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ABSTRACT

Estimating the 3D orientation and 3D position, i.e. 6D pose, of rigid objects plays an

essential role in computer vision tasks. This field has been made huge progress with the

development of deep learning techniques. However, some challenges still need to be

addressed, such as occlusion, viewpoint variation, and intra-class variation in category-

level pose estimation. This thesis is philosophically built upon addressing the afore-

mentioned problems in 3D space via point cloud representation. Via addressing these

problems, there are mainly three findings of this thesis: point cloud representation in 3D

space is more suitable for 6D object pose estimation; feature design is essential to pose

estimation tasks; rotation representation has an important impact on pose estimation re-

sults. For the first finding, all the three proposed pipelines use RGB information for the

2D location of the target object and estimate the 6D pose of the object in the detected re-

gion with point cloud input. The experimental results show that this fashion focuses the

network learning useful 3D information from the point cloud, which is useful to pose

estimation tasks. As to the second finding, for different challenges, we design different

features. For the occlusion challenge at the instance level, we propose to extract dense

local features by regressing point-wise vectors for pose hypotheses generation and se-

lect the best pose candidate based on 3D geometry constraints by RANSAC. Via this

fashion, the network can better utilize the local 3D information from the point cloud.

However, due to a large number of hypotheses, this generation and verification strat-

egy is time-consuming. Then to mitigate the time-consuming and viewpoint variation

problem, we propose the embedding vector feature. With this newly designed feature,

the proposed method can effectively extract the viewpoint information from the train-
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ing dataset, which leads to the fast, over 20fps, 6D pose estimation of the target object.

However, we still need a large amount of labelled data to train the model. To make the

model less dependent on the labelled data, this thesis then addresses the category-level

pose estimation problem. To handle the intra-class variation in the categorical 6D pose

estimation task, we propose to use 3D graph convolution for category-level latent rota-

tion feature learning. Finally, to fully decode the rotation information from the latent

feature, we employ two decoders based on the newly designed rotation representation.

With this new rotation representation and learned feature, the proposed method achieves

state-of-the-art performance with almost real-time speed at the level of category.



DEDICATION

Dedicated to the research of human being.

iii



ACKNOWLEDGMENTS

First, I would like to thanks my supervisor Prof. Aleš Leonardis for his careful guidance

in my research. His guidance teaches me to be a good researcher and conduct research

in an efficient way. Then I would like to thank my co-supervisor Dr. Hyung Jin Chang

for his support to my research and life. I also want to thanks my colleges, friends,

and family. It is their continuous help that gives me motivation when I was suffering

setbacks in my Ph.D. study. Last, I want to thank my beloved wife for her endless

support to my research activity, for her loving care when I was in a difficult time during

my Ph.D. Her love penetrates time and space like gravity, from China to Britain.

iv



Nature and nature’s laws lay hid in the night. God said, Let Newton be! and all was

light!

Alexander Pope



Contents

Page

List of Symbols xviii

Arconyms xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Augmented Reality . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Autonomous Driving . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Challenges in Instance- and Category-Level Pose Estimation . . . . . . 5

1.3.1 Instance-Level Challenges . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Category-Level Challenges . . . . . . . . . . . . . . . . . . . . 6

1.4 Methods and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Proposed Method 1 . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Proposed Method 2 . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.3 Proposed Method 3 . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.4 Connection and Difference . . . . . . . . . . . . . . . . . . . . 13

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 Author Contribution Statements . . . . . . . . . . . . . . . . . 15

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Literature Review 16
i



CONTENTS ii

2.1 Instance-Level Pose Estimation Approaches . . . . . . . . . . . . . . . 17

2.1.1 RGB(D)-Based Pose Estimation Approaches . . . . . . . . . . 18

2.1.2 Point Cloud-Based Pose Estimation Approaches . . . . . . . . . 20

2.2 Category-Level Pose Estimation Approaches . . . . . . . . . . . . . . . 21

2.3 Post-Hoc Refinement Procedure . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Iterative Refinement . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Pose Hypotheses Verification . . . . . . . . . . . . . . . . . . . 23

2.4 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Pose Estimation Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Instance-Level Pose Estimation Dataset . . . . . . . . . . . . . 24

2.5.2 Other datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Category-Level Pose Estimation Dataset . . . . . . . . . . . . . 27

2.5.4 Point Could Labelling . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.1 ADD(-S) Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Visible Surface Discrepancy . . . . . . . . . . . . . . . . . . . 29

2.6.3 Rotation and Translation Error . . . . . . . . . . . . . . . . . . 30

2.6.4 Intersection-over-Union . . . . . . . . . . . . . . . . . . . . . . 30

3 Point-Wise Voting For Robust 6D Object Pose Estimation 32

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Point-Wise Voting Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 2D Object Region Detection . . . . . . . . . . . . . . . . . . . 35

3.3.2 Point-Wise Vector Generation . . . . . . . . . . . . . . . . . . 36

3.3.3 Voting with Geometry Constraint . . . . . . . . . . . . . . . . . 37

3.3.4 Keypoint Selection . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . 41



CONTENTS iii

3.4.2 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Comparison with the State-of-the-Arts . . . . . . . . . . . . . . 44

3.4.4 Running Time Analyse . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Embedding Vector Features for Real-Time 6D Object Pose Estimation 53

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Pose Estimation at One-stage . . . . . . . . . . . . . . . . . . . 55

4.2.2 Pose Estimation with Decoupling . . . . . . . . . . . . . . . . 56

4.2.3 Iterative Pose Refinement . . . . . . . . . . . . . . . . . . . . . 56

4.3 Global to Local Real-Time Pipeline . . . . . . . . . . . . . . . . . . . 57

4.3.1 Global Localization . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 3D Point Cloud Segmentation and Translation Estimation . . . . 60

4.3.3 Rotation Estimation with Embedding Vector Features . . . . . . 61

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Generalization Performance . . . . . . . . . . . . . . . . . . . 71

4.4.5 Comparison with State-of-the-Arts . . . . . . . . . . . . . . . . 71

4.4.6 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Category-Level 6D Object Pose Estimation with Vector-Based Rotation

Representation 78

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 82



5.2.2 Rotation Representation . . . . . . . . . . . . . . . . . . . . . 82

5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.2 Shape-Based Network . . . . . . . . . . . . . . . . . . . . . . 84

5.3.3 Vector-Based Decoupled Rotation Representation . . . . . . . . 86

5.3.4 Residual Prediction Network . . . . . . . . . . . . . . . . . . . 90

5.3.5 Data Augmentation: 3D Deformation Mechanism . . . . . . . . 91

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.4 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.5 Generalization Performance . . . . . . . . . . . . . . . . . . . 98

5.4.6 Evaluation of Reconstruction . . . . . . . . . . . . . . . . . . . 99

5.4.7 Comparison with State-of-the-Arts . . . . . . . . . . . . . . . . 99

5.4.8 Rotation Representation Comparison . . . . . . . . . . . . . . . 102

5.4.9 Running Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Conclusion and Future Work 107

6.1 Thesis Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

iv



List of Figures

1.1 Definition of 6D pose. 6D pose consists of 3D rotation and 3D transla-

tion. With 3D rotation, we can align the local object coordinate system

with the global camera coordinate; with 3D translation, we can know

how far the object is away from the camera center. . . . . . . . . . . . . 4

1.2 Color variation. Top row: three bowl instances randomly chosen from

the NOCS-REAL dataset. Bottom row: three bowl instances randomly

cropped from the internet image search results (using the keyword ‘bowl’).

The color is varied in the same category. . . . . . . . . . . . . . . . . . 7

1.3 Camera with different parameters. Illustration of different intrinsic

camera parameters with the same pose. fx and fy are the focal length.

When increasing fx, the object becomes wider, and increasing fy, the

object becomes longer. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Image examples in LINEMOD dataset. We randomly choose some

image examples from the LINEMOD dataset to show how it looks like.

The left image is for object ‘Ape’ in the dataset, the middle is for ‘Bench

Vise’, and the right is for ‘Phone’. . . . . . . . . . . . . . . . . . . . . 25

2.2 Image examples in YCB-V dataset. We choose three image exam-

ples from the ‘sequence_01’ in the training set. These three images are

chosen from the beginning, middle, and end of the sequence. . . . . . . 26

2.3 Categorical dataset. The categories in NOCS-REAL dataset. . . . . . 27

v



LIST OF FIGURES vi

2.4 Point cloud labelling. (a) The mesh model of the object ‘Ape’ (top)

and ‘Cat’ (bottom) in LINEMOD dataset; (b) the point cloud derived

from the depth images in the target region; (c) the transformed mesh

model is overlapped on the point cloud. We can label each point cloud

according to the distance between the points on the point cloud and the

corresponding transformed mesh model. . . . . . . . . . . . . . . . . . 29

3.1 Overview of the proposed pipeline. (a) Given an RGB image, we use

CNN to detect the bounding box of the target object, and the object

label that is used as one-hot features for PointPoseNet. (b) Given the

point clouds in the target region, we use the proposed PointPoseNet to

do 3D segmentation and vector prediction. (c) Top: 3D mask for target

points; bottom: Point-wise unit vectors pointing to the keypoint. (d) 3D

keypoints hypotheses generated from the unit vectors. (e) Final pose

after hypotheses selection. (f) Legend of this figure. The number is

the output channel of the corresponding layer. Hollow “ + ” represents

feature concatenation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Keypoints selection and generation. (a) The corners on the 3D bound-

ing box of the object are selected as the keypoints; (b) two arbitrary

points (p1 and p2) are selected, and for each point, the network predicts

four directional vectors (for a better visualization the top 4 corners are

selected as the keypoints); (c) for each vector pair (v1 and v′1 for exam-

ple), an intersection point can be located, which is defined as a keypoint

hypothesis. In this example, four keypoints are generated. . . . . . . . . 38

3.3 Find intersection. lk12 is the shortest line segment between line V k
1 and

V k
2 . Mk

12 is the midpoint of lk12. dk12 is the length of lk12. . . . . . . . . . 38



LIST OF FIGURES vii

3.4 Hypotheses selection. We use the 3D bounding box transformed by

the corresponding pose to represent the pose. From left to right: (1)

Generated keypoints hypotheses and ground truth keypoints. (2) Pose

hypotheses from keypoint hypotheses and the ground truth pose. (3)

The mean pose (green box) of these pose hypotheses, which does not

match the ground truth very well. Please note, we first use each key-

point hypothesis to get a pose hypothesis, and then average these pose

hypotheses to get the mean pose. Finally, we use this mean pose to

transform the 3D bounding box of the object to the scene. (4) Pose se-

lected (blue box) by our scoring mechanism, which matches the ground

truth well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Keypoint selection schemes. The left image is a 3D object point cloud

and its 3D bounding box; the right image is the keypoint selected by the

FPS algorithm. The keypoints are shown in red color. . . . . . . . . . . 40

3.6 Visualizing pose estimation results. White 3D bounding boxes are the

ground truth, while blue 3D bounding boxes represent our results. For

each object in the Occlusion LINEMOD dataset, we show two predicted

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Visualizing LINEMO objects. Left: Cat; middle: Glue; right: Hole

Puncher. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Visualizing pose estimation results on YCB-Video dataset. White 3D

bounding boxes are the ground truth and colorful 3D bounding boxes

represent our results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Failure cases. We show the output of each step of one failure case on

object ‘Hole Puncher’: a) object location, b) point cloud in the target

region, c) point cloud segmentation, d) vector prediction, e) keypoint

hypotheses. (the black point is the ground truth), f) pose estimation

result. We can see that due to non-focused keypoint hypotheses, the

pose estimation result is not very good. . . . . . . . . . . . . . . . . . . 51



LIST OF FIGURES viii

4.1 Pipeline of the proposed G2L-Net. (a) For the RGB image, we use a

2D detector to detect the bounding box (bbox) of the target object and

the object label, which is used as one-hot features for the following net-

works. Also, we additionally choose the maximum probability location

in the class probability map (cpm) as the sphere center (we transfer this

2D location to 3D with known camera parameters and corresponding

depth value), which is used to further reduce the 3D search space. (b)

Given the point clouds in the object sphere, we use translation local-

ization networks to perform 3D segmentation and translation residual

prediction. Then we use the 3D segmentation mask and the predicted

translation to transfer the object point cloud into a local coordinate. (c)

In the rotation localization network, we first train the embedding vec-

tor feature extractor and the top decoder (block A) to predict point-wise

unit vectors pointing to the keypoints for embedding vector feature ex-

traction. Then we feed the extracted features to decoders: the middle

decoder (block B) directly outputs the rotation prediction, and the bot-

tom decoder (block C) outputs the residual between predicted rotation

and ground truth. k is the dimension of the output vector. Hollow “ + ”

denotes feature concatenation. . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Global 3D sphere. In the global localization step, we locate the object

point clouds by bounding box as well as a 3D sphere. (a) Locate the

object point cloud by bounding box. In this case, it can only locate the

object in two-dimensional space, some points can still be far away from

the object on the third axis. (b) Locate the object point cloud by the

intersection region of the bounding box and the 3D sphere. All points

lay in a more compact space. . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Different viewpoints. For a 3D object, we need at least four viewpoints

to cover all the parts of the 3D object. . . . . . . . . . . . . . . . . . . 62



LIST OF FIGURES ix

4.4 Point-wise vectors. Here we show point-wise vectors pointing to the

green keypoint. We train our network to predict such directional vectors.

