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Abstract 

 
We propose two algorithms for solving minimum compliance topology optimization 

problems defined on finite element meshes with several million elements, where the 

design geometry is parameterized on the discretized problem domain by an element- 

wise constant density field and we use the variable thickness sheet formulation to 

map the density to the material stiffness. The first method is an interior point (IP) 

method and the second follows the penalty-barrier multiplier (PBM) or nonlinear 

rescaling framework. To solve the linear systems arising in each optimization itera- 

tion, we use a multigrid-preconditioned Krylov solver. We employ a reformulation 

of the linear system to obtain a symmetric positive definite matrix that is amenable 

to standard multigrid transfer operators. We test the performance of both our al- 

gorithms on a wide range of numerical examples, comparing their performance to 

each other and to that of the well-established optimality criteria (OC) method. Our 

PBM algorithm proves to be more robust and efficient than both the IP and OC 

method. 

We then extend our approach to problems defined on unstructured meshes, which 

necessitates switching to an algebraic multigrid preconditioner. Using the (adaptive) 

smoothed aggregation method of Vaněk, Mandel, and Brezina, we propose and test 

different non-standard setup strategies for the multigrid transfer operators in order 

to identify the most efficient one for our type of problem. 

The PBM method is applied to the dual of the compliance minimization problem, 

which permits an easy integration of unilateral contact constraints. We include 

examples featuring such constraints in our numerical experiments, both for problems 

on uniform structured meshes and on unstructured meshes. 
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NOTATION 
 
 

Scalars, vectors and matrices 

a ∈ R Real scalars (italicized) 

a ∈ Rn n–dimensional real vectors (bold) 

(a, b, c) Compound vector, equivalent to aT, bT, cT T 

aI = (ai)i∈I  ∈ R|I| Set-indexing notation for vectors a ∈ Rn and sets 

I ⊂ {1, . . . , n} 

a ≤ b ai ≤ bi for all i 
 

A ∈ Rn×n Matrices (uppercase, upright) 

AIJ = [aij ]i∈I,j∈J ∈ R|I|×|J | Set-indexing notation for matrices 

AI:, A:J Like above, with J , I  = {1, . . . , n}, resp. 

A     0 A is positive definite, i.e. dTAd > 0 for all d ∈ Rn \ {0} 

A     0 A is positive semi-definite, i.e. dTAd ≥ 0 for all d ∈ Rn 

 
Canonical vectors and matrices 

1 = (1, . . . , 1)T Vector of ones of appropriate dimension 

0 Zero vector 

V = diag{v} Diagonal matrix produced by a vector 

I = diag{1} Identity matrix of appropriate dimension 

0 Zero matrix of appropriate dimension 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Perhaps the earliest work that can be credited as a contribution to the field of 

structural optimization is the article by Michell [87]. In it, Michell identified the 

shape of truss structures to support a given set of external forces using a minimal 

amount of material, without exceeding prescribed stress limits in any of the bars. 

This is but one of many possible examples of a structural optimization problem: one 

aims to find the specifications of a physical structure that is optimal with respect 

to a certain objective, such as the amount of material used or the overall stiffness, 

while at the same time satisfying a set of constraints. The latter are given by the 

governing equations of the mathematical model of the underlying physical scenario 

and any other quantifiable restrictions on the structure. The problem also needs to 

define parameters that we can adjust in order to optimize the structure, which are 

called design variables. They typically parameterize the geometry of the structure, 

but can comprise other properties, such as material constants. The choice of pa- 

rameterization leads to different types of structural optimization problems. If the 

design variables specify the dimensions of pre-defined structural features, such as 

the width, length or cross-sectional area of ribs or trusses, for example, we speak of 

sizing optimization. Allowing for a more general variation of the boundary of an ini- 

tial design brings us into the territory of shape optimization. If the design variables 

determine the structure’s geometry in an even more flexible manner, by prescribing 
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material distribution, for instance, then we are dealing with topology optimization. 

The contributions of this thesis fall into this last category. The distinctions between 

the sub-disciplines of structural optimization are not always clear cut and the brief 

definitions given here may by many be seen, rightfully, as oversimplifications. For a 

comprehensive introduction to structural optimization, see for example [62], or the 

much-cited book by Bendsøe and Sigmund [22], a standard reference, in particular 

for topology optimization. 

After the article by Michell, it was not until the 60s and 70s that academic interest 

in this subject picked up. These early contributions were predominantly analytical 

treatments of structural optimization problems, see for example [63]. Research ef- 

forts began to focus on numerical methods for topology optimization on discretized 

design domains in the 80s, e.g. [21], which also saw the introduction of the popular 

solid isotropic material with penalization (SIMP) method for the approximation of 

material behaviour in designs with voids [18]. 

Promising research in algorithms and increased availability of computing power 

prompted the development of commercial software for structural optimization in 

the 90s. Topology optimization, in particular, has gained importance for practical 

applications in light of recent advances in additive manufacturing, which facilitates 

the realization of complex optimal designs, see for example [28, 41]. The scope 

of topology optimization has greatly expanded in recent decades. Various types of 

structural responses have been successfully incorporated as objectives or constraints, 

and problems are taken from a wide range of areas beyond solid mechanics, such 

as fluid dynamics, thermodynamics, or multi-physics, among others [22]. While 

there is naturally still some discrepancy between academic research and widespread 

commercial applications, topology optimization is nowadays utilized in many areas 

of engineering, in particular in the automotive industry [37] and the aircraft industry 

[137]. 

The specific parameterization of the design topology has a profound influence on 
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the resulting mathematical problem, its properties and the efficiency of the methods 

used to solve it. The most common approach is to model the material distribution 

by density values ρi assigned to each element in the mesh that is used for the numer- 

ical analysis of the structural response, usually via the finite element (FE) method 

[94]. Discretizing the design in this way gives us a finite-dimensional problem. We 

further relax it so that instead of enforcing a strict distinction between void (ρi = 0) 

and solid (ρi = 1) elements, we allow density values within the range [0, 1], so that 

the problem becomes continuous. In order to still obtain an optimal solution that 

approximates a 0 − 1 design, the SIMP method [18, 19] uses a nonlinear function to 

map element density to material constants so that intermediate density values are 

penalized. If we instead prescribe a linear relation between density and stiffness, we 

arrive at the variable thickness sheet (VTS) problem [110, 97, 22]. In two dimen- 

sions, the VTS formulation models a sheet under plane stress with varying thickness 

parameterized by the design variables. This physical interpretation does not extend 

to three dimensions, in which case the VTS problem can be seen as a further re- 

laxation of the SIMP-based topology optimization problem. Although the SIMP 

method is much more prevalent in academic as well as industrial applications, the 

VTS formulation permits the use of more efficient optimization algorithms. We will 

consider the latter in this thesis and address limitations in regards to an extension 

to the SIMP formulation. 

Other approaches than the above should be mentioned for the sake of complete- 

ness. One can adhere to the element-based paradigm of the SIMP or VTS approach, 

but assign more than a single variable per element, which are typically related to 

the material constants in some way. Examples are homogenization methods, see for 

example [21], or free material optimization, e.g. [138]. Going along a different route 

entirely, level-set methods have also become popular for topology optimization, see 

for example the review by Dijk et al. [42], or the much-cited papers by Allaire, Jouve, 

and Toader [7] and Wang, Wang, and Guo [127]. 
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In spite of the technological advance in computer hardware seen since the early 

days of topology optimization, the large computational cost remains one of the main 

challenges in its application. Obtaining a detailed design requires a high resolution of 

the discretization of the problem domain, which corresponds directly to the number 

of variables in the structural analysis and optimization problem. The linear systems 

that arise in each iteration of the optimization algorithm are accordingly very large, 

so that constructing and, in particular, solving them constitutes a significant part 

of the overall computational work. A prominent example of the resource demands 

of large-scale topology optimization is the article by Aage et al. [3], in which the 

optimal design for an aeroplane wing, discretized by more than one billion finite 

elements, was computed over several days using 8000 cores on a supercomputer. 

A considerable amount of research has been dedicated to reducing the computa- 

tional cost of topology optimization. Tackling the problem on the implementation 

level, different authors have investigated the use of parallel computing [25, 125, 

46, 2, 1] and graphics card programming [116, 134, 39]. Others have focussed on 

decreasing the size of the problem. For example, Nguyen et al. proposed a multi- 

resolution approach [91, 92], using a coarser mesh for the structural analysis than 

for the density. Wang, Kang, and He also used separate meshes in [129], refining 

the mesh for the nodal density values adaptively only where a higher resolution was 

required. In [83], Lazarov studied the applicability of multi-scale FE methods to 

topology optimization. 

Choosing the right technique to solve the linear systems in each optimization iter- 

ation is another point that is critical to improving efficiency. In [10], Amir, Bendsøe, 

and Sigmund reused information from previous iterations to form a reduced basis 

for the solution, employing a direct solver for the resulting reduced system. For 

large-scale problems, iterative solvers are generally more efficient, especially if an 

exact solution is not required [114, 131]. Among these, the class of Krylov solvers 

[114] is of particular importance. These methods find an approximate solution to 
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a linear system such that it minimizes a specific functional on a subspace whose 

dimension increases with each solver iteration. For symmetric systems, the conju- 

gate gradient (CG) [64] and the minimal residual (MINRES) [95] method are two 

particularly successful Krylov solvers. While the former is one of the most widely 

used iterative methods for symmetric positive definite systems, the latter can also 

solve indefinite (even singular) symmetric systems. Wang, de Sturler, and Paulino 

proposed an approach to recycle Krylov subspaces in a MINRES solver for topology 

optimization in [128]. Amir, Stolpe, and Sigmund used approximate solutions to 

the linear systems obtained from the CG method in [11], where the accuracy of the 

solution was adapted to the progress of the optimization. 

A crucial component of any performant Krylov solver is preconditioning, which 

improves the spectral properties of the linear system, drastically reducing the num- 

ber of solver iterations required to achieve a certain precision. The system matrix 

arising from the FE analysis typically becomes more ill-conditioned as the mesh is 

refined and the system size increases. An optimal preconditioner would ensure that 

the number of solver iterations needed to reach a given accuracy are not only small 

but independent of the system size. Multigrid methods [29, 61, 33] have become 

widely used as preconditioners, for the reason that they have the aforementioned 

property [130], at least when used on systems derived from discretized partial dif- 

ferential equations. The multigrid paradigm is based on a hierarchy of meshes – 

or grids – with decreasing resolution. The system matrix and residual of the lin- 

ear system are projected onto these coarser grids and the approximate solution for 

the finest grid – the one on which the problem is originally defined – is recursively 

improved on these lower levels. This approach leads to a mesh independent conver- 

gence behaviour. Although multigrid methods are themselves linear solvers, they 

are often found to be more effective when used in combination with Krylov solvers. 

A multigrid-preconditioned CG method with an adaptive solver tolerance similar 

to [11] was used in [9]. Combining this with the reduced basis approach from [10], 

Amir proposed a recycling of the coarse-grid system matrices for subsequent opti- 
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mization iterations [8]. Note that the idea of reusing a preconditioner based on a 

previous design iterate had been employed earlier by Kirsch, Kočvara, and Zowe in 

[74]. Multigrid-preconditioned CG solvers were also used in [1, 3, 80], among oth- 

ers. Others have used multigrid methods as linear solvers for topology optimization 

problems, rather than just as preconditioners. Maar and Schulz used a multigrid 

solver in an algorithm for compliance minimization [85] and Stainko proposed a 

multigrid solver for systems arising in problems with stress constraints [119]. In 

both cases, the linear systems were indefinite saddle-point systems, which required 

a much more involved multigrid setup compared to the standard method for positive 

definite systems. 

The basic multigrid methodology, also called geometric multigrid (GMG), assumes 

a grid hierarchy obtained through simple, uniform mesh refinement, so that the 

projection operators can be defined by simple interpolation. This requires the top- 

level mesh to be highly structured and regular. If such a grid hierarchy cannot be 

easily obtained, for example because the design domain is not defined by a uniform 

mesh, we need to use algebraic multigrid (AMG) methods [47], which determine 

coarse grids and projection operators based solely on the system matrix entries. 

For certain types of problems, it can even make sense to use them when GMG 

methods would also be applicable. In [3], a hybrid GMG-AMG method was used 

as the algebraic approach was more efficient on coarser levels. Similar results were 

presented in [96], which compared the performance of GMG and AMG methods for 

a range of topology optimization problems. 

Another aspect of large-scale topology optimization that has not received as much 

attention as the points discussed above is the choice of the optimization method. 

While established general-purpose methods like the interior point (IP) have some- 

times been used for topology optimization, see e.g. [85, 70, 119, 120], for problems 

based on the SIMP approach, the most common methods are the method of moving 

asymptotes (MMA) [121] and the optimality criteria (OC) method [111, 136]. In a 
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benchmarking paper by Rojas-Labanda and Stolpe, these were compared to a range 

of methods implemented in general-purpose optimization libraries [109]. In terms of 

the number of required iterations, the latter very often performed better, however, 

they lost some or all of that advantage when it came to computational time. A 

plausible explanation is that the OC method and MMA are first-order methods, 

using only function and derivative values at each iteration, whereas the other meth- 

ods are second-order methods and also make use of Hessian information (or BFGS 

[93] approximations thereof). While second-order methods are known to generally 

converge in fewer iterations than first-order methods, the second-order information 

can make them more computationally expensive. 

The results from the benchmarking paper do not fully extend to the VTS for- 

mulation. To show this will be the first contribution of this thesis. We propose 

two second-order methods for the minimum compliance VTS problem. The first is 

a primal-dual IP method [52, 132]. It is based on previous contributions by Koč- 

vara and Mohammed [80] and Jarre, Kočvara, and Zowe [71]. Maar and Schulz also 

proposed an IP method for (SIMP-based) compliance minimization in [85], which 

however differs strongly from ours in how the linear systems are solved. Starting 

from the asymmetric, indefinite system given by the primal-dual IP approach, we 

reduce it in order to obtain an equivalent symmetric positive-definite system. We 

solve this by a multigrid-preconditioned Krylov solver. In contrast, the IP algo- 

rithm in [85] involved solving an indefinite system by a multigrid method designed 

specifically for such systems. 

Our second method is a nonlinear rescaling or penalty-barrier multiplier (PBM) 

method. Proposed by Polyak and Teboulle [103] and Ben-Tal and Zibulevsky [17], 

based on the modified barrier methods due to Polyak [100], this class of algorithms 

attempts to overcome the notorious ill-conditioning of the linear systems observed 

in IP methods as one approaches the optimal solution. It has been successfully 

used for large-scale optimization, for example in [77] and the optimization software 
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package Pennon [76], and for topology optimization in [79]. We apply the PBM 

approach not to the VTS problem itself, but to its dual, thus avoiding certain 

complications inherent in the primal formulation. To solve the linear systems, we 

perform a reduction very similar to that used in our IP method and solve it by the 

same multigrid-preconditioned Krylov solver. 

We compare the performance of our two methods to that of the OC method, and 

reach the clear verdict that the latter is not competitive for this problem. We further 

compare the IP and PBM method on large-scale problems with more than a million 

finite elements. In this case, the PBM method proves to be both more robust and 

efficient than the IP method. As a bonus, the dual VTS problem allows for an 

easy integration of unilateral contact constraints. We include large-scale examples 

of problems featuring such constraints, solved by the PBM method. 

The second contribution of this thesis is an investigation of different multigrid 

setup strategies. Peetz and Elbanna recently showed that AMG methods can be 

preferable to GMG methods as preconditioners in topology optimization, even on 

structured meshes, due to the material anisotropy that comes with the high-contrast 

density distribution seen in SIMP-based optimal designs [96]. While the computa- 

tional overhead of the AMG is considerably larger than that of the GMG method, 

this is in some cases outweighed by the reduction in solver iterations. As we will 

show, the same cannot be said for the VTS problem, presumably due to smaller lo- 

cal density variations. We therefore focus on finding the most efficient AMG setup 

technique for problems on unstructured meshes, where GMG is not an option. The 

AMG approach we use in this thesis is the smoothed aggregation method intro- 

duced by Vaněk, Mandel, and Brezina [124], which has gained popularity due to its 

effectiveness [47]. 

The thesis is structured as follows: Chapter 2 covers the mathematical prerequi- 

sites. Section 2.1 introduces basic concepts of nonlinear optimization, and the two 

general purpose methods we will later apply to our specific optimization problem. 
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Section 2.2 very briefly outlines the finite element method for linear elasticity and its 

extension to unilateral contact constraints. The compliance minimization problem 

for the variable thickness sheet is reviewed in some detail in Section 2.3, where we 

also include a uniqueness result for the case of a non-zero lower bound on the element 

densities. We finish Section 2.3 with a description of the optimality criteria method 

for the VTS problem. In Section 2.4, we summarize relevant concepts and results 

for Krylov solvers and multigrid methods, both geometric and algebraic. Chapter 3 

constitutes the main part of this thesis. A detailed description of our IP and PBM 

algorithm for the VTS minimum compliance problem and the procedure for solving 

the linear systems is given in Section 3.1. In Section 3.2, we study and compare the 

performance of the IP, PBM and OC method on a wide range of problems. The IP 

and PBM algorithms are applied to large-scale examples. In order to solve problems 

defined on unstructured meshes as efficiently as possible, we propose and compare 

different setup strategies for the smoothed aggregation AMG preconditioner, which 

we then use to solve unstructured large-scale problems by the PBM method. Sec- 

tion 3.3 addresses limitations of our optimization algorithm when it comes to an 

extension to the SIMP formulation. In Chapter 4, we summarize our results and 

draw conclusions to guide future research. 
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CHAPTER 2 
 
 

BACKGROUND 
 
 

This chapter introduces the theory required to understand the problem we wish 

to solve and the methods we use to do so. Since it is first and foremost an opti- 

mization problem, we begin by laying out basic concepts and results in nonlinear 

optimization. We also describe two general solution algorithms, the interior point 

and penalty-barrier multiplier method, which we will later apply to our problem. 

To even formulate this problem, which originally comes from the field of solid me- 

chanics, we need to cover a few fundamentals of linear elasticity as well as the finite 

element method, used to numerically approximate the behaviour of solid structures, 

which we do in Section 2.2. Building on this, we can derive the minimum compliance 

topology optimization problem in Section 2.3, which also includes a third optimiza- 

tion algorithm, the optimality criteria method, which is specific to this problem. 

Finally, Section 2.4 focuses on the task of solving linear systems which inherently 

arise in each iteration of an optimization algorithm. To do this efficiently is critical 

for large-scale applications, where the number of degrees of freedom easily surpasses 

a million. We employ Krylov solvers and multigrid methods, which are outlined in 

Section 2.4. 

As we cover a lot of ground in this chapter, each section apart from Section 2.3 is 

limited to a brief introduction and overview. When discussing algorithms, we pri- 



11  

oritize an accessible presentation over a thorough analysis. The main convergence 

properties are generally included, especially where they are relevant to the inter- 

pretation of the performance of our implementation in practice, but we refer to the 

literature listed in each section for details. 

 
 

2.1 Optimization 
 

The mathematical problem that lies at the centre of this thesis is a constrained 

nonlinear optimization problem. From it arise both questions of a theoretical nature, 

like those about the existence and uniqueness of its solutions, and more practical 

questions, such as how to efficiently solve the problem at a large scale. It therefore 

makes sense to begin with a section which covers the necessary basics of nonlinear 

optimization. First of all, we will motivate and define the general form of nonlinear 

optimization problems with constraints, after which we will go over some standard 

optimality conditions in Section 2.1.1. For proofs and further reading, one may 

consult, for example, the comprehensive reference by Nocedal and Wright [93]. We 

complement these first fundamentals by some results which are particularly relevant 

to the class of convex optimization problems in Section 2.1.2, where we draw mainly 

from the book by Boyd and Vandenberghe [27]. Sections 2.1.3 and 2.1.4 describe 

two specific methods for solving optimization problems, the interior point method 

and the penalty-barrier multiplier – or nonlinear rescaling – method, respectively. 

For the former, we largely follow the book by Wright [132] and the comprehensive 

review article by Forsgren, Gill, and Wright [52]. For the latter, a more detailed 

list of references is given in Section 2.1.4. There is a third optimization method 

that we employ in this thesis, however, it is designed specifically for the compliance 

minimization problem. We defer a description of this method to Section 2.3.3, after 

the discussion of minimum compliance optimization. 

In order to somewhat simplify the following treatment of nonlinear optimization, 

all functions are assumed to be twice continuously differentiable. This is also gen- 
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erally true for all functions introduced in this thesis, unless otherwise specified. 

 
Now, assume we want to find a point x ∈ Rn at which a function f : Rn → R 

attains the smallest possible value. Furthermore, let us require that this point satisfy 

certain criteria which limit the possible choices for x to a subset of Rn. We assume 

that we can describe this subset by means of real-valued functions, consecutively 

labelled, which define a set of inequalities g1(x) ≤ 0, g2(x) ≤ 0, . . . , and equations 

h1(x) = 0, h2(x) = 0, . . ., which we refer to as inequality and equality constraints, 

respectively. Let I and E denote the corresponding set of label indices. The set 

 
X := {x ∈ Rn | gi(x) ≤ 0 for all i ∈ I, hj(x) = 0 for all j ∈ E} 

 
defined by  the constraints is called feasible  set  and a point x is called feasible  if   

x ∈ X. Furthermore, if that point satisfies gi(x) < 0 for all i ∈ I, it is called strictly 

feasible (with respect to the inequality constraints). We will assume throughout 

this thesis that the inequality constraints are topologically consistent, meaning that 

the set of strictly feasible points coincides with the relative interior of X. A con- 

strained nonlinear optimization problem is the task of finding the smallest value of 

the function f (x), called the objective function, over the entire feasible set X and is 

commonly formulated as a nonlinear program (NLP) [93, (12.1)]: 

 
min 
x∈Rn 

f (x) (2.1a) 

s.t. gi(x) ≤ 0 , ∀i ∈ I (2.1b) 

hj(x) = 0 ,   ∀j ∈ E . (2.1c) 

 
For a slightly simplified formulation, let us introduce some notation. When we deal 

with a set of consecutively labelled functions, such as gi(x) for all i ∈ I, we will 

often denote these by a vector-valued function g(x) := (gi(x))i∈I. We extend the 

inequality sign to sets of inequalities, interpreted component-wise so that we can 

write g(x) ≤ 0, where 0 is a vector of all zeros, instead of gi(x) ≤ 0 for all i ∈ I. 



13  

 
 
 
 

x∈Rn 

 
 
 
 

As is commonly done, and without loss of generality, we defined the nonlinear pro- 

gram as a minimization problem. By changing the sign of the objective function, 

we obtain an equivalent maximization problem. It is straightforward to adjust any 

standard definition or theorem for a maximization problem. 

The very first question to ask in the discussion of the nonlinear program (2.1) 

is what exactly counts as a solution. The answer is given by the following list of 

definitions, which can be found in [93, (p. 6 and 306)], for example. In it, we use 

N(x) to denote a neighbourhood of a point x, i.e. an open, bounded set which 

contains the point itself. 

Definition 2.1.1. Let x∗ ∈ X  be a feasible point for (2.1).  This point is called 

(i) a global optimum, global minimum, or global solution if 
 

f (x∗) ≤ f (x) ∀x ∈ X . (2.3) 

 
(ii) a local optimum, local minimum, or local solution if there exists a neighbour- 

hood N (x∗) such that 

f (x∗) ≤ f (x) ∀ x ∈ N (x∗) ∩ X . (2.4) 

 
(iii) a strict local or strict global minimum, respectively, if (2.3) or (2.4) holds with 

strict inequality when x /= x∗. 

We can therefore write (2.1) as  

 
min 

 
f (x) 

 
(2.2a) 

s.t. g(x) ≤ 0 , 

h(x) = 0 . 

(2.2b) 

(2.2c) 
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  ] 

(iv) an isolated local optimum, isolated local minimum, or isolated local solution 

if  there  is  a  neighbourhood  N (x∗)  such  that  x∗ is  the  only  local  solution  in 

N (x∗) ∩ X . 

While a solution is defined by comparison to other feasible points, there are con- 

ditions which allow us to identify or rule out a point x ∈ X as a solution using only 

information about the point itself. More specifically, these conditions for optimality 

require the first and second order derivatives of the objective function and constraint 

functions. 

For our purposes, it is convenient to treat the gradient of a function f (x) as a 

column vector, i.e. ∇f (x) := (∂f/∂x1, . . . , ∂f/∂xn)T. The Jacobian of a vector- 

valued function g(x) ∈ R|I| is composed of the gradients of the components arranged 

in columns, i.e. ∇g(x) := ∇g1(x), . . . , ∇g|I|(x) . With the notation out of the way, 

we will now turn towards some necessary and sufficient conditions for optimality. 
 
 
2.1.1 Optimality Conditions 

For an unconstrained NLP, i.e. one where X  = Rn, one criterion that a point x∗ ∈ Rn 

must satisfy to be a local optimum is that the gradient of the objective function 

vanishes [93, Theorem 2.2], i.e. 
 

∇f (x∗) = 0 . (2.5) 

 
By using the Taylor expansion of f (x) at x∗, one can show that a non-zero gradient 

means  that  there  is  a  direction  in  which  one  can  move  from  x∗ along  which  the 

objective  function  immediately  decreases.   Therefore,  ∇f (x∗)  =  0  is  a  necessary 

optimality  condition,  however,  it  does  not  guarantee  that  x∗ is  optimal.   By  also 

requiring that the Hessian of f  is positive definite at x∗, i.e. 

 
∇f (x∗) = 0 and ∇2f (x∗)   0 , (2.6) 
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we obtain a sufficient condition for local optimality [93, (Theorem 2.4)]. Indeed, by 

Taylor’s theorem, the positive curvature of f  at x∗ tells us that f  increases as soon 

as one moves away from x∗ (and stays within a certain neighbourhood), making this 

point a strict local optimum. Due to the order of the derivatives involved, condition 

(2.5) is called a first order and (2.6) a second order optimality condition, respec- 

tively. Similar necessary and sufficient conditions exist for the general constrained 

NLP  (2.1).   But  while  (2.5)  and  (2.6)  tell  us  if  f (x∗)  is  (potentially)  the  smallest 

objective function value within a neighbourhood of x∗, we are now only interested 

in neighbouring points which are also feasible. 

 
In this context, we should first of all introduce the concept of the active set, which 

indicates which part of the boundary of the feasible set a point lies on. 

Definition 2.1.2. Let x ∈ X be a feasible point for (2.1). The active set at x is  

the set of indices of all inequality constraints which are satisfied with equality at x 

and is denoted by 

A(x) := {i ∈ I | gi(x) = 0} . 
 

A constraint is called active at x if gi(x) = 0, and inactive if gi(x) < 0. 

 
We deviate slightly from [93, (Definition 12.1)], in that we do not include the 

index set of the equality constraints in A. 

The optimality conditions for (2.1) must account for the geometry of the boundary 

of the feasible set. In particular, we need a way to identify the directions in which 

we  can  move  from  the  point  x∗ and  still  stay  within  X .  The  standard  optimality 

conditions for the constrained NLP make use of the Jacobian of the constraints to 

characterize “first-order feasible directions” [93]. This is only valid as long as we 

know that the constraint functions describe the geometry of the feasible set well 

enough. This can be guaranteed if g(x) and h(x) satisfy a so-called constraint 

qualification (CQ). One such CQ, which will be used in this thesis, is given in the 

following definition, see also [93, (Definition 12.4)]: 
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Definition 2.1.3 (Linear Independence Constraint Qualification (LICQ)). We say 

that a feasible point x ∈ X with active set A(x) satisfies the LICQ if the gradients of 

all equality constraints and all active inequality constraints are linearly independent. 

In other words, if the matrix 
 
∇h, ∇gA(x)

]
 

has full rank, the LICQ holds at x. 

 
If the LICQ is satisfied at a feasible point, then we can obtain a first order neces- 

sary optimality condition [93, (Theorem 12.1)]. 

Theorem 2.1.4 (Karush-Kuhn-Tucker (KKT) Conditions). Let x∗ ∈ X  be a local 

solution for the NLP (2.1) at which the LICQ is satisfied. Then there exist vectors λ∗ 

∈ R|I|  and µ∗ ∈ R|E|  such that 

∇f (x∗) + ∇g(x∗)λ∗ + ∇h(x∗)µ∗ = 0 , (2.7a) 

h(x∗) = 0 , (2.7b) 

g(x∗) ≤ 0 , (2.7c) 

λ∗ ≥ 0 , (2.7d) 

g(x∗)Tλ∗ = 0 . (2.7e) 

 
 

The vectors λ∗ ∈ R|I|  and µ∗ ∈ R|E|  are called Lagrange multipliers.  Lines (2.7c– 

2.7e) comprise the so-called complementarity conditions.  They imply that λ∗
i  = 0 for 

any i ∈ I  with gi(x∗) < 0 and, conversely, if λ∗
i  > 0, then gi(x∗) = 0 ⇔ i ∈ A(x∗). 

We say that strict complementarity holds if λ∗
i  > 0 for all i ∈ A(x∗).  Note that, due 

to (2.7c) and (2.7d), (2.7e) may also be written as gi(x∗)λ∗
i  = 0 for all   i ∈ I. 

Remark 2.1.5. Any point x that satisfies the KKT conditions, regardless of whether 

or not it is a local optimum, is called a KKT point and together with the associated 

Lagrange multipliers λ and µ forms a KKT triple (x, λ, µ). 
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 ∀   ∈ A

∗  T∇
 




 
. (2.9) 

At first glance, the KKT conditions look very different from the simple first order 

condition (2.5). In order to highlight some similarities, we can define a function, 

called the Lagrangian [93, (12.33)], 

 
L(x, λ, µ) := f (x) + g(x)Tλ + h(x)Tµ . (2.8) 

 
The first KKT condition, (2.7a), is now equivalent to ∇L(x∗, λ∗, µ∗) = 0, cf.  (2.5). 

The  second  and  third  conditions  are  simply  the  requirement  that  x∗ be  a  feasible 

point. 

We can also formulate a second order sufficient optimality condition. It is similar 

to (2.6) in that it involves a positive-definite Hessian. However, this definiteness is 

now limited to a set of feasible directions and is furthermore required of the Hessian 

of the Lagrange function, since this accounts for the influence of the constraint 

functions. We first define a set of directions which are related to the KKT conditions. 

We assume we are given a KKT point x∗ with inequality constraint multipliers λ∗. 

The critical cone  at (x∗, λ∗) is defined as [93, (12.53)] 

C(x∗, λ∗) := 




d ∈ Rn  : 

 

∇hj(x∗)Td = 0  ∀j ∈ E , 

 

= 0 i (x∗) with λi > 0 
gi(x ) d   

 ≤ 0  ∀i ∈ A(x∗) with λi = 0 
 

A succinct interpretation of C made in [93] is as the cone of feasible directions at 

(x∗, λ∗)  “for  which  it  is  not  clear  from  first  derivative  information  alone  whether 

f will increase or decrease”. If we are given enough second derivative information 

relating  to  all  directions  in  C,  this  can  help  us  verify,  not  only  that  x∗ is  a  local 

optimum, but that it is a strict local optimum.  This is detailed in the following 

theorem which describes sufficient optimality conditions based on the Hessian of the 

Lagrangian, see also [93, (Theorem 12.6)]. 

Theorem 2.1.6 (Second Order Sufficient Optimality Conditions). Let (x∗, λ∗, µ∗) 
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x 

be a KKT triple for (2.1). Further assume that the Hessian of the Lagrangian is 

positive definite on the critical cone C, i.e. 

dT ∇2 L(x∗, λ∗, µ∗) d > 0 ∀  d ∈ C(x∗, λ∗), d /= 0 . (2.10) 

 
Then x∗ is a strict local optimum for (2.1). 

 
We have stated conditions that allow us to identify a solution for the general 

constrained NLP. Some of the above results are stronger for the class of convex 

optimization problems. The next subsection will introduce the basic definitions and 

some additional results for this class. We will also touch upon the concept of duality, 

which is of particular importance for convex problems. 

 

2.1.2 Convexity and Duality 
 

The following is a brief treatment of convex optimization and duality, mainly fol- 

lowing [27]. We start with a quick revision of basic definitions and properties. 

Definition 2.1.7 (Convex set [27, (p. 23)]). A set X ⊂ Rn is called convex if, for 

all x, y ∈ X and t ∈ [0, 1], the following holds: 

 
(1 − t)x + ty ∈ X . 

 
 
Definition 2.1.8 (Convex function [27, (3.1)]). A function f : X → R defined on 

a convex set X ⊂ Rn is called convex if, for any x, y ∈ X and for t ∈ [0, 1], 

 
(1 − t)f (x) + tf (y) ≥ f ((1 − t)x + ty) . 

 
If this holds with strict inequality for 0 < t < 1 and x /= y, then f is called strictly 

convex. 

There are a number of criteria that imply convexity of a differentiable function, 
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see for example [27, (p. 69ff.)], which are listed in the next lemma. 

 
Lemma 2.1.9. A function f is 

 
• convex if and only if ∇f (x)T(y − x) ≤ f (y) − f (x) for all x, y ∈ X. 

• strictly convex if and only if ∇f (x)T(y − x) < f (y) − f (x) for all x, y ∈ X 

with x /= y. 
 

• convex if and only if ∇2f (x) 0 for all x ∈ X. 

• strictly convex if ∇2f (x) 0 for all x ∈ X. 
 

Typical examples of convex (but not strictly convex) functions are affine functions 

and quadratic functions f (x) = xTAx for some matrix A 0 but A ';/ 0, while the 

same function for A 0 is strictly convex. 

We can apply the definitions of a convex function and a convex set to the NLP (2.1) 

to obtain a convex optimization problem, which has a number of useful properties. 

Definition 2.1.10 (Convex optimization problem). Regard the NLP (2.1). If the 

feasible set X is a convex set and the objective function f is convex on X, then (2.1) 

is called a convex optimization problem [67]. 

This leads to the question of when the feasible set is convex, which is answered 

by the following lemma, see also [27, (4.15)]. 

Lemma 2.1.11. The feasible set X defined by (2.1b) and (2.1c) is convex if ev- 

ery inequality constraint function gi, i ∈ I is convex and every equality constraint 

function hj, j ∈ E is affine. 

The next result is one of the most elementary and important results for convex 

optimization, see also [27, (p. 138)]. 

Theorem 2.1.12. If  x∗ is  a  local  solution  to  a  convex  optimization  problem,  then 
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it is also a global solution. 
 

With the above basics of convex optimization covered, we move on to the concept 

of duality. While this is not exclusive to convex problems, certain results which are 

relevant to this thesis are and we will therefore focus on the convex case for much 

of our discussion of duality. 

Let us recall the definition (2.8) of the Lagrangian function L(x, λ, µ) for the 

NLP (2.1). We have already seen that it plays a role in the necessary optimality 

conditions, but its significance for the NLP goes beyond that. Let us define the 

extended real-valued function p : Rn → R ∩ {∞} as 

 
p(x) := sup 

λ∈R|I|, λ≥0, µ∈R|E| 

= sup 
λ∈R|I|, λ≥0, µ∈R|E| 

L(x, λ, µ) 
 
f (x) + g(x)Tλ + h(x)Tµ . 

 

For a fixed x which is infeasible, so that gi(x) > 0 for at least one i or hj(x) /= 0 

for at least one j, we can make the Lagrangian arbitrarily large, which gives us 

p(x) = ∞. For a feasible x, on the other hand, the largest possible value of the 

weighted constraint terms is 0. We conclude that 

p(x) = 


f (x) if x ∈ X , 

∞ otherwise. 

Since we assume that the original NLP is feasible, the infimum of p is finite and the 

minimization problem (2.1) can also be written as an unconstrained minimization 

of p(x): 

min(2.1)  = inf p(x)  = inf sup L(x, λ, µ) . (2.11) 
x∈Rn x∈Rn λ≥0, µ 

We can obtain the dual of this problem [27, (5.16)] by swapping the inf and sup 

terms, giving us 
 

sup inf 
λ≥0, µ x∈Rn

 

L(x, λ, µ)  = sup 
λ≥0, µ 

d(λ, µ) . (2.12) 
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≤ 

Here, we have introduced d(λ, µ) := infx∈Rn L(x, λ, µ), which is called the dual 

function [27, (p. 216)]. Accordingly, (2.12) is called the dual problem. We refer to 

(2.11) analogously as the primal problem, and to p(x) as the primal function. In  

this context, we also call the optimization variables x the primal variables and the 

Lagrange multipliers (λ, µ) the dual variables [27, (p. 215)]. We say that (λ, µ) is 

feasible for the dual problem if λ ≥ 0. An essential relationship between p(x) and 

d(λ, µ) is that the latter gives a lower bound for the former and, conversely, the 

former is an upper bound for the latter. This is called weak duality [27, (p. 225)]. 

Theorem 2.1.13 (Weak duality). For any x feasible for (2.11) and (λ, µ) feasible 

for (2.12), we have that 

 
 

In particular, 

d(λ, µ) ≤ p(x) . 

 
 

d∗ :=   sup d(λ, µ) inf p(x) =: p∗ . 
λ≥0, µ x 

 
For primal and dual feasible (x, λ, µ), the difference between the primal and dual 

function values 

δ(x, λ, µ) := p(x) − d(λ, µ) ≥ 0 

is called the duality gap [27, (p. 226)].  The case δ  =  0 is called strong  duality  

[27, (ibid)]. A direct consequence of the weak duality theorem is that any feasible 

(x, λ, µ) at which strong duality holds is primal and dual optimal. More specifically, 

x is a global solution for the primal problem and (λ, µ) is a global dual solution. 

Trivially, the optimal values of the primal and dual functions are equal, i.e. p∗ = d∗, 

in this case. A point at which strong duality is obtained can also be characterized 

as a saddle-point of the Lagrangian, defined as follows: 
 

Definition 2.1.14. Let x̄ be primal feasible and λ̄ , µ̄ be dual feasible. The point 

(x̄, λ̄ , µ̄ ) is called a saddle-point  of the Lagrangian if it satisfies 

 
L(x̄, λ, µ) ≤ L(x̄, λ̄ , µ̄ ) ≤ L(x, λ̄ , µ̄ ) , 
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for all primal feasible x and dual feasible (λ, µ) [27, (p. 238)]. 

 
Strong duality does not generally hold at the optimal solution, not even for convex 

problems. However, by imposing the following condition on (2.1), we can guarantee 

that p∗ = d∗, see [27, (Section 5.2.3)]. 

Definition 2.1.15. We say that the optimization problem (2.1) satisfies Slater’s 

condition if there exists a x ∈ X which is strictly feasible with respect to the 

inequality constraints, i.e. 

g(x) < 0 . 
 
