands

of large-scale topology optimization is the article by Aage et al. [3], in which the

optimal design for an aeroplane wing, discretized by more than one billion finite

elements, was computed over several days using 8000 cores on a supercomputer.

A considerable amount of research has been dedicated to reducing the computa-

tional cost of topology optimization. Tackling the problem on the implementation

level, different authors have investigated the use of parallel computing [25, 125,

46, 2, 1] and graphics card programming [116, 134, 39]. Others have focussed on

decreasing the size of the problem. For example, Nguyen et al. proposed a multi-

resolution approach [91, 92], using a coarser mesh for the structural analysis than

for the density. Wang, Kang, and He also used separate meshes in [129], refining

the mesh for the nodal density values adaptively only where a higher resolution was

required. In [83], Lazarov studied the applicability of multi-scale FE methods to

topology optimization.

Choosing the right technique to solve the linear systems in each optimization iter-

ation is another point that is critical to improving efficiency. In [10], Amir, Bendsøe,

and Sigmund reused information from previous iterations to form a reduced basis

for the solution, employing a direct solver for the resulting reduced system. For

large-scale problems, iterative solvers are generally more efficient, especially if an

exact solution is not required [114, 131]. Among these, the class of Krylov solvers

[114] is of particular importance. These methods find an approximate solution to

5

a linear system such that it minimizes a specific functional on a subspace whose

dimension increases with each solver iteration. For symmetric systems, the conju-

gate gradient (CG) [64] and the minimal residual (MINRES) [95] method are two

particularly successful Krylov solvers. While the former is one of the most widely

used iterative methods for symmetric positive definite systems, the latter can also

solve indefinite (even singular) symmetric systems. Wang, de Sturler, and Paulino

proposed an approach to recycle Krylov subspaces in a MINRES solver for topology

optimization in [128]. Amir, Stolpe, and Sigmund used approximate solutions to

the linear systems obtained from the CG method in [11], where the accuracy of the

solution was adapted to the progress of the optimization.

A crucial component of any performant Krylov solver is preconditioning, which

improves the spectral properties of the linear system, drastically reducing the num-

ber of solver iterations required to achieve a certain precision. The system matrix

arising from the FE analysis typically becomes more ill-conditioned as the mesh is

refined and the system size increases. An optimal preconditioner would ensure that

the number of solver iterations needed to reach a given accuracy are not only small

but independent of the system size. Multigrid methods [29, 61, 33] have become

widely used as preconditioners, for the reason that they have the aforementioned

property [130], at least when used on systems derived from discretized partial dif-

ferential equations. The multigrid paradigm is based on a hierarchy of meshes –

or grids – with decreasing resolution. The system matrix and residual of the lin-

ear system are projected onto these coarser grids and the approximate solution for

the finest grid – the one on which the problem is originally defined – is recursively

improved on these lower levels. This approach leads to a mesh independent conver-

gence behaviour. Although multigrid methods are themselves linear solvers, they

are often found to be more effective when used in combination with Krylov solvers.

A multigrid-preconditioned CG method with an adaptive solver tolerance similar

to [11] was used in [9]. Combining this with the reduced basis approach from [10],

Amir proposed a recycling of the coarse-grid system matrices for subsequent opti-

6

mization iterations [8]. Note that the idea of reusing a preconditioner based on a

previous design iterate had been employed earlier by Kirsch, Kočvara, and Zowe in

[74]. Multigrid-preconditioned CG solvers were also used in [1, 3, 80], among oth-

ers. Others have used multigrid methods as linear solvers for topology optimization

problems, rather than just as preconditioners. Maar and Schulz used a multigrid

solver in an algorithm for compliance minimization [85] and Stainko proposed a

multigrid solver for systems arising in problems with stress constraints [119]. In

both cases, the linear systems were indefinite saddle-point systems, which required

a much more involved multigrid setup compared to the standard method for positive

definite systems.

The basic multigrid methodology, also called geometric multigrid (GMG), assumes

a grid hierarchy obtained through simple, uniform mesh refinement, so that the

projection operators can be defined by simple interpolation. This requires the top-

level mesh to be highly structured and regular. If such a grid hierarchy cannot be

easily obtained, for example because the design domain is not defined by a uniform

mesh, we need to use algebraic multigrid (AMG) methods [47], which determine

coarse grids and projection operators based solely on the system matrix entries.

For certain types of problems, it can even make sense to use them when GMG

methods would also be applicable. In [3], a hybrid GMG-AMG method was used

as the algebraic approach was more efficient on coarser levels. Similar results were

presented in [96], which compared the performance of GMG and AMG methods for

a range of topology optimization problems.

Another aspect of large-scale topology optimization that has not received as much

attention as the points discussed above is the choice of the optimization method.

While established general-purpose methods like the interior point (IP) have some-

times been used for topology optimization, see e.g. [85, 70, 119, 120], for problems

based on the SIMP approach, the most common methods are the method of moving

asymptotes (MMA) [121] and the optimality criteria (OC) method [111, 136]. In a

7

benchmarking paper by Rojas-Labanda and Stolpe, these were compared to a range

of methods implemented in general-purpose optimization libraries [109]. In terms of

the number of required iterations, the latter very often performed better, however,

they lost some or all of that advantage when it came to computational time. A

plausible explanation is that the OC method and MMA are first-order methods,

using only function and derivative values at each iteration, whereas the other meth-

ods are second-order methods and also make use of Hessian information (or BFGS

[93] approximations thereof). While second-order methods are known to generally

converge in fewer iterations than first-order methods, the second-order information

can make them more computationally expensive.

The results from the benchmarking paper do not fully extend to the VTS for-

mulation. To show this will be the first contribution of this thesis. We propose

two second-order methods for the minimum compliance VTS problem. The first is

a primal-dual IP method [52, 132]. It is based on previous contributions by Koč-

vara and Mohammed [80] and Jarre, Kočvara, and Zowe [71]. Maar and Schulz also

proposed an IP method for (SIMP-based) compliance minimization in [85], which

however differs strongly from ours in how the linear systems are solved. Starting

from the asymmetric, indefinite system given by the primal-dual IP approach, we

reduce it in order to obtain an equivalent symmetric positive-definite system. We

solve this by a multigrid-preconditioned Krylov solver. In contrast, the IP algo-

rithm in [85] involved solving an indefinite system by a multigrid method designed

specifically for such systems.

Our second method is a nonlinear rescaling or penalty-barrier multiplier (PBM)

method. Proposed by Polyak and Teboulle [103] and Ben-Tal and Zibulevsky [17],

based on the modified barrier methods due to Polyak [100], this class of algorithms

attempts to overcome the notorious ill-conditioning of the linear systems observed

in IP methods as one approaches the optimal solution. It has been successfully

used for large-scale optimization, for example in [77] and the optimization software

8

package Pennon [76], and for topology optimization in [79]. We apply the PBM

approach not to the VTS problem itself, but to its dual, thus avoiding certain

complications inherent in the primal formulation. To solve the linear systems, we

perform a reduction very similar to that used in our IP method and solve it by the

same multigrid-preconditioned Krylov solver.

We compare the performance of our two methods to that of the OC method, and

reach the clear verdict that the latter is not competitive for this problem. We further

compare the IP and PBM method on large-scale problems with more than a million

finite elements. In this case, the PBM method proves to be both more robust and

efficient than the IP method. As a bonus, the dual VTS problem allows for an

easy integration of unilateral contact constraints. We include large-scale examples

of problems featuring such constraints, solved by the PBM method.

The second contribution of this thesis is an investigation of different multigrid

setup strategies. Peetz and Elbanna recently showed that AMG methods can be

preferable to GMG methods as preconditioners in topology optimization, even on

structured meshes, due to the material anisotropy that comes with the high-contrast

density distribution seen in SIMP-based optimal designs [96]. While the computa-

tional overhead of the AMG is considerably larger than that of the GMG method,

this is in some cases outweighed by the reduction in solver iterations. As we will

show, the same cannot be said for the VTS problem, presumably due to smaller lo-

cal density variations. We therefore focus on finding the most efficient AMG setup

technique for problems on unstructured meshes, where GMG is not an option. The

AMG approach we use in this thesis is the smoothed aggregation method intro-

duced by Vaněk, Mandel, and Brezina [124], which has gained popularity due to its

effectiveness [47].

The thesis is structured as follows: Chapter 2 covers the mathematical prerequi-

sites. Section 2.1 introduces basic concepts of nonlinear optimization, and the two

general purpose methods we will later apply to our specific optimization problem.

9

Section 2.2 very briefly outlines the finite element method for linear elasticity and its

extension to unilateral contact constraints. The compliance minimization problem

for the variable thickness sheet is reviewed in some detail in Section 2.3, where we

also include a uniqueness result for the case of a non-zero lower bound on the element

densities. We finish Section 2.3 with a description of the optimality criteria method

for the VTS problem. In Section 2.4, we summarize relevant concepts and results

for Krylov solvers and multigrid methods, both geometric and algebraic. Chapter 3

constitutes the main part of this thesis. A detailed description of our IP and PBM

algorithm for the VTS minimum compliance problem and the procedure for solving

the linear systems is given in Section 3.1. In Section 3.2, we study and compare the

performance of the IP, PBM and OC method on a wide range of problems. The IP

and PBM algorithms are applied to large-scale examples. In order to solve problems

defined on unstructured meshes as efficiently as possible, we propose and compare

different setup strategies for the smoothed aggregation AMG preconditioner, which

we then use to solve unstructured large-scale problems by the PBM method. Sec-

tion 3.3 addresses limitations of our optimization algorithm when it comes to an

extension to the SIMP formulation. In Chapter 4, we summarize our results and

draw conclusions to guide future research.

10

CHAPTER 2

BACKGROUND

This chapter introduces the theory required to understand the problem we wish

to solve and the methods we use to do so. Since it is first and foremost an opti-

mization problem, we begin by laying out basic concepts and results in nonlinear

optimization. We also describe two general solution algorithms, the interior point

and penalty-barrier multiplier method, which we will later apply to our problem.

To even formulate this problem, which originally comes from the field of solid me-

chanics, we need to cover a few fundamentals of linear elasticity as well as the finite

element method, used to numerically approximate the behaviour of solid structures,

which we do in Section 2.2. Building on this, we can derive the minimum compliance

topology optimization problem in Section 2.3, which also includes a third optimiza-

tion algorithm, the optimality criteria method, which is specific to this problem.

Finally, Section 2.4 focuses on the task of solving linear systems which inherently

arise in each iteration of an optimization algorithm. To do this efficiently is critical

for large-scale applications, where the number of degrees of freedom easily surpasses

a million. We employ Krylov solvers and multigrid methods, which are outlined in

Section 2.4.

As we cover a lot of ground in this chapter, each section apart from Section 2.3 is

limited to a brief introduction and overview. When discussing algorithms, we pri-

11

oritize an accessible presentation over a thorough analysis. The main convergence

properties are generally included, especially where they are relevant to the inter-

pretation of the performance of our implementation in practice, but we refer to the

literature listed in each section for details.

2.1 Optimization

The mathematical problem that lies at the centre of this thesis is a constrained

nonlinear optimization problem. From it arise both questions of a theoretical nature,

like those about the existence and uniqueness of its solutions, and more practical

questions, such as how to efficiently solve the problem at a large scale. It therefore

makes sense to begin with a section which covers the necessary basics of nonlinear

optimization. First of all, we will motivate and define the general form of nonlinear

optimization problems with constraints, after which we will go over some standard

optimality conditions in Section 2.1.1. For proofs and further reading, one may

consult, for example, the comprehensive reference by Nocedal and Wright [93]. We

complement these first fundamentals by some results which are particularly relevant

to the class of convex optimization problems in Section 2.1.2, where we draw mainly

from the book by Boyd and Vandenberghe [27]. Sections 2.1.3 and 2.1.4 describe

two specific methods for solving optimization problems, the interior point method

and the penalty-barrier multiplier – or nonlinear rescaling – method, respectively.

For the former, we largely follow the book by Wright [132] and the comprehensive

review article by Forsgren, Gill, and Wright [52]. For the latter, a more detailed

list of references is given in Section 2.1.4. There is a third optimization method

that we employ in this thesis, however, it is designed specifically for the compliance

minimization problem. We defer a description of this method to Section 2.3.3, after

the discussion of minimum compliance optimization.

In order to somewhat simplify the following treatment of nonlinear optimization,

all functions are assumed to be twice continuously differentiable. This is also gen-

12

erally true for all functions introduced in this thesis, unless otherwise specified.

Now, assume we want to find a point x ∈ Rn at which a function f : Rn → R

attains the smallest possible value. Furthermore, let us require that this point satisfy

certain criteria which limit the possible choices for x to a subset of Rn. We assume

that we can describe this subset by means of real-valued functions, consecutively

labelled, which define a set of inequalities g1(x) ≤ 0, g2(x) ≤ 0, . . . , and equations

h1(x) = 0, h2(x) = 0, . . ., which we refer to as inequality and equality constraints,

respectively. Let I and E denote the corresponding set of label indices. The set

X := {x ∈ Rn | gi(x) ≤ 0 for all i ∈ I, hj(x) = 0 for all j ∈ E}

defined by the constraints is called feasible set and a point x is called feasible if

x ∈ X. Furthermore, if that point satisfies gi(x) < 0 for all i ∈ I, it is called strictly

feasible (with respect to the inequality constraints). We will assume throughout

this thesis that the inequality constraints are topologically consistent, meaning that

the set of strictly feasible points coincides with the relative interior of X. A con-

strained nonlinear optimization problem is the task of finding the smallest value of

the function f (x), called the objective function, over the entire feasible set X and is

commonly formulated as a nonlinear program (NLP) [93, (12.1)]:

min
x∈Rn

f (x) (2.1a)

s.t. gi(x) ≤ 0 , ∀i ∈ I (2.1b)

hj(x) = 0 , ∀j ∈ E . (2.1c)

For a slightly simplified formulation, let us introduce some notation. When we deal

with a set of consecutively labelled functions, such as gi(x) for all i ∈ I, we will

often denote these by a vector-valued function g(x) := (gi(x))i∈I. We extend the

inequality sign to sets of inequalities, interpreted component-wise so that we can

write g(x) ≤ 0, where 0 is a vector of all zeros, instead of gi(x) ≤ 0 for all i ∈ I.

13

x∈Rn

As is commonly done, and without loss of generality, we defined the nonlinear pro-

gram as a minimization problem. By changing the sign of the objective function,

we obtain an equivalent maximization problem. It is straightforward to adjust any

standard definition or theorem for a maximization problem.

The very first question to ask in the discussion of the nonlinear program (2.1)

is what exactly counts as a solution. The answer is given by the following list of

definitions, which can be found in [93, (p. 6 and 306)], for example. In it, we use

N(x) to denote a neighbourhood of a point x, i.e. an open, bounded set which

contains the point itself.

Definition 2.1.1. Let x∗ ∈ X be a feasible point for (2.1). This point is called

(i) a global optimum, global minimum, or global solution if

f (x∗) ≤ f (x) ∀x ∈ X . (2.3)

(ii) a local optimum, local minimum, or local solution if there exists a neighbour-

hood N (x∗) such that

f (x∗) ≤ f (x) ∀ x ∈ N (x∗) ∩ X . (2.4)

(iii) a strict local or strict global minimum, respectively, if (2.3) or (2.4) holds with

strict inequality when x /= x∗.

We can therefore write (2.1) as

min

f (x)

(2.2a)

s.t. g(x) ≤ 0 ,

h(x) = 0 .

(2.2b)

(2.2c)

14

]

(iv) an isolated local optimum, isolated local minimum, or isolated local solution

if there is a neighbourhood N (x∗) such that x∗ is the only local solution in

N (x∗) ∩ X .

While a solution is defined by comparison to other feasible points, there are con-

ditions which allow us to identify or rule out a point x ∈ X as a solution using only

information about the point itself. More specifically, these conditions for optimality

require the first and second order derivatives of the objective function and constraint

functions.

For our purposes, it is convenient to treat the gradient of a function f (x) as a

column vector, i.e. ∇f (x) := (∂f/∂x1, . . . , ∂f/∂xn)T. The Jacobian of a vector-

valued function g(x) ∈ R|I| is composed of the gradients of the components arranged

in columns, i.e. ∇g(x) := ∇g1(x), . . . , ∇g|I|(x) . With the notation out of the way,

we will now turn towards some necessary and sufficient conditions for optimality.

2.1.1 Optimality Conditions

For an unconstrained NLP, i.e. one where X = Rn, one criterion that a point x∗ ∈ Rn

must satisfy to be a local optimum is that the gradient of the objective function

vanishes [93, Theorem 2.2], i.e.

∇f (x∗) = 0 . (2.5)

By using the Taylor expansion of f (x) at x∗, one can show that a non-zero gradient

means that there is a direction in which one can move from x∗ along which the

objective function immediately decreases. Therefore, ∇f (x∗) = 0 is a necessary

optimality condition, however, it does not guarantee that x∗ is optimal. By also

requiring that the Hessian of f is positive definite at x∗, i.e.

∇f (x∗) = 0 and ∇2f (x∗) 0 , (2.6)

15

we obtain a sufficient condition for local optimality [93, (Theorem 2.4)]. Indeed, by

Taylor’s theorem, the positive curvature of f at x∗ tells us that f increases as soon

as one moves away from x∗ (and stays within a certain neighbourhood), making this

point a strict local optimum. Due to the order of the derivatives involved, condition

(2.5) is called a first order and (2.6) a second order optimality condition, respec-

tively. Similar necessary and sufficient conditions exist for the general constrained

NLP (2.1). But while (2.5) and (2.6) tell us if f (x∗) is (potentially) the smallest

objective function value within a neighbourhood of x∗, we are now only interested

in neighbouring points which are also feasible.

In this context, we should first of all introduce the concept of the active set, which

indicates which part of the boundary of the feasible set a point lies on.

Definition 2.1.2. Let x ∈ X be a feasible point for (2.1). The active set at x is

the set of indices of all inequality constraints which are satisfied with equality at x

and is denoted by

A(x) := {i ∈ I | gi(x) = 0} .

A constraint is called active at x if gi(x) = 0, and inactive if gi(x) < 0.

We deviate slightly from [93, (Definition 12.1)], in that we do not include the

index set of the equality constraints in A.

The optimality conditions for (2.1) must account for the geometry of the boundary

of the feasible set. In particular, we need a way to identify the directions in which

we can move from the point x∗ and still stay within X . The standard optimality

conditions for the constrained NLP make use of the Jacobian of the constraints to

characterize “first-order feasible directions” [93]. This is only valid as long as we

know that the constraint functions describe the geometry of the feasible set well

enough. This can be guaranteed if g(x) and h(x) satisfy a so-called constraint

qualification (CQ). One such CQ, which will be used in this thesis, is given in the

following definition, see also [93, (Definition 12.4)]:

16

Definition 2.1.3 (Linear Independence Constraint Qualification (LICQ)). We say

that a feasible point x ∈ X with active set A(x) satisfies the LICQ if the gradients of

all equality constraints and all active inequality constraints are linearly independent.

In other words, if the matrix

∇h, ∇gA(x)

]

has full rank, the LICQ holds at x.

If the LICQ is satisfied at a feasible point, then we can obtain a first order neces-

sary optimality condition [93, (Theorem 12.1)].

Theorem 2.1.4 (Karush-Kuhn-Tucker (KKT) Conditions). Let x∗ ∈ X be a local

solution for the NLP (2.1) at which the LICQ is satisfied. Then there exist vectors λ∗

∈ R|I| and µ∗ ∈ R|E| such that

∇f (x∗) + ∇g(x∗)λ∗ + ∇h(x∗)µ∗ = 0 , (2.7a)

h(x∗) = 0 , (2.7b)

g(x∗) ≤ 0 , (2.7c)

λ∗ ≥ 0 , (2.7d)

g(x∗)Tλ∗ = 0 . (2.7e)

The vectors λ∗ ∈ R|I| and µ∗ ∈ R|E| are called Lagrange multipliers. Lines (2.7c–

2.7e) comprise the so-called complementarity conditions. They imply that λ∗
i = 0 for

any i ∈ I with gi(x∗) < 0 and, conversely, if λ∗
i > 0, then gi(x∗) = 0 ⇔ i ∈ A(x∗).

We say that strict complementarity holds if λ∗
i > 0 for all i ∈ A(x∗). Note that, due

to (2.7c) and (2.7d), (2.7e) may also be written as gi(x∗)λ∗
i = 0 for all i ∈ I.

Remark 2.1.5. Any point x that satisfies the KKT conditions, regardless of whether

or not it is a local optimum, is called a KKT point and together with the associated

Lagrange multipliers λ and µ forms a KKT triple (x, λ, µ).

17

 ∀ ∈ A

∗ T∇

. (2.9)

At first glance, the KKT conditions look very different from the simple first order

condition (2.5). In order to highlight some similarities, we can define a function,

called the Lagrangian [93, (12.33)],

L(x, λ, µ) := f (x) + g(x)Tλ + h(x)Tµ . (2.8)

The first KKT condition, (2.7a), is now equivalent to ∇L(x∗, λ∗, µ∗) = 0, cf. (2.5).

The second and third conditions are simply the requirement that x∗ be a feasible

point.

We can also formulate a second order sufficient optimality condition. It is similar

to (2.6) in that it involves a positive-definite Hessian. However, this definiteness is

now limited to a set of feasible directions and is furthermore required of the Hessian

of the Lagrange function, since this accounts for the influence of the constraint

functions. We first define a set of directions which are related to the KKT conditions.

We assume we are given a KKT point x∗ with inequality constraint multipliers λ∗.

The critical cone at (x∗, λ∗) is defined as [93, (12.53)]

C(x∗, λ∗) :=

d ∈ Rn :

∇hj(x∗)Td = 0 ∀j ∈ E ,

= 0 i (x∗) with λi > 0
gi(x) d

 ≤ 0 ∀i ∈ A(x∗) with λi = 0

A succinct interpretation of C made in [93] is as the cone of feasible directions at

(x∗, λ∗) “for which it is not clear from first derivative information alone whether

f will increase or decrease”. If we are given enough second derivative information

relating to all directions in C, this can help us verify, not only that x∗ is a local

optimum, but that it is a strict local optimum. This is detailed in the following

theorem which describes sufficient optimality conditions based on the Hessian of the

Lagrangian, see also [93, (Theorem 12.6)].

Theorem 2.1.6 (Second Order Sufficient Optimality Conditions). Let (x∗, λ∗, µ∗)

18

x

be a KKT triple for (2.1). Further assume that the Hessian of the Lagrangian is

positive definite on the critical cone C, i.e.

dT ∇2 L(x∗, λ∗, µ∗) d > 0 ∀ d ∈ C(x∗, λ∗), d /= 0 . (2.10)

Then x∗ is a strict local optimum for (2.1).

We have stated conditions that allow us to identify a solution for the general

constrained NLP. Some of the above results are stronger for the class of convex

optimization problems. The next subsection will introduce the basic definitions and

some additional results for this class. We will also touch upon the concept of duality,

which is of particular importance for convex problems.

2.1.2 Convexity and Duality

The following is a brief treatment of convex optimization and duality, mainly fol-

lowing [27]. We start with a quick revision of basic definitions and properties.

Definition 2.1.7 (Convex set [27, (p. 23)]). A set X ⊂ Rn is called convex if, for

all x, y ∈ X and t ∈ [0, 1], the following holds:

(1 − t)x + ty ∈ X .

Definition 2.1.8 (Convex function [27, (3.1)]). A function f : X → R defined on

a convex set X ⊂ Rn is called convex if, for any x, y ∈ X and for t ∈ [0, 1],

(1 − t)f (x) + tf (y) ≥ f ((1 − t)x + ty) .

If this holds with strict inequality for 0 < t < 1 and x /= y, then f is called strictly

convex.

There are a number of criteria that imply convexity of a differentiable function,

19

see for example [27, (p. 69ff.)], which are listed in the next lemma.

Lemma 2.1.9. A function f is

• convex if and only if ∇f (x)T(y − x) ≤ f (y) − f (x) for all x, y ∈ X.

• strictly convex if and only if ∇f (x)T(y − x) < f (y) − f (x) for all x, y ∈ X

with x /= y.

• convex if and only if ∇2f (x) 0 for all x ∈ X.

• strictly convex if ∇2f (x) 0 for all x ∈ X.

Typical examples of convex (but not strictly convex) functions are affine functions

and quadratic functions f (x) = xTAx for some matrix A 0 but A ';/ 0, while the

same function for A 0 is strictly convex.

We can apply the definitions of a convex function and a convex set to the NLP (2.1)

to obtain a convex optimization problem, which has a number of useful properties.

Definition 2.1.10 (Convex optimization problem). Regard the NLP (2.1). If the

feasible set X is a convex set and the objective function f is convex on X, then (2.1)

is called a convex optimization problem [67].

This leads to the question of when the feasible set is convex, which is answered

by the following lemma, see also [27, (4.15)].

Lemma 2.1.11. The feasible set X defined by (2.1b) and (2.1c) is convex if ev-

ery inequality constraint function gi, i ∈ I is convex and every equality constraint

function hj, j ∈ E is affine.

The next result is one of the most elementary and important results for convex

optimization, see also [27, (p. 138)].

Theorem 2.1.12. If x∗ is a local solution to a convex optimization problem, then

20

it is also a global solution.

With the above basics of convex optimization covered, we move on to the concept

of duality. While this is not exclusive to convex problems, certain results which are

relevant to this thesis are and we will therefore focus on the convex case for much

of our discussion of duality.

Let us recall the definition (2.8) of the Lagrangian function L(x, λ, µ) for the

NLP (2.1). We have already seen that it plays a role in the necessary optimality

conditions, but its significance for the NLP goes beyond that. Let us define the

extended real-valued function p : Rn → R ∩ {∞} as

p(x) := sup

λ∈R|I|, λ≥0, µ∈R|E|

= sup
λ∈R|I|, λ≥0, µ∈R|E|

L(x, λ, µ)

f (x) + g(x)Tλ + h(x)Tµ .

For a fixed x which is infeasible, so that gi(x) > 0 for at least one i or hj(x) /= 0

for at least one j, we can make the Lagrangian arbitrarily large, which gives us

p(x) = ∞. For a feasible x, on the other hand, the largest possible value of the

weighted constraint terms is 0. We conclude that

p(x) =

f (x) if x ∈ X ,

∞ otherwise.

Since we assume that the original NLP is feasible, the infimum of p is finite and the

minimization problem (2.1) can also be written as an unconstrained minimization

of p(x):

min(2.1) = inf p(x) = inf sup L(x, λ, µ) . (2.11)
x∈Rn x∈Rn λ≥0, µ

We can obtain the dual of this problem [27, (5.16)] by swapping the inf and sup

terms, giving us

sup inf
λ≥0, µ x∈Rn

L(x, λ, µ) = sup
λ≥0, µ

d(λ, µ) . (2.12)

21

≤

Here, we have introduced d(λ, µ) := infx∈Rn L(x, λ, µ), which is called the dual

function [27, (p. 216)]. Accordingly, (2.12) is called the dual problem. We refer to

(2.11) analogously as the primal problem, and to p(x) as the primal function. In

this context, we also call the optimization variables x the primal variables and the

Lagrange multipliers (λ, µ) the dual variables [27, (p. 215)]. We say that (λ, µ) is

feasible for the dual problem if λ ≥ 0. An essential relationship between p(x) and

d(λ, µ) is that the latter gives a lower bound for the former and, conversely, the

former is an upper bound for the latter. This is called weak duality [27, (p. 225)].

Theorem 2.1.13 (Weak duality). For any x feasible for (2.11) and (λ, µ) feasible

for (2.12), we have that

In particular,

d(λ, µ) ≤ p(x) .

d∗ := sup d(λ, µ) inf p(x) =: p∗ .
λ≥0, µ x

For primal and dual feasible (x, λ, µ), the difference between the primal and dual

function values

δ(x, λ, µ) := p(x) − d(λ, µ) ≥ 0

is called the duality gap [27, (p. 226)]. The case δ = 0 is called strong duality

[27, (ibid)]. A direct consequence of the weak duality theorem is that any feasible

(x, λ, µ) at which strong duality holds is primal and dual optimal. More specifically,

x is a global solution for the primal problem and (λ, µ) is a global dual solution.

Trivially, the optimal values of the primal and dual functions are equal, i.e. p∗ = d∗,

in this case. A point at which strong duality is obtained can also be characterized

as a saddle-point of the Lagrangian, defined as follows:

Definition 2.1.14. Let x̄ be primal feasible and λ̄ , µ̄ be dual feasible. The point

(x̄, λ̄ , µ̄) is called a saddle-point of the Lagrangian if it satisfies

L(x̄, λ, µ) ≤ L(x̄, λ̄ , µ̄) ≤ L(x, λ̄ , µ̄) ,

22

for all primal feasible x and dual feasible (λ, µ) [27, (p. 238)].

Strong duality does not generally hold at the optimal solution, not even for convex

problems. However, by imposing the following condition on (2.1), we can guarantee

that p∗ = d∗, see [27, (Section 5.2.3)].

Definition 2.1.15. We say that the optimization problem (2.1) satisfies Slater’s

condition if there exists a x ∈ X which is strictly feasible with respect to the

inequality constraints, i.e.

g(x) < 0 .

Theorem 2.1.16. Let (2.1) be convex. If Slater’s condition is satisfied, then strong

duality holds at the solution of (2.1).

For convex problems which have only inequality constraints, Slater’s condition

doubles as a constraint qualification. What is more, it is a “global” CQ, meaning

that from the existence of a single strictly feasible point it follows that a constraint

qualification is satisfied at all feasible points. This is very convenient since it lets

us apply the KKT conditions at every point in the feasible set. But even without

Slater’s condition, the KKT conditions have special significance for convex problems:

They are not only necessary – provided a CQ holds – but also sufficient optimality

conditions, [27, (p. 244)].

Theorem 2.1.17. Let the NLP (2.1) be convex. Any triple (x∗, λ∗, µ∗) that satisfies

the KKT conditions (2.7) is primal and dual optimal with zero duality gap, i.e.

sup

λ≥0, µ
d(λ, µ) = d(λ∗, µ∗) = p(x∗) = inf p(x) .

x

The takeaway from this section should be that, given a convex optimization prob-

lem which satisfies Slater’s condition, solving it is equivalent to solving its dual. In

some cases, the dual problem of a convex NLP can be formulated explicitly in the

23

form of a standard NLP, in which the primal variables take the role of Lagrange

multipliers. It can sometimes be easier to solve this dual problem than the original

one. Some optimization algorithms provide the Lagrange multipliers alongside the

optimal solution, which means we can retrieve the primal solution from the dual

solution. Each of the methods described in the next two sections belongs to this

class of algorithms.

2.1.3 Interior Point Methods

At the time of writing, interior point (IP) methods are no doubt among the most

popular solution methods for nonlinear optimization problems. They were first de-

veloped as polynomial-in-time algorithms for linear programming in the 1980s, start-

ing with the seminal paper by Karmarkar [72]. Soon after, it was shown in [55] that

Karmarkar’s approach is closely connected to classical barrier methods. The latter

had already been studied quite extensively about twenty years earlier [51], but had

not received a lot of attention since. This was because their potential for fast con-

vergence was not unlocked until Karmarkar’s contribution, which sparked renewed

interest in the field. In the following years, the scope of IP methods was gradually

extended beyond linear programming, first to quadratic and complementarity prob-

lems, then to general convex problems [90], and finally to nonlinear programming

[13]. Among the various different approaches that have been developed and stud-

ied within the general IP framework, arguably the most popular are those grouped

under the term primal-dual methods.

This section gives a very basic introduction to primal-dual interior point methods

for nonlinear optimization, covering only what is necessary for the specific algorithm

proposed in Chapter 3 for the compliance minimization problem. For a more com-

prehensive overview, we refer to [52] and the references therein. We also recommend

the book by Wright [132], which is an excellent self-contained resource on primal-

dual methods for linear programming and a good introduction to the IP concept in

24

x∈Rn

−∞ 3 1→ − −

general, since many concepts originally derived for the linear case have found their

way into nonlinear algorithms.

The basic idea behind IP methods is usually illustrated in one of two ways. The

first is via logarithmic barrier functions, which provide a tool to approximate an

inequality constrained problem by an unconstrained one. Given an NLP

min{f (x) | gi(x) ≤ 0 ∀i ∈ I } , (2.13)

with only inequality constraints, we replace it by the unconstrained minimization

problem

min
x

φs(x) , where φs(x) := f (x) − s ln(−gi(x)) . (2.14)
i∈I

The logarithmic barrier function1 φs with barrier parameter s > 0 is only defined for

strictly feasible points. When x approaches the boundary of the feasible set, i.e. as

gi(x) → 0 for one or more i, φs(x) goes to infinity. We can therefore guarantee that

the solution of the barrier problem (2.14) lies in the interior of X – hence the name

“interior point method”. Furthermore, by changing the value of s, we can specify

how much φs deviates from f in the interior of X. As s goes to zero, φ(x) → f (x)

for all strictly feasible x. If we denote by x(s) the solution of (2.14) for a given

s > 0 and by x∗ the minimum of the original constrained problem (2.13), one might

intuit that x(s) → x∗ as s → 0. This supposition can be confirmed under relatively

mild conditions, see for example [52, Theorem 3.10]. We have, in effect, replaced

the inequality constrained problem (2.13) by a family of unconstrained problems,

each member of which we can in theory solve by an unconstrained optimization

algorithm, such as, for example, the Newton method [93].

Equality constraints can be incorporated into the approach by adding them to

1In some places in the literature, the term “barrier function” is used to refer not to the entire
objective function φs but only to the penalization function (, 0) g ln(g). This seems
to be a matter of preference. We chose our nomenclature for consistency with later sections.

25

(2.14). For the resulting system,

min{φs(x) | h(x) = 0 } , (2.15)

the KKT conditions do not feature complementarity-related inequalities and are thus

just a system of equations. As before, we can use the Newton method to obtain a

solution, this time applied to the KKT system rather than just to ∇φs(x) = 0. Note

that this approach, which is sometimes called the Lagrange-Newton method, is also

an integral component of sequential quadratic programming (SQP) algorithms [93].

For this reason, the term “barrier-SQP methods” is sometimes used when applying

it within the barrier method framework [52].

The IP methodology can alternatively be derived starting from the KKT con-

ditions (2.7) for the NLP. Recall that the complementarity conditions (2.7c–2.7e)

imply that gi(x)λi = 0 for all i ∈ I. We can relax these conditions by instead

requiring −gi(x)λi = s for all i ∈ I for some s > 0. We choose the sign on the

left-hand side so that the condition is viable for strictly feasible primal and dual

points. Along with equations (2.7a) and (2.7b), we then get the perturbed KKT

conditions [52, (p. 571)]

∇L(x, λ, µ) = ∇f (x) + ∇g(x)λ + ∇h(x)µ = 0 ,

Λ g(x) = −s1 ,

h(x) = 0 ,

(2.16)

where Λ = diag{λ} is a diagonal matrix of Lagrange multipliers and 1 is a vector

of ones. We now have a nonlinear system of equations of size n + |E| + |I| for

the unknowns x, λ, and µ, which we can solve by the Newton method. This is

equivalent to the system we obtain from the barrier method approach described

earlier on. Indeed, while the Lagrange multipliers λ do not appear in the KKT

conditions for (2.15), by the substitution λi := −s/gi(x) for all i ∈ I, we can obtain

(2.16). In the Newton method, we solve a system obtained from a linearization of

x

26

∇h(x)T 0 0 ∆µ h(x)

(2.16) for the increments (∆x, ∆λ, ∆µ). The linear system is given by

∇2L(x, λ, µ) ∇g(x) ∇h(x)

∆x

∇L(x, λ, µ)

 Λ∇g(x)T G(x) 0 ∆λ = − Λ g(x) + s1 , (2.17)

where G(x) := diag{g(x)}. Using a step size κ ∈ (0, 1], we update the current

solution by these increments:

(x, λ, µ) ← (x, λ, µ) + κ(∆x, ∆λ, ∆µ) . (2.18)

We then linearize (2.16) at this new iterate and repeat the procedure until some

convergence criterion is satisfied.

Just as we did for the minimizer x(s) of (2.14), we can denote the solution of

(2.16) as a function of s. The map s 1→ (x(s), λ(s), µ(s)), with s > 0, is called

the central path. Given a monotonically decreasing sequence of sk → 0, we could

attempt to find the points (x(sk), λ(sk), µ(sk)) on the central path, giving us a

sequence that converges to a KKT point of (2.13). We could achieve this, for ex-

ample, through solving (2.16) by the Newton method, using the previous solution

(x(sk−1), λ(sk−1), µ(sk−1)) as the initial guess. While this is indeed the general idea

behind the most prevalent class of IP methods – aptly called path-following methods

– a linchpin of their efficiency is the realization that it suffices to follow the path

closely, rather than trace it exactly. As a consequence, we do not run the Newton

method until convergence for each sk, but only for a few – or even just a single –

iteration. The Newton method is known for displaying quadratic convergence once

the iterates get close enough to the exact solution, assuming that the norm of the

Hessian is bounded [93]. As long as we choose the rate at which sk decreases ap-

propriately, each solution for the kth Newton system will be sufficiently close to the

solution of the (k + 1)th system that a few Newton iterations keep us close enough

to the central path to ensure that, as sk → 0, the IP iterates (x(sk), λ(sk), µ(sk))

27

¯ ¯ ¯

converge to a KKT point (x∗, λ∗, µ∗) of the original problem (2.1).

A more detailed discussion of how to solve the Newton system is reserved for later

sections. Since the system matrix is generally indefinite, it can be advantageous

to reduce the system by block elimination to obtain a matrix more amenable to

efficient solution methods. Section 3.1.1 describes an implementation of the IP

method for the compliance minimization problem and the treatment of the Newton

system arising from it. To stay within a certain neighbourhood of the central path,

it is not even necessary to compute the Newton step to machine precision accuracy.

Inexact IP methods, see for example [14, 36], use iterative solvers – briefly reviewed

in Section 2.4.1 – which can reduce computational cost and be better suited to large-

scale problems. Convergence proofs typically require that the accuracy of the solver

is coupled to the progress of the IP iterations.

One important aspect of primal-dual interior point methods still remains to be

addressed, which is the choice of the step size κ in (2.18). A well-known result

for the Newton method is that within a neighbourhood of a solution that satisfies

certain regularity criteria, one can always choose the step size κ = 1 with guaranteed

superlinear or even quadratic convergence to the solution. In our case, however,

as s becomes smaller and we move closer to the boundary of X, taking the full

Newton step will inevitably yield an iterate which is primal and/or dual infeasible,

i.e. gi(x) > 0 or λi < 0 for some i. Not only is the objective function of the

minimization problem (2.15), which motivated the IP approach, undefined outside

the interior of X, but zero or negative values in the matrix blocks Λ or G in (2.17)

can lead to complications when solving this system. For these reasons, κ is usually

chosen such that the iterates always (just) remain strictly feasible. Finding such a

value is not in general a trivial task, but in the special case of bound constraints of

the form xi ≤ xi ≤ x̄i, with x, x̄ ∈ Rn, x < x̄, this is straightforward. Note that we

can also choose different step sizes κx, κλ, κµ for the different components of the

iterate in (2.18).