The color is decided by the orientation of the vector. We map the angle

of the vector relative to the three axes to RGB space. . . . . . . . . . . 62

4.5 Architecture of the rotation localization network. In the training

stage, there are three blocks in the rotation localization network. We

use block A to predict the unit vectors pointing to the keypoints, the loss

function of this block is shown in Equation 4.3. By training this block

via the embedding vector feature extractor, the network can learn how

to extract point-wise embedding vector features from the input point

cloud. Then we use block B to integrate the point-wise embedding vec-

tor features with the output of block A to predict object rotation that is

represented as the 3D coordinates of 8 keypoints in our pipeline. The

loss function of this block is described in Equation 4.4. For rotation

residual estimator block C, we use the Euclidean distance (see Equa-

tion 4.5) between the predicted 3D keypoints position (output of block

B) and ground truth as ground truth. k ∈ R24 is the dimension of the

output rotation vector. Hollow “ + ” denotes feature concatenation. . . . 63

4.6 Different feature fashion with T-SNE for visualization. The left im-

age is the T-SNE distribution for EVF of 50 point cloud examples. The

right image is the distribution for the global features of 50 point cloud

examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Relations between bounding boxes. Green 2D bounding box denotes

ground truth. The red bounding box represents the augmented box. The

yellow region is the intersection region of the two boxes; the purple

region is the region in the ground truth box but outside the intersection

region; the blue region is the region that belongs to the augmented box

apart from the intersection region. . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES x

4.8 Performance on LINEMOD dataset. (a) Influence of training data

size using the ADD(-S) metric. When using the same training size,

compared to Frustum-P [Qi et al., 2018], our method improves the per-

formance significantly. For simplicity, here we provide ground truth 2D

bounding box and randomly choose an object point as 3D sphere center

for evaluation. (b) As the rotation localization network converges, the

impact of the rotation residual estimator (RRE) decreases. . . . . . . . 72

4.9 Qualitative pose estimation results on the LINEMOD dataset. Green

3D bounding boxes denote ground truth. Blue 3D bounding boxes rep-

resent our results. Our results match ground truth well. . . . . . . . . . 72

4.10 Visualizing pose estimation results on YCB-Video. White 3D bound-

ing boxes are ground truth. Colorful 3D bounding boxes represent our

results. For different objects, our prediction matches ground truth well. . 73

4.11 2D detection results and iterative refinement. Green 2D bounding

boxes denote ground truth. Light green bounding boxes represent origi-

nal prediction results, and yellow bounding boxes are refinement results. 75

4.12 Iterative refinement. With known camera parametersK and the refined

pose, we can render the object 3D model to 2D space to access the 2D

bounding box. Then we feed this new 2D bounding box to the G2L part

to calculate the new pose. We can iterate this procedure until it converges. 76

5.1 Stable shape and various colors. Top row: three mug instances ran-

domly chosen from the NOCS-REAL dataset. Bottom row: three mug

instances randomly cropped from the internet image search results (us-

ing the keyword ‘mug’). The color is varied, while the shape is relatively

stable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



LIST OF FIGURES xi

5.2 Architecture of FS-Net. The input of FS-Net is an RGB-D image. For

RGB channels, we use a 2D detector to detect the 2D location of the ob-

ject, category label ‘C’ (used for next tasks), and class probability map

(cpm) (generate the 3D sphere center via maximum probability location

and camera parameters). With the detected information and depth im-

age, the points in a compact 3D sphere are generated. Given the points

in the 3D sphere, we first use the proposed 3D augmentation mechanism

for data augmentation. After that, we use a shape-based 3DGC autoen-

coder to perform observed points reconstruction (OPR), as well as point

cloud segmentation for orientation latent feature learning. Then we de-

code the rotation information into two perpendicular vectors from the

latent features. Finally, we use a residual estimation network to predict

the translation and size residuals. ‘cate-sizes’ denotes the pre-calculated

average sizes of different categories, ‘k’ is the rotation vector dimen-

sion, and the hollow ‘+’ means feature concatenation. Please note, the

3D augmentation mechanism and ground truth bounding box (bbox_gt)

are only deployed during training. . . . . . . . . . . . . . . . . . . . . 81

5.3 Rotation represented by vectors. Left: The object rotation can be

represented by two perpendicular vectors (green vector and red vector).

Right: For circular symmetry objects like the bottle, only the green(up)

vector matters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



LIST OF FIGURES xii

5.4 Point-Matching variant in 2D case. Red point cloud arrow is the

original point cloud. Blue is the one transformed by the ground truth

value. Green is transformed by the estimated value. The left image

describes the Point-Matching variant loss used in [Wang et al., 2021]

that only considers the rotation term. r is the radius of the periph-

eral circle. d is the distance between the point in the blue point cloud

transformed by ground truth rotation R and the point in the green point

cloud transformed by estimated rotation R̃. θ is the rotation residual be-

tween estimated rotation and the ground truth. The right image describes

the Point-Matching variant based on our proposed VDR representation

where the point clouds are transformed by the orientation of the vectors. 91

5.5 3D object model. We assume that the centre of the 3D bounding box is

the origin point of the coordinate. The surface is represented as its four

corners. For example, the top surface is represented as SF1,2,3,4. . . . . 93

5.6 3D deformed examples. The new training examples can be generated

by enlarging, shrinking, or changing the area of some surfaces of the

box cages. The top row is the augmented examples of the ‘bowl’ with

corresponding deformed box cages, the bottom is for ‘cup’. In the bot-

tom row, we also show the original 3D bounding boxes (green color)

before deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Generalization performance. With the given 2D bounding box and a

randomly chosen 3D sphere center, we show how the training set size

affects the pose estimation performance. ‘w/o DEF’ means no 3D de-

formation mechanism is adopted during training. . . . . . . . . . . . . 98

5.8 Result on NOCS-REAL. The average precision of different thresholds

tested on NOCS-REAL dataset with 3D IoU, rotation, and translation

error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



5.9 Qualitative results on NOCS-REAL dataset. The first row is the pose

and size estimation results. White 3D bounding boxes denote ground

truth. Blue boxes are the poses recovered by two estimated rotation vec-

tors. The green boxes are the poses recovered from the estimated green

vector. Our results match the ground truth well in both pose and size.

The second row is the reconstructed observed points under correspond-

ing rotation, although the reconstructed points are not perfectly in line

with the target points, the basic orientation information is kept. The

third row is the ground truth of the observed points extracted from the

depth map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.10 Comparison on category level. The curve of accuracy under differ-

ent rotation error thresholds with different training fashions on FS-Net.

‘3D’ means using eight corners of the 3D bounding box as the rotation

representation. ‘MA’ denotes using rotation matrix. ‘EU’ means Euler

angle. ‘QU’ means Quaternion. ‘AE’ means Axis-angle. ‘6D’ means

R6D proposed in [Zhou et al., 2019]. ‘DR’ means the proposed VDR

representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.11 Comparison on instance level. We report the AUC of rotation error,

ADD(S) error, and translation estimation error for different represen-

tations based on G2L-Net. ‘3D’ means using eight corners of the 3D

bounding box as the rotation representation. ‘MA’ denotes using rota-

tion matrix. ‘EU’ means Euler angle. ‘QU’ means Quaternion. ‘AE’

means Axis-angle. ‘6D’ means R6D proposed in [Zhou et al., 2019].

‘DR’ means the proposed VDR representation. . . . . . . . . . . . . . . 103

xiii



List of Tables

1.1 The connection and difference among the three proposed methods.

We show the connection and difference in four aspects: architecture

choice, pose prediction fashion, object level, and running speed of the

corresponding pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Typical methods. The ‘Type’ means how to get the final pose from the

output of trained model. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Detailed statistics of YCB-VIDEO. ‘Min Object’ represents the min-

imal number of target objects instances appeared in the image. ‘Max

Object’ means the maximal number. ‘Mean Object’ denotes the mean

number of the total dataset. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Ablation studies on different parameters for pose estimation on LINEMOD

dataset. The metric we used to measure performance is ADD(-S) met-

ric where ‘Glue’ and ‘Egg Box’ are considered as symmetric objects.

BBX-8 means using the 8 corners of the 3D bounding box as keypoints.

FPS-K means that we use K keypoints generated by the FPS algorithm.

The last two columns show using different mechanisms to access the

final pose from pose hypotheses. MEA means using the mean value of

all hypotheses without pose sampling and selection. OPT means using

similar optimization method as [Peng et al., 2018] to compute final pose

from pose hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Ablation studies on unit vector and displacement regression. We use

ADD(-S) metric to measure the performance of different methods. . . . 44

xiv



LIST OF TABLES xv

3.3 6D pose estimation accuracy on the LINEMOD dataset. We use

ADD metric to evaluate the methods. For symmetric objects ‘Egg Box’

and ‘Glue’, we use ADD-S metric. For refinement, ‘ICP’ means ICP re-

finement, and ‘HV’ means hypothesis generation/verification refinement. 45

3.4 Pose estimation on occlusion dataset. 6D pose estimation accuracy

on the Occlusion LINEMOD dataset in terms of the ADD(-S) metric,

where ‘Egg Box’ and ‘Glue’ are considered as symmetric objects. For

refinement, ‘ICP’ means ICP refinement and ‘HV’ means hypothesis

generation/verification refinement. . . . . . . . . . . . . . . . . . . . . 47

3.5 6D Pose estimation accuracy on the YCB-V dataset. We use ADD-S

AUC metric to evaluate the methods. For refinement, ‘ICP’ means ICP

refinement and ‘HV’ means hypothesis generation/verification refinement. 48

3.6 Running time on the Occlusion LINEMOD dataset. The first column

is the number of the pose hypotheses. The last column is the average

accuracy of all objects in the Occlusion LINEMOD dataset. . . . . . . . 50

4.1 Ablation studies of different novelties on the LINEMOD dataset

with ADD(-S) metric. “SP" means 3D sphere, “EVF" means embed-

ding vector features, and “RRE" denotes rotation residual estimator. . . 70

4.2 Ablation studies of different keypoints parameters on the LINEMOD

dataset with ADD(-S) metric. BBX-8 means using the 8 corners of the

3D bounding box as keypoints. FPS-K denotes K keypoints generated

by the FPS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 6D pose estimation accuracy on the LINEMOD dataset. We use