 
Theorem 2.1.16. Let (2.1) be convex. If Slater’s condition is satisfied, then strong 

duality holds at the solution of (2.1). 

For convex problems which have only inequality constraints, Slater’s condition 

doubles as a constraint qualification. What is more, it is a “global” CQ, meaning 

that from the existence of a single strictly feasible point it follows that a constraint 

qualification is satisfied at all feasible points. This is very convenient since it lets 

us apply the KKT conditions at every point in the feasible set. But even without 

Slater’s condition, the KKT conditions have special significance for convex problems: 

They are not only necessary – provided a CQ holds – but also sufficient optimality 

conditions, [27, (p. 244)]. 

Theorem 2.1.17. Let the NLP (2.1) be convex.  Any triple (x∗, λ∗, µ∗) that satisfies 

the KKT conditions (2.7) is primal and dual optimal with zero duality gap, i.e. 

 
sup 

λ≥0, µ 
d(λ, µ) = d(λ∗, µ∗) = p(x∗) = inf p(x) . 

x 

 
 

The takeaway from this section should be that, given a convex optimization prob- 

lem which satisfies Slater’s condition, solving it is equivalent to solving its dual. In 

some cases, the dual problem of a convex NLP can be formulated explicitly in the 
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form of a standard NLP, in which the primal variables take the role of Lagrange 

multipliers. It can sometimes be easier to solve this dual problem than the original 

one. Some optimization algorithms provide the Lagrange multipliers alongside the 

optimal solution, which means we can retrieve the primal solution from the dual 

solution. Each of the methods described in the next two sections belongs to this 

class of algorithms. 

 

2.1.3 Interior Point Methods 
 

At the time of writing, interior point (IP) methods are no doubt among the most 

popular solution methods for nonlinear optimization problems. They were first de- 

veloped as polynomial-in-time algorithms for linear programming in the 1980s, start- 

ing with the seminal paper by Karmarkar [72]. Soon after, it was shown in [55] that 

Karmarkar’s approach is closely connected to classical barrier methods. The latter 

had already been studied quite extensively about twenty years earlier [51], but had 

not received a lot of attention since. This was because their potential for fast con- 

vergence was not unlocked until Karmarkar’s contribution, which sparked renewed 

interest in the field. In the following years, the scope of IP methods was gradually 

extended beyond linear programming, first to quadratic and complementarity prob- 

lems, then to general convex problems [90], and finally to nonlinear programming 

[13]. Among the various different approaches that have been developed and stud- 

ied within the general IP framework, arguably the most popular are those grouped 

under the term primal-dual methods. 

This section gives a very basic introduction to primal-dual interior point methods 

for nonlinear optimization, covering only what is necessary for the specific algorithm 

proposed in Chapter 3 for the compliance minimization problem. For a more com- 

prehensive overview, we refer to [52] and the references therein. We also recommend 

the book by Wright [132], which is an excellent self-contained resource on primal- 

dual methods for linear programming and a good introduction to the IP concept in 
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x∈Rn 

  

−∞ 3 1→ − − 

general, since many concepts originally derived for the linear case have found their 

way into nonlinear algorithms. 

The basic idea behind IP methods is usually illustrated in one of two ways. The 

first is via logarithmic barrier functions, which provide a tool to approximate an 

inequality constrained problem by an unconstrained one. Given an NLP 

 
min{f (x) | gi(x) ≤ 0 ∀i ∈ I } , (2.13) 

 
with only inequality constraints, we replace it by the unconstrained minimization 

problem 

min 
x 

φs(x) , where φs(x) := f (x) − s ln(−gi(x)) . (2.14) 
i∈I 

The logarithmic barrier function1 φs with barrier parameter s > 0 is only defined for 

strictly feasible points. When x approaches the boundary of the feasible set, i.e. as 

gi(x) → 0 for one or more i, φs(x) goes to infinity. We can therefore guarantee that 

the solution of the barrier problem (2.14) lies in the interior of X – hence the name 

“interior point method”. Furthermore, by changing the value of s, we can specify 

how much φs deviates from f in the interior of X. As s goes to zero, φ(x) → f (x) 

for all strictly feasible x. If we denote by x(s) the solution of (2.14) for a given 

s > 0 and by x∗ the minimum of the original constrained problem (2.13), one might 

intuit that x(s) → x∗ as s → 0.  This supposition can be confirmed under relatively 

mild conditions, see for example [52, Theorem 3.10]. We have, in effect, replaced 

the inequality constrained problem (2.13) by a family of unconstrained problems, 

each member of which we can in theory solve by an unconstrained optimization 

algorithm, such as, for example, the Newton method [93]. 

 
Equality constraints can be incorporated into the approach by adding them to 

 

1In some places in the literature, the term “barrier function” is used to refer not to the entire 
objective function φs but only to the penalization function (      , 0)     g       ln(   g).  This seems 
to be a matter of preference. We chose our nomenclature for consistency with later sections. 
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(2.14). For the resulting system, 
 

min{φs(x) |  h(x) = 0 } , (2.15) 

 
the KKT conditions do not feature complementarity-related inequalities and are thus 

just a system of equations. As before, we can use the Newton method to obtain a 

solution, this time applied to the KKT system rather than just to ∇φs(x) = 0. Note 

that this approach, which is sometimes called the Lagrange-Newton method, is also 

an integral component of sequential quadratic programming (SQP) algorithms [93]. 

For this reason, the term “barrier-SQP methods” is sometimes used when applying 

it within the barrier method framework [52]. 

The IP methodology can alternatively be derived starting from the KKT con- 

ditions (2.7) for the NLP. Recall that the complementarity conditions (2.7c–2.7e) 

imply that gi(x)λi = 0 for all i ∈ I. We can relax these conditions by instead 

requiring −gi(x)λi = s for all i ∈ I for some s > 0. We choose the sign on the 

left-hand side so that the condition is viable for strictly feasible primal and dual 

points. Along with equations (2.7a) and (2.7b), we then get the perturbed KKT 

conditions [52, (p. 571)] 

 
∇L(x, λ, µ) = ∇f (x) + ∇g(x)λ + ∇h(x)µ = 0 , 

Λ g(x) = −s1 , 

h(x) = 0 , 

 

(2.16) 

 

where Λ = diag{λ} is a diagonal matrix of Lagrange multipliers and 1 is a vector 

of ones. We now have  a nonlinear system of equations of size n + |E| + |I| for  

the unknowns x, λ, and µ, which we can solve by the Newton method. This is 

equivalent to the system we obtain from the barrier method approach described 

earlier on. Indeed, while the Lagrange multipliers λ do not appear in the KKT 

conditions for (2.15), by the substitution λi := −s/gi(x) for all i ∈ I, we can obtain 

(2.16). In the Newton method, we solve a system obtained from a linearization of 

x 
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∇h(x)T 0 0 ∆µ h(x) 

(2.16) for the increments (∆x, ∆λ, ∆µ). The linear system is given by 
 


∇2L(x, λ, µ)  ∇g(x) ∇h(x)

 
∆x
 

∇L(x, λ, µ)


 

   Λ∇g(x)T G(x) 0  ∆λ = − Λ g(x) + s1 , (2.17) 

 

where G(x) := diag{g(x)}. Using a step size κ ∈ (0, 1], we update the  current 

solution by these increments: 

 
(x, λ, µ) ← (x, λ, µ) + κ(∆x, ∆λ, ∆µ) . (2.18) 

 
We then linearize (2.16) at this new iterate and repeat the procedure until some 

convergence criterion is satisfied. 

Just as we did for the minimizer x(s) of (2.14), we can denote the solution of 

(2.16) as a function of s. The map s 1→ (x(s), λ(s), µ(s)), with s > 0,  is called 

the central path. Given a monotonically decreasing sequence of sk → 0, we could 

attempt to find the points (x(sk), λ(sk), µ( sk)) on the central path, giving us a 

sequence that converges to a KKT point of (2.13). We could achieve this, for ex- 

ample, through solving (2.16) by the Newton method, using the previous solution 

(x(sk−1), λ(sk−1), µ(sk−1)) as the initial guess. While this is indeed the general idea 

behind the most prevalent class of IP methods – aptly called path-following methods 

– a linchpin of their efficiency is the realization that it suffices to follow the path 

closely, rather than trace it exactly. As a consequence, we do not run the Newton 

method until convergence for each sk, but only for a few – or even just a single – 

iteration. The Newton method is known for displaying quadratic convergence once 

the iterates get close enough to the exact solution, assuming that the norm of the 

Hessian is bounded [93]. As long as we choose the rate at which sk decreases ap- 

propriately, each solution for the kth Newton system will be sufficiently close to the 

solution of the (k + 1)th system that a few Newton iterations keep us close enough 

to the central path to ensure that, as sk → 0, the IP iterates (x(sk), λ(sk), µ(sk)) 
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¯ ¯ ¯ 

converge to a KKT point (x∗, λ∗, µ∗) of the original problem (2.1). 

 
A more detailed discussion of how to solve the Newton system is reserved for later 

sections. Since the system matrix is generally indefinite, it can be advantageous 

to reduce the system by block elimination to obtain a matrix more amenable to 

efficient solution methods. Section 3.1.1 describes an implementation of the IP 

method for the compliance minimization problem and the treatment of the Newton 

system arising from it. To stay within a certain neighbourhood of the central path, 

it is not even necessary to compute the Newton step to machine precision accuracy. 

Inexact IP methods, see for example [14, 36], use iterative solvers – briefly reviewed 

in Section 2.4.1 – which can reduce computational cost and be better suited to large- 

scale problems. Convergence proofs typically require that the accuracy of the solver 

is coupled to the progress of the IP iterations. 

One important aspect of primal-dual interior point methods still remains to be 

addressed, which is the choice of the step size κ in (2.18). A well-known result 

for the Newton method is that within a neighbourhood of a solution that satisfies 

certain regularity criteria, one can always choose the step size κ = 1 with guaranteed 

superlinear or even quadratic convergence to the solution. In our case, however, 

as s becomes smaller and we move closer to the boundary of X, taking the full 

Newton step will inevitably yield an iterate which is primal and/or dual infeasible, 

i.e. gi(x) > 0 or λi < 0 for some i. Not only is the objective function of the 

minimization problem (2.15), which motivated the IP approach, undefined outside 

the interior of X, but zero or negative values in the matrix blocks Λ or G in (2.17) 

can lead to complications when solving this system. For these reasons, κ is usually 

chosen such that the iterates always (just) remain strictly feasible. Finding such a 

value is not in general a trivial task, but in the special case of bound constraints of 

the form xi ≤ xi ≤ x̄i, with x, x̄ ∈ Rn, x < x̄, this is straightforward.  Note that we 

can also choose different step sizes κx, κλ, κµ for the different components of the 

iterate in (2.18). 
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Typical convergence results for IP methods show that the iterates converge to- 

wards a KKT point of (2.1) which is also a solution under suitable regularity condi- 

tions and if κ is reduced appropriately, see [52, (Section 5.1)] and references therein. 

The use of inexact Newton methods is justified by convergence analyses like that 

in [57], which examined a primal-dual method for nonlinear inequality and linear 

equality constraints and showed that superlinear convergence is guaranteed as long 

as the Newton system is solved approximately to within a certain accuracy. An 

issue that may arise in IP methods is that of ill-conditioning of the system matrix 

in (2.17) owing to values in both Λ and G approaching zero. While it is often much 

less of a problem than might be expected in practice [52], it proved to be a major 

drawback of the IP method for the minimum compliance problem as discussed in 

Chapter 3. A different class of methods which, for our case, manages to avoid this 

pitfall is described in the following section. 

 

2.1.4 Nonlinear Rescaling and Penalty-Barrier Multiplier 
Methods 

 
As mentioned in the previous section, IP methods and, in particular, classical barrier 

methods suffer from ill-conditioning of the Newton system matrix as the iterates 

approach the boundary of the feasible set X. To bypass this well-known problem, 

Polyak proposed so-called modified barrier function methods [100], see also [88, 56]. 

These are the basis for penalty-barrier multiplier methods which are employed in 

this thesis and we therefore include a brief introduction here. Regard once more the 

inequality constrained minimization problem (2.13). If we shift the boundary of the 

feasible set by a value equal to the barrier parameter s, we obtain the problem 

min{f (x) | g (x) ≤ s ⇔ 
gi(x) 

− 1 ≤ 0  ∀i ∈ I } . (2.19) 
 

x∈Rn s 
 
We can see that, if we applied the logarithmic barrier function to (2.19), giving 

us f (x) − s
 
i∈I ln(1 − gi(x)/s), it would prevent divergence at the boundary of 

i 
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s 

x∈Rn s 

the “un-shifted” feasible set X. Furthermore, because the constraints in (2.19) are 

themselves defined in terms of the barrier parameter, as s goes to zero, the shifted 

boundary approaches that of X. Next, consider another modified problem, 

min{f (x) | −s ln 
(

1 − 
gi(x)

) 
≤ 0  ∀i ∈ I } . (2.20) 

 
 

Observe that the feasible set of (2.20) coincides with X for all s > 0. The real 

significance of (2.20), however, becomes clear once we construct its Lagrangian 

 
F (x) := f (x) − s λi 

i∈I 
ln 
(

1 − 
gi(x)

) 
. (2.21) 

 

The above function is called the modified barrier function [100] for (2.13). It has  

an obvious similarity with the logarithmic barrier function for the shifted problem 

(2.19). Moreover, we can see from (2.21) that a KKT point for (2.20) also satisfies 

the KKT conditions for the original inequality constrained problem (2.13) and vice 

versa. For convex programs, this means that the former and the latter have the same 

solution for any s. In the non-convex case, there exists a s > 0 such that for all s > s, 
¯ ¯ 

a KKT point of the NLP is also a KKT point of (2.20) and F (x) is strictly convex 

[100]. It is therefore possible to obtain a KKT point for the original problem through 

an iterative process in which we fix the multipliers λi > 0, i ∈ I, solve ∇F (x) = 0 

and update the multipliers in an appropriate way. We can do this for a fixed s that 

is large enough, although it is preferable to define a sequence sk → 0, as this is 

necessary to achieve superlinear convergence. This basic approach is reminiscent of 

augmented Lagrangian methods [105, 106, 107] and, indeed, F (x) can be interpreted 

as an augmented Lagrangian function for the original problem (2.13). While it would 

be negligent to not mention this established class of optimization methods, any sort 

of proper treatment of augmented Lagrangian methods is beyond the scope of this 

thesis and we refer the interested reader to the book by Bertsekas [23]. 

 
The above technique can be generalized by considering a wider range of barrier 
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functions that share the salient features of (2.21). Such an approach has been inves- 

tigated both under the name of penalty-barrier multiplier (PBM) methods [17, 31], 

proposed by Ben-Tal and Zibulevsky, and in the context of nonlinear rescaling (NR) 

methods by Polyak and Teboulle [103]. Both frameworks are very similar and differ 

only in small details in the definition of the class of generalized barrier functions. 

Since our implementation uses a specific function that falls within the class of PBM 

functions, we will adhere to that nomenclature in the following. The same function 

has also been successfully used in the optimization software Pennon [76]. More re- 

cent results in the context of NR methods should however not go unmentioned. In 

particular, Griva and Polyak proposed an adaptive updating scheme for s, improv- 

ing convergence behaviour [60], and primal-dual NR methods were shown in [101, 

102] to achieve local quadratic convergence under certain regularity assumptions. 

We now give a brief description of the PBM method. For details on the theory, 

we refer to [15]. As before, we start by considering the inequality constrained min- 

imization problem (2.13). We will additionally assume that the problem is convex, 

meaning that both f and gi, i ∈ I are convex functions. We rescale the inequalities 

as p ϕ (gi(x)/p) ≤ 0 with a penalty function1 ϕ and a penalty parameter p >  0, 

where ϕ belongs to a class of functions with the following properties: They are 

strictly increasing, twice differentiable, real-valued, strictly convex functions with 

domain (−∞, b), where 0 < b ≤ ∞ . Furthermore, they satisfy: 

(ϕ1) ϕ(0) = 0 

 
(ϕ2) ϕ (0) = 1 

 
(ϕ3) lim ϕ (s) = 

s→b 
 

(ϕ4) lim 
s→−∞ 

ϕ (s) = 0. 
 

 

1The switch from “barrier” to “penalty” is made deliberately to underline that we no longer restrict 
ourselves to functions that enforce strict feasibility. 

∞ 
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x∈Rn p 

λi = λi ϕ 
p(k) 

For all such penalty functions, the rescaled problem 

min{f (x) | p ϕ 
(

gi(x)
) 

≤ 0,  i = 1, . . . , m} (2.22) 

retains convexity and has the same feasible set and the same solution as (2.13), since 

a KKT point for either problem is also a KKT point for the other due to properties 

(ϕ1) and (ϕ2). Formulating a standard Lagrangian function of the rescaled problem 

gives us the following augmented Lagrangian function for the original problem (2.13): 

Lp(x; λ) := f (x) + 

 
  

i=1 

 
λip ϕ 

(
gi(x)

)
 

 

 

 
. (2.23) 

 

It can be shown that Lp is strictly convex in x for any λ > 0 and p > 0. 

 
The iterative scheme of the PBM method is as follows: For fixed p > 0 and λ > 0, 

we want to determine a vector x that satisfies the KKT conditions for the rescaled 

problem. We do this by setting ∇xLp(x; λ) = 0. Since L is strictly convex in x, this 

is equivalent to minimising it with respect to x. Similarly to the IP method, we do 

not actually require the exact solution of this subproblem. It suffices to get “close” 

to it. Following this, we update the Lagrange multipliers and penalty parameter. 

This constitutes one iteration of the PBM method, the details of which are: 

 
Step 1. x(k+1)  ≈ arg min Lp(k) (x; λ(k)) (2.24a) 

 

 
Step 2. 

 
 

(k+1) 

 
 

(k)   
(

gi(x(k+1))
) 

(2.24b) 
 
 

Step 3. p(k+1)  = π(k)p(k) . (2.24c) 
 

Here, π(k) < 1 is a penalty updating factor which can generally be different for 

each iteration.  In Step 1,  we run the Newton method until  /I∇x Lp(x; λ)/I2  ≤  ε(k), 

where ε(k) is some prescribed tolerance, typically determined by the progress of the 

algorithm.  If we choose a penalty function with b = ∞, we no longer run into the 

p 

m 

x 
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p 

2 2 

2 

x 

+ 

4 8 2 

2 2 

problem of full Newton steps resulting in infeasible iterates, as observed for the IP 

method. The step size can therefore be chosen by a standard line search strategy, 

for example by imposing the Armijo condition [93]. If the PBM method converges, 

it finds a KKT point for the original convex NLP with inequality constraints – and 

thus a primal-dual optimal solution. 

For the Newton method in Step 1 of the PBM algorithm, we require the gradient 

and Hessian of the augmented Lagrangian with respect to x. These are given by 

 
∇x Lp(x; λ) = ∇x 

 
f (x) + 

 
  

i=1 

 
λiϕ  

(
gi(x)

) 
∇  

gi(x) (2.25) 

 

and  
∇ L (x; λ) =∇ f (x) + 

 
 

 
λi ϕ   

(
gi(x)

) 
∇ 

 
 
g (x)(∇ 

 
 
g (x))T 

x p x p 
i=1 p x  i x i 

(2.26) 
 

 
+

 
λ ϕ  

(
gi(x)

)
 ∇ g (x) , 

i 
i=1 

p x i 

 

where we have used ∇2 = ∇xx to denote the Hessian with respect to x. Note that, 

due to the convexity of the rescaled problem (2.22), the Hessian of Lp is positive 

semidefinite for any x ∈ Rn and λ ∈ Rm. 

While many candidates meet the definition of a penalty function given by (ϕ1)– 

(ϕ4), one particular choice for ϕ, found for example in [17], proved to be particularly 

efficient in our numerical trials: 

−1  log(−2τ ) − 3  , if τ  < −1  , 

  
τ + 1 τ 2 , if τ  ≥ −1  . 

 

This function combines properties of a quadratic penalty function and the logarith- 

mic barrier function, which motivates the nomenclature “penalty-barrier function”. 

The NR framework includes a similar type of function, see for example [59]. The 

main difference to (2.27) is that the quadratic branch of the NR penalty function 

(2.27) ϕ(τ ) = 

m 

m 

m 

x 
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sym i,j=1 

needs to lie completely outside the feasible set. While this is a requirement for the 

convergence analysis in [59] and the related papers [101, 102], we observed slightly 

faster and more reliable convergence behaviour for (2.27). 

 
 

2.2 Finite Element Method for Linear Elasticity 
 

Consider a continuum of linearly elastic material, described by a domain Ω in Rd with 

Lipschitz boundary Γ, where d is either 2 or 3. Assume that a mechanical scenario 

is specified on this domain, defined by the material properties of the continuum 

and by boundary conditions; the latter comprise forces on some part Γf /= ∅ of 

the boundary and prescribed zero deformation (due to bearings) on another part 

Γu /= ∅, which we assume to have a non-empty relative interior. The boundary 

subsets Γf and Γu are disjoint and Γf ∪ Γu = Γ. For simplicity’s sake, we do not 

consider body forces over Ω or prescribed non-zero deformation on the boundary. 

We assume that deformations are small enough that we do not need to differentiate 

between a current and a reference configuration, which means that a material point’s 

location is approximately the same before and after deformation and is defined by 

a single point x ∈ Ω somewhere in the closure of the domain – as opposed to two 

points, one in the reference domain,  the other in the current domain.  Now,  let 

f : Γf → Rd denote the boundary forces,  or loads,  and let us use u : Ω → Rd 

to denote the displacement u(x) of a material point located at x ∈ Ω. Finally, 

the state of stress at each point in the domain is quantified by the stress tensor 

T : Ω → Rd×d , T = [ τij ]3 . For the purpose of this brief introduction, we will 

ignore the distinction between a second order tensor and its matrix representation. 

The displacements and stresses in the domain have to satisfy the boundary value 
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problem 
 
 

div T = 0 on Ω , (2.28a) 

Tn = f on Γf , (2.28b) 

u ≡ 0 on Γu , (2.28c) 

 
where n is the outer surface normal on the domain boundary. System (2.28a) 

enforces static equilibrium everywhere in Ω and (2.28b) and (2.28c) are the boundary 

conditions according to the prescribed mechanical model. In order to obtain a well- 

posed problem, we need to link the state of stress to the state of deformation. The 

latter is characterized by the (small) strain tensor 

 
E(u) = [ εij ]3 :=

 
1 
( 

∂ui ∂uj 
) 3 

i,j=1 2 ∂xj ∂xi i,j=1 
 

which is evidently symmetric. Hooke’s law relates E to the stresses at each point 

x ∈ Ω by the linear constitutive equation 

 
T(x)  = C[E(u(x))] . (2.29) 

 

Here, C is the fourth order elasticity tensor which maps the second order strain 

tensor to the second order stress tensor. Based on energy considerations, it can be 

shown to have the following important property. 

Lemma 2.2.1. The fourth order elasticity tensor for linearly elastic materials C ∈ 

Rd×d×d×d is symmetric in that 
 

X • C[Y] = Y • C[X] 

 
for any two second order tensors X, Y ∈ Rd×d. 

Proof. See for example [89, (Chapter 3.2)]. 

+ 
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We further assume that C is uniformly positive definite, i.e., there exists a c0 > 0 

such that 
 

X • C[X] ≥ c0 
 

for any X /= 0. 
 

With (2.28) and (2.29), we now have a well-posed boundary value problem in the 

displacements. We call the solution u classical solution. The requirements on this 

solution in terms of differentiability are rather strict: the displacements need to be 

twice continuously differentiable everywhere in the domain, i.e., u ∈ [C2(Ω)]d. We 

can ease these requirements by employing variational formulations, which we will 

now derive. Let us assume for the moment that the displacements and boundary 

forces are “smooth enough”. Furthermore, we assume that u is geometrically admis- 

sible, i.e. it satisfies the boundary conditions (2.28c). If we take the inner product of 

both sides of (2.28a) with the displacements u, then integrate over Ω using Green’s 

identity, we arrive at 

r

Ω 
T • E(u) dΩ = 

r

Γf 

f · u dΓ + 
r

Γu 

(Tn) · u dΓ , (2.30) 

where “·” is the inner vector product. The above equation illustrates the principle 

of virtual work, which states that the work done by the internal forces equals that 

done by the external forces. Let us compare u to a displacement field which deviates 

from u in Ω but is also admissible. Such a displacement field is given by u + v for 

any v which is zero on Γu. Equation (2.30) still holds if we substitute u by u + v. 

If we subtract from this the original equation (2.30), we can see that 

r

Ω 
T • E(v) dΩ − 

r

Γf 

f · v dΓ = 0 , (2.31) 

which holds for any v which vanishes on Γu (and for which the integrals are defined). 

Recall that a classical solution u∗ satisfies the constitutive equation (2.29) every- 

where in Ω.  Since C is symmetric and positive definite, we can define a potential 
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Ω Γf 

energy term  
Π(u) := 

1
 

2 
E(u) • C[E(u)] dΩ − 

r
 

 

  

 
f · u dΓ , (2.32) 

called the potential energy of the elastic body, and view the left-hand side of (2.31) 

as a variation of Π at u∗ in the direction v. Then, (2.31) implies that the classical 

solution is a critical point of the potential energy Π. In fact, it can be shown that 

u∗ minimizes Π over the set of all geometrically admissible displacements, a result 

commonly referred to as the principle of minimum potential energy. 

The variational equation (2.31) with T = C[E(u)] offers an alternative character- 

ization of a solution to the boundary value problem. Importantly, this solution does 

not need to satisfy the same differentiability requirements as for the set of partial 

differential equations (2.28), so that it can be chosen from a larger function space. In 
particular, we consider the Sobolev space V  = {v |  

J
Ω v(x)   dΩ+ 

J   
/I∇v(x)/I   dΩ < 

2 2 
  

∞} ∩ {v | v ≡ 0 on Γu} and define V := [V]d. We assume the boundary forces are 

square integrable, i.e. f ∈ [L2]d. This leads to the weak formulation of the boundary 

value problem 

 

Find u ∈ V s.t.  (2.33) r 
E(v) • C[E(u)] dΩ − 

r 
f · v dΓ = 0 ∀v ∈ V . 

 

If u∗ solves the above problem, it is called a weak solution. Any classical solution 

is also a weak solution, but the reverse only holds if the weak solution is smooth 

enough. The functions v ∈ V , which we interpreted as variations of u in the principle 

of minimum potential energy, are called test functions in the context of the weak 

formulation. An important question is whether (2.33) always has a solution and 

whether it is unique, which is answered by the following result. 

Theorem 2.2.2. The weak formulation (2.33) of the boundary value problem has a 

unique solution. 

2 Ω 

Γf Ω 

r 
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2 
2 

2 

V 

J 

Ω 

Proof. We refer the reader to [89, (Chapter 7)] for a complete proof and only high- 

light a few important points. For this, we will need the following norm for functions 

v ∈ V : 

/Iv/IV 
 
:= 

Ω 

/Iv/I2  dΩ + 
r
 

 

 
/I∇v/I2 dΩ . 

 

The analysis of (2.33) is based on Korn’s inequality, see for example [44, (Chapter 

3, §3.3)] or [89, (Chapter 6.3)], from which it follows that the bilinear form 

(v, u) 1→ 
r 

E(v) • E(u) dΩ 

 

satisfies  
α/Iv/I2 ≤ 

r 
E(v) • E(v) dΩ 

 

 
 

for any v ∈ V and a constant α > 0 which is independent of v. A bilinear form 

which satisfies the above inequality is called V -elliptic. Because C is symmetric, see 

Lemma 2.2.1, and positive definite, the V -ellipticity extends to the bilinear form 

Ω E(v) • C[E(u)], see [89, (Chapter 7)].  The uniqueness of the solution of (2.33) 

is then a consequence of the Lax-Milgram theorem, see for example [40, (Theorem 

1.1.3)] or [81, (Theorem 5.1.1)]. 
 
 

The weak formulation is the basis for the finite element method, which provides a 

consistent and efficient approach to finding an approximate solution of (2.33). For 

this, we confine ourselves to a finite-dimensional subspace Vh which approximates 

V . To motivate the particular subspace we will use, we need to first introduce a 

discretization of the domain Ω. 

We divide Ω into a finite number of convex polyhedra, called elements, thus 

creating a mesh or grid Ωh. We limit our discussion to quadrilateral (d = 2) and 

hexahedral (d = 3) elements, although other choices are possible and common in 

other applications. The vertices of the polyhedra are called nodes. We assume 

that any two adjacent elements share exactly one face and that no node lies in 

Ω 

Ω 

r 
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i=1 

N 
1   
. 
 vi(x) = vi,kφk(x) with  

the interior of an element’s face, (i.e. we do not consider higher-order or non- 

conforming elements). The nodes along the boundary Γh of the mesh Ωh lie on  

Γ, although, depending on the geometry of Γ, the polyhedral boundary Γh might 

obviously not coincide with Γ everywhere, but only approximate it. We assume 

that our mesh conforms in the same way to the boundaries Γu and Γf and refer  

to the corresponding parts of the mesh boundary as Γu,h and Γf,h, respectively. A 

quick note for clarification: the subscript h is commonly used because it denotes 

some measure of the mesh resolution, such as the maximum edge-length or element- 

area/volume in the mesh. For later reference, let m denote the number of elements 

in the mesh and let N be the number of nodes. 

Turning back to our search for an appropriate Vh, we consider the space V of 

piecewise bilinear (in two dimensions) or piecewise trilinear (in three dimensions) 

functions which are continuously differentiable in the interior of each element. Let 

us denote the locations of the mesh nodes by xi for i = 1, . . . , N . As a basis of our 

function space, we choose φi(x) for i = 1, . . . , N , such that φi(xj) = δij, where δij 

is the Kronecker delta, and which are identically equal to zero outside of elements 

which are adjacent to the node xi. Every function f ∈ V can then be written in 

terms of its values fi := f (xi) at the nodes, namely by f (x) =  
  N  fiφi(x).  We 

will use V to construct the function space Vh. Furthermore, to stay consistent with 

V , we want all functions in Vh to vanish on Γu,h. We can easily achieve this by 

setting the corresponding nodal coefficients to zero. In summary, we define 


 

v  
   




 

Vh := 


v =  .  : k=1 .  
 vd

 vi,j = 0 if xj ∈ Γu,h , ∀i = 1, . . . , d 
 
 
Remark 2.2.3. We have only considered the case that all components of a vector- 

valued function in V vanish at Γu. This can be generalized to boundary conditions 

which require only some components to be zero on Γu and, further, to several dis- 
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joint subsets of Γu, each associated with boundary conditions on a different set of 

components. On such a subset of Γu on which not all components of u are fixed, 

we can then even prescribe a load that lies in the range of the remaining degrees 

of freedom. This leads to some technical but straightforward adjustments of the 

function spaces V and Vh, which we omit for ease of presentation. 

Now that we have defined a function space that the approximate solution should 

be taken from, we can reformulate (2.33) as follows: 

 

Find uh ∈ Vh ⊂ V s.t.  (2.34) 
r

Ωh

 
E(vh) • C[E(uh)] dΩ − 

r
 
 
 

Γf,h 

f · vh dΓ = 0 ∀vh ∈ Vh . 

 

Since we can express uh and vh as linear combinations of basis functions, it is possible 

to  write  (2.34)  using  matrix–vector  multiplications.  Let  us  define  a  vector  û that 

contains all nodal coefficients of uh, ordered first by node then by component, i.e. 

û := ((uh)1,1, (uh)2,1, . . . , (uh)d,N )T, and let us define v̂ analogously.  In these vectors, 

we do not include those coefficients which are identically equal zero due to boundary 

conditions. We denote by n the length of these vectors. In other words, n is the 

number of degrees of freedom in problem (2.34). Lastly, we define vectors φi(x) ∈ Rd 

for i = 1, . . . , n in such a way that we can write uh(x) = [φ1(x), . . . , φn(x)] û and 

vh(x) = [φ1(x), . . . , φn(x)] v̂.  Equation (2.34) is then equivalent to 
 
 

v̂TKû − v̂Tf̂ = 0 ∀v̂ ∈ Rn , (2.35) 

where K ∈ Rn×n is the stiffness matrix, given by 

Kij := 
r

Ωh  

E(φi) • C[E(φj )] dΩ for i, j = 1, . . . , n , (2.36) 

and f̂  is the nodal load vector, defined as 

f̂i  := 
r

Γf,h  

f · φi  dΓ for i = 1, . . . , n . (2.37) 
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h 

e=1 

J 

• 

Because  (2.35)  needs  to  hold  for  any  v̂ 

equations 

∈ Rn, it is equivalent to the system of 

Kû = f̂ . (2.38) 

 
Due to our specific choice of basis functions, this linear system can be efficiently 

set up and solved. To compute the stiffness matrix and the load vector, we need 

to compute the integrals (2.36) and (2.37), respectively. This is done element by 

element. For instance, we define an elemental stiffness matrix Ke ∈ Rn for each 

element with index e = 1, . . . , m by 

(Ke)ij := 
r
 
 

E(φi) C[E(φj )] dΩ for i, j = 1, . . . , n , (2.39) 
e 
h 

 

where Ωe is the part of the domain taken up by the eth element. Since the only 

basis functions that are non-zero on element e are those which correspond to the 

element’s nodes, Ke is extremely sparse. FEM implementations typically use an 

incidence matrix, which allows us to know a priori which basis functions to consider 

for each element. Computing the integral numerically, for example by Gaussian 

quadrature rule with 2 points per problem dimension, can therefore be done quite 

efficiently.  The global stiffness matrix is then simply assembled by K  =   
  m   Ke. 

Due to the localized support of each basis function, there is limited overlap between 

the elemental stiffness matrices and therefore K is sparse. Figure 2.1 shows an 

example of the sparsity structure for a regular three-dimensional mesh. 

Since the bilinear form Ω E(v) • C[E(u)] is V -elliptic, as discussed in the proof 

of Theorem 2.2.2, it is obviously also Vh-elliptic. As a consequence, K is symmetric 

positive definite and (2.38) has a unique solution, assuming the mechanical structure 

defined by the domain and boundary conditions is kinematically determinate. Each 

Ke is symmetric and positive semidefinite. Due to the positive definiteness and 

sparsity of K, system (2.38) can be solved efficiently, for example by iterative Krylov 

solvers, described in Section 2.4.1. 

Ω 
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Figure 2.1:  Regular, structured FE mesh with 4 4 4 cube-shaped elements and 
the sparsity structure of the corresponding stiffness matrix. 

 
An important theoretical result for the finite element method is that the principal 

of minimum potential energy extends to the FE discretization. Recall the definition 

(2.32) of the potential energy of the elastic body. For the discretized case, we get 

the following identity: 

 
Π(uh ) = 

1
 

2 

 
E(uh 

Ωh 
) • C[E(uh )] dΩ − 

r
 
 
 
 
Γf,h 

f · uh dΓ 

=  
1 
ûTKû f̂

T
û 

2 
=:  Π̂(û) . 

 

It  can  be  shown  that  the  solution  u∗
h  of  (2.34),  with  associated  nodal  vector 

minimizes Π over Vh, which can be written in a vectorized form as 

û∗, 

 

û∗ = arg min Π̂(û) = arg min  
1 
ûTKû − f̂

T
û . (2.40) 

û∈Rn û∈Rn  2 
 
 

For the sake of completeness, we provide a few more details on the elasticity tensor 

C. While it has d4 components overall, these can be reduced to only 2 independent 

variables for any isotropic material. In that case, which is the one we consider in this 

thesis, C can be expressed in terms of two material constants, for example the Young 

modulus E > 0 (not to be confused with the strain tensor E) and the Poisson ratio 

0 ≤ ν < 1 . In vectorized form, the strains and stresses then satisfy the constitutive 

y 

z 

r 
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for d = 2, where we assume a state of plane stress as opposed to plane strain, and 
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 ε33    ν  ν 1 
 τ33 

= C 1−ν 
 

1−ν    
   

 

12 2(1−ν)   12 

ε31 0 0 0 0 0 1−2ν 
2(1−ν) 

τ31 

 
where C =  E(1−ν) , for d = 3. The lower triangular elements of E and T are 

(1+ν)(1−2ν) 

defined by symmetry. The material constants need to satisfy certain conditions to 

ensure the invertibility of the elasticity tensor, see [89]. It can be assumed that all 

such criteria are met for the choices of E and ν used in our numerical experiments. 

In the following sections and chapters, we will only be interested in the FE approx- 

imation of the boundary value problem. Hence, we will take the terms displacements 

and loads to be synonymous with the corresponding nodal vectors. Furthermore, we 

will simplify our notation by using u and f for those vectors and generally omit the 

hat wherever it was used to distinguish the vectorized approximate form. Likewise, 

we will drop the subscript h from the discretized domain and boundary. 

Remark 2.2.4. While we did not cover the case of non-zero prescribed displacements 

at the boundary, we note that this can be incorporated into the presented approach 

as well. Similarly to boundary loads, such prescribed displacements lead to an 

integral over Γu,h which contributes to the vector f̂. 

 
Remark 2.2.5. We do not include any formal convergence analysis here and refer to 

the literature [40]. Subject to the regularity of the boundary value problem, one 

can usually expect the FE approximation to converge to the weak solution as h → 0 

ε 

τ12 2 ε12 

0 0 

 

 
 

0 0 0  
0 0 0  

0      0 0  
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with at least a linear rate. Under certain regularity assumptions, convergence of 

a higher order can be shown as well. For the problems we consider in this thesis, 

the mesh resolution is mainly dictated by the level of detail of the design we wish 

to model and we can generally assume that this resolution is fine enough to yield 

sufficiently accurate results for the displacements. 

 

2.2.1 Unilateral contact 
 

To conclude this section on the finite element method, we include a brief discussion 

of unilateral contact. Boundary conditions that account for obstacles in addition 

to merely prescribing fixed displacements along parts of the boundary Γ are an in- 

dispensable tool for more realistic modelling. As it will turn out, unilateral contact 

can be included in the FE model used in our optimization problem without too 

much additional effort, see Section 2.3.2. We provide here a pragmatic introduc- 

tion starting from the discretized problem, which is geared towards our application 

in topology optimization. Contact is assumed to be frictionless and obstacles are 

treated as rigid bodies. For a rigorous analytic treatment of both the exact prob- 

lem and the finite element discretization, as well as for more complicated contact 

modelling, such as for example contact with friction, bilateral contact, large defor- 

mations, and non-linearity, we refer to the literature – see for example [73, 69]. In 

particular, an analysis of the discretized contact constraints model which we employ 

can be found in [73, Section 6.4]. 

Consider once more the (discretized) domain Ω and its boundary Γ = Γu ∪ Γf . 