28

Typical convergence results for IP methods show that the iterates converge to-

wards a KKT point of (2.1) which is also a solution under suitable regularity condi-

tions and if κ is reduced appropriately, see [52, (Section 5.1)] and references therein.

The use of inexact Newton methods is justified by convergence analyses like that

in [57], which examined a primal-dual method for nonlinear inequality and linear

equality constraints and showed that superlinear convergence is guaranteed as long

as the Newton system is solved approximately to within a certain accuracy. An

issue that may arise in IP methods is that of ill-conditioning of the system matrix

in (2.17) owing to values in both Λ and G approaching zero. While it is often much

less of a problem than might be expected in practice [52], it proved to be a major

drawback of the IP method for the minimum compliance problem as discussed in

Chapter 3. A different class of methods which, for our case, manages to avoid this

pitfall is described in the following section.

2.1.4 Nonlinear Rescaling and Penalty-Barrier Multiplier
Methods

As mentioned in the previous section, IP methods and, in particular, classical barrier

methods suffer from ill-conditioning of the Newton system matrix as the iterates

approach the boundary of the feasible set X. To bypass this well-known problem,

Polyak proposed so-called modified barrier function methods [100], see also [88, 56].

These are the basis for penalty-barrier multiplier methods which are employed in

this thesis and we therefore include a brief introduction here. Regard once more the

inequality constrained minimization problem (2.13). If we shift the boundary of the

feasible set by a value equal to the barrier parameter s, we obtain the problem

min{f (x) | g (x) ≤ s ⇔
gi(x)

− 1 ≤ 0 ∀i ∈ I } . (2.19)

x∈Rn s

We can see that, if we applied the logarithmic barrier function to (2.19), giving

us f (x) − s

i∈I ln(1 − gi(x)/s), it would prevent divergence at the boundary of

i

29

s

x∈Rn s

the “un-shifted” feasible set X. Furthermore, because the constraints in (2.19) are

themselves defined in terms of the barrier parameter, as s goes to zero, the shifted

boundary approaches that of X. Next, consider another modified problem,

min{f (x) | −s ln
(

1 −
gi(x)

)
≤ 0 ∀i ∈ I } . (2.20)

Observe that the feasible set of (2.20) coincides with X for all s > 0. The real

significance of (2.20), however, becomes clear once we construct its Lagrangian

F (x) := f (x) − s λi

i∈I
ln
(

1 −
gi(x)

)
. (2.21)

The above function is called the modified barrier function [100] for (2.13). It has

an obvious similarity with the logarithmic barrier function for the shifted problem

(2.19). Moreover, we can see from (2.21) that a KKT point for (2.20) also satisfies

the KKT conditions for the original inequality constrained problem (2.13) and vice

versa. For convex programs, this means that the former and the latter have the same

solution for any s. In the non-convex case, there exists a s > 0 such that for all s > s,
¯ ¯

a KKT point of the NLP is also a KKT point of (2.20) and F (x) is strictly convex

[100]. It is therefore possible to obtain a KKT point for the original problem through

an iterative process in which we fix the multipliers λi > 0, i ∈ I, solve ∇F (x) = 0

and update the multipliers in an appropriate way. We can do this for a fixed s that

is large enough, although it is preferable to define a sequence sk → 0, as this is

necessary to achieve superlinear convergence. This basic approach is reminiscent of

augmented Lagrangian methods [105, 106, 107] and, indeed, F (x) can be interpreted

as an augmented Lagrangian function for the original problem (2.13). While it would

be negligent to not mention this established class of optimization methods, any sort

of proper treatment of augmented Lagrangian methods is beyond the scope of this

thesis and we refer the interested reader to the book by Bertsekas [23].

The above technique can be generalized by considering a wider range of barrier

30

functions that share the salient features of (2.21). Such an approach has been inves-

tigated both under the name of penalty-barrier multiplier (PBM) methods [17, 31],

proposed by Ben-Tal and Zibulevsky, and in the context of nonlinear rescaling (NR)

methods by Polyak and Teboulle [103]. Both frameworks are very similar and differ

only in small details in the definition of the class of generalized barrier functions.

Since our implementation uses a specific function that falls within the class of PBM

functions, we will adhere to that nomenclature in the following. The same function

has also been successfully used in the optimization software Pennon [76]. More re-

cent results in the context of NR methods should however not go unmentioned. In

particular, Griva and Polyak proposed an adaptive updating scheme for s, improv-

ing convergence behaviour [60], and primal-dual NR methods were shown in [101,

102] to achieve local quadratic convergence under certain regularity assumptions.

We now give a brief description of the PBM method. For details on the theory,

we refer to [15]. As before, we start by considering the inequality constrained min-

imization problem (2.13). We will additionally assume that the problem is convex,

meaning that both f and gi, i ∈ I are convex functions. We rescale the inequalities

as p ϕ (gi(x)/p) ≤ 0 with a penalty function1 ϕ and a penalty parameter p > 0,

where ϕ belongs to a class of functions with the following properties: They are

strictly increasing, twice differentiable, real-valued, strictly convex functions with

domain (−∞, b), where 0 < b ≤ ∞ . Furthermore, they satisfy:

(ϕ1) ϕ(0) = 0

(ϕ2) ϕ (0) = 1

(ϕ3) lim ϕ (s) =

s→b

(ϕ4) lim
s→−∞

ϕ (s) = 0.

1The switch from “barrier” to “penalty” is made deliberately to underline that we no longer restrict
ourselves to functions that enforce strict feasibility.

∞

31

x∈Rn p

λi = λi ϕ
p(k)

For all such penalty functions, the rescaled problem

min{f (x) | p ϕ
(

gi(x)
)

≤ 0, i = 1, . . . , m} (2.22)

retains convexity and has the same feasible set and the same solution as (2.13), since

a KKT point for either problem is also a KKT point for the other due to properties

(ϕ1) and (ϕ2). Formulating a standard Lagrangian function of the rescaled problem

gives us the following augmented Lagrangian function for the original problem (2.13):

Lp(x; λ) := f (x) +

i=1

λip ϕ

(
gi(x)

)

. (2.23)

It can be shown that Lp is strictly convex in x for any λ > 0 and p > 0.

The iterative scheme of the PBM method is as follows: For fixed p > 0 and λ > 0,

we want to determine a vector x that satisfies the KKT conditions for the rescaled

problem. We do this by setting ∇xLp(x; λ) = 0. Since L is strictly convex in x, this

is equivalent to minimising it with respect to x. Similarly to the IP method, we do

not actually require the exact solution of this subproblem. It suffices to get “close”

to it. Following this, we update the Lagrange multipliers and penalty parameter.

This constitutes one iteration of the PBM method, the details of which are:

Step 1. x(k+1) ≈ arg min Lp(k) (x; λ(k)) (2.24a)

Step 2.

(k+1)

(k)
(

gi(x(k+1))
)

(2.24b)

Step 3. p(k+1) = π(k)p(k) . (2.24c)

Here, π(k) < 1 is a penalty updating factor which can generally be different for

each iteration. In Step 1, we run the Newton method until /I∇x Lp(x; λ)/I2 ≤ ε(k),

where ε(k) is some prescribed tolerance, typically determined by the progress of the

algorithm. If we choose a penalty function with b = ∞, we no longer run into the

p

m

x

32

p

2 2

2

x

+

4 8 2

2 2

problem of full Newton steps resulting in infeasible iterates, as observed for the IP

method. The step size can therefore be chosen by a standard line search strategy,

for example by imposing the Armijo condition [93]. If the PBM method converges,

it finds a KKT point for the original convex NLP with inequality constraints – and

thus a primal-dual optimal solution.

For the Newton method in Step 1 of the PBM algorithm, we require the gradient

and Hessian of the augmented Lagrangian with respect to x. These are given by

∇x Lp(x; λ) = ∇x

f (x) +

i=1

λiϕ

(
gi(x)

)
∇

gi(x) (2.25)

and
∇ L (x; λ) =∇ f (x) +

λi ϕ

(
gi(x)

)
∇

g (x)(∇

g (x))T

x p x p
i=1 p x i x i

(2.26)

+

λ ϕ

(
gi(x)

)
 ∇ g (x) ,

i
i=1

p x i

where we have used ∇2 = ∇xx to denote the Hessian with respect to x. Note that,

due to the convexity of the rescaled problem (2.22), the Hessian of Lp is positive

semidefinite for any x ∈ Rn and λ ∈ Rm.

While many candidates meet the definition of a penalty function given by (ϕ1)–

(ϕ4), one particular choice for ϕ, found for example in [17], proved to be particularly

efficient in our numerical trials:

−1 log(−2τ) − 3 , if τ < −1 ,

τ + 1 τ 2 , if τ ≥ −1 .

This function combines properties of a quadratic penalty function and the logarith-

mic barrier function, which motivates the nomenclature “penalty-barrier function”.

The NR framework includes a similar type of function, see for example [59]. The

main difference to (2.27) is that the quadratic branch of the NR penalty function

(2.27) ϕ(τ) =

m

m

m

x

33

sym i,j=1

needs to lie completely outside the feasible set. While this is a requirement for the

convergence analysis in [59] and the related papers [101, 102], we observed slightly

faster and more reliable convergence behaviour for (2.27).

2.2 Finite Element Method for Linear Elasticity

Consider a continuum of linearly elastic material, described by a domain Ω in Rd with

Lipschitz boundary Γ, where d is either 2 or 3. Assume that a mechanical scenario

is specified on this domain, defined by the material properties of the continuum

and by boundary conditions; the latter comprise forces on some part Γf /= ∅ of

the boundary and prescribed zero deformation (due to bearings) on another part

Γu /= ∅, which we assume to have a non-empty relative interior. The boundary

subsets Γf and Γu are disjoint and Γf ∪ Γu = Γ. For simplicity’s sake, we do not

consider body forces over Ω or prescribed non-zero deformation on the boundary.

We assume that deformations are small enough that we do not need to differentiate

between a current and a reference configuration, which means that a material point’s

location is approximately the same before and after deformation and is defined by

a single point x ∈ Ω somewhere in the closure of the domain – as opposed to two

points, one in the reference domain, the other in the current domain. Now, let

f : Γf → Rd denote the boundary forces, or loads, and let us use u : Ω → Rd

to denote the displacement u(x) of a material point located at x ∈ Ω. Finally,

the state of stress at each point in the domain is quantified by the stress tensor

T : Ω → Rd×d , T = [τij]3 . For the purpose of this brief introduction, we will

ignore the distinction between a second order tensor and its matrix representation.

The displacements and stresses in the domain have to satisfy the boundary value

34

problem

div T = 0 on Ω , (2.28a)

Tn = f on Γf , (2.28b)

u ≡ 0 on Γu , (2.28c)

where n is the outer surface normal on the domain boundary. System (2.28a)

enforces static equilibrium everywhere in Ω and (2.28b) and (2.28c) are the boundary

conditions according to the prescribed mechanical model. In order to obtain a well-

posed problem, we need to link the state of stress to the state of deformation. The

latter is characterized by the (small) strain tensor

E(u) = [εij]3 :=

1
(

∂ui ∂uj
) 3

i,j=1 2 ∂xj ∂xi i,j=1

which is evidently symmetric. Hooke’s law relates E to the stresses at each point

x ∈ Ω by the linear constitutive equation

T(x) = C[E(u(x))] . (2.29)

Here, C is the fourth order elasticity tensor which maps the second order strain

tensor to the second order stress tensor. Based on energy considerations, it can be

shown to have the following important property.

Lemma 2.2.1. The fourth order elasticity tensor for linearly elastic materials C ∈

Rd×d×d×d is symmetric in that

X • C[Y] = Y • C[X]

for any two second order tensors X, Y ∈ Rd×d.

Proof. See for example [89, (Chapter 3.2)].

+

35

We further assume that C is uniformly positive definite, i.e., there exists a c0 > 0

such that

X • C[X] ≥ c0

for any X /= 0.

With (2.28) and (2.29), we now have a well-posed boundary value problem in the

displacements. We call the solution u classical solution. The requirements on this

solution in terms of differentiability are rather strict: the displacements need to be

twice continuously differentiable everywhere in the domain, i.e., u ∈ [C2(Ω)]d. We

can ease these requirements by employing variational formulations, which we will

now derive. Let us assume for the moment that the displacements and boundary

forces are “smooth enough”. Furthermore, we assume that u is geometrically admis-

sible, i.e. it satisfies the boundary conditions (2.28c). If we take the inner product of

both sides of (2.28a) with the displacements u, then integrate over Ω using Green’s

identity, we arrive at

r

Ω
T • E(u) dΩ =

r

Γf

f · u dΓ +
r

Γu

(Tn) · u dΓ , (2.30)

where “·” is the inner vector product. The above equation illustrates the principle

of virtual work, which states that the work done by the internal forces equals that

done by the external forces. Let us compare u to a displacement field which deviates

from u in Ω but is also admissible. Such a displacement field is given by u + v for

any v which is zero on Γu. Equation (2.30) still holds if we substitute u by u + v.

If we subtract from this the original equation (2.30), we can see that

r

Ω
T • E(v) dΩ −

r

Γf

f · v dΓ = 0 , (2.31)

which holds for any v which vanishes on Γu (and for which the integrals are defined).

Recall that a classical solution u∗ satisfies the constitutive equation (2.29) every-

where in Ω. Since C is symmetric and positive definite, we can define a potential

36

Ω Γf

energy term
Π(u) :=

1

2
E(u) • C[E(u)] dΩ −

r

f · u dΓ , (2.32)

called the potential energy of the elastic body, and view the left-hand side of (2.31)

as a variation of Π at u∗ in the direction v. Then, (2.31) implies that the classical

solution is a critical point of the potential energy Π. In fact, it can be shown that

u∗ minimizes Π over the set of all geometrically admissible displacements, a result

commonly referred to as the principle of minimum potential energy.

The variational equation (2.31) with T = C[E(u)] offers an alternative character-

ization of a solution to the boundary value problem. Importantly, this solution does

not need to satisfy the same differentiability requirements as for the set of partial

differential equations (2.28), so that it can be chosen from a larger function space. In
particular, we consider the Sobolev space V = {v |

J
Ω v(x) dΩ+

J
/I∇v(x)/I dΩ <

2 2

∞} ∩ {v | v ≡ 0 on Γu} and define V := [V]d. We assume the boundary forces are

square integrable, i.e. f ∈ [L2]d. This leads to the weak formulation of the boundary

value problem

Find u ∈ V s.t. (2.33) r
E(v) • C[E(u)] dΩ −

r
f · v dΓ = 0 ∀v ∈ V .

If u∗ solves the above problem, it is called a weak solution. Any classical solution

is also a weak solution, but the reverse only holds if the weak solution is smooth

enough. The functions v ∈ V , which we interpreted as variations of u in the principle

of minimum potential energy, are called test functions in the context of the weak

formulation. An important question is whether (2.33) always has a solution and

whether it is unique, which is answered by the following result.

Theorem 2.2.2. The weak formulation (2.33) of the boundary value problem has a

unique solution.

2 Ω

Γf Ω

r

37

2
2

2

V

J

Ω

Proof. We refer the reader to [89, (Chapter 7)] for a complete proof and only high-

light a few important points. For this, we will need the following norm for functions

v ∈ V :

/Iv/IV

:=

Ω

/Iv/I2 dΩ +
r

/I∇v/I2 dΩ .

The analysis of (2.33) is based on Korn’s inequality, see for example [44, (Chapter

3, §3.3)] or [89, (Chapter 6.3)], from which it follows that the bilinear form

(v, u) 1→
r

E(v) • E(u) dΩ

satisfies
α/Iv/I2 ≤

r
E(v) • E(v) dΩ

for any v ∈ V and a constant α > 0 which is independent of v. A bilinear form

which satisfies the above inequality is called V -elliptic. Because C is symmetric, see

Lemma 2.2.1, and positive definite, the V -ellipticity extends to the bilinear form

Ω E(v) • C[E(u)], see [89, (Chapter 7)]. The uniqueness of the solution of (2.33)

is then a consequence of the Lax-Milgram theorem, see for example [40, (Theorem

1.1.3)] or [81, (Theorem 5.1.1)].

The weak formulation is the basis for the finite element method, which provides a

consistent and efficient approach to finding an approximate solution of (2.33). For

this, we confine ourselves to a finite-dimensional subspace Vh which approximates

V . To motivate the particular subspace we will use, we need to first introduce a

discretization of the domain Ω.

We divide Ω into a finite number of convex polyhedra, called elements, thus

creating a mesh or grid Ωh. We limit our discussion to quadrilateral (d = 2) and

hexahedral (d = 3) elements, although other choices are possible and common in

other applications. The vertices of the polyhedra are called nodes. We assume

that any two adjacent elements share exactly one face and that no node lies in

Ω

Ω

r

38

i=1

N
1
.
 vi(x) = vi,kφk(x) with

the interior of an element’s face, (i.e. we do not consider higher-order or non-

conforming elements). The nodes along the boundary Γh of the mesh Ωh lie on

Γ, although, depending on the geometry of Γ, the polyhedral boundary Γh might

obviously not coincide with Γ everywhere, but only approximate it. We assume

that our mesh conforms in the same way to the boundaries Γu and Γf and refer

to the corresponding parts of the mesh boundary as Γu,h and Γf,h, respectively. A

quick note for clarification: the subscript h is commonly used because it denotes

some measure of the mesh resolution, such as the maximum edge-length or element-

area/volume in the mesh. For later reference, let m denote the number of elements

in the mesh and let N be the number of nodes.

Turning back to our search for an appropriate Vh, we consider the space V of

piecewise bilinear (in two dimensions) or piecewise trilinear (in three dimensions)

functions which are continuously differentiable in the interior of each element. Let

us denote the locations of the mesh nodes by xi for i = 1, . . . , N . As a basis of our

function space, we choose φi(x) for i = 1, . . . , N , such that φi(xj) = δij, where δij

is the Kronecker delta, and which are identically equal to zero outside of elements

which are adjacent to the node xi. Every function f ∈ V can then be written in

terms of its values fi := f (xi) at the nodes, namely by f (x) =
 N fiφi(x). We

will use V to construct the function space Vh. Furthermore, to stay consistent with

V , we want all functions in Vh to vanish on Γu,h. We can easily achieve this by

setting the corresponding nodal coefficients to zero. In summary, we define

v

Vh :=

v = . : k=1 .
 vd

 vi,j = 0 if xj ∈ Γu,h , ∀i = 1, . . . , d

Remark 2.2.3. We have only considered the case that all components of a vector-

valued function in V vanish at Γu. This can be generalized to boundary conditions

which require only some components to be zero on Γu and, further, to several dis-

39

joint subsets of Γu, each associated with boundary conditions on a different set of

components. On such a subset of Γu on which not all components of u are fixed,

we can then even prescribe a load that lies in the range of the remaining degrees

of freedom. This leads to some technical but straightforward adjustments of the

function spaces V and Vh, which we omit for ease of presentation.

Now that we have defined a function space that the approximate solution should

be taken from, we can reformulate (2.33) as follows:

Find uh ∈ Vh ⊂ V s.t. (2.34)
r

Ωh

E(vh) • C[E(uh)] dΩ −

r

Γf,h

f · vh dΓ = 0 ∀vh ∈ Vh .

Since we can express uh and vh as linear combinations of basis functions, it is possible

to write (2.34) using matrix–vector multiplications. Let us define a vector û that

contains all nodal coefficients of uh, ordered first by node then by component, i.e.

û := ((uh)1,1, (uh)2,1, . . . , (uh)d,N)T, and let us define v̂ analogously. In these vectors,

we do not include those coefficients which are identically equal zero due to boundary

conditions. We denote by n the length of these vectors. In other words, n is the

number of degrees of freedom in problem (2.34). Lastly, we define vectors φi(x) ∈ Rd

for i = 1, . . . , n in such a way that we can write uh(x) = [φ1(x), . . . , φn(x)] û and

vh(x) = [φ1(x), . . . , φn(x)] v̂. Equation (2.34) is then equivalent to

v̂TKû − v̂Tf̂ = 0 ∀v̂ ∈ Rn , (2.35)

where K ∈ Rn×n is the stiffness matrix, given by

Kij :=
r

Ωh

E(φi) • C[E(φj)] dΩ for i, j = 1, . . . , n , (2.36)

and f̂ is the nodal load vector, defined as

f̂i :=
r

Γf,h

f · φi dΓ for i = 1, . . . , n . (2.37)

40

h

e=1

J

•

Because (2.35) needs to hold for any v̂

equations

∈ Rn, it is equivalent to the system of

Kû = f̂ . (2.38)

Due to our specific choice of basis functions, this linear system can be efficiently

set up and solved. To compute the stiffness matrix and the load vector, we need

to compute the integrals (2.36) and (2.37), respectively. This is done element by

element. For instance, we define an elemental stiffness matrix Ke ∈ Rn for each

element with index e = 1, . . . , m by

(Ke)ij :=
r

E(φi) C[E(φj)] dΩ for i, j = 1, . . . , n , (2.39)
e
h

where Ωe is the part of the domain taken up by the eth element. Since the only

basis functions that are non-zero on element e are those which correspond to the

element’s nodes, Ke is extremely sparse. FEM implementations typically use an

incidence matrix, which allows us to know a priori which basis functions to consider

for each element. Computing the integral numerically, for example by Gaussian

quadrature rule with 2 points per problem dimension, can therefore be done quite

efficiently. The global stiffness matrix is then simply assembled by K =
 m Ke.

Due to the localized support of each basis function, there is limited overlap between

the elemental stiffness matrices and therefore K is sparse. Figure 2.1 shows an

example of the sparsity structure for a regular three-dimensional mesh.

Since the bilinear form Ω E(v) • C[E(u)] is V -elliptic, as discussed in the proof

of Theorem 2.2.2, it is obviously also Vh-elliptic. As a consequence, K is symmetric

positive definite and (2.38) has a unique solution, assuming the mechanical structure

defined by the domain and boundary conditions is kinematically determinate. Each

Ke is symmetric and positive semidefinite. Due to the positive definiteness and

sparsity of K, system (2.38) can be solved efficiently, for example by iterative Krylov

solvers, described in Section 2.4.1.

Ω

41

× ×

−

2

x

Figure 2.1: Regular, structured FE mesh with 4 4 4 cube-shaped elements and
the sparsity structure of the corresponding stiffness matrix.

An important theoretical result for the finite element method is that the principal

of minimum potential energy extends to the FE discretization. Recall the definition

(2.32) of the potential energy of the elastic body. For the discretized case, we get

the following identity:

Π(uh) =

1

2

E(uh

Ωh
) • C[E(uh)] dΩ −

r

Γf,h

f · uh dΓ

=
1
ûTKû f̂

T
û

2
=: Π̂(û) .

It can be shown that the solution u∗
h of (2.34), with associated nodal vector

minimizes Π over Vh, which can be written in a vectorized form as

û∗,

û∗ = arg min Π̂(û) = arg min
1
ûTKû − f̂

T
û . (2.40)

û∈Rn û∈Rn 2

For the sake of completeness, we provide a few more details on the elasticity tensor

C. While it has d4 components overall, these can be reduced to only 2 independent

variables for any isotropic material. In that case, which is the one we consider in this

thesis, C can be expressed in terms of two material constants, for example the Young

modulus E > 0 (not to be confused with the strain tensor E) and the Poisson ratio

0 ≤ ν < 1 . In vectorized form, the strains and stresses then satisfy the constitutive

y

z

r

42

0 0 1−ν

0 0 0 1−2ν τ ε23
0 0 0 0 1−2ν

2(1−ν)

 τ23

τ22

,

0

equations
ε11

 E

1 ν 0

τ11

ε22 =
1 − ν2

ν 1 0

 τ22

for d = 2, where we assume a state of plane stress as opposed to plane strain, and

ε11

1 ν

1−ν

 ν
1−ν

τ11

 ε22

 ν 1−ν 1 ν
1−ν

 ε33 ν ν 1
 τ33

= C 1−ν

1−ν

12 2(1−ν) 12

ε31 0 0 0 0 0 1−2ν
2(1−ν)

τ31

where C = E(1−ν) , for d = 3. The lower triangular elements of E and T are

(1+ν)(1−2ν)

defined by symmetry. The material constants need to satisfy certain conditions to

ensure the invertibility of the elasticity tensor, see [89]. It can be assumed that all

such criteria are met for the choices of E and ν used in our numerical experiments.

In the following sections and chapters, we will only be interested in the FE approx-

imation of the boundary value problem. Hence, we will take the terms displacements

and loads to be synonymous with the corresponding nodal vectors. Furthermore, we

will simplify our notation by using u and f for those vectors and generally omit the

hat wherever it was used to distinguish the vectorized approximate form. Likewise,

we will drop the subscript h from the discretized domain and boundary.

Remark 2.2.4. While we did not cover the case of non-zero prescribed displacements

at the boundary, we note that this can be incorporated into the presented approach

as well. Similarly to boundary loads, such prescribed displacements lead to an

integral over Γu,h which contributes to the vector f̂.

Remark 2.2.5. We do not include any formal convergence analysis here and refer to

the literature [40]. Subject to the regularity of the boundary value problem, one

can usually expect the FE approximation to converge to the weak solution as h → 0

ε

τ12 2 ε12

0 0

0 0 0
0 0 0

0 0 0

43

with at least a linear rate. Under certain regularity assumptions, convergence of

a higher order can be shown as well. For the problems we consider in this thesis,

the mesh resolution is mainly dictated by the level of detail of the design we wish

to model and we can generally assume that this resolution is fine enough to yield

sufficiently accurate results for the displacements.

2.2.1 Unilateral contact

To conclude this section on the finite element method, we include a brief discussion

of unilateral contact. Boundary conditions that account for obstacles in addition

to merely prescribing fixed displacements along parts of the boundary Γ are an in-

dispensable tool for more realistic modelling. As it will turn out, unilateral contact

can be included in the FE model used in our optimization problem without too

much additional effort, see Section 2.3.2. We provide here a pragmatic introduc-

tion starting from the discretized problem, which is geared towards our application

in topology optimization. Contact is assumed to be frictionless and obstacles are

treated as rigid bodies. For a rigorous analytic treatment of both the exact prob-

lem and the finite element discretization, as well as for more complicated contact

modelling, such as for example contact with friction, bilateral contact, large defor-

mations, and non-linearity, we refer to the literature – see for example [73, 69]. In

particular, an analysis of the discretized contact constraints model which we employ

can be found in [73, Section 6.4].

Consider once more the (discretized) domain Ω and its boundary Γ = Γu ∪ Γf .

In addition, let us now assume the presence of some obstacle close enough to the

boundary that it might impede the deformation we would see due to the prescribed

loads. We will refer to the part of Γ which we expect to potentially come into contact

with the obstacle as the contact surface (both for d = 2 and d = 3) and will denote

it by Γc. We assume that Γ = Γu ∪ Γf ∪ Γc and that all three subsets are mutually

disjoint1. To ensure that none of the nodes xi, i ∈ {1, . . . , N }, which are on the
1Since obstacles typically only restrict degrees of freedom in a single direction, we can weaken this

44

xi

ni

bi

yi

contact surface penetrate the obstacle’s boundary, we impose a contact constraint on

each xi ∈ Γc. If we assume small deformations, we can approximate the

boundary of the obstacle by its tangential plane at a point yi, which is the one

closest to xi. This allows us to formulate the constraint by limiting the

displacement of xi along the obstacle’s outer surface normal ni at yi. Figure 2.2

illustrates the concept. If

Figure 2.2: Node xi on contact surface Γc, closest point yi on the obstacle boundary,
surface normal ni and initial gap bi.

we denote by bi := (xi − yi)Tni the initial distance between xi and yi, and by ui

the displacement vector for the node xi we can write the contact constraint as

−nT
i ui ≤ bi

Next, let us define an index set for all contact nodes xi ∈ Γc:

χ := {i : xi ∈ Γc} . (2.41)

For each i ∈ χ, we have a corresponding point yi on the obstacle boundary and the

assumption for component-wise boundary conditions, cf. Remark 2.2.3.

45

−

C := [ci]i∈χ ∈ Rn×|χ| , where ci := −ni ,

0

surface normal ni at that point. We can arrange all ni in a matrix

0

 .

 .

such that the components of ni in ci line up with those of ui in the global displace-

ment vector u1. If we further define the vector of gap distances b := (bi)i∈χ, we can

collate all contact constraints in the expression

CTu ≤ b . (2.42)

Now that we have derived a set of contact constraints, we need to incorporate them

into the finite element problem. Recall that the FE solution can be characterized

by a minimization of the potential energy over the set of admissible displacements,

see (2.40). In order to impose the constraints (2.42), we can include them in the

definition of admissible displacements, which turns (2.40) into the constrained min-

imization problem

min
CTu≤b

Π(u) = min

CTu≤b

1
uTKu f Tu . (2.43)

2

Where before, we could use the stationarity conditions for the unconstrained min-

imization to derive the FE equilibrium equations (2.38), we must now employ the

1Components corresponding to degrees of freedom fixed by the boundary conditions are excluded
in ci just as they are in u.

46

KKT conditions, which gives us

Ku = f − Cη , (2.44a)

CTu ≤ b , (2.44b)

η ≥ 0 , (2.44c)

ηT(CTu − b) = 0 . (2.44d)

The above system provides necessary and sufficient conditions for a solution of (2.43),

if we assume that the contact problem is feasible. Indeed, since Π is quadratic with

Hessian K 0 and the contact constraints are linear, (2.43) is convex. Therefore,

(2.44) are sufficient conditions. If a CQ holds, they are also necessary. For linear

inequality constraints, Slater’s condition, see Definition 2.1.15, can be relaxed from

requiring the existence of a strictly feasible point to a merely feasible point [27].

Since we assume feasibility, such a point exists.

The Lagrange multipliers η in (2.44) permit an instructive physical interpretation:

ηi is the magnitude of the contact force at yi. First, the complementarity conditions

(2.44c) and (2.44d) imply that a reaction force can only exist in the case of contact,

i.e. when cT
i u − bi = 0. Second, the sign of Cη in the equilibrium equations (2.44a)

indicates that the contact force is a compressive force which acts only in the normal

direction, which is consistent with the assumption of frictionless contact.

2.3 Minimum Compliance Topology Optimization

This section introduces the optimization problem that is at the centre of this thesis.

It is one of the numerous problems within the field of structural optimization. In the

broadest sense, this term describes the search for a geometric design of a physical

structure that is optimal with respect to some objective, while also being functional

for its designated purpose and satisfying certain geometric or physical criteria. In our

case, for example, the structure will be a mechanical part made of isotropic, linearly

47

elastic material that is subjected to a static load. The objective will be to maximize

its stiffness, while constraints are introduced by enforcing static equilibrium and

limiting the amount of available material. We will give a condensed overview of

the area of structural optimization, to provide context for the subsequent detailed

treatment of the so-called variable thickness sheet problem. The solution algorithms

we propose in Chapter 3 for this particular problem take advantage of its specific

structure and certain properties which will be discussed in the main part of this

section.

Structural optimization is commonly split into the three distinct categories of siz-

ing, shape, and topology optimization1 [22], which correspond to different methodolo-

gies of parameterising the geometric design of the structure. Sizing problems involve

finding the optimal dimensioning of discrete elements at predefined locations within

a structure, such as the thickness of bars in truss designs or the width and height of

ridges. The geometric parameters through which the design is controlled are called

design variables. In shape optimization, one modifies not just discrete features of

the design, but rather the entire boundary, or parts thereof. Hence, the shape is de-

fined by an infinite dimensional design variable. Finally, topology optimization also

considers the placement of holes in the design and the connectivity of the boundary

– unlike in shape optimization, where the topology is fixed. For this reason, topol-

ogy optimization is also sometimes referred to as “Generalized Shape Optimization”

[112].

For a thorough introduction to the subject, we refer to the much-cited book by

Bendsøe and Sigmund [22], which is a comprehensive presentation of the field of

topology optimization, as well as structural optimization in general, and includes an

excellent survey of the literature. Furthermore, the lecture series edited by Rozvany

and Lewiński [112] covers a lot of analytical aspects and includes a very instructive

historical overview.
1Terms such as design or optimal design in place of optimization are also common in this context.
We will use these terms interchangeably throughout this thesis.

48

¯

An illustrative definition of topology optimization is “finding the optimal material

distribution within a predefined domain”. Let us denote this domain, called design

domain, by Ω £; Rd, where d ∈ {2, 3}. One of the first questions that arise in

modelling our problem mathematically is how to parameterize the design topology.

One possibility is to use an indicator function which distinguishes those parts of Ω

which are “solid”, that is, filled with material, from those that are “void”. If we split

up the design domain into the two disjoint subsets corresponding to solid and void

regions, say, ΩS and Ω0, we can define an indicator function

θ : Ω → {0, 1}, θ(x) =

1, if x ∈ ΩS ,

0, if x ∈ Ω0 .

It is this function θ which constitutes the (infinite dimensional) design variable. It

describes the material distribution within the design domain. Numerical solution

methods for topology optimization typically solve the problem on an FE discretiza-

tion of Ω. We would therefore approximate θ by a piecewise constant function with

a value assigned to each element in the mesh, thus turning the problem into a finite-

dimensional one. Since the piecewise function can only take one of two distinct

values, the resulting problem would be a discrete optimization problem, which is

significantly more difficult to solve than a continuous optimization problem [93].

We avoid this issue by replacing θ by a smooth approximation ρ(x) : Ω → [0, 1].

Again, the values 0 and 1 correspond to void and solid regions of the design domain,

but ρ(x) also permits intermediate values which correspond to “grey” areas. The

point-wise values of ρ(x) do not always allow a strict physical interpretation, but

are usually referred to as density. Depending on the context, it can be related to a

porous micro-structure [21], for example, or the thickness of a sheet in two dimen-

sions [110]. Especially in the latter case, the range of the density function might

be generalized to non-negative lower and upper bounds 0 ≤ ρ ≤ ρ(x) ≤ ρ̄ for all

x ∈ Ω, with an upper bound ρ̄ for the thickness that is larger than 1. Note that we

will nevertheless use the common term “0 − 1 design” for a ρ that is equal to either

49

∈

ρ or ρ̄ everywhere in Ω.
¯

The next question arising in the formulation of the optimization problem is that

of the relationship between the density function ρ(x) and the material properties.

Before we address this question, note that strategies for parameterising the material

boundary which are not based on a material distribution function, such as level-set

methods [42], have also been investigated, see for example the references in [22].

As mentioned above, the problem is discretized at this stage, even before any

optimization methods come into play. This means we follow the “discretize-then-

optimize” approach, as is usually the case in topology design applications, rather

than the alternative “optimize-then-discretize”, which is more common, for example,

in optimal control [66]. The FE discretization of the domain and the displacement

function follows Section 2.2. The density function is approximated by a piecewise

constant function: to each element with index i ∈ {1, . . . , m}, we assign a den-

sity value ρi [ρ, ρ̄]. Throughout this thesis, we will mainly deal with the finite
¯

dimensional problem obtained in this way. For a complete discussion of “exact”,

infinite-dimensional structural optimization, including questions of existence of so-

lutions and convergence of the discretized solution to the exact solution, see [22] and

references therein. Some results specific to the virtual thickness sheet are referenced

later in this section where appropriate.

The first numerical implementation employing the concept of material distribu-

tion was by Bendsøe and Kikuchi [21] and was based on homogenization of micro-

structures. Arguably the most popular approach for approximating a 0 − 1 design

by material distribution is the solid isotropic material with penalization (SIMP) ap-

proach [18, 19], in which the local stiffness is interpolated between 0 and 1 by a

non-decreasing polynomial. This leads to a penalization of “grey” areas and thus

to nearly “black-and-white” designs. If instead one interpolates the stiffness linearly

one obtains the so-called variable thickness sheet problem, which we consider in this

thesis. Given an FE discretization of the design domain, we can generally express

50

2

2

the global stiffness matrix as a function of the element-wise densities

Rm 3 ρ 1→ K(ρ) ∈ Rn×n ,

where ρ = [ρ1, . . . , ρm]T is the density vector. The function K(ρ) is chosen such

that K(ρ) 0 if ρi > 0 for all i ∈ {1, . . . , m}. This ensures that the equilibrium

equations have a unique solution for any ρ > 0.

Having defined a parameterization of the topology and a mapping that connects it

to material properties, we now turn towards formulating the optimization problem.

Our objective is to minimize the work done by the external forces, which is given by

1 f Tu. If we consider that u should satisfy the equilibrium equations (2.38), we can

see that this is equivalent to minimising the internal strain energy 1 uTK(ρ)u. This

can be interpreted as a measure for the overall compliance – the reciprocal of the

stiffness – of the design. Hence, the terms compliance minimization or, equivalently,

stiffness maximization are commonly applied to optimization problems involving

this objective.

Remark 2.3.1. We assume that the load vector f is not a function of the densi-

ties ρ. This is an important assumption for all theoretical results in this section,

in particular those regarding uniqueness of solutions. As a product of the FE dis-

cretization, the components of f stem either from boundary integrals of prescribed

loads over Γf or from integrals over elements that are connected to nodes with

prescribed non-zero displacements, see Section 2.2. The local stiffness tensor, and

thus the densities, factor only into the latter. Therefore, we can ensure that f is

independent of ρ by only prescribing load boundary conditions and homogeneous

displacement boundary conditions. For prescribed non-zero displacements on Γu,

the vector f contains integrals over elements that are adjacent to Γu. By fixing the

densities in these elements, we can therefore get a density-independent f even for

inhomogeneous displacement boundary conditions.

51

≤

Remark 2.3.2. We also exclude the trivial case f = 0. As mentioned in [97], any

density distribution that satisfies the volume constraint is a non-unique (and non-

isolated) solution in those cases.

We want to achieve maximum stiffness while limiting the amount of material,

which we do by imposing a constraint on the overall mass as a function of ρ. Since in

many applications, the densities are interpreted as an approximation of a 0−1 design,

no strict distinction between mass and volume is drawn, so that the aforementioned

constraint is commonly called volume constraint. For consistency with the majority

of the literature, we stick to this terminology and denote the constraint by vol(ρ) =

V , where V > 0 is the amount of volume (or mass) that we allow our design to

take up and vol(ρ) is, in the most general terms, a weighted sum of the densities.