ADD metric to evaluate the methods. For symmetric objects ‘Egg Box’

and ‘Glue’, we use the ADD-S metric. Note that, we summarize the

pose estimation results reported in the original papers on the LINEMOD

dataset. For refinement, ‘ICP’ means ICP refinement, and ‘HV’ means

hypothesis generation/verification refinement. . . . . . . . . . . . . . . 73



LIST OF TABLES xvi

4.4 6D Pose estimation accuracy on the YCB-V dataset. We use the

ADD-S AUC metric to evaluate the methods. For refinement, ‘ICP’

means ICP refinement, and ‘HV’ means hypothesis generation/verification

refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 6D Pose estimation accuracy on the TUD-Light dataset. We use the

ADD metric to evaluate the methods. “ITER_I” means iteration I times. 74

5.1 Shape similarity measurement. We use Chamfer Distance(×10−4) to

measure the shape similarity between the training set and testing set un-

der circumstances w/o 3D deformation and with 3D deformation aug-

mentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Ablation studies on the NOCS-REAL dataset. We use two different

metrics to measure performance. ‘3DGC’ means the 3D graph convo-

lution. ‘OPR’ means observed points reconstruction. ‘VDR’ represents

the decoupled rotation mechanism. ‘DEF’ denotes the online 3D defor-

mation. In the last row, the values in the bracket are the performance

for the reconstruction of the complete object model transformed by the

corresponding rotation. Please note, for the sake of the ablation studies,

we provide the ground truth 2D bounding box for different methods. . . 97

5.3 Reconstruction type comparison. The comparison is on the NOCS-

REAL dataset with the Chamfer Distance metric (×10−3). ‘Complete’

means the reconstruction of the complete 3D model. ‘Observed’ denotes

the reconstruction of the observed points. . . . . . . . . . . . . . . . . 100

5.4 Category-level performance on the NOCS-REAL dataset with dif-

ferent metrics. We summarize the pose estimation results reported in

the origin papers on the NOCS-REAL dataset. ‘-’ means no results are

reported under this metric. . . . . . . . . . . . . . . . . . . . . . . . . 100



5.5 Instance-level comparison on the LINEMOD dataset. Our method

achieves a comparable performance with the state-of-the-arts in both

speed and accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Rotation error comparison. For different representations on category-

level 6D object pose estimation, we provide the geodesic distance error

of the rotation prediction on the test set. The ‘RM’ means rotation map-

ping that proposed in [Pitteri et al., 2019]. ‘w/o decoupled’ means train-

ing rotation as a whole term. ’decoupled’ means training the rotation

sub-terms with different network branches. ‘3D’ means using the eight

3D corners to represent the rotation as in G2L[Chen et al., 2020]. ‘R6D’

is the rotation representation proposed in [Zhou et al., 2019]. . . . . . . 104

5.7 Rotation error for different representations on instance-level 6D

pose estimation. The best one is bolded. ‘PM’ means Point-Matching

loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvii



List of Notations

Mc coordinates in camera space

Mo coordinates in object space

R object rotation matrix

T object translation vector

M object 3D model

p object point in scene

pkey keypoint

p image pixel

NO number of object points

P point set

L loss function

K camera parameters

xviii



List of Acronyms

3DGC 3D Graph Convolution.

6D 6 Degree of Freedom.

ADD(-S) Average Diameter Distance (-Symmetry).

AI Artificial Intelligence.

BBX Bounding box.

CNN Convolutional Neural Network.

EVF embedding vector feature.

FS fast shape-based.

G2L global to local.

ICP Iterative Closest Point.

PnP Perspective-n-Point.

RANSAC Random Sample Consensus.

VDR vector-based decoupled rotation.

VSD Visible Surface Discrepancy.

xix



Chapter One

Introduction

Computer vision plays an essential role in the development of Artificial Intelligence (AI)

technology. Generally, the goal of computer vision is to extract useful information from

digital inputs such as images and video. However, the machine is different from the

human being. In the machine, the images and videos are represented as matrices with

different values. Then the main challenge for computer vision tasks is to extract human-

readable information such as object categories and locations, with this pure digital input.

Among the computer vision tasks, 6 Degree of Freedom (6D) object pose es-

timation is an important one, since it is affected by the major challenges of computer

vision, such as dramatic object appearance changes subject to conditions like viewpoint

variation, occlusion, and illumination changes. In this thesis, we focus on solving the

challenges of 6D object pose estimation in real-world scenes at the level at instance and

category.

1.1 Motivation

Estimating the 6D pose of the rigid object, which consists of 3D orientation and 3D

position of the target object in camera-centric coordinate, plays a very important role in
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the field of computer vision. In the last decades, it has attracted greater attention for its

significance. In recent years, increasing ubiquity of the low-cost depth data collection

equipment, such as Kinect [Zhang, 2012] and Intelr RealSense [Keselman et al., 2017],

further boost the research of 6D object pose. In the following subsections, we will

describe how the 6D object pose facilitates the related areas.

1.1.1 Robotics

Object pose estimation can be applied to robotics in many fashions, such as object grasp-

ing and navigation. For example, in many real world applications, such as in assembly

lines or automated warehouses [Doumanoglou et al., 2014, Morrison et al., 2018, Trem-

blay et al., 2018, Zhu et al., 2014], the robots need to grasp specific objects. In these

situations, the robot has to localize the object relative to itself based on orientation and

translation, which means the pose of the object needs to be accurately estimated by the

robot.

1.1.2 Augmented Reality

Augmented reality means overlaying real camera footage with virtual content such that

the real and virtual world blend together [Brachmann, 2018, Burdea and Coiffet, 2003,

Marchand et al., 2016, Marder-Eppstein, 2016]. For example, pose estimation can be

used to align virtual objects in a real environment that enables engineers to examine a

virtual object, such as a product concept, in detail in a natural fashion. The engineer

would wear augmented reality glasses and move around the virtual object as if it were

real. This offers a very natural mode of navigation and, potentially, interaction.
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1.1.3 Autonomous Driving

As the name suggests, autonomous driving means that a car can be driven without hu-

man manipulation. It is an important technique to decrease the number of traffic acci-

dents. Therefore, one of the essential tasks in this field is to effectively detect humans

and other vehicles. With the help of the 3D object detection technique, which is similar

to 6D pose estimation, the machine can better understand its surroundings and make the

right choices.

1.2 Problem Formulation

To define the pose of an object in 3D space, usually in camera coordinate space, we need

to define six degrees of freedom (shown in Figure 1.1). The translation that defines the

location of the object in 3D space has three degrees of freedom. However, this is not

enough, since the object might be arbitrarily rotated. Therefore, we need to define the

remaining degrees of freedom for rotation to measure the relative orientation to the three

principal axes of camera coordinate. Then we have (shown in Figure 1.1):

Mc = RMo + T, (1.1)

whereMc andMo represent object coordinate in camera space and object space, respec-

tively. R denotes the rotation and T denotes the translation.

6D pose can be estimated from different object forms, such as rigid object pose

estimation and deformable object pose estimation. In this thesis, we focus on estimating

the 6D pose of rigid objects. For rigid objects, we assume that the objects have no

moving parts and deformation parameters. In this case, a rigid body transformation

can represent object 6D pose adequately. For 6D pose estimation, we have instance-

level and category-level tasks. For instance-level pose estimation, we assume that the

same object instance is shared in the training set and testing set. Therefore, there is no
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intra-class variation challenge in instance-level tasks. Given an RGB-D image I where

an instance Oi of the target O appears, then our goal is to estimate the rotation R and

translation T of the object instance Oi relative to the camera coordinate system.
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Figure 1.1: Definition of 6D pose. 6D pose consists of 3D rotation and 3D translation.

With 3D rotation, we can align the local object coordinate system with the global cam-

era coordinate; with 3D translation, we can know how far the object is away from the

camera center.

In category-level tasks, we assume that the same object category is shared, while

the object instances are different in the training set and testing set. This means we also

need to estimate the shape variation of the object instance. To simplify the problem, we

assume that the shape variation can be denoted by a 3D vector S. Then for category-

level pose estimation, given an RGB-D image I where an instance Oi of the target O in

category C appears, our goal is to estimate the rotation R and translation T of the object

instance Oi relative to the camera coordinate system and also the shape variation S of

Oi.
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1.3 Challenges in Instance- and Category-Level Pose Es-

timation

Although great progress has been made on object 6D pose estimation, there still exist

many challenges in this field. According to the level of the tasks, we categorize these

challenges into instance-level and category-level.

1.3.1 Instance-Level Challenges

Illumination Changes:

Object appearance has a close relationship to the light source. Therefore, illumination

changes can have a big impact on object appearance, which will pose a challenge on

learning methods based on RGB information. Furthermore, in some cases, the light

source may create shadows for original target objects. We humans can easily detach

the target objects from these situations. However, the algorithms in the computer vision

community do not have this ability, which means it is still challenging for people to

design a method that is robust to illumination changes. To alleviate this issue, in this

thesis, we build our methods based on the pipeline that uses RGB for 2D location (which

is easier than 6D pose estimation) and uses point cloud for 6D pose estimation.

Occlusion:

Occlusion is one of the most common challenges in computer vision tasks. In the real-

world 6D pose estimation task, it is also an inevitable problem. Occlusion occurs when

the target object instance is partly or completely occluded by other object instances,

which will lead to a performance decrease. There are general two methodologies to

handle the partly occlusion in pose estimation tasks. On the one hand, one could try
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to model the occlusion in the training stage with generated occluded training examples.

On the other hand, one could design a part-feature-based approach that predicts the 6D

pose of the target object instance from the observed parts. In this thesis, to handle the

occlusion, we propose to extract dense local features from the point cloud by regressing

point-wise vectors pointing to the keypoints. Then we use these oriented vectors to

generate pose hypotheses and select the best pose candidate based on 3D geometry

constraints by RANSAC. Via this fashion, the network can better utilize the local 3D

information that is useful in occlusion scenarios.

Viewpoint Variation:

In testing scenes, the target objects can locate in any poses which distribute from 0◦ to

360◦ relative to X , Y , and Z axis of the camera coordinate. However, in the training

stage, the number of training examples is limited, which can only cover part of the

poses distribution. Therefore, the viewpoint variation of testing scenes poses a challenge

for 6D object pose estimation. How to extract effective viewpoint information from

limited training examples is still challenging. In this thesis, to effectively extract the

viewpoint information from the point cloud, we propose to extract latent embedding

vector features by encoding the point cloud to point-wise vectors. To fully decode

the viewpoint information from the learned latent embedding vector features, we also

design a rotation residual estimator to narrow the gap between the estimated rotation

and the ground truth.

1.3.2 Category-Level Challenges

Please note, the challenges or problems existing in instance-level 6D object pose estima-

tion tasks can also occur in category-level 6D object pose estimation since we can take

instance-level tasks as special cases of category-level tasks. One main challenge in the
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category-level 6D object pose estimation task is the intra-class variation that includes

object shape variation and color variation. Although different object instances belong

to the same category in category-level 6D object pose estimation, their shape and color

variation can be seen in RGB channels and depth channel, respectively. Especially,

the color variation, which poses a big challenge in category-level pose estimation. As

shown in Figure 1.2, for the same category, bowl, the color property is very different

among different object instances.

To handle intra-class variation, in this thesis, we introduce three novelties: i)

the 3D Graph Convolution (3DGC) is introduced for category-level latent rotation fea-

ture learning via observed points reconstruction; ii) the vector-based decoupled rotation

(VDR) representation is designed for effective category-level rotation feature decoding;

iii) an online augmentation technique is proposed for training data augmentation in 3D

space. With these novelties, the proposed method achieves state-of-the-art performance

with almost real-time speed at the level of category.

Figure 1.2: Color variation. Top row: three bowl instances randomly chosen from the

NOCS-REAL dataset. Bottom row: three bowl instances randomly cropped from the

internet image search results (using the keyword ‘bowl’). The color is varied in the same

category.
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1.4 Methods and Contributions

To address the aforementioned challenges, many researchers have proposed many com-

pelling methods. We first analyse the limitations of the existing methods and then pro-

vide a brief description of the proposed methods. Finally, we describe the connection

and differences among the three proposed methods.