In addition, let us now assume the presence of some obstacle close enough to the 

boundary that it might impede the deformation we would see due to the prescribed 

loads. We will refer to the part of Γ which we expect to potentially come into contact 

with the obstacle as the contact surface (both for d = 2 and d = 3) and will denote  

it by Γc. We assume that Γ = Γu ∪ Γf ∪ Γc and that all three subsets are mutually 

disjoint1.  To ensure that none of the nodes xi, i ∈ {1, . . . , N }, which are on the 
1Since obstacles typically only restrict degrees of freedom in a single direction, we can weaken this 
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xi 

ni 

bi 

yi 

contact surface penetrate the obstacle’s boundary, we impose a contact constraint on 

each xi ∈ Γc. If we assume small deformations, we can approximate the 

boundary of the obstacle by its tangential plane at a point yi, which is the one 

closest to xi. This allows us to formulate the constraint by limiting the 

displacement of xi along the obstacle’s outer surface normal ni at yi. Figure 2.2 

illustrates the concept. If 
 

Figure 2.2: Node xi on contact surface Γc, closest point yi on the obstacle boundary, 
surface normal ni and initial gap bi. 

 
we denote by bi := (xi − yi)Tni the initial distance between xi and yi, and by ui 

the displacement vector for the node xi we can write the contact constraint as 
 

−nT
i  ui ≤ bi 

 
Next, let us define an index set for all contact nodes xi ∈ Γc: 

 
χ := {i : xi ∈ Γc} . (2.41) 

 
For each i ∈ χ, we have a corresponding point yi on the obstacle boundary and the 

assumption for component-wise boundary conditions, cf. Remark 2.2.3. 
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− 

C := [ci]i∈χ  ∈ Rn×|χ| , where ci := −ni , 

 

0 

surface normal ni at that point. We can arrange all ni in a matrix 
 

0  
 

  .   
 

   .    

 
such that the components of ni in ci line up with those of ui in the global displace- 

ment vector u1. If we further define the vector of gap distances b := (bi)i∈χ, we can 

collate all contact constraints in the expression 

 
CTu ≤ b . (2.42) 

 
Now that we have derived a set of contact constraints, we need to incorporate them 

into the finite element problem. Recall that the FE solution can be characterized 

by a minimization of the potential energy over the set of admissible displacements, 

see (2.40). In order to impose the constraints (2.42), we can include them in the 

definition of admissible displacements, which turns (2.40) into the constrained min- 

imization problem 

 
 

min 
CTu≤b 

 
Π(u) = min 

CTu≤b 

1 
uTKu f Tu . (2.43) 

2 
 

Where before, we could use the stationarity conditions for the unconstrained min- 

imization to derive the FE equilibrium equations (2.38), we must now employ the 

1Components corresponding to degrees of freedom fixed by the boundary conditions are excluded 
in ci just as they are in u. 
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KKT conditions, which gives us 
 

Ku = f − Cη , (2.44a) 

CTu ≤ b , (2.44b) 

η  ≥ 0 , (2.44c) 

ηT(CTu − b) = 0 . (2.44d) 

 
The above system provides necessary and sufficient conditions for a solution of (2.43), 

if we assume that the contact problem is feasible. Indeed, since Π is quadratic with 

Hessian K 0 and the contact constraints are linear, (2.43) is convex. Therefore, 

(2.44) are sufficient conditions. If a CQ holds, they are also necessary. For linear 

inequality constraints, Slater’s condition, see Definition 2.1.15, can be relaxed from 

requiring the existence of a strictly feasible point to a merely feasible point [27]. 

Since we assume feasibility, such a point exists. 

The Lagrange multipliers η in (2.44) permit an instructive physical interpretation: 

ηi is the magnitude of the contact force at yi. First, the complementarity conditions 

(2.44c) and (2.44d) imply that a reaction force can only exist in the case of contact, 

i.e.  when cT
i  u − bi = 0.  Second, the sign of Cη in the equilibrium equations (2.44a) 

indicates that the contact force is a compressive force which acts only in the normal 

direction, which is consistent with the assumption of frictionless contact. 

 
 
2.3 Minimum Compliance Topology Optimization 

 
This section introduces the optimization problem that is at the centre of this thesis. 

It is one of the numerous problems within the field of structural optimization. In the 

broadest sense, this term describes the search for a geometric design of a physical 

structure that is optimal with respect to some objective, while also being functional 

for its designated purpose and satisfying certain geometric or physical criteria. In our 

case, for example, the structure will be a mechanical part made of isotropic, linearly 
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elastic material that is subjected to a static load. The objective will be to maximize 

its stiffness, while constraints are introduced by enforcing static equilibrium and 

limiting the amount of available material. We will give a condensed overview of 

the area of structural optimization, to provide context for the subsequent detailed 

treatment of the so-called variable thickness sheet problem. The solution algorithms 

we propose in Chapter 3 for this particular problem take advantage of its specific 

structure and certain properties which will be discussed in the main part of this 

section. 

Structural optimization is commonly split into the three distinct categories of siz- 

ing, shape, and topology optimization1 [22], which correspond to different methodolo- 

gies of parameterising the geometric design of the structure. Sizing problems involve 

finding the optimal dimensioning of discrete elements at predefined locations within 

a structure, such as the thickness of bars in truss designs or the width and height of 

ridges. The geometric parameters through which the design is controlled are called 

design variables. In shape optimization, one modifies not just discrete features of 

the design, but rather the entire boundary, or parts thereof. Hence, the shape is de- 

fined by an infinite dimensional design variable. Finally, topology optimization also 

considers the placement of holes in the design and the connectivity of the boundary 

– unlike in shape optimization, where the topology is fixed. For this reason, topol- 

ogy optimization is also sometimes referred to as “Generalized Shape Optimization” 

[112]. 

For a thorough introduction to the subject, we refer to the much-cited book by 

Bendsøe and Sigmund [22], which is a comprehensive presentation of the field of 

topology optimization, as well as structural optimization in general, and includes an 

excellent survey of the literature. Furthermore, the lecture series edited by Rozvany 

and Lewiński [112] covers a lot of analytical aspects and includes a very instructive 

historical overview. 
1Terms such as design or optimal design in place of optimization are also common in this context. 
We will use these terms interchangeably throughout this thesis. 
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¯ 

An illustrative definition of topology optimization is “finding the optimal material 

distribution within a predefined domain”. Let us denote this domain, called design 

domain, by Ω £; Rd, where d ∈ {2, 3}. One of the first questions that arise in 

modelling our problem mathematically is how to parameterize the design topology. 

One possibility is to use an indicator function which distinguishes those parts of Ω 

which are “solid”, that is, filled with material, from those that are “void”. If we split 

up the design domain into the two disjoint subsets corresponding to solid and void 

regions, say, ΩS and Ω0, we can define an indicator function 

θ : Ω → {0, 1}, θ(x) = 


1, if x ∈ ΩS ,

 
0, if x ∈ Ω0 . 

It is this function θ which constitutes the (infinite dimensional) design variable. It 

describes the material distribution within the design domain. Numerical solution 

methods for topology optimization typically solve the problem on an FE discretiza- 

tion of Ω. We would therefore approximate θ by a piecewise constant function with 

a value assigned to each element in the mesh, thus turning the problem into a finite- 

dimensional one. Since the piecewise function can only take one of two distinct 

values, the resulting problem would be a discrete optimization problem, which is 

significantly more difficult to solve than a continuous optimization problem [93]. 

We avoid this issue by replacing θ by a smooth approximation ρ(x) : Ω → [0, 1]. 

Again, the values 0 and 1 correspond to void and solid regions of the design domain, 

but ρ(x) also permits intermediate values which correspond to “grey” areas. The 

point-wise values of ρ(x) do not always allow a strict physical interpretation, but 

are usually referred to as density. Depending on the context, it can be related to a 

porous micro-structure [21], for example, or the thickness of a sheet in two dimen- 

sions [110]. Especially in the latter case, the range of the density function might 

be  generalized  to  non-negative  lower  and  upper  bounds  0  ≤  ρ  ≤  ρ(x)  ≤  ρ̄ for  all 

x ∈ Ω, with an upper bound ρ̄ for the thickness that is larger than 1.  Note that we 

will nevertheless use the common term “0 − 1 design” for a ρ that is equal to either 
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∈ 

ρ or ρ̄ everywhere in Ω. 
¯ 

 

The next question arising in the formulation of the optimization problem is that 

of the relationship between the density function ρ(x) and the material properties. 

Before we address this question, note that strategies for parameterising the material 

boundary which are not based on a material distribution function, such as level-set 

methods [42], have also been investigated, see for example the references in [22]. 

As mentioned above, the problem is discretized at this stage, even before any 

optimization methods come into play. This means we follow the “discretize-then- 

optimize” approach, as is usually the case in topology design applications, rather 

than the alternative “optimize-then-discretize”, which is more common, for example, 

in optimal control [66]. The FE discretization of the domain and the displacement 

function follows Section 2.2. The density function is approximated by a piecewise 

constant function: to each element with index i ∈ {1, . . . , m}, we assign a den- 

sity  value  ρi     [ρ, ρ̄].   Throughout  this  thesis,  we  will  mainly  deal  with  the  finite 
¯ 

dimensional problem obtained in this way. For a complete discussion of “exact”, 

infinite-dimensional structural optimization, including questions of existence of so- 

lutions and convergence of the discretized solution to the exact solution, see [22] and 

references therein. Some results specific to the virtual thickness sheet are referenced 

later in this section where appropriate. 

The first numerical implementation employing the concept of material distribu- 

tion was by Bendsøe and Kikuchi [21] and was based on homogenization of micro- 

structures. Arguably the most popular approach for approximating a 0 − 1 design 

by material distribution is the solid isotropic material with penalization (SIMP) ap- 

proach [18, 19], in which the local stiffness is interpolated between 0 and 1 by a 

non-decreasing polynomial. This leads to a penalization of “grey” areas and thus 

to nearly “black-and-white” designs. If instead one interpolates the stiffness linearly 

one obtains the so-called variable thickness sheet problem, which we consider in this 

thesis. Given an FE discretization of the design domain, we can generally express 
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2 

2 

the global stiffness matrix as a function of the element-wise densities 
 

Rm  3 ρ 1→ K(ρ) ∈ Rn×n , 

 
where ρ = [ρ1, . . . , ρm]T is the density vector. The function K(ρ) is chosen such 

that K(ρ) 0 if ρi > 0 for all i ∈ {1, . . . , m}. This ensures that the equilibrium 

equations have a unique solution for any ρ > 0. 

Having defined a parameterization of the topology and a mapping that connects it 

to material properties, we now turn towards formulating the optimization problem. 

Our objective is to minimize the work done by the external forces, which is given by 

1 f Tu. If we consider that u should satisfy the equilibrium equations (2.38), we can 

see that this is equivalent to minimising the internal strain energy 1 uTK(ρ)u. This 

can be interpreted as a measure for the overall compliance – the reciprocal of the 

stiffness – of the design. Hence, the terms compliance minimization or, equivalently, 

stiffness maximization are commonly applied to optimization problems involving 

this objective. 

 
Remark 2.3.1. We assume that the load vector f is not a function of the densi- 

ties ρ. This is an important assumption for all theoretical results in this section, 

in particular those regarding uniqueness of solutions. As a product of the FE dis- 

cretization, the components of f stem either from boundary integrals of prescribed 

loads over Γf or from integrals over elements that are connected to nodes with 

prescribed non-zero displacements, see Section 2.2. The local stiffness tensor, and 

thus the densities, factor only into the latter. Therefore, we can ensure that f is 

independent of ρ by only prescribing load boundary conditions and homogeneous 

displacement boundary conditions. For prescribed non-zero displacements on Γu, 

the vector f contains integrals over elements that are adjacent to Γu. By fixing the 

densities in these elements, we can therefore get a density-independent f even for 

inhomogeneous displacement boundary conditions. 



51  

≤ 

Remark 2.3.2. We also exclude the trivial case f = 0. As mentioned in [97], any 

density distribution that satisfies the volume constraint is a non-unique (and non- 

isolated) solution in those cases. 

We want to achieve maximum stiffness while limiting the amount of material, 

which we do by imposing a constraint on the overall mass as a function of ρ. Since in 

many applications, the densities are interpreted as an approximation of a 0−1 design, 

no strict distinction between mass and volume is drawn, so that the aforementioned 

constraint is commonly called volume constraint. For consistency with the majority 

of the literature, we stick to this terminology and denote the constraint by vol(ρ) = 

V , where V > 0 is the amount of volume (or mass) that we allow our design to 

take up and vol(ρ) is, in the most general terms, a weighted sum of the densities. 

Together with the bounds on each element density mentioned earlier, we obtain the 

minimum compliance problem in its most common form: 

 
 

min 
1 
f Tu (2.45a) 

 
 
 
 
 
 

¯ 
 

The vectors ρ and 
¯ 

ρ̄ contain  the  lower  and  upper  density  bounds,  which  can  in 

general be different for each element. All constraints on the density are chosen so 

that (2.45) is strictly feasible and physically plausible. First, we assume the bound 

constraints satisfy 0 ρ < 
¯ 

ρ̄.   Moreover,  the  volume  limit  V   >  0  should  be  a 

fraction of the total volume of the design domain, that is vol(ρ̄) > V , to avoid the 

trivial “all solid”  solution ρ = ρ̄.  It should obviously also satisfy vol(ρ) < V . 
¯ 

 
One might argue that the volume constraint (2.45c) should actually be an in- 

equality constraint, since we only require an upper bound on the material used in 

the design. It should however become obvious when considering the problem from 

ρ∈Rm,u∈Rn 2  

s.t. K(ρ) u = f , 
 
vol(ρ) = V , 
 
ρ ≤ ρ ≤ ρ̄ . 

(2.45b) 

(2.45c) 

(2.45d) 
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a physical point of view that any given design can always be made stiffer by adding 

more material at any point that is not yet solid. Therefore, no design that does not 

satisfy vol(ρ) ≤ V with equality is an optimal solution. For the special case of the 

variable thickness sheet, see Section 2.3.1, it can be shown that the problem with 

vol(ρ) = V is equivalent to that with vol(ρ) ≤ V , as the corresponding Lagrange 

multiplier is always non-negative at the optimal solution [6, (Proposition 3.2)]. 

We have introduced the minimum compliance topology optimization problem in a 

general form. It has a very straightforward physical interpretation, while neverthe- 

less presenting an objective that is relevant to practical applications [3]. Although 

it has been extensively studied, it remains prevalent in the literature not just for 

this reason, but also as it is a useful starting point for research on new or improved 

solution methods. See [85, 25, 128, 83, 1, 109, 80, 96] for just a few examples. For 

the rest of the section, we will focus our attention on the variable thickness sheet 

problem which results from a particular choice of the density-to-stiffness mapping 

ρ 1→ K(ρ). 

 
2.3.1 The Variable Thickness Sheet Problem 

 
First studied in the context of minimum compliance topology optimization in [110], 

the variable thickness sheet (VTS) problem traditionally consists of finding the op- 

timal thickness at each point of a two-dimensional sheet. It corresponds to (2.45) 

with specific choices of K(ρ) and vol(ρ), namely 
 

m 

0 ≤ ρ 1→ K(ρ) = ρiKi ∈ Rn×n , (2.46) 
i=1 

 

where Ki is the elemental stiffness matrix of the ith element for a thickness of 1, 

and 
m 

vol(ρ) = ρiai , (2.47) 
i=1 
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where ai is the area of the ith element – or its volume, in the three-dimensional 

case. As explained in Section 2.2, the elemental stiffness matrices Ki are all positive 

semidefinite and the global stiffness matrix K(1) is positive definite1. Since a differ- 

ent weighting in the assembly of all Ki in (2.46) does not change the range of the 

overall matrix, we can guarantee that K(ρ) c:: 0 as long as ρ ≥ 0 and, in particular, 

that K(ρ) 0 if ρ > 0. Substituting (2.46) and (2.47) into (2.45), we obtain the 

following problem: 

 
 
 

ρ∈Rm,u∈Rn 

 
 
 
 
 

ρ ≤ ρ ≤ ρ̄ , i = 1, . . . , m . (2.48d) 

This problem has several interesting and useful properties, some of which will be 

discussed in this section. Some hold for any choice of lower bounds ρ   0 for which 
¯ 

(2.48) is feasible, others require a non-zero lower bound on the density everywhere. 

The latter is true for a result concerning uniqueness of the solution of (2.48). The 

same result also relies on a further assumption which we highlight once more, namely 

that the load vector f is not a function of the design variables, see Remark  2.3.1. 

Indeed, practical examples can be given for non-unique density solutions for ρ > 0 
¯ 

and f = f (ρ), see [98]. 

 
The relevance of the variable thicknees sheet problem extends beyond the applica- 

tion that gave it its name. In the discretized form (2.48), it has strong similarities to 

compliance minimization in truss topology optimization, since the design variables 

map linearly to the stiffness matrix [22, (Section 1.5.2)]. As a consequence, many 

important results for the latter can be directly applied to (2.48). 

1as long as the boundary conditions guarantee that the mechanical scenario is kinematically de- 
terminate, which we assume unless otherwise specified 

¯ 

min 
1 
f Tu 2 (2.48a) 

 
s.t. 

m   
ρiKi u = f , 

 
(2.48b) 

 i=1  

 m   
ρiai = V , (2.48c) 

 i=1  
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Furthermore, our problem corresponds to a special case of free material optimiza- 

tion, in which the stiffness tensor is the design variable rather than ρ. The result 

will generally represent an inhomogeneous, anisotropic material optimized for the 

principal stress directions due to the given load cases [22]. In order to impose some 

kind of limit on the amount of material used at each point of the design, one can 

introduce ρ as a globally limited resource and use it as a local upper bound on either 

the trace or the Frobenius norm of the stiffness tensor. For both choices, the optimal 

local stiffness tensor can be determined analytically in terms of ρ in the special case 

of a single load case. This simplifies the problem such that it corresponds to the 

VTS problem for a material with a zero Poisson ratio [138]. 

Finally, the VTS formulation can also be interpreted as a particularly simple 

modelling of a 0 − 1 design problem. On the one hand, nonlinear mappings K(ρ) are 

more widespread for this purpose, in particular the SIMP approach [22, 18], more 

recently used in conjunction with a relaxed Heaviside projection [50, 126]. Such 

mappings effectively avoid large “grey” areas of intermediate density values. On the 

other hand, the much simpler structure of the VTS problem allows for the use of 

much more efficient solution algorithms. It can therefore at the very least be used 

to provide a lower bound on the minimum compliance, obtainable at comparatively 

low computational cost. 

We now turn our attention to a number of theoretical results for the VTS problem. 

We first study the existence and uniqueness of solutions. We then devote a part 

of this section to equivalent formulations which can be interpreted as the dual of 

(2.48). These are of special importance for an efficient solution algorithm proposed 

in Chapter 3. Note that most results given in this section are not new contributions. 

We merely present and prove them in a way that is tailored to our specific problem, 

giving references to the original sources where appropriate. 

Existence and uniqueness results for the infinite-dimensional, or “exact”, VTS 

problem are summarized in [22, (p. 272–274)]. The existence of a solution for ρ > 0 
¯ 
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2 

2 

is a standard result in optimal control [38].  It can be extended to ρ 0 by using 
¯ 

a min-max formulation of the problem [22, (ibid)], similar to that employed further 

below for the discretized case. Furthermore, Petersson [97] showed that, for ρ > 0, 
¯ 

the displacements are unique, although the densities may not be. For the finite- 

dimensional VTS problem and under mild assumptions, we will show that a solution 

exists and both the optimal displacements and densities are unique. 

The starting point for all major results in this section is a reformulation of (2.48) 

as a saddle point problem. It forms the basis of many theoretical existence and 

uniqueness results, both in finite and infinite dimensions, see, e.g. [97]. We  lay 

it out in the following lemma, which covers the case ρ     0.  Note that K(ρ) can 
¯ 

become singular if ρi = 0 for some i = 1, . . . , m and thus have a non-trivial null 
¯ 

space. Our uniqueness theorem later in this section will require ρ > 0. 
¯ 

 
Lemma 2.3.3. Assume that there exists at least one ρ feasible for (2.48) such that 

f is in the range of K(ρ). Then, (2.48) is equivalent to the saddle point problem 
 
 

min 
ρ≤ρ≤ρ̄ 

 
max 
u∈Rn 

f Tu 
1 

uTK(ρ)u . (2.49) 
2 

m̄ 
i=1 ρiai=V 

 

Proof. The proof we give here can also be found in [16] as part of the proof of 

Theorem 1.  For  any  fixed,  feasible ρ,  the matrix K(ρ) is by  assumption positive 

semidefinite. The function f Tu − 1 uTK(ρ)u is therefore concave in u. In order for 

the supremum 

s(ρ) := sup f Tu − 
1 

uTK(ρ)u 
u∈Rn 2 

to be attained at some u∗, this vector needs to satisfy the necessary and sufficient 

optimality condition K(ρ)u∗ = f . The maximal value in that case is 1 f Tu∗. If, 

on the other hand, the supremum cannot be attained for the chosen ρ, then it is 

because f lies in the non-trivial null space of K(ρ) and we can choose u as any 

element of that null space to make f Tu − 1 uTK(ρ)u = f Tu /= 0 arbitrarily large. 

Since, by our assumption, there is at least one ρ such that f does not lie in the null 
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i=1 

space of K(ρ), the problem  
 

min 
ρ≤ρ≤ρ̄ 

 
 
s(ρ) 

m̄ 
i=1 ρiai=V 

is well defined and we can write “max” rather than “sup” in s(ρ), giving us (2.49). We 

can then use the optimality condition K(ρ)u = f to resolve the inner maximization 

and show that it is indeed equivalent to problem (2.48). 

 
Recall that the term Π∗(ρ) = minu 1 uTK(ρ)u − f Tu is the potential energy of 

the elastic body at equilibrium, as shown in Section 2.2. If we switch the sign of the 

objective function in (2.49), and thereby turn the min-max into a max-min problem, 

we can see that compliance minimization can be viewed as a maximization of Π∗ 

over all feasible designs. At the same time, compliance minimization is equivalent 

to stiffness maximization. For this reason, the potential energy is often, although 

somewhat vaguely, interpreted as a measure of stiffness. 

An important property of (2.49) is that the inner maximum can be interpreted as 

a convex function of ρ. This leads to the following lemma, which can also be found 

in [4]. 

Lemma 2.3.4. The saddle point problem (2.49) is equivalent to a convex minimiza- 

tion problem in ρ. 

 
Proof. Let us denote the objective function of the saddle point problem as 

 

f (ρ) := f Tu −
 1 

uTK(ρ)u = f Tu −
 1 

ρ 
(
uTK u

 
, 

 

that is,  we view it as a family of functions in the variable ρ.  For any ū ∈ Rn, the 

function fū (ρ) is linear and thus convex in ρ.  The point-wise maximum of a finite 

or infinite number of convex functions is also convex [68, (Proposition B.2.1.2)]. In 
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2 

− 
  

other words, if we denote the inner maximum of (2.49) by 
 
 

1 s(ρ) := max f Tu − uTK(ρ)u = max f 
 
(ρ) , 

u∈Rn 2 
u 

u∈Rn 

then the function s(ρ) is convex. Furthermore, (2.49) can be written as 
 
 

min 
ρ∈Rm 

s.t. 

 
 

s(ρ) 
m 

ρiai = V 
i=1 

 

ρ ≤ ρ ≤ ρ̄ . 
 

 

The volume and bound constraints define a convex polyhedral feasible set which, 

together with the convex objective function, gives us a convex optimization problem. 

 
 

For later reference, we apply the standard optimality conditions discussed in Sec- 

tion 2.1.1 to (2.48). Matching the general nonlinear optimization notation in (2.2) to 

that in (2.48), we have the optimization variables x = (ρ, u), the objective function 

f (x) = f (ρ, u) = 1 f Tu, the inequality constraint functions g(ρ, u){i=1,...,m} = 

ρ −  ρ̄ and g(ρ, u){i=m+1,...,2m} = ρ ρ, and the equality constraint functions 
¯ 

h(ρ, u){1,...,n}  =  K(ρ)u − f  and  hn+1(ρ, u) = ρiai − V . We omit the displace- 

ments u from the notation of the active set A(ρ), since they are not featured in the 

inequality constraints. The gradients for the constraint functions are 

∇g(ρ, u) = 

 
I −I

l 

and ∇h(ρ, u) = 

 
B(u)T a

l 

, (2.50) 

where a = (a1, . . . , am)T is the vector of element areas/volumes and the short hand 

notation 

B(u) := [K1u, . . . , Kmu] 
 

has been introduced for readability. Also note that we have used the symmetry of 

¯ 

0 0 K(ρ) 0 
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T

 

− 

¯ 
1 

− 

1 

¯ ¯ 

¯ 

K(ρ). We can now set up the KKT conditions for the VTS problem. Let us denote 

the Lagrange multipliers for the different sets of constraints in the VTS problem by 

µ, λ, r and r̄, so that the Lagrangian is given by 
¯ 

 
L(ρ, u, µ, λ, r, r̄) = f (ρ, u) + h(ρ, u) 

¯ 
T

 
µ
  

 

 

 
r 

+ g(ρ, u) ¯ 
r̄  

= 
1 
f Tu + (K(ρ)u f )T µ 

2 

+ 
    

ρiai − V 
)
λ + (ρ − ρ̄)T r̄ + 

(
ρ − ρ

 T r . 

Accordingly, the KKT conditions comprise the constraints (2.48b) and (2.48c) and 

the following equations: 

 
∇ρL = B(u)Tµ + λa + r̄  − r  = 0 , (2.51a) 

 

∇uL = K(ρ)µ + 
2 
f = 0 , (2.51b) 

(ρ ρ̄)T r = 0 , (2.51c) ¯ 
(
ρ − ρ

 T r̄  
 

= 0 , (2.51d) 

(ρ̄ − ρ) , 
(
ρ − ρ

  
, r, r̄  ≥ 0 . (2.51e) 

Comparing (2.51b) and (2.48b), we can see that 
 

µ = −
2 

u . (2.52) 

 
This identity allows us to eliminate µ and the set of equations (2.51b), which greatly 

simplifies the task of solving the VTS problem numerically, see Section 3.1. In fact, 

the identity also holds for the general minimum compliance problem (2.45). It is a 

self-adjoint 1 problem, meaning that the adjoint variables µ are a scalar multiple of 

the displacements u. 

We now ask whether the constraint qualification from Definition 2.1.3 is satisfied 
 

1In the context of shape optimization and optimal control, see for example [112, 84], (2.48b) are 
called the state  equations  and u the state  variables,  while (2.51b) are the adjoint  equations  and  
µ the adjoint variables. 

¯ 

λ 

i 

¯ 
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at a solution candidate for (2.48). Beyond the first order optimality conditions, the 

LICQ is of importance in convergence results for some optimization algorithms, in 

particular the nonlinear rescaling methods discussed in Section 2.1.4. 

Lemma 2.3.5. Assume (ρ, u) is feasible for (2.48) and 0 < ρi < ρi < ρ̄i for at least 
¯ 

one i ∈ {1, . . . , m}. Then, the LICQ is satisfied at (ρ, u). 

 
Proof. We start by showing that the gradients ∇gi(ρ, u), i ∈ A(ρ), of active in- 

equality constraints are linearly independent and that ∇gA(ρ)(ρ, u) has full rank 

smaller than m. We omit the variables (ρ, u) in all functions for the rest of the 

proof. Because our problem is strictly feasible by assumption, i.e. ρ < ρ̄, no upper 
¯ 

and lower bound constraint on the same ρi can be active at the same time. There- 

fore, we have i ∈ A(ρ) ⇒ i + m ∈/ A(ρ) and vice versa, for all i ∈ {1, . . . , m}.  We 

can see from (2.50), that of any two linearly dependent columns in ∇g – so of each 

pair of positive and negative unity vectors – at most one can be present in ∇gA(ρ). 

The remaining columns are all linearly independent.  Furthermore, since at least one 

ρi is strictly feasible by our assumption, rank{∇gA(ρ)} = |A(ρ)| < m. 

We continue to assemble ∇h, ∇gA(ρ) , starting by adding the right most column 

of ∇h to ∇gA(ρ), which contains only the vector a > 0 in the upper block, see (2.50). 

Since, by the assumption that at least one ρi is strictly feasible, there is at least one 

zero row of ∇gA(ρ), and therefore one i ∈ {1, . . . , m} for which 
(
∇gA(ρ)v

 
i = 0Tv = 

0 /= ai for  any v 0.  Hence, the vector a is linearly independent of ∇gA(ρ). As for 

the remaining part of ∇h, we know that rank{[B, K]T} = n because K is positive 

definite. That it is linearly independent of the rest of ∇h, ∇gA(ρ) is evident from 

the fact that its column vectors are not coplanar with the other columns. Hence, 

 
∇h, ∇gA(ρ)

] 
has full rank |A(ρ)| + 1 + n ≤ m + n and the LICQ is satisfied. 

To show uniqueness of the solution of (2.48), we will make use of the second 

order sufficient conditions, see Theorem 2.1.6, which the following lemma tells us 

are satisfied at each solution of (2.48). 
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ρ u 

(ρ,u) 2 

 

ρ 

Lemma 2.3.6. If ρ > 0, every KKT point (ρ∗, u∗) of (2.48) satisfies the second 
¯ 

order sufficient optimality conditions (2.10) and is therefore an isolated local mini- 

mum. 

 
Proof. The first step is to construct the critical cone defined in (2.9). Let 

 

(ρ∗, u∗, µ∗, λ∗, r∗, r̄∗) 
¯ 

 
be a KKT tuple of the VTS problem.  The critical cone (ρ∗, u∗, r∗, r̄∗) is given by 

¯ 



  
B(u∗)   K(ρ∗)

l  
dρ
  

= 0 , 



 

aT 0 du   
 
 

  
d

 
 

 



= 0 ∀i : ρ∗
i  = ρ̄, r̄i

∗  > 0 or 


  

C  = d = 
d

  ∈ Rm+n :  
ρ∗
i  = ρ, ri

∗  > 0  


 
(dρ)i   ¯ ¯ 

∗ ∗   
≤ 0 ∀i : ρi  = ρ̄, r̄i  = 0 

 ≥ 0 ∀i : ρ∗
i  = ρ, ri

∗  = 0 
  

 
We will only need the first set of equations in the above set, which gives us 

 

 
B(u∗) dρ 

 
= −K(ρ∗) du ∀    

  
dρ  

     

∈ C . (2.53) 
 
 
 

Next,  we  need to construct the Hessian of  the Lagrangian. For the diagonal 

blocks,  we  have  ∇2L  =   0  and  ∇2L  =  0. The only non-zero parts are the off- 

diagonal blocks. The lower left block is ∇(u,ρ)L = [K1µ, . . . , Kmµ], the upper right 

block its transpose, due to symmetry. Using (2.52), the Hessian resolves to 

∇ L = −1 
    

0 B(u)T
l 

. 

 
 

Now let d = (dρ, du) ∈ C(ρ∗, u∗, r∗, r̄∗).  Multiplying the Hessian of the Lagrangian 

u 

du 

B(u) 0 

. 
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2 ρ u u 

by d from both sides and using (2.53), we get 

 
dT ∇2L d = −

1 (
dT B(u∗)T d + dT B(u∗) d 

= −
1 (

−dT K(ρ∗)T d 
u u − dT

u  K(ρ∗) du 
 

= dT
u  K(ρ∗) du . 

 
Since  0 < ρ ρ∗, we know that K(ρ∗) is positive definite. Thus, we have 

¯ 
 

dT ∇2L d = dT
u  K(ρ∗) du > 0 ∀ d ∈ C(ρ∗, u∗, r∗, r̄∗), d 0 , 

 
 

which concludes the proof. 
 
 

We can now combine all previous lemmas to show that the finite-dimensional 

VTS problem with non-zero lower density bounds has a unique solution under very 

reasonable assumptions. 
 

Theorem 2.3.7. Consider problem (2.48) for the case ρ > 0. Assume that a 
¯ 

solution (ρ∗, u∗) of (2.48) satisfies 

Then, the solution is unique. 

ρi  <  ρ∗
i   < 

¯ 
ρ̄i  for  at  least  one  i  ∈  {1, . . . , m}. 

 
 

Proof. According to Lemma 2.3.5, the LICQ is satisfied because there is at least 

one strictly feasible density ρ∗
i .  This, in turn, means that (ρ∗, u∗) satisfies the KKT 

conditions, so that, due to Lemma 2.3.6, it is an isolated solution. Lemma 2.3.3 

together with Lemma 2.3.4 therefore tell us that ρ∗ is an isolated local minimum of 

an equivalent convex problem. Since every local solution of a convex minimization 

problem is a global solution, the fact that it is isolated in this case means it is unique. 

Finally, because u∗ is uniquely defined by u∗ = K(ρ∗)−1f , the solution (ρ∗, u∗) of 

(2.48) is unique. 

 
The requirement of an optimal solution to contain at least one “grey” element 

is easily satisfied. All of our numerical examples show large areas of intermediate 

2 

ρ 
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density values, suggesting that these are a typical feature of optimal VTS designs. 

A strict 0 − 1 solution is more likely to be seen for a zero Poisson ratio, ν = 0. Even 

then, it is only possible if solid and (nearly) void elements in the design domain can 

sum up exactly to the volume constraint constant V , i.e.   there exists a subset of 

elements 1, . . . , m   such that ρ̄iai + ρiai = V .  If this is indeed the 
¯ 

case, a small perturbation of the volume constraint V + EV for a small enough EV will 

no longer allow a 0 − 1 solution for the perturbed VTS problem, thereby implying 

uniqueness of the solution. 

We have presented a uniqueness result for the variable thickness problem. Next, 

we will cover some duality results which will form the basis of a solution algorithm 

in Chapter 3. 

 
The dual VTS problem for a non-zero lower density bound 

In the following, we introduce an optimization problem which is equivalent to (2.48). 

We will show that the optimal solution of this problem provides an optimal solution 

for the VTS problem as well as the associated Lagrange multipliers. We will assume 

that the lower bounds ρ are strictly greater than 0. We consider the case ρ = 0 at 
¯ ¯ 

the end of the section. 
 

All of the following results are due to Achtziger et al. [6] and Ben-Tal and Bendsøe 

[16], as well as Klarbring, Petersson, and Rönnqvist [75] for the case of unilateral 

contact, which is discussed in Section 2.3.2. 

Following [16, 78] in the context of equivalent formulations for truss topology 
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optimization, we introduce the following minimization problem: 
 
 
 u∈Rn min 

 

 
∈Rm 

αV  − f Tu − ρTν + ρ̄T ν̄ (2.54a) 

, α  R, ν, ν̄ ¯ ¯ ¯ 
s.t. 

1 
uTK u ≤ α a − ν 

+ ν̄ , i = 1, . . . , m , (2.54b) 

 

νi ≥ 0, i = 1, . . . , m, (2.54c) 

ν̄i ≥ 0, i = 1, . . . , m . (2.54d) 

 
The next result can essentially be traced back to [16], although it is more of a by-

product of other results of that paper. 

Theorem 2.3.8. Assume that the set of feasible ρ for (2.48) is strictly feasible, that 

is ρ < ρ̄.  Then, problems (2.48) and (2.54) are equivalent in the following sense: 
¯ 

 
(i) If one problem has a solution, so does the other and 

 

min(2.48) = − min(2.54) . 

 
(ii) Let  (u∗, α∗, ν∗, ν̄∗)  be  a  solution  of  (2.54).   Further,  let  τ ∗  be  the  vector  of 

¯ 
associated  Lagrange  multipliers for the inequality constraints  (2.54b).   Then 

(τ ∗, u∗)  is  a  solution  of  (2.48).   Moreover,  α∗, ν∗, ν̄∗ are  the  Lagrange  mul- 
¯ 

tipliers associated with this solution for the volume and bound constraints, 

respectively. 
 

(iii) Let (ρ∗, u∗) be a solution of (2.48). Further, let r∗ and 
¯ 

r̄∗ be  the  Lagrange 

multipliers  for  the  lower  and  upper  bounds  on  ρ,  respectively,  and  let  λ∗ be 

the multiplier for the volume constraint.  Then (u∗, λ∗, r∗, r̄∗) is a solution of 
¯ 

(2.54). Moreover, ρ∗ are the Lagrange multipliers associated with this solution 

for the inequality constraints (2.54b). 

 
Remark 2.3.9. Before we prove Theorem 2.3.8, let us make the observation that it 

very much resembles a duality theorem. However, the two equivalent problems do 

∈ 
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¯ 

r, r̄≥0 

≥ 

 
 
 

not completely display a duality structure. Firstly, both problems are formulated as 

minimization problems. Secondly, u is an optimization variable in both problems. 

Lastly, while the solution to problem (2.54) provides a tuple of optimal solution 

and Lagrange multipliers to problem (2.48), the converse is not true. However, the 

main result in the context of this thesis lies in the fact that we can solve (2.54) 

instead of (2.48). Furthermore, as will be shown later in this section, we can use 

the solution to easily compute the difference between the objective function values 

of both problems for a given solution – the duality gap, as it were – which provides 

a measure of optimality due to Theorem 2.3.8(i). For this reason, we refer to (2.54) 

as the dual of the VTS problem. 

Proof. We know from Lemma 2.3.3, that (2.48) is equivalent to the saddle point 

problem (2.49). This problem is convex (actually linear) and bounded in ρ, and 

concave in u, so we can swap “max” and “min”, see for example [108, (Cor. 37.3.2)], 

to get 

max 
u∈Rn 

min 
ρ≤ρ≤ρ̄ 

f Tu 
1 

uTK(ρ)u . (2.55) 
2 

m̄ 
i=1 ρiai=V 

Due to our assumption of strict feasibility, there exists a Slater point for the fea- 

sible set of the inner (convex) optimization problem, so we may replace it by its 

Lagrangian dual. The Lagrange multipliers for the inequality constraints will be 

denoted by r ≥ 0 and r̄  ≥ 0, that for the volume (equality) constraint by λ ∈ R: 
 

 
max max min f Tu − 

1 
uTK(ρ)u 

u∈Rn λ∈R ρ≥0 
¯ 

2 

m 
+ λ ρiai − V 

 
− rT(ρ − ρ) + r̄T(ρ − ρ̄) . 

(2.56) 

¯ 
i=1 

 

We can include the non-negativity constraint on ρ in the innermost optimization 

problem since we know that its solution, being the solution of (2.55), satisfies ρ ≥ 

ρ 0. 
¯ 

 

Now regard the dual problem (2.54). It can equivalently be formulated as the 

¯ 
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∈ ≥∈ 

≥ 
∈ ≥∈ 

u Rn, α R τ 0 
ν,ν 0 
¯ ¯ 

¯ ¯ 
i 2 i i ¯i i 

m 

following min-max problem, using a partial Lagrangian function with multipliers 

τ ≥ 0: 
 
 

min 
 

 

 
max αV  − f Tu − νTρ + ν̄Tρ̄ + 

  
τ (

1 
uTK u − α a  + ν 

 

 

− ν̄ ) 

 

which can be rearranged further to give 
 

1 
min max uTK(τ )u − f Tu 

u   Rn, α  R τ   0 2 
ν,ν 0 
¯ ¯ 

 
+ α 

 
 

V  − 
  

τiai + νT(τ − ρ) − ν̄T(τ − ρ̄) . 
 