Together with the bounds on each element density mentioned earlier, we obtain the

minimum compliance problem in its most common form:

min
1
f Tu (2.45a)

¯

The vectors ρ and
¯

ρ̄ contain the lower and upper density bounds, which can in

general be different for each element. All constraints on the density are chosen so

that (2.45) is strictly feasible and physically plausible. First, we assume the bound

constraints satisfy 0 ρ <
¯

ρ̄. Moreover, the volume limit V > 0 should be a

fraction of the total volume of the design domain, that is vol(ρ̄) > V , to avoid the

trivial “all solid” solution ρ = ρ̄. It should obviously also satisfy vol(ρ) < V .
¯

One might argue that the volume constraint (2.45c) should actually be an in-

equality constraint, since we only require an upper bound on the material used in

the design. It should however become obvious when considering the problem from

ρ∈Rm,u∈Rn 2

s.t. K(ρ) u = f ,

vol(ρ) = V ,

ρ ≤ ρ ≤ ρ̄ .

(2.45b)

(2.45c)

(2.45d)

52

a physical point of view that any given design can always be made stiffer by adding

more material at any point that is not yet solid. Therefore, no design that does not

satisfy vol(ρ) ≤ V with equality is an optimal solution. For the special case of the

variable thickness sheet, see Section 2.3.1, it can be shown that the problem with

vol(ρ) = V is equivalent to that with vol(ρ) ≤ V , as the corresponding Lagrange

multiplier is always non-negative at the optimal solution [6, (Proposition 3.2)].

We have introduced the minimum compliance topology optimization problem in a

general form. It has a very straightforward physical interpretation, while neverthe-

less presenting an objective that is relevant to practical applications [3]. Although

it has been extensively studied, it remains prevalent in the literature not just for

this reason, but also as it is a useful starting point for research on new or improved

solution methods. See [85, 25, 128, 83, 1, 109, 80, 96] for just a few examples. For

the rest of the section, we will focus our attention on the variable thickness sheet

problem which results from a particular choice of the density-to-stiffness mapping

ρ 1→ K(ρ).

2.3.1 The Variable Thickness Sheet Problem

First studied in the context of minimum compliance topology optimization in [110],

the variable thickness sheet (VTS) problem traditionally consists of finding the op-

timal thickness at each point of a two-dimensional sheet. It corresponds to (2.45)

with specific choices of K(ρ) and vol(ρ), namely

m

0 ≤ ρ 1→ K(ρ) = ρiKi ∈ Rn×n , (2.46)
i=1

where Ki is the elemental stiffness matrix of the ith element for a thickness of 1,

and
m

vol(ρ) = ρiai , (2.47)
i=1

53

≥

where ai is the area of the ith element – or its volume, in the three-dimensional

case. As explained in Section 2.2, the elemental stiffness matrices Ki are all positive

semidefinite and the global stiffness matrix K(1) is positive definite1. Since a differ-

ent weighting in the assembly of all Ki in (2.46) does not change the range of the

overall matrix, we can guarantee that K(ρ) c:: 0 as long as ρ ≥ 0 and, in particular,

that K(ρ) 0 if ρ > 0. Substituting (2.46) and (2.47) into (2.45), we obtain the

following problem:

ρ∈Rm,u∈Rn

ρ ≤ ρ ≤ ρ̄ , i = 1, . . . , m . (2.48d)

This problem has several interesting and useful properties, some of which will be

discussed in this section. Some hold for any choice of lower bounds ρ 0 for which
¯

(2.48) is feasible, others require a non-zero lower bound on the density everywhere.

The latter is true for a result concerning uniqueness of the solution of (2.48). The

same result also relies on a further assumption which we highlight once more, namely

that the load vector f is not a function of the design variables, see Remark 2.3.1.

Indeed, practical examples can be given for non-unique density solutions for ρ > 0
¯

and f = f (ρ), see [98].

The relevance of the variable thicknees sheet problem extends beyond the applica-

tion that gave it its name. In the discretized form (2.48), it has strong similarities to

compliance minimization in truss topology optimization, since the design variables

map linearly to the stiffness matrix [22, (Section 1.5.2)]. As a consequence, many

important results for the latter can be directly applied to (2.48).

1as long as the boundary conditions guarantee that the mechanical scenario is kinematically de-
terminate, which we assume unless otherwise specified

¯

min
1
f Tu 2 (2.48a)

s.t.

m
ρiKi u = f ,

(2.48b)

 i=1

 m
ρiai = V , (2.48c)

 i=1

54

Furthermore, our problem corresponds to a special case of free material optimiza-

tion, in which the stiffness tensor is the design variable rather than ρ. The result

will generally represent an inhomogeneous, anisotropic material optimized for the

principal stress directions due to the given load cases [22]. In order to impose some

kind of limit on the amount of material used at each point of the design, one can

introduce ρ as a globally limited resource and use it as a local upper bound on either

the trace or the Frobenius norm of the stiffness tensor. For both choices, the optimal

local stiffness tensor can be determined analytically in terms of ρ in the special case

of a single load case. This simplifies the problem such that it corresponds to the

VTS problem for a material with a zero Poisson ratio [138].

Finally, the VTS formulation can also be interpreted as a particularly simple

modelling of a 0 − 1 design problem. On the one hand, nonlinear mappings K(ρ) are

more widespread for this purpose, in particular the SIMP approach [22, 18], more

recently used in conjunction with a relaxed Heaviside projection [50, 126]. Such

mappings effectively avoid large “grey” areas of intermediate density values. On the

other hand, the much simpler structure of the VTS problem allows for the use of

much more efficient solution algorithms. It can therefore at the very least be used

to provide a lower bound on the minimum compliance, obtainable at comparatively

low computational cost.

We now turn our attention to a number of theoretical results for the VTS problem.

We first study the existence and uniqueness of solutions. We then devote a part

of this section to equivalent formulations which can be interpreted as the dual of

(2.48). These are of special importance for an efficient solution algorithm proposed

in Chapter 3. Note that most results given in this section are not new contributions.

We merely present and prove them in a way that is tailored to our specific problem,

giving references to the original sources where appropriate.

Existence and uniqueness results for the infinite-dimensional, or “exact”, VTS

problem are summarized in [22, (p. 272–274)]. The existence of a solution for ρ > 0
¯

55

≥

≥

−

2

2

2

is a standard result in optimal control [38]. It can be extended to ρ 0 by using
¯

a min-max formulation of the problem [22, (ibid)], similar to that employed further

below for the discretized case. Furthermore, Petersson [97] showed that, for ρ > 0,
¯

the displacements are unique, although the densities may not be. For the finite-

dimensional VTS problem and under mild assumptions, we will show that a solution

exists and both the optimal displacements and densities are unique.

The starting point for all major results in this section is a reformulation of (2.48)

as a saddle point problem. It forms the basis of many theoretical existence and

uniqueness results, both in finite and infinite dimensions, see, e.g. [97]. We lay

it out in the following lemma, which covers the case ρ 0. Note that K(ρ) can
¯

become singular if ρi = 0 for some i = 1, . . . , m and thus have a non-trivial null
¯

space. Our uniqueness theorem later in this section will require ρ > 0.
¯

Lemma 2.3.3. Assume that there exists at least one ρ feasible for (2.48) such that

f is in the range of K(ρ). Then, (2.48) is equivalent to the saddle point problem

min
ρ≤ρ≤ρ̄

max
u∈Rn

f Tu
1

uTK(ρ)u . (2.49)
2

m̄
i=1 ρiai=V

Proof. The proof we give here can also be found in [16] as part of the proof of

Theorem 1. For any fixed, feasible ρ, the matrix K(ρ) is by assumption positive

semidefinite. The function f Tu − 1 uTK(ρ)u is therefore concave in u. In order for

the supremum

s(ρ) := sup f Tu −
1

uTK(ρ)u
u∈Rn 2

to be attained at some u∗, this vector needs to satisfy the necessary and sufficient

optimality condition K(ρ)u∗ = f . The maximal value in that case is 1 f Tu∗. If,

on the other hand, the supremum cannot be attained for the chosen ρ, then it is

because f lies in the non-trivial null space of K(ρ) and we can choose u as any

element of that null space to make f Tu − 1 uTK(ρ)u = f Tu /= 0 arbitrarily large.

Since, by our assumption, there is at least one ρ such that f does not lie in the null

56

2

m

u 2 2 i i
i=1

space of K(ρ), the problem

min
ρ≤ρ≤ρ̄

s(ρ)

m̄
i=1 ρiai=V

is well defined and we can write “max” rather than “sup” in s(ρ), giving us (2.49). We

can then use the optimality condition K(ρ)u = f to resolve the inner maximization

and show that it is indeed equivalent to problem (2.48).

Recall that the term Π∗(ρ) = minu 1 uTK(ρ)u − f Tu is the potential energy of

the elastic body at equilibrium, as shown in Section 2.2. If we switch the sign of the

objective function in (2.49), and thereby turn the min-max into a max-min problem,

we can see that compliance minimization can be viewed as a maximization of Π∗

over all feasible designs. At the same time, compliance minimization is equivalent

to stiffness maximization. For this reason, the potential energy is often, although

somewhat vaguely, interpreted as a measure of stiffness.

An important property of (2.49) is that the inner maximum can be interpreted as

a convex function of ρ. This leads to the following lemma, which can also be found

in [4].

Lemma 2.3.4. The saddle point problem (2.49) is equivalent to a convex minimiza-

tion problem in ρ.

Proof. Let us denote the objective function of the saddle point problem as

f (ρ) := f Tu −
 1

uTK(ρ)u = f Tu −
 1

ρ
(
uTK u

,

that is, we view it as a family of functions in the variable ρ. For any ū ∈ Rn, the

function fū (ρ) is linear and thus convex in ρ. The point-wise maximum of a finite

or infinite number of convex functions is also convex [68, (Proposition B.2.1.2)]. In

57

2

−

other words, if we denote the inner maximum of (2.49) by

1 s(ρ) := max f Tu − uTK(ρ)u = max f

(ρ) ,

u∈Rn 2
u

u∈Rn

then the function s(ρ) is convex. Furthermore, (2.49) can be written as

min
ρ∈Rm

s.t.

s(ρ)
m

ρiai = V
i=1

ρ ≤ ρ ≤ ρ̄ .

The volume and bound constraints define a convex polyhedral feasible set which,

together with the convex objective function, gives us a convex optimization problem.

For later reference, we apply the standard optimality conditions discussed in Sec-

tion 2.1.1 to (2.48). Matching the general nonlinear optimization notation in (2.2) to

that in (2.48), we have the optimization variables x = (ρ, u), the objective function

f (x) = f (ρ, u) = 1 f Tu, the inequality constraint functions g(ρ, u){i=1,...,m} =

ρ − ρ̄ and g(ρ, u){i=m+1,...,2m} = ρ ρ, and the equality constraint functions
¯

h(ρ, u){1,...,n} = K(ρ)u − f and hn+1(ρ, u) = ρiai − V . We omit the displace-

ments u from the notation of the active set A(ρ), since they are not featured in the

inequality constraints. The gradients for the constraint functions are

∇g(ρ, u) =

I −I

l

and ∇h(ρ, u) =

B(u)T a

l

, (2.50)

where a = (a1, . . . , am)T is the vector of element areas/volumes and the short hand

notation

B(u) := [K1u, . . . , Kmu]

has been introduced for readability. Also note that we have used the symmetry of

¯

0 0 K(ρ) 0

58

T

−

¯
1

−

1

¯ ¯

¯

K(ρ). We can now set up the KKT conditions for the VTS problem. Let us denote

the Lagrange multipliers for the different sets of constraints in the VTS problem by

µ, λ, r and r̄, so that the Lagrangian is given by
¯

L(ρ, u, µ, λ, r, r̄) = f (ρ, u) + h(ρ, u)

¯
T

µ

r

+ g(ρ, u) ¯
r̄

=
1
f Tu + (K(ρ)u f)T µ

2

+

ρiai − V
)
λ + (ρ − ρ̄)T r̄ +

(
ρ − ρ

 T r .

Accordingly, the KKT conditions comprise the constraints (2.48b) and (2.48c) and

the following equations:

∇ρL = B(u)Tµ + λa + r̄ − r = 0 , (2.51a)

∇uL = K(ρ)µ +
2
f = 0 , (2.51b)

(ρ ρ̄)T r = 0 , (2.51c) ¯
(
ρ − ρ

 T r̄

= 0 , (2.51d)

(ρ̄ − ρ) ,
(
ρ − ρ

, r, r̄ ≥ 0 . (2.51e)

Comparing (2.51b) and (2.48b), we can see that

µ = −
2

u . (2.52)

This identity allows us to eliminate µ and the set of equations (2.51b), which greatly

simplifies the task of solving the VTS problem numerically, see Section 3.1. In fact,

the identity also holds for the general minimum compliance problem (2.45). It is a

self-adjoint 1 problem, meaning that the adjoint variables µ are a scalar multiple of

the displacements u.

We now ask whether the constraint qualification from Definition 2.1.3 is satisfied

1In the context of shape optimization and optimal control, see for example [112, 84], (2.48b) are
called the state equations and u the state variables, while (2.51b) are the adjoint equations and
µ the adjoint variables.

¯

λ

i

¯

59

]

]

at a solution candidate for (2.48). Beyond the first order optimality conditions, the

LICQ is of importance in convergence results for some optimization algorithms, in

particular the nonlinear rescaling methods discussed in Section 2.1.4.

Lemma 2.3.5. Assume (ρ, u) is feasible for (2.48) and 0 < ρi < ρi < ρ̄i for at least
¯

one i ∈ {1, . . . , m}. Then, the LICQ is satisfied at (ρ, u).

Proof. We start by showing that the gradients ∇gi(ρ, u), i ∈ A(ρ), of active in-

equality constraints are linearly independent and that ∇gA(ρ)(ρ, u) has full rank

smaller than m. We omit the variables (ρ, u) in all functions for the rest of the

proof. Because our problem is strictly feasible by assumption, i.e. ρ < ρ̄, no upper
¯

and lower bound constraint on the same ρi can be active at the same time. There-

fore, we have i ∈ A(ρ) ⇒ i + m ∈/ A(ρ) and vice versa, for all i ∈ {1, . . . , m}. We

can see from (2.50), that of any two linearly dependent columns in ∇g – so of each

pair of positive and negative unity vectors – at most one can be present in ∇gA(ρ).

The remaining columns are all linearly independent. Furthermore, since at least one

ρi is strictly feasible by our assumption, rank{∇gA(ρ)} = |A(ρ)| < m.

We continue to assemble ∇h, ∇gA(ρ) , starting by adding the right most column

of ∇h to ∇gA(ρ), which contains only the vector a > 0 in the upper block, see (2.50).

Since, by the assumption that at least one ρi is strictly feasible, there is at least one

zero row of ∇gA(ρ), and therefore one i ∈ {1, . . . , m} for which
(
∇gA(ρ)v

i = 0Tv =

0 /= ai for any v 0. Hence, the vector a is linearly independent of ∇gA(ρ). As for

the remaining part of ∇h, we know that rank{[B, K]T} = n because K is positive

definite. That it is linearly independent of the rest of ∇h, ∇gA(ρ) is evident from

the fact that its column vectors are not coplanar with the other columns. Hence,

∇h, ∇gA(ρ)

]
has full rank |A(ρ)| + 1 + n ≤ m + n and the LICQ is satisfied.

To show uniqueness of the solution of (2.48), we will make use of the second

order sufficient conditions, see Theorem 2.1.6, which the following lemma tells us

are satisfied at each solution of (2.48).

60

C

2

¯

¯ ¯

ρ u

(ρ,u) 2

ρ

Lemma 2.3.6. If ρ > 0, every KKT point (ρ∗, u∗) of (2.48) satisfies the second
¯

order sufficient optimality conditions (2.10) and is therefore an isolated local mini-

mum.

Proof. The first step is to construct the critical cone defined in (2.9). Let

(ρ∗, u∗, µ∗, λ∗, r∗, r̄∗)
¯

be a KKT tuple of the VTS problem. The critical cone (ρ∗, u∗, r∗, r̄∗) is given by

¯

B(u∗) K(ρ∗)

l
dρ

= 0 ,

aT 0 du

d

= 0 ∀i : ρ∗
i = ρ̄, r̄i

∗ > 0 or

C = d =
d

 ∈ Rm+n :
ρ∗
i = ρ, ri

∗ > 0

(dρ)i ¯ ¯

∗ ∗
≤ 0 ∀i : ρi = ρ̄, r̄i = 0

 ≥ 0 ∀i : ρ∗
i = ρ, ri

∗ = 0

We will only need the first set of equations in the above set, which gives us

B(u∗) dρ

= −K(ρ∗) du ∀

dρ

∈ C . (2.53)

Next, we need to construct the Hessian of the Lagrangian. For the diagonal

blocks, we have ∇2L = 0 and ∇2L = 0. The only non-zero parts are the off-

diagonal blocks. The lower left block is ∇(u,ρ)L = [K1µ, . . . , Kmµ], the upper right

block its transpose, due to symmetry. Using (2.52), the Hessian resolves to

∇ L = −1

0 B(u)T
l

.

Now let d = (dρ, du) ∈ C(ρ∗, u∗, r∗, r̄∗). Multiplying the Hessian of the Lagrangian

u

du

B(u) 0

.

61

≤

¯

2 ρ u u

by d from both sides and using (2.53), we get

dT ∇2L d = −

1 (
dT B(u∗)T d + dT B(u∗) d

= −
1 (

−dT K(ρ∗)T d
u u − dT

u K(ρ∗) du

= dT
u K(ρ∗) du .

Since 0 < ρ ρ∗, we know that K(ρ∗) is positive definite. Thus, we have

¯

dT ∇2L d = dT
u K(ρ∗) du > 0 ∀ d ∈ C(ρ∗, u∗, r∗, r̄∗), d 0 ,

which concludes the proof.

We can now combine all previous lemmas to show that the finite-dimensional

VTS problem with non-zero lower density bounds has a unique solution under very

reasonable assumptions.

Theorem 2.3.7. Consider problem (2.48) for the case ρ > 0. Assume that a
¯

solution (ρ∗, u∗) of (2.48) satisfies

Then, the solution is unique.

ρi < ρ∗
i <

¯
ρ̄i for at least one i ∈ {1, . . . , m}.

Proof. According to Lemma 2.3.5, the LICQ is satisfied because there is at least

one strictly feasible density ρ∗
i . This, in turn, means that (ρ∗, u∗) satisfies the KKT

conditions, so that, due to Lemma 2.3.6, it is an isolated solution. Lemma 2.3.3

together with Lemma 2.3.4 therefore tell us that ρ∗ is an isolated local minimum of

an equivalent convex problem. Since every local solution of a convex minimization

problem is a global solution, the fact that it is isolated in this case means it is unique.

Finally, because u∗ is uniquely defined by u∗ = K(ρ∗)−1f , the solution (ρ∗, u∗) of

(2.48) is unique.

The requirement of an optimal solution to contain at least one “grey” element

is easily satisfied. All of our numerical examples show large areas of intermediate

2

ρ

62

I ⊂ { } i∈I

 i∈/I

density values, suggesting that these are a typical feature of optimal VTS designs.

A strict 0 − 1 solution is more likely to be seen for a zero Poisson ratio, ν = 0. Even

then, it is only possible if solid and (nearly) void elements in the design domain can

sum up exactly to the volume constraint constant V , i.e. there exists a subset of

elements 1, . . . , m such that ρ̄iai + ρiai = V . If this is indeed the
¯

case, a small perturbation of the volume constraint V + EV for a small enough EV will

no longer allow a 0 − 1 solution for the perturbed VTS problem, thereby implying

uniqueness of the solution.

We have presented a uniqueness result for the variable thickness problem. Next,

we will cover some duality results which will form the basis of a solution algorithm

in Chapter 3.

The dual VTS problem for a non-zero lower density bound

In the following, we introduce an optimization problem which is equivalent to (2.48).

We will show that the optimal solution of this problem provides an optimal solution

for the VTS problem as well as the associated Lagrange multipliers. We will assume

that the lower bounds ρ are strictly greater than 0. We consider the case ρ = 0 at
¯ ¯

the end of the section.

All of the following results are due to Achtziger et al. [6] and Ben-Tal and Bendsøe

[16], as well as Klarbring, Petersson, and Rönnqvist [75] for the case of unilateral

contact, which is discussed in Section 2.3.2.

Following [16, 78] in the context of equivalent formulations for truss topology

63

¯

2 i i ¯i i

optimization, we introduce the following minimization problem:

 u∈Rn min

∈Rm

αV − f Tu − ρTν + ρ̄T ν̄ (2.54a)

, α R, ν, ν̄ ¯ ¯ ¯
s.t.

1
uTK u ≤ α a − ν

+ ν̄ , i = 1, . . . , m , (2.54b)

νi ≥ 0, i = 1, . . . , m, (2.54c)

ν̄i ≥ 0, i = 1, . . . , m . (2.54d)

The next result can essentially be traced back to [16], although it is more of a by-

product of other results of that paper.

Theorem 2.3.8. Assume that the set of feasible ρ for (2.48) is strictly feasible, that

is ρ < ρ̄. Then, problems (2.48) and (2.54) are equivalent in the following sense:
¯

(i) If one problem has a solution, so does the other and

min(2.48) = − min(2.54) .

(ii) Let (u∗, α∗, ν∗, ν̄∗) be a solution of (2.54). Further, let τ ∗ be the vector of

¯
associated Lagrange multipliers for the inequality constraints (2.54b). Then

(τ ∗, u∗) is a solution of (2.48). Moreover, α∗, ν∗, ν̄∗ are the Lagrange mul-
¯

tipliers associated with this solution for the volume and bound constraints,

respectively.

(iii) Let (ρ∗, u∗) be a solution of (2.48). Further, let r∗ and
¯

r̄∗ be the Lagrange

multipliers for the lower and upper bounds on ρ, respectively, and let λ∗ be

the multiplier for the volume constraint. Then (u∗, λ∗, r∗, r̄∗) is a solution of
¯

(2.54). Moreover, ρ∗ are the Lagrange multipliers associated with this solution

for the inequality constraints (2.54b).

Remark 2.3.9. Before we prove Theorem 2.3.8, let us make the observation that it

very much resembles a duality theorem. However, the two equivalent problems do

∈

64

−

¯

r, r̄≥0

≥

not completely display a duality structure. Firstly, both problems are formulated as

minimization problems. Secondly, u is an optimization variable in both problems.

Lastly, while the solution to problem (2.54) provides a tuple of optimal solution

and Lagrange multipliers to problem (2.48), the converse is not true. However, the

main result in the context of this thesis lies in the fact that we can solve (2.54)

instead of (2.48). Furthermore, as will be shown later in this section, we can use

the solution to easily compute the difference between the objective function values

of both problems for a given solution – the duality gap, as it were – which provides

a measure of optimality due to Theorem 2.3.8(i). For this reason, we refer to (2.54)

as the dual of the VTS problem.

Proof. We know from Lemma 2.3.3, that (2.48) is equivalent to the saddle point

problem (2.49). This problem is convex (actually linear) and bounded in ρ, and

concave in u, so we can swap “max” and “min”, see for example [108, (Cor. 37.3.2)],

to get

max
u∈Rn

min
ρ≤ρ≤ρ̄

f Tu
1

uTK(ρ)u . (2.55)
2

m̄
i=1 ρiai=V

Due to our assumption of strict feasibility, there exists a Slater point for the fea-

sible set of the inner (convex) optimization problem, so we may replace it by its

Lagrangian dual. The Lagrange multipliers for the inequality constraints will be

denoted by r ≥ 0 and r̄ ≥ 0, that for the volume (equality) constraint by λ ∈ R:

max max min f Tu −

1
uTK(ρ)u

u∈Rn λ∈R ρ≥0
¯

2

m
+ λ ρiai − V

− rT(ρ − ρ) + r̄T(ρ − ρ̄) .

(2.56)

¯
i=1

We can include the non-negativity constraint on ρ in the innermost optimization

problem since we know that its solution, being the solution of (2.55), satisfies ρ ≥

ρ 0.
¯

Now regard the dual problem (2.54). It can equivalently be formulated as the

¯

65

m

∈ ≥∈

≥
∈ ≥∈

u Rn, α R τ 0
ν,ν 0
¯ ¯

¯ ¯
i 2 i i ¯i i

m

following min-max problem, using a partial Lagrangian function with multipliers

τ ≥ 0:

min

max αV − f Tu − νTρ + ν̄Tρ̄ +

τ (

1
uTK u − α a + ν

− ν̄)

which can be rearranged further to give

1
min max uTK(τ)u − f Tu

u Rn, α R τ 0 2
ν,ν 0
¯ ¯

+ α

V −

τiai + νT(τ − ρ) − ν̄T(τ − ρ̄) .

(2.57)

¯ i=1

Identifying τ , α, ν, and ν with ρ, λ, r, and r̄, respectively, and changing the sign of
¯ ¯ ¯

the objective function (and thus changing “max” to “min” and “min” to “max”), we

can see that (2.56) and (2.57) are equivalent. All three claims follow from this.

Remark 2.3.10. The dual problem (2.54) is a convex optimization problem. Indeed,

most functions are linear. The quadratic inequality constraint functions (2.54b)

feature the elemental stiffness matrices Ki, which are positive semidefinite, making

these constraint functions convex as well.

Remark 2.3.11. In later sections, we will often use the dual variables α, ν, ν̄ rather
¯

than the Lagrange multipliers λ, r, r̄, since they are equal at the solution. Apart
¯

from where the distinction is important, we can safely ignore it for the sake of

decluttering the notation.

We end this section with another formulation of the dual VTS problem, which only

features the variables u and α. It allows us to obtain an expression for the duality

gap without the Lagrange multipliers ν, ν̄, which can be used as an optimality
¯

measure in methods that solve the primal VTS problem (2.48) and return only

ρ, u and α as the solution. In particular, we will use this optimality measure

for the stopping criterion of the standard method outlined in Section 2.3.3 and

¯

i=1 ≥

66

− −
u R

()
u∈Rn

max
∈Rm

− αV + f Tu −

si

2 i i i

2 i i i
¯

i

2 i ρi ρ̄i

1

m

for comparing its results to those of the primal-dual methods in Section 3.1. The

following result was first derived in [16].

Theorem 2.3.12. Problem (2.54) is equivalent to the unconstrained nonsmooth

problem

max αV + f Tu

∈Rn,α∈

i=1

max
 (

1

uTKiu − α ai

)

ρi ,
¯ 2

uTKiu − α ai

)

ρ̄i

(2.58)

in the following sense:

(i) min(2.54) = − max(2.58) ,

(ii) Let (u∗, α∗, ν∗, ν̄∗) be a solution of (2.54). Then (u∗, α∗) is a solution of
¯

(2.58). Conversely, every solution (u∗, α∗) of (2.58) is also (part of) a solution

of (2.54).

Proof. We will show that (2.54) and (2.58) are equivalent reformulations of each

other. Introducing an auxiliary variable s ∈ Rm, problem (2.58) can be directly

rewritten as

,α∈R,s
i=1

s.t. 1
uTK u − α a ρ̄

≤ s , i = 1, . . . , m,

(
1
uTK u − α a

)
ρ ≤ s , i = 1, . . . , m.

The constraints in the above problem can be written as

1
uTK u − α a ≤ min

si ,

si

, i = 1, . . . , m.
¯

2

m (

i

i

67

¯

m

ρ

−
m

2 i i 2 i i

2 i i ¯i

i i ρ̄ i

i: si ≤ si ¯
¯

i

i

i: si ≤ si ̄
i¯i i i¯i

s

i

Noting that ρ̄i > ρi > 0, we define
¯

ν = 0 and ν̄ =
si , if

si
 > si > 0 ,

¯i i

si
ρ̄i ρi ρ̄i ¯

i si

νi = −ρ
¯

and ν̄i = 0 , if ρi
≤

¯
ρ̄i

≤ 0 .

With this, the above set of constraints can also be written as

1
uT K u − α a

≤ ν̄ − ν

i = 1, . . . , m.

Obviously, all νi and ν̄i satisfy the non-negativity constraints. Lastly, we can refor-
¯

mulate the objective function to match (2.54), since

s =

ρ̄
si +

ρ
si

=

ρ̄ ν̄

−

ρ ν

=

ρ̄ ν̄

−

ρ ν .

ρi ρ̄i
¯

ρi ρ̄i
¯

ρi ρ̄i
¯

ρi ρ̄i
¯

We switch the sign of the objective function and claims (i) and (ii) follow.

Assume that (u, α) is feasible for (2.58) and (ρ, u) is feasible for the primal

problem (2.48). Combining Theorem 2.3.12 (i) and Theorem 2.3.8 (i), we get the

identity min (2.48) = max (2.58) and thus the following formula for the duality gap:

δ(u, α) := min (2.48) − max (2.58)

=
1
f Tu + αV 2

(2.59)

+

max ρ
(

1
uTK u − α a

)
, ρ̄i

(
1
uTK u − α a

)
.

i=1 ¯

The dual VTS problem for a zero lower density bound

Strictly speaking, the VTS problem with non-zero lower density bounds belongs to

the category of sizing, rather than topology optimization, since the elements are

never completely removed in areas where the optimal design might be completely

m

i=1

m

i: si > si
i i: si > si i=1

i

i i
i=1

i

68

2 i i i

void of material [98, 5]. That it is a valid approximation of the proper topology

optimization problem where ρ = 0 was shown by Achtziger [5]. Still, we would
¯

ideally like to solve the problem for ρ = 0, since this would yield a more accurate
¯

result. Numerically, the main issue with this is that the density-stiffness map (2.46)

for the VTS only gives K(ρ) 0 for ρ > 0. Typically, one therefore either chooses

a non-zero lower bound or a minimal stiffness coefficient for void elements in order

to avoid ill-conditioning [22]. However, none of the tested algorithms struggled

with this issue even for zero lower bounds, see Chapter 3. For this reason, the

rest of the section contains modifications – indeed, simplifications – of the duality

results presented previously, now for the case ρ = 0. The proofs require only minor
¯

adjustments which are fairly straightforward. Therefore, brief notes are given rather

than comprehensive proofs for most modified results.

For a zero lower bound on the densities, ρ = 0, the dual of the VTS problem has
¯

the following form:

min
u∈Rn, α∈R, ν ∈Rm

αV − f Tu + ρ̄T ν (2.60a)

s.t.
1

uTK u ≤ α a + ν , i = 1, . . . , m, (2.60b)

νi ≥ 0, i = 1, . . . , m. (2.60c)

Theorem 2.3.13. Problems (2.48) with

following sense:

ρ = 0 and (2.60) are equivalent in the
¯

(i) If one problem has a solution, so does the other and

min(2.48) = − min(2.60) .

(ii) Let (u∗, α∗, ν∗) be a solution of (2.60). Further, let τ ∗ be the vector of associ-

ated Lagrange multipliers for the inequality constraints (2.60b). Then (τ ∗, u∗)

69

≤

− −
u R

1

is a solution of (2.48). Moreover, α∗, ν∗ are the Lagrange multipliers associ-

ated with this solution for the volume and upper bound constraint, respectively.

(iii) Let (ρ∗, u∗) be a solution of (2.48). Further, let r∗ be the Lagrange multipliers

for the upper bound constraint and let λ∗ be the multiplier for the volume

constraint. Then (u∗, λ∗, r∗) is a solution of (2.60). Moreover, ρ∗ are the

Langrange multipliers associated with this solution for the inequality constraint

(2.60b).

Proof. We can amend the proof of Theorem 2.3.8 by considering only a partial

Lagrangian of the primal problem, so that no multiplier for the lower bound appears

in (2.56). The non-negativity constraint in the minimization term is now equivalent

to ρ ρ. In the rest of the proof, we simply drop all terms involving the lower
¯

bound or associated multipliers.

Theorem 2.3.14. Problem (2.60) is equivalent to the unconstrained nonsmooth

problem

max αV + f Tu

∈Rn,α∈

i=1

max

0 ,
2
uTKiu − α ai

)

ρ̄i

(2.61)

in the following sense:

(i) min(2.54) = − max(2.61) ,

(ii) Let (u∗, α∗, ν∗) be a solution of (2.60). Then (u∗, α∗) is a solution of (2.61).

Conversely, every solution (u∗, α∗) of (2.61) is also (part of) a solution of

(2.60).

Proof. Completely analogous to the proof of Theorem 2.3.12, we can rewrite (2.61)

m (

70

()

−

2 i i

u∈Rn
max

∈Rm
− αV + f Tu −

si

2 i i i

m

as

,α∈R,s
i=1

s.t.
1
uTK u − α a ρ̄

≤ s , i = 1, . . . , m,

0 ≤ si, i = 1, . . . , m.

Now, we simply define νi = si/ρ̄i and switch the sign of the objective function to

show the equivalence to problem (2.60).

Assume that (u, α) is feasible for (2.61) and (ρ, u) is feasible for the primal

problem (2.48) with ρ = 0. We get the following formula for the duality gap:
¯

δ(u, α) := min (2.48) − max (2.61)

=
1
f Tu + αV 2

(2.62)

+
i=1

max

0 , ρ̄i

(
1
uTK u − α a

)
.

It should be noted that all results regarding uniqueness of a solution rely on the

positive definiteness of the stiffness matrix and thus on ρ > 0. This is true for the
¯

discrete case discussed here as well as for the continuous case [97]. Not even the

LICQ can be shown to hold, at least as it was done in Lemma 2.3.5, if ρ = 0. One
¯

can construct a simple example of a non-unique solution for this case by noticing

that displacements in areas of zero density can be arbitrary, within certain regularity

bounds [97].

We still choose to solve the zero lower bound version of the VTS with the algo-

rithms presented in Chapter 3. This is justified, firstly, by successful convergence in

practice. Secondly, Achtziger showed in [5] that a sequence of finite-dimensional VTS

problems for monotonically decreasing lower bounds ρ(j) > 0 with limj→∞ ρ(j) = 0
¯ ¯

converges in terms of the optimal objective function value. While the sequence

m

i

71

of optimal densities does not necessarily converge, it seemed to do so in most our

numerical examples. Where it did not, this manifested in small areas of quickly

oscillating density values, reminiscent of the well-known “checkerboarding” micro-

structure seen for material penalization [22] or the fibre-like structure in free-material

optimization [138]. The analysis in [98] suggests that this phenomenon is due to the

wrong choice of FE basis functions for the displacements and could be avoided by

using piecewise quadratic instead of bilinear basis functions. However, the observed

artefacts were usually small in range and amplitude and did not impede the physi-

cal interpretation of the design, so that we deem bilinear basis functions completely

satisfactory for all practical purposes – at least in all examples we have considered.

2.3.2 The Variable Thickness Sheet Problem with Unilateral
Contact

Considering that unilateral contact is a relatively simple but important step towards

more realistic problem modelling, it has received comparatively little attention in

the topology optimization literature, especially in recent years. Seminal research on

unilateral contact in truss and sheet design was done in the 1990s, see for example

[75, 99, 79]. Klarbring, Petersson, and Rönnqvist [75] proposed an LP formulation

for truss optimization under unilateral contact, including a proof of existence of a

solution. In [97], Petersson provided existence results for the exact VTS problem,

and in [99], Petersson and Patriksson proposed a subgradient method along with

convergence results. A method based on a dual reformulation of the problem was

described in [79], which is the basis for the algorithm derived later in this section.

For a review of important contributions at the time, see the article by Hilding,

Klarbring, and Petersson [65].

More work has been done on more general problems. We give a short, non-

exhaustive overview here as a starting point for further reading. Mankame and

Ananthasuresh [86] looked at compliant mechanisms in truss design with unilateral

contact. Several papers deal with the SIMP formulation of topology optimization

72

 ̄ ρ a =Vi i

−

involving contact. A solution method for the SIMP minimium compliance problem

with unilateral contact, based on a nested approach combining sequential linear pro-

gramming and an interior point method for the inner linear program, can be found

in [120]. Fancello [48] used numerical solvers for contact problems in a nested ap-

proach for mass minimization under contact and local failure constraints. Recently,

topology optimization problems involving large deformations and bilateral contact

have also been solved [49, 82].

We now extend the VTS formulation of the minimum compliance problem for the

case that rigid body obstacles are present. We include these in the form of contact

constraints as described in Section 2.2.1. The derivation of both the primal and

dual optimization problem very closely follow the previous section. We start with

the saddle point formulation of the minimum compliance problem, see Lemma 2.3.3,

only now, we include the contact constraints

CTu − b ≤ 0

and start from the max-min, rather than the min-max formulation:

max

ρ≤ρ≤ρ̄
i

min

CTu−b≤0

1
uTK(ρ)u f Tu . (2.63)

2

To derive a primal optimization problem analogous to (2.48), we note that the inner

minimization is now no longer unconstrained. Where before, we could resolve it

simply through the stationarity condition, we now have to introduce the Lagrange

multipliers η and utilize the KKT conditions (2.44). These are necessary and suffi-

cient for the inner minimization problem, since the potential energy is quadratic in

u for a fixed ρ and thus convex. Using (2.44a) and (2.44d), we get

1 1 1 1
min uTK(ρ)u − f Tu = uT (f − Cη) − f Tu = − f Tu − bTη .

CTu−b≤0 2 2 2 2

73

2

If we now switch the sign of the objective function in (2.63), we see that it is

equivalent to [79]:

min
1

f Tu +
1

bTη (2.64a)
ρ∈Rm,u∈Rn,η∈Rl 2 2

m

s.t. ρiKi u = f − Cη , (2.64b)
i=1

CTu ≤ b , (2.64c)

η ≥ 0 , (2.64d)

ηT(CTu − b) = 0 , (2.64e)
m

ρiai = V , (2.64f)
i=1

0 < ρi ≤ ρi ≤ ρ̄i , i = 1, . . . , m . (2.64g)

The equivalence between minimization of compliance (or maximization of stiff-

ness) and the maximization of the equilibrium potential energy in (2.63), from which

our problem has been derived, is not necessarily intuitive. This is especially true

once contact is included, as pointed out in [97]. Nevertheless, we attempt to give a

plausible physical interpretation of (2.64). Added to the compliance in the objective

function are the nodal contact stresses weighted by the initial gaps b. If we view b

as prescribed displacements and the contact stress values η as the resulting forces

on the contact surface, then 1 bTη is the negative work done by the contact stresses.

The objective function of problem (2.64) means we minimize the external work for

prescribed loads while maximizing the external work for prescribed displacements

[97, 20]. Alternatively, one could say that at all points at which the loaded design

deforms enough to close a non-zero gap, we try to keep the reaction (pressure) forces

as low as possible, so as not to lean on the contact surface too much. Where initial

gaps are zero (or comparatively small), large contact forces are not penalized in the

objective (as much). This means the optimal design might in fact rely on those

parts of the contact surface for load-bearing.