1.4.1 Proposed Method 1

In this part, we use the point cloud representation to estimate the 6D pose of rigid objects

in 3D space. Previous 6D object pose estimation methods [Oberweger et al., 2018, Peng

et al., 2018, Rad and Lepetit, 2017, Xiang et al., 2017] are mainly focusing on estimating

pose from images (RGB or depth) using a 2D Convolutional Neural Network (CNN).

However, there are some limitations of this common fashion. First, when the tar-

get object is in the clutter, which is common in real-world scenes, it is usually difficult

for CNN to do segmentation. The reason is that the background clutter always contains

the same color information as the target object that will confuse the CNN, and pixels

from distant objects can be near-by to each other, which also makes it more difficult to

separate different objects. Second, since the depth image and RGB image are associ-

ated with camera intrinsic parameters, a learning model trained by these RGB or depth

images needs to be applied in the scene that is captured by the same camera. This will

limit the application of the trained model. The reason is that even with the same rotation

and translation, the image observation can be very different under different camera pa-

rameters. We show some examples in Figure 1.3. Although we can transfer the images

from different camera parameters to the camera parameter used in the training stage, we

inevitably lose some pixel information. This is because the size of the image changed

during the transfer and there exist some black holes in the depth image.
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Increase 𝑓"

Increase 𝑓#

Figure 1.3: Camera with different parameters. Illustration of different intrinsic cam-

era parameters with the same pose. fx and fy are the focal length. When increasing fx,

the object becomes wider, and increasing fy, the object becomes longer.

To overcome these limitations, we propose to use the 3D point cloud to train

our model. A point cloud is denoted as a set of 3D points, where each point contains

the 3D coordinate plus extra information, such as normal, color, etc. There are several

advantages of point cloud: First, 3D point clouds lay in 3D space, where we only need

to care about the points that are close to the target points. This means the segmentation

of different objects is easier than that in 2D images. Second, the point cloud is not

associated with camera parameters, which means the model trained via point cloud will

have better generalization performance.

Some works also employed point cloud to estimate 6D object pose [Qi et al.,

2018, Wang et al., 2019]. However, they focus on using global features extracted from

the point clouds derived from the depth image of the object, which is sensitive to the

occlusion scene. Instead, we propose a novel framework that focuses on local 3D shape

information from the point cloud. This makes our framework more robust to the occlu-
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sion and clutter. The contributions of our proposed method are:

• We present a novel deep learning approach for 6D pose estimation which learns

local 3D vector-field representation to account for object 3D local geometry in-

formation as well as localize 3D keypoints. Different from previous point cloud

methods, our method focuses on local information that makes our method more

robust to the occlusion scene.

• We propose a scoring mechanism that utilizes the geometry constraints from the

observed depth image to select the best pose hypothesis from those are generated

by predicted 3D unit vectors.

1.4.2 Proposed Method 2

The existing methods suffered from inefficient viewpoint feature extraction that leads

to the fact that they need elaborate post-hoc refinement steps to better utilize the 3D

viewpoint information in the depth image that will hinder the real-time performance of

the algorithm.

There are mainly two types of refinement methods: Iterative Closest Point (ICP)

[Chen and Medioni, 1992] algorithm and pose hypotheses generation with verification.

However, there are two main issues of ICP. First, since the optimization procedure of

ICP depends on the distance between local point pairs, it tends to fall into local minima

in complicated scenes. Second, ICP is an iterative optimization method, which means

it will take time to access the optimal value. Due to such iterative and local properties,

the ICP algorithm cannot guarantee the convergence to a global minimum even with the

compromise of increasing running time.

Some other methods [Brachmann et al., 2016, Chen et al., 2020, Li et al., 2018]

relied on pose hypothesis generation and hypotheses verification to get a more accurate
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pose from some pose candidates. However, this procedure is usually time-consuming,

we need to check every hypothesis, and the verification procedure is mainly based on

calculating the closest distance of each point. Although [Krull et al., 2017] proposed an

efficient method to process a large number of hypotheses, their method still cannot meet

the real-time requirement.

Some methods [Li et al., 2019, Peng et al., 2018, Rad et al., 2018] can run at

fast speed with accurate pose estimation results without refinement, while they only

take RGB images as input. RGB information is sensitive to illumination changes and

background clutter.

To overcome these problems and better extract the 3D viewpoint information

from depth images, we propose a novel feature learning method for efficient viewpoint

information extraction in global to local (G2L) fashion. Via this novel feature extraction

mechanism, the proposed pipeline runs in real-time on the benchmark dataset with state-

of-the-art performance.

In summary, the contributions of this work are:

• We propose orientation-based point-wise embedding vector feature (EVF), which

better utilize viewpoint information than the conventional global point features.

• We propose a rotation residual estimator to estimate the residual between pre-

dicted rotation and ground truth, which further improves the accuracy of rotation

prediction.

1.4.3 Proposed Method 3

In this part, we focus on the category-level 6D object pose estimation. As described in

Section 1.3.2, the major challenge in category-level 6D object pose estimation is intra-

class variation including color variation and shape variation.
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To mitigate the intra-class issue, [Sahin and Kim, 2018] used 3D skeleton struc-

tures to derive shape-invariant features from depth input via the random forest, however,

due to inefficient feature extraction, a hypothesis generation/verification procedure is

needed to access accurate pose, which will increase the running time. Most deep learn-

ing based methods employed a big synthetic dataset to learn the color variation and a

big 3D model repository with 1085 3D models to handle the shape variation.

Although these deep learning based methods achieved state-of-the-art perfor-

mance, there are still two issues with this strategy. First, for category-level pose estima-

tion, the benefits of using the RGB features are questionable. Since different objects in

the same category have very different colors (shown in Figure 1.2), the model trained on

a limited training set cannot cover that kind of variation very well. For this issue, to alle-

viate the color variation, we merely use the RGB features for 2D detection, while using

the shape features learned with point cloud cropped from depth image for category-level

pose estimation.

Secondly, such a big synthetic dataset and 3D model repository need a large

storage space to store, which will increase the hardware burden for the machine. To

overcome this issue, we propose a 3DGC autoencoder [Lin et al., 2020] and a new VDR

representation to effectively learn the category-level pose features via observed points

reconstruction of different objects instead of uniform shape mapping. We further pro-

pose an online box-cage-based 3D data augmentation mechanism to narrow the shape

gap between the training set and testing set. To summarize, the main contributions of

this paper are as follows:

• We propose a pipeline, named fast shape-based (FS)-Net, with 3DGC autoencoder

to reconstruct the observed points for latent orientation feature learning.

• Then we design a VDR representation to fully decode the orientation information.

This decoupled mechanism allows us to naturally handle the circle symmetry ob-

ject.



1.5. PUBLICATIONS 13

Table 1.1: The connection and difference among the three proposed methods. We

show the connection and difference in four aspects: architecture choice, pose prediction

fashion, object level, and running speed of the corresponding pipeline.
Proposed Method 1 Proposed Method 2 Proposed Method 3

Architecture YOLOv3+PointNet [Qi et al., 2017] YOLOv3+PointNet+3DGConv [Lin et al., 2020]

Pose Predition Rotation &Translation together Rotation &Translation separately Decoupled Rotation &Translation separately

Object Level Instance Level Category Level

Running Speed Slow: < 5fps Fast: >20fps

• Based on the shape similarity of intra-class objects, we propose a novel box-cage-

based 3D deformation mechanism to augment the training data.

1.4.4 Connection and Difference

The major connections and differences of the three proposed methods are listed in Ta-

ble 1.1. From Table 1.1 and the aforementioned description, we can see that proposed

methods 1 and 2 are some kind similar. However, there are several differences between

them. First, the architectures are different. Method 1 estimated rotation and translation

from pose hypothesis in one network branch, while method 2 estimated the rotation and

translation in two different network branches. Second, method 1 directly utilised the

point-wise vectors to generate the pose hypothesis, while method 2 treated the point-

wise vectors as intermediate output and used a decoder to decode the rotation informa-

tion from the features trained by the point-wise vectors. Third, the pose estimation part

of method 2 is end-to-end trainable, while method 1 is not.

1.5 Publications

The work of this thesis has produced the following publications:

• Wei Chen, Jinming Duan, Hector Basevi, Hyung Jin Chang, and Aleš Leonardis.
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PonitPoseNet: Point pose network for robust 6d object pose estimation. In The

IEEE Winter Conference on Applications of Computer Vision (WACV), March

2020 (spotlight).

• Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, and Aleš Leonardis. G2L-

net: Global to local network for real-time 6d pose estimation with embedding vec-

tor features. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2020.

• Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, Linlin, Shen and Aleš

Leonardis. FS-Net: Fast Shape-based Network for Category-Level 6D Object

Pose Estimation with Decoupled Rotation Mechanism. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2021 (oral, 4.2% ac-

cept rate).

These three publications correspond to the main content of Chapters 3, 4, and 5

of this thesis. The first publication, described in Chapter 3, is about using point-wise

features for occlusion scenes in the 6D object pose estimation task. The second publi-

cation, which is presented in Chapter 4, describes how the proposed method achieves

state-of-the-art performance in both accuracy and speed with designed effective view-

point feature extraction mechanism, i.e. embedding vector feature extraction in global

to local fashion. The third publication, described in Chapter 5, is about estimating 6D

object pose in category-level tasks with the proposed new architecture and rotation rep-

resentation. In addition, we add new experiments to show that the proposed VDR rep-

resentation is more suitable for pose estimation tasks at both instance level and category

level.
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1.5.1 Author Contribution Statements

In the above publications, the first author completed all the experiment design, code

writing, result analyse, and paper draft writing. The last author is the major supervisor

of the first author. The order of other authors is decided based on their contribution

to the paper representation. Thanks for their effort to make the content of the papers

clearer to the readers.

1.6 Thesis Structure

The structure of this thesis is organized as follows. It starts from the overview of the

related works in Chapter 2, which includes the review of relevant work of 6D object

pose estimation methods, the popular datasets used in this field, and the metrics that

are used to evaluate the 6D pose estimation methods. In Chapter 3, we describe our

first work on 6D object pose estimation with point-wise vector features and Random

Sample Consensus (RANSAC) voting mechanism. Chapter 4 presents our novel real-

time 6D object pose estimation pipeline. In this pipeline, we estimate the 6D pose of

the target object in a global to local fashion with the embedding vector features. Then in

Chapter 5, we present how we use the proposed novelties: visible points reconstruction,

VDR representation, and 3D online augmentation, to fast estimate category-level 6D

pose with high accuracy. Finally, in Chapter 6, we summarize the thesis and analyse the

potential future work of the proposed methods.



Chapter Two

Literature Review

With the development of this field, plenty of compelling works have been proposed

about 6D object pose estimation, we report the basic information of some typical meth-

ods in the pose estimation community in Table 2.1.

Table 2.1: Typical methods. The ‘Type’ means how to get the final pose from the

output of trained model.
Methods Type Input Dataset

[Hinterstoisser et al., 2012] Template matching RGBD LINEMOD

[Oberweger et al., 2018] Template matching RGB LINEMOD & OCCLUSION-LINEMOD & YCB-V

[Rad and Lepetit, 2017] PnP RGB LINEMOD & TLESS & OCCLUSION-LINEMOD

[Peng et al., 2018] PnP RGB LINEMOD & OCCLUSION-LINEMOD & YCB-V

[Chen et al., 2020] Hypothesis/RANSAC RGBD LINEMOD & OCCLUSION-LINEMOD& YCB-V

[Xiang et al., 2017] Regression RGB OCCLUSION-LINEMOD& YCB-V

[Brachmann et al., 2016] Hypothesis/RANSAC RGBD LINEMOD & OCCLUSION-LINEMOD

[Wohlhart and Lepetit, 2015] KNN algorigthm RGBD LINEMOD

[Kehl et al., 2016] Voting RGBD LINEMOD

[Jafari et al., 2017] Hypothesis/RANSAC RGBD LINEMOD & OCCLUSION-LINEMOD

[Wang et al., 2019] Umeyama [Umeyama, 1991] RGBD NOCS-REAL & OCCLUSION-LINEMOD

[Chen et al., 2020] Regression RGBD NOCS-REAL

[Tian et al., 2020] Umeyama [Umeyama, 1991] RGBD NOCS-REAL

[Chen et al., 2021] Kabsch [Kabsch, 1976] RGBD NOCS-REAL & LINEMOD

At the instance level, most methods are proposed to handle the existing chal-

lenges, such as occlusion, background clutter, and texture-less objects. However, it is
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nontrivial to extend these methods to category-level pose estimation, we have to con-

sider the intra-class issue in category-level tasks. To handle the new challenge, Wang

et al. [Wang et al., 2019] proposed Normalized Object Coordinate Space (NOCS) that

maps the various instance shapes to a unique shape. Then methods [Chen et al., 2020,

Tian et al., 2020] focus on improving the reliability and scalability of NOCS. But these

kinds of strategies are limited by the size of the training set.