 

 
(2.57) 

¯ i=1 
 

Identifying τ , α, ν, and ν with ρ, λ, r, and r̄, respectively, and changing the sign of 
¯ ¯ ¯ 

the objective function (and thus changing “max” to “min” and “min” to “max”), we 

can see that (2.56) and (2.57) are equivalent. All three claims follow from this. 

 

Remark 2.3.10. The dual problem (2.54) is a convex optimization problem. Indeed, 

most functions are linear. The quadratic inequality constraint functions (2.54b) 

feature the elemental stiffness matrices Ki, which are positive semidefinite, making 

these constraint functions convex as well. 

Remark  2.3.11.  In later sections, we will often use the dual variables α, ν, ν̄ rather 
¯ 

than  the  Lagrange  multipliers  λ, r, r̄,  since  they  are  equal  at  the  solution.   Apart 
¯ 

from where the distinction is important, we can safely ignore it for the sake of 

decluttering the notation. 

We end this section with another formulation of the dual VTS problem, which only 

features the variables u and α. It allows us to obtain an expression for the duality 

gap without the Lagrange multipliers ν, ν̄,  which  can  be  used  as  an  optimality 
¯ 

measure in methods that solve the primal VTS problem (2.48) and return only 

ρ,  u and α as the solution.  In particular,  we  will use this optimality measure  

for the stopping criterion of the standard method outlined in Section 2.3.3 and 

¯ 

i=1 ≥ 
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( ) 
u∈Rn 

max 
∈Rm 

− αV + f Tu −
 
si 

2 i i i 

2 i i i 
¯ 

i 

2 i ρi ρ̄i 

1 

m 

for comparing its results to those of the primal-dual methods in Section 3.1. The 

following result was first derived in [16]. 

Theorem 2.3.12. Problem (2.54) is equivalent to the unconstrained nonsmooth 

problem 

 
max αV + f Tu 

∈Rn,α∈ 

 
  

i=1 

 

max 
 (

1
 

 

 
uTKiu − α ai

)
 
 
ρi , 
¯ 2 

uTKiu − α ai

)
 
 
ρ̄i 

 
 

(2.58) 

 
in the following sense: 

 
(i) min(2.54) = − max(2.58) , 

(ii)  Let  (u∗, α∗, ν∗, ν̄∗)  be  a  solution  of  (2.54). Then  (u∗, α∗)  is  a  solution  of 
¯ 

(2.58). Conversely, every solution (u∗, α∗) of (2.58) is also (part of ) a solution 

of (2.54). 

 
Proof. We will show that (2.54) and (2.58) are equivalent reformulations of each 

other. Introducing an auxiliary variable s ∈ Rm, problem (2.58) can be directly 

rewritten as 

 

 

,α∈R,s  
i=1 

s.t. 1 
uTK u − α a ρ̄ 

 
≤ s , i = 1, . . . , m, 

(
1 
uTK u − α a 

) 
ρ ≤ s , i = 1, . . . , m. 

 
 

The constraints in the above problem can be written as 
 

1 
uTK u − α a ≤ min 

  
si , 

si 
    

, i = 1, . . . , m. 
¯ 

2 

m ( 

i 

i 



67  

¯ 

m 

ρ 

− 
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i i ρ̄ i 

i: si ≤ si ¯ 
¯

i
 

i 

i: si ≤ si  ̄
i¯i i i¯i 

s 

i 

Noting that ρ̄i > ρi > 0, we define 
¯ 

 

ν  = 0 and ν̄  =  
si  , if 

si
 > si  > 0 , 

¯i i 

si 
ρ̄i ρi ρ̄i ¯

i  si 

νi = −ρ 
¯ 

and ν̄i = 0 , if ρi 
≤ 

¯ 
ρ̄i 

≤ 0 . 

 

With this, the above set of constraints can also be written as 
 

1 
uT K u − α a 

 
≤ ν̄  − ν 

 
i = 1, . . . , m. 

 
 

Obviously, all νi and ν̄i satisfy the non-negativity constraints.  Lastly, we can refor- 
¯ 

mulate the objective function to match (2.54), since 
 

  
s  =   
  

ρ̄ 
si  +   
  

ρ  
si

 

   

=   
  

ρ̄ ν̄ 
 

 
−

 
ρ ν 

 

 

= 
  

ρ̄ ν̄ 
 

 

 

 

−
 
ρ ν . 

ρi     ρ̄i 
¯ 

ρi     ρ̄i 
¯ 

ρi     ρ̄i 
¯ 

ρi     ρ̄i 
¯ 

 

We switch the sign of the objective function and claims (i) and (ii) follow. 
 
 

Assume that (u, α) is feasible for (2.58) and (ρ, u) is feasible for the primal 

problem (2.48). Combining Theorem 2.3.12 (i) and Theorem 2.3.8 (i), we get the 

identity min (2.48) = max (2.58) and thus the following formula for the duality gap: 

 
δ(u, α) := min (2.48) − max (2.58) 

= 
1 
f Tu + αV 2 

 
 

(2.59) 

+ 
  

max ρ  
(

1 
uTK u − α a 

) 
, ρ̄i 

(
1 
uTK u − α a 

)  
. 

i=1 ¯ 
 
 
 

The dual VTS problem for a zero lower density bound 
 

Strictly speaking, the VTS problem with non-zero lower density bounds belongs to 

the category of sizing, rather than topology optimization, since the elements are 

never completely removed in areas where the optimal design might be completely 

m 

i=1 

m 

i: si > si 
i i: si > si i=1 

i 

i i 
i=1  

i 
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void of material [98, 5]. That it is a valid approximation of the proper topology 
 

optimization problem where ρ = 0 was shown by Achtziger [5]. Still, we would 
¯ 

ideally like to solve the problem for ρ = 0, since this would yield a more accurate 
¯ 

result. Numerically, the main issue with this is that the density-stiffness map (2.46) 

for the VTS only gives K(ρ)    0 for ρ > 0.  Typically,  one therefore either chooses 

a non-zero lower bound or a minimal stiffness coefficient for void elements in order 

to avoid ill-conditioning [22]. However, none of the tested algorithms struggled 

with this issue even for zero lower bounds, see Chapter 3. For this reason, the 

rest of the section contains modifications – indeed, simplifications – of the duality 

results presented previously, now for the case ρ = 0. The proofs require only minor 
¯ 

adjustments which are fairly straightforward. Therefore, brief notes are given rather 

than comprehensive proofs for most modified results. 

For a zero lower bound on the densities, ρ = 0, the dual of the VTS problem has 
¯ 

the following form: 
 
 

min 
u∈Rn, α∈R, ν ∈Rm 

αV  − f Tu + ρ̄T ν (2.60a) 

s.t. 
1 

uTK u ≤ α a  + ν , i = 1, . . . , m, (2.60b) 
 

νi ≥ 0, i = 1, . . . , m. (2.60c) 
 
 
 

Theorem 2.3.13. Problems (2.48) with 

following sense: 

ρ = 0 and (2.60) are equivalent in the 
¯ 

 

(i) If one problem has a solution, so does the other and 
 

min(2.48) = − min(2.60) . 

 

(ii) Let (u∗, α∗, ν∗) be a solution of (2.60). Further, let τ ∗ be the vector of associ- 

ated Lagrange multipliers for the inequality constraints (2.60b). Then (τ ∗, u∗) 
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− −
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1 

is a solution of (2.48). Moreover, α∗, ν∗ are the Lagrange multipliers associ- 

ated with this solution for the volume and upper bound constraint, respectively. 

(iii) Let (ρ∗, u∗) be a solution of (2.48).  Further, let r∗ be the Lagrange multipliers 

for  the  upper  bound  constraint  and  let  λ∗  be  the  multiplier  for  the  volume 

constraint.   Then  (u∗, λ∗, r∗)  is  a  solution  of  (2.60).   Moreover,  ρ∗  are  the 

Langrange multipliers associated with this solution for the inequality constraint 

(2.60b). 
 

Proof. We can amend the proof of Theorem 2.3.8 by considering only a partial 

Lagrangian of the primal problem, so that no multiplier for the lower bound appears 

in (2.56). The non-negativity constraint in the minimization term is now equivalent 

to ρ ρ. In the rest of the proof, we simply drop all terms involving the lower 
¯ 

bound or associated multipliers. 
 
 

Theorem 2.3.14. Problem (2.60) is equivalent to the unconstrained nonsmooth 

problem 

 
max αV + f Tu 

∈Rn,α∈ 

 
  

i=1 

 

max 
 

0 , 
2 
uTKiu − α ai

)
 
 
ρ̄i 

 
(2.61) 

 

in the following sense: 
 

(i) min(2.54) = − max(2.61) , 

(ii) Let (u∗, α∗, ν∗) be a solution of (2.60). Then (u∗, α∗) is a solution of (2.61). 

Conversely, every solution (u∗, α∗) of (2.61) is also (part of ) a solution of 

(2.60). 

 
Proof. Completely analogous to the proof of Theorem 2.3.12, we can rewrite (2.61) 

m ( 
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( ) 

− 

2 i i 

u∈Rn 
max 

∈Rm 
− αV + f Tu −

 
si 

2 i i i 

m 

as 
 
 

 

,α∈R,s  
i=1 

s.t. 
1 
uTK u − α a ρ̄ 

 
≤ s , i = 1, . . . , m, 

 
0 ≤ si, i = 1, . . . , m. 

 
Now,  we  simply  define  νi = si/ρ̄i and  switch  the  sign  of  the  objective  function  to 

show the equivalence to problem (2.60). 

 

Assume that (u, α) is feasible for (2.61) and (ρ, u) is feasible for the primal 

problem (2.48) with ρ = 0. We get the following formula for the duality gap: 
¯ 

 
δ(u, α) := min (2.48) − max (2.61) 

= 
1 
f Tu + αV 2 

 
(2.62) 

 

 

+ 
i=1 

 
max 

 
0 , ρ̄i 

(
1 
uTK u − α a 

)  
. 

 
 

It should be noted that all results regarding uniqueness of a solution rely on the 

positive definiteness of the stiffness matrix and thus on ρ > 0. This is true for the 
¯ 

discrete case discussed here as well as for the continuous case [97]. Not even the 

LICQ can be shown to hold, at least as it was done in Lemma 2.3.5, if ρ = 0.  One 
¯ 

can construct a simple example of a non-unique solution for this case by noticing 

that displacements in areas of zero density can be arbitrary, within certain regularity 

bounds [97]. 

We still choose to solve the zero lower bound version of the VTS with the algo- 

rithms presented in Chapter 3. This is justified, firstly, by successful convergence in 

practice. Secondly, Achtziger showed in [5] that a sequence of finite-dimensional VTS 

problems for monotonically decreasing lower bounds ρ(j) > 0 with limj→∞ ρ(j) = 0 
¯ ¯ 

converges in terms of the optimal objective function value. While the sequence 

m 

i 
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of optimal densities does not necessarily converge, it seemed to do so in most our 

numerical examples. Where it did not, this manifested in small areas of quickly 

oscillating density values, reminiscent of the well-known “checkerboarding” micro- 

structure seen for material penalization [22] or the fibre-like structure in free-material 

optimization [138]. The analysis in [98] suggests that this phenomenon is due to the 

wrong choice of FE basis functions for the displacements and could be avoided by 

using piecewise quadratic instead of bilinear basis functions. However, the observed 

artefacts were usually small in range and amplitude and did not impede the physi- 

cal interpretation of the design, so that we deem bilinear basis functions completely 

satisfactory for all practical purposes – at least in all examples we have considered. 

 

2.3.2 The Variable Thickness Sheet Problem with Unilateral 
Contact 

 
Considering that unilateral contact is a relatively simple but important step towards 

more realistic problem modelling, it has received comparatively little attention in 

the topology optimization literature, especially in recent years. Seminal research on 

unilateral contact in truss and sheet design was done in the 1990s, see for example 

[75, 99, 79]. Klarbring, Petersson, and Rönnqvist [75] proposed an LP formulation 

for truss optimization under unilateral contact, including a proof of existence of a 

solution. In [97], Petersson provided existence results for the exact VTS problem, 

and in [99], Petersson and Patriksson proposed a subgradient method along with 

convergence results. A method based on a dual reformulation of the problem was 

described in [79], which is the basis for the algorithm derived later in this section. 

For a review of important contributions at the time, see the article by Hilding, 

Klarbring, and Petersson [65]. 

More work has been done on more general problems. We give a short, non- 

exhaustive overview here as a starting point for further reading. Mankame and 

Ananthasuresh [86] looked at compliant mechanisms in truss design with unilateral 

contact. Several papers deal with the SIMP formulation of topology optimization 
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− 

involving contact. A solution method for the SIMP minimium compliance problem 

with unilateral contact, based on a nested approach combining sequential linear pro- 

gramming and an interior point method for the inner linear program, can be found 

in [120]. Fancello [48] used numerical solvers for contact problems in a nested ap- 

proach for mass minimization under contact and local failure constraints. Recently, 

topology optimization problems involving large deformations and bilateral contact 

have also been solved [49, 82]. 

We now extend the VTS formulation of the minimum compliance problem for the 

case that rigid body obstacles are present. We include these in the form of contact 

constraints as described in Section 2.2.1. The derivation of both the primal and 

dual optimization problem very closely follow the previous section. We start with 

the saddle point formulation of the minimum compliance problem, see Lemma 2.3.3, 

only now, we include the contact constraints 

 
CTu − b ≤ 0 

 
and start from the max-min, rather than the min-max formulation: 

 

 
max 

ρ≤ρ≤ρ̄ 
i 

 
min 

CTu−b≤0 

1 
uTK(ρ)u f Tu . (2.63) 

2 

 

To derive a primal optimization problem analogous to (2.48), we note that the inner 

minimization is now no longer unconstrained. Where before, we could resolve it 

simply through the stationarity condition, we now have to introduce the Lagrange 

multipliers η and utilize the KKT conditions (2.44). These are necessary and suffi- 

cient for the inner minimization problem, since the potential energy is quadratic in 

u for a fixed ρ and thus convex. Using (2.44a) and (2.44d), we get 

 

1 1 1 1 
min uTK(ρ)u − f Tu = uT (f − Cη) − f Tu = −  f Tu − bTη . 

CTu−b≤0   2 2 2 2 
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2 

If we now switch the sign of the objective function in (2.63), we see that it is 

equivalent to [79]: 

 
 

min 
1 

f Tu + 
1 

bTη (2.64a) 
ρ∈Rm,u∈Rn,η∈Rl 2 2 

m 

s.t. ρiKi u = f − Cη , (2.64b) 
i=1 

CTu ≤ b , (2.64c) 

η  ≥ 0 , (2.64d) 

ηT(CTu − b) = 0 , (2.64e) 
m 

ρiai = V , (2.64f) 
i=1 

 

0 < ρi ≤ ρi ≤ ρ̄i , i = 1, . . . , m . (2.64g) 
 
 
 

The equivalence between minimization of compliance (or maximization of stiff- 

ness) and the maximization of the equilibrium potential energy in (2.63), from which 

our problem has been derived, is not necessarily intuitive. This is especially true 

once contact is included, as pointed out in [97]. Nevertheless, we attempt to give a 

plausible physical interpretation of (2.64). Added to the compliance in the objective 

function are the nodal contact stresses weighted by the initial gaps b. If we view b 

as prescribed displacements and the contact stress values η as the resulting forces 

on the contact surface, then 1 bTη is the negative work done by the contact stresses. 

The objective function of problem (2.64) means we minimize the external work for 

prescribed loads while maximizing the external work for prescribed displacements 

[97, 20]. Alternatively, one could say that at all points at which the loaded design 

deforms enough to close a non-zero gap, we try to keep the reaction (pressure) forces 

as low as possible, so as not to lean on the contact surface too much. Where initial 

gaps are zero (or comparatively small), large contact forces are not penalized in the 

objective (as much). This means the optimal design might in fact rely on those 

parts of the contact surface for load-bearing. 

¯ 
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We turn our attention once again to the saddle point formulation (2.63), in order 

to derive a dual problem analogous to (2.54). Since the inner minimization problem 

is still concave, we can proceed just like in the proof of Theorem 2.3.8 and obtain 

the following problem [79]: 

 
 u∈Rn min 

 

 
∈Rm 

αV  − f Tu − ρTν + ρ̄T ν̄ 

, α  R, ν, ν̄ ¯ ¯ ¯ 
s.t. 

1 
uTK u ≤ α a − ν 

+ ν̄ , i = 1, . . . , m , 

 

CTu ≤ b , 

νi ≥ 0, i = 1, . . . , m, 

ν̄i ≥ 0, i = 1, . . . , m . 

 
In contrast to the primal problem (2.64), incorporating unilateral contact in the 

dual only adds one extra set of inequality constraints and no extra variables. 

We focus on the case of zero lower density bounds, as the method we will use in 

Chapter 3 to solve the problem performed well for ρ = 0 despite open questions 
¯ 

of uniqueness or theoretical convergence. The dual VTS problem with unilateral 

contact for zero lower density bounds is 

 
min 

u∈Rn, α∈R, ν ∈Rm 
αV  − f Tu + ρ̄T ν (2.65a) 

s.t. 
1 

uTK u ≤ α a  + ν , i = 1, . . . , m, (2.65b) 
 

CTu ≤ b , (2.65c) 

νi ≥ 0, i = 1, . . . , m. (2.65d) 

 
Naturally, we can obtain a result similar to Theorem 2.3.13. 

 
Theorem 2.3.15. Problems (2.64) with 

following sense: 

ρ = 0 and (2.65) are equivalent in the 
¯ 

∈ 
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(i) If one problem has a solution, so does the other and 
 

min(2.64) = − min(2.65) . 

 
(ii) Let (u∗, α∗, ν∗) be a solution of (2.65). Further, let τ ∗, η∗ be the associated vec- 

tors of Lagrange multipliers for the inequality constraints (2.65b) and (2.65c). 

Then (τ ∗, u∗, η∗) is a solution of (2.64). Moreover, α∗, ν∗ are the Lagrange 

multipliers associated with this solution for the volume and bound constraint, 

respectively. 
 

(iii) Let (ρ∗, u∗, η∗) be a solution of (2.64).  Further, let r∗ be the Lagrangian mul- 

tipliers  associated  with  the  upper  bounds  on  ρ,  and  let  λ∗  be  the  multiplier 

for  the  volume  constraint.   Then  (u∗, λ∗, r∗)  is  a  solution  of  (2.65).   More- 

over, ρ∗, η∗ are the Lagrange multipliers associated with this solution for the 

inequality constraints (2.65b) and (2.65c), respectively. 

 
Proof. The proof is a straightforward adjustment of the proofs of Theorems 2.3.8 

and 2.3.13, taking into consideration the added contact constraints and correspond- 

ing Lagrange multipliers η. 

 

For the case without contact constraints, we introduced another reformulation 

of the problem as the basis for a duality gap expression which did not require any 

Lagrange multipliers apart from α. This served the purpose of being able to compare 

the results of primal and dual algorithms. However, since contact constraints cannot 

be easily incorporated into the primal method used for (2.48), no such comparison 

will be required. We can instead simply use the following expression for the duality 
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2 2 

2 2 

gap, based on Theorem 2.3.15: 
 

δ(u, η, α, ν, ν̄) :=  min(2.64) − (− min(2.65)) 

=  
1 
f Tu + 

1 
bTη + αV  − f Tu + ρ̄T ν 

=  − 
1 
f Tu + 

1 
bTη + αV  + ρ̄T ν . 

 
This concludes our treatment of the variable thickness sheet problem. We end the 

section with a description of an optimization method designed specifically for the 

VTS problem. 

 

2.3.3 The Optimality Criteria Method 
 

The optimality criteria (OC) method [22, 111, 136] is a popular algorithm for solving 

the minimum compliance problem. It is easy to implement and can handle the VTS 

as well as the SIMP formulation, exemplified by the much-cited Matlab implemen- 

tation [12] and more recently [50]. In a benchmarking paper by Rojas-Labanda and 

Stolpe comparing different optimization algorithms, the OC method outperformed 

other methods in terms of computational time, including the method of moving 

asymptotes [121] which is perhaps the most widely used method in topology opti- 

mization. We will compare the performance of our IP and PBM implementations 

against that of the OC method in Section 3.2 and therefore outline this method 

here. One thing to note straight away is that it does not allow for contact con- 

straints. On the other hand, while we derive it here only for the VTS problem, it is 

straightforward to extend to the SIMP formulation, for which it is most often used. 

In [16], Ben-Tal and Bendsøe derived a particular set of necessary and sufficient 

optimality conditions for the minimum compliance problem, which offer a very in- 

structive characterization of the optimal solution. In its original form, they are 

stated as conditions for (2.58). We include it in a slightly rephrased form further 

below, connecting it more closely to the formulations (2.48) and (2.54). To motivate 
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the next theorem, let us regard the first set of inequality constraints of the dual VTS 

problem (2.54): 

 

1 
uTK u − αa + ν − ν̄ ≤ 0, i = 1, . . . , m. 

 
 

From Theorem 2.3.12, we know that, at the solution, the densities ρ double as La- 

grange multipliers for the above constraints.  Furthermore, ν and ν̄ are the Lagrange 
¯ 

multipliers of the primal lower and upper bound constraints, respectively. For any 
 

intermediate element density, that is any ρi with 

therefore demands 

ρi < ρi < 
¯ 

ρ̄i,  complementarity 

ρ  
(

1 
uTK u − αa 

) 
= 0 . (2.66) 

 

As ρi /= 0, this further implies 1 uTKiu − αai = 0. The following theorem shows  

that the converse is also true (although in a less strict sense). 

 
Theorem 2.3.16. A pair ρ∗, u∗ is an optimal solution of (2.48) and α∗ is the 

associated multiplier for the volume constraint if and only if 
 

ρ∗ = ρ if 1 
(u∗)TK u∗ < α∗a 
 

, (2.67a) 
i 

¯
i 2 i i 

ρ∗ = ρ̄ if 1 
(u∗)TK u∗ > α∗a 
 

, (2.67b) 
i i 2 i i 

1 ρ  ≤ ρ∗ ≤ ρ̄  if (u∗)TK u∗ = α∗a 
 

 

, (2.67c) 
i i i i i 

¯ 
m 

ρiKi u = f , (2.67d) 
i=1 

m 

ρiai = V . (2.67e) 
i=1 

 

Proof. See [16]. 
 
 

The last two conditions are simply the equilibrium equations and volume con- 

straint.  Equations (2.67a–2.67c) allow an interesting interpretation of α∗. Since 
1 uT(ρiKi)u is the internal strain energy of element i, we can view  1 uTKiu/ai as 

2 2 

2 

i 
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ρi := ρi 
2 

the strain energy normalized with respect to the element’s mass. The multiplier 

α∗ gives a particular threshold value for this term: Each element whose normalized 

strain energy exceeds α∗ requires the maximum amount of material, according to 

(2.67b); on the other hand, if this energy is below α∗, the minimum amount of 

material is sufficient, see (2.67a). For any element with intermediate density, the 

normalized strain energy is exactly α∗. 

The OC method is an iterative updating scheme that focuses on the densities 

ρ1, . . . , ρm, which it essentially splits into three groups according to (2.67a–2.67c). 

Those that satisfy (2.67c) are fixed points for (2.66), which motivates the update 

formula 
(k+1) (k)

 1 (u(k))TKiu(k) 
  

 
 

 

 
 

where α is determined through bisection such that ρ(k+1) satisfies the volume con- 

straint. To avoid overshooting and improve convergence, we impose constant move 

limits. Additionally, we apply a “damping” to the term in brackets on the right-hand 

side by raising it to a power 0 < q < 1. Furthermore, if the update would push ρi 

outside of the feasible bounds, we assume that ρi belongs to one of the groups de- 

fined by (2.67a) and (2.67b) and assign it the value ρi or ρ̄i accordingly.  Algorithm 1 
¯ 

summarizes the method. As a measure of optimality, we use the duality gap defined 

in (2.59). Unless otherwise specified, we follow [12] for the choice of the move limit, 

bisection bounds and damping parameter:  ᾱ0  = 109, α0  = 0,  ∆ρ = 0.2 and q =  1 . 
¯ 2 

 
 
 

Note that the displacements and densities are not updated simultaneously. The 

OC method technically does not solve (2.48), but the so-called nested formulation 

of the minimum compliance problem, where u is featured not as a variable, but as 

a function of ρ. The equilibrium equations are not included explicitly in the nested 

formulation, but implicitly through u(ρ). 

αai 
, (2.68) 
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{ 

, . . . , m 

i 

i=1 

5: while ᾱ α 
¯ 

ᾱ+α > 0.1 εOC do 

10: if
 m

 

let 

 
 Algorithm 1 Optimality Criteria Method  

Let  ρ ∈  Rm  be  given  such  that  
 m    ρi = V ,  ρi ≤  ρi ≤  ρ̄i,  i = 1, . . . , m.  Further, εOC   > 0, ᾱ0 > α0 > 0, 0 < ∆ρ < 1 and q < 1 be given. 

¯ 
1: repeat 
2: Solve K(ρ)u = f 

i i i i i i for i = 1, . . . , m 
3: ρ = max ρ , ρ ¯ 

 

  

− ∆ρ}, ρ  = min{ρ̄ , ρ + ∆ρ} 

4:  ᾱ = ᾱ0, α = α0 6: α = (ᾱ̄ + α)/2 
7: for i = 1 

¯ do 
  

 
 

( 1 uT K u
)q

 
 

8: ρ+ = min max ρi 
9: end for 

 

  

2 
i 

αai 
, ρi   

, ρ i 

11: α = α 
12: else¯

 
13: ᾱ = α 
14: end if 
15: end while 
16: ρ = ρ+ 
17: until δ(u, α) < εOC 

 
2.4 Iterative Methods for Linear Systems 

 
Each of the optimization algorithms discussed in the previous sections entails sev- 

eral linear systems that need to be solved numerically throughout the course of the 

optimization. In the IP and PBM method, we need to obtain one or more Newton 

increments at each iteration, and the OC method recomputes the displacements 

from the equilibrium equations after each update of the densities. Solving the corre- 

sponding linear systems accounts for a large part of the overall computational cost 

of the optimization. Choosing the right solver is therefore a crucial part of any 

efficient strategy for solving large-scale problems, where even small improvements 

can save hours, if not days, of computation time. This section is concerned with 

numerical methods for finding a solution to the type of linear system that we will 

encounter in the algorithms proposed in Chapter 3 and in the OC method. It is of 

the general form 

Ax = b , (2.69) 

ρ+ai > V then i=1 

i 

¯ − 

¯ 
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where we are given a right-hand side vector b ∈ Rn and a system matrix A ∈ Rn×n 

which is symmetric and positive definite. It is also sparse, i.e. the number of non- 

zero entries in A is a small fraction of n2. In particular, we assume that this number 

is in the order of n. The goal is to solve large-scale systems where n > 106. 

In general, methods for solving linear systems are grouped into direct solvers and 

iterative solvers. The former yield an exact1 solution of (2.69) after a fixed number 

of steps, while the latter produce a sequence xk which converges to the solution as 

k → ∞. To compare the two in terms of computational efficiency, let us briefly 

recall the Landau-notation [131]: 

Definition 2.4.1. A function c : N −→ (0, ∞) is said to be (in) O(d(n)) for another 

function d : N −→ (0, ∞), if there exists a constant β > 0 such that 

 
c(n) ≤ β d(n) ∀ n ∈ N. 

 
We write c(n) = O(d(n)). Further, we say that a computational procedure has 

O(d(n)) complexity if it requires O(d(n)) floating point operations. 
 

In general, direct methods have O(n3) complexity [131, 104]. This can be reduced 

if one takes advantage of the sparsity of the system matrix and any special structure 

it might exhibit. For a banded matrix with upper and lower  bandwidth p « n,  

for example, direct solvers can be adjusted to run in O(np2) [104]. However, they 

still suffer from so-called fill-in. Direct methods typically involve some factorization 

of the matrix A, for example A = LLT for the Cholesky-factorization [131]. The 

matrix L does not generally have the same sparsity structure, in fact, it is usually 

less sparse than A. As a result, memory becomes an issue for large n. 

 
The main computational cost in iterative solvers comes from matrix-vector mul- 

tiplications performed in each iteration. Since this operation is in O(n2), the overall 

complexity of such a solver is O(kn2), where k is the number of iterations needed to 

1assuming exact arithmetic 
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obtain an acceptable solution. As before, this can be improved by taking into ac- 

count the sparsity of A. If one does not require an exact solution, iterative methods 

that can reach a satisfactory approximation in only a few, that is N « n, iterations 

have a clear advantage over direct methods. This makes them a better choice for 

our purposes, since in our optimization algorithms, we only need to solve the New- 

ton systems with relatively low accuracy1. For a thorough introduction to and a 

good general overview of direct and iterative solvers, we refer to the books [131] by 

Wendland and [104] by Quarteroni, Sacco, and Saleri. 

Two classes of iterative solvers are of particular interest for the kind of system we 

will need to solve: Krylov subspace methods, more specifically the conjugate gradient 

and minimal residual method, and multigrid methods. The former are guaranteed 

to return an exact solution after at most n steps and could thus be classified as 

direct methods; however, their strength lies in obtaining a good approximation 

in relatively few steps if the matrix A is well-conditioned. The basic concepts of 

Krylov methods and the general convergence behaviour of the conjugate gradient 

and minimal residual method are the subject of Section 2.4.1. We also touch upon 

preconditioning, motivating the use of multigrid methods as spectrally equivalent 

preconditioners. Section 2.4.2 then gives a brief introduction to multigrid methods, 

which are very effective for systems arising from the discretization of elliptic partial 

differential equations, such as the equilibrium equations (2.38). They make use of 

specific properties of the resulting system matrix and constitute an optimal iterative 

method in that the number of iterations required until a certain error measure is 

below a fixed tolerance value does not depend on the size of the system. When the 

mesh is no longer regular or structured, certain components of the standard multigrid 

method need to be generalized. This leads to algebraic multigrid methods, which 

are also covered in Section 2.4.2. 
1compared with machine precision 
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2.4.1 Krylov Subspace Methods 
 

To start off, we introduce some basic notation. Let x0 be the initial guess for a 

solution to system (2.69) and let us denote by xk, k = 1, 2, . . ., the sequence of 

approximations returned by an iterative solver. Further, the kth residual is defined 

as rk := b −Axk. We now turn to a class of iterative solvers which construct iterates 

that satisfy 

xk ∈ x0 + Kk(A, r0) , 
 

where Kk(A, r0) is the Krylov space defined as 

Kk(A, r0) := span 
{
r0, Ar0, A2r0, . . . , Ak−1r0

 
. 

Accordingly, such solvers are called Krylov (subspace) methods. Two methods of this 

class find application in our algorithms, the conjugate gradient (CG) method and the 

minimum residual (MINRES) method. Because we use the generic versions of these 

solvers, what follows is a very condensed discussion, covering the main convergence 

results and highlighting the differences between the two methods. Many books have 

been written that can be consulted for more details. We mention here the book 

by Saad [114], an extremely comprehensive treatment on iterative solvers, and that 

by Greenbaum [58], as a reference for the MINRES method in particular. The 

corresponding chapters in [131] also provide a good introduction to Krylov solvers. 

Detailed pseudo-code for all methods discussed in this section can be found in [58, 

131]. Last but not least, no literature list for the CG method is complete without 

the excellent introductory article by Shewchuk [118]. 

Both the CG and MINRES method can be viewed as optimization algorithms for 

a function, say r(x), that is in some way a measure of how much x deviates from 

the true solution of (2.69). In each iteration, we update the approximate solution 

by 

xk+1 := xk + σkdk , 
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1/2 

2 

where the step size σk is defined such that it minimizes r(xk + σdk) over σ ∈ R. The 

search directions d0, . . . , dk−1 are chosen so that they form a basis of Kk(A, r0). The 

methods differ in their choice of r(x) and in how they construct the basis vectors. 

For later reference, we denote the error of some x with respect to (2.69), that 

is  the  difference  between  x  and  the  exact  solution  x∗ of  (2.69),  by  e  :=  x∗ − x. 

We further observe the following identity involving the kth residual and the error 

ek := x∗ − xk of the kth iterate: 

 
Aek = b − Axk =  rk . (2.70) 

 
 

Conjugate Gradient Method 

The CG method, originally proposed by Hestenes and Stiefel [64], is no doubt one 

of the most popular iterative methods for large, sparse, symmetric positive definite 

matrices. It uses a set of vectors {d0, . . . , dk−1} as a basis of Kk(A, r0) which are A-

conjugate, that is 

dT
i  Adj = 0 for i /= j . 

Because the matrix A is positive definite, we can define an inner product (v, w)A := 

vTAw and a corresponding norm 

 

/Iv/IA = (v, v)A   , (2.71) 

 
which we call energy norm. We can motivate the CG method as a minimization 

algorithm for the functional r(x) := 1 xTAx − bTx. Since this r(x) is strictly 

convex, (2.69) represents the necessary and sufficient optimality condition and its 

solution x∗ is also the unique minimum of r(x).  The CG method produces iterates 

xk, k = 1, 2, . . ., each of which minimizes r(x) over x0 +Kk(A, r0). Note that adding 
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− 

− 

a constant term to r(x) does not change its minimizer. Hence, we can see from 
 

r(x) + (x∗)TAx∗ =  
1 
xTAx bTx + 

2 

1 
(x∗)TAx∗ 

2 

=  
1 
xTAx (Ax∗)Tx + 

2 
1 
(x∗)TAx∗ 

2 1 ∗ T ∗ 1 2 = (x 
2 

− x) A(x 
− x) =  

2 
/Ie/IA 

 
 
 
 

that minimizing r(x) is equivalent to minimizing the energy norm of the error e. 
 

Due to the A-conjugacy of the search directions and the above optimality prop- 

erty, the kth residual vector is orthogonal to span{d0, . . . , dk−1}. Therefore, dk can 

be obtained by a Gram-Schmidt orthonormalization of rk with respect to the inner 

product ( , )A. At first glance, this would seem to require all previous search direc- 

tions in order to construct the next one. In this case, however, the procedure can be 

reduced to a three-term recurrence scheme. This leads to an algorithm in which, at 

each iteration, we can efficiently compute dk+1, rk+1 and xk+1 by a few vector inner 

products, vector additions and one matrix-vector multiplication. Furthermore, we 

need only store a single instance of each of these vector iterates. 
 

Minimum Residual Method 
 

The MINRES method was introduced by Paige and Saunders [95] as a solver for 

indefinite symmetric systems. It is nowadays a popular method for systems arising, 

for example, in incompressible fluid flow dynamics [45]. It can be seen as a gener- 

alization of the CG method: The way in which the search directions d0, d1, d2, . . . , 

are computed in the CG method can be derived from the Lanczos algorithm for 

building an orthogonal basis of Kk(A, r0), see for example [114]. Paige and Saun- 

ders extended this approach to indefinite matrices, for which one cannot generally 

define an inner product, so that the concepts of A-conjugacy and the energy norm 

are no longer applicable. The MINRES method iteratively constructs an orthogonal 



85  

CG MR 

basis {d0, . . . , dk−1} of Kk(A, r0) and updates xk such that the residual norm /Irk/I2 

is minimized over x0 + Kk(A, r0). 

 
A single iteration of the MINRES method has roughly the same computational 

complexity as a single iteration of the CG method. In both cases, the most costly 

operation is a matrix-vector multiplication. Therefore, the overall costs of the two 

methods can be expected to scale the same with the size of the problem. In general, 

there are two main reasons for a difference in performance. First, the formulae and 

computational steps in a single iteration are more complicated for the MINRES 

than for the CG method. In particular, the updating scheme for the basis vectors 

is a three-term recurrence, so that more vectors need to be stored simultaneously 

and more vector additions need to be performed. Second, both methods usually 

formulate a stopping criterion in terms of the residual norm, since the error is not 

readily available. Since this is exactly what the MINRES method minimizes over the 

Krylov subspace, it generally requires fewer iterations than the CG method. One 

therefore has to consider this trade-off between cost per iteration and total number 

of iterations when choosing between the two solvers. While the CG method seems 

to be far more popular in practice, we compare both methods for our problem in 

Section 3.2, showing that the MINRES method performs better in some cases. 

 
Convergence 

 
The convergence behaviour of the CG and MINRES method is determined by the 

spectrum of the matrix A, as we will now show. Although the MINRES method 

can also solve indefinite problems, the optimization algorithms in which we will use 

it will only involve positive definite systems. We will therefore assume A 0 for 

ease of presentation. We will denote iterates of the CG and MINRES method by a 

superscript CG and MR, respectively. Recall the optimality properties for the two 

methods: 

/Ie /IA =  min /Ie/IA , /Ir /I2 =  min /Ir/I2 . (2.72) 
k 

x0+Kk 
k 

x0+Kk 
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i 

i 

p∈Pk 

CG 

p∈Pk 

MR 

k i 

e□ = x∗ − x□ = e0 − 
  

γ□Air0 = e0 − 
  

γ□AiAe0 

i=0 

Being elements of x0 + Kk(A, r0), we can express xCG and xMR in terms of r0 and 
 

powers of A: 

k k 
 
 k−1 

x□ = x0 +  
    

γ□Air0 , 

where we used □ as a placeholder for CG and MR. Using (2.70), we can then derive 

a similar expression for the error, 
 

k−1 k−1 

k k 
 
 

= I − 

 
 
i=0 
 

 
 
 

 

i=1 

i 
 
 
γ□Ai 

 
 

e0 , 

i 
i=0 

 

and for the residual, 
 

r□ = b − Ax□ = b − A x0 + 

 
 
k−1 

 
 
γ□Air0 

k k 
 
 

= b − Ax0 − 

 
i=0 
k 

 
 

i=1 

i 
 
 
γ□Air0 

= I − 

 

  

i=1 

γ□Ai 
 

r0 . 

 

To make the notation even more concise, we can write these identities as 
 

e□ = p□(A)e0 , r□ = p□(A)r0 , 
k k 

 
 

where p□(t) is a polynomial of degree k with p(0) = 1. Denoting the space of kth 

degree polynomials by Pk , we can now see that (2.72) is equivalent to 
 
 

/Iek    /IA =  min 
p(0)=1 

/Ip(A)e0/IA , 

 

/Irk /I2 =  min 
p(0)=1 

/Ip(A)r0/I2 . 