¯

74

¯

2 i i ¯i i

2 i i i

We turn our attention once again to the saddle point formulation (2.63), in order

to derive a dual problem analogous to (2.54). Since the inner minimization problem

is still concave, we can proceed just like in the proof of Theorem 2.3.8 and obtain

the following problem [79]:

 u∈Rn min

∈Rm

αV − f Tu − ρTν + ρ̄T ν̄

, α R, ν, ν̄ ¯ ¯ ¯
s.t.

1
uTK u ≤ α a − ν

+ ν̄ , i = 1, . . . , m ,

CTu ≤ b ,

νi ≥ 0, i = 1, . . . , m,

ν̄i ≥ 0, i = 1, . . . , m .

In contrast to the primal problem (2.64), incorporating unilateral contact in the

dual only adds one extra set of inequality constraints and no extra variables.

We focus on the case of zero lower density bounds, as the method we will use in

Chapter 3 to solve the problem performed well for ρ = 0 despite open questions
¯

of uniqueness or theoretical convergence. The dual VTS problem with unilateral

contact for zero lower density bounds is

min

u∈Rn, α∈R, ν ∈Rm
αV − f Tu + ρ̄T ν (2.65a)

s.t.
1

uTK u ≤ α a + ν , i = 1, . . . , m, (2.65b)

CTu ≤ b , (2.65c)

νi ≥ 0, i = 1, . . . , m. (2.65d)

Naturally, we can obtain a result similar to Theorem 2.3.13.

Theorem 2.3.15. Problems (2.64) with

following sense:

ρ = 0 and (2.65) are equivalent in the
¯

∈

75

(i) If one problem has a solution, so does the other and

min(2.64) = − min(2.65) .

(ii) Let (u∗, α∗, ν∗) be a solution of (2.65). Further, let τ ∗, η∗ be the associated vec-

tors of Lagrange multipliers for the inequality constraints (2.65b) and (2.65c).

Then (τ ∗, u∗, η∗) is a solution of (2.64). Moreover, α∗, ν∗ are the Lagrange

multipliers associated with this solution for the volume and bound constraint,

respectively.

(iii) Let (ρ∗, u∗, η∗) be a solution of (2.64). Further, let r∗ be the Lagrangian mul-

tipliers associated with the upper bounds on ρ, and let λ∗ be the multiplier

for the volume constraint. Then (u∗, λ∗, r∗) is a solution of (2.65). More-

over, ρ∗, η∗ are the Lagrange multipliers associated with this solution for the

inequality constraints (2.65b) and (2.65c), respectively.

Proof. The proof is a straightforward adjustment of the proofs of Theorems 2.3.8

and 2.3.13, taking into consideration the added contact constraints and correspond-

ing Lagrange multipliers η.

For the case without contact constraints, we introduced another reformulation

of the problem as the basis for a duality gap expression which did not require any

Lagrange multipliers apart from α. This served the purpose of being able to compare

the results of primal and dual algorithms. However, since contact constraints cannot

be easily incorporated into the primal method used for (2.48), no such comparison

will be required. We can instead simply use the following expression for the duality

76

¯

2 2

2 2

gap, based on Theorem 2.3.15:

δ(u, η, α, ν, ν̄) := min(2.64) − (− min(2.65))

=
1
f Tu +

1
bTη + αV − f Tu + ρ̄T ν

= −
1
f Tu +

1
bTη + αV + ρ̄T ν .

This concludes our treatment of the variable thickness sheet problem. We end the

section with a description of an optimization method designed specifically for the

VTS problem.

2.3.3 The Optimality Criteria Method

The optimality criteria (OC) method [22, 111, 136] is a popular algorithm for solving

the minimum compliance problem. It is easy to implement and can handle the VTS

as well as the SIMP formulation, exemplified by the much-cited Matlab implemen-

tation [12] and more recently [50]. In a benchmarking paper by Rojas-Labanda and

Stolpe comparing different optimization algorithms, the OC method outperformed

other methods in terms of computational time, including the method of moving

asymptotes [121] which is perhaps the most widely used method in topology opti-

mization. We will compare the performance of our IP and PBM implementations

against that of the OC method in Section 3.2 and therefore outline this method

here. One thing to note straight away is that it does not allow for contact con-

straints. On the other hand, while we derive it here only for the VTS problem, it is

straightforward to extend to the SIMP formulation, for which it is most often used.

In [16], Ben-Tal and Bendsøe derived a particular set of necessary and sufficient

optimality conditions for the minimum compliance problem, which offer a very in-

structive characterization of the optimal solution. In its original form, they are

stated as conditions for (2.58). We include it in a slightly rephrased form further

below, connecting it more closely to the formulations (2.48) and (2.54). To motivate

77

2

2 i i ¯i

i 2 i i

the next theorem, let us regard the first set of inequality constraints of the dual VTS

problem (2.54):

1
uTK u − αa + ν − ν̄ ≤ 0, i = 1, . . . , m.

From Theorem 2.3.12, we know that, at the solution, the densities ρ double as La-

grange multipliers for the above constraints. Furthermore, ν and ν̄ are the Lagrange
¯

multipliers of the primal lower and upper bound constraints, respectively. For any

intermediate element density, that is any ρi with

therefore demands

ρi < ρi <
¯

ρ̄i, complementarity

ρ
(

1
uTK u − αa

)
= 0 . (2.66)

As ρi /= 0, this further implies 1 uTKiu − αai = 0. The following theorem shows

that the converse is also true (although in a less strict sense).

Theorem 2.3.16. A pair ρ∗, u∗ is an optimal solution of (2.48) and α∗ is the

associated multiplier for the volume constraint if and only if

ρ∗ = ρ if 1
(u∗)TK u∗ < α∗a

, (2.67a)
i

¯
i 2 i i

ρ∗ = ρ̄ if 1
(u∗)TK u∗ > α∗a

, (2.67b)
i i 2 i i

1 ρ ≤ ρ∗ ≤ ρ̄ if (u∗)TK u∗ = α∗a

, (2.67c)
i i i i i

¯
m

ρiKi u = f , (2.67d)
i=1

m

ρiai = V . (2.67e)
i=1

Proof. See [16].

The last two conditions are simply the equilibrium equations and volume con-

straint. Equations (2.67a–2.67c) allow an interesting interpretation of α∗. Since
1 uT(ρiKi)u is the internal strain energy of element i, we can view 1 uTKiu/ai as

2 2

2

i

78

ρi := ρi
2

the strain energy normalized with respect to the element’s mass. The multiplier

α∗ gives a particular threshold value for this term: Each element whose normalized

strain energy exceeds α∗ requires the maximum amount of material, according to

(2.67b); on the other hand, if this energy is below α∗, the minimum amount of

material is sufficient, see (2.67a). For any element with intermediate density, the

normalized strain energy is exactly α∗.

The OC method is an iterative updating scheme that focuses on the densities

ρ1, . . . , ρm, which it essentially splits into three groups according to (2.67a–2.67c).

Those that satisfy (2.67c) are fixed points for (2.66), which motivates the update

formula
(k+1) (k)

 1 (u(k))TKiu(k)

where α is determined through bisection such that ρ(k+1) satisfies the volume con-

straint. To avoid overshooting and improve convergence, we impose constant move

limits. Additionally, we apply a “damping” to the term in brackets on the right-hand

side by raising it to a power 0 < q < 1. Furthermore, if the update would push ρi

outside of the feasible bounds, we assume that ρi belongs to one of the groups de-

fined by (2.67a) and (2.67b) and assign it the value ρi or ρ̄i accordingly. Algorithm 1
¯

summarizes the method. As a measure of optimality, we use the duality gap defined

in (2.59). Unless otherwise specified, we follow [12] for the choice of the move limit,

bisection bounds and damping parameter: ᾱ0 = 109, α0 = 0, ∆ρ = 0.2 and q = 1 .
¯ 2

Note that the displacements and densities are not updated simultaneously. The

OC method technically does not solve (2.48), but the so-called nested formulation

of the minimum compliance problem, where u is featured not as a variable, but as

a function of ρ. The equilibrium equations are not included explicitly in the nested

formulation, but implicitly through u(ρ).

αai
, (2.68)

79

{

, . . . , m

i

i=1

5: while ᾱ α
¯

ᾱ+α > 0.1 εOC do

10: if
 m

let

 Algorithm 1 Optimality Criteria Method

Let ρ ∈ Rm be given such that
 m ρi = V , ρi ≤ ρi ≤ ρ̄i, i = 1, . . . , m. Further, εOC > 0, ᾱ0 > α0 > 0, 0 < ∆ρ < 1 and q < 1 be given.

¯
1: repeat
2: Solve K(ρ)u = f

i i i i i i for i = 1, . . . , m
3: ρ = max ρ , ρ ¯

− ∆ρ}, ρ = min{ρ̄ , ρ + ∆ρ}

4: ᾱ = ᾱ0, α = α0 6: α = (ᾱ̄ + α)/2
7: for i = 1

¯ do

(1 uT K u
)q

8: ρ+ = min max ρi
9: end for

2
i

αai
, ρi

, ρ i

11: α = α
12: else¯

13: ᾱ = α
14: end if
15: end while
16: ρ = ρ+
17: until δ(u, α) < εOC

2.4 Iterative Methods for Linear Systems

Each of the optimization algorithms discussed in the previous sections entails sev-

eral linear systems that need to be solved numerically throughout the course of the

optimization. In the IP and PBM method, we need to obtain one or more Newton

increments at each iteration, and the OC method recomputes the displacements

from the equilibrium equations after each update of the densities. Solving the corre-

sponding linear systems accounts for a large part of the overall computational cost

of the optimization. Choosing the right solver is therefore a crucial part of any

efficient strategy for solving large-scale problems, where even small improvements

can save hours, if not days, of computation time. This section is concerned with

numerical methods for finding a solution to the type of linear system that we will

encounter in the algorithms proposed in Chapter 3 and in the OC method. It is of

the general form

Ax = b , (2.69)

ρ+ai > V then i=1

i

¯ −

¯

80

where we are given a right-hand side vector b ∈ Rn and a system matrix A ∈ Rn×n

which is symmetric and positive definite. It is also sparse, i.e. the number of non-

zero entries in A is a small fraction of n2. In particular, we assume that this number

is in the order of n. The goal is to solve large-scale systems where n > 106.

In general, methods for solving linear systems are grouped into direct solvers and

iterative solvers. The former yield an exact1 solution of (2.69) after a fixed number

of steps, while the latter produce a sequence xk which converges to the solution as

k → ∞. To compare the two in terms of computational efficiency, let us briefly

recall the Landau-notation [131]:

Definition 2.4.1. A function c : N −→ (0, ∞) is said to be (in) O(d(n)) for another

function d : N −→ (0, ∞), if there exists a constant β > 0 such that

c(n) ≤ β d(n) ∀ n ∈ N.

We write c(n) = O(d(n)). Further, we say that a computational procedure has

O(d(n)) complexity if it requires O(d(n)) floating point operations.

In general, direct methods have O(n3) complexity [131, 104]. This can be reduced

if one takes advantage of the sparsity of the system matrix and any special structure

it might exhibit. For a banded matrix with upper and lower bandwidth p « n,

for example, direct solvers can be adjusted to run in O(np2) [104]. However, they

still suffer from so-called fill-in. Direct methods typically involve some factorization

of the matrix A, for example A = LLT for the Cholesky-factorization [131]. The

matrix L does not generally have the same sparsity structure, in fact, it is usually

less sparse than A. As a result, memory becomes an issue for large n.

The main computational cost in iterative solvers comes from matrix-vector mul-

tiplications performed in each iteration. Since this operation is in O(n2), the overall

complexity of such a solver is O(kn2), where k is the number of iterations needed to

1assuming exact arithmetic

81

obtain an acceptable solution. As before, this can be improved by taking into ac-

count the sparsity of A. If one does not require an exact solution, iterative methods

that can reach a satisfactory approximation in only a few, that is N « n, iterations

have a clear advantage over direct methods. This makes them a better choice for

our purposes, since in our optimization algorithms, we only need to solve the New-

ton systems with relatively low accuracy1. For a thorough introduction to and a

good general overview of direct and iterative solvers, we refer to the books [131] by

Wendland and [104] by Quarteroni, Sacco, and Saleri.

Two classes of iterative solvers are of particular interest for the kind of system we

will need to solve: Krylov subspace methods, more specifically the conjugate gradient

and minimal residual method, and multigrid methods. The former are guaranteed

to return an exact solution after at most n steps and could thus be classified as

direct methods; however, their strength lies in obtaining a good approximation

in relatively few steps if the matrix A is well-conditioned. The basic concepts of

Krylov methods and the general convergence behaviour of the conjugate gradient

and minimal residual method are the subject of Section 2.4.1. We also touch upon

preconditioning, motivating the use of multigrid methods as spectrally equivalent

preconditioners. Section 2.4.2 then gives a brief introduction to multigrid methods,

which are very effective for systems arising from the discretization of elliptic partial

differential equations, such as the equilibrium equations (2.38). They make use of

specific properties of the resulting system matrix and constitute an optimal iterative

method in that the number of iterations required until a certain error measure is

below a fixed tolerance value does not depend on the size of the system. When the

mesh is no longer regular or structured, certain components of the standard multigrid

method need to be generalized. This leads to algebraic multigrid methods, which

are also covered in Section 2.4.2.
1compared with machine precision

82

2.4.1 Krylov Subspace Methods

To start off, we introduce some basic notation. Let x0 be the initial guess for a

solution to system (2.69) and let us denote by xk, k = 1, 2, . . ., the sequence of

approximations returned by an iterative solver. Further, the kth residual is defined

as rk := b −Axk. We now turn to a class of iterative solvers which construct iterates

that satisfy

xk ∈ x0 + Kk(A, r0) ,

where Kk(A, r0) is the Krylov space defined as

Kk(A, r0) := span
{
r0, Ar0, A2r0, . . . , Ak−1r0

.

Accordingly, such solvers are called Krylov (subspace) methods. Two methods of this

class find application in our algorithms, the conjugate gradient (CG) method and the

minimum residual (MINRES) method. Because we use the generic versions of these

solvers, what follows is a very condensed discussion, covering the main convergence

results and highlighting the differences between the two methods. Many books have

been written that can be consulted for more details. We mention here the book

by Saad [114], an extremely comprehensive treatment on iterative solvers, and that

by Greenbaum [58], as a reference for the MINRES method in particular. The

corresponding chapters in [131] also provide a good introduction to Krylov solvers.

Detailed pseudo-code for all methods discussed in this section can be found in [58,

131]. Last but not least, no literature list for the CG method is complete without

the excellent introductory article by Shewchuk [118].

Both the CG and MINRES method can be viewed as optimization algorithms for

a function, say r(x), that is in some way a measure of how much x deviates from

the true solution of (2.69). In each iteration, we update the approximate solution

by

xk+1 := xk + σkdk ,

83

1/2

2

where the step size σk is defined such that it minimizes r(xk + σdk) over σ ∈ R. The

search directions d0, . . . , dk−1 are chosen so that they form a basis of Kk(A, r0). The

methods differ in their choice of r(x) and in how they construct the basis vectors.

For later reference, we denote the error of some x with respect to (2.69), that

is the difference between x and the exact solution x∗ of (2.69), by e := x∗ − x.

We further observe the following identity involving the kth residual and the error

ek := x∗ − xk of the kth iterate:

Aek = b − Axk = rk . (2.70)

Conjugate Gradient Method

The CG method, originally proposed by Hestenes and Stiefel [64], is no doubt one

of the most popular iterative methods for large, sparse, symmetric positive definite

matrices. It uses a set of vectors {d0, . . . , dk−1} as a basis of Kk(A, r0) which are A-

conjugate, that is

dT
i Adj = 0 for i /= j .

Because the matrix A is positive definite, we can define an inner product (v, w)A :=

vTAw and a corresponding norm

/Iv/IA = (v, v)A , (2.71)

which we call energy norm. We can motivate the CG method as a minimization

algorithm for the functional r(x) := 1 xTAx − bTx. Since this r(x) is strictly

convex, (2.69) represents the necessary and sufficient optimality condition and its

solution x∗ is also the unique minimum of r(x). The CG method produces iterates

xk, k = 1, 2, . . ., each of which minimizes r(x) over x0 +Kk(A, r0). Note that adding

84

−

−

a constant term to r(x) does not change its minimizer. Hence, we can see from

r(x) + (x∗)TAx∗ =
1
xTAx bTx +

2

1
(x∗)TAx∗

2

=
1
xTAx (Ax∗)Tx +

2
1
(x∗)TAx∗

2 1 ∗ T ∗ 1 2 = (x
2

− x) A(x
− x) =

2
/Ie/IA

that minimizing r(x) is equivalent to minimizing the energy norm of the error e.

Due to the A-conjugacy of the search directions and the above optimality prop-

erty, the kth residual vector is orthogonal to span{d0, . . . , dk−1}. Therefore, dk can

be obtained by a Gram-Schmidt orthonormalization of rk with respect to the inner

product (,)A. At first glance, this would seem to require all previous search direc-

tions in order to construct the next one. In this case, however, the procedure can be

reduced to a three-term recurrence scheme. This leads to an algorithm in which, at

each iteration, we can efficiently compute dk+1, rk+1 and xk+1 by a few vector inner

products, vector additions and one matrix-vector multiplication. Furthermore, we

need only store a single instance of each of these vector iterates.

Minimum Residual Method

The MINRES method was introduced by Paige and Saunders [95] as a solver for

indefinite symmetric systems. It is nowadays a popular method for systems arising,

for example, in incompressible fluid flow dynamics [45]. It can be seen as a gener-

alization of the CG method: The way in which the search directions d0, d1, d2, . . . ,

are computed in the CG method can be derived from the Lanczos algorithm for

building an orthogonal basis of Kk(A, r0), see for example [114]. Paige and Saun-

ders extended this approach to indefinite matrices, for which one cannot generally

define an inner product, so that the concepts of A-conjugacy and the energy norm

are no longer applicable. The MINRES method iteratively constructs an orthogonal

85

CG MR

basis {d0, . . . , dk−1} of Kk(A, r0) and updates xk such that the residual norm /Irk/I2

is minimized over x0 + Kk(A, r0).

A single iteration of the MINRES method has roughly the same computational

complexity as a single iteration of the CG method. In both cases, the most costly

operation is a matrix-vector multiplication. Therefore, the overall costs of the two

methods can be expected to scale the same with the size of the problem. In general,

there are two main reasons for a difference in performance. First, the formulae and

computational steps in a single iteration are more complicated for the MINRES

than for the CG method. In particular, the updating scheme for the basis vectors

is a three-term recurrence, so that more vectors need to be stored simultaneously

and more vector additions need to be performed. Second, both methods usually

formulate a stopping criterion in terms of the residual norm, since the error is not

readily available. Since this is exactly what the MINRES method minimizes over the

Krylov subspace, it generally requires fewer iterations than the CG method. One

therefore has to consider this trade-off between cost per iteration and total number

of iterations when choosing between the two solvers. While the CG method seems

to be far more popular in practice, we compare both methods for our problem in

Section 3.2, showing that the MINRES method performs better in some cases.

Convergence

The convergence behaviour of the CG and MINRES method is determined by the

spectrum of the matrix A, as we will now show. Although the MINRES method

can also solve indefinite problems, the optimization algorithms in which we will use

it will only involve positive definite systems. We will therefore assume A 0 for

ease of presentation. We will denote iterates of the CG and MINRES method by a

superscript CG and MR, respectively. Recall the optimality properties for the two

methods:

/Ie /IA = min /Ie/IA , /Ir /I2 = min /Ir/I2 . (2.72)
k

x0+Kk
k

x0+Kk

86

i

i

i

p∈Pk

CG

p∈Pk

MR

k i

e□ = x∗ − x□ = e0 −

γ□Air0 = e0 −

γ□AiAe0

i=0

Being elements of x0 + Kk(A, r0), we can express xCG and xMR in terms of r0 and

powers of A:

k k

 k−1

x□ = x0 +

γ□Air0 ,

where we used □ as a placeholder for CG and MR. Using (2.70), we can then derive

a similar expression for the error,

k−1 k−1

k k

= I −

i=0

i=1

i

γ□Ai

e0 ,

i
i=0

and for the residual,

r□ = b − Ax□ = b − A x0 +

k−1

γ□Air0

k k

= b − Ax0 −

i=0
k

i=1

i

γ□Air0

= I −

i=1

γ□Ai

r0 .

To make the notation even more concise, we can write these identities as

e□ = p□(A)e0 , r□ = p□(A)r0 ,
k k

where p□(t) is a polynomial of degree k with p(0) = 1. Denoting the space of kth

degree polynomials by Pk , we can now see that (2.72) is equivalent to

/Iek /IA = min
p(0)=1

/Ip(A)e0/IA ,

/Irk /I2 = min
p(0)=1

/Ip(A)r0/I2 .

Since any vector can be expressed as a linear combination of orthonormal eigen-

vectors of A, the above can be written in terms of the eigenvalues λ1, . . . , λn of A.

k

k

87

p∈Pk

CG

1≤i≤n

p∈Pk

MR

1≤i≤n

CG

MR

 J
−

 J
−

(For details, see any of the references at the beginning of this section). This further

allows us to derive the following upper bounds:

/Iek /IA ≤ min

p(0)=1

max |p(λi)|/Ie0/IA ,

/Irk /I2 ≤ min
p(0)=1

max |p(λi)|/Ir0/I2 .

This result provides several important insights. The upper bound on the energy

norm of the error and on the residual norm, respectively, after k iterations of the

CG and MINRES method depends on how close to zero the kth degree polynomial

p can get at every eigenvalue. This guarantees that both methods obtain the exact

solution after at most n iterations, since we can then find a polynomial with a root at

each λi, or after l < n iterations if A only has l distinct eigenvalues. What is more,

even if the eigenvalues are merely clustered around l distinct values, an appropriate

polynomial of degree l can yield very small values at all λi. Disregarding possible

clustering of eigenvalues, one can use Chebyshev polynomials to obtain less tight

but informative upper bounds

/Iek /IA ≤ 2

/Irk /I2 ≤ 2

cond(A) 1
k

J
cond(A) + 1

cond(A) 1
k

J
cond(A) + 1

/Ie0/IA ,

/Ir0/I2 ,

where cond(A) is the condition number of A, defined as

cond(A) =

maxi λi .
mini λi

These upper bounds can be made smaller by narrowing the spectrum of A.

88

Preconditioning

The convergence results presented above make it clear that the performance of the

CG and MINRES method depend on the distribution of the eigenvalues – the con-

ditioning – of the system matrix A. In fact, these algorithms are not competitive in

practice for systems that are not particularly well-conditioned. Therefore, CG and

MINRES implementations typically employ some form of preconditioning technique.

Let M ∈ Rn×n be a symmetric matrix, which we will call the preconditioning

matrix or simply the preconditioner. We can find a factorization M = LLT, (for

example a Cholesky factorization or the square root of M), such that L is invertible.

The original linear system (2.69) is equivalent to the “preconditioned” system

L−1AL−T LTx = L−1b . (2.73)

=

:

B

=

:

y

=

:

c

The matrix B is symmetric positive definite, so that we can solve By = c by either

the CG or MINRES method and obtain the solution of (2.69) by solving LTx = y.

We then speak of the preconditioned CG or MINRES method. If cond(B) < cond(A)

or the eigenvalues of B are more tightly clustered than those of A, preconditioning

significantly improves the convergence rate. Practical implementations of precondi-

tioned Krylov solvers do not actually involve the system (2.73), which should be seen

as a mere formalism. A reformulation of the standard CG or MINRES method ap-

plied to (2.73) yields an algorithm that essentially only differs from the original one

by its use of a preconditioned residual zk, which is obtained by solving Mzk = rk,

which leads to an additional computational step in each iteration. We therefore do

not need to know the factorization M = LLT, nor, in fact, do we require M to be

explicitly given as a matrix. More generally, we only need a linear operator that

performs the function of M−1. Convergence analysis of a preconditioned Krylov

solver is typically done in terms of the spectrum of M−1A, since this matrix has the

same eigenvalues as B, see for example [131, (Lemma 8.1)].

89

A good preconditioner should meet two criteria in order to provide an overall

speed-up of the solver. First, we want cond(M−1A) to be small, or alternatively, we

want the eigenvalues of M−1A to be tightly clustered; second, we need to be able

to solve the system Mzk = rk efficiently. These two requirements are somewhat at

odds, as exemplified by the extreme examples of M = I and M = A. While M = I

clearly satisfies the second requirement, it does not improve the conditioning at all,

whereas M = A would guarantee convergence in a single iteration, but if we knew

how to solve Azk = rk efficiently, we would not be resorting to an iterative solver

to begin with. A good preconditioner must therefore strike a balance between the

two requirements.

In the context of large-scale problems, there is another important criterion that

a preconditioner should meet. Not only should the condition number of M−1A be

small compared to cond(A), but it should ideally be independent of the problem size.

This would guarantee that the number of iterations required to solve, for example,

a discretized PDE, stays the same as we increase the discretization resolution. A

preconditioner of this kind, for which cond(M−1A) = O(1), is called spectrally equiv-

alent to A [130]. The multigrid method discussed in the next section is an excellent

candidate for such a preconditioner. It is actually an iterative solver in its own right,

which, when used to solve symmetric positive definite systems arising from elliptic

partial differential equations, gives a reduction of the error

/Iek+1/IA ≤ η/Iek/IA

in each iteration. Here, the constant η ∈ (0, 1) is independent of the problem size.

This leads to cond(M−1A) = (1 + η)/(1 − η) [130, 45], making the multigrid method

an optimal preconditioner.

For an overview of different preconditioners for Krylov methods, also covering

indefinite and asymmetric systems, see the review article by Wathen [130]. For a

more in-depth treatment of preconditioning techniques in general, see for example

90

[115].

2.4.2 Multigrid Methods

Whereas the previous iterative methods are applicable to any symmetric (positive

definite) linear system, multigrid methods were developed specifically for systems

resulting from the discretization of PDEs. The system matrix A, more specifically

its spectrum and eigenspaces, in those cases displays particular properties that the

multigrid approach takes advantage of. It does this in a way that decouples its

convergence behaviour from the resolution of the discretization and thus the size

of the matrix A. Multigrid methods were originally proposed by Brandt [29]. We

refer to the book by Briggs, Henson, and McCormick [33] for a very instructive

introduction, or to the corresponding chapters in [131, 114] for a shorter but equally

accessible treatment. A comprehensive and thorough discussion can be found, for

example, in [61].

Multigrid methods have two main components: a hierarchy of coarse meshes of

decreasing resolution, on which low-resolution parts of a solution can be computed

efficiently; and a specific type of iterative method which is particularly effective at

fine-tuning the solution parts that require a high resolution. We will first consider

this second component.

For the rest of the section, we assume that A is a symmetric positive definite

matrix arising from the discretization of a system of elliptic partial differential equa-

tions. A large class of iterative solvers for (2.69) can be written in the form

xk+1 = Cxk + c , (2.74)

where C is typically a matrix derived from a splitting of A and c is a constant vector

involving the right-hand side b. Examples of such solvers are the Jacobi method,

successive over relaxation (SOR), or the Gauss-Seidel method [131, 114]. We assume

91

the method is consistent, which means that x∗ = Cx∗ + c, where x∗ is the solution

of (2.69). It is then easy to show that the following equation holds for the errors of

successive iterates:

ek+1 = Cek .

We naturally want to choose the matrix C so that the error is reduced in each

iteration and xk → x∗ as k → ∞. To establish a criterion for convergence, we

define the spectral radius of C by

Q(C) := max |λi(C)| ,

where λ1(C), . . . , λn(C) are the eigenvalues of C. It can be shown that (2.74) con-

verges for all x0 ∈ Rn if and only if Q(C) < 1. For certain iterative solvers, we can

identify not just their overall convergence behaviour but how they affect different

components of the error ek. Since A is symmetric, its eigenvectors can be chosen to

be an orthonormal basis of Rn and we can express the error as a linear combination

of these eigenvectors. For matrices arising from, for example, the discretization of

elliptic PDEs, the eigenvectors can usually be interpreted as the point-wise values of

oscillatory functions on the discretized domain Ωh, which vary in their frequencies.

Some iterative methods of the type (2.74) eliminate particularly fast those compo-

nents of ek which lie in the range of high-frequency eigenvectors. On the other hand,

those same solvers are typically very slow at reducing the “smooth” error compo-

nents – those that correspond to low-frequency eigenvectors. Such iterative solvers

are therefore called smoothers. The damped Jacobi method, as well as the SOR and

various forms of the Gauss-Seidel method fall into this category [131, 114, 61]. In

multigrid methods, they are used specifically because of their ability to effectively

reduce high-frequency errors and are complemented by another essential component

of multigrid, the coarse-grid correction, which takes care of the low-frequency errors

and which we will look at next.

The concept that gives multigrid methods their name is the use of several levels of

i

92

Figure 2.3: Basic example of a two-grid hierarchy. Fine-grid nodes are coloured
white; coarse-grid nodes (and coinciding fine-grid nodes) are coloured grey.

meshes, or grids, each a discretization of the problem domain. Grids at lower levels

have a coarser discretization resolution, with the mesh of the original problem at the

“top” of the grid hierarchy. We will use the terms “grid” and “mesh” interchangeably.

The top-level grid is commonly called the fine grid, whereas the other grids are called

coarse. The essential characteristics of this multilevel scheme are best illustrated on

the two-grid problem. Assume that we have two grids for the same domain, but

of different resolution: the fine grid, which is basically our “original” grid on which

(2.69) is defined and which we denote by Ωh, and the coarse grid ΩH . We denote

by nh and nH , with nh > nH , the number of degrees of freedom for each grid. We

use the same subscript notation for matrices defined on either grid, e.g. Ah := A,

but superscripts for vectors, e.g. bh := b. Figure 2.3 shows a simple example of a

two-grid hierarchy, where ΩH is created from Ωh by halving the number of elements

in each grid direction.

If we perform a certain number of smoother iterations on the fine grid, we assume

that the resulting error e has mostly low-frequency, or smooth, components. The

resolution of the coarser grid might therefore suffice to accurately represent this

Ωh

ΩH

93

h H

H

error. Recalling the identity (2.70), we could therefore solve Ae = r on the coarser

grid, which can be done more efficiently, since the size of the system is reduced. We

could then obtain the solution by updating x ← x+e. It becomes clear that we need

to differentiate between the system we are solving on the fine grid, Ahxh = bh, and

the one on the coarse-grid, which is AH eH = rH. The matrix Ah = A ∈ Rnh×nh and

right-hand side vector bh = b ∈ Rnh are given as part of the problem specification,

for example by an FE discretization on Ωh. The question is how we should define

AH ∈ RnH ×nH and bH ∈ RnH on the coarse grid. Furthermore, how do we obtain

a coarse-grid version rH of the residual rh = bh − Ahxh and how do we map the

solution eH of AH eH = rH back to the fine grid? For this purpose, we define transfer

operators

IH : Rnh −→ RnH , Ih : RnH −→ Rnh .

We call IH the restriction operator and Ih the prolongation operator. Let us consider
h H

the two-dimensional example shown in Figure 2.3. The grids Ωh and ΩH are both

regular with uniform grid spacing in each direction. Ωh is obtained by dividing each

element in ΩH into 4 squares. In this case, we can define the prolongation operator

h through simple piecewise linear interpolation. If we assume for simplicity’s sake

that we have one degree of freedom for each node and consider a node that does not

lie on the boundary of the mesh, we can express the contribution of a coarse-grid

node to the 9 fine-grid nodes in its vicinity by a stencil, which takes the form

1

1 2 1

4
2 4 2 .

In three dimensions, a coarse-grid node contributes to 27 fine grid nodes and the

stencil is

1

1 2 1

8
2 4

2

1

2 4 2

8
4 8

4

1

1 2 1

8
2 4 2 ,

where the left and right matrices correspond to the fine-grid layers above and below

I

1 2 1

1 2 1 2 4 2 1 2 1

94

h

h

the coarse-grid node, which itself lies on the layer corresponding to the central

matrix. In order to restrict a vector defined on the fine grid down to the coarse grid,

we could choose a trivial injection and simply assign to each coarse-grid node the

value of the fine-grid node that coincides with it. However, we achieve better results

if we define the restriction operator by

IH = γ(Ih)T (2.75)
h H

for some γ > 0. This full weighting approach effectively defines a coarse-grid value

as a weighted sum of its surrounding fine-grid values. Extending the presented

approach for the transfer operators to multiple degrees of freedom per node and

boundary conditions that eliminate some or all DOFs for certain boundary nodes is

fairly straightforward, albeit a bit cumbersome, and we omit the details. Note that

a prolongation operator defined in the way just described has full rank.

We still need to define the coarse-grid system matrix AH . This is done via a

Galerkin projection [114]:

AH := IHAhIh . (2.76)
h H

If the system originates from an FE discretization, one can in fact show that

AH x = bH with AH defined as above and bH := IHbh is exactly the system one

would obtain from an FE discretization on the coarse mesh using piecewise bilinear

basis functions.

Now all the components are in place and we can outline the two-grid iterative

scheme. We begin by performing ω1 ∈ N iterations of a smoother with matrix C. Let

rh be the residual after this pre-smoothing step. The next step is called coarse-grid

correction: We define the restricted residual by rH := IHrh and solve AH eH = rH.

For now, let us assume that we solve the restricted system exactly, so that we can

write eH = A−1rH. We interpolate the solution eH, defining eh := Ih eH and use H H

this to update xh. As a final (optional) step, we perform ω2 ∈ N post-smoothing

95

h

h 2 h 2 h

T = Cω2
(
I − Ih A−1IHAh

Cω1 . (2.77)

Dh

H H h

iterations. Since what we have described is a sequence of linear operations, we can

summarize one iteration of the two-grid scheme as an iterative solver of the form

(2.74). We get

ek+1 = Tek ,

where the iteration matrix of the two-grid scheme is given by

=:T

h,H

The matrix Th,H is called coarse-grid correction operator and it constitutes one of the

two core elements of the two-grid scheme, the other being (pre- and post-)smoothing.

A single iteration of the smoother within a smoothing step is sometimes called a

sweep.

For our choice of transfer operators and any of the smoothers mentioned earlier

on, it can be shown that the two-grid scheme converges. A general set of necessary

conditions for convergence of the two-grid scheme is given by Theorem 2.4.4 further

below, which can also be found in [114, 131]. We will first need the two definitions

below in order to identify an appropriate smoother and transfer operators. They

employ the norms /I · /IDh and /I · /ID−1 , where Dh is the (positive definite) main

diagonal matrix of Ah. These norms are defined analogously to the energy norm

(2.71).

Definition 2.4.2. We say that a smoother, or the corresponding matrix C, has the

smoothing property if, for some α > 0 which is independent of the mesh size,

/ICe /I ≤ /Ie /I − α/IAhe /I −1 . (2.78)

Definition 2.4.3. We say that a prolongation operator for the two-grid scheme has

Ah Ah

96

h h H h
h

H h

H

β

H

H

H

H

the approximation property if, for some β > 0 which is independent of the mesh size,

min
eH ∈RnH

/Ie − IH e /IDh ≤ β/IAhe /I D−1 . (2.79)

Theorem 2.4.4. Let Ah be symmetric positive definite. Let the prolongation oper-

ator Ih have full rank and the restriction operator IH satisfy (2.75). Let the coarse

grid system matrix be given by the Galerkin projection (2.76). Further, assume that

the matrix C has the smoothing property and Ih has the approximation property with

constants α and β, respectively. Then, we have α ≤ β and

/IT/IAh ≤

1 −

α
=: η < 1 .

Consequently, the energy norm of the error is reduced in each iteration of the two-

grid scheme by at least a factor of η, as

/Iek+1/IAh ≤ /IT/IAh /Iek/IAh ≤ η/Iek/IAh .

Proof. See [114, (Theorem 13.3)] or [131, (Theorem 6.52)].

The key to the two-grid scheme’s convergence is the combination of the smoother,

which effectively reduces the high-frequency parts of the error, and the coarse-grid

correction operator Th,H , see (2.77), which eliminates the smooth error components.

As mentioned earlier, it is plausible to assume that the range of the prolongation

operator Ih closely overlaps with the space of low-frequency eigenvectors of Ah. If it

has full rank and (2.75) and (2.76) are satisfied, Ih can be shown to be Ah-orthogonal

to the range of the coarse-grid correction operator, i.e. range(Th,H) ⊥Ah range(Ih).

Moreover, it can be shown that Th,H is an Ah-orthogonal projection and that

ker(Th,H) = range(Ih) , (2.80)

97

H

((

l−1 l

where ker(Th,H) is the kernel of Th,H . So indeed, we see that any error

components that lie in the range of the prolongation operator are eliminated

entirely by the coarse-grid correction.

In practice, the two-grid scheme is not viable, as nH is usually still too large to

yield any significant savings in computational work if we solve AH eH = rH directly.

Instead, we replace A−1 by a pre- and/or post-smoothing step and a coarse-grid

correction on an even coarser grid. We repeat this recursively until we reach a

grid that is coarse enough that the size of the system is sufficiently small that a

direct solution is comparatively cheap. This recursive scheme constitutes the actual

multigrid method. It requires a hierarchy of grids of decreasing size. Consider a two-

dimensional regular mesh of mx by my square elements. Refine it by dividing each el-

ement into 4 smaller elements of equal size and repeat several times to get a total of L

grids, each with ml = 4(l−1)mxmy elements and Nl := 2(l−1)mx + 1 2(l−1)my + 1

nodes, where l = 1, . . . , L. To go back and forth between each mesh level, we define

prolongation and restriction operators Il and Il−1, respectively, where l = L, . . . , 2.

Algorithm 2 shows the so-called V-cycle multigrid method. We can generalize it by

changing Line 7 to perform any fixed number of multigrid calls on the next lower

level. For example, two successive calls would lead to what is called the W-cycle

multigrid method.

A similar convergence result to Theorem 2.4.4 can be obtained for the multigrid

method, see for example [61]. Crucially, the contraction factor η by which the energy

norm is reduced in each iteration is independent of nh. Therefore, the multigrid

method is an optimal solver, as the number of iterations required to get the error

below a certain threshold does not depend on the size of the problem. Of course,

the overall computational cost still does. For sparse systems, the complexity of

the multigrid method is thus in O(n) [131]. In contrast, other iterative solvers

such as (un-preconditioned) Krylov solvers require more iterations as the size of

the system, and with it the condition number of the matrix, increases, giving them

98

l−1 l

1

l

l−1
←

Algorithm 2 V-Cycle Multigrid Method
Let Il and Il−1, l = L, . . . , 2, be transfer operators. Let smooth(A, x0, b, ω) denote
ω iterations of a smoother for the system Ax = b with initial guess x0. Assume that
system matrices are defined for each coarse level by Al−1 = Il−1AlIl for l = L, . . . , 2.