In the following, we review the related works in the following aspects: 1) pose

estimation methods: instance-level pose estimation approaches; 2) pose estimation meth-

ods: category-level pose estimation approaches; 3) post-hoc refinement procedure: how

to access more accurate pose from initial pose; 4) pose estimation datasets: popular

datasets used in this thesis; 5) pose estimation metric: popular metric used in pose esti-

mation community.

In addition, since all the proposed pipelines are based on the detection results

from the 2D detector, we provide a brief introduction for object detection methods.

2.1 Instance-Level Pose Estimation Approaches

In instance-level pose estimation, a known 3D object model is usually available for

training and testing. Based on the 3D model, instance-level pose estimation can be

roughly divided into three types: template matching-based, correspondences-based,

and voting-based methods. Template matching methods [Hinterstoisser et al., 2012,

Oberweger et al., 2018] aligned the template to the observed image or depth map via

hand-crafted or deep learning feature descriptors. As they need the 3D object model

to generate the template pool, their applications in category-level 6D pose estimation

are limited. Correspondences-based methods trained their model to establish 2D-3D

correspondences [Peng et al., 2018, Rad and Lepetit, 2017, Rad et al., 2018] or 3D-

3D correspondences [Chen et al., 2020,]. Then they solved Perspective-n-Point (PnP)
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[Gao et al., 2003] with 2D-3D or SVD problem with 3D-3D correspondences [Kab-

sch, 1976]. Some methods [Brachmann et al., 2016, Chen et al., 2020] also used these

correspondences to generate voting candidates and then used RANSAC [Fischler and

Bolles, 1981] algorithm for selecting the best candidate. However, the generation of

canonical 3D keypoints is based on the known 3D object model that is not available

when predicting the category-level pose.

2.1.1 RGB(D)-Based Pose Estimation Approaches

Template-Based Pose Estimation Approaches

In this kind of approach, the object pose is denoted by the features of a template image

of the object in the template pool. During testing, if the extracted features of a test

image match some template in the template pool, we can find the corresponding pose

of the matched template. There are usually two steps. First, since the extracted features

can not be the same as the features in the template pool, some template candidates will

be chosen, then a coarse pose will be calculated from these matched templates. Second,

a refinement procedure based on the ICP algorithm is adopted to access the final pose.

However, it is easy to see that the size of the template pool limits the performance of the

methods. To ensure performance, a large template pool is required that increases both

inference time and storage burden.

Learning-Based Pose Estimation Approaches

CNNs have made huge success in image classification [Druzhkov and Kustikova, 2016,

Rawat and Wang, 2017, Simonyan and Zisserman, 2014] and segmentation [He et al.,

2017, Zaitoun and Aqel, 2015] tasks. Then some researchers focus on transferring the

CNN techniques to 6D pose estimation tasks. For example, [Wohlhart and Lepetit,
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2015] employed a CNN to extract feature descriptors for different objects with various

poses in the training stage and accessed the pose via feature descriptors matching by

the KNN algorithm in inference. In [Kehl et al., 2016], to handle occlusion, the authors

deployed CNN-based auto-encoders to extract local features from randomly selected

local patches. In testing, the final pose is accessed by local patch feature voting from

learned features. [Jafari et al., 2017] estimated the 6D object pose in three steps. They

first detected the target objects with the help of object instance segmentation algorithms,

then they used a CNN-based auto encoder-decoder to estimate the object coordinate of

each object instance, and finally, the pose is calculated by RANSAC algorithm.

The aforementioned methods are multi-step methods. Some other methods also

learned to directly estimate 6D object pose or equivalent representations with CNN

architectures.

In [Hu et al., 2019, Oberweger et al., 2018, Peng et al., 2018, Rad and Lepetit,

2017, Rad et al., 2018, Tekin et al., 2018], the authors trained a CNN-based model

to regress the 2D keypoints, which are the 2D projection of 3D bounding box corners

under corresponding poses. Then the final pose can be accessed by PnP algorithms.

However, these methods do not utilize depth information which means they are sensitive

to illumination changes and background clutter. When suffering illumination changes

or background clutter, the features of a pixel or a patch would be ambiguous, which will

hinder the performance.

When depth data is available, conventional approaches [Brachmann et al., 2014,

Hinterstoisser et al., 2016, Tejani, 2014, Wohlhart and Lepetit, 2015] extract 3D fea-

tures from the input RGB-D data and perform correspondence grouping and hypothesis

verification. However, it is reported that the methods are not robust enough to image

variations and background clutter [Shin and Balasingham, 2017, Yuan et al., 2016] or

sensitive to occlusion. Recently, several deep learning-based methods [Balntas et al.,

2017, Doumanoglou et al., 2016, Kehl et al., 2016, Li et al., 2018] fuse the depth input
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as an additional channel to a CNN-based architecture. These approaches treated the

depth channel as an additional channel, along with the RGB channels. While this ap-

proach is simple to implement, combining depth information with RGB information in

this way cannot make full use of the geometric information in the data and makes it dif-

ficult to integrate information across viewpoints [Maturana and Scherer, 2015]. Instead,

we convert depth maps to 3D point clouds and directly process the 3D point cloud by

PointNets [Qi et al., 2017, 2018], which are shown can extract 3D geometric features

efficiently.

2.1.2 Point Cloud-Based Pose Estimation Approaches

Pose Estimation Methods via Point Cloud

Recently, researchers [Qi et al., 2017, 2018] have found that process depth information

in 3D space can achieve better performance via point cloud representation. A point

cloud is denoted by a set of points, where each point is a vector with a 3D coordinate

relative to a specific coordinate and some other channels such as color, normal, etc. Dif-

ferent from elements in 2D images or 3D volumetric grids, the points in the point cloud

usually have no fixed order. However, the input of the conventional CNN is required

to be ordered, which means point clouds cannot be directly processed by CNN. To ad-

dress this, as a pioneer, PointNet [Qi et al., 2017] is the first network that can process

point clouds directly. To handle the disorder of the points in the point cloud, PointNet

utilizes a symmetric function, i.e. max pooling, to achieve permutation invariance for

unordered point sets. PointNet takes a raw point cloud as input and learns to encode

the high-level information and features from the input point cloud. The features are ef-

fective in point cloud shape classification and part segmentation [Qi et al., 2017,, Wang

et al., 2018]. Many similar pose estimation works are proposed based on the PointNet.

For example, some methods [Qi et al., 2018, Wang et al., 2019, Yang et al., 2018, Zhou
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and Tuzel, 2018] directly performed 6D pose estimation or 3D object detection on 3D

point cloud data. They use a PoinNet-like architecture to compute pose or access 3D

detected results from the point cloud.

2.2 Category-Level Pose Estimation Approaches

Compared to instance-level pose estimation tasks, the major challenge of category-

level pose estimation is the intra-class object variation, including shape and color varia-

tion. To alleviate the color variation, the previous methods employed an extra synthetic

dataset to train the model. However, for a specific category, the possibility of color ap-

pearance is infinite. It is impossible to cover all the color possibilities in the training

stage. For shape variation, [Wang et al., 2019] proposed to map the different objects

in the same category to a normalized object coordinate space (NOCS) map. Then they

used segmentation masks to calculate the observed points with known camera parame-

ters. The 6D pose and size are calculated by the Umeyama algorithm [Umeyama, 1991]

with the NOCS map and the observed points. [Tian et al., 2020] adopted similar method

with [Wang et al., 2019], but both extra shape prior knowledge and dense-fusion features

[Wang et al., 2019], instead of RGB features, are used. [Chen et al., 2020] estimated

the 6D pose via the learning of a canonical shape space (CASS) with dense-fusion fea-

tures [Wang et al., 2019]. The common feature of these methods is that they all use

a uniform shape to handle the various shapes among different objects in one category.

However, same as color variation, a large dataset is needed to cover different shapes in

one category.
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2.3 Post-Hoc Refinement Procedure

Here we assume that depth information is available. We focus on how different methods

refine the final pose with given depth information.

2.3.1 Iterative Refinement

ICP algorithm is a widely used iterative algorithm for registering two point sets under

the Euclidean metric. Many pose estimation methods [Hinterstoisser et al., 2016, Kehl

et al., 2017, Xiang et al., 2017] use the ICP algorithm with the observed depth map and

the estimated pose as the initial value to compute the final pose.

However, there are several limitations of the ICP algorithm. First, since it is

an iterative method, the ICP algorithm is time-consuming, which will make the pose

estimation algorithm slow for real-time applications. Second, the ICP algorithm needs

a good initial pose. Without a good initial pose, ICP takes a longer time to converge.

Furthermore, it is easy to output a locally optimal solution rather than a globally optimal

solution. The reason is that the ICP algorithm only considers the distance between point

and point, which is a local measurement. Third, ICP needs two different point clouds

to compute pose between them. However, in the pose estimation task, the target point

cloud is extracted from the depth image, which is different from the source point cloud

derived from the object mesh model. Since we cannot see the points behind the object,

the target point cloud only contains partial points of the object with some noise points.

For source point cloud usually has no noise points and includes all points belonging

to the object. It means that we need to choose a part of the points in the source point

cloud for the ICP algorithm. The choosing mechanism will also increase the running

time of the algorithm. Even we choose some of the points from the source point cloud,

the property of the target point cloud and source point cloud for the ICP algorithm is

different, which will make it more difficult to find a globally optimal solution.
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2.3.2 Pose Hypotheses Verification

Some other methods [Brachmann et al., 2016, Li et al., 2018] relied on pose hypothe-

ses generation and hypotheses verification to get a more accurate pose from an initial

pose. This procedure always contains many steps: 1) generate some pose hypotheses;

2) use some geometry constraints to score the pose hypotheses; 3) choose the best pose

hypothesis according to the score. For example, in [Li et al., 2018], Li et al. proposed

a multi-view framework that refines the outputs of their single-view network. They first

generated some pose hypotheses from their framework, then they employed the distance

metric proposed by [Hinterstoisser et al., 2012] to measure the discrepancy between ev-

ery two hypotheses. Finally, they chose a pose hypothesis that has the minimal average

distance with other pose hypotheses. Although this procedure could improve the initial

pose, it needs much time to find the best hypothesis.

2.4 Object Detection

In general, the main purpose of object detection tasks is to find the location of the

target object(s). According to the detection fashion, the CNN-based detectors can be

roughly divided into two categories: two-stage detectors and one-stage detectors. For

two-stage detectors, in the first stage, it usually generates some object proposals, then in

the second stage, the best object proposal is detected by the network. However, this kind

of detector is computation redundancy in the second stage. To address this issue, one-

stage detectors, such as YOLO detectors [Redmon and Farhadi, 2017, 2018] and SSD

detector [Liu et al., 2016], are proposed for object detection. These one-stage detectors

can detect target object(s) in real-time with high accuracy. In our work, we use the off-

the-shelf detector YOLOv3 [Redmon and Farhadi, 2018] to detect the target object for

6D pose estimation tasks.
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2.5 Pose Estimation Datasets

With the development of the pose estimation field, many datasets are created by re-

searchers. Here we list some typical datasets: the LINEMDO dataset, YCB-V dataset,

and NOCS-REAL dataset, which are used in our thesis work. The reason why we use

these datasets is that these datasets contain many challenging scenarios such as tex-

tureless objects, occlusion, illumination changes, etc. Moreover, making use of these

datasets enables comparisons with many other state-of-the-art methods. In addition, we

also introduce some other datasets which can be further used for the proposed methods.