 
Since any vector can be expressed as a linear combination of orthonormal eigen- 

vectors of A, the above can be written in terms of the eigenvalues λ1, . . . , λn of A. 

k 

k 
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p∈Pk 

CG 

1≤i≤n 

p∈Pk 

MR 

1≤i≤n 

CG 

MR 

 J 
−

 

 J 
−

 

(For details, see any of the references at the beginning of this section). This further 

allows us to derive the following upper bounds: 

 
/Iek    /IA ≤  min 

p(0)=1 

max |p(λi)|/Ie0/IA , 

 

/Irk /I2 ≤  min 
p(0)=1 

max |p(λi)|/Ir0/I2 . 

 
This result provides several important insights. The upper bound on the energy 

norm of the error and on the residual norm, respectively, after k iterations of the 

CG and MINRES method depends on how close to zero the kth degree polynomial 

p can get at every eigenvalue. This guarantees that both methods obtain the exact 

solution after at most n iterations, since we can then find a polynomial with a root at 

each λi, or after l < n iterations if A only has l distinct eigenvalues. What is more, 

even if the eigenvalues are merely clustered around l distinct values, an appropriate 

polynomial of degree l can yield very small values at all λi. Disregarding possible 

clustering of eigenvalues, one can use Chebyshev polynomials to obtain less tight 

but informative upper bounds 
 

/Iek    /IA ≤ 2 

 
/Irk /I2 ≤ 2 

cond(A) 1 
k
 

J
cond(A) + 1 

cond(A) 1 
k
 

J
cond(A) + 1 

/Ie0/IA , 

 
/Ir0/I2 , 

 
where cond(A) is the condition number of A, defined as 

 
cond(A) = 

maxi λi . 
mini λi 

 
These upper bounds can be made smaller by narrowing the spectrum of A. 
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Preconditioning 
 

The convergence results presented above make it clear that the performance of the 

CG and MINRES method depend on the distribution of the eigenvalues – the con- 

ditioning – of the system matrix A. In fact, these algorithms are not competitive in 

practice for systems that are not particularly well-conditioned. Therefore, CG and 

MINRES implementations typically employ some form of preconditioning technique. 

Let M ∈ Rn×n be a symmetric matrix, which we will call the preconditioning 

matrix or simply the preconditioner. We can find a factorization M = LLT, (for 

example a Cholesky factorization or the square root of M), such that L is invertible. 

The original linear system (2.69) is equivalent to the “preconditioned” system 
 

L−1AL−T LTx = L−1b . (2.73) 
 

=
 

:
 
B
                                                                         

=
 

:
  
y

 
=
 

:
             
c
  

 
The matrix B is symmetric positive definite, so that we can solve By = c by either 

the CG or MINRES method and obtain the solution of (2.69) by solving LTx = y. 

We  then speak of the preconditioned  CG or MINRES method.  If cond(B) < cond(A) 

or the eigenvalues of B are more tightly clustered than those of A, preconditioning 

significantly improves the convergence rate. Practical implementations of precondi- 

tioned Krylov solvers do not actually involve the system (2.73), which should be seen 

as a mere formalism. A reformulation of the standard CG or MINRES method ap- 

plied to (2.73) yields an algorithm that essentially only differs from the original one 

by its use of a preconditioned residual zk, which is obtained by solving Mzk = rk, 

which leads to an additional computational step in each iteration. We therefore do 

not need to know  the factorization M = LLT, nor,  in fact,  do we  require M to be 

explicitly given as a matrix.   More generally, we only need a linear operator that 

performs the function of M−1. Convergence analysis of a preconditioned Krylov 

solver is typically done in terms of the spectrum of M−1A, since this matrix has the 

same eigenvalues as B, see for example [131, (Lemma 8.1)]. 
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A good preconditioner should meet two criteria in order to provide an overall 

speed-up of the solver. First, we want cond(M−1A) to be small, or alternatively, we 

want the eigenvalues of M−1A to be tightly clustered; second, we need to be able 

to solve the system Mzk = rk efficiently. These two requirements are somewhat at 

odds, as exemplified by the extreme examples of M = I and M = A. While M = I 

clearly satisfies the second requirement, it does not improve the conditioning at all, 

whereas M = A would guarantee convergence in a single iteration, but if we knew 

how to solve Azk = rk efficiently, we would not be resorting to an iterative solver 

to begin with. A good preconditioner must therefore strike a balance between the 

two requirements. 

In the context of large-scale problems, there is another important criterion that 

a preconditioner should meet. Not only should the condition number of M−1A be 

small compared to cond(A), but it should ideally be independent of the problem size. 

This would guarantee that the number of iterations required to solve, for example, 

a discretized PDE, stays the same as we increase the discretization resolution. A 

preconditioner of this kind, for which cond(M−1A) = O(1), is called spectrally equiv- 

alent to A [130]. The multigrid method discussed in the next section is an excellent 

candidate for such a preconditioner. It is actually an iterative solver in its own right, 

which, when used to solve symmetric positive definite systems arising from elliptic 

partial differential equations, gives a reduction of the error 
 

/Iek+1/IA ≤ η/Iek/IA 

 
in each iteration. Here, the constant η ∈ (0, 1) is independent of the problem size. 

This leads to cond(M−1A) = (1 + η)/(1 − η) [130, 45], making the multigrid method 

an optimal preconditioner. 

 
For an overview of different preconditioners for Krylov methods, also covering 

indefinite and asymmetric systems, see the review article by Wathen [130]. For a 

more in-depth treatment of preconditioning techniques in general, see for example 
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[115]. 
 
 
2.4.2 Multigrid Methods 

 
Whereas the previous iterative methods are applicable to any symmetric (positive 

definite) linear system, multigrid methods were developed specifically for systems 

resulting from the discretization of PDEs. The system matrix A, more specifically 

its spectrum and eigenspaces, in those cases displays particular properties that the 

multigrid approach takes advantage of. It does this in a way that decouples its 

convergence behaviour from the resolution of the discretization and thus the size 

of the matrix A. Multigrid methods were originally proposed by Brandt [29]. We 

refer to the book by Briggs, Henson, and McCormick [33] for a very instructive 

introduction, or to the corresponding chapters in [131, 114] for a shorter but equally 

accessible treatment. A comprehensive and thorough discussion can be found, for 

example, in [61]. 

Multigrid methods have two main components: a hierarchy of coarse meshes of 

decreasing resolution, on which low-resolution parts of a solution can be computed 

efficiently; and a specific type of iterative method which is particularly effective at 

fine-tuning the solution parts that require a high resolution. We will first consider 

this second component. 

For the rest of the section, we assume that A is a symmetric positive definite 

matrix arising from the discretization of a system of elliptic partial differential equa- 

tions. A large class of iterative solvers for (2.69) can be written in the form 

 
xk+1 = Cxk + c , (2.74) 

 

where C is typically a matrix derived from a splitting of A and c is a constant vector 

involving the right-hand side b. Examples of such solvers are the Jacobi method, 

successive over relaxation (SOR), or the Gauss-Seidel method [131, 114]. We assume 
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the method is consistent, which means that x∗ = Cx∗ + c, where x∗ is the solution 

of (2.69). It is then easy to show that the following equation holds for the errors of 

successive iterates: 
 

ek+1 = Cek . 
 

We naturally want to choose the matrix C so that the error is reduced in each 

iteration  and  xk  →  x∗ as  k  →  ∞.   To  establish  a  criterion  for  convergence,  we 

define the spectral radius of C by 

 
Q(C) := max |λi(C)| , 

 
where λ1(C), . . . , λn(C) are the eigenvalues of C. It can be shown that (2.74) con- 

verges for all x0 ∈ Rn if and only if Q(C) < 1. For certain iterative solvers, we can 

identify not just their overall convergence behaviour but how they affect different 

components of the error ek. Since A is symmetric, its eigenvectors can be chosen to 

be an orthonormal basis of Rn and we can express the error as a linear combination 

of these eigenvectors. For matrices arising from, for example, the discretization of 

elliptic PDEs, the eigenvectors can usually be interpreted as the point-wise values of 

oscillatory functions on the discretized domain Ωh, which vary in their frequencies. 

Some iterative methods of the type (2.74) eliminate particularly fast those compo- 

nents of ek which lie in the range of high-frequency eigenvectors. On the other hand, 

those same solvers are typically very slow at reducing the “smooth” error compo- 

nents – those that correspond to low-frequency eigenvectors. Such iterative solvers 

are therefore called smoothers. The damped Jacobi method, as well as the SOR and 

various forms of the Gauss-Seidel method fall into this category [131, 114, 61]. In 

multigrid methods, they are used specifically because of their ability to effectively 

reduce high-frequency errors and are complemented by another essential component 

of multigrid, the coarse-grid correction, which takes care of the low-frequency errors 

and which we will look at next. 

 
The concept that gives multigrid methods their name is the use of several levels of 

i 
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Figure 2.3: Basic example of a two-grid hierarchy. Fine-grid nodes are coloured 
white; coarse-grid nodes (and coinciding fine-grid nodes) are coloured grey. 

 
meshes, or grids, each a discretization of the problem domain. Grids at lower levels 

have a coarser discretization resolution, with the mesh of the original problem at the 

“top” of the grid hierarchy. We will use the terms “grid” and “mesh” interchangeably. 

The top-level grid is commonly called the fine grid, whereas the other grids are called 

coarse. The essential characteristics of this multilevel scheme are best illustrated on 

the two-grid problem. Assume that we have two grids for the same domain, but 

of different resolution: the fine grid, which is basically our “original” grid on which 

(2.69) is defined and which we denote by Ωh, and the coarse grid ΩH . We denote 

by nh and nH , with nh > nH , the number of degrees of freedom for each grid. We 

use the same subscript notation for matrices defined on either grid, e.g. Ah := A, 

but superscripts for vectors, e.g. bh := b. Figure 2.3 shows a simple example of a 

two-grid hierarchy, where ΩH is created from Ωh by halving the number of elements 

in each grid direction. 

 
If we perform a certain number of smoother iterations on the fine grid, we assume 

that the resulting error e has mostly low-frequency, or smooth, components. The 

resolution of the coarser grid might therefore suffice to accurately represent this 

Ωh 

ΩH 
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h H 

H 

error. Recalling the identity (2.70), we could therefore solve Ae = r on the coarser 

grid, which can be done more efficiently, since the size of the system is reduced. We 

could then obtain the solution by updating x ← x+e. It becomes clear that we need 

to differentiate between the system we are solving on the fine grid, Ahxh = bh, and 

the one on the coarse-grid, which is AH eH = rH.  The matrix Ah = A ∈ Rnh×nh   and 

right-hand side vector bh = b ∈ Rnh are given as part of the problem specification, 

for example by an FE discretization on Ωh. The question is how we should define 

AH ∈ RnH ×nH and bH ∈ RnH on the coarse grid. Furthermore, how do we obtain 

a coarse-grid version rH of the residual rh = bh − Ahxh and how do we map the 

solution eH of AH eH = rH back to the fine grid? For this purpose, we define transfer 

operators 

IH : Rnh  −→ RnH , Ih : RnH  −→  Rnh  . 
 

We call IH the restriction operator and Ih the prolongation operator. Let us consider 
h H 

the two-dimensional example shown in Figure 2.3. The grids Ωh and ΩH are both 

regular with uniform grid spacing in each direction. Ωh is obtained by dividing each 

element in ΩH into 4 squares. In this case, we can define the prolongation operator 

h through simple piecewise linear interpolation. If we assume for simplicity’s sake 
 

that we have one degree of freedom for each node and consider a node that does not 

lie on the boundary of the mesh, we can express the contribution of a coarse-grid 

node to the 9 fine-grid nodes in its vicinity by a stencil, which takes the form 

1 


1   2   1


 

4 
2   4   2 . 

In three dimensions, a coarse-grid node contributes to 27 fine grid nodes and the 

stencil is 

1 


1 2 1


 

8 
2   4   

2 

1 


2 4 2


 

8 
4   8   

4 

1 


1 2 1


 

8 
2   4   2 , 

where the left and right matrices correspond to the fine-grid layers above and below 

I 

1 2 1 

1 2 1 2 4 2 1 2 1 
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h 

h 

the coarse-grid node, which itself lies on the layer corresponding to the central 

matrix. In order to restrict a vector defined on the fine grid down to the coarse grid, 

we could choose a trivial injection and simply assign to each coarse-grid node the 

value of the fine-grid node that coincides with it. However, we achieve better results 

if we define the restriction operator by 

 
IH = γ(Ih )T (2.75) 
h H 

 
 

for some γ > 0. This full weighting approach effectively defines a coarse-grid value 

as a weighted sum of its surrounding fine-grid values. Extending the presented 

approach for the transfer operators to multiple degrees of freedom per node and 

boundary conditions that eliminate some or all DOFs for certain boundary nodes is 

fairly straightforward, albeit a bit cumbersome, and we omit the details. Note that 

a prolongation operator defined in the way just described has full rank. 

We still need to define the coarse-grid system matrix AH . This is done via a 

Galerkin projection [114]: 

AH := IHAhIh . (2.76) 
h H 

 
If the system originates from an FE discretization,  one can in fact show that    

AH x = bH with AH defined as above and bH := IHbh is exactly the system one 

would obtain from an FE discretization on the coarse mesh using piecewise bilinear 

basis functions. 

Now all the components are in place and we can outline the two-grid iterative 

scheme. We begin by performing ω1 ∈ N iterations of a smoother with matrix C. Let 

rh be the residual after this pre-smoothing step. The next step is called coarse-grid 

correction: We define the restricted residual by rH := IHrh and solve AH eH = rH. 

For now, let us assume that we solve the restricted system exactly, so that we can 

write eH = A−1rH. We interpolate the solution eH, defining eh := Ih eH and use H H 

this to update xh. As a final (optional) step, we perform ω2 ∈ N post-smoothing 
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h 

h 2 h 2 h 

T = Cω2  
(
I − Ih A−1IHAh

 
Cω1 . (2.77) 

Dh 

H H h 

iterations. Since what we have described is a sequence of linear operations, we can 

summarize one iteration of the two-grid scheme as an iterative solver of the form 

(2.74). We get 

ek+1 = Tek , 
 

where the iteration matrix of the two-grid scheme is given by 
 
 
 
 

  

=:T
  

h,H 

 
The matrix Th,H is called coarse-grid correction operator and it constitutes one of the 

two core elements of the two-grid scheme, the other being (pre- and post-)smoothing. 

A single iteration of the smoother within a smoothing step is sometimes called a 

sweep. 

For our choice of transfer operators and any of the smoothers mentioned earlier 

on, it can be shown that the two-grid scheme converges. A general set of necessary 

conditions for convergence of the two-grid scheme is given by Theorem 2.4.4 further 

below, which can also be found in [114, 131]. We will first need the two definitions 

below in order to identify an appropriate smoother and transfer operators. They 

employ  the  norms  /I · /IDh    and  /I · /ID−1 ,  where  Dh  is  the  (positive  definite)  main 

diagonal matrix of Ah. These norms are defined analogously to the energy norm 

(2.71). 

 
Definition 2.4.2. We say that a smoother, or the corresponding matrix C, has the 

smoothing property if, for some α > 0 which is independent of the mesh size, 
 
 

/ICe  /I ≤ /Ie  /I − α/IAhe  /I −1  . (2.78) 
 
 
 

Definition 2.4.3. We say that a prolongation operator for the two-grid scheme has 

Ah Ah 
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β 

H 

H 

H 

H 

the approximation property if, for some β > 0 which is independent of the mesh size, 
 
 

min 
eH ∈RnH 

/Ie   − IH e   /IDh ≤ β/IAhe  /I D−1  . (2.79) 

 
 
Theorem 2.4.4. Let Ah be symmetric positive definite. Let the prolongation oper- 

ator Ih have full rank and the restriction operator IH satisfy (2.75). Let the coarse 

grid system matrix be given by the Galerkin projection (2.76).  Further, assume that 

the matrix C has the smoothing property and Ih has the approximation property with 

constants α and β, respectively. Then, we have α ≤ β and 
 

 
/IT/IAh ≤

 
1 − 

α 
=: η < 1 . 

 
 

Consequently, the energy norm of the error is reduced in each iteration of the two- 

grid scheme by at least a factor of η, as 

 
/Iek+1/IAh  ≤ /IT/IAh /Iek/IAh  ≤ η/Iek/IAh  . 

 
Proof. See [114, (Theorem 13.3)] or [131, (Theorem 6.52)]. 

 
 

The key to the two-grid scheme’s convergence is the combination of the smoother, 

which effectively reduces the high-frequency parts of the error, and the coarse-grid 

correction operator Th,H , see (2.77), which eliminates the smooth error components. 

As mentioned earlier, it is plausible to assume that the range of the prolongation 

operator Ih closely overlaps with the space of low-frequency eigenvectors of Ah. If it 

has full rank and (2.75) and (2.76) are satisfied, Ih can be shown to be Ah-orthogonal 

to the range of the coarse-grid correction operator, i.e. range(Th,H ) ⊥Ah range(Ih ). 

Moreover, it can be shown that Th,H is an Ah-orthogonal projection and that 
 

ker(Th,H ) = range(Ih ) , (2.80) 
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( (   

l−1 l 

where ker(Th,H ) is the kernel of Th,H . So indeed, we see that any error 

components that lie in the range of the prolongation operator are eliminated 

entirely by the coarse-grid correction. 

In practice, the two-grid scheme is not viable, as nH is usually still too large to 

yield any significant savings in computational work if we solve AH eH = rH directly. 

Instead, we replace A−1 by a pre- and/or post-smoothing step and a coarse-grid 

correction on an even coarser grid. We repeat this recursively until we reach a 

grid that is coarse enough that the size of the system is sufficiently small that a 

direct solution is comparatively cheap. This recursive scheme constitutes the actual 

multigrid method. It requires a hierarchy of grids of decreasing size. Consider a two- 

dimensional regular mesh of mx by my square elements. Refine it by dividing each el- 

ement into 4 smaller elements of equal size and repeat several times to get a total of L 

grids, each with ml = 4(l−1)mxmy elements and Nl := 2(l−1)mx + 1 2(l−1)my + 1 

nodes, where l = 1, . . . , L. To go back and forth between each mesh level, we define 

prolongation and restriction operators Il and Il−1, respectively, where l = L, . . . , 2. 

Algorithm 2 shows the so-called V-cycle multigrid method. We can generalize it by 

changing Line 7 to perform any fixed number of multigrid calls on the next lower 

level. For example, two successive calls would lead to what is called the W-cycle 

multigrid method. 

A similar convergence result to Theorem 2.4.4 can be obtained for the multigrid 

method, see for example [61]. Crucially, the contraction factor η by which the energy 

norm is reduced in each iteration is independent of nh. Therefore, the multigrid 

method is an optimal solver, as the number of iterations required to get the error 

below a certain threshold does not depend on the size of the problem. Of course, 

the overall computational cost still does. For sparse systems, the complexity of 

the multigrid method is thus in O(n) [131]. In contrast, other iterative solvers 

such as (un-preconditioned) Krylov solvers require more iterations as the size of 

the system, and with it the condition number of the matrix, increases, giving them 
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l−1 
← 

 
 

Algorithm 2 V-Cycle Multigrid Method 
Let Il and Il−1, l = L, . . . , 2, be transfer operators. Let smooth(A, x0, b, ω) denote 
ω iterations of a smoother for the system Ax = b with initial guess x0. Assume that 
system matrices are defined for each coarse level by Al−1 = Il−1AlIl for l = L, . . . , 2. 

1: function MG(l, Al, xl, bl, ω1, ω2) 
2: if l = 1 then 
3: x1 ← A−1b1 

l l−1 

4: else 
5: xl ←  smooth(Al, xl, bl, ω1) r> pre-smoothing 
6: rl−1 = Il−1(bl − Alxl) 
7: el−1 = MG(l − 1, Al−1, 0, rl−1, ω1, ω2) r> coarse grid correction 
8: xl ← xl + Il el−1 

l 
9: xl smooth(Al, xl, b , ω2) r> post-smoothing 

10: end if 
11: return xl 
12:  end function  

 
O(n2) complexity. 

 

However, although η in Theorem 2.4.4 is constant, it might still be very close 

to 1. So while the cost of the multigrid method scales linearly with n, it might 

only outperform other iterative solvers for extremely large n. The algorithm can 

be optimized by tailoring its parameters – such as γ in (2.75), the number of pre- 

and post-smoothing sweeps, or even parameters of the smoother itself – to the 

specific problem. This requirement makes it less robust and not suitable as a black 

box method on its own. Therefore, the multigrid method is commonly used as a 

preconditioner in Krylov solvers as discussed earlier in this section. The V-cycle can 

in theory be written as (the inverse of) a preconditioning matrix M−1, even though 

the resulting expression would be rather unwieldy. The important thing to note is 

that, in order for it to represent a symmetric operator, which is important for both 

the CG and MINRES method, the number of pre- and post-sweeps should be equal, 

that is ω1 = ω2. 
 

Smoothed Aggregation AMG 
 

In the form discussed so far, the multigrid method assumes that a hierarchy of 

grids is given for which the prolongation operator can be defined via interpolation. 
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For structured meshes, especially with elements of equal size, such a hierarchy can 

be obtained easily enough through bisection of elements. However, things change 

once the domain geometry no longer allows for such a structured mesh. Naturally, 

therefore, the question arises of how to generalize the concept of fine and coarse 

grids to this case, or in fact, to cases where the problem does not correspond to 

any kind of grid at all. Methods which address this problem by defining coarse 

spaces and transfer operators based only on the structure of the system matrix are 

called algebraic multigrid (AMG) methods – as opposed to the geometric multigrid 

(GMG) variant discussed above. AMG methods can even have an advantage over 

the geometric approach when both are applicable, for example in the case of strong 

material anisotropy [47]. 

Note that the prerequisites of Theorem 2.4.4 are formulated in terms of operators 

and do not rely on the existence of an underlying “physical” mesh. Therefore, the 

theorem is applicable to any appropriate choice of prolongation operator that has 

the approximation property (2.79) and any smoother that satisfies (2.78). Since 

for elliptic problems, the typical smoothers used on structured discretizations also 

work on unstructured meshes, the main challenge is to construct several levels of 

coarse spaces and corresponding transfer operators. Each step from a higher (finer) 

to a lower (coarser) level should give a notable reduction in the number of DOFs. 

Furthermore, a more abstract notion of “smoothness” needs to be defined if we want 

to find prolongation operators whose range covers “smooth” error components. 

A range of different AMG techniques have been developed, starting with what 

is now often called classic AMG methods [113, 30]. For a brief introduction, see 

for example [47], which also points to some other approaches. In particular, it 

mentions the smoothed aggregation (SA) method proposed by Vaněk, Mandel, and 

Brezina [124, 123] as a method that is “robust and efficient over a wide variety of 

problems”. It is this latter method which we adopt in our algorithm. Since a detailed 

description would go beyond the scope of this thesis, we will only give an outline of 
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the basic concepts. We refer to [124] for details of the basic algorithm, to [123] for 

the convergence analysis and to [32] for the adaptive smoothed aggregation method. 

Peetz and Elbanna also recently employed the SA method in the context of topology 

optimization [96]. For a unified analysis of different AMG techniques, see [133]. 

The first task we will address is that of defining the coarse space. We can again 

limit ourselves to the two-grid case, denoting fine and coarse grid by subscript h 

and H, respectively. In geometric multigrid methods, fine-grid nodes are locally 

condensed into coarse-grid nodes on the basis that neighbouring nodes are inter- 

dependent to some degree. This physical coupling is reflected by the off-diagonal 

elements of the matrix A = [aij]i,j=1,...,n. Assuming for now that there is just one 

DOF per node, two nodes with indices i and j are neighbours in the algebraic sense 

if the matrix entry aij is non-zero.  We  say they are strongly coupled  neighbours if 

|aij| is large enough compared to the diagonal entries aii and ajj.  The SA method 

defines the strongly-coupled neighbourhood of node i as 

 
Ni(EN ) := 

{ 
j : |aij | ≥ EN √aiiajj 

  
, 

where EN ∈ [0, 1) is a threshold parameter. For the case of multiple DOFs per node, 

we generalize this definition as follows. Let us denote the DOFs of nodes i and j by 

the vectors i and j, respectively. Instead of single elements of A we now need to 

consider submatrices corresponding to index-vectors, denoted by, for example, Aij. 

Then, we define the strongly-coupled neighbourhood of node i with DOFs i by1 

 

Ni(EN ) := 
{ 

j : /IAij/I2   ≥ EN /IAii/IF /IAjj/IF 
  

, (2.81) 
 
 

where /I · /IF is the Frobenius norm.  With this neighbourhood relationship in place, 

we can define a coarse grid, as it were, by partitioning the set of all nodes into 

disjoint subsets C1, . . . , CNH of strongly-coupled neighbours, called aggregates. Each 

1We deviate from the definition given in [124], which involves the spectral radius of the matrix 
A−1/2AijA−1/2.  The additional implementation effort and computational work for this formula 

ii jj 
compared to ours does not seem warranted, judging by our numerical experiments. 
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aggregate represents a coarse-grid node. Next, we need to construct the transfer 

operators. The approach dictated by SA is motivated by the consideration that the 

range of the prolongation operator should include the smooth error components. 

Therefore, we need to consider the – so far geometric – notion of smoothness in a 

more abstract way. 

The crucial feature, in terms of the convergence analysis, of smooth error compo- 

nents is that they are not effectively reduced by the smoother. We can adhere to 

this definition, noting that errors which are smooth in this sense do not generally 

have to be smooth in the geometric sense. The term algebraically smooth is there- 

fore commonly used in this context. For the remainder of this section, “smoothness” 

will generally mean algebraic smoothness unless otherwise specified. In many cases, 

the smooth error components lie in the space of eigenvectors corresponding to the 

smallest eigenvalues of the positive definite matrix A. Consequently, if an error e is 

smooth, we have Ae ≈ 0, which is why this (somewhat vaguely defined) subspace is 

often called the near kernel of A. 

Let V = [v1, . . . , vdk ] be a matrix of near kernel basis vectors. In the standard 

version of SA, V has to be supplied by the user. For isotropic second order elasticity 

problems, (such as the one in Section 2.2), the natural – and best [123, 32] – choice 

would be the rigid body modes of the elastic structure. The rotational modes would 

require additional preprocessing steps for non-trivial mesh geometry. However, a 

basis for the translational modes is always readily available in the form of d linearly 

independent vectors of constant displacements. In three dimensions, this would give 
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H 

H 

H 

j 

H 

0 1 0 

us dk = d = 3 and the near kernel 


1   0   0


 

 

0   0   1 
  

V = . , (2.82) 

1   0   0 

0   1   0 

0   0   1 
 

where we assume that all rows corresponding to displacements fixed by the boundary 

conditions have been eliminated. In our implementation, a near-kernel defined as 

above gives the best results, but the following derivations are valid for any choice of 

V. 

The SA prolongation operator is constructed in two steps. First, we determine a 
 

tentative prolongation operator Ph : RnH −→ Rnh , based on the principle that V 

should lie in its range and thus have a coarse-grid representation. This means we 
 

want to find Ph and a coarse-grid near-kernel VH ∈ RnH ×dk such that 

 
V =: Vh = Ph VH . (2.83) 

 
 

For a vector v ∈ Rnh defined in the fine space, let vC , j ∈ {1, . . . , NH } denote 

the vector of all fine-grid DOFs that correspond to the jth aggregate. If w ∈ RnH 

is a coarse-grid vector, wj will denote all DOFs of coarse-grid node j. Although 

we use the same index-vector notation for fine-grid vectors, it should be clear from 

context whether we refer to fine- or coarse-grid DOFs. Also note that the number 

of DOFs per coarse-grid node is not generally d, as for the fine grid nodes, but  

dk. In addition to satisfying (2.83), the tentative prolongator should also have  

columns with localized support; more specifically, we only want overlap between the 

columns of Ph which correspond to neighbouring aggregates/coarse nodes, much 

in the same way as for the geometric interpolation prolongator. We could achieve 
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H 

H j k j 

H j 

H 

both by choosing (Ph ):j = [(v1)C , . . . , (vd )C ], that is, by defining the prolongator 

columns corresponding to coarse-grid node j as the restriction of the near-kernel Vh 

to aggregate Cj. The components of the coarse-grid near-kernel at node j would 

then simply be (VH )j: = I. However, to ensure orthonormality of the columns of 

Ph , we instead use a QR factorisation of the localized near-kernel and define the 

prolongator and coarse-grid near-kernel as 

 
(Ph )C  ,j  := Qj  ∈ R|Cj |×dk , 

 

(VH )j: := Rj ∈ Rdk ×dk , 

where (Vh)Cj ,:  = QjRj and (Qj)TQj = I, 

j = 1, . . . , NH . 

 
(2.84) 

 

Occasionally, (Vh)Cj ,:, the near-kernel localized to the jth aggregate, might not have 

full rank. This can occur whenever the number of DOFs of the coarse-grid node j is 

larger than the number of fine-grid DOFs of the entire aggregate, for example when 

d < dk, i.e. the dimension of the near-kernel is larger than the problem dimension, 

or when fine-grid nodes have fewer than d DOFs due to boundary conditions. In that 

case, we drop as many columns from Qj and rows from Rj as necessary to ensure 

that Qj has full rank, effectively reducing the number of DOFs for coarse-grid node 

j. We thereby guarantee that Ph has full rank and also avoid excess storage and 

operator complexity. 

 
As mentioned before, there is a second step to constructing the SA prolongation 

operator. If we compare the tentative prolongator as defined in (2.84) to the prolon- 

gation operator in the geometric multigrid method at the beginning of this section, 

we notice that there is no overlap at all between the supports of the columns of 

h for different aggregates. While a localized support of each coarse node was one 
 

of our requirements, a certain degree of “smoothness” of the column vectors of Ph 

is important for the overall convergence of the SA multigrid method (see [123] for 

details). To obtain the final prolongation operator, we therefore apply a smoother 

P 
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H 

∈ 
− 

← − 

H 

to the tentative prolongator:  
h := ShPh 

 
. (2.85) 

 
A simple choice for the prolongation smoother Sh, which is also used in the conver- 

gence analysis in [123], is 
4 

Sh = I − 
3λ̄

 Ah , 
 

where  λ̄h  is  an  upper  bound  on  the  spectral  radius  of  Ah,  which  can  be  obtained, 

for example, by the Gershgorin theorem, e.g. [114, (Thm. 4.6)]. An alternative 

prolongation smoother that yielded better results in our numerical experiments is 

given by the weighted Jacobi smoother 

 

2 
Sh = I − 

3 
Dh −1Ah

 , (2.86) 

 
where Dh is the main diagonal of Ah. Having thus defined a prolongator, we define 

the restriction operator simply as its transpose. 

Algorithm 3 summarizes the SA technique for constructing the coarse spaces and 

transfer operators, generalizing the concepts presented above to the multi-level case. 

We assume that information is available on which DOFs correspond to which nodes 

in the fine grid. The full SA multigrid method consists of Algorithm 3 followed by 

the standard multigrid method, see Algorithm 2. 

Algorithm 3 Smoothed Aggregation 
 

Let L 1 be the maximum number of coarse levels to create and let nmin be the 
minimum number of total DOFs a coarse level should have. Let V Rn×dk be a 
basis for the near-kernel of A =: AL. 

1: for l = L − 1, . . . , 1 do 
2: Create aggregates C1, . . . , CNl of strongly-coupled neighbouring nodes 
3: Define Pl+1 ∈ Rnl+1×nl and Vl ∈ Rnl×dk  such that Vl+1 = Pl+1Vl 

l l 
4: if nl < nmin then 
5: L L l, redefine all level indices accordingly 
6: stop 
7: end if 
8: Il+1  := Sl+1Pl+1 and Il := (Il+1)T 

l l l+1 l 
   9:  end for  

I 

h 
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So far, we have assumed that we already know the near-kernel V. In cases where 

we do not know all basis vectors v1, . . . , vdk that should define our coarse space, 

we can use the multigrid method itself to identify such vectors. This is the principle 

behind the adaptive smoothed aggregation (αSA ) method [32]. It can obtain a basis 

of the near-kernel for a given matrix A even when not a single near-kernel vector 

is known a priori. Since we assume the existence of an underlying physical grid, 

basis vectors of the form (2.82) can – and in fact should [32] – always be used. 

We therefore focus on the task of “enriching” a pre-existing near-kernel basis by 

additional vectors. 

 
Recall the basic multigrid paradigm as illustrated by the two-grid scheme: any 

error that is not effectively reduced to zero by the smoothing matrix is (approxi- 

mately) in the range of the prolongation operator. Since the latter coincides with 

the kernel of the coarse-grid correction operator, see (2.80), it is eliminated in the 

coarse-grid correction step. If there is an error vector which the multigrid method, as 

a combination of smoothing and coarse-grid correction, does not effectively reduce, 

we can infer that it is missing from the range of the prolongator Ih . Consequently, if 

we augment range(Ih ) so as to include this vector, it should improve our multigrid 

method. 

 
Following this argumentation, the first step of the αSA is to choose a random 

initial vector and apply the multigrid V-cycle a fixed number of times for Av = 0. 

Whatever error remains after this, if it has not been reduced by a certain (very 

small) factor, is a good candidate for a new near-kernel vector. Due to the zero 

right-hand side, the error is trivially equal to the result of the V-cycle itself, which 

we denote by vL. We will refer to vL simply as a candidate. 

In the next step of the αSA method, we improve the candidate by checking how 

effectively it is reduced on the lower levels L −1, L −2, We first update the near- 

kernel matrix on the finest level by appending vL.  We set V̂  := [V, vL] and construct 

new transfer operators based on V̂, according to (2.83) and (2.85).  By enriching the 
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L−1 L−2 2 

fine-grid near-kernel, we have increased the number of DOFs on grid L − 1, so that 

we also need to update the system matrix AL−1 accordingly, using the Galerkin 

projection with the enriched transfer operators. Along with a new coarse-grid near- 

kernel candidate, we have created a new coarse-grid problem on level L − 1. To 

further improve the candidate, we perform a fixed number of multigrid iterations, 

now starting at level L − 1. This requires some technical adjustments, since the 

transfer operators between levels L − 1 and L − 2 are no longer valid, but we refer 

to [32] for details1. We use the vector returned after the last multigrid iteration 

as our new candidate on level L − 1 and denote it by vL−1.  Then, we repeat the 

above process: we enrich the near-kernel, construct new, enriched transfer operators 

between L − 1 and L − 2, update AL−2 and further improve the candidate on level 

L − 2. We continue in this way until we reach level 2. Once we have obtained an 

improved  candidate v2 on this level,  we  interpolate it all the way  back  up to the 

fine grid and overwrite our original fine-level candidate, vL ← IL IL−1 . . . I3 v2. 
 

Whereas V̂  was just a provisional improved version of the near-kernel, we now per- 

manently enrich the near-kernel using the updated fine-level candidate: V ← [V, vL]. 

Finally, we set up all coarse levels from scratch, using the regular SA method, see 

Algorithm 3. 

 
The adaptive smoothed aggregation procedure described above can be repeated 

to give us any number of additional candidates. There is obviously a trade-off 

between the improved convergence behaviour expected from this and the growing 

operator complexity on all lower levels, as the numbers of DOFs and thus the size 

of the coarse spaces increase with the dimension of the near-kernel. It is not at all 

obvious, however, which number of candidates is right for a given problem. Another 

question arises when using αSA inside an iterative optimization method where the 

system matrix changes frequently, but we cannot reasonably consider reconstructing 
1We only highlight that we also update the lower level system matrices after these adjustments. 
While this step is explicitly omitted in the original algorithm, we found that it was required to 
maintain the convergence of the lower-level multigrid method. 
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the transfer operators for each new system, as the overhead of both the SA and 

αSA algorithm is prohibitive. Section 3.2.3 presents numerical experiments which 

investigate these questions and inform the AMG strategy we ultimately chose to 

follow. 
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CHAPTER 3 
 
 

MULTIGRID BARRIER METHODS FOR 
MINIMUM COMPLIANCE OPTIMIZATION 

 
 

We now turn to the main contribution of this thesis. We apply the optimization 

methods described in Sections 2.1.3 and 2.1.4 to the VTS problem, using multigrid- 

preconditioned Krylov solvers as discussed in Section 2.4. Section 3.1 details our 

implementation of the IP and PBM method. We can easily extend the latter to 

consider unilateral contact constraints due to the fact that we apply it to the dual 

VTS problem. 

In Section 3.2, we present various example problems and numerical results, on 

the basis of which we compare the performance of the IP and PBM method, as well 

as that of the OC method covered in Section 2.3.3. We also address the question 

of which Krylov solver to use within each method. Large scale problems involving 

several million finite elements are solved, both for uniformly structured and un- 

structured meshes. The latter warrant a discussion of different strategies by which 

to employ the SA AMG method as a preconditioner. Lastly, we include results for 

problems involving unilateral contact. 

An obvious question that arises is whether our methods can be applied not just to 

the VTS problem but also to the SIMP problem. We comment on this in Section 3.3, 

noting the limitations of our approach and complications arising from the SIMP 
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formulation. 
 

 
3.1 Optimization Algorithms 

 
In the following, we give a detailed description of our implementation of the IP 

and PBM method for the VTS problem. In particular, we apply the PBM method 

to the dual problem, as its structure is more amenable to the PBM methodology. 

Since primal and dual variables are not treated differently in the IP method, as 

opposed to the PBM method, it does not matter whether we apply it to the primal 

or dual formulation. Since the primal problem is the starting point for any potential 

extensions, for example to SIMP-based compliance minimization, it is the one we 

will use to derive our IP algorithm. At the end of Section 3.1.1, we show that we 

can apply the IP method to the dual problem and obtain the same algorithm. 

For each optimization algorithm, we derive the linear system that needs to be 

solved in every iteration. We manipulate this system by means of a Schur comple- 

ment to obtain a positive definite system with a sparsity structure resembling the 

stiffness matrix associated with the problem. This motivates the use of standard 

transfer operators when employing the multigrid method as a preconditioner, fol- 

lowing [80]. Details of how we solve the linear system in each method are given in 

Section 3.1.4. The efficacy of this approach is confirmed by the numerical experi- 

ments in Section 3.2. 

 

3.1.1 Primal-Dual Interior Point Method for the VTS Prob- 
lem 

 
The primal-dual IP method we use to solve (2.48) is based on earlier contributions 

by Kočvara and Mohammed [80] and Jarre, Kočvara, and Zowe [71]. Many features 

of the algorithm proposed in [80] had to be changed to make it more performant 

and viable for 3D problems. Maar and Schulz also used an IP method for topology 

optimization together with a multigrid method to solve the linear systems [85]. 
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r2 
1 

¯ 

¯ 

[(ρ̄i − ρi)ν̄i − s̄]i=1,...,m 

 ¯ 

¯ ¯ ¯ 

Their approach, however, involved solving an indefinite system, requiring the use of 

a much more complicated multigrid scheme. 