1: function MG(l, Al, xl, bl, ω1, ω2)
2: if l = 1 then
3: x1 ← A−1b1

l l−1

4: else
5: xl ← smooth(Al, xl, bl, ω1) r> pre-smoothing
6: rl−1 = Il−1(bl − Alxl)
7: el−1 = MG(l − 1, Al−1, 0, rl−1, ω1, ω2) r> coarse grid correction
8: xl ← xl + Il el−1

l
9: xl smooth(Al, xl, b , ω2) r> post-smoothing

10: end if
11: return xl
12: end function

O(n2) complexity.

However, although η in Theorem 2.4.4 is constant, it might still be very close

to 1. So while the cost of the multigrid method scales linearly with n, it might

only outperform other iterative solvers for extremely large n. The algorithm can

be optimized by tailoring its parameters – such as γ in (2.75), the number of pre-

and post-smoothing sweeps, or even parameters of the smoother itself – to the

specific problem. This requirement makes it less robust and not suitable as a black

box method on its own. Therefore, the multigrid method is commonly used as a

preconditioner in Krylov solvers as discussed earlier in this section. The V-cycle can

in theory be written as (the inverse of) a preconditioning matrix M−1, even though

the resulting expression would be rather unwieldy. The important thing to note is

that, in order for it to represent a symmetric operator, which is important for both

the CG and MINRES method, the number of pre- and post-sweeps should be equal,

that is ω1 = ω2.

Smoothed Aggregation AMG

In the form discussed so far, the multigrid method assumes that a hierarchy of

grids is given for which the prolongation operator can be defined via interpolation.

99

For structured meshes, especially with elements of equal size, such a hierarchy can

be obtained easily enough through bisection of elements. However, things change

once the domain geometry no longer allows for such a structured mesh. Naturally,

therefore, the question arises of how to generalize the concept of fine and coarse

grids to this case, or in fact, to cases where the problem does not correspond to

any kind of grid at all. Methods which address this problem by defining coarse

spaces and transfer operators based only on the structure of the system matrix are

called algebraic multigrid (AMG) methods – as opposed to the geometric multigrid

(GMG) variant discussed above. AMG methods can even have an advantage over

the geometric approach when both are applicable, for example in the case of strong

material anisotropy [47].

Note that the prerequisites of Theorem 2.4.4 are formulated in terms of operators

and do not rely on the existence of an underlying “physical” mesh. Therefore, the

theorem is applicable to any appropriate choice of prolongation operator that has

the approximation property (2.79) and any smoother that satisfies (2.78). Since

for elliptic problems, the typical smoothers used on structured discretizations also

work on unstructured meshes, the main challenge is to construct several levels of

coarse spaces and corresponding transfer operators. Each step from a higher (finer)

to a lower (coarser) level should give a notable reduction in the number of DOFs.

Furthermore, a more abstract notion of “smoothness” needs to be defined if we want

to find prolongation operators whose range covers “smooth” error components.

A range of different AMG techniques have been developed, starting with what

is now often called classic AMG methods [113, 30]. For a brief introduction, see

for example [47], which also points to some other approaches. In particular, it

mentions the smoothed aggregation (SA) method proposed by Vaněk, Mandel, and

Brezina [124, 123] as a method that is “robust and efficient over a wide variety of

problems”. It is this latter method which we adopt in our algorithm. Since a detailed

description would go beyond the scope of this thesis, we will only give an outline of

100

F

the basic concepts. We refer to [124] for details of the basic algorithm, to [123] for

the convergence analysis and to [32] for the adaptive smoothed aggregation method.

Peetz and Elbanna also recently employed the SA method in the context of topology

optimization [96]. For a unified analysis of different AMG techniques, see [133].

The first task we will address is that of defining the coarse space. We can again

limit ourselves to the two-grid case, denoting fine and coarse grid by subscript h

and H, respectively. In geometric multigrid methods, fine-grid nodes are locally

condensed into coarse-grid nodes on the basis that neighbouring nodes are inter-

dependent to some degree. This physical coupling is reflected by the off-diagonal

elements of the matrix A = [aij]i,j=1,...,n. Assuming for now that there is just one

DOF per node, two nodes with indices i and j are neighbours in the algebraic sense

if the matrix entry aij is non-zero. We say they are strongly coupled neighbours if

|aij| is large enough compared to the diagonal entries aii and ajj. The SA method

defines the strongly-coupled neighbourhood of node i as

Ni(EN) :=

{
j : |aij | ≥ EN √aiiajj

,

where EN ∈ [0, 1) is a threshold parameter. For the case of multiple DOFs per node,

we generalize this definition as follows. Let us denote the DOFs of nodes i and j by

the vectors i and j, respectively. Instead of single elements of A we now need to

consider submatrices corresponding to index-vectors, denoted by, for example, Aij.

Then, we define the strongly-coupled neighbourhood of node i with DOFs i by1

Ni(EN) :=
{

j : /IAij/I2 ≥ EN /IAii/IF /IAjj/IF

, (2.81)

where /I · /IF is the Frobenius norm. With this neighbourhood relationship in place,

we can define a coarse grid, as it were, by partitioning the set of all nodes into

disjoint subsets C1, . . . , CNH of strongly-coupled neighbours, called aggregates. Each

1We deviate from the definition given in [124], which involves the spectral radius of the matrix
A−1/2AijA−1/2. The additional implementation effort and computational work for this formula

ii jj
compared to ours does not seem warranted, judging by our numerical experiments.

101

aggregate represents a coarse-grid node. Next, we need to construct the transfer

operators. The approach dictated by SA is motivated by the consideration that the

range of the prolongation operator should include the smooth error components.

Therefore, we need to consider the – so far geometric – notion of smoothness in a

more abstract way.

The crucial feature, in terms of the convergence analysis, of smooth error compo-

nents is that they are not effectively reduced by the smoother. We can adhere to

this definition, noting that errors which are smooth in this sense do not generally

have to be smooth in the geometric sense. The term algebraically smooth is there-

fore commonly used in this context. For the remainder of this section, “smoothness”

will generally mean algebraic smoothness unless otherwise specified. In many cases,

the smooth error components lie in the space of eigenvectors corresponding to the

smallest eigenvalues of the positive definite matrix A. Consequently, if an error e is

smooth, we have Ae ≈ 0, which is why this (somewhat vaguely defined) subspace is

often called the near kernel of A.

Let V = [v1, . . . , vdk] be a matrix of near kernel basis vectors. In the standard

version of SA, V has to be supplied by the user. For isotropic second order elasticity

problems, (such as the one in Section 2.2), the natural – and best [123, 32] – choice

would be the rigid body modes of the elastic structure. The rotational modes would

require additional preprocessing steps for non-trivial mesh geometry. However, a

basis for the translational modes is always readily available in the form of d linearly

independent vectors of constant displacements. In three dimensions, this would give

102

.

H

H

H

j

H

0 1 0

us dk = d = 3 and the near kernel

1 0 0

0 0 1

V = . , (2.82)

1 0 0

0 1 0

0 0 1

where we assume that all rows corresponding to displacements fixed by the boundary

conditions have been eliminated. In our implementation, a near-kernel defined as

above gives the best results, but the following derivations are valid for any choice of

V.

The SA prolongation operator is constructed in two steps. First, we determine a

tentative prolongation operator Ph : RnH −→ Rnh , based on the principle that V

should lie in its range and thus have a coarse-grid representation. This means we

want to find Ph and a coarse-grid near-kernel VH ∈ RnH ×dk such that

V =: Vh = Ph VH . (2.83)

For a vector v ∈ Rnh defined in the fine space, let vC , j ∈ {1, . . . , NH } denote

the vector of all fine-grid DOFs that correspond to the jth aggregate. If w ∈ RnH

is a coarse-grid vector, wj will denote all DOFs of coarse-grid node j. Although

we use the same index-vector notation for fine-grid vectors, it should be clear from

context whether we refer to fine- or coarse-grid DOFs. Also note that the number

of DOFs per coarse-grid node is not generally d, as for the fine grid nodes, but

dk. In addition to satisfying (2.83), the tentative prolongator should also have

columns with localized support; more specifically, we only want overlap between the

columns of Ph which correspond to neighbouring aggregates/coarse nodes, much

in the same way as for the geometric interpolation prolongator. We could achieve

103

H

H

H

H j k j

H j

H

both by choosing (Ph):j = [(v1)C , . . . , (vd)C], that is, by defining the prolongator

columns corresponding to coarse-grid node j as the restriction of the near-kernel Vh

to aggregate Cj. The components of the coarse-grid near-kernel at node j would

then simply be (VH)j: = I. However, to ensure orthonormality of the columns of

Ph , we instead use a QR factorisation of the localized near-kernel and define the

prolongator and coarse-grid near-kernel as

(Ph)C ,j := Qj ∈ R|Cj |×dk ,

(VH)j: := Rj ∈ Rdk ×dk ,

where (Vh)Cj ,: = QjRj and (Qj)TQj = I,

j = 1, . . . , NH .

(2.84)

Occasionally, (Vh)Cj ,:, the near-kernel localized to the jth aggregate, might not have

full rank. This can occur whenever the number of DOFs of the coarse-grid node j is

larger than the number of fine-grid DOFs of the entire aggregate, for example when

d < dk, i.e. the dimension of the near-kernel is larger than the problem dimension,

or when fine-grid nodes have fewer than d DOFs due to boundary conditions. In that

case, we drop as many columns from Qj and rows from Rj as necessary to ensure

that Qj has full rank, effectively reducing the number of DOFs for coarse-grid node

j. We thereby guarantee that Ph has full rank and also avoid excess storage and

operator complexity.

As mentioned before, there is a second step to constructing the SA prolongation

operator. If we compare the tentative prolongator as defined in (2.84) to the prolon-

gation operator in the geometric multigrid method at the beginning of this section,

we notice that there is no overlap at all between the supports of the columns of

h for different aggregates. While a localized support of each coarse node was one

of our requirements, a certain degree of “smoothness” of the column vectors of Ph

is important for the overall convergence of the SA multigrid method (see [123] for

details). To obtain the final prolongation operator, we therefore apply a smoother

P

104

H

∈
−

← −

H

to the tentative prolongator:
h := ShPh

. (2.85)

A simple choice for the prolongation smoother Sh, which is also used in the conver-

gence analysis in [123], is
4

Sh = I −
3λ̄

 Ah ,

where λ̄h is an upper bound on the spectral radius of Ah, which can be obtained,

for example, by the Gershgorin theorem, e.g. [114, (Thm. 4.6)]. An alternative

prolongation smoother that yielded better results in our numerical experiments is

given by the weighted Jacobi smoother

2
Sh = I −

3
Dh −1Ah

 , (2.86)

where Dh is the main diagonal of Ah. Having thus defined a prolongator, we define

the restriction operator simply as its transpose.

Algorithm 3 summarizes the SA technique for constructing the coarse spaces and

transfer operators, generalizing the concepts presented above to the multi-level case.

We assume that information is available on which DOFs correspond to which nodes

in the fine grid. The full SA multigrid method consists of Algorithm 3 followed by

the standard multigrid method, see Algorithm 2.

Algorithm 3 Smoothed Aggregation

Let L 1 be the maximum number of coarse levels to create and let nmin be the
minimum number of total DOFs a coarse level should have. Let V Rn×dk be a
basis for the near-kernel of A =: AL.

1: for l = L − 1, . . . , 1 do
2: Create aggregates C1, . . . , CNl of strongly-coupled neighbouring nodes
3: Define Pl+1 ∈ Rnl+1×nl and Vl ∈ Rnl×dk such that Vl+1 = Pl+1Vl

l l
4: if nl < nmin then
5: L L l, redefine all level indices accordingly
6: stop
7: end if
8: Il+1 := Sl+1Pl+1 and Il := (Il+1)T

l l l+1 l
 9: end for

I

h

105

H

H

So far, we have assumed that we already know the near-kernel V. In cases where

we do not know all basis vectors v1, . . . , vdk that should define our coarse space,

we can use the multigrid method itself to identify such vectors. This is the principle

behind the adaptive smoothed aggregation (αSA) method [32]. It can obtain a basis

of the near-kernel for a given matrix A even when not a single near-kernel vector

is known a priori. Since we assume the existence of an underlying physical grid,

basis vectors of the form (2.82) can – and in fact should [32] – always be used.

We therefore focus on the task of “enriching” a pre-existing near-kernel basis by

additional vectors.

Recall the basic multigrid paradigm as illustrated by the two-grid scheme: any

error that is not effectively reduced to zero by the smoothing matrix is (approxi-

mately) in the range of the prolongation operator. Since the latter coincides with

the kernel of the coarse-grid correction operator, see (2.80), it is eliminated in the

coarse-grid correction step. If there is an error vector which the multigrid method, as

a combination of smoothing and coarse-grid correction, does not effectively reduce,

we can infer that it is missing from the range of the prolongator Ih . Consequently, if

we augment range(Ih) so as to include this vector, it should improve our multigrid

method.

Following this argumentation, the first step of the αSA is to choose a random

initial vector and apply the multigrid V-cycle a fixed number of times for Av = 0.

Whatever error remains after this, if it has not been reduced by a certain (very

small) factor, is a good candidate for a new near-kernel vector. Due to the zero

right-hand side, the error is trivially equal to the result of the V-cycle itself, which

we denote by vL. We will refer to vL simply as a candidate.

In the next step of the αSA method, we improve the candidate by checking how

effectively it is reduced on the lower levels L −1, L −2, We first update the near-

kernel matrix on the finest level by appending vL. We set V̂ := [V, vL] and construct

new transfer operators based on V̂, according to (2.83) and (2.85). By enriching the

106

L−1 L−2 2

fine-grid near-kernel, we have increased the number of DOFs on grid L − 1, so that

we also need to update the system matrix AL−1 accordingly, using the Galerkin

projection with the enriched transfer operators. Along with a new coarse-grid near-

kernel candidate, we have created a new coarse-grid problem on level L − 1. To

further improve the candidate, we perform a fixed number of multigrid iterations,

now starting at level L − 1. This requires some technical adjustments, since the

transfer operators between levels L − 1 and L − 2 are no longer valid, but we refer

to [32] for details1. We use the vector returned after the last multigrid iteration

as our new candidate on level L − 1 and denote it by vL−1. Then, we repeat the

above process: we enrich the near-kernel, construct new, enriched transfer operators

between L − 1 and L − 2, update AL−2 and further improve the candidate on level

L − 2. We continue in this way until we reach level 2. Once we have obtained an

improved candidate v2 on this level, we interpolate it all the way back up to the

fine grid and overwrite our original fine-level candidate, vL ← IL IL−1 . . . I3 v2.

Whereas V̂ was just a provisional improved version of the near-kernel, we now per-

manently enrich the near-kernel using the updated fine-level candidate: V ← [V, vL].

Finally, we set up all coarse levels from scratch, using the regular SA method, see

Algorithm 3.

The adaptive smoothed aggregation procedure described above can be repeated

to give us any number of additional candidates. There is obviously a trade-off

between the improved convergence behaviour expected from this and the growing

operator complexity on all lower levels, as the numbers of DOFs and thus the size

of the coarse spaces increase with the dimension of the near-kernel. It is not at all

obvious, however, which number of candidates is right for a given problem. Another

question arises when using αSA inside an iterative optimization method where the

system matrix changes frequently, but we cannot reasonably consider reconstructing
1We only highlight that we also update the lower level system matrices after these adjustments.
While this step is explicitly omitted in the original algorithm, we found that it was required to
maintain the convergence of the lower-level multigrid method.

107

the transfer operators for each new system, as the overhead of both the SA and

αSA algorithm is prohibitive. Section 3.2.3 presents numerical experiments which

investigate these questions and inform the AMG strategy we ultimately chose to

follow.

108

CHAPTER 3

MULTIGRID BARRIER METHODS FOR
MINIMUM COMPLIANCE OPTIMIZATION

We now turn to the main contribution of this thesis. We apply the optimization

methods described in Sections 2.1.3 and 2.1.4 to the VTS problem, using multigrid-

preconditioned Krylov solvers as discussed in Section 2.4. Section 3.1 details our

implementation of the IP and PBM method. We can easily extend the latter to

consider unilateral contact constraints due to the fact that we apply it to the dual

VTS problem.

In Section 3.2, we present various example problems and numerical results, on

the basis of which we compare the performance of the IP and PBM method, as well

as that of the OC method covered in Section 2.3.3. We also address the question

of which Krylov solver to use within each method. Large scale problems involving

several million finite elements are solved, both for uniformly structured and un-

structured meshes. The latter warrant a discussion of different strategies by which

to employ the SA AMG method as a preconditioner. Lastly, we include results for

problems involving unilateral contact.

An obvious question that arises is whether our methods can be applied not just to

the VTS problem but also to the SIMP problem. We comment on this in Section 3.3,

noting the limitations of our approach and complications arising from the SIMP

109

formulation.

3.1 Optimization Algorithms

In the following, we give a detailed description of our implementation of the IP

and PBM method for the VTS problem. In particular, we apply the PBM method

to the dual problem, as its structure is more amenable to the PBM methodology.

Since primal and dual variables are not treated differently in the IP method, as

opposed to the PBM method, it does not matter whether we apply it to the primal

or dual formulation. Since the primal problem is the starting point for any potential

extensions, for example to SIMP-based compliance minimization, it is the one we

will use to derive our IP algorithm. At the end of Section 3.1.1, we show that we

can apply the IP method to the dual problem and obtain the same algorithm.

For each optimization algorithm, we derive the linear system that needs to be

solved in every iteration. We manipulate this system by means of a Schur comple-

ment to obtain a positive definite system with a sparsity structure resembling the

stiffness matrix associated with the problem. This motivates the use of standard

transfer operators when employing the multigrid method as a preconditioner, fol-

lowing [80]. Details of how we solve the linear system in each method are given in

Section 3.1.4. The efficacy of this approach is confirmed by the numerical experi-

ments in Section 3.2.

3.1.1 Primal-Dual Interior Point Method for the VTS Prob-
lem

The primal-dual IP method we use to solve (2.48) is based on earlier contributions

by Kočvara and Mohammed [80] and Jarre, Kočvara, and Zowe [71]. Many features

of the algorithm proposed in [80] had to be changed to make it more performant

and viable for 3D problems. Maar and Schulz also used an IP method for topology

optimization together with a multigrid method to solve the linear systems [85].

110

r2
1

¯

¯

[(ρ̄i − ρi)ν̄i − s̄]i=1,...,m

 ¯

¯ ¯ ¯

Their approach, however, involved solving an indefinite system, requiring the use of

a much more complicated multigrid scheme.

We recall the KKT conditions (2.51) for the VTS problem, again eliminating the

adjoint variable by (2.52):

K(ρ)u − f = 0 , (3.1)

ρTa − V = 0 , (3.2)

uTB(u) − α a + ν − ν̄ = 0 , (3.3)
2 ¯

(
ρ − ρ

 T ν = 0 , (3.4)

(ρ̄ − ρ)T ν̄ = 0 , (3.5)

(ρ̄ − ρ) ,
(
ρ − ρ

, ν, ν̄ ≥ 0 , (3.6)

where we have again used the notation B(u) = [K1u, . . . , Kmu]. Anticipating later

developments, we introduce the variable α̃ := −α. This substitution will guarantee

symmetry of the system (3.9) further below. We then perturb the complementarity

conditions, replacing them with

(ρi − ρi)νi = s, i = 1, . . . , m,

¯ ¯ ¯
(ρ̄i − ρi)ν̄i = s̄, i = 1, . . . , m .

This gives us the following associated residuals:

r1

K(ρ)u − f
ρTa − V

r̃(u, α̃, ρ, ν, ν̄) = r3 uTB(u) + α̃ a + ν − ν̄ . r] (ρi − ρi)νi − s i=1,...,m 4

In order to perform an iteration of the Newton method on this system, we compute

2
:=

¯

¯

¯

r 5

1

111

 ̄

¯

J(r̃) := ∇(u,α̃,ρ,ν,ν̄) r̃ = B(u)T a 0 I −I

 K(ρ) 0 B(u)

IP 0T 0 aT IP

, (3.7)

the Jacobian of the residual function:

K(ρ) 0 B(u) 0 0

0T 0 aT 0 0

where we have used the notation

0 0 N P 0
0 0 −N 0 P

N = diag{ν} , N = diag{ν̄} ,

P = diag{ρ − ρ} , P = diag{ρ̄ − ρ} .

The system matrix J in (3.7) is non-symmetric and indefinite. We can however

reduce it to one that is symmetric positive definite. We do this in two steps. First,

we construct the Schur complement of J with respect to its bottom right 2 ×2 block,

giving us

 0T 0 aT
B(u)T a −DIP

 , (3.8)

where DIP :=

P−1 N + P

−
N

)
. We then in turn form the Schur complement of

1

(3.8) with respect to its bottom right block. This leaves us with the matrix

S :=

K(ρ) 0

l

+

B(u)

l

D−1

B(u)T a

∈ R(n+1)×(n+1) . (3.9)

This matrix is symmetric and positive definite as long as ρ is strictly feasible and

ν, ν̄ > 0, both of which is guaranteed by the IP method. Indeed, both of the matrix
¯
summands are positive semidefinite and their sum is positive definite as long as their

null spaces do not overlap. As K(ρ) 0 for all strictly feasible ρ, the null space of

the left matrix summand is the (n + 1)th canonical unit vector. It is easy to check

¯

112

−

 l

IP

ρ̄ − ρ

¯

IP
r aT IP 5

4

¯

that this vector does not lie in the null space of the right matrix summand.

In each iteration of the IP method, we perform a single iteration of the Newton

method for the nonlinear system r̃(u, α̃, ρ, ν, ν̄) = 0. Rather than solving the
¯

indefinite linear system J ∆(u, α̃, ρ, ν, ν̄) = r̃, we solve the equivalent system
¯

SIP
∆u

IP
∆α̃

, (3.10)

where the right-hand side vector rIP follows from the reduction of the system de-

scribed further above as

r = −

r1

l

−

B(u)

l

D−1

r

+ P−1r − P−1r

)
.

From the solution of (3.10), we can reconstruct the increment for ρ using the identity

∆ρ = −D−1

r3

+ P−1r4 − P−1r − B(u)T∆u − ∆α̃ a

)
. (3.11)

The increments for the Lagrange multipliers ν and ν̄ are computed based on the
¯

stable reduction proposed in [53], with a slight adjustment to account for the upper

bound constraints not present in that paper. The multipliers are updated by the

formulas below, where the second formula uses the result of the first.

∆ν̄ =
 1 (

P
(
B(u)T∆u + ∆α̃ a

− (N − N)ρ − (r + r − Pr)

, (3.12)

5 3

∆ν = ∆ν̄ − B(u)T∆u − ∆α̃ a − r3 . (3.13)

Details about how we solve system (3.10) are given in Section 3.1.4.

Once the increments have been obtained from (3.10–3.13), we need to determine

an appropriate step length. Our algorithm employs a long step strategy [132] in

that it restricts the step length mainly to guarantee strict feasibility of the next

iterate. We do not use the same step length for all increment components. Rather,

2
3 4

= r

5

113

2

¯

∆ρ and ∆u use the same step length, the step length for ∆α̃ is always equal to

1 and different step lengths are calculated for both ∆ν and ∆ν̄. For details, see
¯

Algorithm 4. This step length strategy proved to be the most effective in numerical

experiments.

After each IP iteration, the barrier parameters are updated adaptively. For this,

we compute the duality measure for the lower and upper bound constraint,

νT(ρ − ρ)

ν̄T(ρ̄ − ρ)

¯
m ¯ and ,

m

respectively. We then scale these measures by constants 0 < σs < 1 and 0 < σs̄ < 1
¯

to get a new value for s and s̄. At this point, one unconventional feature1 of our
¯

algorithm should be highlighted. The new values for s and s̄ are not used to construct
¯

the right hand side term for the next iteration, but rather for the iteration after

that. We found that this “iteration shift”, peculiar though it might seem, makes

the algorithm significantly more efficient. Presumably, a similar behaviour could

be obtained by other means, such as choosing larger values for σs and σs̄ , or even
¯

determining them adaptively. For the sake of simplicity, we decided to stick with this

slightly unorthodox approach, acknowledging that it lacks theoretical justification.

Finally, we require a stopping criterion for the algorithm. We use the duality

gap δ(u, α) = δ(u, −α̃) as a measure of optimality, scaled by the current objective

function value 1 f Tu. The optimization terminates once the scaled duality gap is

smaller than a set threshold while also being (nearly) positive, as a negative duality

gap points to infeasibility. Algorithm 4 sums up our IP method. The parameters

that we used in our experiments are εIP = 10−5, σs = σs̄ = 0.2; we chose the initial
¯

values u = 0, α̃ = −1, ρi = V/(

i ai) for all i = 1, . . . , m and ν = ν̄ = a; the

barrier parameter values in the very first iteration are s = s̄ = 10−2.
¯

1A bug turned feature, actually.

114

¯

·

2

¯ = s̄ ν̄

0.9 · min ¯

¯ ¯ ¯

Algorithm 4 Primal-dual IP method for the VTS problem
Let εIP > 0 and 0 < σs, σs̄ < 1 be given. Choose initial vectors (u, ρ) and
(α̃, ν, ν̄). Set barrier par̄ameter update values to s+ = σ · νT(ρ − ρ)/m and s

s + ¯ σ · T ¯ ¯ ¯ ¯

1: repeat
2: Solve system (3.10) to obtain (∆u, ∆α̃)
3: Reconstruct (∆ρ, ∆ν̄, ∆ν) using (3.11–3.13)
4: Compute step lengths ¯

κu = κρ = min

0.9 · min

ρi − ρi , 0.9 · min ρ̄i − ρi , 1

,

−νi

∆ρi<0

∆ρi ∆ρi>0 ∆ρi

−ν̄i

¯ ¯

5: Update all variables

u ← u + κu∆u , α̃ ← α̃ + κα̃∆α̃ , ρ ← ρ + κρ∆ρ ,

ν ← ν + κν∆ν , ν̄ ← ν̄ + κν̄∆ν̄

6: Update barrier parameters

s = s+ ,

s̄ = s̄ +
¯ ¯

7: Determine barrier parameters for shifted update

+ νT(ρ − ρ) +

ν̄T(ρ̄ − ρ)

 s = σs ¯
¯ ¯

m ¯ , s̄ = σs̄ · m

8: until εIP > δ(u, −α̃)/(1 f Tu) > −0.1ε

, 1
∆νi<0 ∆νi

(ρ̄ − ρ)/m.

κν = min , κν̄ = min 0.9 · min , 1 , κα̃ = 1
∆ν̄i<0 ∆ν̄i

IP

115

¯

∈

m
¯

m m

2 i i ¯i i

ρi uTKiu − α ai + νi − ν̄i + zi
i=1 ¯

¯ ¯ ¯

Equivalence of primal and dual KKT systems

As mentioned earlier, it does not make any substantial difference whether we apply

the IP method to the primal or dual VTS problem. The short explanation for this

is that we use a primal-dual IP method, which solves the primal and dual problem

simultaneously. In our case, however, the two formulations (2.48) and (2.54) do

not conform to the strict definition of primal and dual problems, see Remark 2.3.9.

We will therefore devote a few pages to showing that the KKT system of (2.54) is

equivalent to that of (2.48), the consequence of this being that we can apply the IP

approach to either and arrive at the same algorithm.

We start from a slight reformulation of the dual problem (2.54). We introduce

slack variables z1, . . . , zm ≥ 0 in order to write (2.54b) as a set of equality constraints:

min u∈Rn, α ∈Rm
αV − f Tu − ρTν + ρ̄T ν̄ (3.14)

R, ν, ν̄, z
¯ ¯ ¯

s.t.
1
uTK u − α a + ν − ν̄ + z

= 0, i = 1, . . . , m, (3.15)

νi ≥ 0, i = 1, . . . , m, (3.16)

ν̄i ≥ 0, i = 1, . . . , m , (3.17)

zi ≥ 0, i = 1, . . . , m. (3.18)

We introduce the multipliers ρ, µ, µ̄, ξ Rm for the respective sets of constraints,

¯
so that we get the Lagrange function

L(u, α, ν, ν̄, z; ρ, µ, µ̄, ξ) = αV − f Tu − ρTν + ρ̄Tν̄
 (

1

)

ξi zi , µ̄i ν̄i − µi νi − −

¯ 2 i=1

∈

m

i

+
i=1 i=1

116

from which we can derive the KKT conditions:

¯ ¯ ¯

µi νi = 0 , i = 1, . . . , m, (3.19f)
¯ ¯
µ̄i ν̄i = 0 , i = 1, . . . , m , (3.19g)

ξi zi = 0 , i = 1, . . . , m, (3.19h)
1
uTB(u)−α a + ν − ν̄ + z = 0 , (3.19i)

2 ¯
ν, ν̄, z, µ, µ̄, ξ ≥ 0 . (3.19j)
¯ ¯

First, we use the simple linear equations (3.19c–3.19e) to eliminate the multipliers

µ, µ̄
¯

and ξ. Together with (3.19j), we thus get ρ − ρ ≥ 0 and ρ̄ − ρ ≥ 0. The

complementarity conditions (3.19f–3.19h) become

(ρi − ρi) νi = 0 , i = 1, . . . , m, (3.20a)
¯ ¯

(ρ̄i − ρi) ν̄i = 0 , i = 1, . . . , m , (3.20b)

ρi zi = 0 , i = 1, . . . , m. (3.20c)

Second, we eliminate the slack variables z along with the set of complementarity

conditions (3.20c). We can do this by including z in ν. To be more precise, we
¯

introduce ν̃ := ν + z ≥ 0 to replace both ν and z. If ρi > 0 for a particular i, then
¯ ¯ ¯ ¯

the corresponding zi has to be zero due to (3.20c). Knowing this, we can ignore

ρi zi = 0. If, on the other hand, ρi = 0, then we have ρi zi = (ρi − ρi)zi = 0. This,
¯ ¯

together with (3.20a), is equivalent to (ρi − ρi) ν̃i = 0, since zi, νi ≥ 0. In either
¯ ¯ ¯

case, we can safely replace (3.20a) and (3.20c) by (ρi − ρi) ν̃i = 0. In summary, the
¯ ¯

¯

∇uL = −f + K(ρ)u = 0 , (3.19a)

∇αL = V − ρTa = 0 , (3.19b)

∇νL = −ρ + ρ − µ = 0 , (3.19c)

∇ν̄L =

∇zL =

ρ̄ − ρ − µ̄ = 0 ,

ρ − ξ = 0 ,

(3.19d)

(3.19e)

117

KKT conditions (3.19) for the dual VTS problem are equivalent to

−f + K(ρ)u = 0 ,

V − ρTa = 0 ,

(ρi − ρi) ν̃i = 0 , i = 1, . . . , m ,
¯ ¯

(ρ̄i − ρi) ν̄i = 0 , i = 1, . . . , m ,
1
uTB(u) − α a + ν̃ − ν̄ = 0 ,

2 ¯
ν̃, ν̄, (ρ − ρ), (ρ̄ − ρ) ≥ 0 ,
¯ ¯

which is the same as system (3.1) which we started out with when deriving Algo-

rithm 4.

3.1.2 Penalty-Barrier Multiplier Method for the Dual VTS
Problem

The IP method presented above works very well for medium-sized problems. When

the number of elements in a mesh increases to the order of 106 and above, however,

it struggles to converge within a reasonable number of iterations – or at all. Rather

than conduct an exhaustive study of the many parameters of the IP method one can

adjust in the hope of improving its performance for a particular set of problems, we

propose using an alternative algorithm altogether. The PBM method reviewed in

Section 2.1.4 has been applied successfully to both (truss) topology design problems

[79] as well as large-scale problems, for example in the optimization software Pennon

[76, 77], and we will apply it to the VTS compliance minimization problem.

As mentioned at the beginning of Section 3.1, we apply the PBM method to the

dual VTS problem. If we were to apply it to the primal problem (2.48), problems

would arise due to the fact that it does not guarantee strict feasibility of the den-

sities, in contrast to the IP method. As a result, the stiffness matrix K(ρ) might

become indefinite. Not only would this require the use of a different and much more

118

m

i

complicated solver setup, but it could also lead to spurious solutions since we would

effectively model a mechanical structure with negative elasticity coefficients in areas

of negative density. We can circumvent these issues by instead applying the PBM

method to the dual problem, in which the densities play the role of Lagrange multi-

pliers. The updating formula (2.24b) guarantees that these are always greater than

zero. While some might converge to zero – at least if we set the lower bounds ρ = 0
¯

– in practice, we did not encounter any serious problems related to K(ρ) becoming

ill-conditioned, (although a regularization of K(ρ) improves the algorithm some-

what, see Section 3.1.4). We therefore derive our PBM method for the simplified

dual VTS problem (2.60) with zero lower bounds.

We begin with the definition of the augmented Lagrangian for problem (2.60):

L(u, α, ν; ρ, µ) = αV − f Tu + ρ̄Tν

 (
1 1

)
+

i=1

ρip ϕ

p (2
uTKiu − α ai − νi)

(
−ν

)

(3.21)

with Lagrangian multipliers ρ > 0 and µ > 0, penalty parameter p > 0, and the

logarithmic-quadratic penalty-barrier function ϕ defined in (2.27).

Recall the general form of the gradient (2.25) and Hessian (2.26) of the aug-

mented Lagrangian. They differ from the gradient and Hessian, respectively, of the

regular Lagrangian in that they feature penalty parameters and derivatives of the

penalty function ϕ. These extra terms can be seen as scaling factors for the La-

grange multipliers. To highlight the similarity between the regular and augmented

Lagrangian, but also in order to condense the notation, we introduce the “scaled”

p µip ϕ
i=1

+
m

,

119

i i p 2 i i i

i p p 2 i i i

i p p

p

r3

Lagrange multipliers

ρ := ρ ϕ
(

1
(
1
uTK u − α a − ν)

)
, i = 1, . . . , m ,

ρ :=
ρi ϕ

(
1
(
1
uTK u − α a − ν)

)
, i = 1, . . . , m ,

µi := µi ϕ
(
−

)
, i = 1, . . . , m,

νi

µ :=
µi ϕ

(
−νi

)
, i = 1, . . . , m .

Furthermore, we denote the diagonal matrices constructed from the vectors ρ , µ ,

and a respectively, by

P := diag{ρ } , M := diag{µ } , A := diag{a} .

We now compute the gradient of the augmented Lagrangian and, using the above

shorthand, write it as

m

∇u L = −f + ρ
i Kiu = −f + K(ρ)u =: r1 (3.22a)

i=1
m

∇α L = V − ρi ai =: r2 (3.22b)
i=1

∇ν L = ρ̄ − ρ − µ =: r3 . (3.22c)

For later reference, note that we will often write ∇(u,α,ν)L = (r1, r2, r3) simply as

∇L. Finally, we determine the Hessian of L in order to set up the Newton system,

which takes the form

K(ρ) + B(u)P B(u)T −K(Aρ)u −B(u)P

∆u

r1

 −uTK(Aρ)
 m

 a2ρ ρ TA ∆α = − r2 , (3.23)

where DP BM = P + M and B(u) = [K1u, . . . , Kmu]. The above matrix is sym-

∆ν
i i i=1

−P B(u)T Aρ DP BM

120

 l

PBM ∆α

PBM

PBM ρ TA PBM 3

i=1 i i

metric and, because it is the Hessian of the augmented Lagrangian, which is strictly

convex, it is also positive definite. We could therefore solve the system in this form

both by the MINRES and CG method. However, we perform a reduction similar

to that of system (3.8) in the IP method. The advantage of this approach will be

discussed in Section 3.1.4.

Since ϕ is strictly convex, ϕ > 0 and therefore the diagonal matrix DP BM is

positive definite and (easily) invertible. We can thus eliminate ∆ν and the third

line of (3.23) and obtain the reduced system

SPBM
∆u

= r

∆α

PBM (3.24)

that features the Schur complement of DP BM in the Newton system matrix,

S :=

K(ρ) + B(u)P B(u)T −K(Aρ)u

l

PBM −uTK(Aρ) m

 a2ρ

−

−B(u)P

l
D−1

−P B(u)T Aρ

,

and the right-hand side vector

r = −

r1
l

+

−B(u)P

l
D−1

r . (3.26)

SP BM is positive definite, since it is the Schur complement of a symmetric positive

definite matrix and DP BM is non-singular [135, (Theorem 1.12)]. After solving

(3.26), we can obtain ∆ν from

∆ν = −D−1

r3

+

−P B(u)T Aρ

 ∆u
l

. (3.27)

To determine a step-size, we perform backtracking and apply the Armijo condition,

see Line 4 in Algorithm 5, after which we update the variables (u, α, ν). This

procedure comprises one Newton iteration and we repeat it until /I∇L/I∞ < εNWT

2

(3.25)

ρ TA

r

121

∈

m m

i 2 i i

for a threshold εNWT > 0, at which point we have completed the first step of the

PBM iteration. Next, we update the Lagrange multipliers according to (2.24b).

Additionally, we impose the safeguard rule used in [17]: in order to avoid extreme

changes in the multiplier values and stabilize the algorithm, we bound the multiplier

update above and below by a factor βLM ∈ (0, 1), see Line 8 in Algorithm 5. The

final step of the PBM iteration is the update of the penalty parameter. For this, we

first introduce the merit function

θ(u, α, ν, ρ, µ) := max

/I∇L/I , /I(g)+/I1 , /I(−ν)+/I1 , ∞ m m (3.28)

−ρ, −µ, |ρ|T|g|
+

|µ|T|ν|

,

where the vector g denotes the first set of inequality constraints, i.e.

g =
1

uTK u − α a

− ν , i = 1, . . . , m,

and (·)+ := max{·, 0}. The merit function θ serves as an optimality measure.

Clearly, θ ≥ 0 holds everywhere and if θ(u, α, ν, ρ, µ) = 0 then (u, α, ν, ρ, µ) is

an optimal solution. We will use θ to choose the value of the penalty parameter

adaptively based on how close to optimality we currently are. We achieve this by

evaluating θ at the updated solution and setting p = σθ for some constant factor

σ > 0. However, if p changes too much, the current values of (u, α, ν, ρ, µ) might

be a bad initial guess for the Newton method in the next PBM iteration. (This

consideration is similar to the path following paradigm of IP methods mentioned in

Section 2.1.3). Therefore, we impose the condition that p is not reduced by more

than a factor βp. At the same time, we want to avoid stagnation of the method at a
¯

point that is too far away from the solution to guarantee that θ is decreased by an

acceptable factor in each iteration. Hence, we also cap the next p by a value that is

β̄p times that of the current penalty parameter, where β̄p (βp, 1).
¯

The merit function also has two other purposes in our algorithm. First, we change

i

122

NWT

the tolerance εNWT for the Newton method based on the current value of θ, similarly

to the penalty parameter. Second, we use θ in the stopping criterion for the PBM

method. While the duality gap δ(u, α) given in (2.62) is a very useful optimality

measure in practice, see Section 3.2.1, we simultaneously keep track of θ. This is

because it quantifies not just the distance to optimality but also the feasibility of

the solution and we need to ensure that the PBM algorithm does not terminate

prematurely due to spuriously low duality gap values attained at strongly infeasible

points. Although we only observed this pathological behaviour in a very few cases,

satisfying the extra stopping criterion does not usually require a lot more iterations.