2.5.1 Instance-Level Pose Estimation Dataset

LINEMOD Dataset

There are 15 object instances in the LINEMOD dataset. The origin LINEMOD dataset

contains a training set and testing set. In the training set, for each object instance, it pro-

vides synthetic images rendered by the object 3D model with various views distributed.

Then in the testing set, for each object instance, the dataset provides 1100-1300 images

with various poses, and pose ground truth of each image. In Figure 2.1, we show the

testing image examples in the LINEMOD dataset. From Figure 2.1, we can see that

the corresponding target object is in the center of the planar board, and the background

objects are randomly selected for the rest of the object instances. In practice, to avoid

the real-synthetic gap for deep learning architecture, people usually choose 15% testing

set for training and the rest 85% for testing. It means there are only a few hundred im-

ages in training for each instance, which requires the model can extract useful viewpoint

information from limited training examples.

Although the LINEMOD dataset is widely used in the instance-level pose esti-

mation community, there is one issue of this dataset, which is that one cannot train their
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Figure 2.1: Image examples in LINEMOD dataset. We randomly choose some image

examples from the LINEMOD dataset to show how it looks like. The left image is for

object ‘Ape’ in the dataset, the middle is for ‘Bench Vise’, and the right is for ‘Phone’.

models directly on this dataset. The reason is that every image in this dataset contains

some markers that are used to compute the ground truth. If directly train the model on

these images, we cannot prevent the model learn pose information from the markers.

YCB-VIDEO Dataset

YCB-VIDEO dataset is proposed by [Xiang et al., 2017]. Different from LINEMOD,

the authors did not label the pose of each frame by the markers. They only manually

label the pose of the first frame in one scene, then infer the poses of the rest by tracking

camera trajectory. This means the relative position of different objects in the frame is

fixed (shown in Figure 2.2). From Figure 2.2, we can also see that as the poses change,

some target object(s) is partially occluded by other objects, which poses occlusion chal-

lenge for pose estimation algorithms. In Table 2.2, we provide the detailed statistics of

YCB-VIDEO dataset.

2.5.2 Other datasets

Here we also list some other datasets that can be used to test the 6D pose estimation

methods further. For more datasets please refer to this challenge [Hodan et al., 2018].

• T-LESS [Hodan et al., 2017] contains thirty indoor textureless industry objects.
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Table 2.2: Detailed statistics of YCB-VIDEO. ‘Min Object’ represents the minimal

number of target objects instances appeared in the image. ‘Max Object’ means the

maximal number. ‘Mean Object’ denotes the mean number of the total dataset.

Parameter Value

Number of Objects 21

Number of Videos(Scene) 92

Number of Videos(Testing) 12

Min Object 3

Max Object 9

Mean Object 4.47

Number of Images 133827

Image Size 640× 480

Figure 2.2: Image examples in YCB-V dataset. We choose three image examples

from the ‘sequence_01’ in the training set. These three images are chosen from the

beginning, middle, and end of the sequence.

Many of the objects are symmetrical and similar to each other.

• IC-BIN [Doumanoglou et al., 2016] is designed for the bin-picking scenario that

contains heavy occlusion and background clutter in the scene.

• TUD-L [Hodan et al., 2018] contains three real objects with significant illumina-

tion changes, which poses a great challenge to the 2D detection part.
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Figure 2.3: Categorical dataset. The categories in NOCS-REAL dataset.

2.5.3 Category-Level Pose Estimation Dataset

NOCS-REAL Dataset

This dataset consists of 18 different real scenes with 6 different categories. Among these

scenes, the training set has 7 scenes, the validation set has 5 scenes, and the rest are for

testing. In each category, there are three unique instances. The six categories are bottle,

bowl, camera, can, laptop, and mug, which shown in Figure 2.3. From Figure 2.3 we

can see that some categories in this dataset are symmetric, such as bowl and can, which

pose challenges when estimating pose on this dataset.
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2.5.4 Point Could Labelling

However, the aforementioned datasets do not provide the label for each point. To train

the proposed network in a supervised way, we propose an automatic method to generate

the label of each point for the point cloud. First, for the 3D mesh model of each object,

we transform it into the camera space using the corresponding ground truth pose matrix.

We use the implementation in the package of [Hodaň et al., 2016] for this process.

Second, for each point on the corresponding point cloud in the target region, we compute

its shortest distance to the transformed mesh model. If the distance is smaller than a

small threshold ε = 8mm we label the point as 1, otherwise 0. Figure 2.4 further

illustrates the labelling process.

2.6 Evaluation Metrics

There are several different metrics for 6D pose estimation evaluation, we describe them

in detail.

2.6.1 ADD(-S) Metric

Average Diameter Distance (-Symmetry) (ADD(-S)) metric is design by [Hinterstoisser

et al., 2012], to estimate the transformed object 3D model from ground truth pose and

estimated pose, respectively:

1

|M|
∑
p∈M

‖(Rp + T)− (R̃p + T̃)‖, (2.1)

where |M| is the number of points in the object model. p represents the point in the

object 3D model. R and T are the ground truth pose, and R̃ and T̃ are the estimated

pose. In this metric, the mean distance between the two transformed point sets is com-

puted. When the average distance is less than 10% of the 3D object model diameter, we
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(a) (b) (c)

Figure 2.4: Point cloud labelling. (a) The mesh model of the object ‘Ape’ (top) and

‘Cat’ (bottom) in LINEMOD dataset; (b) the point cloud derived from the depth images

in the target region; (c) the transformed mesh model is overlapped on the point cloud.

We can label each point cloud according to the distance between the points on the point

cloud and the corresponding transformed mesh model.

consider that estimated 6D pose as correct. For symmetric objects, we employ ADD-S

metric [Hinterstoisser et al., 2012], where the average distance is calculated using the

shortest point distance:

1

|M|
∑

p1∈M

min
p2∈M

‖(Rp1 + T)− (R̃p2 + T̃)‖. (2.2)

2.6.2 Visible Surface Discrepancy

To evaluate the estimated 6D pose with depth map visibility, [Hodan et al., 2018] pro-

posed Visible Surface Discrepancy (VSD) metric. The basic step of this metric is: first,
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the object 3D modelM is rendered by predicted pose and ground truth pose. Then we

can get two distance maps Ŝ and S̄ with the known camera matrix. The visibility masks

V̂ and V̄ are calculated by comparing Ŝ and S̄ with depth map SI of the test image I.

Finally, the error is computed by:

eV SD

(
Ŝ, S̄, SI , V̂ , V̄ , τ

)
= avg

p∈V̂ ∪V̄

 0 if p ∈ V̂ ∩ V̄ ∧ |Ŝ(p)− S̄(p)| < τ

1 otherwise ,
, (2.3)

where τ is the misalignment tolerance, p denotes the pixel. Equation 2.3 shows that

pose error eV SD is computed from the visible part of the transformed model surface and

therefore the ambiguous poses (of symmetric objects) are treated as equivalent.

2.6.3 Rotation and Translation Error

This metric is used to measure the accuracy of estimated rotation and translation. For

rotation measurement, we use geodesic distance to calculate the error between the pre-

dicted rotation and ground truth, and for translation, we use square error to measure.

For rotation geodesic distance, assume that we have predicted rotation R̃ ∈ R3×3

and ground truth R ∈ R3×3, then for geodesic distance Egeo, we have:

Egeo = arccos ((T (R)− 1) /2) , (2.4)

whereR = R−1R̃, T (R) means the trace ofR.

For translation error, we use Euclidean distance:
∥∥∥T− T̃

∥∥∥
2
, where T and T̃ are

translation ground truth and prediction, respectively. n◦ m cm represents the rotation

error less than n◦ and the translation error less than m cm is accepted (see Table 5.4).

2.6.4 Intersection-over-Union

Intersection-over-Union (IoU) accuracy is used to measure 3D object detection methods

via different overlap thresholds. Here we first transform the 3D bounding box of the
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object by the predicted pose and ground truth respectively, then calculate the overlap

ratio between intersection volume and union volume of these two transformed bounding

boxes. IoUX means the overlap ratio larger than X% is accepted.



Chapter Three

Point-Wise Voting For Robust 6D

Object Pose Estimation

3.1 Overview

With the popularity of 3D sensors, such as Kinect Camera [Zhang, 2012], the amount

of the available 3D data (such as depth image and point clouds) has tremendously in-

creased. However, which deep neural network architectures are suitable for pose esti-

mation or 3D object detection from the 3D data remains an open problem.

Some existing works converted the 3D data to volumetric grids by quantization

[Maturana and Scherer, 2015, Song and Xiao, 2016, Wu et al., 2015], then applied con-

volutional neural networks to proceed with such volumetric data. However, this data

representation transformation misses the fine geometric details of the object and intro-

duces quantization artifacts that can obscure natural invariances of the data. Some other

methods [Kehl et al., 2016, Li et al., 2018] processed the depth image as an additional

image channel along with the RGB channels. However, this approach did not make

full use of the geometric information in the data which makes it difficult to integrate

information across viewpoints [Maturana and Scherer, 2015].
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To better utilize 3D information in 3D data for 6D object pose estimation, in

this chapter, we propose a novel pipeline for 6D object pose estimation from RGB-D

images. Inspired by [Peng et al., 2018, Qi et al., 2018], we estimate 6D object pose via

multi-stage. First, we locate the object by using a 2D CNN detector to access the point

cloud of the object in the detected region. Then we use PointNet [Qi et al., 2017] to

segment object points from background points as well as estimate object pose based on

the segmented point cloud.

Compared to the methods proposed in [Qi et al., 2018], we have two improve-

ments. Firstly, instead of directly regressing the global point features to 3D keypoints,

we regress the point-wise features to unit vectors that point to the 3D keypoints. This

improvement makes our method more robust to occlusion. Secondly, we propose a new

simply scoring method that utilizes the geometry constraints of the object point cloud

to score the different poses computed from keypoint hypotheses. Then we choose the

pose hypothesis with the highest score as the final pose. Our method shares features of

PVNet [Peng et al., 2018]: both methods use unit vector regression to estimate pose,

however, our method takes point cloud as input, and instead of using 2D keypoints, we

use 3D keypoints, then we use our proposed scoring mechanism to access the final pose

which is different to the optimization-based method in [Peng et al., 2018].

The output of our method is a 3D vector-field representation for 3D keypoints

localization that guides the network to learn local geometry features of the object point

cloud. This means even when the object is occluded partially, the proposed method can

still accurately estimate its pose by using only the remaining visible parts of the object.

In summary, the key contributions of this chapter are as follows:

• We present a novel deep learning approach, named PointPoseNet, that regresses

point-wise features to unit vectors pointing to the 3D keypoints for 6D pose esti-

mation. Our network learns 3D vector-field representation to account for object
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3D local geometry information and 3D keypoints localization.

• We propose a new scoring mechanism that utilizes the geometry constraints be-

tween ground truth and transformed point cloud to select the best pose hypothesis

among those that are generated by predicted 3D unit vectors.

3.2 Related Works

The related work of this part has been described in Section 2, in this chapter, we also

make use of PointNet-like architecture but with 3D vector-field representation and 3D

geometry constraint. We also show that the proposed method achieves better perfor-

mance than state-of-the-art methods with this new representation and constraint.