We recall the KKT conditions (2.51) for the VTS problem, again eliminating the 

adjoint variable by (2.52): 

 
K(ρ)u − f = 0 , (3.1) 

ρTa − V  = 0 , (3.2) 

uTB(u) − α a + ν − ν̄ = 0 , (3.3) 
2 ¯ 

(
ρ − ρ

  T ν = 0 , (3.4) 
 

(ρ̄ − ρ)T ν̄ = 0 , (3.5) 

(ρ̄ − ρ) , 
(
ρ − ρ

  
, ν, ν̄  ≥ 0 , (3.6) 

 
 

where we have again used the notation B(u) = [K1u, . . . , Kmu]. Anticipating later 

developments, we introduce the variable α̃ := −α.  This substitution will guarantee 

symmetry of the system (3.9) further below. We then perturb the complementarity 

conditions, replacing them with 

 
(ρi − ρi)νi = s, i = 1, . . . , m, 

¯  ¯ ¯ 
(ρ̄i − ρi)ν̄i = s̄, i = 1, . . . , m . 

 
 

This gives us the following associated residuals: 
 


r1
 

  
 

 



 

  

 

 
 

K(ρ)u − f 
ρTa − V 

 
 

r̃(u, α̃, ρ, ν, ν̄)  = r3 uTB(u) + α̃ a + ν − ν̄ .   r   ]  (ρi − ρi)νi − s  i=1,...,m   4  

 

In order to perform an iteration of the Newton method on this system, we compute 

2 
:= 

¯ 

¯ 

¯ 

r 5 

 

1 



111  

 ̄ 

¯ 

J(r̃) := ∇(u,α̃,ρ,ν,ν̄) r̃ = B(u)T a 0 I −I 



 K(ρ) 0 B(u) 


 

IP 0T 0 aT IP 

, (3.7) 

the Jacobian of the residual function: 



 
K(ρ) 0 B(u) 0 0 




 

 

0T 0 aT 0 0 
  

 

where we have used the notation 

0 0 N P 0 
0 0 −N 0 P 

 
 
 

 

N = diag{ν} , N = diag{ν̄} , 
 
 

P = diag{ρ − ρ} , P = diag{ρ̄ − ρ} . 

 
 

The system matrix J in (3.7) is non-symmetric and indefinite. We can however 

reduce it to one that is symmetric positive definite. We do this in two steps. First, 

we construct the Schur complement of J with respect to its bottom right 2 ×2 block, 

giving us 
 

       0T 0 aT 
B(u)T a −DIP 

 , (3.8) 

where DIP :=
 
P−1 N + P

− 
N

)
. We then in turn form the Schur complement of 

1 
 

(3.8) with respect to its bottom right block. This leaves us with the matrix 
 

S := 

 
K(ρ)   0

l 

+ 

 
B(u)

l 

D−1 
 
B(u)T a

    
∈ R(n+1)×(n+1) . (3.9) 

 
 

This matrix is symmetric and positive definite as long as ρ is strictly feasible and 

ν, ν̄ > 0, both of which is guaranteed by the IP method.  Indeed, both of the matrix 
¯ 
summands are positive semidefinite and their sum is positive definite as long as their 

null spaces do not overlap. As K(ρ) 0 for all strictly feasible ρ, the null space of 

the left matrix summand is the (n + 1)th canonical unit vector.  It is easy to check 

 

¯ 
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− 

  l 

IP 

ρ̄ − ρ 

¯ 

IP 
r aT IP 5 

4 

¯ 

that this vector does not lie in the null space of the right matrix summand. 

 
In each iteration of the IP method, we perform a single iteration of the Newton 

 

method for the nonlinear system r̃(u, α̃, ρ, ν, ν̄)  =  0. Rather  than  solving  the 
¯ 

indefinite linear system J ∆(u, α̃, ρ, ν, ν̄) = r̃, we solve the equivalent system 
¯ 

 
 

SIP 
∆u 

IP 
∆α̃ 

, (3.10) 

 
where the right-hand side vector rIP follows from the reduction of the system de- 

scribed further above as 

r = − 

 
r1

l 

− 

 
B(u)

l 

D−1 
 
r 

 

 
+ P−1r − P−1r 

) 
. 

 
From the solution of (3.10), we can reconstruct the increment for ρ using the identity 

 

∆ρ = −D−1
 
r3 

 
+ P−1r4 − P−1r − B(u)T∆u − ∆α̃ a

) 
. (3.11) 

 
 

The  increments  for  the  Lagrange  multipliers  ν  and  ν̄ are  computed  based  on  the 
¯ 

stable reduction proposed in [53], with a slight adjustment to account for the upper 

bound constraints not present in that paper. The multipliers are updated by the 

formulas below, where the second formula uses the result of the first. 
 

∆ν̄ =  
    1  (

P 
(
B(u)T∆u + ∆α̃ a

  
− (N − N)ρ − (r   + r   − Pr  )

  
, (3.12) 

5 3 
 

∆ν = ∆ν̄ − B(u)T∆u − ∆α̃ a − r3 . (3.13) 

 
Details about how we solve system (3.10) are given in Section 3.1.4. 

 
Once the increments have been obtained from (3.10–3.13), we need to determine 

an appropriate step length. Our algorithm employs a long step strategy [132] in 

that it restricts the step length mainly to guarantee strict feasibility of the next 

iterate. We do not use the same step length for all increment components. Rather, 

2 
3 4 

= r 

5 
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2 

¯ 

∆ρ  and  ∆u  use  the  same  step  length,  the  step  length  for  ∆α̃  is  always  equal  to 

1  and  different  step  lengths  are  calculated  for  both  ∆ν  and  ∆ν̄.   For  details,  see 
¯ 

Algorithm 4. This step length strategy proved to be the most effective in numerical 

experiments. 

After each IP iteration, the barrier parameters are updated adaptively. For this, 

we compute the duality measure for the lower and upper bound constraint, 
 

νT(ρ − ρ) 
 

 

ν̄T(ρ̄ − ρ) 
 

¯ 
m ¯ and , 

m 
 

respectively. We then scale these measures by constants 0 < σs < 1 and 0 < σs̄  < 1 
¯ 

to  get  a  new  value  for  s  and  s̄.   At  this  point,  one  unconventional  feature1   of  our 
¯ 

algorithm should be highlighted.  The new values for s and s̄ are not used to construct 
¯ 

the right hand side term for the next iteration, but rather for the iteration after 

that. We found that this “iteration shift”, peculiar though it might seem, makes 

the algorithm significantly more efficient. Presumably, a similar behaviour could 

be obtained by other means, such as choosing larger values for σs and σs̄ ,  or even 
¯ 

determining them adaptively. For the sake of simplicity, we decided to stick with this 

slightly unorthodox approach, acknowledging that it lacks theoretical justification. 

Finally, we require a stopping criterion for the algorithm. We use the duality 

gap δ(u, α) = δ(u, −α̃) as a measure of optimality, scaled by the current objective 

function value 1 f Tu. The optimization terminates once the scaled duality gap is 

smaller than a set threshold while also being (nearly) positive, as a negative duality 

gap points to infeasibility. Algorithm 4 sums up our IP method. The parameters 

that we used in our experiments are εIP = 10−5, σs = σs̄  = 0.2; we chose the initial 
¯ 

values  u  =  0,  α̃  =  −1,  ρi =  V/(
 

i ai)  for  all  i  =  1, . . . , m  and  ν  =  ν̄ =  a;  the 

barrier parameter values in the very first iteration are s = s̄ = 10−2. 
¯ 

1A bug turned feature, actually. 
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¯ 

· 

2 

¯ = s̄ ν̄ 

0.9 · min ¯ 

¯ ¯ ¯ 

 
 
 
 
 
 
 
 
 
 
 

 

Algorithm 4 Primal-dual IP method for the VTS problem 
Let  εIP     >  0  and  0  <  σs, σs̄     <  1 be given. Choose initial vectors (u, ρ) and 
(α̃, ν, ν̄). Set  barrier  par̄ameter  update  values  to  s+  =  σ   ·  νT(ρ −  ρ)/m  and s 

s + ¯ σ · T ¯ ¯ ¯ ¯ 

1: repeat 
2: Solve system (3.10) to obtain (∆u, ∆α̃) 
3: Reconstruct (∆ρ, ∆ν̄, ∆ν) using (3.11–3.13) 
4: Compute step lengths ¯ 

 
κu = κρ = min

 
0.9 · min 

ρi − ρi , 0.9 · min ρ̄i − ρi ,  1
  

, 

 
−νi 

 

  

∆ρi<0 

  
 

 

∆ρi ∆ρi>0 ∆ρi 

−ν̄i 

¯ ¯ 

5: Update all variables 
 

u ← u + κu∆u , α̃ ← α̃ + κα̃∆α̃ , ρ ← ρ + κρ∆ρ , 
 

ν ← ν + κν∆ν , ν̄ ← ν̄ + κν̄∆ν̄ 
 

6: Update barrier parameters  
 
s = s+ , 

 
 

s̄ = s̄ + 
¯ ¯ 

7: Determine barrier parameters for shifted update 
 

+ νT(ρ − ρ) + 
 

 

ν̄T(ρ̄ − ρ) 
 

 s = σs ¯ 
¯ ¯ 

m ¯   , s̄ = σs̄  · m 

8: until εIP > δ(u, −α̃)/(1 f Tu) > −0.1ε 
 

 

, 1 
∆νi<0 ∆νi  

(ρ̄ − ρ)/m. 

κν = min , κν̄  = min 0.9 · min , 1 , κα̃ = 1 
∆ν̄i<0  ∆ν̄i 

 

IP 
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¯ 

∈ 

m 
¯ 

m m 

2 i i ¯i i 

ρi uTKiu − α ai + νi − ν̄i + zi 
i=1  ¯ 

¯ ¯ ¯ 

Equivalence of primal and dual KKT systems 
 

As mentioned earlier, it does not make any substantial difference whether we apply 

the IP method to the primal or dual VTS problem. The short explanation for this 

is that we use a primal-dual IP method, which solves the primal and dual problem 

simultaneously. In our case, however, the two formulations (2.48) and (2.54) do 

not conform to the strict definition of primal and dual problems, see Remark 2.3.9. 

We will therefore devote a few pages to showing that the KKT system of (2.54) is 

equivalent to that of (2.48), the consequence of this being that we can apply the IP 

approach to either and arrive at the same algorithm. 

We start from a slight reformulation of the dual problem (2.54). We introduce 

slack variables z1, . . . , zm ≥ 0 in order to write (2.54b) as a set of equality constraints: 

 
 
 
 

min u∈Rn, α ∈Rm 
αV  − f Tu − ρTν + ρ̄T ν̄ (3.14) 

R, ν, ν̄, z 
¯ ¯ ¯ 

s.t. 
1 
uTK u − α a  + ν  − ν̄  + z 

 
= 0, i = 1, . . . , m, (3.15) 

 

νi ≥ 0, i = 1, . . . , m, (3.16) 

ν̄i ≥ 0, i = 1, . . . , m , (3.17) 

zi ≥ 0, i = 1, . . . , m. (3.18) 

 
We introduce the multipliers ρ, µ, µ̄, ξ Rm  for the respective sets of constraints, 

¯ 
so that we get the Lagrange function 

 
 

L(u, α, ν, ν̄, z; ρ, µ, µ̄, ξ) =  αV  − f Tu − ρTν + ρ̄Tν̄ 
  (

1
 

 

  

)       
 

     
ξi zi , µ̄i ν̄i − µi νi − − 

¯ 2 i=1 

∈ 

m 

i 

+ 
i=1 i=1 
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from which we can derive the KKT conditions: 
 
 
 
 
 
 
 
 

¯ ¯ ¯ 
 
 
 
 

µi νi = 0 , i = 1, . . . , m, (3.19f) 
¯ ¯ 
µ̄i ν̄i = 0 , i = 1, . . . , m , (3.19g) 

ξi zi = 0 , i = 1, . . . , m, (3.19h) 
1 
uTB(u)−α a + ν − ν̄ + z = 0 , (3.19i) 

2 ¯ 
ν, ν̄, z, µ, µ̄, ξ  ≥ 0 . (3.19j) 
¯ ¯ 

 
First, we use the simple linear equations (3.19c–3.19e) to eliminate the multipliers 

 

µ, µ̄ 
¯ 

and  ξ.   Together  with  (3.19j),  we  thus  get  ρ − ρ  ≥  0 and  ρ̄ − ρ  ≥  0.   The 

complementarity conditions (3.19f–3.19h) become 
 

(ρi − ρi) νi = 0 , i = 1, . . . , m, (3.20a) 
¯   ¯ 

(ρ̄i − ρi) ν̄i = 0 , i = 1, . . . , m , (3.20b) 

ρi zi = 0 , i = 1, . . . , m. (3.20c) 
 

Second, we eliminate the slack variables z along with the set of complementarity 

conditions (3.20c).  We  can do this by  including z in ν.  To  be more precise,  we 
¯ 

introduce ν̃ := ν + z ≥ 0 to replace both ν  and z.  If ρi > 0 for a particular i, then 
¯ ¯ ¯ ¯ 

the corresponding zi has to be zero due to (3.20c). Knowing this, we can ignore 

ρi zi = 0.  If, on the other hand, ρi = 0, then we  have  ρi zi = (ρi − ρi)zi = 0. This, 
¯ ¯ 

together  with  (3.20a),  is  equivalent  to  (ρi − ρi) ν̃i  =  0,  since  zi, νi ≥  0.   In  either 
¯   ¯ ¯ 

case, we can safely replace (3.20a) and (3.20c) by (ρi − ρi) ν̃i  = 0.  In summary, the 
¯ ¯ 

¯ 

∇uL = −f + K(ρ)u = 0 , (3.19a) 

∇αL = V − ρTa = 0 , (3.19b) 

∇νL = −ρ + ρ − µ = 0 , (3.19c) 

∇ν̄L = 

∇zL = 

ρ̄ − ρ − µ̄ = 0 , 

ρ − ξ = 0 , 

(3.19d) 

(3.19e) 
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KKT conditions (3.19) for the dual VTS problem are equivalent to 
 

−f + K(ρ)u = 0 , 

V − ρTa = 0 , 

(ρi − ρi) ν̃i  = 0 , i = 1, . . . , m , 
¯   ¯ 

(ρ̄i − ρi) ν̄i = 0 , i = 1, . . . , m , 
1 
uTB(u) − α a + ν̃ − ν̄ = 0 , 

2 ¯ 
ν̃, ν̄, (ρ − ρ), (ρ̄ − ρ)  ≥ 0 , 
¯ ¯ 

 
which is the same as system (3.1) which we started out with when deriving Algo- 

rithm 4. 

 

3.1.2 Penalty-Barrier Multiplier Method for the Dual VTS 
Problem 

 
The IP method presented above works very well for medium-sized problems. When 

the number of elements in a mesh increases to the order of 106 and above, however, 

it struggles to converge within a reasonable number of iterations – or at all. Rather 

than conduct an exhaustive study of the many parameters of the IP method one can 

adjust in the hope of improving its performance for a particular set of problems, we 

propose using an alternative algorithm altogether. The PBM method reviewed in 

Section 2.1.4 has been applied successfully to both (truss) topology design problems 

[79] as well as large-scale problems, for example in the optimization software Pennon 

[76, 77], and we will apply it to the VTS compliance minimization problem. 

As mentioned at the beginning of Section 3.1, we apply the PBM method to the 

dual VTS problem. If we were to apply it to the primal problem (2.48), problems 

would arise due to the fact that it does not guarantee strict feasibility of the den- 

sities, in contrast to the IP method. As a result, the stiffness matrix K(ρ) might 

become indefinite. Not only would this require the use of a different and much more 



118  

m 

i 

complicated solver setup, but it could also lead to spurious solutions since we would 

effectively model a mechanical structure with negative elasticity coefficients in areas 

of negative density. We can circumvent these issues by instead applying the PBM 

method to the dual problem, in which the densities play the role of Lagrange multi- 

pliers. The updating formula (2.24b) guarantees that these are always greater than 

zero. While some might converge to zero – at least if we set the lower bounds ρ = 0 
¯ 

– in practice, we did not encounter any serious problems related to K(ρ) becoming 

ill-conditioned, (although a regularization of K(ρ) improves the algorithm some- 

what, see Section 3.1.4). We therefore derive our PBM method for the simplified 

dual VTS problem (2.60) with zero lower bounds. 

We begin with the definition of the augmented Lagrangian for problem (2.60): 

 
L(u, α, ν; ρ, µ) = αV  − f Tu + ρ̄Tν 

  (
1  1 

) 
+ 

i=1 

  
 

 

 

ρip ϕ 
 
 

 

p (2 
uTKiu − α ai − νi) 

(
−ν  

) 
 

 

(3.21) 

 

with Lagrangian multipliers ρ > 0 and µ > 0, penalty parameter p > 0, and the 

logarithmic-quadratic penalty-barrier function ϕ defined in (2.27). 

 
Recall the general form of the gradient (2.25) and Hessian (2.26) of the aug- 

mented Lagrangian. They differ from the gradient and Hessian, respectively, of the 

regular Lagrangian in that they feature penalty parameters and derivatives of the 

penalty function ϕ. These extra terms can be seen as scaling factors for the La- 

grange multipliers. To highlight the similarity between the regular and augmented 

Lagrangian, but also in order to condense the notation, we introduce the “scaled” 

p µip ϕ 
i=1 

+ 
m 

, 
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i i p 2 i i i 

i p p 2 i i i 

i p p 

p 

r3 

Lagrange multipliers 

ρ  := ρ  ϕ  
(

1 
(
1 
uTK u − α a  − ν )

) 
, i = 1, . . . , m , 

ρ   :=  
ρi  ϕ   

(
1 
(
1 
uTK u − α a  − ν )

) 
, i = 1, . . . , m , 

µi := µi ϕ 
(
− 

) 
, i = 1, . . . , m, 

νi 

µ   :=  
µi  ϕ   

(
−νi 

) 
, i = 1, . . . , m . 

Furthermore, we denote the diagonal matrices constructed from the vectors ρ , µ , 

and a respectively, by 

 
P  := diag{ρ } , M  := diag{µ } , A := diag{a} . 

 
We now compute the gradient of the augmented Lagrangian and, using the above 

shorthand, write it as 

 
m 

∇u L  = −f + ρ 
i Kiu = −f + K(ρ )u =:  r1 (3.22a) 

i=1 
m 

∇α L = V − ρi ai =:  r2 (3.22b) 
i=1 

 

∇ν L = ρ̄ − ρ  − µ  =:  r3 . (3.22c) 

 
For later reference, note that we will often write ∇(u,α,ν)L = (r1, r2, r3) simply as 

∇L. Finally, we determine the Hessian of L in order to set up the Newton system, 

which takes the form 



K(ρ ) + B(u)P  B(u)T −K(Aρ  )u   −B(u)P  
 

∆u

 

 
   

 

 


r1

 

 
 

 −uTK(Aρ  ) 
 m

 a2ρ   ρ TA  ∆α = − r2 , (3.23) 
 

where DP BM = P + M and B(u) = [K1u, . . . , Kmu]. The above matrix is sym- 

∆ν 
i i i=1 

−P B(u)T Aρ DP BM 
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  l 

PBM ∆α 

PBM 

PBM ρ TA PBM 3 

i=1 i i 

metric and, because it is the Hessian of the augmented Lagrangian, which is strictly 

convex, it is also positive definite. We could therefore solve the system in this form 

both by the MINRES and CG method. However, we perform a reduction similar 

to that of system (3.8) in the IP method. The advantage of this approach will be 

discussed in Section 3.1.4. 

Since ϕ is strictly convex, ϕ > 0 and therefore the diagonal matrix DP BM is 

positive definite and (easily) invertible. We can thus eliminate ∆ν and the third 

line of (3.23) and obtain the reduced system 

 
 

SPBM 
∆u 

= r
 

∆α 

 
 
PBM (3.24) 

 
that features the Schur complement of DP BM in the Newton system matrix, 

 

S := 

 
K(ρ ) + B(u)P  B(u)T −K(Aρ  )u

l
 

 
PBM −uTK(Aρ ) m

 a2ρ   
 

 

−
 
−B(u)P 

l 
D−1 

 
−P B(u)T Aρ

 
, 

 
and the right-hand side vector 

 

r = − 
 
r1
l 

+ 

 
−B(u)P  

l 
D−1 

 

 

 
r  . (3.26) 

 
SP BM is positive definite, since it is the Schur complement of a symmetric positive 

definite matrix and DP BM is non-singular [135, (Theorem 1.12)]. After solving 

(3.26), we can obtain ∆ν from 

 
∆ν = −D−1 

 
r3

 

+ 
 
−P  B(u)T Aρ  

   ∆u
l  

. (3.27) 
 
 

To determine a step-size, we perform backtracking and apply the Armijo condition, 

see Line 4 in Algorithm 5, after which we update the variables (u, α, ν). This 

procedure comprises one Newton iteration and we repeat it until /I∇L/I∞ < εNWT 

2 

(3.25) 

ρ TA 

r 
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m m 

i 2 i i 

for a threshold εNWT > 0, at which point we have completed the first step of the 

PBM iteration. Next, we update the Lagrange multipliers according to (2.24b). 

Additionally, we impose the safeguard rule used in [17]: in order to avoid extreme 

changes in the multiplier values and stabilize the algorithm, we bound the multiplier 

update above and below by a factor βLM ∈ (0, 1), see Line 8 in Algorithm 5. The 

final step of the PBM iteration is the update of the penalty parameter. For this, we 

first introduce the merit function 

θ(u, α, ν, ρ, µ) := max
 
/I∇L/I ,  /I(g)+/I1 ,  /I(−ν)+/I1 , ∞ m m (3.28) 

−ρ, −µ, |ρ|T|g| 
+ 

|µ|T|ν|
 
, 

 
 

where the vector g denotes the first set of inequality constraints, i.e. 
 

g = 
1 

uTK u − α a 
 
− ν , i = 1, . . . , m, 

 
 

and (·)+ := max{·, 0}. The merit function θ serves as an optimality measure. 

Clearly, θ ≥ 0 holds everywhere  and  if  θ(u, α, ν, ρ, µ) =  0 then  (u, α, ν, ρ, µ) is 

an optimal solution. We will use θ to choose the value of the penalty parameter 

adaptively based on how close to optimality we currently are. We achieve this by 

evaluating θ at the updated solution and setting p = σθ for some constant factor 

σ > 0. However, if p changes too much, the current values of (u, α, ν, ρ, µ) might 

be a bad initial guess for the Newton method in the next PBM iteration. (This 

consideration is similar to the path following paradigm of IP methods mentioned in 

Section 2.1.3).  Therefore, we impose the condition that p is not reduced by more 

than a factor βp. At the same time, we want to avoid stagnation of the method at a 
¯ 

point that is too far away from the solution to guarantee that θ is decreased by an 

acceptable factor in each iteration. Hence, we also cap the next p by a value that is 

β̄p  times that of the current penalty parameter, where β̄p      (βp, 1). 
¯ 

 
The merit function also has two other purposes in our algorithm. First, we change 

i 
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NWT 

the tolerance εNWT for the Newton method based on the current value of θ, similarly 

to the penalty parameter. Second, we use θ in the stopping criterion for the PBM 

method. While the duality gap δ(u, α) given in (2.62) is a very useful optimality 

measure in practice, see Section 3.2.1, we simultaneously keep track of θ. This is 

because it quantifies not just the distance to optimality but also the feasibility of 

the solution and we need to ensure that the PBM algorithm does not terminate 

prematurely due to spuriously low duality gap values attained at strongly infeasible 

points. Although we only observed this pathological behaviour in a very few cases, 

satisfying the extra stopping criterion does not usually require a lot more iterations. 

We include it just to be on the safe side and because we do not have to compromise 

on efficiency for it. 

Algorithm 5 gives the details of the PBM algorithm for the dual VTS problem. 

For the results in Section 3.2, we used the parameters βLM = 0.01, σ = 0.5, βp = 
¯ 

0.3, β̄p  = 0.9, and γ = 0.01.  The Newton tolerance starts at εNWT   = 1 and is bounded 

below by εmin = 10−5. The stopping threshold for the PBM method is εPBM = 10−5. 

The initial guesses for the variables are u = 0, α = 1, ν = a. For the Lagrange 

multipliers, they are ρi = V/(
 

i ai) for all i = 1, . . . , m, and µ = ρ̄ − ρ. 

The adaptive updating scheme for the penalty parameter p in our implementation 

is taken from [101, 102] – an improved version of the one proposed by Griva and 

Polyak in [60]. It is one of the main ingredients of a class of nonlinear rescaling 

methods with local superlinear convergence introduced in those references. The 

other ingredient, however, a primal-dual step that updates the primal variables 

and Lagrange multipliers simultaneously, did not provide any improvement when 

we tested it on our examples. This might be due to the fact that we stop our 

optimization algorithm relatively early, with εPBM = 10−5, presumably before the 

neighbourhood of superlinear convergence is reached. In all of the aforementioned 

references, the theoretical convergence results assume that strict complementarity 

holds at the solution, as well as the LICQ and the sufficient second order optimality 
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/IL /I 

¯ 

min 

i i p 2 i ¯i i 

i i p 

 
 
 
 
 

 

Algorithm 5 PBM method for the dual VTS problem 
Let  0  <  βLM  <  1,  σ  >  0,  0  <  βp <  β̄p  <  1,  0  <  γ  <  1,  εPBM   >  0,  εNWT   >  0  and 

min 
NWT > 0 be given.  Choose initiāl vectors (u, α, ν) and (ρ, µ).  Set p = 1. 
1: repeat 
2: repeat r> Step 1 
3: Solve (3.24) for (∆u, ∆α) and compute ∆ν by (3.27) 
4: Find the largest κ ∈ {1, 0.75, 0.752, . . . } such that 

L(u + κ∆u, α + κ∆α, ν + κ∆ν; ρ, µ) − L(u, α, ν; ρ, µ) 
≤ κγ∇L(u, α, ν; ρ, µ)T(∆u, ∆α, ∆ν) 

 
5: Update the variables 

(u, α, ν) ← (u + κ∆u, α + κ∆α, ν + κ∆ν) 

6: until (u, α, ν) ∞ < εNWT 

7: Update the multipliers r> Step 2 

ρ+ = ρ ϕ  
(

1 
(
1 
uTK u − α + ν  − ν )

) 
, i = 1, . . . , m, 

µ+ = µ ϕ 
(

−νi 
) 

, i = 1, . . . , m 
 

8: Apply safeguard rule 

+  ρi  ρ ← min{max{β ρ , ρ }, }, i = 1, . . . , m, 
i LM   i i βLM 

+  µi  µ ← min{max{β µ , µ }, }, i = 1, . . . , m 
i LM i i βLM 

 

9: Update the penalty parameter r> Step 3 

p ← max{ min{ σ θ(u, α, ν, ρ, µ), β̄p p } , βp p } 
 

10: Update the Newton tolerance 
 

εNWT ← max 
{ 

min { θ(u, α, ν, ρ, µ), ε 
 
 
 

NWT } , εNWT 
 

11:  until  δ(u, α)/(αV  − f Tu + ρ̄T ν) < εPBM   and θ < 10εPBM 

ε 
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i∈χ 

p 

conditions. While we cannot guarantee this for our problem, the PBM method 

described in this section still proved to be both reliable and efficient in all of our 

numerical experiments. 

 

3.1.3 Including Unilateral Contact Constraints 
 

In order to handle problems with unilateral contact constraints within the presented 

PBM framework, we merely need to consider the additional set of inequality con- 

straints in (2.65). This leads to an extra term in the augmented Lagrangian. Since 

the contact constraints, and consequently this extra term, only depend on u, not 

many changes are necessary in the resulting Newton system in order to adapt the 

PBM method for unilateral contact constraints. In the following, we briefly sum- 

marize these changes. 

Firstly, the augmented Lagrangian (3.21) becomes 

 
L(u, α, ν; ρ, µ) = αV  − f Tu + ρ̄Tν 

  (
1  1 

) 
+ 

i=1 
 

 

+ 
i=1 

ρip ϕ 
 

µip ϕ 

p (2 
uTKiu − α ai − νi) 

(
−νi 

) 
 

 

+ 
  

η p ϕ 
(

cT
i  u − bi 

) 
, 

 

where χ is the contact constraint index set defined in (2.41). For the gradient and 

Hessian, we use a shorthand notation analogous to the one in the previous section, 

denoting the “scaled” Lagrange multipliers for the contact constraints by 

ηi
    := ηi ϕ 

( ) 
, i ∈ χ , ciu − bi 

η  := 
ηi ϕ 

(
ciu − bi 

) 
, i ∈ χ . 

With this, the partial derivative of the augmented Lagrangian with respect to u, cf. 

p 

m 
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(3.22a), is given by 
 

∇u L = −f + K(ρ )u + Cη =:  r1 . 

 
Finally, defining the diagonal matrix H := diag{ηi

 }, the upper left block of the 

Hessian in (3.23) changes to 

 
K(ρ ) + B(u)P  B(u)T + CH CT . (3.29) 

 

This change obviously carries through to the Schur complement. The adaptation of 

Algorithm 5 to include the contact stresses η in the Lagrange multiplier updating 

step is straightforward. 

 

3.1.4 Multigrid Preconditioner for MINRES and CG 
 

All of the linear systems arising in any of the optimization algorithms discussed in 

this thesis are solved either by the MINRES or the CG method. These are in turn 

preconditioned by a multigrid V-cycle. In Section 2.4.2, we presented the multigrid 

method as intrinsically connected to a discretized elliptic problem defined on an FE 

mesh. The transfer operators were motivated by interpolation of DOFs defined on 

the mesh nodes. However, of all the variables featured in our optimization problem, 

only the displacements u conform to this particular geometric interpretation. The 

question of how to incorporate a multigrid method preconditioner in our algorithms 

comes down to the appropriate choice of prolongator, which is not completely ob- 

vious. In the following, we describe our approach in detail. We also address other 

solver-related questions, such as the stopping criterion and regularization of the 

system matrices. 

For the OC method, applying multigrid is easy enough, since the only linear 

system that we need to solve is given by the equilibrium equations K(ρ)u = f , 

which is precisely the kind of system that the multigrid method is intended for. In 
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H 

H 

i=1 

PBM 

0T 0 ±aT 

K  D  = D−1, whereas for SP BM , we have 

= h 

  l 

our IP and PBM method, we start with a linear system that is considerably larger 

and, in the case of the IP method, not even positive definite. By taking the Schur 

complement, we arrive at a different system, which turns out to strongly resemble 

the equilibrium equations in a particular way. 

Recall the linear systems (3.10) and (3.24) that we solve in the IP and PBM 

method, respectively. The unknowns in these systems are the increments ∆u and 

∆α.  The former can,  just as u,  be interpreted as a vector of DOFs  defined at   

the mesh nodes, while the second one is a scalar. One can devise a block-wise 

prolongation operator for these variables by 

(Ih )u 
H , 

1 
 

where (Ih )u is a standard (geometric or algebraic) multigrid prolongation operator 

for the displacements. The scalar α can be seen as a “global” variable, constant over 

the entire domain, so that its value is the same on all grid levels. Using the standard 

operator for the displacements can however not only be motivated by the variables 

appearing in the linear system, but also by the system’s structure. 

Regard the system matrices for the IP and PBM method, defined in (3.9) and 

(3.25), respectively. First of all, they are both positive definite. Second of all, their 

sparsity structure is the same as that of the stiffness matrix K(ρ) =
 m

 ρiKi for 

any ρ > 0. Indeed, both system matrices can be written in the form 
 

S =

 
K 

 
0 
l 

+ 

 
B(u)

l 

D  
 
B(u)T ±a

  
, 

 
 

where K  is the stiffness matrix K(ρ) for different choices of ρ and D  
 

  

is a diagonal 

K = K(ρ ) and D  = P − P D−1 P . We now want to show that the upper left 

block of S, which is K  +B(u)D B(u)T, has the same sparsity structure as the stiffness 

matrix. That this is true of K is obvious, so we must show it for the second summand. 

IP = K(ρ) and 

I 

matrix. For SIP , we have 
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i=1 i=1 

  

First, we observe the identity B(u)B(u)T =
 m

 B·iB·i
T  = 
 m

 Kiu (Kiu)T. The 

only non-zero components of Kiu are those corresponding to indices of non-zero 

entries of Ki, hence the dyadic product Kiu (Kiu)T has the same sparsity structure 

as Ki. The sum over all of these terms will therefore have the same sparsity structure 

as K(ρ). This property extends to any matrices B(u)AB(u)T where A is a diagonal 

matrix, and thus, in particular, to B(u)DB(u)T.  The second diagonal block of S 

is a scalar and the off-diagonal blocks are row- and column-vectors, respectively, 

which are not generally sparse. Figure 3.1 shows a typical example of the sparsity 

structure of S as well as the matrix that S is a Schur complement of – which is given 

by (3.8) for SIP and by (3.23) for SP BM . 

Figure 3.1: Sparsity structure of (a) the saddle-point matrix and (b) the final system 
matrix S for a three-dimensional uniform FE mesh with 512 elements. 

 

(a) (b) 
 

When including contact constraints in the PBM method, we also add the term 

CH CT to the top left block of S, see (3.29) in the previous section. Since each 

column of the the contact matrix C is non-zero only at indices corresponding to 

the displacement components of a single node, and because H is a diagonal ma- 

trix, CH CT does not contain any off-diagonal terms that fall outside the sparsity 

structure of K(ρ). Therefore, the sparsity structure of S also remains the same. 

 
The above discussion was meant to explain our decision to solve the Schur com- 
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IP 

plement systems instead of the larger systems (3.8) or (3.23) and to motivate the 

use of a (nearly) standard multigrid approach. However, it should be noted that 

systems of the form (3.8) or (3.23), typically called saddle-point systems, can also be 

solved by multigrid techniques, for example using so-called transforming smoothers 

[117]. These are required since saddle-point systems are not generally positive defi- 

nite, case in point (3.8), so the traditional smoothers mentioned in Section 2.4.2 are 

not applicable. Maar and Schulz used a transforming smoother multigrid method 

for medium-scale two-dimensional topology optimization in [85]. It is questionable 

though whether that approach is preferable, firstly, because it requires additional 

transfer operators for variables defined element-wise rather than node-wise; sec- 

ondly, because transforming smoothers are extremely involved compared to any of 

the standard smoothers for positive definite systems. 

As explained in Section 2.4.1, both the CG and MINRES method use the residual 

norm to define a stopping criterion. In particular, for a linear system Ax = b, 

each method stops once /Ib − Axk/I//Ib/I drops below a given threshold value.  In our 

numerical experiments, we set this threshold to 10−2. It has to be noted that inexact 

IP methods usually require the solver tolerance to decrease during the optimization 

in order to guarantee convergence [14, 36]. And while our IP algorithm does fail to 

converge for some problems, as we will see in Section 3.2, this could not be fully 

remedied even with a very strict solver tolerance. Over all, fixing the value at 10−2 

lead to the best performance in terms of overall computational time. The same is 

true for the PBM and OC method. 

 
To improve the condition number of the system matrix S, we added regularization 

terms to those components that were affected by ill-conditioning in practice. In the 

IP method, small barrier parameter values lead to very small terms in the diagonal 

matrix DIP ,  consequently to very large eigenvalues of D−1  and thus  of SIP .  We 

compensated for this by adding 10−5 to all diagonal entries in DIP . In the PBM 

method, the penalty parameters never had to drop as low as the barrier parameters 



129  

in the IP method, so that a regularization of DP BM was not necessary. However, the 

values in ρ generally got a lot smaller than in the IP method, even when the latter 

was used with a lower bound of ρ = 0. Since this translates directly to small values 
¯ 

of ρ , the matrix K(ρ ) displayed very small eigenvalues. We therefore regularized 

it by adding 10−12 to each diagonal entry in K(ρ ). We observed a reduction in 

total solver iterations in some cases which was noticeable enough to warrant these 

regularization measures. However, it was not crucial to the general efficiency or 

convergence behaviour of the PBM method. 

For the OC method, we used no regularization. In our numerical experiments, 

the number of solver iterations to solve a linear system was generally quite small 

and nearly constant over the course of the entire optimization. Hence, there was no 

need to regularize the stiffness matrix. 

 
 

3.2 Numerical Results 
 

We now test the algorithms proposed in the previous section on a variety of examples 

with different loading scenarios and geometries. First we will consider only cuboid 

design domains with uniform structured meshes that allow the use of the geomet- 

ric multigrid method. We will compare the performance of the OC, IP and PBM 

method on these scenarios for FE meshes of medium size (∼ 105 elements) in Sec- 

tion 3.2.1, before looking at large-scale problems (≥ 106 elements) in Section 3.2.2. 

In Section 3.2.3, we will discuss results for unstructured meshes, comparing differ- 

ent strategies of using the (adaptive) smoothed aggregation multigrid method. Both 

Section 3.2.2 and Section 3.2.3 include examples with unilateral contact constraints. 

All computations in this thesis were performed in MATLAB R2019b (9.7.0.1190202) 

using the University of Birmingham’s BlueBEAR High Performance Computing ser- 

vice [24]. Routines were written in MATLAB as well as C, using the C MEX API 

provided by MATLAB. Parallel processing is not available for the MATLAB instal- 

lation on the BlueBEAR system, so that the code’s performance is not competitive, 
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but a representative comparison of the different optimization methods can still be 

drawn based on the results. 

 
Optimization scenarios 

In the first part of this section, we consider three optimization scenarios with a 

cuboid design domain and different boundary conditions. In order to investigate 

how the algorithms’ performances scale with the size of the problem, we vary both 

the proportions of the design domain and the mesh resolution. The FE mesh is a 

Cartesian grid of cube elements. We define it by specifying a coarse grid of mx by 

my by mz cube elements and the number of grid levels L. The grid hierarchy 

is obtained by splitting each coarse grid element into d2 equal-sized fine grid 

elements, so that the finest grid in three dimensions has m = 2L−1mx · 2L−1my · 

2L−1mz elements. Because the scaling of the element volume vector a has a big 

influence on the performance of our optimization algorithms, we scale the mesh 

so that the finest grid elements all have size 1.  We also scale the load vector f  so 

that /If /I = 1. Since we are dealing with linear elasticity, such a linear scaling is 

unproblematic. 