We include it just to be on the safe side and because we do not have to compromise

on efficiency for it.

Algorithm 5 gives the details of the PBM algorithm for the dual VTS problem.

For the results in Section 3.2, we used the parameters βLM = 0.01, σ = 0.5, βp =
¯

0.3, β̄p = 0.9, and γ = 0.01. The Newton tolerance starts at εNWT = 1 and is bounded

below by εmin = 10−5. The stopping threshold for the PBM method is εPBM = 10−5.

The initial guesses for the variables are u = 0, α = 1, ν = a. For the Lagrange

multipliers, they are ρi = V/(

i ai) for all i = 1, . . . , m, and µ = ρ̄ − ρ.

The adaptive updating scheme for the penalty parameter p in our implementation

is taken from [101, 102] – an improved version of the one proposed by Griva and

Polyak in [60]. It is one of the main ingredients of a class of nonlinear rescaling

methods with local superlinear convergence introduced in those references. The

other ingredient, however, a primal-dual step that updates the primal variables

and Lagrange multipliers simultaneously, did not provide any improvement when

we tested it on our examples. This might be due to the fact that we stop our

optimization algorithm relatively early, with εPBM = 10−5, presumably before the

neighbourhood of superlinear convergence is reached. In all of the aforementioned

references, the theoretical convergence results assume that strict complementarity

holds at the solution, as well as the LICQ and the sufficient second order optimality

123

/IL /I

¯

min

i i p 2 i ¯i i

i i p

Algorithm 5 PBM method for the dual VTS problem
Let 0 < βLM < 1, σ > 0, 0 < βp < β̄p < 1, 0 < γ < 1, εPBM > 0, εNWT > 0 and

min
NWT > 0 be given. Choose initiāl vectors (u, α, ν) and (ρ, µ). Set p = 1.
1: repeat
2: repeat r> Step 1
3: Solve (3.24) for (∆u, ∆α) and compute ∆ν by (3.27)
4: Find the largest κ ∈ {1, 0.75, 0.752, . . . } such that

L(u + κ∆u, α + κ∆α, ν + κ∆ν; ρ, µ) − L(u, α, ν; ρ, µ)
≤ κγ∇L(u, α, ν; ρ, µ)T(∆u, ∆α, ∆ν)

5: Update the variables

(u, α, ν) ← (u + κ∆u, α + κ∆α, ν + κ∆ν)

6: until (u, α, ν) ∞ < εNWT

7: Update the multipliers r> Step 2

ρ+ = ρ ϕ
(

1
(
1
uTK u − α + ν − ν)

)
, i = 1, . . . , m,

µ+ = µ ϕ
(

−νi
)

, i = 1, . . . , m

8: Apply safeguard rule

+ ρi ρ ← min{max{β ρ , ρ }, }, i = 1, . . . , m,
i LM i i βLM

+ µi µ ← min{max{β µ , µ }, }, i = 1, . . . , m
i LM i i βLM

9: Update the penalty parameter r> Step 3

p ← max{ min{ σ θ(u, α, ν, ρ, µ), β̄p p } , βp p }

10: Update the Newton tolerance

εNWT ← max
{

min { θ(u, α, ν, ρ, µ), ε

NWT } , εNWT

11: until δ(u, α)/(αV − f Tu + ρ̄T ν) < εPBM and θ < 10εPBM

ε

124

m

i p

i p p

i∈χ

p

conditions. While we cannot guarantee this for our problem, the PBM method

described in this section still proved to be both reliable and efficient in all of our

numerical experiments.

3.1.3 Including Unilateral Contact Constraints

In order to handle problems with unilateral contact constraints within the presented

PBM framework, we merely need to consider the additional set of inequality con-

straints in (2.65). This leads to an extra term in the augmented Lagrangian. Since

the contact constraints, and consequently this extra term, only depend on u, not

many changes are necessary in the resulting Newton system in order to adapt the

PBM method for unilateral contact constraints. In the following, we briefly sum-

marize these changes.

Firstly, the augmented Lagrangian (3.21) becomes

L(u, α, ν; ρ, µ) = αV − f Tu + ρ̄Tν

 (
1 1

)
+

i=1

+
i=1

ρip ϕ

µip ϕ

p (2
uTKiu − α ai − νi)

(
−νi

)

+

η p ϕ
(

cT
i u − bi

)
,

where χ is the contact constraint index set defined in (2.41). For the gradient and

Hessian, we use a shorthand notation analogous to the one in the previous section,

denoting the “scaled” Lagrange multipliers for the contact constraints by

ηi
 := ηi ϕ

()
, i ∈ χ , ciu − bi

η :=
ηi ϕ

(
ciu − bi

)
, i ∈ χ .

With this, the partial derivative of the augmented Lagrangian with respect to u, cf.

p

m

125

(3.22a), is given by

∇u L = −f + K(ρ)u + Cη =: r1 .

Finally, defining the diagonal matrix H := diag{ηi

 }, the upper left block of the

Hessian in (3.23) changes to

K(ρ) + B(u)P B(u)T + CH CT . (3.29)

This change obviously carries through to the Schur complement. The adaptation of

Algorithm 5 to include the contact stresses η in the Lagrange multiplier updating

step is straightforward.

3.1.4 Multigrid Preconditioner for MINRES and CG

All of the linear systems arising in any of the optimization algorithms discussed in

this thesis are solved either by the MINRES or the CG method. These are in turn

preconditioned by a multigrid V-cycle. In Section 2.4.2, we presented the multigrid

method as intrinsically connected to a discretized elliptic problem defined on an FE

mesh. The transfer operators were motivated by interpolation of DOFs defined on

the mesh nodes. However, of all the variables featured in our optimization problem,

only the displacements u conform to this particular geometric interpretation. The

question of how to incorporate a multigrid method preconditioner in our algorithms

comes down to the appropriate choice of prolongator, which is not completely ob-

vious. In the following, we describe our approach in detail. We also address other

solver-related questions, such as the stopping criterion and regularization of the

system matrices.

For the OC method, applying multigrid is easy enough, since the only linear

system that we need to solve is given by the equilibrium equations K(ρ)u = f ,

which is precisely the kind of system that the multigrid method is intended for. In

127

H

H

i=1

PBM

0T 0 ±aT

K D = D−1, whereas for SP BM , we have

= h

 l

our IP and PBM method, we start with a linear system that is considerably larger

and, in the case of the IP method, not even positive definite. By taking the Schur

complement, we arrive at a different system, which turns out to strongly resemble

the equilibrium equations in a particular way.

Recall the linear systems (3.10) and (3.24) that we solve in the IP and PBM

method, respectively. The unknowns in these systems are the increments ∆u and

∆α. The former can, just as u, be interpreted as a vector of DOFs defined at

the mesh nodes, while the second one is a scalar. One can devise a block-wise

prolongation operator for these variables by

(Ih)u
H ,

1

where (Ih)u is a standard (geometric or algebraic) multigrid prolongation operator

for the displacements. The scalar α can be seen as a “global” variable, constant over

the entire domain, so that its value is the same on all grid levels. Using the standard

operator for the displacements can however not only be motivated by the variables

appearing in the linear system, but also by the system’s structure.

Regard the system matrices for the IP and PBM method, defined in (3.9) and

(3.25), respectively. First of all, they are both positive definite. Second of all, their

sparsity structure is the same as that of the stiffness matrix K(ρ) =
 m

 ρiKi for

any ρ > 0. Indeed, both system matrices can be written in the form

S =

K

0
l

+

B(u)

l

D

B(u)T ±a

,

where K is the stiffness matrix K(ρ) for different choices of ρ and D

is a diagonal

K = K(ρ) and D = P − P D−1 P . We now want to show that the upper left

block of S, which is K +B(u)D B(u)T, has the same sparsity structure as the stiffness

matrix. That this is true of K is obvious, so we must show it for the second summand.

IP = K(ρ) and

I

matrix. For SIP , we have

126

i=1 i=1

First, we observe the identity B(u)B(u)T =
 m

 B·iB·i
T =
 m

 Kiu (Kiu)T. The

only non-zero components of Kiu are those corresponding to indices of non-zero

entries of Ki, hence the dyadic product Kiu (Kiu)T has the same sparsity structure

as Ki. The sum over all of these terms will therefore have the same sparsity structure

as K(ρ). This property extends to any matrices B(u)AB(u)T where A is a diagonal

matrix, and thus, in particular, to B(u)DB(u)T. The second diagonal block of S

is a scalar and the off-diagonal blocks are row- and column-vectors, respectively,

which are not generally sparse. Figure 3.1 shows a typical example of the sparsity

structure of S as well as the matrix that S is a Schur complement of – which is given

by (3.8) for SIP and by (3.23) for SP BM .

Figure 3.1: Sparsity structure of (a) the saddle-point matrix and (b) the final system
matrix S for a three-dimensional uniform FE mesh with 512 elements.

(a) (b)

When including contact constraints in the PBM method, we also add the term

CH CT to the top left block of S, see (3.29) in the previous section. Since each

column of the the contact matrix C is non-zero only at indices corresponding to

the displacement components of a single node, and because H is a diagonal ma-

trix, CH CT does not contain any off-diagonal terms that fall outside the sparsity

structure of K(ρ). Therefore, the sparsity structure of S also remains the same.

The above discussion was meant to explain our decision to solve the Schur com-

128

IP

plement systems instead of the larger systems (3.8) or (3.23) and to motivate the

use of a (nearly) standard multigrid approach. However, it should be noted that

systems of the form (3.8) or (3.23), typically called saddle-point systems, can also be

solved by multigrid techniques, for example using so-called transforming smoothers

[117]. These are required since saddle-point systems are not generally positive defi-

nite, case in point (3.8), so the traditional smoothers mentioned in Section 2.4.2 are

not applicable. Maar and Schulz used a transforming smoother multigrid method

for medium-scale two-dimensional topology optimization in [85]. It is questionable

though whether that approach is preferable, firstly, because it requires additional

transfer operators for variables defined element-wise rather than node-wise; sec-

ondly, because transforming smoothers are extremely involved compared to any of

the standard smoothers for positive definite systems.

As explained in Section 2.4.1, both the CG and MINRES method use the residual

norm to define a stopping criterion. In particular, for a linear system Ax = b,

each method stops once /Ib − Axk/I//Ib/I drops below a given threshold value. In our

numerical experiments, we set this threshold to 10−2. It has to be noted that inexact

IP methods usually require the solver tolerance to decrease during the optimization

in order to guarantee convergence [14, 36]. And while our IP algorithm does fail to

converge for some problems, as we will see in Section 3.2, this could not be fully

remedied even with a very strict solver tolerance. Over all, fixing the value at 10−2

lead to the best performance in terms of overall computational time. The same is

true for the PBM and OC method.

To improve the condition number of the system matrix S, we added regularization

terms to those components that were affected by ill-conditioning in practice. In the

IP method, small barrier parameter values lead to very small terms in the diagonal

matrix DIP , consequently to very large eigenvalues of D−1 and thus of SIP . We

compensated for this by adding 10−5 to all diagonal entries in DIP . In the PBM

method, the penalty parameters never had to drop as low as the barrier parameters

129

in the IP method, so that a regularization of DP BM was not necessary. However, the

values in ρ generally got a lot smaller than in the IP method, even when the latter

was used with a lower bound of ρ = 0. Since this translates directly to small values
¯

of ρ , the matrix K(ρ) displayed very small eigenvalues. We therefore regularized

it by adding 10−12 to each diagonal entry in K(ρ). We observed a reduction in

total solver iterations in some cases which was noticeable enough to warrant these

regularization measures. However, it was not crucial to the general efficiency or

convergence behaviour of the PBM method.

For the OC method, we used no regularization. In our numerical experiments,

the number of solver iterations to solve a linear system was generally quite small

and nearly constant over the course of the entire optimization. Hence, there was no

need to regularize the stiffness matrix.

3.2 Numerical Results

We now test the algorithms proposed in the previous section on a variety of examples

with different loading scenarios and geometries. First we will consider only cuboid

design domains with uniform structured meshes that allow the use of the geomet-

ric multigrid method. We will compare the performance of the OC, IP and PBM

method on these scenarios for FE meshes of medium size (∼ 105 elements) in Sec-

tion 3.2.1, before looking at large-scale problems (≥ 106 elements) in Section 3.2.2.

In Section 3.2.3, we will discuss results for unstructured meshes, comparing differ-

ent strategies of using the (adaptive) smoothed aggregation multigrid method. Both

Section 3.2.2 and Section 3.2.3 include examples with unilateral contact constraints.

All computations in this thesis were performed in MATLAB R2019b (9.7.0.1190202)

using the University of Birmingham’s BlueBEAR High Performance Computing ser-

vice [24]. Routines were written in MATLAB as well as C, using the C MEX API

provided by MATLAB. Parallel processing is not available for the MATLAB instal-

lation on the BlueBEAR system, so that the code’s performance is not competitive,

130

but a representative comparison of the different optimization methods can still be

drawn based on the results.

Optimization scenarios

In the first part of this section, we consider three optimization scenarios with a

cuboid design domain and different boundary conditions. In order to investigate

how the algorithms’ performances scale with the size of the problem, we vary both

the proportions of the design domain and the mesh resolution. The FE mesh is a

Cartesian grid of cube elements. We define it by specifying a coarse grid of mx by

my by mz cube elements and the number of grid levels L. The grid hierarchy

is obtained by splitting each coarse grid element into d2 equal-sized fine grid

elements, so that the finest grid in three dimensions has m = 2L−1mx · 2L−1my ·

2L−1mz elements. Because the scaling of the element volume vector a has a big

influence on the performance of our optimization algorithms, we scale the mesh

so that the finest grid elements all have size 1. We also scale the load vector f so

that /If /I = 1. Since we are dealing with linear elasticity, such a linear scaling is

unproblematic.

Figure 3.2 shows the different optimization scenarios. The first one is a simple

cantilever beam, completely fixed at one end and with a central point load applied at

the other end. The second one is a table- or bridge-like structure, fixed at each of the

four bottom corners and with a surface load applied to the top surface. Finally, the

third scenario is a very popular academic example in topology optimization: an MBB

beam modelled via symmetry constraints. Since we will consider these examples with

different proportions and mesh sizes, we will refer to them as Cantilever mx-my-mz-

L, Bridge mx-my-mz-L and MBB mx-my-mz-L.

The volume constraint is defined as a fixed ratio of the volume of a fully solid

design domain, with V = 0.2(i ρ̄iai) for three-dimensional and V = 0.5(i ρ̄iai)

for two-dimensional problems. The upper bounds are ρ̄i = 1 for all i = 1, . . . , m and

we choose zero lower bounds ρi = 0, i = 1, . . . , m, which deserves some justification.

131

¯

132

y

Figure 3.2: Loading scenarios and design domain for compliance minimization with
geometric multigrid. The measurements of each design domain are lx = 2L−1mx, ly =
2L−1my , lz = 2L−1mz .

ly

z x

(a) Cantilever mx-my-mz-L

(b) Bridge mx-my-mz-L. Surface
load is placed centrally, wx =
lx/16, wz = lz/16.

ly

y

x lx

(c) MBB mx-my-mz-L. In three dimensions, boundary conditions and
loads are extruded in the z-direction. Sliding in the z-direction is per-
mitted on the left end but not on the right.

lx lz

wx wz

133

Lower density bound

We are ultimately trying to model a structure that is completely void of material

in some areas of the design domain. If possible, we therefore want to permit the

element densities to attain the value 0, so that we do not need to concern ourselves

with the question of how much a non-zero bound value might distort the result. For

the dual problem, this effectively just means dropping a set of variables and solving

(2.60) rather than (2.54), which, if anything, simplifies the application of the PBM

method. When solving the primal problem (2.48), one could however argue that

allowing ρi = 0 for some or all i means the problem is no longer well defined.
¯

First, the uniqueness of the displacements is lost; second, the stiffness matrix is no

longer guaranteed to be invertible. Especially in the OC method, where we solve

the nested formulation of the VTS problem and require the solution of K(ρ)u = f

in each iteration, this might cause the convergence behaviour to be compromised.

In practise, we did not encounter such problems. To address the effect of zero lower

density bounds on the convergence behaviour of the OC and IP method, let us

inspect a few small scale examples for illustration. We solve each scenario on a

mesh configuration with mx = my = mz = 2, L = 4, in turn setting all lower density

bound values ρi, i = 1, . . . , m, to 10−4, 10−8, 10−12 and 0. The value of the scaled
¯

duality gap δ̃ (u, α) over the course of the optimization for each lower bound value

is shown in Figure 3.3 for all scenarios and both the OC and IP method.

Let us first consider the IP results. For the cantilever and MBB beam scenario,

the choice of the lower bound value seems to almost make no difference at all, with

the exception of 10−4. In the case of the bridge scenario, we see some variation in

the duality gap trajectory in the final optimization iterations. Importantly, though,

there is no indication that a zero lower bound has any detrimental effect on the

algorithm. Now, we turn to the plots for the OC method. While the MBB beam

scenario shows no effect of the lower bound values whatsoever, for the other two

examples, we observe peculiar oscillations of the scaled duality gap value for ρ = 0
¯

Figure 3.3: Scaled duality gap vs. iterations for the OC and IP method for different values of ρi, i = 1, . . . , m.

¯

OC Cantilever 2-2-2-4 OC Bridge 2-2-2-4 OC MBB 2-2-2-4

100 100 100

10−3

10−4

10−5

0 100 200 300 400

10−3

10−4

10−5

0 50 100 150 200

10−3

10−4

10−5

0 200 400 600 800 1,000 1,200

IP Cantilever 2-2-2-4

IP Bridge 2-2-2-4

IP MBB 2-2-2-4

100 100 100

10−3

10−4

10−5

10−3

10−4

10−5

10−3

10−4

10−5

0 5 10 15 20 0 20 40 60 80 100 0 10 20 30 40 50 60

ρ = 0
 ρ̄ = 10−12
 ρ̄ = 10−8
 ρ̄ = 10−4

¯

ρ = 0
 ρ̄ = 10−12

 ρ̄ = 10−8
 ρ̄ = 10−4

¯

ρ = 0
 ρ̄ = 10−12
 ρ̄ = 10−8
 ρ̄ = 10−4

¯

ρ = 0
 ρ̄ = 10−12
 ρ̄ = 10−8
 ρ̄ = 10−4

¯

ρ = 0
 ρ̄ = 10−12

 ρ̄ = 10−8
 ρ̄ = 10−4

¯

ρ = 0
 ρ̄ = 10−12

 ρ̄ = 10−8
 ρ̄ = 10−4

¯

133

134

after a certain number of iterations. Note, however, that even the oscillatory graphs

in Figure 3.3 can be tightly bounded below by smooth curves. In other words, in

each case, there is a subsequence of iterates δ̃k of scaled duality gap values that

follows a smooth trajectory. For the cantilever problem, this subsequence even

closely follows the same trajectory as the duality gap iterates for ρi > 0. For the
¯

bridge scenario, considerably more iterations are required when zero lower bounds

are used. However, the OC method generally appears to be more sensitive to the

lower bound values in this case. Moreover, the sequence of duality gap iterates still

clearly converges in a “lim inf”-sense.

Still, two important questions need to be answered: first, whether the oscillations

are due to the zero lower bounds; second, whether or not the algorithm’s convergence

behaviour suffers from this. Regarding the first question, the answer seems to be

yes. While, in theory, density values can converge towards the lower bound 0 in both

the OC and the IP method, they do so a lot faster in the former. In our examples,

densities can reach values smaller than 10−100 before the OC method terminates,

whereas they generally stay well above 10−10 in the IP method, which does not

display any kind of oscillatory convergence behaviour. The condition number of the

stiffness matrix K(ρ) becomes very large in later OC iterations, much larger than

that of the system matrix of the IP method. It seems plausible that the accuracy of

the Krylov solver1 approximation of the solution of K(ρ)u = f would therefore be

greatly compromised. Indeed, when using a direct method2, we do not observe these

oscillations. Interestingly, the OC method converges a lot quicker when using the

approximate, albeit inaccurate, solution. It therefore appears that the answer to the

second question – whether the algorithm’s convergence deteriorates when choosing

zero lower bounds – is no, for all practical purposes. It is also worth mentioning

that the number of solver iterations required per OC iteration was the same for all

lower bound values, so that the computational time does also not generally increase
1The results shown in Figure 3.3 were obtained using the MINRES method. When using the CG
solver, oscillations are rare, but the OC method struggles to converge in general.

2Matlab’s inbuilt Cholesky factorization solver

135

for ρ = 0.
¯

From the examples included here for illustration and several similar ones omitted

for the sake of brevity, we conclude that the choice ρi = 0, i = 1, . . . , m, is justifiable
¯

even for the OC and IP method. The numerical artefacts that we observe in the

OC method do not appear to impede the convergence of iterate subsequences to a

solution.

Stopping criterion

In the sections describing the IP, PDNR and OC method, it was mentioned that

we terminate each algorithm once δ̃ (u, α) falls below 10−5, where δ̃ is the duality

gap (2.62) scaled by either the primal or dual objective function. This stopping

criterion appeared to be more indicative of a convergence of the design than others

which are more common for the OC method, such as a minimum difference in the

design variables between iterations or a minimum objective function change. To

illustrate this, we use the example MBB 8-2-0-6, OC solutions of which are shown

in Figure 3.4 for decreasing stopping threshold values. We zoom in on the right end

of the design domain, as this is where the design change is most evident. While a

vague approximation of the optimal design is reached early on, the contours remain

blurry until δ˜(u, α) < 10−5. Any further change obtained when pushing δ̃ (u, α)

below 10−6 is barely visible. We observed the same behaviour for the IP and PBM

method, which justifies the choice εIP = εPBM = εOC = 10−5.

3.2.1 Comparison of Optimization Methods and Solvers

To compare the efficiency of the IP, PBM and OC method, we apply them to all

three scenarios seen in Figure 3.2. Furthermore, for each scenario, we consider

two different sets of mesh dimensions mx-my-mz-L. The first mesh, defined by

mx = 4, my = 2, mz = 2 and L = 6, has m = 524 288 elements. The second mesh

has the specifications mx = 16, my = 2, mz = 2 and L = 5, (m = 262 144), which

136

Figure 3.4: MBB 8-2-0-6 solutions for δ̃ (u, α) < εOC = 10−3, 10−4, 10−5, 10−6. Pixel-
colour corresponds to element density, (black: ρi = ρ̄i, white: ρi = ρi).

¯

(a) εOC = 10−3 (b) εOC = 10−4

(c) εOC = 10−5 (d) εOC = 10−6

(e) εOC = 10−6, entire design domain

137

gives us a strongly elongated design domain. While the first problem is relatively

well-behaved, as it were, the second one is more of a pathological example, as the

stiffness matrix (at the optimal solution) becomes more ill-conditioned as the design

domain aspect ratio increases.

For each optimization method, we present the results obtained with the solver

that worked best overall. In both the IP and PBM algorithm, the choice of the

solver did not make a very big difference. The tables in Appendix A.1 compare

the CG and MINRES solver on an exhaustive range of problems that are roughly

the same size as those discussed here. For the sake of completeness, Section 3.2.4

also looks at the performance of the two Krylov solvers on single linear systems

and for a stricter solver tolerance. On average, the MINRES method required fewer

iterations, as expected, but the CG method was faster in terms of CPU time. The

OC method, interestingly, converged considerably faster when using the MINRES

method, not just in terms of total solver iterations, but in terms of OC iterations

required. Solving the same problem using the CG method sometimes took up to five

times as long and up to ten times as many solver iterations. A possible explanation is

that the MINRES method can solve even singular systems, whereas the CG method

does not converge for any given solver tolerance in such cases. As mentioned earlier,

using zero lower bounds for the densities in the OC method can lead to strongly

ill-conditioned stiffness matrices, which are presumably harder for the CG method

to cope with, even for a high stopping tolerance like 10−2. Since MINRES so clearly

outperformed CG, we omit a detailed comparison of the solvers for the OC method.

Tables 3.1 to 3.6 show the performance of the different optimization algorithms for

each problem, in terms of iterations and CPU time. The column titled “Nwt” lists the

total number of linear systems solved over the course of the iteration – which is the

same as the number of Newton iterations in the case of the IP and PBM method.

For the sake of completeness, we have also included the final objective function

138

2

Table 3.1: Cantilever 4-2-2-6 results for the PBM, IP and OC method. Problem
dimensions: m = 524 288, n = 1 622 400. Time values are rounded to the nearest
integer.

method

iterations
Nwt solver

time [min]
total solver

obj fun

PBM 82 378 59 11 1.655 186
IP 463 2177 311 81 1.655 160
OC 267 534 165 40 1.655 396
OC (εOC = 10−4) 222 444 137 33 1.655 411

Table 3.2: Bridge 4-2-2-6 results for the PBM, IP and OC method. Problem di-
mensions: m = 524 288, n = 1 635 063. Time values are rounded to the nearest
integer.

method

iterations
Nwt solver

time [min]
total solver

obj fun

PBM 85 555 63 16 42.000 503
IP 77 422 56 16 42.000 251
OC 100 847 87 40 42.001 466
OC (εOC = 10−4) 82 685 71 32 42.002 165

value1, even though the differences seen between the methods do not correlate with

any visible differences in the final design. The first thing that becomes clear from

our results is that the OC method is generally a lot slower than both the IP and the

PBM method. In practice, the OC method often converges to a rough approximation

of the optimal design in just a few iterations and one might therefore argue that a

stopping threshold of εOC = 10−4 is enough to obtain reasonable results. To pre-
1While the solver tolerance used throughout the optimization is only 10−2, in order to determine
a more accurate value for 1 f Tu, we obtained u from the equilibrium equations (2.48b) for the
final ρ, solved to an accuracy of 10−8.

Table 3.3: MBB 4-2-2-6 results for the PBM, IP and OC method. Problem di-
mensions: m = 524 288, n = 1 630 720. Time values are rounded to the nearest
integer.

method

iterations
Nwt solver

time [min]
total solver

obj fun

PBM 68 364 52 11 71.246 932
IP 41 394 29 11 71.247 72
OC 845 4221 584 209 71.247 551
OC (εOC = 10−4) 497 2481 348 124 71.247 719

139

Table 3.4: Cantilever 16-2-2-5 results for the PBM, IP and OC method. Problem
dimensions: m = 262 144, n = 836 352. Time values are rounded to the nearest
integer.

method

iterations
Nwt solver

time [min]
total solver

obj fun

PBM 54 320 20 5 66.193 288
IP 26 111 7 2 66.192 963
OC 956 4775 304 108 66.194 033
OC (εOC = 10−4) 555 2770 178 63 66.194 118

Table 3.5: Bridge 16-2-2-5 results for the PBM, IP and OC method. Problem
dimensions: m = 262 144, n = 839 607. Time values are rounded to the nearest
integer.

method

iterations
Nwt solver

time [min]
total solver

obj fun

PBM 69 492 33 8 236.928 109
IP 34 314 17 6 236.928 016
OC 2080 16 650 765 333 236.928 115
OC (εOC = 10−4) 1290 10 330 474 208 236.928 139

Table 3.6: MBB 16-2-2-5 results for the PBM, IP and OC method. Problem di-
mensions: m = 262 144, n = 838 464. Time values are rounded to the nearest
integer.

method

iterations
Nwt solver

time [min]
total solver

obj fun

PBM 35 299 19 5 2194.268 965
IP 20 106 8 2 2193.685 598
OC 3371 20 224 1263 459 2194.260 331
OC (εOC = 10−4) 463 2776 183 69 2194.262 766

140

empt such a suggestion, we have also included the results for this case in the tables,

showing that even with this relaxed stopping criterion, the OC method is still much

slower. In particular, it seems to struggle more with problems on elongated design

domains, possibly due to the condition number of the stiffness matrix1, whereas the

IP and PBM method do not seem to be influenced by this.

Figure 3.5 shows the trajectory of the duality gap. We again observe an oscillatory

progression for the OC method with a convergent subsequence, due to the zero lower

density bounds. Appendix A.1 contains more plots like Figure 3.5, with the duality

gap plotted against the total number of Newton and solver iterations.

In Figure 3.6, we can see how the number of solver iterations needed to solve

each linear system evolves over the course of the optimization. While this number

is constant for the OC method (the trend observed for the iterations within the plot

range is continued), we can see that more solver iterations are required per linear

system as the IP and PBM method progress. The slopes of the curves suggest that

the systems encountered in those methods are more difficult to solve than any system

occurring in the OC method. Nevertheless, the superior convergence behaviour of

the IP and PBM algorithm more than make up for this.

Since the OC method is very clearly no competition, let us now turn to a compari-

son of the IP and PBM algorithm. In all but one example, the former is considerably

faster than the latter. However, in that one exception – Cantilever 4-2-2-6 – the IP

method converges so slowly that it is even outperformed by the OC method. This is

a first indication of a lack of robustness that is even more pronounced in large-scale

problems, as we will see in the next part of this section.

A final observation that is of note is the difference between the total CPU time

and the total time taken up by calls to the solver routines, as seen in Tables 3.1

to 3.6. It turns out that a major part of the overall computation time is taken up by
1Although it should be noted that even with a non-zero lower density bound or a regularization of
the stiffness matrix, the OC method did not perform any better.

OC
IP (abs)
PBM (abs)

Figure 3.5: Scaled duality gap vs. CPU time (in minutes) for the PBM, IP and OC method. A black diamond marks the termination of
the algorithm, which can be outside the plot range.

Cantilever 4-2-2-6

Bridge 4-2-2-6

MBB 4-2-2-6

100
100

100

10−3

10−4

10−5

0

20 40 60 80 100

10−3

10−4

10−5

0

20 40 60 80

10−3

10−4

10−5

0

20 40 60 80 100

Cantilever 16-2-2-5 Bridge 16-2-2-5 MBB 16-2-2-5

100

10−3

10−4

10−5

100

10−3

10−4

10−5

100

10−3

10−4

10−5

0 10 20 30 40 0 10 20 30 40 50 60 0 10 20 30

OC
IP (abs)
PBM (abs)

OC
IP (abs)
PBM (abs)

OC
IP (abs)
PBM (abs)

OC
IP (abs)
PBM (abs)

OC
IP (abs)
PBM (abs)

141

Figure 3.6: Accumulated solver iterations vs. Newton iterations for the PBM, IP and OC method. A black diamond marks the termination
of the algorithm, which can be outside the plot range.

600

400

Cantilever 4-2-2-6

OC
IP
PBM

600

400

OC
IP
PBM

Bridge 4-2-2-6

600

400

OC
IP
PBM

MBB 4-2-2-6

200 200 200

0
0 20 40 60 80 100

0
0 20 40 60 80 100

0
0 20 40 60 80 100

600

400

Cantilever 16-2-2-5

OC
IP
PBM

600

400

OC
IP
PBM

Bridge 16-2-2-5

600

400

OC
IP
PBM

MBB 16-2-2-5

200 200 200

0
0 20 40 60 80 100

0
0 20 40 60 80 100

0
0 20 40 60 80 100

14
2

143

the construction of the system matrices. This is true even for the OC method, where

the system matrix is just the stiffness matrix, the assembly of which is implemented

in C. It is noticeable, though, that the proportion of the CPU time taken up by the

solver is even smaller for the IP and PBM method. Indeed, for those methods, the

construction of the system matrix, which involves the concatenation, multiplication

and addition of other large sparse matrices, takes up roughly half of the total time

required for the optimization.

3.2.2 Large Scale Problems

We now turn to scenarios with more than a million finite elements. For this, we

consider the same three problems as before, again varying the mesh dimensions, this

time setting the number of grid levels to L = 7. Judging by our previous results,

we can reject the OC method as a viable candidate and only consider results for

the IP and PBM method. Tables 3.7 to 3.9 list the number of iterations and time

required for different instances of each of the three scenarios. In order to see how the

algorithms’ performances scale with the problem size, the tables also include results

for problems defined by the same scenario and design domain proportions, but with

a smaller number of grid levels. Figures 3.7 to 3.9 show the optimal design for

the largest example of each scenario. Since the large proportion of “grey” elements,

which are due to the linear material interpolation in the VTS formulation, don’t

allow for a straightforward interpretation of the optimal solution as a 0 − 1 design,

we visualize each result for a range of different density thresholds.

Regarding the choice of linear solver, CG again slightly but consistently outper-

forms MINRES when used in the IP method. When solving problems with L = 7

by the PBM method, on the other hand, the smaller number of iterations needed by

the MINRES solver offsets its lower efficiency enough for it to be faster on average

than the CG solver. For the purpose of consistency, all PBM results presented in

Tables 3.7 to 3.9 have been obtained using the MINRES solver, even though for

144

Table 3.7: Cantilever mx-my-mz-L, medium- to large-scale. Newton iterations,
solver iterations and CPU time (in minutes) for the IP and PBM method. Missing
IP entries indicate that the IP method either timed out at 48 hours or reached the
maximum iteration number (500) before converging.

Problem dimensions IP PBM

 mx-my-mz-L m n Nwt solver time Nwt solver time

 2-2-2-5 32 768 104 544 51 230 2 71 244 3
 4-2-2-5 65 536 209 088 44 227 4 58 218 5
 6-2-2-5 98 304 313 632 54 391 7 60 297 9
 8-2-2-5 131 072 418 176 41 258 8 57 274 11
 2-2-2-6 262 144 811 200 – – – 118 411 42
 4-2-2-6 524 288 1 622 400 463 2177 265 82 378 69
 6-2-2-6 786 432 2 433 600 344 1982 335 74 297 86
 8-2-2-6 1 048 576 3 244 800 – – – 72 314 122
 2-2-2-7 2 097 152 6 390 144 – – – 130 206 413
 4-2-2-7 4 194 304 12 780 288 – – – 104 239 799
 6-2-2-7 6 291 456 19 170 432 – – – 93 223 1030
 8-2-2-7 8 388 608 25 560 576 – – – 87 217 1092

L < 7, the CG solver is usually a bit faster.

The first thing that becomes evident from a comparison of the two optimization

methods is that the IP algorithm does not do well on large-scale problems. It often

stagnates and terminates due to a time or iteration limit. In many cases in which

it does converge, it loses its advantage over the PBM method, requiring many more

Newton and solver iterations. One may ask whether this simply comes down to

the wrong parameters. For example, the choice of a constant value for the solver

tolerance goes against the typical IP paradigm of decreasing the solver tolerance as

one approaches the optimum. Indeed, the original version of our IP method, which

was proposed in [34], featured an adaptive scaling of the solver tolerance. While

this made the method more successful for large-scale problems, it also considerably

slowed it down for many other problems due to an unnecessarily low solver tolerance.

Furthermore, even with this scaling mechanism, the IP method could not solve all

of the large-scale problems and was not generally more efficient.

Turning now towards the PBM method, it clearly seems to be much more robust,

145

Table 3.8: Bridge mx-my-mz-L, medium- to large-scale. Newton iterations, solver
iterations and CPU time (in minutes) for the IP and PBM method. Missing IP
entries indicate that the IP method either timed out at 48 hours or reached the
maximum iteration number (500) before converging.

Problem dimensions IP PBM

 mx-my-mz-L m n Nwt solver time Nwt solver time

 2-2-2-5 32 768 107 799 31 139 1 66 352 3
 4-2-2-5 65 536 212 343 33 155 3 66 369 6
 6-2-2-5 98 304 316 887 30 173 4 73 457 10
 8-2-2-5 131 072 421 431 28 198 5 66 374 12
 2-2-2-6 262 144 823 863 64 320 20 76 451 29
 4-2-2-6 524 288 1 635 063 77 422 46 85 555 68
 6-2-2-6 786 432 2 446 263 73 466 77 83 517 96
 8-2-2-6 1 048 576 3 257 463 70 530 100 84 575 132
 2-2-2-7 2 097 152 6 440 055 186 1005 479 144 945 549
 4-2-2-7 4 194 304 12 830 199 53 268 360 131 808 1120
 6-2-2-7 6 291 456 19 220 343 – – – 144 977 1794
 8-2-2-7 8 388 608 25 610 487 – – – 129 881 2254

Table 3.9: MBB mx-my-mz-L, medium- to large-scale. Newton iterations, solver
iterations and CPU time (in minutes) for the IP and PBM method. Missing IP
entries indicate that the IP method either timed out at 48 hours or reached the
maximum iteration number (500) before converging.

Problem dimensions IP PBM

 mx-my-mz-L m n Nwt solver time Nwt solver time

 2-2-2-5 32 768 106 656 23 130 1 53 286 2
 4-2-2-5 65 536 211 200 22 124 2 51 287 5
 6-2-2-5 98 304 315 744 23 122 3 43 226 7
 8-2-2-5 131 072 420 288 19 81 3 40 228 8
 2-2-2-6 262 144 819 520 40 262 12 63 323 24
 4-2-2-6 524 288 1 630 720 41 394 32 68 364 55
 6-2-2-6 786 432 2 441 920 46 550 65 59 347 71
 8-2-2-6 1 048 576 3 253 120 37 418 64 63 415 105
 2-2-2-7 2 097 152 6 423 168 220 1753 623 81 271 279
 4-2-2-7 4 194 304 12 813 312 249 2176 1995 81 283 685
 6-2-2-7 6 291 456 19 203 456 171 1551 2009 79 305 937
 8-2-2-7 8 388 608 25 593 600 193 2235 2819 69 248 843

146

Figure 3.7: Cantilever 8-2-2-7 optimal design, visualized with different density
thresholds so that visible elements add up to c · V .

(a) c = 0.6 (b) c = 0.7

(c) c = 0.8

as well as much more efficient for large-scale problems, than our IP algorithm. The

number of both Newton and solver iterations increases along with the problem size,

presumably because the problems simply become more difficult for a higher mesh

resolution. The fact that the average number of solver iterations per Newton iter-

ation, i.e. per linear system, remains roughly the same, while the solver tolerance

is kept constant, suggests that the multigrid preconditioner works as intended. The

same observation can be made for the IP method – when it converges successfully.

To showcase our PBM algorithm’s ability to handle contact constraints, we also

include results for the problem shown in Figure 3.10. The mesh dimensions and

loading are the same as for Cantilever 7-2-2-7, but the structure is not fixed at the

left end. Instead, we restrict vertical movement through obstacles that are flush

with the top and bottom surface of the design domain. The optimal design is seen

in Figure 3.11. The depicted mesh has 7 340 032 elements and 22 415 427 DOFs

for this scenario. Solving this problem took 115 Newton iterations, 273 MINRES

iterations and 1378 minutes of CPU time. Note that this problem is technically

147

Figure 3.8: Bridge 8-2-2-7 optimal design, visualized with different density thresh-
olds so that visible elements add up to c · V .