3.3 Point-Wise Voting Pipeline

The overview of our proposed pipeline is shown in Figure 3.1. Given an RGB-D im-

age, we first use a state-of-the-art 2D detector, YOLOv3[Redmon and Farhadi, 2018],

to locate the object with a bounding box and output the object label. Then, we trans-

form the corresponding depth region to the point cloud with the known camera matrix.

However, the point cloud derived from this region contains both target points and back-

ground points. To access the points only belonging to the object and predict the unit

vectors pointing to the keypoints (see Section 3.3.4 for details), given the point cloud

transformed from the depth image in the target region, our network performs two re-

lated tasks. First, the object points are segmented from the points in the detected region.

Second, the network predicts point-wise unit vectors pointing to the keypoints.

Then, given the oriented vectors to a certain object keypoint from all points be-

longing to the object, we generate hypotheses of 3D locations for that keypoint. With
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Figure 3.1: Overview of the proposed pipeline. (a) Given an RGB image, we use

CNN to detect the bounding box of the target object, and the object label that is used

as one-hot features for PointPoseNet. (b) Given the point clouds in the target region,

we use the proposed PointPoseNet to do 3D segmentation and vector prediction. (c)

Top: 3D mask for target points; bottom: Point-wise unit vectors pointing to the key-

point. (d) 3D keypoints hypotheses generated from the unit vectors. (e) Final pose after

hypotheses selection. (f) Legend of this figure. The number is the output channel of the

corresponding layer. Hollow “ + ” represents feature concatenation.

these keypoint hypotheses and keypoints in the canonical frame, we can compute corre-

sponding pose hypotheses, then we choose the best pose hypothesis as the final pose by

our proposed scoring mechanism.

3.3.1 2D Object Region Detection

In this step, we derive the point cloud that represents the object of interest in the depth

image. To achieve this, we train a 2D CNN detector, YOLOv3 [Redmon and Farhadi,

2018], to localize the object in the RGB image with a bounding box and output the

object label that is used as one-hot class vector for better point cloud instance segmen-
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tation in PointPoseNet. The bounding box is then applied to extract the corresponding

region in the depth image. By inverting the image formation process, the localized depth

region can be converted to a 3D point cloud in the camera space with known camera pa-

rameters. However, the point cloud still contains some points that are not belonging to

the object. In the next step, we will describe how we segment the object points from

background points and estimate the 6D pose of the object.

3.3.2 Point-Wise Vector Generation

In contrast to directly regressing the 3D bounding box for the object [Qi et al., 2018],

the proposed network is trained to predict point-wise directional vectors that enforce the

network to focus on the local features of the object. Different to [Peng et al., 2018, Xiang

et al., 2017] that predict dense vectors pointing to 2D keypoints, our network predicts

dense vectors pointing to 3D keypoints. There are two advantages of our method: i)

our method enables to locate invisible keypoint(s) from other visible parts of the object

point cloud in 3D space, and ii) previous methods [Qi et al., 2017, 2018] have shown

that learning in 3D space can better exploit the geometric and topological structure of

3D space that useful to pose estimation.

More concretely, for a object point p, our network outputs its semantic label with

the unit vectors vk(p) that denotes the direction from the point p to kth 3D keypoint pkeykρ

transferred by the pose ρ. vk(p) is defined as:

vk(p) =
pkeykρ − p

‖pkeykρ − p‖2

. (3.1)

Another possible way is to estimate the displacement vector pkeykρ − p, however,

in experiments (see Table 3.2) we show that regressing to unit vector can achieve better

results (98.4%) than predicting absolute displacement (96.3%). [Xiang et al., 2017] also

suggested that scale-invariant unit vectors are easier to train.
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Given semantic labels and unit vectors, we generate 3D keypoint hypotheses

with voting weight. First, we find the points of the target object by using semantic labels.

Then, we randomly sample N point pairs and use the intersection of the straight lines

that have their vectors as direction vector as N hypotheses for keypoints (see Figure 3.2

(b) and (c) for the illustration on how to derive the keypoints from two points). However,

different from 2D cases in [Peng et al., 2018, Xiang et al., 2017] where two nonparallel

lines always have an intersection, two nonparallel lines in 3D can have no intersection

(shown in Figure 3.3). To address this problem, in this paper, we use the midpoint of the

shortest line segment of two lines where the two vectors lie, as the intersection point(see

Figure 3.3 for the illustration). Finally, we need a criterion to weigh each hypothesis.

Intuitively, a reliable hypothesis should satisfy these requirements: (1) it should coincide

with different predicted directions; (2) the distance between two lines that generate this

hypothesis should be close. Based on these two requirements, we calculate the voting

weight wk,i of a keypoint hypothesis hk,i as:

wk,i =
∑
p∈O

I
(
I(dki ≤ ε)

(hk,i − p)T

‖hk,i − p‖
vk(p) ≥ θ

)
, (3.2)

where I represents the indicator function, θ is a threshold, and p ∈ O means that the

point p belongs to the object O. vk(p) is the kth predicted vector of point p. dki is the

distance between two straight lines where the vectors are located, this distance is used

to measure the confidence of the intersection (see Figure 3.3 for details). ε is a distance

threshold.

3.3.3 Voting with Geometry Constraint

Assuming that we have sample N keypoint hypotheses, by using the keypoints in the

canonical frame and Kabsch algorithm [Kabsch, 1976] we can compute N pose hy-

potheses via 3D-3D correspondences. However, not all these pose hypotheses are good

for our task. We need to find the best pose hypothesis from these hypotheses (see Figure

3.4 for illustration). According to the definition of the pose, the mesh model transformed
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Figure 3.2: Keypoints selection and generation. (a) The corners on the 3D bounding

box of the object are selected as the keypoints; (b) two arbitrary points (p1 and p2) are

selected, and for each point, the network predicts four directional vectors (for a better

visualization the top 4 corners are selected as the keypoints); (c) for each vector pair (v1

and v′1 for example), an intersection point can be located, which is defined as a keypoint

hypothesis. In this example, four keypoints are generated.
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Figure 3.3: Find intersection. lk12 is the shortest line segment between line V k
1 and V k
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Mk
12 is the midpoint of lk12. dk12 is the length of lk12.

by the good pose hypothesis should match the point cloud of the object in the test scene

very well. The question is how to measure this match. Inspired by the method proposed

in [Aldoma et al., 2012], here we use interior point count to measure this match: if a

point in the test scene is close enough to the transformed mesh model, we call this point

an interior point. Therefore, in this task we aim at finding the pose hypothesis that can
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Figure 3.4: Hypotheses selection. We use the 3D bounding box transformed by the

corresponding pose to represent the pose. From left to right: (1) Generated keypoints

hypotheses and ground truth keypoints. (2) Pose hypotheses from keypoint hypotheses

and the ground truth pose. (3) The mean pose (green box) of these pose hypotheses,

which does not match the ground truth very well. Please note, we first use each keypoint

hypothesis to get a pose hypothesis, and then average these pose hypotheses to get the

mean pose. Finally, we use this mean pose to transform the 3D bounding box of the

object to the scene. (4) Pose selected (blue box) by our scoring mechanism, which

matches the ground truth well.

maximize the interior point count:

H∗ = arg max
H∈H

∑
p∈O

Idist(p,MH)<τ , (3.3)

where p denotes the points belonging to the object in the camera space.MH is the mesh

model that transformed into the camera space via the pose hypothesis H . H denotes all

the pose hypotheses. I is the indicator function, which is 1 if the statement is true.

dist(p,MH) stands for the shortest Euclidean distance between the object point p and

the transformed mesh model MH . τ is a positive threshold. The formulation can be

efficiently optimized by the pre-emptive RANSAC [Shotton et al., 2013]. Compared

to the verification mechanism in [Aldoma et al., 2012], our mechanism does not need

to calculate the normal and neighboring points of different points, which reduces the

computation burden.
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Figure 3.5: Keypoint selection schemes. The left image is a 3D object point cloud and

its 3D bounding box; the right image is the keypoint selected by the FPS algorithm. The

keypoints are shown in red color.

3.3.4 Keypoint Selection

To train our network, we need to define some keypoints. The keypoints are defined

based on the 3D object model (see Figure 3.5). Two aspects need to be decided for

the keypoints: number and location. A simple way is to use the 8 corners of the 3D

bounding box of the object as the keypoints. This fashion is widely adopted by many

CNN-based methods in 2D cases [Oberweger et al., 2018, Rad and Lepetit, 2017, Rad

et al., 2018, Tekin et al., 2018]. Since the 3D bounding box corners are distributed

well in the 3D space, which should be easier for the network to regress, we also use

this keypoint definition in our experiments. Another way is adopted in [Peng et al.,

2018] that used the farthest point sampling (FPS) algorithm to sample the keypoints.

Figure 3.5 shows an example of different keypoint selection schemes. In Section 3.4.2,

we show how the number and position of the keypoints influence the pose estimation

results.
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3.4 Experiments

In this section, we describe how we train our network and report the experimental results

on the LINEMOD and YCB-V datasets.

3.4.1 Training Details

First we fine-tune the YOLOv3 [Redmon and Farhadi, 2018] that pre-trained on the Ima-

geNet [Deng et al., 2009] to localize the 2D region of the interest. To prevent overfitting,

we adopt data augmentation, which includes random rotation, resizing, and cropping as

well as adding synthetic images to the training set. We use the default training parame-

ters in the YOLOv3.

Then we train our proposed network. We use PointNet [Qi et al., 2017] as our

backbone network but remove the transformer networks proposed in [Qi et al., 2017] to

preserve viewpoint information. Another major difference is that we add an input one-

hot class vector to provide semantic information. The architecture details are shown in

Figure 3.1.

Our network performs two related tasks: point cloud segmentation and unit vec-

tor prediction. Therefore, the loss function of our network consists of two different loss

functions. For point cloud segmentation, we use cross-entropy as the loss function. For

learning unit vectors, according to experimental results, the loss function is defined as

the mean square error between the predicted and ground truth directional vectors:

L =
1

KNO

K∑
k=1

∑
p∈O

‖ṽk(p)− vk(p)‖2 , (3.4)

where K is the number of keypoints. ṽk(p) and vk(p) are the predicted vector and the

ground truth vector of object point p, respectively. NO denotes the number of object

points.
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We use Adam [Kingma and Ba, 2014] to optimize the proposed network. We set

the initial learning rate as 0.001 and halve it every 60 epochs. The maximum epoch is

300.

However, the original datasets do not provide the label for each point. Please

refer Chapter 2, Section 2.4 for the labelling details.

3.4.2 Ablation Studies

We conduct ablation studies to compare different keypoints selection schemes and the

numbers of keypoints on the LINEMOD dataset. Table 3.1 summarizes the results of

ablation studies.

In Section 3.3.4, we discussed the keypoints selection schemes. Here we com-

pare the pose estimation results based on different keypoint sets. “Bounding box (BBX)-

8-S" means using the 8 bounding box corners and “FPS-8-S" represents the 8 points are

selected by the FPS algorithm. “S" represents accessing the final pose by our scor-

ing mechanism. Comparing “BBX-8-S" and “FPS-8-S" in Table 3.1, the results show

that “BBX-8-S" can get better accuracy than “FPS-8-S". Furthermore, to explore the

influence of the keypoint number on pose estimation, we train our network to regress

to different numbers of keypoints that are selected by the FPS algorithm. Comparison

among columns “FPS-4-S", “FPS-8-S", and “FPS-12-S" shows that selection 8 key-

points can achieve better results. For efficiency and simplicity, we use “BBX-8-S" in all

other experiments.

We also compared different mechanisms to access the final pose from pose hy-

potheses that are generated from 8 bounding box corners. We refer to the mechanism

which uses the mean value of all pose hypotheses without scoring mechanism as “MEA"

and the mechanism using a similar optimization method as [Peng et al., 2018] to com-

pute the final pose from pose hypotheses as “OPT". Compared “BBX-8-S", “BBX-8-
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Table 3.1: Ablation studies on different parameters for pose estimation on

LINEMOD dataset. The metric we used to measure performance is ADD(-S) met-

ric where ‘Glue’ and ‘Egg Box’ are considered as symmetric objects. BBX-8 means

using the 8 corners of the 3D bounding box as keypoints. FPS-K means that we use K

keypoints generated by the FPS algorithm. The last two columns show using different

mechanisms to access the final pose from pose hypotheses. MEA means using the mean

value of all hypotheses without pose sampling and selection. OPT means using similar

optimization method as [Peng et al., 2018] to compute final pose from pose hypotheses.