 
Figure 3.2 shows the different optimization scenarios. The first one is a simple 

cantilever beam, completely fixed at one end and with a central point load applied at 

the other end. The second one is a table- or bridge-like structure, fixed at each of the 

four bottom corners and with a surface load applied to the top surface. Finally, the 

third scenario is a very popular academic example in topology optimization: an MBB 

beam modelled via symmetry constraints. Since we will consider these examples with 

different proportions and mesh sizes, we will refer to them as Cantilever mx-my-mz- 

L, Bridge mx-my-mz-L and MBB mx-my-mz-L. 

The volume constraint is defined as a fixed ratio of the volume of a fully solid 

design  domain,  with  V  = 0.2(    i ρ̄iai) for  three-dimensional  and  V  = 0.5(    i ρ̄iai) 

for two-dimensional problems.  The upper bounds are ρ̄i = 1 for all i = 1, . . . , m and 

we choose zero lower bounds ρi = 0, i = 1, . . . , m, which deserves some justification. 



131  

¯ 



132  

y 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2: Loading scenarios and design domain for compliance minimization with 
geometric multigrid. The measurements of each design domain are lx = 2L−1mx, ly = 
2L−1my , lz = 2L−1mz . 
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(a) Cantilever mx-my-mz-L 

 
 

(b) Bridge mx-my-mz-L. Surface 
load is placed centrally, wx = 
lx/16, wz = lz/16. 
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(c) MBB mx-my-mz-L. In three dimensions, boundary conditions and 
loads are extruded in the z-direction. Sliding in the z-direction is per- 
mitted on the left end but not on the right. 

lx lz 

wx wz 
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Lower density bound 
 

We are ultimately trying to model a structure that is completely void of material 

in some areas of the design domain. If possible, we therefore want to permit the 

element densities to attain the value 0, so that we do not need to concern ourselves 

with the question of how much a non-zero bound value might distort the result. For 

the dual problem, this effectively just means dropping a set of variables and solving 

(2.60) rather than (2.54), which, if anything, simplifies the application of the PBM 

method. When solving the primal problem (2.48), one could however argue that 

allowing ρi = 0 for some or all i means the problem is no longer well defined. 
¯ 

First, the uniqueness of the displacements is lost; second, the stiffness matrix is no 

longer guaranteed to be invertible. Especially in the OC method, where we solve 

the nested formulation of the VTS problem and require the solution of K(ρ)u = f 

in each iteration, this might cause the convergence behaviour to be compromised. 

In practise, we did not encounter such problems. To address the effect of zero lower 

density bounds on the convergence behaviour of the OC and IP method, let us 

inspect a few small scale examples for illustration. We solve each scenario on a 

mesh configuration with mx = my = mz = 2, L = 4, in turn setting all lower density 

bound values ρi, i = 1, . . . , m, to 10−4, 10−8, 10−12 and 0. The value of the scaled 
¯ 

duality gap δ̃ (u, α) over the course of the optimization for each lower bound value 

is shown in Figure 3.3 for all scenarios and both the OC and IP method. 
 

Let us first consider the IP results. For the cantilever and MBB beam scenario, 

the choice of the lower bound value seems to almost make no difference at all, with 

the exception of 10−4. In the case of the bridge scenario, we see some variation in 

the duality gap trajectory in the final optimization iterations. Importantly, though, 

there is no indication that a zero lower bound has any detrimental effect on the 

algorithm. Now, we turn to the plots for the OC method. While the MBB beam 

scenario shows no effect of the lower bound values whatsoever, for the other two 

examples, we observe peculiar oscillations of the scaled duality gap value for ρ = 0 
¯ 



 

 
Figure 3.3: Scaled duality gap vs. iterations for the OC and IP method for different values of ρi, i = 1, . . . , m. 

¯ 
 
 

OC Cantilever 2-2-2-4 OC Bridge 2-2-2-4 OC MBB 2-2-2-4 
 
 
 
 

100 100 100 
 
 
 
10−3 

10−4 

10−5 

 
 
 
 
 
 
0 100 200 300 400 

 
10−3 

10−4 

10−5 

 
 
 
 
 
 
0 50 100 150 200 

 

10−3 

10−4 

10−5 

 
 
 
 
 
 
0 200 400 600 800 1,000 1,200 

 
 
 

IP Cantilever 2-2-2-4 
 

IP Bridge 2-2-2-4 
 

IP MBB 2-2-2-4 
 
 
 
 

100 100 100 
 
 
 

10−3 

10−4 

10−5 

10−3 

10−4 

10−5 

10−3 

10−4 

10−5 

 

0 5 10 15 20 0 20 40 60 80 100 0 10 20 30 40 50 60 
 

ρ = 0 
  ρ̄ = 10−12 
  ρ̄ = 10−8 
  ρ̄ = 10−4 

¯ 

ρ = 0 
  ρ̄ = 10−12 

  ρ̄ = 10−8 
  ρ̄ = 10−4 

¯ 

ρ = 0 
  ρ̄ = 10−12 
  ρ̄ = 10−8 
  ρ̄ = 10−4 

¯ 

ρ = 0 
  ρ̄ = 10−12 
  ρ̄ = 10−8 
  ρ̄ = 10−4 

¯ 

ρ = 0 
  ρ̄ = 10−12 

  ρ̄ = 10−8 
  ρ̄ = 10−4 

¯ 

ρ = 0 
  ρ̄ = 10−12 

  ρ̄ = 10−8 
  ρ̄ = 10−4 

¯ 

133 





134  

after a certain number of iterations. Note, however, that even the oscillatory graphs 

in Figure 3.3 can be tightly bounded below by smooth curves.  In other words, in 

each  case,  there  is  a  subsequence  of  iterates  δ̃k  of  scaled  duality  gap  values  that 

follows a smooth trajectory. For the cantilever problem, this subsequence even 

closely follows the same trajectory as the duality gap iterates for ρi > 0. For the 
¯ 

bridge scenario, considerably more iterations are required when zero lower bounds 

are used. However, the OC method generally appears to be more sensitive to the 

lower bound values in this case. Moreover, the sequence of duality gap iterates still 

clearly converges in a “lim inf”-sense. 

Still, two important questions need to be answered: first, whether the oscillations 

are due to the zero lower bounds; second, whether or not the algorithm’s convergence 

behaviour suffers from this. Regarding the first question, the answer seems to be 

yes. While, in theory, density values can converge towards the lower bound 0 in both 

the OC and the IP method, they do so a lot faster in the former. In our examples, 

densities can reach values smaller than 10−100 before the OC method terminates, 

whereas they generally stay well above 10−10 in the IP method, which does not 

display any kind of oscillatory convergence behaviour. The condition number of the 

stiffness matrix K(ρ) becomes very large in later OC iterations, much larger than 

that of the system matrix of the IP method. It seems plausible that the accuracy of 

the Krylov solver1 approximation of the solution of K(ρ)u = f would therefore be 

greatly compromised. Indeed, when using a direct method2, we do not observe these 

oscillations. Interestingly, the OC method converges a lot quicker when using the 

approximate, albeit inaccurate, solution. It therefore appears that the answer to the 

second question – whether the algorithm’s convergence deteriorates when choosing 

zero lower bounds – is no, for all practical purposes. It is also worth mentioning 

that the number of solver iterations required per OC iteration was the same for all 

lower bound values, so that the computational time does also not generally increase 
1The results shown in Figure 3.3 were obtained using the MINRES method. When using the CG 
solver, oscillations are rare, but the OC method struggles to converge in general. 

2Matlab’s inbuilt Cholesky factorization solver 
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for ρ = 0. 
¯ 

From the examples included here for illustration and several similar ones omitted 

for the sake of brevity, we conclude that the choice ρi = 0, i = 1, . . . , m, is justifiable 
¯ 

even for the OC and IP method. The numerical artefacts that we observe in the 

OC method do not appear to impede the convergence of iterate subsequences to a 

solution. 

 
Stopping criterion 

In the sections describing the IP, PDNR and OC method, it was mentioned that 

we terminate each algorithm once δ̃ (u, α) falls below 10−5, where δ̃ is the duality 

gap (2.62) scaled by either the primal or dual objective function. This stopping 

criterion appeared to be more indicative of a convergence of the design than others 

which are more common for the OC method, such as a minimum difference in the 

design variables between iterations or a minimum objective function change. To 

illustrate this, we use the example MBB 8-2-0-6, OC solutions of which are shown 

in Figure 3.4 for decreasing stopping threshold values. We zoom in on the right end 

of the design domain, as this is where the design change is most evident. While a 

vague approximation of the optimal design is reached early on, the contours remain 

blurry until δ˜(u, α) < 10−5. Any further change obtained when pushing δ̃ (u, α) 

below 10−6 is barely visible. We observed the same behaviour for the IP and PBM 

method, which justifies the choice εIP = εPBM = εOC = 10−5. 

 

3.2.1 Comparison of Optimization Methods and Solvers 
 

To compare the efficiency of the IP, PBM and OC method, we apply them to all 

three scenarios seen in Figure 3.2. Furthermore, for each scenario, we consider 

two different sets of mesh dimensions mx-my-mz-L. The first mesh, defined by  

mx = 4, my = 2, mz = 2 and L = 6, has m = 524 288 elements.  The  second  mesh 

has the specifications mx = 16, my = 2, mz = 2 and L = 5, (m = 262 144), which 
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Figure 3.4: MBB 8-2-0-6 solutions for δ̃ (u, α) < εOC = 10−3, 10−4, 10−5, 10−6. Pixel- 
colour corresponds to element density, (black:  ρi = ρ̄i, white:  ρi = ρi). 

¯ 

(a) εOC  = 10−3 (b) εOC  = 10−4 
 

(c) εOC  = 10−5 (d) εOC  = 10−6 
 

(e) εOC = 10−6, entire design domain 
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gives us a strongly elongated design domain. While the first problem is relatively 

well-behaved, as it were, the second one is more of a pathological example, as the 

stiffness matrix (at the optimal solution) becomes more ill-conditioned as the design 

domain aspect ratio increases. 

For each optimization method, we present the results obtained with the solver 

that worked best overall. In both the IP and PBM algorithm, the choice of the 

solver did not make a very big difference. The tables in Appendix A.1 compare 

the CG and MINRES solver on an exhaustive range of problems that are roughly 

the same size as those discussed here. For the sake of completeness, Section 3.2.4 

also looks at the performance of the two Krylov solvers on single linear systems 

and for a stricter solver tolerance. On average, the MINRES method required fewer 

iterations, as expected, but the CG method was faster in terms of CPU time. The 

OC method, interestingly, converged considerably faster when using the MINRES 

method, not just in terms of total solver iterations, but in terms of OC iterations 

required. Solving the same problem using the CG method sometimes took up to five 

times as long and up to ten times as many solver iterations. A possible explanation is 

that the MINRES method can solve even singular systems, whereas the CG method 

does not converge for any given solver tolerance in such cases. As mentioned earlier, 

using zero lower bounds for the densities in the OC method can lead to strongly 

ill-conditioned stiffness matrices, which are presumably harder for the CG method 

to cope with, even for a high stopping tolerance like 10−2. Since MINRES so clearly 

outperformed CG, we omit a detailed comparison of the solvers for the OC method. 

 
Tables 3.1 to 3.6 show the performance of the different optimization algorithms for 

each problem, in terms of iterations and CPU time. The column titled “Nwt” lists the 

total number of linear systems solved over the course of the iteration – which is the 

same as the number of Newton iterations in the case of the IP and PBM method. 

For  the sake of completeness, we have  also included the final objective  function 
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2 

Table 3.1: Cantilever 4-2-2-6 results for the PBM, IP and OC method. Problem 
dimensions: m = 524 288, n = 1 622 400. Time values are rounded to the nearest 
integer. 

 

 
method 

iterations 
Nwt solver 

time [min] 
total solver 

 
obj fun 

PBM 82 378 59 11 1.655 186 
IP 463 2177 311 81 1.655 160 
OC 267 534 165 40 1.655 396 
OC (εOC = 10−4) 222 444 137 33 1.655 411 

Table 3.2: Bridge 4-2-2-6 results for the PBM, IP and OC method. Problem di- 
mensions: m = 524 288, n = 1 635 063. Time values are rounded to the nearest 
integer. 

 

 
method 

iterations 
Nwt solver 

time [min] 
total solver 

 
obj fun 

PBM 85 555 63 16 42.000 503 
IP 77 422 56 16 42.000 251 
OC 100 847 87 40 42.001 466 
OC (εOC = 10−4) 82 685 71 32 42.002 165 

value1, even though the differences seen between the methods do not correlate with 

any visible differences in the final design. The first thing that becomes clear from 

our results is that the OC method is generally a lot slower than both the IP and the 

PBM method. In practice, the OC method often converges to a rough approximation 

of the optimal design in just a few iterations and one might therefore argue that a 

stopping threshold of εOC = 10−4 is enough to obtain reasonable results. To pre- 
1While the solver tolerance used throughout the optimization is only 10−2, in order to determine 
a more accurate value for 1 f Tu, we obtained u from the equilibrium equations (2.48b) for the 
final ρ, solved to an accuracy of 10−8. 

 
Table 3.3: MBB 4-2-2-6 results for the PBM, IP and OC method. Problem di- 
mensions: m = 524 288, n = 1 630 720. Time values are rounded to the nearest 
integer. 

 

 
method 

iterations 
Nwt solver 

time [min] 
total solver 

 
obj fun 

PBM 68 364 52 11 71.246 932 
IP 41 394 29 11 71.247 72 
OC 845 4221 584 209 71.247 551 
OC (εOC = 10−4) 497 2481 348 124 71.247 719 
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Table 3.4: Cantilever 16-2-2-5 results for the PBM, IP and OC method. Problem 
dimensions: m = 262 144, n = 836 352. Time values are rounded to the nearest 
integer. 

 

 
method 

iterations 
Nwt solver 

time [min] 
total solver 

 
obj fun 

PBM 54 320 20 5 66.193 288 
IP 26 111 7 2 66.192 963 
OC 956 4775 304 108 66.194 033 
OC (εOC = 10−4) 555 2770 178 63 66.194 118 

 
 
 
 
 

Table 3.5: Bridge 16-2-2-5 results for the PBM, IP and OC method. Problem 
dimensions: m = 262 144, n = 839 607. Time values are rounded to the nearest 
integer. 

 

 
method 

iterations 
Nwt solver 

time [min] 
total solver 

 
obj fun 

PBM 69 492 33 8 236.928 109 
IP 34 314 17 6 236.928 016 
OC 2080 16 650 765 333 236.928 115 
OC (εOC = 10−4) 1290 10 330 474 208 236.928 139 

 
 
 
 
 

Table 3.6: MBB 16-2-2-5 results for the PBM, IP and OC method. Problem di- 
mensions: m = 262 144, n = 838 464. Time values are rounded to the nearest 
integer. 

 

 
method 

iterations 
Nwt solver 

time [min] 
total solver 

 
obj fun 

PBM 35 299 19 5 2194.268 965 
IP 20 106 8 2 2193.685 598 
OC 3371 20 224 1263 459 2194.260 331 
OC (εOC = 10−4) 463 2776 183 69 2194.262 766 
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empt such a suggestion, we have also included the results for this case in the tables, 

showing that even with this relaxed stopping criterion, the OC method is still much 

slower. In particular, it seems to struggle more with problems on elongated design 

domains, possibly due to the condition number of the stiffness matrix1, whereas the 

IP and PBM method do not seem to be influenced by this. 

Figure 3.5 shows the trajectory of the duality gap. We again observe an oscillatory 

progression for the OC method with a convergent subsequence, due to the zero lower 

density bounds. Appendix A.1 contains more plots like Figure 3.5, with the duality 

gap plotted against the total number of Newton and solver iterations. 

In Figure 3.6, we can see how the number of solver iterations needed to solve 

each linear system evolves over the course of the optimization. While this number 

is constant for the OC method (the trend observed for the iterations within the plot 

range is continued), we can see that more solver iterations are required per linear 

system as the IP and PBM method progress. The slopes of the curves suggest that 

the systems encountered in those methods are more difficult to solve than any system 

occurring in the OC method. Nevertheless, the superior convergence behaviour of 

the IP and PBM algorithm more than make up for this. 

Since the OC method is very clearly no competition, let us now turn to a compari- 

son of the IP and PBM algorithm. In all but one example, the former is considerably 

faster than the latter. However, in that one exception – Cantilever 4-2-2-6 – the IP 

method converges so slowly that it is even outperformed by the OC method. This is 

a first indication of a lack of robustness that is even more pronounced in large-scale 

problems, as we will see in the next part of this section. 

A final observation that is of note is the difference between the total CPU time 

and the total time taken up by calls to the solver routines, as seen in Tables 3.1  

to 3.6. It turns out that a major part of the overall computation time is taken up by 
1Although it should be noted that even with a non-zero lower density bound or a regularization of 
the stiffness matrix, the OC method did not perform any better. 
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Figure 3.5: Scaled duality gap vs. CPU time (in minutes) for the PBM, IP and OC method. A black diamond marks the termination of 
the algorithm, which can be outside the plot range. 
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Figure 3.6: Accumulated solver iterations vs. Newton iterations for the PBM, IP and OC method. A black diamond marks the termination 
of the algorithm, which can be outside the plot range. 
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the construction of the system matrices. This is true even for the OC method, where 

the system matrix is just the stiffness matrix, the assembly of which is implemented 

in C. It is noticeable, though, that the proportion of the CPU time taken up by the 

solver is even smaller for the IP and PBM method. Indeed, for those methods, the 

construction of the system matrix, which involves the concatenation, multiplication 

and addition of other large sparse matrices, takes up roughly half of the total time 

required for the optimization. 

 

3.2.2 Large Scale Problems 
 

We now turn to scenarios with more than a million finite elements. For this, we 

consider the same three problems as before, again varying the mesh dimensions, this 

time setting the number of grid levels to L = 7. Judging by our previous results, 

we can reject the OC method as a viable candidate and only consider results for 

the IP and PBM method. Tables 3.7 to 3.9 list the number of iterations and time 

required for different instances of each of the three scenarios. In order to see how the 

algorithms’ performances scale with the problem size, the tables also include results 

for problems defined by the same scenario and design domain proportions, but with 

a smaller number of grid levels. Figures 3.7 to 3.9 show the optimal design for 

the largest example of each scenario. Since the large proportion of “grey” elements, 

which are due to the linear material interpolation in the VTS formulation, don’t 

allow for a straightforward interpretation of the optimal solution as a 0 − 1 design, 

we visualize each result for a range of different density thresholds. 

Regarding the choice of linear solver, CG again slightly but consistently outper- 

forms MINRES when used in the IP method. When solving problems with L = 7 

by the PBM method, on the other hand, the smaller number of iterations needed by 

the MINRES solver offsets its lower efficiency enough for it to be faster on average 

than the CG solver. For the purpose of consistency, all PBM results presented in 

Tables 3.7 to 3.9 have been obtained using the MINRES solver, even though for 
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Table 3.7: Cantilever mx-my-mz-L, medium- to large-scale. Newton iterations, 
solver iterations and CPU time (in minutes) for the IP and PBM method. Missing 
IP entries indicate that the IP method either timed out at 48 hours or reached the 
maximum iteration number (500) before converging. 

 

Problem dimensions IP PBM 
 

 mx-my-mz-L m n  Nwt solver time  Nwt solver time  

 2-2-2-5 32 768 104 544  51 230 2  71 244 3  
 4-2-2-5 65 536 209 088  44 227 4  58 218 5  
 6-2-2-5 98 304 313 632  54 391 7  60 297 9  
 8-2-2-5 131 072 418 176  41 258 8  57 274 11  
 2-2-2-6 262 144 811 200  – – –  118 411 42  
 4-2-2-6 524 288 1 622 400  463 2177 265  82 378 69  
 6-2-2-6 786 432 2 433 600  344 1982 335  74 297 86  
 8-2-2-6 1 048 576 3 244 800  – – –  72 314 122  
 2-2-2-7 2 097 152 6 390 144  – – –  130 206 413  
 4-2-2-7 4 194 304 12 780 288  – – –  104 239 799  
 6-2-2-7 6 291 456 19 170 432  – – –  93 223 1030  
 8-2-2-7 8 388 608 25 560 576  – – –  87 217 1092  

 
L < 7, the CG solver is usually a bit faster. 

 
The first thing that becomes evident from a comparison of the two optimization 

methods is that the IP algorithm does not do well on large-scale problems. It often 

stagnates and terminates due to a time or iteration limit. In many cases in which 

it does converge, it loses its advantage over the PBM method, requiring many more 

Newton and solver iterations. One may ask whether this simply comes down to 

the wrong parameters. For example, the choice of a constant value for the solver 

tolerance goes against the typical IP paradigm of decreasing the solver tolerance as 

one approaches the optimum. Indeed, the original version of our IP method, which 

was proposed in [34], featured an adaptive scaling of the solver tolerance. While 

this made the method more successful for large-scale problems, it also considerably 

slowed it down for many other problems due to an unnecessarily low solver tolerance. 

Furthermore, even with this scaling mechanism, the IP method could not solve all 

of the large-scale problems and was not generally more efficient. 

Turning now towards the PBM method, it clearly seems to be much more robust, 
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Table 3.8: Bridge mx-my-mz-L, medium- to large-scale. Newton iterations, solver 
iterations and CPU time (in minutes) for the IP and PBM method. Missing IP 
entries indicate that the IP method either timed out at 48 hours or reached the 
maximum iteration number (500) before converging. 

 

Problem dimensions IP PBM 
 

 mx-my-mz-L m n  Nwt solver time  Nwt solver time  

 2-2-2-5 32 768 107 799  31 139 1  66 352 3  
 4-2-2-5 65 536 212 343  33 155 3  66 369 6  
 6-2-2-5 98 304 316 887  30 173 4  73 457 10  
 8-2-2-5 131 072 421 431  28 198 5  66 374 12  
 2-2-2-6 262 144 823 863  64 320 20  76 451 29  
 4-2-2-6 524 288 1 635 063  77 422 46  85 555 68  
 6-2-2-6 786 432 2 446 263  73 466 77  83 517 96  
 8-2-2-6 1 048 576 3 257 463  70 530 100  84 575 132  
 2-2-2-7 2 097 152 6 440 055  186 1005 479  144 945 549  
 4-2-2-7 4 194 304 12 830 199  53 268 360  131 808 1120  
 6-2-2-7 6 291 456 19 220 343  – – –  144 977 1794  
 8-2-2-7 8 388 608 25 610 487  – – –  129 881 2254  

 
 
 

Table 3.9: MBB mx-my-mz-L, medium- to large-scale. Newton iterations, solver 
iterations and CPU time (in minutes) for the IP and PBM method. Missing IP 
entries indicate that the IP method either timed out at 48 hours or reached the 
maximum iteration number (500) before converging. 

 

Problem dimensions IP PBM 
 

 mx-my-mz-L m n  Nwt solver time  Nwt solver time  

 2-2-2-5 32 768 106 656  23 130 1  53 286 2  
 4-2-2-5 65 536 211 200  22 124 2  51 287 5  
 6-2-2-5 98 304 315 744  23 122 3  43 226 7  
 8-2-2-5 131 072 420 288  19 81 3  40 228 8  
 2-2-2-6 262 144 819 520  40 262 12  63 323 24  
 4-2-2-6 524 288 1 630 720  41 394 32  68 364 55  
 6-2-2-6 786 432 2 441 920  46 550 65  59 347 71  
 8-2-2-6 1 048 576 3 253 120  37 418 64  63 415 105  
 2-2-2-7 2 097 152 6 423 168  220 1753 623  81 271 279  
 4-2-2-7 4 194 304 12 813 312  249 2176 1995  81 283 685  
 6-2-2-7 6 291 456 19 203 456  171 1551 2009  79 305 937  
 8-2-2-7 8 388 608 25 593 600  193 2235 2819  69 248 843  
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Figure 3.7: Cantilever 8-2-2-7 optimal design, visualized with different density 
thresholds so that visible elements add up to c · V . 

 
 

 
(a) c = 0.6 (b) c = 0.7 

 

 
 

(c) c = 0.8 

 
as well as much more efficient for large-scale problems, than our IP algorithm. The 

number of both Newton and solver iterations increases along with the problem size, 

presumably because the problems simply become more difficult for a higher mesh 

resolution. The fact that the average number of solver iterations per Newton iter- 

ation, i.e. per linear system, remains roughly the same, while the solver tolerance 

is kept constant, suggests that the multigrid preconditioner works as intended. The 

same observation can be made for the IP method – when it converges successfully. 

To showcase our PBM algorithm’s ability to handle contact constraints, we also 

include results for the problem shown in Figure 3.10. The mesh dimensions and 

loading are the same as for Cantilever 7-2-2-7, but the structure is not fixed at the 

left end. Instead, we restrict vertical movement through obstacles that are flush 

with the top and bottom surface of the design domain. The optimal design is seen 

in Figure 3.11.  The depicted mesh has 7 340 032 elements and 22 415 427 DOFs  

for this scenario. Solving this problem took 115 Newton iterations, 273 MINRES 

iterations and 1378 minutes of CPU time.  Note that this problem is technically 
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Figure 3.8: Bridge 8-2-2-7 optimal design, visualized with different density thresh- 
olds so that visible elements add up to c · V . 
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Figure 3.9: MBB 8-2-2-7 optimal design, visualized with different density thresholds 
so that visible elements add up to c · V . 
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· 

 
 

Figure 3.10: Cantilever with clamping boundary conditions (cf. example Cantilever 
mx-my-mz-L in Figure 3.2). The darker grey regions are obstacles with a no-friction 
surface, modelled by unilateral contact constraints. In three dimensions, the load is 
a point load applied to the centre of the right end. 
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Figure 3.11: Clamped cantilever optimal design, visualized with different density 
thresholds so that visible elements add up to c V . The mesh dimensions are the 
same as for Cantilever 7-2-2-7. 
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not kinematically determinate, but due to the vertical load direction and geometric 

linearity it still has a solution. The regularization of the stiffness matrix, however, 

is critical in this case, because the system matrix is not positive definite otherwise. 

We could also have included an additional minimal boundary condition to ensure 

regularity of the stiffness matrix. For example, one could simply fix two or three 

nodes at the left end of the design domain. The reason we decided against this is 

that it causes a spurious strip of grey or solid material to appear that connects the 

fixed nodes to the rest of the design, which does not otherwise have any material at 

the left end of the design domain. 

 

3.2.3 Unstructured Meshes and Algebraic Multigrid 
 

We now extend our method to problems defined on unstructured meshes, which 

necessitates the use of an algebraic multigrid method. See Section 2.4.2 for a de- 

scription of the smoothed aggregation algorithm that we will be using. For all of 

the following results, we used the PBM method, since it has so far proven to be 

the most reliable method for large-scale problems, and because we want to include 

contact constraints. As problems on unstructured grids seem to require more solver 

iterations in general, we use the MINRES method, because it appears to be slightly 

more efficient than CG for large-scale problems. 

In a recent paper [96], Peetz and Elbanna looked into the application of AMG 

methods to topology optimization problems based on the SIMP formulation. They 

used the MMA, equipped with an SA preconditioned solver, but considered only 

structured meshes that can also be treated by geometric multigrid methods. Their 

focus was the ability of AMG methods to handle the material anisotropy seen in 

SIMP solutions. New transfer operators were computed each time the system ma- 

trix changed. The authors reported fewer overall solver iterations compared to the 

geometric multigrid, however, in terms of CPU time, the AMG method was only 

more efficient for some three dimensional problems, when the reduction in iteration 
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numbers was enough to compensate for the large overhead of the smoothed aggre- 

gation. They also obtained promising results with a hybrid GMG-AMG method, 

using GMG transfer operators on a certain number of finer grid levels before switch- 

ing to the AMG method for the coarser levels. A similar approach was used in [3], 

although without any discussion of the reasons or benefits. In the following, we 

will focus more on the use of AMG where it is without alternative, i.e. for design 

domains discretized by unstructured meshes. Nevertheless, we begin by considering 

a few structured grid examples, in order to compare the performance of GMG and 

AMG. 

First of all, we go through some of the details of our SA implementation and how 

we used it within our PBM algorithm. Again, everything was written from scratch 

in MATLAB, with a few auxiliary routines written in C, and the code was not run in 

parallel. The sparsity of the coarse-level operators is critical to the efficiency of the 

multigrid, and this is determined by the threshold parameter EN in the definition 

of the strongly-coupled neighbourhoods (2.81). After some trial and error, we set 

EN = 0.04. Following [124], this parameter is reduced by a constant factor on each 

level, which we set to 0.1. We use the weighted Jacobi prolongation smoother (2.86). 

 
As discussed in Section 3.1.4, we define the multigrid transfer operators block- 

wise: since the upper left n × n block of the system matrix has the same sparsity 

structure as the stiffness matrix, we use the standard multigrid operator for the first 

n of the system’s degrees of freedom, while we simply use a 1 for the remaining 

scalar DOF. We will follow the same approach now, only that the first block of the 

transfer operator is determined by the SA method. 

In order to properly assess the AMG preconditioner, we provide detailed statistics 

for the GMG preconditioner in Table 3.10 as a reference. As before, we list the total 

Newton and solver iterations, the total CPU time, and the time it took to solve  

all linear systems. We now further include the time required for the multigrid 

setup. This comprises the construction of transfer operators and the computation 
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of all coarse-level system matrices, all of which is done outside of the call to the 

solver routines. The operations that contribute the most to the solver time, on the 

other hand, are matrix-vector multiplications, including those inside the multigrid 

preconditioner which use the previously prepared coarse-level operators. 

When solving the same problems with an AMG preconditioner, the number of 

coarse levels is not known a priori. We therefore define a maximum number of 

levels Lmax, as well as a minimum number of DOFs that a coarse level can have, 

denoted by nmin. The coarsest algebraic grid should have roughly the same size as 

the coarsest geometric grid so that computational cost for the direct solver on that 

level is comparable. Therefore, we set Lmax = L = 5 and nmin = 3dd = 81, which is 

approximately the number of DOFs for a 2–by–2–by–2 element mesh. In practice, 

the number of algebraic grid levels was 3 or 4 and the minimum system size ranged 

from 81 to 918. 

Were we to apply the SA method naively as a black box algorithm, we would con- 

struct new transfer operators in each Newton iteration, performing the aggregation 

based on the system matrix (or rather, its upper left n×n block). The results can be 

seen in Table 3.11. They are obviously very bad. Not only is the average overhead 

for the multigrid setup roughly fifty times larger than for the geometric multigrid; 

even the number of solver iterations have increased dramatically. The inefficiency of 

the above approach is not too surprising when one considers that many of the cen- 

tral multigrid paradigms are closely related to the properties of matrices that stem 

from elliptic problems. The matrix SP BM of the system that we need to solve 

does not itself correspond to any such problem. Moreover, the GMG method 

which we have used successfully as a preconditioner for this system is not an 

optimal method for this matrix, but for the stiffness matrix K(ρ) – even though, 

strictly speaking, only when ρ is constant. The logical next step is to adjust the 

AMG preconditioner such that the aggregation is performed not on the actual 

system matrix, but on the current stiffness matrix. Results for this approach are 

given in Table 3.12. We can 
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Table 3.10: Detailed statistics for different problems solved by the PBM method 
with a GMG-preconditioned MINRES solver. Time values are rounded. 

 

iterations time [seconds] 
Problem Nwt solver total solver GMG 

Cantilever 2-2-2-5 82 213 226 47 31 
Cantilever 4-2-2-5 57 131 304 57 40 
Cantilever 6-2-2-5 61 170 612 120 91 
Cantilever 8-2-2-5 57 165 656 135 86 
Bridge 2-2-2-5 68 286 207 52 27 
Bridge 4-2-2-5 71 295 417 103 59 
Bridge 6-2-2-5 71 353 728 187 99 
Bridge 8-2-2-5 71 280 816 204 108 
MBB 2-2-2-5 60 263 184 47 24 
MBB 4-2-2-5 56 252 336 89 48 
MBB 6-2-2-5 42 144 388 85 54 
MBB 8-2-2-5 39 107 489 91 73 

average 61 222 447 101 62 

 

Table 3.11: Detailed statistics for different problems solved by the PBM method with 
an SA-AMG-preconditioned MINRES solver; SA is used on SP BM in each Newton 
iteration. Time values are rounded. 

iterations time [seconds] 
Problem Nwt solver total solver SA(S) 

Cantilever 2-2-2-5 66 436 601 111 394 
Cantilever 4-2-2-5 89 1881 4886 1137 3471 
Cantilever 6-2-2-5 63 712 3289 384 2610 
Cantilever 8-2-2-5 85 1305 9324 1032 7776 
Bridge 2-2-2-5 71 601 700 186 401 
Bridge 4-2-2-5 70 773 1627 388 1018 
Bridge 6-2-2-5 96 1593 7733 1799 5466 
Bridge 8-2-2-5 100 1876 8668 2005 5973 
MBB 2-2-2-5 59 608 663 196 370 
MBB 4-2-2-5 68 1718 1782 658 916 
MBB 6-2-2-5 100 7378 9542 4661 4419 
MBB 8-2-2-5 80 3754 9608 3765 5227 

average 79 1886 4869 1360 3170 
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Table 3.12: Detailed statistics for different problems solved by the PBM method with 
an SA-AMG-preconditioned MINRES solver; SA is used on K(ρ) in each Newton 
iteration. Time values are rounded. 

 

iterations time [seconds] 
Problem Nwt solver total solver SA(K(ρ)) 

Cantilever 2-2-2-5 74 297 619 102 393 
Cantilever 4-2-2-5 68 408 1603 189 1216 
Cantilever 6-2-2-5 59 432 2103 290 1506 
Cantilever 8-2-2-5 81 711 4977 663 3720 
Bridge 2-2-2-5 69 292 637 110 414 
Bridge 4-2-2-5 78 549 1740 306 1182 
Bridge 6-2-2-5 83 686 3128 513 2225 
Bridge 8-2-2-5 78 717 4895 689 3681 
MBB 2-2-2-5 53 285 466 92 287 
MBB 4-2-2-5 56 509 1078 236 668 
MBB 6-2-2-5 53 539 2254 382 1575 
MBB 8-2-2-5 46 477 2892 423 2123 

average 66 492 2199 333 1582 

 
see a considerable improvement over the system matrix–based AMG preconditioner. 

However, the total number of solver iterations is still more than twice as large on 

average as for the GMG method. This is interesting as Peetz and Elbanna [96] 

reported a decrease in the number of solver iterations for the AMG preconditioner. 

A possible explanation is that these authors looked at problems based on the SIMP 

formulation, where one typically sees much sharper density changes in the design. 

Thus, differences in the material properties of geometrically neighbouring elements 

are more pronounced, which leads to a stronger distinction between geometric and 

algebraic neighbours. In other words, the local anisotropy in designs resulting from 

the SIMP formulation is much greater, which is precisely one of the cases in which 

AMG methods are known to hold an advantage over GMG methods. Since solu- 

tions to the VTS problem usually display much smaller density gradients, it seems 

plausible that the geometric multigrid is better suited after all to eliminate error 

components which correspond to the design’s low-frequency eigenmodes. 

Seeing as the use of AMG transfer operators tailored to each individual system 

matrix is not only much less effective overall than using GMG transfer operators, 
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Table 3.13: Detailed statistics for different problems solved by the PBM method 
with an SA-AMG-preconditioned MINRES solver; SA is used on K(ρ̄) once at the 
start of the optimization. Time values are rounded. 

 

iterations time [seconds] 
Problem Nwt solver total solver SA(K(ρ̄)) 

Cantilever 2-2-2-5 76 337 233 66 51 
Cantilever 4-2-2-5 65 367 535 167 125 
Cantilever 6-2-2-5 64 473 899 336 206 
Cantilever 8-2-2-5 67 564 1138 429 253 
Bridge 2-2-2-5 67 297 269 82 66 
Bridge 4-2-2-5 70 466 597 208 137 
Bridge 6-2-2-5 80 634 1108 442 248 
Bridge 8-2-2-5 59 483 1029 409 239 
MBB 2-2-2-5 59 398 266 100 58 
MBB 4-2-2-5 54 399 413 149 93 
MBB 6-2-2-5 52 449 763 313 169 
MBB 8-2-2-5 40 361 749 294 176 

average 63 436 667 250 152 

but also has an enormous computational overhead, we venture an informed guess as 

to what might be a more efficient approach: Setting up the transfer operators once 

at  the  beginning,  performing  the  aggregation  on  the  stiffness  matrix  K(ρ̄),  which 

corresponds to an all-solid design domain1. Using the resulting transfer operator 

throughout the entire optimization is essentially as close as we can get to emulating 

the methodology of the GMG preconditioner. The results are given in Table 3.13 

and are the best AMG results yet, both in terms of solver iterations and time. 

 
While it does not look as if the AMG preconditioner can match the efficiency of 

the GMG preconditioner for problems on structured meshes, the observations we 

have made so far can inform the way we apply it to problems with unstructured 

meshes. We will consider three examples, shown in Figure 3.12. We will again 

vary the dimension d and discretization resolution of the design domains, although 

we keep the geometric proportions fixed. The size of the design domain and mesh 

are again defined by the parameter L. The relationship between the number of 

elements m and L is now less straightforward, but generally m is in the order of 

1Recall that we chose ρ̄i = 1 for all i = 1, . . . , m. 
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2d(L−1), which is consistent with the structured mesh specifications at the beginning 

of this section. For scaling purposes, the size of each element is around 1, unless 

otherwise specified, and the load vector is normalized. All meshes use quadrilateral 

(d = 2) or hexahedral (d = 3) finite elements. They were created in Gmsh [54], 

version 4.7.1. The first example is a loaded knee structure, fixed at the top end 

and subjected to a vertical load at the right end.   It is shown in Figure 3.12a   

and referred to as Knee d-L. The design domain of the second example, which  

we refer to as Lug d-L, see Figure 3.12b, represents the lug of a hinge1,2. The 

hinge axis is a rigid obstacle modelled by unilateral contact constraints. The third 

scenario, shown in Figure 3.12c, is a simplified representation of a crack under 

tension, modelled by symmetry conditions3. It is an example of a structural problem 

where an unstructured mesh is not required due to geometric irregularities, but 

because a finer mesh resolution is needed at points where stress singularities are 

expected, which in this case is the point A in Figure 3.12c. The elements around 

point A have an edge length of approximately 0.2 − 0.5. Along the slanted edges, 

this factor increases to about 0.5 − 0.7 at point B. 

In light of a recent article published on arXiv.org [122] which investigated the 

mesh-dependence of topology optimization algorithms in the context of non-uniform 

meshes, it should be acknowledged that we did not apply the same rigour in our ap- 

proach. The aforementioned preprint argued, based on an analysis of the underlying 

infinite-dimensional problem, that special inner products, which account for varying 

element sizes, should be incorporated in first and second order derivatives. It was 

shown that ignoring these inner products can indeed have a substantial impact on 

the performance of the optimization method. However, the focus of the paper was 
1The idea for this problem is taken from [120]. 
2The asymmetric combination of load and bearing is chosen purely for the reason that an asym- 
metric design is more interesting to look at. We could replace the bearing by another vertical load 
to create a symmetric but kinematically indeterminate problem, which our algorithm can solve 
thanks to the regularization of the stiffness matrix, cf. the clamped cantilever in Figure 3.10. 