(a) c = 0.6 (b) c = 0.7

(c) c = 0.8

Figure 3.9: MBB 8-2-2-7 optimal design, visualized with different density thresholds
so that visible elements add up to c · V .

(a) c = 0.6 (b) c = 0.7

(c) c = 0.8

148

·

Figure 3.10: Cantilever with clamping boundary conditions (cf. example Cantilever
mx-my-mz-L in Figure 3.2). The darker grey regions are obstacles with a no-friction
surface, modelled by unilateral contact constraints. In three dimensions, the load is
a point load applied to the centre of the right end.

ly

y

x lx/2 lx/2

Figure 3.11: Clamped cantilever optimal design, visualized with different density
thresholds so that visible elements add up to c V . The mesh dimensions are the
same as for Cantilever 7-2-2-7.

(a) c = 0.5 (b) c = 0.7

(c) c = 0.8

149

not kinematically determinate, but due to the vertical load direction and geometric

linearity it still has a solution. The regularization of the stiffness matrix, however,

is critical in this case, because the system matrix is not positive definite otherwise.

We could also have included an additional minimal boundary condition to ensure

regularity of the stiffness matrix. For example, one could simply fix two or three

nodes at the left end of the design domain. The reason we decided against this is

that it causes a spurious strip of grey or solid material to appear that connects the

fixed nodes to the rest of the design, which does not otherwise have any material at

the left end of the design domain.

3.2.3 Unstructured Meshes and Algebraic Multigrid

We now extend our method to problems defined on unstructured meshes, which

necessitates the use of an algebraic multigrid method. See Section 2.4.2 for a de-

scription of the smoothed aggregation algorithm that we will be using. For all of

the following results, we used the PBM method, since it has so far proven to be

the most reliable method for large-scale problems, and because we want to include

contact constraints. As problems on unstructured grids seem to require more solver

iterations in general, we use the MINRES method, because it appears to be slightly

more efficient than CG for large-scale problems.

In a recent paper [96], Peetz and Elbanna looked into the application of AMG

methods to topology optimization problems based on the SIMP formulation. They

used the MMA, equipped with an SA preconditioned solver, but considered only

structured meshes that can also be treated by geometric multigrid methods. Their

focus was the ability of AMG methods to handle the material anisotropy seen in

SIMP solutions. New transfer operators were computed each time the system ma-

trix changed. The authors reported fewer overall solver iterations compared to the

geometric multigrid, however, in terms of CPU time, the AMG method was only

more efficient for some three dimensional problems, when the reduction in iteration

150

numbers was enough to compensate for the large overhead of the smoothed aggre-

gation. They also obtained promising results with a hybrid GMG-AMG method,

using GMG transfer operators on a certain number of finer grid levels before switch-

ing to the AMG method for the coarser levels. A similar approach was used in [3],

although without any discussion of the reasons or benefits. In the following, we

will focus more on the use of AMG where it is without alternative, i.e. for design

domains discretized by unstructured meshes. Nevertheless, we begin by considering

a few structured grid examples, in order to compare the performance of GMG and

AMG.

First of all, we go through some of the details of our SA implementation and how

we used it within our PBM algorithm. Again, everything was written from scratch

in MATLAB, with a few auxiliary routines written in C, and the code was not run in

parallel. The sparsity of the coarse-level operators is critical to the efficiency of the

multigrid, and this is determined by the threshold parameter EN in the definition

of the strongly-coupled neighbourhoods (2.81). After some trial and error, we set

EN = 0.04. Following [124], this parameter is reduced by a constant factor on each

level, which we set to 0.1. We use the weighted Jacobi prolongation smoother (2.86).

As discussed in Section 3.1.4, we define the multigrid transfer operators block-

wise: since the upper left n × n block of the system matrix has the same sparsity

structure as the stiffness matrix, we use the standard multigrid operator for the first

n of the system’s degrees of freedom, while we simply use a 1 for the remaining

scalar DOF. We will follow the same approach now, only that the first block of the

transfer operator is determined by the SA method.

In order to properly assess the AMG preconditioner, we provide detailed statistics

for the GMG preconditioner in Table 3.10 as a reference. As before, we list the total

Newton and solver iterations, the total CPU time, and the time it took to solve

all linear systems. We now further include the time required for the multigrid

setup. This comprises the construction of transfer operators and the computation

151

of all coarse-level system matrices, all of which is done outside of the call to the

solver routines. The operations that contribute the most to the solver time, on the

other hand, are matrix-vector multiplications, including those inside the multigrid

preconditioner which use the previously prepared coarse-level operators.

When solving the same problems with an AMG preconditioner, the number of

coarse levels is not known a priori. We therefore define a maximum number of

levels Lmax, as well as a minimum number of DOFs that a coarse level can have,

denoted by nmin. The coarsest algebraic grid should have roughly the same size as

the coarsest geometric grid so that computational cost for the direct solver on that

level is comparable. Therefore, we set Lmax = L = 5 and nmin = 3dd = 81, which is

approximately the number of DOFs for a 2–by–2–by–2 element mesh. In practice,

the number of algebraic grid levels was 3 or 4 and the minimum system size ranged

from 81 to 918.

Were we to apply the SA method naively as a black box algorithm, we would con-

struct new transfer operators in each Newton iteration, performing the aggregation

based on the system matrix (or rather, its upper left n×n block). The results can be

seen in Table 3.11. They are obviously very bad. Not only is the average overhead

for the multigrid setup roughly fifty times larger than for the geometric multigrid;

even the number of solver iterations have increased dramatically. The inefficiency of

the above approach is not too surprising when one considers that many of the cen-

tral multigrid paradigms are closely related to the properties of matrices that stem

from elliptic problems. The matrix SP BM of the system that we need to solve

does not itself correspond to any such problem. Moreover, the GMG method

which we have used successfully as a preconditioner for this system is not an

optimal method for this matrix, but for the stiffness matrix K(ρ) – even though,

strictly speaking, only when ρ is constant. The logical next step is to adjust the

AMG preconditioner such that the aggregation is performed not on the actual

system matrix, but on the current stiffness matrix. Results for this approach are

given in Table 3.12. We can

152

Table 3.10: Detailed statistics for different problems solved by the PBM method
with a GMG-preconditioned MINRES solver. Time values are rounded.

iterations time [seconds]
Problem Nwt solver total solver GMG

Cantilever 2-2-2-5 82 213 226 47 31
Cantilever 4-2-2-5 57 131 304 57 40
Cantilever 6-2-2-5 61 170 612 120 91
Cantilever 8-2-2-5 57 165 656 135 86
Bridge 2-2-2-5 68 286 207 52 27
Bridge 4-2-2-5 71 295 417 103 59
Bridge 6-2-2-5 71 353 728 187 99
Bridge 8-2-2-5 71 280 816 204 108
MBB 2-2-2-5 60 263 184 47 24
MBB 4-2-2-5 56 252 336 89 48
MBB 6-2-2-5 42 144 388 85 54
MBB 8-2-2-5 39 107 489 91 73

average 61 222 447 101 62

Table 3.11: Detailed statistics for different problems solved by the PBM method with
an SA-AMG-preconditioned MINRES solver; SA is used on SP BM in each Newton
iteration. Time values are rounded.

iterations time [seconds]
Problem Nwt solver total solver SA(S)

Cantilever 2-2-2-5 66 436 601 111 394
Cantilever 4-2-2-5 89 1881 4886 1137 3471
Cantilever 6-2-2-5 63 712 3289 384 2610
Cantilever 8-2-2-5 85 1305 9324 1032 7776
Bridge 2-2-2-5 71 601 700 186 401
Bridge 4-2-2-5 70 773 1627 388 1018
Bridge 6-2-2-5 96 1593 7733 1799 5466
Bridge 8-2-2-5 100 1876 8668 2005 5973
MBB 2-2-2-5 59 608 663 196 370
MBB 4-2-2-5 68 1718 1782 658 916
MBB 6-2-2-5 100 7378 9542 4661 4419
MBB 8-2-2-5 80 3754 9608 3765 5227

average 79 1886 4869 1360 3170

153

Table 3.12: Detailed statistics for different problems solved by the PBM method with
an SA-AMG-preconditioned MINRES solver; SA is used on K(ρ) in each Newton
iteration. Time values are rounded.

iterations time [seconds]
Problem Nwt solver total solver SA(K(ρ))

Cantilever 2-2-2-5 74 297 619 102 393
Cantilever 4-2-2-5 68 408 1603 189 1216
Cantilever 6-2-2-5 59 432 2103 290 1506
Cantilever 8-2-2-5 81 711 4977 663 3720
Bridge 2-2-2-5 69 292 637 110 414
Bridge 4-2-2-5 78 549 1740 306 1182
Bridge 6-2-2-5 83 686 3128 513 2225
Bridge 8-2-2-5 78 717 4895 689 3681
MBB 2-2-2-5 53 285 466 92 287
MBB 4-2-2-5 56 509 1078 236 668
MBB 6-2-2-5 53 539 2254 382 1575
MBB 8-2-2-5 46 477 2892 423 2123

average 66 492 2199 333 1582

see a considerable improvement over the system matrix–based AMG preconditioner.

However, the total number of solver iterations is still more than twice as large on

average as for the GMG method. This is interesting as Peetz and Elbanna [96]

reported a decrease in the number of solver iterations for the AMG preconditioner.

A possible explanation is that these authors looked at problems based on the SIMP

formulation, where one typically sees much sharper density changes in the design.

Thus, differences in the material properties of geometrically neighbouring elements

are more pronounced, which leads to a stronger distinction between geometric and

algebraic neighbours. In other words, the local anisotropy in designs resulting from

the SIMP formulation is much greater, which is precisely one of the cases in which

AMG methods are known to hold an advantage over GMG methods. Since solu-

tions to the VTS problem usually display much smaller density gradients, it seems

plausible that the geometric multigrid is better suited after all to eliminate error

components which correspond to the design’s low-frequency eigenmodes.

Seeing as the use of AMG transfer operators tailored to each individual system

matrix is not only much less effective overall than using GMG transfer operators,

154

Table 3.13: Detailed statistics for different problems solved by the PBM method
with an SA-AMG-preconditioned MINRES solver; SA is used on K(ρ̄) once at the
start of the optimization. Time values are rounded.

iterations time [seconds]
Problem Nwt solver total solver SA(K(ρ̄))

Cantilever 2-2-2-5 76 337 233 66 51
Cantilever 4-2-2-5 65 367 535 167 125
Cantilever 6-2-2-5 64 473 899 336 206
Cantilever 8-2-2-5 67 564 1138 429 253
Bridge 2-2-2-5 67 297 269 82 66
Bridge 4-2-2-5 70 466 597 208 137
Bridge 6-2-2-5 80 634 1108 442 248
Bridge 8-2-2-5 59 483 1029 409 239
MBB 2-2-2-5 59 398 266 100 58
MBB 4-2-2-5 54 399 413 149 93
MBB 6-2-2-5 52 449 763 313 169
MBB 8-2-2-5 40 361 749 294 176

average 63 436 667 250 152

but also has an enormous computational overhead, we venture an informed guess as

to what might be a more efficient approach: Setting up the transfer operators once

at the beginning, performing the aggregation on the stiffness matrix K(ρ̄), which

corresponds to an all-solid design domain1. Using the resulting transfer operator

throughout the entire optimization is essentially as close as we can get to emulating

the methodology of the GMG preconditioner. The results are given in Table 3.13

and are the best AMG results yet, both in terms of solver iterations and time.

While it does not look as if the AMG preconditioner can match the efficiency of

the GMG preconditioner for problems on structured meshes, the observations we

have made so far can inform the way we apply it to problems with unstructured

meshes. We will consider three examples, shown in Figure 3.12. We will again

vary the dimension d and discretization resolution of the design domains, although

we keep the geometric proportions fixed. The size of the design domain and mesh

are again defined by the parameter L. The relationship between the number of

elements m and L is now less straightforward, but generally m is in the order of

1Recall that we chose ρ̄i = 1 for all i = 1, . . . , m.

155

2d(L−1), which is consistent with the structured mesh specifications at the beginning

of this section. For scaling purposes, the size of each element is around 1, unless

otherwise specified, and the load vector is normalized. All meshes use quadrilateral

(d = 2) or hexahedral (d = 3) finite elements. They were created in Gmsh [54],

version 4.7.1. The first example is a loaded knee structure, fixed at the top end

and subjected to a vertical load at the right end. It is shown in Figure 3.12a

and referred to as Knee d-L. The design domain of the second example, which

we refer to as Lug d-L, see Figure 3.12b, represents the lug of a hinge1,2. The

hinge axis is a rigid obstacle modelled by unilateral contact constraints. The third

scenario, shown in Figure 3.12c, is a simplified representation of a crack under

tension, modelled by symmetry conditions3. It is an example of a structural problem

where an unstructured mesh is not required due to geometric irregularities, but

because a finer mesh resolution is needed at points where stress singularities are

expected, which in this case is the point A in Figure 3.12c. The elements around

point A have an edge length of approximately 0.2 − 0.5. Along the slanted edges,

this factor increases to about 0.5 − 0.7 at point B.

In light of a recent article published on arXiv.org [122] which investigated the

mesh-dependence of topology optimization algorithms in the context of non-uniform

meshes, it should be acknowledged that we did not apply the same rigour in our ap-

proach. The aforementioned preprint argued, based on an analysis of the underlying

infinite-dimensional problem, that special inner products, which account for varying

element sizes, should be incorporated in first and second order derivatives. It was

shown that ignoring these inner products can indeed have a substantial impact on

the performance of the optimization method. However, the focus of the paper was
1The idea for this problem is taken from [120].
2The asymmetric combination of load and bearing is chosen purely for the reason that an asym-
metric design is more interesting to look at. We could replace the bearing by another vertical load
to create a symmetric but kinematically indeterminate problem, which our algorithm can solve
thanks to the regularization of the stiffness matrix, cf. the clamped cantilever in Figure 3.10.

3Properly modelled symmetry would entail sliding constraints rather than a completely fixed lower
boundary. Once again, our choice of boundary conditions comes down to a more interesting
looking optimal design, which better illustrates certain properties of the VTS solution.

156

B

A

·

Figure 3.12: Loading scenarios and design domain for compliance minimization with
SA-AMG. In three dimensions, all boundary conditions and meshes are extruded.

4l

5l
l

0.4l

y l y

x

(a) Knee d-L: l = 2 2(L−1), r = 0.1l.
For d = 3, the depth of the design
domain is l/2.

x

(b) Lug d-L: l = 2(L−1), r = 0.5l.
For d = 3, the depth of the design
domain is 2l. The dark grey area is
an obstacle modelled by unilateral
contact constraints.

5l 0.5l

l
2l

y 2.5l

x

(c) Crack d-L: l = 2(L−1). For d = 3, the
depth of the design domain is 2l.

r/2

r

r

157

Table 3.14: Mesh dimensions of problems used in testing different aggregation strate-
gies.

problem m n

Knee 2-9 194 388 390 396
Knee 3-6 176 896 560 538
Lug 2-8 406 098 814 906
Lug 3-5 214 464 680 427
Crack 2-8 465 440 932 160
Crack 3-5 236 256 738 837

adaptive mesh refinement, which leads to elements differing in their sizes by orders

of magnitude. The variation in element sizes that we see in our examples is much

smaller, perhaps unrealistically so. But since we are concerned mainly with the ef-

fect of AMG preconditioners on the Krylov solver’s performance, this simplification

can be justified by avoiding unnecessary complications in the optimization problem.

In an attempt to identify the most efficient AMG setup strategy, we propose

three different approaches of employing the SA algorithm in our problems. We

will test these on a two- and three-dimensional instance of each of the scenarios in

Figure 3.12, as listed in Table 3.14. The first strategy is the one we have previously

described: We apply SA once at the beginning of the optimization, to a solid-

domain stiffness matrix. This strategy will be denoted by “K1”. We can try to

further improve it by availing ourselves of the adaptive SA method, varying the

number of candidates that we add to the near-kernel of the transfer operator. For

the second strategy, we consider the possibility that, while the cost of re-computing

the transfer operators in each iteration is prohibitive, we might benefit from updating

them occasionally. Whenever the solver requires more than 20 iterations for a linear

system, we take this as a cue to perform SA on the stiffness matrix for the current

densities. We refer to this strategy as “K+” and, again, we test it for different

numbers of additional candidates (including zero). The third and final strategy can

be seen as a combination of the previous two. We start with a transfer operator

that is based on a solid-domain stiffness matrix. We set a maximum number of

extra candidates but do not apply αSA just yet. Once the solver needs more than

158

Table 3.15: Total solver iterations for different aggregation strategies and number of
extra candidates. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug 2-8, d) Lug 3-5, e) Crack
2-8, f) Crack 3-5, g) average.

K1 K+ K++

0 1 2 3 0 1 2 3 0 1 2 3

a) 557 288 624 624 612 527 675 674 557 478 478 478
b) 620 424 279 345 889 643 327 396 620 1059 1032 814
c) 1579 907 721 721 1568 1012 904 679 1579 1038 928 928
d) 799 747 709 730 781 790 760 650 799 664 720 838
e) 559 779 632 632 812 804 625 645 559 480 473 473
f) 669 1395 497 464 1141 789 509 597 669 625 432 431

g) 797 757 577 586 967 761 633 607 797 724 677 660

Table 3.16: Total CPU time (in minutes) for different aggregation strategies and
number of extra candidates. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug 2-8, d) Lug 3-
5, e) Crack 2-8, f) Crack 3-5, g) average.

K1 K+ K++

0 1 2 3 0 1 2 3 0 1 2 3

a) 13 18 36 36 23 55 156 118 14 24 24 26
b) 46 58 71 98 79 145 97 165 50 87 98 116
c) 68 86 121 123 339 628 1150 705 72 94 135 133
d) 76 113 153 200 109 271 549 574 84 100 129 216
e) 48 106 176 176 160 591 624 1258 49 82 140 124
f) 77 142 128 164 151 357 254 544 69 90 106 166

g) 55 87 114 133 144 341 472 561 56 80 105 130

20 iterations in a single Newton step, we add one candidate. Importantly, this is

an extra candidate for the near-kernel of the current stiffness matrix. We add a

further candidate in every subsequent Newton iteration in which the number of

solver iterations exceeds 20, until the maximum number of extra candidates has

been reached. This strategy will be referred to as “K++”. Note that strategies K1

and K++ are equivalent if the maximum number of candidates is zero.

The results for all strategies are listed side by side in Tables 3.15 and 3.16. Ta-

ble 3.15 shows the total number of solver iterations, while Table 3.16 shows the total

CPU time. As one would expect, adding more candidates reduces the number of

solver iterations in nearly all cases. This is true for all three strategies. On average,

159

aggregation strategy K1 with 2 candidates seems to achieve the lowest number of

solver iterations. The computational time, however, paints a different picture. An

increase in the number of candidates very consistently leads to an increase in overall

time. This is caused by the extra work required for each call to the αSA routines,

but also by the inflated size of the coarse-level operators brought about by a larger

near-kernel. For a more informed interpretation of the results, we can compare the

computational time taken up by aggregation and the preparation of the multigrid

V-cycle to the time required for the actual solver routines. The accumulated CPU

times for the multigrid setup and solver calls, respectively, are given in Tables A.5

and A.6 in Appendix A.2. They allow us to draw the following conclusions.

As soon as we either run the smoothed aggregation more than once or adaptively

add at least one candidate, more time is spent on the setup of the multigrid V-

cycle than on the actual call to the preconditioned Krylov solver. The additional

computational effort for any type of scheme that is adaptive, whether in the sense

that extra near-kernel candidates are computed or just in the sense of updating the

transfer operators throughout the optimization, appears cost-prohibitive. Discard-

ing these strategies completely might, however, be rash, since a parallel (or simply

more efficient) implementation might speed up the smoothed aggregation enough

to make them viable. It is therefore worthwhile to consider the solver CPU times

separately. Here, the situation is more nuanced. It appears that we achieve an

overall decrease in solver time only when the number of required solver iterations

drops enough to compensate for the increase in system size that is due to larger

coarse-level operators.

For the problems we have considered, the simplest strategy – K1 without any

additional near-kernel candidates – appears to be the most efficient. Adaptivity

does not warrant the extra computational effort and performing the aggregation

on any matrix other than the solid-domain stiffness matrix does not improve the

solver iteration count. However, it would be interesting to try all of the proposed

160

Table 3.17: Mesh dimensions and numerical results for large-scale unstructured mesh
scenarios. The reference row contains the average values for a range of large-scale
structured mesh problems.

iterations time [minutes]

problem m n Nwt solver total solver MG

Knee 3-8 6 326 656 19 285 371 89 1344 3719 1151 1820
Lug 3-6 1 481 280 4 579 380 101 821 647 195 241
Crack 3-6 1 745 216 5 353 725 103 2131 1050 425 393

reference – – 104 459 965 241 142

strategies in a SIMP context. Updating the transfer operators only every couple

of iterations could be an alternative to the hybrid GMG-AMG preconditioner used

in [96]. Furthermore, since even the standard SA method leads to a noticeable

reduction of solver iterations for the SIMP problem – something we do not observe

for the VTS problem – perhaps the αSA would lead to an even higher reduction,

one which is enough to offset the additional computational cost.

To finish the section, we present results for each of the three scenarios on a three-

dimensional mesh with more than a million elements, see Figures 3.13 to 3.15.

Table 3.17 shows the problem sizes, and the iterations and times required. For

comparison, we have also included an extra row which contains the average values

of a wide range of large-scale structured mesh problems – more specifically, the

problems Cantilever mx-my-mz-L, Bridge mx-my-mz-L and MBB mx-my-mz-L, for

mx = 2, 3, . . . , 8, my = mz = 2 and L = 7. We can see that, while the unstruc-

tured mesh scenarios require about the same number of Newton iterations, solving

the linear systems requires a lot more iterations. Not only that, but upon closer

inspection, we can see that the solver and multigrid setup make up a bigger part of

the overall CPU time. Judging from our experience profiling smaller scale problems

on unstructured meshes, this is due to the fact that SA transfer operators lead to

denser coarse-level systems than the GMG operators.

161

Figure 3.13: Knee 3-8 optimal design, visualized with different density thresholds
so that visible elements add up to c · V .

(a) c = 0.6 (b) c = 0.8

(c) c = 0.9

Figure 3.14: Lug 3-6 optimal design, visualized with different density thresholds so
that visible elements add up to c · V .

(a) c = 0.7 (b) c = 0.9

162

Figure 3.15: Crack 3-6 optimal design, visualized with different density thresholds
so that visible elements add up to c · V .

(a) c = 0.5 (b) c = 0.7

(c) c = 0.8

3.2.4 Detailed Comparison of MINRES and CG

In this section, we take a closer look at the performance of the CG and MINRES

solver. So far, we have only considered the number of iterations and CPU time

required over the course of an entire optimization, where the solver tolerance was

quite high at 10−2. A more common and rigorous numerical analysis should compare

the solvers on a single linear system and with a stricter tolerance. In order to further

back up our claim that both solvers, preconditioned by a geometric or algebraic

multigrid method, are (equally) efficient and optimal with respect to the mesh size,

we use them to solve distinct linear systems with a tolerance of 10−8. These systems

are taken from the respective last iterations of the PBM and IP algorithm applied

to the problem MBB mx-2-2-L, where mx = 2, 4, 6, 8 and L = 4, 5, 6. We test both

the GMG and AMG preconditioner. For the latter, we use the K1 setup strategy

and the same parameters as in Section 3.2.3.

Tables 3.18 and 3.19 list the numbers of iterations and CPU times required by the

163

Table 3.18: Iterations required by the MG preconditioned CG and MINRES solvers
for the final PBM system.

Problem dimensions GMG AMG

 mx-my-mz-L n + 1 CG MR CG MR

 2-2-2-4 14 417 77 71 86 84
 4-2-2-4 28 289 137 133 178 172
 6-2-2-4 42 161 124 119 165 164
 8-2-2-4 56 033 163 157 219 212
 2-2-2-5 106 657 347 313 377 349
 4-2-2-5 211 201 160 150 231 215
 6-2-2-5 315 745 124 118 168 162
 8-2-2-5 420 289 191 170 234 220
 2-2-2-6 819 521 75 68 105 98
 4-2-2-6 1 630 721 109 105 174 165
 6-2-2-6 2 441 921 123 103 195 183
 8-2-2-6 3 253 121 231 211 364 379

different solvers for the final PBM system, along with the system size1, for various

different design domain proportions and mesh resolutions. Tables 3.20 and 3.21

show the corresponding results for the systems taken from the final IP iteration.

We can see that the MINRES method requires fewer iterations than the CG method

in most cases, for both types of preconditioners. The difference is often negligible for

the systems stemming from the PBM method but more pronounced for IP systems.

The ratio between the CG and MR iteration numbers is roughly constant over all

different PBM systems and all IP systems, respectively, which indicates that the

two methods scale similarly with the size of the mesh.

Since the MINRES method has a slightly larger overhead than the CG method,

it usually takes a bit longer to run even when the number of iterations are slightly

lower. When the difference in the iteration number becomes larger, as seen in the

IP examples, this overhead is offset.

As expected, the geometric multigrid preconditioner generally performs better

than the algebraic multigrid, with just a single exception to this rule. However,

1Recall that SPBM ∈ R(n+1)×(n+1).

164

Table 3.19: CPU time (in seconds) required by the MG preconditioned CG and
MINRES solvers for the final PBM system. Time values are rounded and do not
include prolongation operator setup time.

Problem dimensions GMG AMG

 mx-my-mz-L n + 1 CG MR CG MR

 2-2-2-4 14 417 1 1 1 2
 4-2-2-4 28 289 4 4 6 6
 6-2-2-4 42 161 6 6 8 9
 8-2-2-4 56 033 9 10 13 14
 2-2-2-5 106 657 39 40 54 56
 4-2-2-5 211 201 37 40 71 73
 6-2-2-5 315 745 41 44 74 78
 8-2-2-5 420 289 81 83 144 148
 2-2-2-6 819 521 63 68 98 106
 4-2-2-6 1 630 721 187 209 339 366
 6-2-2-6 2 441 921 310 304 561 592
 8-2-2-6 3 253 121 835 885 1541 1760

Table 3.20: Iterations required by the MG preconditioned CG and MINRES solvers
for final IP system.

Problem dimensions GMG AMG

 mx-my-mz-L n + 1 CG MR CG MR

 2-2-2-4 14 417 366 335 452 407
 4-2-2-4 28 289 832 718 1089 972
 6-2-2-4 42 161 1383 1145 1875 1630
 8-2-2-4 56 033 1185 977 1685 1471
 2-2-2-5 106 657 192 154 204 159
 4-2-2-5 211 201 284 167 392 265
 6-2-2-5 315 745 329 272 534 479
 8-2-2-5 420 289 319 228 508 408
 2-2-2-6 819 521 103 82 90 61
 4-2-2-6 1 630 721 115 77 134 102
 6-2-2-6 2 441 921 185 127 295 119
 8-2-2-6 3 253 121 237 167 416 267

165

Table 3.21: CPU time (in seconds) required by the MG preconditioned CG and
MINRES solvers for the final IP system. Time values are rounded and do not
include prolongation operator setup time.

Problem dimensions GMG AMG

 mx-my-mz-L n + 1 CG MR CG MR

 2-2-2-4 14 417 5 5 6 6
 4-2-2-4 28 289 23 23 33 33
 6-2-2-4 42 161 62 59 88 86
 8-2-2-4 56 033 65 61 99 98
 2-2-2-5 106 657 24 22 37 31
 4-2-2-5 211 201 68 46 130 106
 6-2-2-5 315 745 110 105 264 261
 8-2-2-5 420 289 132 113 354 308
 2-2-2-6 819 521 103 96 106 84
 4-2-2-6 1 630 721 213 167 299 259
 6-2-2-6 2 441 921 488 390 938 384
 8-2-2-6 3 253 121 896 735 1877 1322

the AMG appears to scale the same as the GMG. In most cases, it leads to roughly

1.2−1.8 times as many iterations as the GMG preconditioner. The ratio for the CPU

times is a bit larger, sometimes surpassing 2. As mentioned in previous sections,

this is probably due to a higher operator complexity on coarse grid levels and thus

a higher computational cost per solver iteration.

There does not appear to be a relationship between the problem dimension and

the number of solver iterations, which points to an optimality with respect to the

problem size of both the GMG and AMG preconditioner. One should of course be

careful drawing such conclusions based on comparisons of system matrices taken

from different optimization problems. The distribution of the eigenvalues of the

system matrices (3.9) and (3.25) depends on the primal and dual variables as well

as the barrier/penalty parameters. Their values in the final optimization iteration

depend on the specific optimization problem and various algorithm parameters and

thus they are nigh impossible to control or predict with any kind of accuracy. We

can still gain some limited insight into the spectral properties of the system matrices,

by considering the condition numbers cond(S) = λn+1/λ1 of the respective PBM and

166

IP system matrices. Using Matlab’s eigs method for sparse matrix eigenvalues we

have computed these for the cases with L = 4, 5 mesh levels1. The results are shown

in Table 3.22. As many of the matrices were ill-conditioned, the precision of the

results might vary but should be sufficient for a qualitative analysis.

From observations made in smaller test problems, we know that the largest eigen-

value is typically an outlier which corresponds closely to the value of the lower right

(scalar) diagonal block of the matrix. The remaining eigenvalues are generally scat-

tered more homogeneously over the range of the spectrum. We therefore also include

the ratio λn/λ1 of the second largest to the lowest eigenvalue.

Table 3.22: Approximate condition numbers for the final PBM and IP system ma-
trices.

4-2-2-4 3.66 × 1017 2.17 × 1013 2.70 × 1016 1.02 × 1012
6-2-2-4 2.31 × 1017 1.58 × 1013 1.75 × 1017 6.88 × 1012
8-2-2-4 2.59 × 1016 2.14 × 1012 2.09 × 1016 1.38 × 1012

2-2-2-5 9.21 × 1020 1.19 × 1015 1.07 × 1017 9.27 × 1010
4-2-2-5 8.50 × 1020 9.58 × 1014 1.12 × 1017 7.36 × 1010
6-2-2-5 3.32 × 1020 4.37 × 1014 4.04 × 1017 2.73 × 1011
8-2-2-5 4.80 × 1020 7.74 × 1014 3.64 × 1016 4.99 × 1010

The condition number (at least when discounting the largest eigenvalue) for one

type of method and the same mesh resolution varies by up to two orders of mag-

nitude. When comparing the values for different mesh resolutions, the variation is

even higher. Still, there is no obvious correlation between these condition numbers

and the number of solver iterations. This is further evidence that our multigrid

preconditioners are spectrally equivalent to the system matrices encountered in the

optimization problems. Interestingly, the IP system matrices generally have lower

condition numbers than the PBM matrices; they even appear to grow more rapidly
1We have not included any results for L = 6 due to time- and memory-limitations. The eigenvalue
computation for the two largest matrices included in Table 3.22 required over 128 GB RAM and
around 13 and 15 hours on BlueBEAR [24], respectively.

 PBM IP

mx-my-mz-L λn+1/λ1 λn/λ1 λn+1/λ1 λn/λ1

2-2-2-4 2.00 × 1018 1.38 × 1014 5.11 × 1014 3.30 × 1010

167

with increasing mesh resolution in the latter case. Still, both Krylov solvers perform

better on the PBM systems. A possible explanation could be that the PBM method

leads to a more favourable clustering of eigenvalues in the system matrices, although

this is only a speculation at this point.

One could easily devote more computational time and many more pages to the

analysis of our Krylov solvers’ performance and its relation to the size of the op-

timization problem, the spectrum of the system matrices and various algorithm

parameters. The objective of this section was only to provide some evidence for

the claim that our multigrid preconditioners are spectrally equivalent. Indeed, if

our preconditioners were sub-optimal, leading in general to larger numbers of solver

iterations for larger problem sizes, this trend would in all likelihood have been re-

vealed in the test cases we have presented here. We can therefore say with some

confidence that our solver setup seems to be optimal with respect to the resolution

of the FE mesh used in the optimization problem.

3.3 A Note on Density Penalization

It has been very clearly demonstrated that problem (2.48) can be solved far more

efficiently by both the IP and PBM method proposed in this thesis than by the OC

method. From an optimization point of view, this is not surprising, as the latter is

a first order method, while the former also use second order derivative information.

Other first order methods, such as the MMA – which is even more prevalent in

topology optimization than the OC method – can be expected to fare equally poorly

in a comparison. However, we have so far only considered the VTS formulation,

which often produces optimal designs with large grey areas. It would be negligent

not to address the limitations of our approach with regards to the SIMP formulation,

as it is the standard in topology optimization and much more common than the

VTS formulation. Designs based on SIMP are more “black and white” and thus

more viable for manufacturing. This is achieved by a penalization of intermediate

168

i

w

m

density values, such that the material cost of a grey element is disproportionately

larger than its stiffness. A classic example of this is the polynomial penalization

0 ≤ ρ 1→ K(ρ) =

ρq Ki + K0 ∈ Rn×n , (3.30)
i=1

where q > 2, see for example [22]. The matrix K0 ensures K(ρ) 0 and corresponds

to a lower bound Young modulus of, e.g., Emin = 10−9. More recently, the relaxed

Heaviside projection [126] has gained popularity as a penalization function, see for

example [50]. For simplicity’s sake, we will stick with (3.30) for the following con-

siderations. It is well known that the SIMP approach on its own leads to so-called

“checkerboarding” [43], a numerical artefact where an alternating pattern of void

and solid elements yields a large overall stiffness in the FE analysis. This can be

prevented, for instance, by a filtering of the design variables [35, 26], leading to a

redefinition of the physical densities as

ρ̃i :=

 j

wij ρj
, i = 1, . . . , m. (3.31)

j ij

Here, wij = max{0, rW − dist(xi, xj)}, where xi is the geometric centre of the ith

element, rW > 0 is the filter radius and dist is some distance measure. We will use

dist(·) = /I · /I1, for ease of implementation. Since (3.31) is a linear expression in ρ,

we can write it as ρ̃ = Wρ, where W = [wij]i,j=1,...,m. Together with (3.30), we thus

obtain the SIMP version of the minimum compliance problem:

min

ρ∈Rm,u∈Rn

1
f Tu

2

s.t. K(Wρ)u = f ,

(Wρ)T a = V ,

ρ ≤ ρ ≤ ρ̄ , i = 1, . . . , m .

(3.32)

For a typical example of the kind of design one obtains for this problem, see Fig-

ure 3.16.

¯

169

i

i

Figure 3.16: MBB 8-2-0-6 solution for the SIMP formulation with a filter radius of
rW = 2.4, cf. Figure 3.4.

The first problem that arises when we attempt to apply the algorithms we used

for (2.48) to (3.32) is that the latter is not a convex problem. Our PBM method

previously relied on the existence of a dual problem in a closed form which satisfied

strict duality. While it is possible in theory to apply the PBM approach to (3.32), we

run into complications due to the fact that it does not guarantee strict feasibility of

the iterates for ρ. The definition of the stiffness mapping (3.30) has to be extended

to cover the negative real numbers, and it needs to be done in such a way that

K(ρ) 0 even if ρi < 0 for some i. We can achieve this by replacing ρq with

max{0, ρq}, which is twice continuously differentiable for q ≥ 3. While this satisfies

K(ρ) 0 for all ρ ∈ Rm, the resulting algorithm struggles to converge in practice.

The cause of this seems to be that negative densities effectively raise the volume

limit. At the same time, density values larger than the upper bound lead to an

improved local stiffness. As a consequence, the algorithm can stagnate in local

minima of the augmented Lagrangian that lie outside the feasible set of (3.32). It

is possible that the iterates will be pushed closer to or into the feasible set once the

penalty parameters have become small enough to flatten out these local minima,

but this kind of convergence behaviour is anything but ideal.

The IP method, on the other hand, naturally maintains strict feasibility through-

out all iterations. And while a modified version of Algorithm 4 can indeed solve

(3.32), it does so very slowly. The reason for this is a denser system matrix caused

by the density filtering. Regard once more the matrices (3.8) and (3.9) which we

170

1 m

0 0 aTW IP

ρ 2

obtained in the derivation of our IP algorithm. If we follow the same approach for

problem (3.32), we eventually arrive at the system matrix

K(Wρ) 0 B (u)W

0 0 aTW
WTB (u)T WTa −DIP + ∇2 (1 uTKu

 , (3.33)

where B (u) := q

ρ̃q−1K1u, . . . , ρ̃q−1Kmu

]
. This matrix closely resembles (3.8), but

there are two important differences. The first one is that, instead of just the matrix

B(u), which has the same sparsity structure as B(u) in (3.8), we now have a “filtered”

version of it in the off-diagonal blocks. The second difference is the bottom right

block, which is no longer a negative definite diagonal matrix. Since this was crucial

to our original approach, as it allowed us to easily invert the block and maintain a

certain sparsity structure, we will drop the second derivative of the energy term1.

This is essentially a local convexification of the problem. We can now proceed as in

Section 3.1.1, taking the Schur complement. We obtain a matrix that is similar to

the IP system matrix (3.9):

K(ρ) 0

l

+

B (u)W

l

D−1

WTB (u)T WTa

. (3.34)

Because of the filter matrix that appears in the upper left block of this matrix, its

sparsity structure is not the same as that of the stiffness matrix. The “blurring”

of the densities also creates a blurring of the sensitivities. This is illustrated in

Figure 3.17.

To give an example of the impact which the compromised sparsity of the system

matrix has on the IP method’s performance, let us consider problem MBB 8-2-0-6.

Using a filter radius of rW = 2.4, we solved problem (3.32) with the OC method

as well as the IP method. Running both on a 2015 MacBook Pro with a 2.8 GHz

quad-core processor and 16 GB of memory, the average time required to solve a

1This approach was also used in [80].

171

Figure 3.17: Sparsity structure of the IP system matrices when using the SIMP
formulation (rW = 2), for a three-dimensional uniform FE mesh with 512 elements;
cf. Figure 3.1.

(a) (3.33) (b) (3.34)

linear system in the OC method was 1.47 · 10−2 seconds, while for the IP method it

was 7.2 · 10−2. If we take into account that one role of the filter radius is to set a

lower bound for the width of the members in the final design, it is easy to see that

the difference in computational efficiency will only be exacerbated for large-scale

problems: If we want to maintain the same minimal member width on FE meshes

of increasing resolution the number of neighbouring elements within the filter radius

increases. This will lead to more coupling of DOFs, which is reflected by the off-

diagonal terms in the system matrix. Considering three-dimensional problems – and

thus three-dimensional neighbourhoods – further adds to this problem.

The above results are consistent with observations made by Rojas-Labanda and

Stolpe in [109], where an IP method using Hessian data performed very well in terms

of the precision of the results and the number of iterations, but was not competitive

in terms of CPU time. Among the algorithms tested in that paper, the OC method

turned out to be one of the most efficient for the minimum compliance problem.