3Properly modelled symmetry would entail sliding constraints rather than a completely fixed lower 
boundary. Once again, our choice of boundary conditions comes down to a more interesting 
looking optimal design, which better illustrates certain properties of the VTS solution. 
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Figure 3.12: Loading scenarios and design domain for compliance minimization with 
SA-AMG. In three dimensions, all boundary conditions and meshes are extruded. 
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(a) Knee d-L: l = 2 2(L−1), r = 0.1l. 
For d = 3, the depth of the design 
domain is l/2. 
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(b) Lug d-L: l = 2(L−1), r = 0.5l. 
For d = 3, the depth of the design 
domain is 2l. The dark grey area is 
an obstacle modelled by unilateral 
contact constraints. 
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Table 3.14: Mesh dimensions of problems used in testing different aggregation strate- 
gies. 

 

problem m n 

Knee 2-9 194 388 390 396 
Knee 3-6 176 896 560 538 
Lug 2-8 406 098 814 906 
Lug 3-5 214 464 680 427 
Crack 2-8 465 440 932 160 
Crack 3-5 236 256 738 837 

 
adaptive mesh refinement, which leads to elements differing in their sizes by orders 

of magnitude. The variation in element sizes that we see in our examples is much 

smaller, perhaps unrealistically so. But since we are concerned mainly with the ef- 

fect of AMG preconditioners on the Krylov solver’s performance, this simplification 

can be justified by avoiding unnecessary complications in the optimization problem. 

In an attempt to identify the most efficient AMG setup strategy, we propose 

three different approaches of employing the SA algorithm in our problems. We 

will test these on a two- and three-dimensional instance of each of the scenarios in 

Figure 3.12, as listed in Table 3.14. The first strategy is the one we have previously 

described: We apply SA once at the beginning of the optimization, to a solid- 

domain stiffness matrix. This strategy will be denoted by “K1”. We can try to 

further improve it by availing ourselves of the adaptive SA method, varying the 

number of candidates that we add to the near-kernel of the transfer operator. For 

the second strategy, we consider the possibility that, while the cost of re-computing 

the transfer operators in each iteration is prohibitive, we might benefit from updating 

them occasionally. Whenever the solver requires more than 20 iterations for a linear 

system, we take this as a cue to perform SA on the stiffness matrix for the current 

densities. We refer to this strategy as “K+” and, again, we test it for different 

numbers of additional candidates (including zero). The third and final strategy can 

be seen as a combination of the previous two. We start with a transfer operator 

that is based on a solid-domain stiffness matrix. We set a maximum number of 

extra candidates but do not apply αSA just yet.  Once the solver needs more than 
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Table 3.15: Total solver iterations for different aggregation strategies and number of 
extra candidates. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug 2-8, d) Lug 3-5, e) Crack 
2-8, f) Crack 3-5, g) average. 

 

K1 K+ K++ 
 

0 1 2 3 0 1 2 3 0 1 2 3  

a) 557 288 624 624 612 527 675 674 557 478 478 478  
b) 620 424 279 345 889 643 327 396 620 1059 1032 814  
c) 1579 907 721 721 1568 1012 904 679 1579 1038 928 928  
d) 799 747 709 730 781 790 760 650 799 664 720 838  
e) 559 779 632 632 812 804 625 645 559 480 473 473  
f) 669 1395 497 464 1141 789 509 597 669 625 432 431  

g) 797 757 577 586 967 761 633 607 797 724 677 660  

Table 3.16: Total CPU time (in minutes) for different aggregation strategies and 
number of extra candidates. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug 2-8, d) Lug 3-
5, e) Crack 2-8, f) Crack 3-5, g) average. 

 

K1 K+ K++ 
 

0 1 2 3 0 1 2 3 0 1 2 3  

a) 13 18 36 36 23 55 156 118 14 24 24 26  
b) 46 58 71 98 79 145 97 165 50 87 98 116  
c) 68 86 121 123 339 628 1150 705 72 94 135 133  
d) 76 113 153 200 109 271 549 574 84 100 129 216  
e) 48 106 176 176 160 591 624 1258 49 82 140 124  
f) 77 142 128 164 151 357 254 544 69 90 106 166  

g) 55 87 114 133 144 341 472 561 56 80 105 130  

 
20 iterations in a single Newton step, we add one candidate. Importantly, this is 

an extra candidate for the near-kernel of the current stiffness matrix. We add a 

further candidate in every subsequent Newton iteration in which the number of 

solver iterations exceeds 20, until the maximum number of extra candidates has 

been reached. This strategy will be referred to as “K++”. Note that strategies K1 

and K++ are equivalent if the maximum number of candidates is zero. 

The results for all strategies are listed side by side in Tables 3.15 and 3.16. Ta- 

ble 3.15 shows the total number of solver iterations, while Table 3.16 shows the total 

CPU time. As one would expect, adding more candidates reduces the number of 

solver iterations in nearly all cases. This is true for all three strategies. On average, 
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aggregation strategy K1 with 2 candidates seems to achieve the lowest number of 

solver iterations. The computational time, however, paints a different picture. An 

increase in the number of candidates very consistently leads to an increase in overall 

time. This is caused by the extra work required for each call to the αSA routines, 

but also by the inflated size of the coarse-level operators brought about by a larger 

near-kernel. For a more informed interpretation of the results, we can compare the 

computational time taken up by aggregation and the preparation of the multigrid 

V-cycle to the time required for the actual solver routines. The accumulated CPU 

times for the multigrid setup and solver calls, respectively, are given in Tables A.5 

and A.6 in Appendix A.2. They allow us to draw the following conclusions. 

As soon as we either run the smoothed aggregation more than once or adaptively 

add at least one candidate, more time is spent on the setup of the multigrid V- 

cycle than on the actual call to the preconditioned Krylov solver. The additional 

computational effort for any type of scheme that is adaptive, whether in the sense 

that extra near-kernel candidates are computed or just in the sense of updating the 

transfer operators throughout the optimization, appears cost-prohibitive. Discard- 

ing these strategies completely might, however, be rash, since a parallel (or simply 

more efficient) implementation might speed up the smoothed aggregation enough 

to make them viable. It is therefore worthwhile to consider the solver CPU times 

separately. Here, the situation is more nuanced. It appears that we achieve an 

overall decrease in solver time only when the number of required solver iterations 

drops enough to compensate for the increase in system size that is due to larger 

coarse-level operators. 

For the problems we have considered, the simplest strategy – K1 without any 

additional near-kernel candidates – appears to be the most efficient. Adaptivity 

does not warrant the extra computational effort and performing the aggregation 

on any matrix other than the solid-domain stiffness matrix does not improve the 

solver iteration count. However, it would be interesting to try all of the proposed 
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Table 3.17: Mesh dimensions and numerical results for large-scale unstructured mesh 
scenarios. The reference row contains the average values for a range of large-scale 
structured mesh problems. 

 

iterations time [minutes] 
 

problem m n Nwt solver  total solver MG  

Knee 3-8 6 326 656 19 285 371 89 1344  3719 1151 1820  
Lug 3-6 1 481 280 4 579 380 101 821  647 195 241  
Crack 3-6 1 745 216 5 353 725 103 2131  1050 425 393  

reference – – 104 459  965 241 142  

 
strategies in a SIMP context. Updating the transfer operators only every couple 

of iterations could be an alternative to the hybrid GMG-AMG preconditioner used 

in [96]. Furthermore, since even the standard SA method leads to a noticeable 

reduction of solver iterations for the SIMP problem – something we do not observe 

for the VTS problem – perhaps the αSA would lead to an even higher reduction, 

one which is enough to offset the additional computational cost. 

To finish the section, we present results for each of the three scenarios on a three- 

dimensional mesh with more than a million elements, see Figures 3.13 to 3.15. 

Table 3.17 shows the problem sizes, and the iterations and times required. For 

comparison, we have also included an extra row which contains the average values 

of a wide range of large-scale structured mesh problems – more specifically, the 

problems Cantilever mx-my-mz-L, Bridge mx-my-mz-L and MBB mx-my-mz-L, for 

mx = 2, 3, . . . , 8, my = mz = 2 and L = 7. We can see that, while  the  unstruc-  

tured mesh scenarios require about the same number of Newton iterations, solving 

the linear systems requires a lot more iterations. Not only that, but upon closer 

inspection, we can see that the solver and multigrid setup make up a bigger part of 

the overall CPU time. Judging from our experience profiling smaller scale problems 

on unstructured meshes, this is due to the fact that SA transfer operators lead to 

denser coarse-level systems than the GMG operators. 
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Figure 3.13: Knee 3-8 optimal design, visualized with different density thresholds 
so that visible elements add up to c · V . 

 
 

 

(a) c = 0.6 (b) c = 0.8 
 
 

 
(c) c = 0.9 

 
 
 
 

Figure 3.14: Lug 3-6 optimal design, visualized with different density thresholds so 
that visible elements add up to c · V . 

 

(a) c = 0.7 (b) c = 0.9 
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Figure 3.15: Crack 3-6 optimal design, visualized with different density thresholds 
so that visible elements add up to c · V . 

 
 
 

 

(a) c = 0.5 (b) c = 0.7 
 
 

 

(c) c = 0.8 

 
3.2.4 Detailed Comparison of MINRES and CG 

In this section, we take a closer look at the performance of the CG and MINRES 

solver. So far, we have only considered the number of iterations and CPU time 

required over the course of an entire optimization, where the solver tolerance was 

quite high at 10−2. A more common and rigorous numerical analysis should compare 

the solvers on a single linear system and with a stricter tolerance. In order to further 

back up our claim that both solvers, preconditioned by a geometric or algebraic 

multigrid method, are (equally) efficient and optimal with respect to the mesh size, 

we use them to solve distinct linear systems with a tolerance of 10−8. These systems 

are taken from the respective last iterations of the PBM and IP algorithm applied 

to the problem MBB mx-2-2-L, where mx = 2, 4, 6, 8 and L = 4, 5, 6. We test both 

the GMG and AMG preconditioner. For the latter, we use the K1 setup strategy 

and the same parameters as in Section 3.2.3. 

 
Tables 3.18 and 3.19 list the numbers of iterations and CPU times required by the 
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Table 3.18: Iterations required by the MG preconditioned CG and MINRES solvers 
for the final PBM system. 

 

Problem dimensions GMG AMG 
 

 mx-my-mz-L n + 1  CG MR  CG MR  

 2-2-2-4 14 417  77 71  86 84  
 4-2-2-4 28 289  137 133  178 172  
 6-2-2-4 42 161  124 119  165 164  
 8-2-2-4 56 033  163 157  219 212  
 2-2-2-5 106 657  347 313  377 349  
 4-2-2-5 211 201  160 150  231 215  
 6-2-2-5 315 745  124 118  168 162  
 8-2-2-5 420 289  191 170  234 220  
 2-2-2-6 819 521  75 68  105 98  
 4-2-2-6 1 630 721  109 105  174 165  
 6-2-2-6 2 441 921  123 103  195 183  
 8-2-2-6 3 253 121  231 211  364 379  

 
different solvers for the final PBM system, along with the system size1, for various 

different design domain proportions and mesh resolutions. Tables 3.20 and 3.21 

show the corresponding results for the systems taken from the final IP iteration. 

We can see that the MINRES method requires fewer iterations than the CG method 

in most cases, for both types of preconditioners. The difference is often negligible for 

the systems stemming from the PBM method but more pronounced for IP systems. 

The ratio between the CG and MR iteration numbers is roughly constant over all 

different PBM systems and all IP systems, respectively, which indicates that the 

two methods scale similarly with the size of the mesh. 

Since the MINRES method has a slightly larger overhead than the CG method, 

it usually takes a bit longer to run even when the number of iterations are slightly 

lower. When the difference in the iteration number becomes larger, as seen in the 

IP examples, this overhead is offset. 

As expected, the geometric multigrid preconditioner generally performs better 

than the algebraic multigrid, with just a single exception to this rule. However, 

1Recall that SPBM ∈ R(n+1)×(n+1). 
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Table 3.19: CPU time (in seconds) required by the MG preconditioned CG and 
MINRES solvers for the final PBM system. Time values are rounded and do not 
include prolongation operator setup time. 

 

Problem dimensions GMG AMG 
 

 mx-my-mz-L n + 1  CG MR  CG MR  

 2-2-2-4 14 417  1 1  1 2  
 4-2-2-4 28 289  4 4  6 6  
 6-2-2-4 42 161  6 6  8 9  
 8-2-2-4 56 033  9 10  13 14  
 2-2-2-5 106 657  39 40  54 56  
 4-2-2-5 211 201  37 40  71 73  
 6-2-2-5 315 745  41 44  74 78  
 8-2-2-5 420 289  81 83  144 148  
 2-2-2-6 819 521  63 68  98 106  
 4-2-2-6 1 630 721  187 209  339 366  
 6-2-2-6 2 441 921  310 304  561 592  
 8-2-2-6 3 253 121  835 885  1541 1760  

 
 
 
 

Table 3.20: Iterations required by the MG preconditioned CG and MINRES solvers 
for final IP system. 

 

Problem dimensions GMG AMG 
 

 mx-my-mz-L n + 1  CG MR  CG MR  

 2-2-2-4 14 417  366 335  452 407  
 4-2-2-4 28 289  832 718  1089 972  
 6-2-2-4 42 161  1383 1145  1875 1630  
 8-2-2-4 56 033  1185 977  1685 1471  
 2-2-2-5 106 657  192 154  204 159  
 4-2-2-5 211 201  284 167  392 265  
 6-2-2-5 315 745  329 272  534 479  
 8-2-2-5 420 289  319 228  508 408  
 2-2-2-6 819 521  103 82  90 61  
 4-2-2-6 1 630 721  115 77  134 102  
 6-2-2-6 2 441 921  185 127  295 119  
 8-2-2-6 3 253 121  237 167  416 267  
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Table 3.21: CPU time (in seconds) required by the MG preconditioned CG and 
MINRES solvers for the final IP system. Time values are rounded and do not 
include prolongation operator setup time. 

 

Problem dimensions GMG AMG 
 

 mx-my-mz-L n + 1  CG MR  CG MR  

 2-2-2-4 14 417  5 5  6 6  
 4-2-2-4 28 289  23 23  33 33  
 6-2-2-4 42 161  62 59  88 86  
 8-2-2-4 56 033  65 61  99 98  
 2-2-2-5 106 657  24 22  37 31  
 4-2-2-5 211 201  68 46  130 106  
 6-2-2-5 315 745  110 105  264 261  
 8-2-2-5 420 289  132 113  354 308  
 2-2-2-6 819 521  103 96  106 84  
 4-2-2-6 1 630 721  213 167  299 259  
 6-2-2-6 2 441 921  488 390  938 384  
 8-2-2-6 3 253 121  896 735  1877 1322  

 
the AMG appears to scale the same as the GMG. In most cases, it leads to roughly 

1.2−1.8 times as many iterations as the GMG preconditioner. The ratio for the CPU 

times is a bit larger, sometimes surpassing 2. As mentioned in previous sections, 

this is probably due to a higher operator complexity on coarse grid levels and thus 

a higher computational cost per solver iteration. 

There does not appear to be a relationship between the problem dimension and 

the number of solver iterations, which points to an optimality with respect to the 

problem size of both the GMG and AMG preconditioner. One should of course be 

careful drawing such conclusions based on comparisons of system matrices taken 

from different optimization problems. The distribution of the eigenvalues of the 

system matrices (3.9) and (3.25) depends on the primal and dual variables as well 

as the barrier/penalty parameters. Their values in the final optimization iteration 

depend on the specific optimization problem and various algorithm parameters and 

thus they are nigh impossible to control or predict with any kind of accuracy. We 

can still gain some limited insight into the spectral properties of the system matrices, 

by considering the condition numbers cond(S) = λn+1/λ1 of the respective PBM and 
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IP system matrices. Using Matlab’s eigs method for sparse matrix eigenvalues we 

have computed these for the cases with L = 4, 5 mesh levels1. The results are shown 

in Table 3.22. As many of the matrices were ill-conditioned, the precision of the 

results might vary but should be sufficient for a qualitative analysis. 

 
From observations made in smaller test problems, we know that the largest eigen- 

value is typically an outlier which corresponds closely to the value of the lower right 

(scalar) diagonal block of the matrix. The remaining eigenvalues are generally scat- 

tered more homogeneously over the range of the spectrum. We therefore also include 

the ratio λn/λ1 of the second largest to the lowest eigenvalue. 

Table 3.22: Approximate condition numbers for the final PBM and IP system ma- 
trices. 

 
 
 
 

4-2-2-4 3.66 × 1017 2.17 × 1013 2.70 × 1016 1.02 × 1012 
6-2-2-4 2.31 × 1017 1.58 × 1013 1.75 × 1017 6.88 × 1012 
8-2-2-4 2.59 × 1016 2.14 × 1012 2.09 × 1016 1.38 × 1012 

2-2-2-5 9.21 × 1020 1.19 × 1015 1.07 × 1017 9.27 × 1010 
4-2-2-5 8.50 × 1020 9.58 × 1014 1.12 × 1017 7.36 × 1010 
6-2-2-5 3.32 × 1020 4.37 × 1014 4.04 × 1017 2.73 × 1011 
8-2-2-5 4.80 × 1020 7.74 × 1014 3.64 × 1016 4.99 × 1010 

 
 

The condition number (at least when discounting the largest eigenvalue) for one 

type of method and the same mesh resolution varies by up to two orders of mag- 

nitude. When comparing the values for different mesh resolutions, the variation is 

even higher. Still, there is no obvious correlation between these condition numbers 

and the number of solver iterations. This is further evidence that our multigrid 

preconditioners are spectrally equivalent to the system matrices encountered in the 

optimization problems. Interestingly, the IP system matrices generally have lower 

condition numbers than the PBM matrices; they even appear to grow more rapidly 
1We have not included any results for L = 6 due to time- and memory-limitations. The eigenvalue 
computation for the two largest matrices included in Table 3.22 required over 128 GB RAM and 
around 13 and 15 hours on BlueBEAR [24], respectively. 

 PBM  IP  

mx-my-mz-L λn+1/λ1 λn/λ1 λn+1/λ1 λn/λ1  

2-2-2-4 2.00 × 1018 1.38 × 1014 5.11 × 1014 3.30 × 1010  
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with increasing mesh resolution in the latter case. Still, both Krylov solvers perform 

better on the PBM systems. A possible explanation could be that the PBM method 

leads to a more favourable clustering of eigenvalues in the system matrices, although 

this is only a speculation at this point. 

One could easily devote more computational time and many more pages to the 

analysis of our Krylov solvers’ performance and its relation to the size of the op- 

timization problem, the spectrum of the system matrices and various algorithm 

parameters. The objective of this section was only to provide some evidence for 

the claim that our multigrid preconditioners are spectrally equivalent. Indeed, if 

our preconditioners were sub-optimal, leading in general to larger numbers of solver 

iterations for larger problem sizes, this trend would in all likelihood have been re- 

vealed in the test cases we have presented here. We can therefore say with some 

confidence that our solver setup seems to be optimal with respect to the resolution 

of the FE mesh used in the optimization problem. 

 
 

3.3 A Note on Density Penalization 
 

It has been very clearly demonstrated that problem (2.48) can be solved far more 

efficiently by both the IP and PBM method proposed in this thesis than by the OC 

method. From an optimization point of view, this is not surprising, as the latter is 

a first order method, while the former also use second order derivative information. 

Other first order methods, such as the MMA – which is even more prevalent in 

topology optimization than the OC method – can be expected to fare equally poorly 

in a comparison. However, we have so far only considered the VTS formulation, 

which often produces optimal designs with large grey areas. It would be negligent 

not to address the limitations of our approach with regards to the SIMP formulation, 

as it is the standard in topology optimization and much more common than the 

VTS formulation. Designs based on SIMP are more “black and white” and thus 

more viable for manufacturing. This is achieved by a penalization of intermediate 
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density values, such that the material cost of a grey element is disproportionately 

larger than its stiffness. A classic example of this is the polynomial penalization 

 

0 ≤ ρ 1→ K(ρ) =  
     

ρq Ki + K0 ∈ Rn×n , (3.30) 
i=1 

 

where q > 2, see for example [22]. The matrix K0 ensures K(ρ) 0 and corresponds 

to a lower bound Young modulus of, e.g., Emin = 10−9. More recently, the relaxed 

Heaviside projection [126] has gained popularity as a penalization function, see for 

example [50]. For simplicity’s sake, we will stick with (3.30) for the following con- 

siderations. It is well known that the SIMP approach on its own leads to so-called 

“checkerboarding” [43], a numerical artefact where an alternating pattern of void 

and solid elements yields a large overall stiffness in the FE analysis. This can be 

prevented, for instance, by a filtering of the design variables [35, 26], leading to a 

redefinition of the physical densities as 
 

 
ρ̃i := 

 
 j 

wij ρj  
, i = 1, . . . , m. (3.31) 

j ij 

 
Here, wij = max{0, rW − dist(xi, xj)}, where xi is the geometric centre of the ith 

element, rW > 0 is the filter radius and dist is some distance measure. We will use 

dist(·) = /I · /I1, for ease of implementation. Since (3.31) is a linear expression in ρ, 

we can write it as ρ̃ = Wρ, where W = [wij ]i,j=1,...,m.  Together with (3.30), we thus 

obtain the SIMP version of the minimum compliance problem: 
 

 
min 

ρ∈Rm,u∈Rn 

1 
f Tu 

2 

s.t. K(Wρ)u = f , 

(Wρ)T a = V , 

ρ ≤ ρ ≤ ρ̄ , i = 1, . . . , m . 

 
(3.32) 

 
For a typical example of the kind of design one obtains for this problem, see Fig- 

ure 3.16. 

¯ 
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Figure 3.16: MBB 8-2-0-6 solution for the SIMP formulation with a filter radius of 
rW = 2.4, cf. Figure 3.4. 

 
 
 

 
 
 

The first problem that arises when we attempt to apply the algorithms we used 

for (2.48) to (3.32) is that the latter is not a convex problem. Our PBM method 

previously relied on the existence of a dual problem in a closed form which satisfied 

strict duality. While it is possible in theory to apply the PBM approach to (3.32), we 

run into complications due to the fact that it does not guarantee strict feasibility of 

the iterates for ρ. The definition of the stiffness mapping (3.30) has to be extended 

to cover the negative real numbers, and it needs to be done in such a way that 

K(ρ) 0 even if ρi < 0 for some i. We can achieve this by replacing ρq with 

max{0, ρq}, which is twice continuously differentiable for q ≥ 3. While this satisfies 

K(ρ) 0 for all ρ ∈ Rm, the resulting algorithm struggles to converge in practice. 

The cause of this seems to be that negative densities effectively raise the volume 

limit. At the same time, density values larger than the upper bound lead to an 

improved local stiffness. As a consequence, the algorithm can stagnate in local 

minima of the augmented Lagrangian that lie outside the feasible set of (3.32). It 

is possible that the iterates will be pushed closer to or into the feasible set once the 

penalty parameters have become small enough to flatten out these local minima, 

but this kind of convergence behaviour is anything but ideal. 

 
The IP method, on the other hand, naturally maintains strict feasibility through- 

out all iterations. And while a modified version of Algorithm 4 can indeed solve 

(3.32), it does so very slowly. The reason for this is a denser system matrix caused 

by the density filtering. Regard once more the matrices (3.8) and (3.9) which we 
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1 m 

0 0 aTW IP 

ρ 2 

obtained in the derivation of our IP algorithm. If we follow the same approach for 

problem (3.32), we eventually arrive at the system matrix 



  
K(Wρ) 0 B (u)W 



 
 
 

0 0 aTW 
WTB (u)T WTa   −DIP + ∇2 (1 uTKu

 
 

 , (3.33) 

where B (u) := q 
 
ρ̃q−1K1u, . . . , ρ̃q−1Kmu

]
.  This matrix closely resembles (3.8), but 

there are two important differences. The first one is that, instead of just the matrix 

B(u), which has the same sparsity structure as B(u) in (3.8), we now have a “filtered” 

version of it in the off-diagonal blocks. The second difference is the bottom right 

block, which is no longer a negative definite diagonal matrix. Since this was crucial 

to our original approach, as it allowed us to easily invert the block and maintain a 

certain sparsity structure, we will drop the second derivative of the energy term1. 

This is essentially a local convexification of the problem. We can now proceed as in 

Section 3.1.1, taking the Schur complement. We obtain a matrix that is similar to 

the IP system matrix (3.9): 

 
K(ρ)   0

l 

+ 

 
B (u)W

l 

D−1 
 
WTB (u)T WTa

  
. (3.34) 

Because of the filter matrix that appears in the upper left block of this matrix, its 

sparsity structure is not the same as that of the stiffness matrix. The “blurring” 

of the densities also creates a blurring of the sensitivities. This is illustrated in 

Figure 3.17. 

To give an example of the impact which the compromised sparsity of the system 

matrix has on the IP method’s performance, let us consider problem MBB 8-2-0-6. 

Using a filter radius of rW = 2.4, we solved problem (3.32) with the OC method  

as well as the IP method. Running both on a 2015 MacBook Pro with a 2.8 GHz 

quad-core processor and 16 GB of memory, the average time required to solve a 

1This approach was also used in [80]. 

 



171  

Figure 3.17: Sparsity structure of the IP system matrices when using the SIMP 
formulation (rW = 2), for a three-dimensional uniform FE mesh with 512 elements; 
cf. Figure 3.1. 

 

(a) (3.33) (b) (3.34) 
 

linear system in the OC method was 1.47 · 10−2 seconds, while for the IP method it 

was 7.2 · 10−2. If we take into account that one role of the filter radius is to set a 

lower bound for the width of the members in the final design, it is easy to see that 

the difference in computational efficiency will only be exacerbated for large-scale 

problems: If we want to maintain the same minimal member width on FE meshes 

of increasing resolution the number of neighbouring elements within the filter radius 

increases. This will lead to more coupling of DOFs, which is reflected by the off- 

diagonal terms in the system matrix. Considering three-dimensional problems – and 

thus three-dimensional neighbourhoods – further adds to this problem. 

 
The above results are consistent with observations made by Rojas-Labanda and 

Stolpe in [109], where an IP method using Hessian data performed very well in terms 

of the precision of the results and the number of iterations, but was not competitive 

in terms of CPU time. Among the algorithms tested in that paper, the OC method 

turned out to be one of the most efficient for the minimum compliance problem. 
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CHAPTER 4 
 
 

CONCLUSIONS 
 
 

In this thesis, we proposed an interior point (IP) method and a penalty-barrier 

multiplier (PBM)/nonlinear rescaling method for variable thickness sheet (VTS) 

compliance minimization. With the primary focus on large-scale optimization and 

the use of multigrid-preconditioned Krylov solvers, we performed a reduction of the 

Newton system matrix in order to use standard multigrid transfer operators. While 

both optimization methods clearly outperform the well-known optimality criteria 

(OC) method on medium-scale problems, requiring fewer iterations and less CPU 

time, the PBM method is much more robust and efficient than the IP method for 

large-scale problems with more than a million finite elements. Furthermore, since 

it solves the dual of the VTS problem, unilateral contact constraints can be easily 

integrated, although this is a feature of the problem formulation rather than the 

algorithm. 

Regarding an extension to the SIMP formulation, the PBM methodology has sev- 

eral inherent limitations which make it unviable. While the IP algorithm can solve 

the SIMP-based compliance minimization problem with just a few adjustments to 

our approach, it is no longer competitive due to the compromised sparsity of the 

system matrices. This confirms previous results in the literature. One potential way 

to reduce the computational cost of this approach could be to replace the precon- 
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ditioner. Instead of using a multigrid approximation of the inverse of the system 

matrix S, one could use a multigrid approximation of the inverse of a different 

matrix, say S̃, which is spectrally equivalent but has a more tractable sparsity struc- 

ture. In our implementation, a considerable part of the total CPU time goes into the 

construction of the system matrix, on the one hand, and into the setup of and sub- 

sequent matrix-vector products involving the coarse-level operators, on the other. 

All of these processes become more costly as the sparsity of S decreases. Using a 

sparser S̃ would not only reduce the complexity of the multigrid method, but would 

eliminate the necessity to explicitly construct the matrix S: Rather than performing 

a series of matrix-matrix multiplications, one could then replace the operation Sv, 

where v ∈ Rn+1, by a series of matrix-vector multiplications in each Krylov solver 

iteration. This by itself could be more efficient, although by how much would need 

to be tested. A possible next step would be to use a matrix-free solver on a GPU, see 

for example [116], which could remove the necessity of assembling even the stiffness 

matrix. This would however considerably complicate the implementation, in partic- 

ular since the assembly of the system matrix S is more involved than that of only 

the stiffness matrix, which is usually the only one required in topology optimization 

algorithms.  The success of the whole approach further hinges on the choice of S̃, for 

which we can currently make no informed suggestions. 

 
Building on the promising results of our approach using a geometric multigrid 

(GMG) preconditioner, we have replaced it by the smoothed aggregation (SA) 

method, a type of algebraic multigrid (AMG) technique. In contrast to observations 

made for SIMP-based problems elsewhere in the literature, the AMG preconditioner 

does not improve the performance of the Krylov solver on uniform structured meshes 

when GMG can be used. This is presumably due to a less pronounced local material 

anisotropy in the VTS solution. We have therefore concentrated on unstructured 

mesh problems, where GMG is not applicable. Rather than applying AMG as a 

black box preconditioner in each solver iteration, we have proposed and tested sev- 

eral different setup strategies based on reusing transfer operators. We have found 
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the most efficient strategy to be that which constructs transfer operators by per- 

forming SA only once on a solid-design stiffness matrix and uses these operators 

throughout the entire optimization. Expanding the range of the prolongation op- 

erators by means of adaptive smoothed aggregation lowers the overall number of 

solver iterations, but is on the whole less time-efficient due to the larger size of the 

coarse-level system matrices. 

Any of the proposed SA setup strategies could be worthwhile applying to prob- 

lems based on the SIMP formulation. We suggest a study similar to that in [96], 

using an established topology optimization algorithm such as the OC method or the 

method of moving asymptotes. However, rather than just comparing out-of-the-box 

GMG and AMG techniques, we conjecture that reusing transfer operators for sev- 

eral optimization iterations could decrease the oftentimes prohibitive overhead of 

the AMG while still providing a considerable reduction in solver iterations. Such 

an approach might therefore prove to be a better compromise than the GMG-AMG 

hybrid used in [96] or [3]. Furthermore, adaptive schemes should also not be dis- 

counted. The AMG’s capability to handle strong material anisotropy appears to 

have a bigger impact when using an AMG preconditioner for systems arising in 

SIMP-based problems than it does in the VTS case. This important property can 

be reinforced by extending the range of the transfer operators using the adaptive 

smoothed aggregation method. Perhaps this could improve the AMG enough to 

justify the increased overhead that comes with larger coarse-level system sizes. Fi- 

nally, instead of only reusing the transfer operators, we could go one step further 

and reuse the coarse-grid operators, as has previously been done in [8]. Since the 

construction of the coarse-level system matrices contributes a large portion of the 

computational work in each iteration, such an approach could considerably reduce 

the computation time. However, we expect that coarse-grid operators would need 

to be updated much more frequently than the transfer operators and this would 

warrant a detailed study. 
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APPENDICES 
 
 
A.1 Methods  and  Solvers: Additional Tables and 

Graphs 

Tables A.1 to A.4 contain a detailed comparison of the CG and MINRES solver 

when used in the IP and PBM method for optimization scenarios with L = 5, 6 

number of mesh levels. Figures A.1 and A.2 show the development of the duality 

gap over the course of the optimization for the same scenarios used in Section 3.2.1 

to compare the IP, PBM and OC method. It is plotted against the total number of 

Newton iterations and solver iterations, respectively. 

Table A.1: Comparison of CG and MINRES in the IP method for various scenarios 
with L = 5, in terms of Newton iterations, solver iterations and CPU time (in 
seconds). Values are generally rounded to the nearest integer. 

 
 CG    MINRES   

scenario Nwt it. solver it. time (s)  Nwt it. solver it. time (s) 

Cantilever 2-2-2-5 51 230 127  51 131 111  
Cantilever 4-2-2-5 44 227 234  43 150 213  
Cantilever 6-2-2-5 54 391 407  53 225 448  
Cantilever 8-2-2-5 41 258 457  40 150 376  
Bridge 2-2-2-5 31 139 70  35 110 80  
Bridge 4-2-2-5 33 155 152  34 95 154  
Bridge 6-2-2-5 30 173 217  25 76 186  
Bridge 8-2-2-5 28 198 282  29 134 331  
MBB 2-2-2-5 23 130 65  26 97 66  
MBB 4-2-2-5 22 124 104  31 136 180  
MBB 6-2-2-5 23 122 185  34 150 249  
MBB 8-2-2-5 19 81 178  40 202 403  

average 33 186 207  37 138 233  
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Table A.2: Comparison of CG and MINRES in the IP method for various scenarios 
with L = 6, in terms of Newton iterations, solver iterations and CPU time (in 
minutes). Values are generally rounded to the nearest integer. Note that 500 Newton 
iterations indicate the maximum iteration number was reached and the optimization 
terminated before convergence. 

 
  CG    MINRES   

scenario Nwt it. solver it. time (m)  Nwt it. solver it. time (m)  

Cantilever 2-2-2-6 500 1809 145  500 987 143  
Cantilever 4-2-2-6 463 2177 265  448 1273 303  
Cantilever 6-2-2-6 344 1982 335  500 1778 459  
Cantilever 8-2-2-6 357 2328 539  405 1624 539  
Bridge 2-2-2-6 64 320 20  81 264 25  
Bridge 4-2-2-6 77 422 46  79 257 59  
Bridge 6-2-2-6 73 466 77  81 294 79  
Bridge 8-2-2-6 70 530 100  53 213 72  
MBB 2-2-2-6 40 262 12  41 156 13  
MBB 4-2-2-6 41 394 32  42 217 28  
MBB 6-2-2-6 46 550 65  47 310 53  
MBB 8-2-2-6 37 418 64  39 218 54  

average 176 971 141  193 632 152  

 
 
 

Table A.3: Comparison of CG and MINRES in the PBM method for various sce- 
narios with L = 5, in terms of Newton iterations, solver iterations and CPU time 
(in seconds). Values are generally rounded to the nearest integer. 

 
 CG    MINRES   

scenario Nwt it. solver it. time (s)  Nwt it. solver it. time (s) 

Cantilever 2-2-2-5 71 244 172  82 213 226  
Cantilever 4-2-2-5 58 218 301  57 131 304  
Cantilever 6-2-2-5 60 297 517  61 170 612  
Cantilever 8-2-2-5 57 274 671  57 165 656  
Bridge 2-2-2-5 66 352 186  68 286 207  
Bridge 4-2-2-5 66 369 354  71 295 417  
Bridge 6-2-2-5 73 457 621  71 353 728  
Bridge 8-2-2-5 66 374 716  71 280 816  
MBB 2-2-2-5 53 286 140  60 263 184  
MBB 4-2-2-5 51 287 291  56 252 336  
MBB 6-2-2-5 43 226 414  42 144 388  
MBB 8-2-2-5 40 228 469  39 107 489  

average 59 301 404  61 222 447  



 

 

Figure A.1: Scaled duality gap vs. Newton iterations for the PBM, IP and OC method. A black diamond marks the termination of the 
algorithm, which can be outside the plot range. 
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Figure A.2: Scaled duality gap vs. accumulated solver iterations for the PBM, IP and OC method. A black diamond marks the termination 
of the algorithm, which can be outside the plot range. 
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Table A.4: Comparison of CG and MINRES in the PBM method for various sce- 
narios with L = 6, in terms of Newton iterations, solver iterations and CPU time 
(in minutes). Values are generally rounded to the nearest integer. 

 
 CG    MINRES   

scenario Nwt it. solver it. time (m)  Nwt it. solver it. time (m) 

Cantilever 2-2-2-6 118 411 42  98 178 38  
Cantilever 4-2-2-6 82 378 69  82 222 67  
Cantilever 6-2-2-6 74 297 86  72 172 89  
Cantilever 8-2-2-6 72 314 122  71 180 128  
Bridge 2-2-2-6 76 451 29  89 438 39  
Bridge 4-2-2-6 85 555 68  95 467 88  
Bridge 6-2-2-6 83 517 96  93 484 109  
Bridge 8-2-2-6 84 575 132  103 660 240  
MBB 2-2-2-6 63 323 24  68 233 28  
MBB 4-2-2-6 68 364 55  67 259 55  
MBB 6-2-2-6 59 347 71  64 252 83  
MBB 8-2-2-6 63 415 105  63 278 112  

average 77 412 75  80 319 90  
 
A.2 Aggregation Strategy Statistics 
Table A.5: Accumulated solver time (in minutes) for different aggregation strategies 
and number of extra candidates. Values do not include the time needed for con- 
struction of coarse-grid operators. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug 2-8, d) 
Lug 3-5, e) Crack 2-8, f) Crack 3-5, g) average. 

 

K1 K+ K++ 
 

0 1 2 3 0 1 2 3 0 1 2 3  

a) 4 3 7 7 4 6 12 10 5 7 5 5  
b) 14 13 11 14 20 18 11 19 17 32 34 32  
c) 31 22 22 23 32 26 27 21 32 25 27 27  
d) 22 31 36 43 27 29 34 44 27 27 31 46  
e) 15 22 26 26 18 22 22 23 15 12 19 18  
f) 26 51 24 31 44 31 28 41 24 26 17 26  

g) 19 24 21 24 24 22 22 26 20 22 22 26  
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Table A.6: Accumulated multigrid setup time (in minutes) for different aggregation 
strategies and number of extra candidates. Rows: a) Knee 2-9, b) Knee 3-6, c) Lug 
2-8, d) Lug 3-5, e) Crack 2-8, f) Crack 3-5, g) average. 

 

K1 K+ K++ 
 

0 1 2 3 0 1 2 3 0 1 2 3  

a) 4 11 21 21 14 42 133 99 4 11 15 16  
b) 13 27 42 64 40 109 68 126 14 32 42 60  
c) 20 49 84 85 289 587 1106 669 22 51 91 90  
d) 22 47 79 115 48 204 476 486 25 41 62 122  
e) 22 68 132 132 128 552 586 1217 22 58 104 92  
f) 22 57 74 101 76 296 199 468 20 38 62 107  

g) 17 43 72 86 99 298 428 511 18 38 63 81  
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