172

CHAPTER 4

CONCLUSIONS

In this thesis, we proposed an interior point (IP) method and a penalty-barrier

multiplier (PBM)/nonlinear rescaling method for variable thickness sheet (VTS)

compliance minimization. With the primary focus on large-scale optimization and

the use of multigrid-preconditioned Krylov solvers, we performed a reduction of the

Newton system matrix in order to use standard multigrid transfer operators. While

both optimization methods clearly outperform the well-known optimality criteria

(OC) method on medium-scale problems, requiring fewer iterations and less CPU

time, the PBM method is much more robust and efficient than the IP method for

large-scale problems with more than a million finite elements. Furthermore, since

it solves the dual of the VTS problem, unilateral contact constraints can be easily

integrated, although this is a feature of the problem formulation rather than the

algorithm.

Regarding an extension to the SIMP formulation, the PBM methodology has sev-

eral inherent limitations which make it unviable. While the IP algorithm can solve

the SIMP-based compliance minimization problem with just a few adjustments to

our approach, it is no longer competitive due to the compromised sparsity of the

system matrices. This confirms previous results in the literature. One potential way

to reduce the computational cost of this approach could be to replace the precon-

173

ditioner. Instead of using a multigrid approximation of the inverse of the system

matrix S, one could use a multigrid approximation of the inverse of a different

matrix, say S̃, which is spectrally equivalent but has a more tractable sparsity struc-

ture. In our implementation, a considerable part of the total CPU time goes into the

construction of the system matrix, on the one hand, and into the setup of and sub-

sequent matrix-vector products involving the coarse-level operators, on the other.

All of these processes become more costly as the sparsity of S decreases. Using a

sparser S̃ would not only reduce the complexity of the multigrid method, but would

eliminate the necessity to explicitly construct the matrix S: Rather than performing

a series of matrix-matrix multiplications, one could then replace the operation Sv,

where v ∈ Rn+1, by a series of matrix-vector multiplications in each Krylov solver

iteration. This by itself could be more efficient, although by how much would need

to be tested. A possible next step would be to use a matrix-free solver on a GPU, see

for example [116], which could remove the necessity of assembling even the stiffness

matrix. This would however considerably complicate the implementation, in partic-

ular since the assembly of the system matrix S is more involved than that of only

the stiffness matrix, which is usually the only one required in topology optimization

algorithms. The success of the whole approach further hinges on the choice of S̃, for

which we can currently make no informed suggestions.

Building on the promising results of our approach using a geometric multigrid

(GMG) preconditioner, we have replaced it by the smoothed aggregation (SA)

method, a type of algebraic multigrid (AMG) technique. In contrast to observations

made for SIMP-based problems elsewhere in the literature, the AMG preconditioner

does not improve the performance of the Krylov solver on uniform structured meshes

when GMG can be used. This is presumably due to a less pronounced local material

anisotropy in the VTS solution. We have therefore concentrated on unstructured

mesh problems, where GMG is not applicable. Rather than applying AMG as a

black box preconditioner in each solver iteration, we have proposed and tested sev-

eral different setup strategies based on reusing transfer operators. We have found

174

the most efficient strategy to be that which constructs transfer operators by per-

forming SA only once on a solid-design stiffness matrix and uses these operators

throughout the entire optimization. Expanding the range of the prolongation op-

erators by means of adaptive smoothed aggregation lowers the overall number of

solver iterations, but is on the whole less time-efficient due to the larger size of the

coarse-level system matrices.

Any of the proposed SA setup strategies could be worthwhile applying to prob-

lems based on the SIMP formulation. We suggest a study similar to that in [96],

using an established topology optimization algorithm such as the OC method or the

method of moving asymptotes. However, rather than just comparing out-of-the-box

GMG and AMG techniques, we conjecture that reusing transfer operators for sev-

eral optimization iterations could decrease the oftentimes prohibitive overhead of

the AMG while still providing a considerable reduction in solver iterations. Such

an approach might therefore prove to be a better compromise than the GMG-AMG

hybrid used in [96] or [3]. Furthermore, adaptive schemes should also not be dis-

counted. The AMG’s capability to handle strong material anisotropy appears to

have a bigger impact when using an AMG preconditioner for systems arising in

SIMP-based problems than it does in the VTS case. This important property can

be reinforced by extending the range of the transfer operators using the adaptive

smoothed aggregation method. Perhaps this could improve the AMG enough to

justify the increased overhead that comes with larger coarse-level system sizes. Fi-

nally, instead of only reusing the transfer operators, we could go one step further

and reuse the coarse-grid operators, as has previously been done in [8]. Since the

construction of the coarse-level system matrices contributes a large portion of the

computational work in each iteration, such an approach could considerably reduce

the computation time. However, we expect that coarse-grid operators would need

to be updated much more frequently than the transfer operators and this would

warrant a detailed study.

175

BIBLIOGRAPHY

[1] N. Aage, E. Andreassen, and B. S. Lazarov. “Topology optimization using

PETSc: an easy-to-use, fully parallel, open source topology optimization

framework”. In: Structural and Multidisciplinary Optimization 51.3 (Aug.

2014), pp. 565–572.

[2] N. Aage and B. S. Lazarov. “Parallel framework for topology optimization

using the method of moving asymptotes”. In: Structural and Multidisciplinary

Optimization 47.4 (2013), pp. 493–505.

[3] N. Aage et al. “Giga-voxel computational morphogenesis for structural de-

sign”. In: Nature 550.7674 (Oct. 2017), pp. 84–86.

[4] W. Achtziger. “Optimierung von einfach und mehrfach belasteten Stabw-

erken”. PhD thesis. Universität Bayreuth, 1993.

[5] W. Achtziger. “Multiple-load truss topology and sizing optimization: some

properties of minimax compliance”. In: Journal of Optimization Theory and

Applications 98.2 (1998), pp. 255–280.

[6] W. Achtziger et al. “Equivalent displacement based formulations for maxi-

mum strength truss topology design”. In: IMPACT of Computing in Science

and Engineering 4.4 (1992), pp. 315–345.

[7] G. Allaire, F. Jouve, and A.-M. Toader. “Structural optimization using sensi-

tivity analysis and a level-set method”. In: Journal of Computational Physics

194 (2004), pp. 363–393.

176

[8] O. Amir. “Revisiting approximate reanalysis in topology optimization: on the

advantages of recycled preconditioning in a minimum weight procedure”. In:

Structural and Multidisciplinary Optimization 51.1 (2015), pp. 41–57.

[9] O. Amir, N. Aage, and B. S. Lazarov. “On multigrid-CG for efficient topology

optimization”. In: Structural and Multidisciplinary Optimization 49.5 (May

2014), pp. 815–829.

[10] O. Amir, M. P. Bendsøe, and O. Sigmund. “Approximate reanalysis in topol-

ogy optimization”. In: International Journal for Numerical Methods in Engi-

neering 78.12 (2009), pp. 1474–1491.

[11] O. Amir, M. Stolpe, and O. Sigmund. “Efficient use of iterative solvers in

nested topology optimization”. In: Structural and Multidisciplinary Optimiza-

tion 42.1 (2010), pp. 55–72.

[12] E. Andreassen et al. “Efficient topology optimization in MATLAB using 88

lines of code”. In: Structural and Multidisciplinary Optimization 43.1 (2011),

pp. 1–16.

[13] A. El-Bakry et al. “On the formulation and theory of theNewtoninterior-point

method for nonlinear programming”. In: Journal of Optimization Theory and

Applications 89.3 (1996), pp. 507–541.

[14] S. Bellavia. “Inexact interior-point method”. In: Journal of Optimization The-

ory and Applications 96.1 (1998), pp. 109–121.

[15] A. Ben-Tal, B. Yuzefovich, and M. Zibulevsky. “Penalty-barrier multipliers

methods for minimax and constrained smooth convex optimization”. In: Op-

timization Laboratory, Technion, Israel. Research Report (1992), pp. 9–92.

[16] A. Ben-Tal and M. P. Bendsøe. “A new method for optimal truss topology

design”. In: SIAM Journal on Optimization 3.2 (1993), pp. 322–358.

[17] A. Ben-Tal and M. Zibulevsky. “Penalty/barrier multiplier methods for con-

vex programming problems”. In: SIAM Journal on Optimization 7.2 (1997),

pp. 347–366.

177

[18] M. P. Bendsøe. “Optimal shape design as a material distribution problem”.

In: Structural Optimization 1.4 (1989), pp. 193–202.

[19] M. P. Bendsøe and O. Sigmund. “Material interpolation schemes in topology

optimization”. In: Archive of Applied Mechanics 69.9 (1999), pp. 635–654.

[20] M. P. Bendsøe, A. Díaz, and N. Kikuchi. “Topology and generalized layout

optimization of elastic structures”. In: Topology design of structures. Springer,

1993, pp. 159–205.

[21] M. P. Bendsøe and N. Kikuchi. “Generating optimal topologies in structural

design using a homogenization method”. In: Computer Methods in Applied

Mechanics and Engineering 71.2 (1988), pp. 197–224.

[22] M. P. Bendsøe and O. Sigmund. Topology optimization: theory, methods, and

applications. Springer Science & Business Media, 2013.

[23] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods.

Academic Press, 2014.

[24] BlueBEAR High Performance Computing service. July 2021. url: http :

//www.birmingham.ac.uk/bear.

[25] T. Borrvall and J. Petersson. “Large-scale topology optimization in 3D us-

ing parallel computing”. In: Computer Methods in Applied Mechanics and

Engineering 190.46 (2001), pp. 6201–6229.

[26] B. Bourdin. “Filters in topology optimization”. In: International Journal for

Numerical Methods in Engineering 50.9 (2001), pp. 2143–2158.

[27] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge University

Press, 2004.

[28] D. Brackett, I. Ashcroft, and R. Hague. “Topology optimization for additive

manufacturing”. In: Proceedings of the solid freeform fabrication symposium,

Austin, TX. Vol. 1. 2011, pp. 348–362.

[29] A. Brandt. “Multi-level adaptive solutions to boundary-value problems”. In:

Mathematics of Computation 31.138 (1977), pp. 333–390.

http://www.birmingham.ac.uk/bear
http://www.birmingham.ac.uk/bear

178

[30] A. Brandt. “Algebraic multigrid theory: the symmetric case”. In: Applied

Mathematics and Computation 19.1-4 (1986), pp. 23–56.

[31] M. G. Breitfeld and D. F. Shanno. “Computational experience with penalty-

barrier methods for nonlinear programming”. In: Annals of Operations Re-

search 62.1 (1996), pp. 439–463.

[32] M. Brezina et al. “Adaptive smoothed aggregation (αSA) multigrid”. In:

SIAM Review 47.2 (2005), pp. 317–346.

[33] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial (2Nd

Ed.) Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,

2000.

[34] A. Brune and M. Kočvara. “On barrier and modified barrier multigrid meth-

ods for three-dimensional topology optimization”. In: SIAM Journal on Sci-

entific Computing 42.1 (2020), A28–A53.

[35] T. E. Bruns and D. A. Tortorelli. “Topology optimization of non-linear elastic

structures and compliant mechanisms”. In: Computer Methods in Applied

Mechanics and Engineering 190.26-27 (2001), pp. 3443–3459.

[36] S. Cafieri et al. “Stopping criteria for inner iterations in inexact potential

reduction methods: a computational study”. In: Computational Optimization

and Applications 36.2 (2007), pp. 165–193.

[37] M. Cavazzuti et al. “High performance automotive chassis design: a topology

optimization based approach”. In: Structural and Multidisciplinary Optimiza-

tion 44.1 (2011), pp. 45–56.

[38] J. Cea and K. Malanowski. “An example of a max-min problem in partial

differential equations”. In: SIAM Journal on Control 8.3 (1970), pp. 305–316.

[39] V. Challis, A. Roberts, and J. Grotowski. “High resolution topology opti-

mization using graphics processing units (GPUs)”. In: Structural and Multi-

disciplinary Optimization 49 (2014), pp. 315–325.

[40] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

179

[41] A. Clausen. “Topology optimization for additive manufacturing”. PhD thesis.

Department of Mechanical Engineering, Technical University of Denmark,

2016.

[42] N. P. van Dijk et al. “Level-set methods for structural topology optimiza-

tion: a review”. In: Structural and Multidisciplinary Optimization 48.3 (2013),

pp. 437–472.

[43] A. Díaz and O. Sigmund. “Checkerboard patterns in layout optimization”.

In: Structural Optimization 10.1 (1995), pp. 40–45.

[44] G. Duvaut and J.-L. Lions. Les inéquations en mécanique et en physique.

Dunod, Paris, 1972.

[45] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast it-

erative solvers: with applications in incompressible fluid dynamics. Numerical

Mathematics and Scientific Computation, 2014.

[46] A. Evgrafov et al. “Large-scale parallel topology optimization using a dual-

primal substructuring solver”. In: Structural and Multidisciplinary Optimiza-

tion 36.4 (2008), pp. 329–345.

[47] R. D. Falgout. “An introduction to algebraic multigrid”. In: IEEE Annals of

the History of Computing 8.06 (2006), pp. 24–33.

[48] E. A. Fancello. “Topology optimization for minimum mass design considering

local failure constraints and contact boundary conditions”. In: Structural and

Multidisciplinary Optimization 32.3 (2006), pp. 229–240.

[49] F. Fernandez et al. “Topology optimization of multiple deformable bodies in

contact with large deformations”. In: Computer Methods in Applied Mechan-

ics and Engineering 371 (2020), p. 113288.

[50] F. Ferrari and O. Sigmund. “A new generation 99 line Matlab code for com-

pliance topology optimization and its extension to 3D”. In: Structural and

Multidisciplinary Optimization 62.4 (2020), pp. 2211–2228.

[51] A. V. Fiacco and G. P. McCormick. Nonlinear programming: sequential un-

constrained minimization techniques. SIAM, 1990.

180

[52] A. Forsgren, P. E. Gill, and M. H. Wright. “Interior methods for nonlinear

optimization”. In: SIAM Review 44.4 (2002), pp. 525–597.

[53] R. W. Freund and F. Jarre. “A QMR-based interior-point algorithm for

solving linear programs”. In: Mathematical Programming 76.1 (Jan. 1997),

pp. 183–210.

[54] C. Geuzaine and J.-F. Remacle. “Gmsh: a 3-D finite element mesh generator

with built-in pre-and post-processing facilities”. In: International Journal for

Numerical Methods in Engineering 79.11 (2009), pp. 1309–1331.

[55] P. E. Gill et al. “On projected Newton barrier methods for linear program-

ming and an equivalence to Karmarkar’s projective method”. In: Mathemat-

ical Programming 36.2 (1986), pp. 183–209.

[56] D. Goldfarb et al. “A modified barrier-augmented Lagrangian method for

constrained minimization”. In: Computational optimization and applications

14.1 (1999), pp. 55–74.

[57] N. I. Gould et al. “Superlinear convergence of primal-dual interior point algo-

rithms for nonlinear programming”. In: SIAM Journal on Optimization 11.4

(2001), pp. 974–1002.

[58] A. Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

[59] I. Griva and R. A. Polyak. “Primal–dual nonlinear rescaling method with

dynamic scaling parameter update”. In: Mathematical Programming 106.2

(2006), pp. 237–259.

[60] I. Griva and R. A. Polyak. “1.5-q-superlinear convergence of an exterior-point

method for constrained optimization”. In: Journal of Global Optimization

40.4 (2008), pp. 679–695.

[61] W. Hackbusch. Multi-grid methods and applications. Springer, 1985.

[62] R. T. Haftka and Z. Gürdal. Elements of structural optimization. Vol. 11.

Springer Science & Business Media, 2012.

[63] W. Hemp and H. Chan. Optimum structures. Tech. rep. Cranfield University,

1965.

181

[64] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving

linear systems”. In: Journal of Research of the National Bureau of Standards

49 (1952), pp. 409–436.

[65] D. Hilding, A. Klarbring, and J. Petersson. “Optimization of structures in

unilateral contact”. In: Applied Mechanics Reviews 52.4 (1999), pp. 139–160.

[66] M. Hinze and A. Rösch. “Discretization of optimal control problems”. In:

Constrained optimization and optimal control for partial differential equa-

tions. Springer, 2012, pp. 391–430.

[67] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization

algorithms I. Springer Berlin, 1993.

[68] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis.

Springer Science & Business Media, 2004.

[69] I. Hlavácek et al. Solution of variational inequalities in mechanics. Vol. 66.

Springer Science & Business Media, 2012.

[70] R. H. W. Hoppe, S. I. Petrova, and V. Schulz. “Primal-dual newton-type

interior-point method for topology optimization”. In: Journal of Optimization

Theory and Applications 114.3 (2002), pp. 545–571.

[71] F. Jarre, M. Kočvara, and J. Zowe. “Optimal truss design by interior-point

methods”. In: SIAM Journal on Optimization 8.4 (1998), pp. 1084–1107.

[72] N. Karmarkar. “A new polynomial-time algorithm for linear programming”.

In: Proceedings of the sixteenth annual ACM symposium on theory of com-

puting. 1984, pp. 302–311.

[73] N. Kikuchi and J. T. Oden. Contact problems in elasticity: a study of varia-

tional inequalities and finite element methods. SIAM, 1988.

[74] U. Kirsch, M. Kočvara, and J. Zowe. “Accurate reanalysis of structures by

a preconditioned conjugate gradient method”. In: International Journal for

Numerical Methods in Engineering 55.2 (2002), pp. 233–251.

182

[75] A. Klarbring, J. Petersson, and M. Rönnqvist. “Truss topology optimization

including unilateral contact”. In: Journal of Optimization Theory and Appli-

cations 87.1 (1995), pp. 1–31.

[76] M. Kočvara and M. Stingl. “PENNON: a code for convex nonlinear and

semidefinite programming”. In: Optimization Methods and Software 18.3 (2003),

pp. 317–333.

[77] M. Kočvara and M. Stingl. “On the solution of large-scale SDP problems

by the modified barrier method using iterative solvers”. In: Mathematical

Programming 109.2–3 (2007), pp. 413–444.

[78] M. Kočvara and M. Stingl. “Truss topology design by conic linear optimiza-

tion”. In: Advances and Trends in Optimization with Engineering Applica-

tions. Ed. by T. Terlaky, M. Anjos, and S. Ahmed. SIAM, 2017. Chap. 11.

[79] M. Kočvara, M. Zibulevsky, and J. Zowe. “Mechanical design problems with

unilateral contact”. In: ESAIM: Mathematical Modelling and Numerical Anal-

ysis 32.3 (1998), pp. 255–281.

[80] M. Kočvara and S. Mohammed. “Primal-dual interior point multigrid method

for topology optimization”. In: SIAM Journal on Scientific Computing 38.5

(2016), B685–B709.

[81] M. Kružík and T. Roubíček. Mathematical methods in continuum mechanics

of solids. Springer, 2019.

[82] M. Lawry and K. Maute. “Level set shape and topology optimization of finite

strain bilateral contact problems”. In: International Journal for Numerical

Methods in Engineering 113.8 (2018), pp. 1340–1369.

[83] B. S. Lazarov. “Topology optimization using multiscale finite element method

for high-contrast media”. In: International Conference on Large-Scale Scien-

tific Computing. Ed. by I. Lirkov, S. Margenov, and J. Waśniewski. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2014, pp. 339–346.

[84] G. Leugering et al. Constrained optimization and optimal control for partial

differential equations. Vol. 160. Springer Science & Business Media, 2012.

183

[85] B. Maar and V. Schulz. “Interior point multigrid methods for topology opti-

mization”. In: Structural and Multidisciplinary Optimization 19.3 (May 2000),

pp. 214–224.

[86] N. D. Mankame and G. Ananthasuresh. “Topology optimization for synthesis

of contact-aided compliant mechanisms using regularized contact modeling”.

In: Computers & structures 82.15-16 (2004), pp. 1267–1290.

[87] A. G. M. Michell. “The limits of economy of material in frame-structures”.

In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science 8.47 (1904), pp. 589–597.

[88] S. G. Nash, R. A. Polyak, and A. Sofer. “A numerical comparison of barrier

and modified barrier methods for large-scale bound-constrained optimiza-

tion”. In: Large Scale Optimization. Springer, 1994, pp. 319–338.

[89] J. Necas and I. Hlavácek. Mathematical theory of elastic and elasto-plastic

bodies: an introduction. Elsevier, 2017.

[90] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in con-

vex programming. SIAM, 1994.

[91] T. H. Nguyen et al. “A computational paradigm for multiresolution topology

optimization (MTOP)”. In: Structural and Multidisciplinary Optimization 41

(2010), pp. 525–539.

[92] T. H. Nguyen et al. “Improving multiresolution topology optimization via

multiple discretizations”. In: International Journal for Numerical Methods in

Engineering 92 (2012), pp. 507–530.

[93] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Busi-

ness Media, 2006.

[94] J. T. Oden and J. N. Reddy. An introduction to the mathematical theory of

finite elements. Courier Corporation, 2012.

[95] C. C. Paige and M. A. Saunders. “Solution of sparse indefinite systems of lin-

ear equations”. In: SIAM Journal on Numerical Analysis 12.4 (1975), pp. 617–

629.

184

[96] D. Peetz and A. Elbanna. “On the use of multigrid preconditioners for topol-

ogy optimization”. In: Structural and Multidisciplinary Optimization 63.2

(2021), pp. 835–853.

[97] J. Petersson. “On stiffness maximization of variable thickness sheet with uni-

lateral contact”. In: Quarterly of Applied Mathematics 54.3 (1996), pp. 541–

550.

[98] J. Petersson. “A finite element analysis of optimal variable thickness sheets”.

In: SIAM Journal on Numerical Analysis 36.6 (1999), pp. 1759–1778.

[99] J. Petersson and M. Patriksson. “Topology optimization of sheets in contact

by a subgradient method”. In: International Journal for Numerical Methods

in Engineering 40.7 (1997), pp. 1295–1321.

[100] R. A. Polyak. “Modified barrier functions: theory and methods”. In: Mathe-

matical Programming 54.1-3 (1992), pp. 177–222.

[101] R. A. Polyak. “Primal–dual exterior point method for convex optimization”.

In: Optimisation Methods and Software 23.1 (2008), pp. 141–160.

[102] R. A. Polyak. “On the local quadratic convergence of the primal–dual aug-

mented lagrangian method”. In: Optimization Methods and Software 24.3

(2009), pp. 369–379.

[103] R. A. Polyak and M. Teboulle. “Nonlinear rescaling and proximal-like meth-

ods in convex optimization”. In: Mathematical Programming 76.2 (Feb. 1997),

pp. 265–284.

[104] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics. Vol. 37.

Springer Science & Business Media, 2010.

[105] R. T. Rockafellar. “The multiplier method of Hestenes and Powell applied to

convex programming”. In: Journal of Optimization Theory and applications

12.6 (1973), pp. 555–562.

[106] R. T. Rockafellar. “Augmented Lagrange multiplier functions and duality in

nonconvex programming”. In: SIAM Journal on Control 12.2 (1974), pp. 268–

285.

185

[107] R. T. Rockafellar. “Augmented Lagrangians and applications of the proxi-

mal point algorithm in convex programming”. In: Mathematics of Operations

Research 1.2 (1976), pp. 97–116.

[108] R. T. Rockafellar. Convex analysis. Vol. 28. Princeton University Press, 1970.

[109] S. Rojas-Labanda and M. Stolpe. “Benchmarking optimization solvers for

structural topology optimization”. In: Structural and Multidisciplinary Opti-

mization 52.3 (2015), pp. 527–547.

[110] M. Rossow and J. Taylor. “A finite element method for the optimal design of

variable thickness sheets”. In: AIAA Journal 11.11 (1973), pp. 1566–1569.

[111] G. I. N. Rozvany and M. Zhou. “The COC algorithm, part I: cross-section

optimization or sizing”. In: Computer Methods in Applied Mechanics and

Engineering 89.1-3 (1991), pp. 281–308.

[112] G. I. N. Rozvany and T. Lewiński. Topology optimization in structural and

continuum mechanics. Springer Vienna, 2014.

[113] J. W. Ruge and K. Stüben. “Algebraic multigrid”. In: Multigrid Methods.

SIAM, 1987, pp. 73–130.

[114] Y. Saad. Iterative methods for sparse linear systems. Vol. 82. SIAM, 2003.

[115] Y. Saad. “Iterative methods for linear systems of equations: a brief historical

journey”. In: 75 Years of Mathematics of Computation. Vol. 754. Contempo-

rary Mathematics, 2020.

[116] S. Schmidt and V. Schulz. “A 2589 line topology optimization code written

for the graphics card”. In: Computing and Visualization in Science 14.6 (Aug.

2011), pp. 249–256.

[117] V. Schulz and G. Wittum. “Transforming smoothers for PDE constrained

optimization problems”. In: Computing and Visualization in Science 11.4

(2008), pp. 207–219.

[118] J. R. Shewchuk. An introduction to the Conjugate Gradient method without

the agonizing pain. Tech. rep. Pittsburgh, PA, USA, 1994.

186

[119] R. Stainko. “Advanced Multilevel Techniques Advanced Multilevel Techniques

to Topology Optimization”. PhD thesis. Johannes Kepler Universität Linz,

2006.

[120] N. Strömberg and A. Klarbring. “Topology optimization of structures in

unilateral contact”. In: Structural and Multidisciplinary Optimization 41.1

(2010), pp. 57–64.

[121] K. Svanberg. “A class of globally convergent optimization methods based on

conservative convex separable approximations”. In: SIAM Journal on Opti-

mization 12.2 (2002), pp. 555–573.

[122] M. A. S. de Troya et al. Another source of mesh dependence in topology

optimization. 2021. arXiv: 2106.12098 [math.OC].

[123] P. Vaněk, M. Brezina, and J. Mandel. “Convergence of algebraic multigrid

based on smoothed aggregation”. In: Numerische Mathematik 88.3 (May

2001), pp. 559–579.

[124] P. Vaněk, J. Mandel, and M. Brezina. “Algebraic multigrid by smoothed

aggregation for second and fourth order elliptic problems”. In: Computing

56.3 (1996), pp. 179–196.

[125] K. Vemaganti and W. E. Lawrence. “Parallel methods for optimality criteria-

based topology optimization”. In: Computer Methods in Applied Mechanics

and Engineering 194.34-35 (2005), pp. 3637–3667.

[126] F. Wang, B. S. Lazarov, and O. Sigmund. “On projection methods, conver-

gence and robust formulations in topology optimization”. In: Structural and

Multidisciplinary Optimization 43.6 (2011), pp. 767–784.

[127] M. Wang, X. Wang, and D. Guo. “A level set method for structural topology

optimization”. In: Computer Methods in Applied Mechanics and Engineering

192 (2003), pp. 227–246.

[128] S. Wang, E. de Sturler, and G. H. Paulino. “Large-scale topology optimization

using preconditioned Krylov subspace methods with recycling”. In: Interna-

https://arxiv.org/abs/2106.12098

187

tional Journal for Numerical Methods in Engineering 69.12 (2007), pp. 2441–

2468.

[129] Y. Wang, Z. Kang, and Q. He. “An adaptive refinement approach for topology

optimization based on separated density field description”. In: Computers &

Structures 117 (2013), pp. 10–22.

[130] A. J. Wathen. “Preconditioning”. In: Acta Numerica 24 (May 2015), pp. 329–

376.

[131] H. Wendland. Numerical Linear Algebra: An Introduction. Cambridge Uni-

versity Press, 2017.

[132] S. J. Wright. Primal-dual interior-point methods. Philadelphia, PA, USA:

Society for Industrial and Applied Mathematics, 1997.

[133] J. Xu and L. Zikatanov. “Algebraic multigrid methods”. In: Acta Numerica

26 (2017), pp. 591–721.

[134] T. Zegard and G. H. Paulino. “Toward GPU accelerated topology optimiza-

tion on unstructured meshes”. In: Structural and Multidisciplinary Optimiza-

tion 48.3 (2013), pp. 473–485.

[135] F. Zhang, ed. The Schur complement and its applications. Vol. 4. Numerical

Methods and Algorithms. Springer, Boston, MA, 2005.

[136] M. Zhou and G. I. N. Rozvany. “The COC algorithm, part II: topological,

geometrical and generalized shape optimization”. In: Computer Methods in

Applied Mechanics and Engineering 89.1-3 (1991), pp. 309–336.

[137] J. Zhu, W. Zhang, and L. Xia. “Topology optimization in aircraft and aerospace

structures design”. In: Archives of Computational Methods in Engineering 23

(2016), pp. 595–622.

[138] J. Zowe, M. Kočvara, and M. P. Bendsøe. “Free material optimization via

mathematical programming”. In: Mathematical Programming 79.1 (Oct. 1997),

pp. 445–466.

188

APPENDICES

A.1 Methods and Solvers: Additional Tables and

Graphs

Tables A.1 to A.4 contain a detailed comparison of the CG and MINRES solver

when used in the IP and PBM method for optimization scenarios with L = 5, 6

number of mesh levels. Figures A.1 and A.2 show the development of the duality

gap over the course of the optimization for the same scenarios used in Section 3.2.1

to compare the IP, PBM and OC method. It is plotted against the total number of

Newton iterations and solver iterations, respectively.

Table A.1: Comparison of CG and MINRES in the IP method for various scenarios
with L = 5, in terms of Newton iterations, solver iterations and CPU time (in
seconds). Values are generally rounded to the nearest integer.

 CG MINRES

scenario Nwt it. solver it. time (s) Nwt it. solver it. time (s)

Cantilever 2-2-2-5 51 230 127 51 131 111
Cantilever 4-2-2-5 44 227 234 43 150 213
Cantilever 6-2-2-5 54 391 407 53 225 448
Cantilever 8-2-2-5 41 258 457 40 150 376
Bridge 2-2-2-5 31 139 70 35 110 80
Bridge 4-2-2-5 33 155 152 34 95 154
Bridge 6-2-2-5 30 173 217 25 76 186
Bridge 8-2-2-5 28 198 282 29 134 331
MBB 2-2-2-5 23 130 65 26 97 66
MBB 4-2-2-5 22 124 104 31 136 180
MBB 6-2-2-5 23 122 185 34 150 249
MBB 8-2-2-5 19 81 178 40 202 403

average 33 186 207 37 138 233

189

Table A.2: Comparison of CG and MINRES in the IP method for various scenarios
with L = 6, in terms of Newton iterations, solver iterations and CPU time (in
minutes). Values are generally rounded to the nearest integer. Note that 500 Newton
iterations indicate the maximum iteration number was reached and the optimization
terminated before convergence.

 CG MINRES

scenario Nwt it. solver it. time (m) Nwt it. solver it. time (m)

Cantilever 2-2-2-6 500 1809 145 500 987 143
Cantilever 4-2-2-6 463 2177 265 448 1273 303
Cantilever 6-2-2-6 344 1982 335 500 1778 459
Cantilever 8-2-2-6 357 2328 539 405 1624 539
Bridge 2-2-2-6 64 320 20 81 264 25
Bridge 4-2-2-6 77 422 46 79 257 59
Bridge 6-2-2-6 73 466 77 81 294 79
Bridge 8-2-2-6 70 530 100 53 213 72
MBB 2-2-2-6 40 262 12 41 156 13
MBB 4-2-2-6 41 394 32 42 217 28
MBB 6-2-2-6 46 550 65 47 310 53
MBB 8-2-2-6 37 418 64 39 218 54

average 176 971 141 193 632 152

Table A.3: Comparison of CG and MINRES in the PBM method for various sce-
narios with L = 5, in terms of Newton iterations, solver iterations and CPU time
(in seconds). Values are generally rounded to the nearest integer.

 CG MINRES

scenario Nwt it. solver it. time (s) Nwt it. solver it. time (s)

Cantilever 2-2-2-5 71 244 172 82 213 226
Cantilever 4-2-2-5 58 218 301 57 131 304
Cantilever 6-2-2-5 60 297 517 61 170 612
Cantilever 8-2-2-5 57 274 671 57 165 656
Bridge 2-2-2-5 66 352 186 68 286 207
Bridge 4-2-2-5 66 369 354 71 295 417
Bridge 6-2-2-5 73 457 621 71 353 728
Bridge 8-2-2-5 66 374 716 71 280 816
MBB 2-2-2-5 53 286 140 60 263 184
MBB 4-2-2-5 51 287 291 56 252 336
MBB 6-2-2-5 43 226 414 42 144 388
MBB 8-2-2-5 40 228 469 39 107 489

average 59 301 404 61 222 447

Figure A.1: Scaled duality gap vs. Newton iterations for the PBM, IP and OC method. A black diamond marks the termination of the
algorithm, which can be outside the plot range.

Cantilever 4-2-2-6

Bridge 4-2-2-6

MBB 4-2-2-6

100

10−3

10−4

10−5

100

10−3

10−4

10−5

100

10−3

10−4

10−5

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 0 20 40 60 80 100 120

Cantilever 16-2-2-5 Bridge 16-2-2-5 MBB 16-2-2-5

100

10−3

10−4

10−5

100

10−3

10−4

10−5

100

10−3

10−4

10−5

0 20 40 60 80 100 0 20 40 60 80 100 120 0 10 20 30 40 50 60 70

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

19
0

Figure A.2: Scaled duality gap vs. accumulated solver iterations for the PBM, IP and OC method. A black diamond marks the termination
of the algorithm, which can be outside the plot range.

Cantilever 4-2-2-6

Bridge 4-2-2-6

MBB 4-2-2-6

100

100

100

10−3

10−4

10−5

0

200 400 600

10−3

10−4

10−5

0

200 400 600 800

10−3

10−4

10−5

0 100 200 300 400 500 600 700

Cantilever 16-2-2-5 Bridge 16-2-2-5 MBB 16-2-2-5

100

10−3

10−4

10−5

100

10−3

10−4

10−5

100

10−3

10−4

10−5

0 100 200 300 400 500 600 0 200 400 600 800 0 100 200 300 400 500

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

OC
IP
PBM

191

Table A.4: Comparison of CG and MINRES in the PBM method for various sce-
narios with L = 6, in terms of Newton iterations, solver iterations and CPU time
(in minutes). Values are generally rounded to the nearest integer.

 CG MINRES

scenario Nwt it. solver it. time (m) Nwt it. solver it. time (m)

Cantilever 2-2-2-6 118 411 42 98 178 38
Cantilever 4-2-2-6 82 378 69 82 222 67
Cantilever 6-2-2-6 74 297 86 72 172 89
Cantilever 8-2-2-6 72 314 122 71 180 128
Bridge 2-2-2-6 76 451 29 89 438 39
Bridge 4-2-2-6 85 555 68 95 467 88
Bridge 6-2-2-6 83 517 96 93 484 109
Bridge 8-2-2-6 84 575 132 103 660 240
MBB 2-2-2-6 63 323 24 68 233 28
MBB 4-2-2-6 68 364 55 67 259 55
MBB 6-2-2-6 59 347 71 64 252 83
MBB 8-2-2-6 63 415 105 63 278 112

average 77 412 75 80 319 90

A.2 Aggregation Strategy Statistics
Table A.5: Accumulated solver time (in minutes) for different aggregation strategies
and number of extra candidates. Values do not include the time needed for con-
struction of coarse-grid operators. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug 2-8, d)
Lug 3-5, e) Crack 2-8, f) Crack 3-5, g) average.

K1 K+ K++

0 1 2 3 0 1 2 3 0 1 2 3

a) 4 3 7 7 4 6 12 10 5 7 5 5
b) 14 13 11 14 20 18 11 19 17 32 34 32
c) 31 22 22 23 32 26 27 21 32 25 27 27
d) 22 31 36 43 27 29 34 44 27 27 31 46
e) 15 22 26 26 18 22 22 23 15 12 19 18
f) 26 51 24 31 44 31 28 41 24 26 17 26

g) 19 24 21 24 24 22 22 26 20 22 22 26

192

Table A.6: Accumulated multigrid setup time (in minutes) for different aggregation
strategies and number of extra candidates. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug
2-8, d) Lug 3-5, e) Crack 2-8, f) Crack 3-5, g) average.

K1 K+ K++

0 1 2 3 0 1 2 3 0 1 2 3

a) 4 11 21 21 14 42 133 99 4 11 15 16
b) 13 27 42 64 40 109 68 126 14 32 42 60
c) 20 49 84 85 289 587 1106 669 22 51 91 90
d) 22 47 79 115 48 204 476 486 25 41 62 122
e) 22 68 132 132 128 552 586 1217 22 58 104 92
f) 22 57 74 101 76 296 199 468 20 38 62 107

g) 17 43 72 86 99 298 428 511 18 38 63 81

193

	MULTIGRID BARRIER AND PENALTY METHODS FOR LARGE SCALE TOPOLOGY OPTIMIZATION OF SOLID STRUCTURES
	by

	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	NOTATION
	Scalars, vectors and matrices
	Canonical vectors and matrices
	2.1 Optimization
	2.1.1 Optimality Conditions
	

	2.1.2 Convexity and Duality
	2.1.3 Interior Point Methods
	2.1.4 Nonlinear Rescaling and Penalty-Barrier Multiplier Methods

	2.2 Finite Element Method for Linear Elasticity
	
	2.2.1 Unilateral contact

	2.3 Minimum Compliance Topology Optimization
	¯
	¯
	¯
	¯
	2.3.1 The Variable Thickness Sheet Problem
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	r

	¯
	¯
	¯
	¯
	¯
	
	
	
	¯
	¯
	¯ ¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯ ¯ ¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯
	¯ ¯

	2.3.2 The Variable Thickness Sheet Problem with Unilateral Contact
	¯
	¯

	2.3.3 The Optimality Criteria Method
	¯

	2.4 Iterative Methods for Linear Systems
	2.4.1 Krylov Subspace Methods
	2.4.2 Multigrid Methods

	3.1 Optimization Algorithms
	3.1.1 Primal-Dual Interior Point Method for the VTS Prob- lem
	¯
	¯
	¯
	¯
	¯
	¯
	¯ ¯
	¯
	¯
	¯ ¯ ¯ ¯
	¯ ¯

	3.1.2 Penalty-Barrier Multiplier Method for the Dual VTS Problem
	¯

	3.1.3 Including Unilateral Contact Constraints
	3.1.4 Multigrid Preconditioner for MINRES and CG
	¯

	3.2 Numerical Results
	¯
	¯
	3.2.1 Comparison of Optimization Methods and Solvers
	3.2.2 Large Scale Problems
	3.2.3 Unstructured Meshes and Algebraic Multigrid
	3.2.4 Detailed Comparison of MINRES and CG

	3.3 A Note on Density Penalization

	BIBLIOGRAPHY
	APPENDICES
	A.1 Methods and Solvers: Additional Tables and Graphs
	A.2 Aggregation Strategy Statistics