Method BBX-8-S FPS-8-S FPS-4-S FPS-12-S BBX-8-MEA BBX-8-OPT

Ape 97.9% 96.5% 90.2% 97.8% 96.8% 96.5%

Bench Vise 99.6% 96.7% 92.1% 95.6% 94.0% 97.3%

Camera 98.5% 98.9% 94.4% 97.3% 96.2% 96.3%

Can 99.4% 98.7% 93.8% 97.4% 97.2% 97.6%

Cat 99.3% 99.0% 97.4% 98.7% 97.7% 98.6%

Driller 97.5% 96.5% 95.3% 96.4% 96.4% 96.3%

Duck 96.1% 99.6% 98.9% 92.8% 90.9% 90.5%

Egg Box 97.9% 97.8% 99.0% 97.8% 96.0% 96.7%

Glue 100% 98.9% 97.9% 98.5% 96.8% 97.5%

Hole Puncher 97.8% 99.4% 93.8% 98.1% 98.1% 97.9%

Iron 99.4% 99.0% 99.5% 97.4% 95.3% 97.2%

Lamp 99.1% 99.6% 97.7% 97.9% 98.1% 98.8%

Phone 98.9% 98.9% 99.9% 99.7% 99.1% 99.2%

Ave 98.4% 98.3% 94.6% 97.3% 94.2% 96.4%

MEA", and “BBX-8-OPT" in Table 3.1, the results show that our pose sampling and

scoring mechanism achieve better results.

In Table 3.2, we show that predicting unit vector can achieve better results than

absolute displacement regression.
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Table 3.2: Ablation studies on unit vector and displacement regression. We use

ADD(-S) metric to measure the performance of different methods.

Method Unit Vector Displacement

Ape 97.9% 95.6%

Bench Vise 99.6% 99.3%

Camera 98.5% 98.7%

Can 99.4% 96.7%

Cat 99.3% 96.4%

Driller 97.5% 94.6%

Duck 96.1% 93.0%

Egg Box 97.9% 95.7%

Glue 100% 99.7%

Hole Puncher 97.8% 98.9%

Iron 99.4% 96.8%

Lamp 99.1% 99.4%

Phone 98.9% 98.5%

Average 98.4% 96.3%

3.4.3 Comparison with the State-of-the-Arts

In this section, we compare our method with the state-of-the-art pose estimation meth-

ods on three popular datasets: LINEMOD [Hinterstoisser et al., 2012], Occlusion LINEMOD

[Brachmann et al., 2014, Hinterstoisser et al., 2012], and YCB-Video dataset [Xiang

et al., 2017]. We empirically set the number of hypotheses as 10k for LINEMOD and

Occlusion LINEMOD dataset, and set the number as 20k for the YCB-Video dataset.

Both visual and quantitative results are provided.

Results on LINEMOD dataset. In Table 3.3, we summarize the pose estimation re-

sults from the original papers on the LINEMOD dataset. We compare our method with
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Table 3.3: 6D pose estimation accuracy on the LINEMOD dataset. We use ADD

metric to evaluate the methods. For symmetric objects ‘Egg Box’ and ‘Glue’, we use

ADD-S metric. For refinement, ‘ICP’ means ICP refinement, and ‘HV’ means hypoth-

esis generation/verification refinement.

Method
PVNet

[Peng et al., 2018]

DeepIM

[Li et al., 2018]

Frustum-P

[Qi et al., 2018]

Hinterstoisser

[Hinterstoisser et al., 2016]

DenseFusion

[Wang et al., 2019]
Ours

Refinement × X(ICP) × X(ICP) X(ICP) X(HV)

Ape 43.6% 77.0% 85.5% 98.5% 92.3% 97.9%

Bench Vise 99.9% 97.5% 93.2% 99.0 % 93.2% 99.6%

Camera 86.9% 93.5% 90.0% 99.3% 94.4% 98.5%

Can 95.5% 96.5% 91.4% 98.7% 93.1% 99.4%

Cat 79.3% 82.1% 96.5% 99.9% 96.5% 99.3%

Driller 96.4% 95.0% 96.8% 93.4% 87.0% 97.5%

Duck 52.6% 77.7% 82.9% 98.2% 92.3% 96.1%

Egg Box 99.2% 97.1% 99.9% 98.8% 99.8% 97.9%

Glue 95.7% 99.4% 99.2% 75.4% 100% 100%

Hole Puncher 81.9% 52.8% 92.2% 98.1% 92.1% 97.8%

Iron 98.9% 98.3% 93.7% 98.3% 97.0% 99.4%

Lamp 99.3% 97.5% 98.2% 96.0% 95.3% 99.1%

Phone 92.4% 87.7% 94.2% 98.6% 92.8% 98.9%

Average 86.3% 88.6% 93.4% 96.3 % 94.3 % 98.4 %

state-of-the-art RGB and RGB-D methods. In Table 3.3, the second and third column

are RGB methods. The rest are RGB-D methods. From this table, we can see that

the best RGB-D methods can outperform about 10% of the best RGB methods. We

use Frustum-PointNets [Qi et al., 2018] as our baseline. We re-implement Frustum-

PointNets to regress the 3D bounding box corners of the objects. From Table 3.3, we

can see that our method outperforms its 2D counterpart PVNet [Peng et al., 2018], the

baseline, and other state-of-the-art methods, which shows that our method can better

utilize 3D information from depth images.

Results on Occlusion LINEMOD dataset. Same as other state-of-the-art methods, we

train our model on LINEMOD dataset and test it on the Occlusion LINEMOD. We sum-



3.4. EXPERIMENTS 46

Figure 3.6: Visualizing pose estimation results. White 3D bounding boxes are the

ground truth, while blue 3D bounding boxes represent our results. For each object in

the Occlusion LINEMOD dataset, we show two predicted results.

marize the experimental results from the original papers into Table 3.4. We compare our

method with state-of-the-art methods. Overall, our method outperforms other methods.

Some qualitative results are shown in Figure 3.6. The improvement of our method is

the most obvious on the Cat and Glue. For the cat, its ears and tail are useful local ge-

ometry information for pose estimation. For the Glue, its bulge on its shoulder is useful

local geometry information for pose estimation (see Figure 3.7). Our proposed method

can better utilize this kind of 3D local geometry information via 3D vector-field repre-

sentation, making it more robust to the occlusions. However, from Table 3.4 we can see
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Table 3.4: Pose estimation on occlusion dataset. 6D pose estimation accuracy on the

Occlusion LINEMOD dataset in terms of the ADD(-S) metric, where ‘Egg Box’ and

‘Glue’ are considered as symmetric objects. For refinement, ‘ICP’ means ICP refine-

ment and ‘HV’ means hypothesis generation/verification refinement.

Method
PoseCNN

[Xiang et al., 2017]+ICP

Michel

[Michel et al., 2017]

Hinterstoisser

[Hinterstoisser et al., 2016]

Krull

[Krull et al., 2015]
Ours

Refinement X(ICP) X(ICP) X(ICP) X(ICP) X(HV)

Ape 76.2% 80.7% 81.4% 68.0% 80.2 %

Can 87.4% 88.5% 94.7% 87.9% 90.1%

Cat 52.2% 57.8% 55.2% 50.6% 61.2%

Driller 90.3% 94.7% 86.0% 91.2% 94.8%

Duck 77.7% 74.4% 79.7% 64.7% 77.6 %

Egg Box 72.2% 47.6% 65.5% 41.5% 72.9%

Glue 76.7% 73.8% 52.1% 65.3% 77.5%

Hole Puncher 91.4% 96.3% 95.5% 92.9% 81.8%

Average 78.0% 76.7% 76.3% 70.3% 79.5%

Figure 3.7: Visualizing LINEMO objects. Left: Cat; middle: Glue; right: Hole

Puncher.

that the performance of our method is particularly low on object Hole Puncher. From

Figure 3.7, we can see that the Hole Puncher object has large flat surfaces. Our pro-

posed method extracts local 3D geometry information from the object. However, when

only the flat surfaces are visible, there are no unique local features to extract, then in

keypoint hypotheses generation step, our method generates some non-focused keypoint

hypotheses, especially when nonflat parts are occluded by other objects, which makes it

difficult to access a good pose.
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Table 3.5: 6D Pose estimation accuracy on the YCB-V dataset. We use ADD-S AUC

metric to evaluate the methods. For refinement, ‘ICP’ means ICP refinement and ‘HV’

means hypothesis generation/verification refinement.

Method(RGB+DEPTH)
PoseCNN +

ICP [Xiang et al., 2017]

MCN

[Li et al., 2018]

DenseFusion

[Wang et al., 2019]
Ours

Refinement X(ICP) X(HV) X(HV) X(HV)

002_master_chef_can 95.8% 96.2% 96.4% 95.2%

003_cracker_box 91.8% 90.9 % 95.5% 89.1%

004_sugar_box 98.2% 95.3% 97.5% 96.0%

005_tomato_soup_can 94.5% 97.5% 94.6% 91.9%

006_mustard_bottle 98.4% 97.0% 97.2% 96.3%

007_tuna_fish_can 97.1% 95.1% 96.6% 97.0%

008_pudding_box 97.9% 94.5% 96.5% 96.5%

009_gelatin_box 98.8% 96.0% 98.1% 97.8%

010_potted_meat_can 92.8% 96.7% 91.3% 86.2%

011_banana 96.9% 94.4% 92.1% 94.3%

019_pitcher_base 97.8% 96.2% 97.1% 93.0%

021_bleach_cleanser 96.8% 95.4% 95.8% 93.5%

024_bowl 78.3% 82.0% 88.2% 82.8%

025_mug 95.1% 96.8% 97.1% 97.2%

035_power_drill 98.0% 93.1% 96.0% 91.1%

036_wood_block 90.5% 93.6% 89.7% 86.1%

037_scissors 92.2% 94.2% 95.2% 93.0%

040_large_marker 97.2% 95.4% 97.5% 97.0%

051_large_clamp 75.4% 93.3% 72.9% 96.1%

052_extra_large_clamp 65.3% 90.9% 69.8% 93.6%

061_foam_brick 97.1% 95.9% 92.5% 92.9%

Average 93.0% 94.3 % 93.1 % 93.2 %

Results on YCB-Video dataset. In Table 3.5, we compared our method with other

state-of-the-art methods [Li et al., 2018, Wang et al., 2019, Xiang et al., 2017]. We use

ADD-S AUC metrics. Our method achieves comparable results with the state-of-the-

art methods and only falls behind MCN [Li et al., 2018]. One possible reason is that
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Figure 3.8: Visualizing pose estimation results on YCB-Video dataset. White 3D

bounding boxes are the ground truth and colorful 3D bounding boxes represent our

results.

some objects in the YCB-Video dataset contain much useful texture (see Figure 3.8),

since we only use RGB image to locate the object, our method cannot utilize this kind

of information in the pose computing process. Another possible reason is that in the

YCB-Video dataset, some objects that contain large flat surfaces are the symmetrical-

box type, our method cannot efficiently handle objects in this type (see Section 3.4.5).

3.4.4 Running Time Analyse

In this section, we first analyse the time complexity of the proposed pipeline and then

report the running speed in our experimental setting. Assuming that there are in object

3D mesh model, NO points in the segmented point cloud, and the number of hypotheses

is N . For every point in the segmented point cloud, we need to calculate its distance to

the |M| points transformed by N hypothesis and find the closest distance, then the time

complexity can be defined by:

T = O(N(NO |M|2)) (3.5)

In our experiments, we set M = 1000, and N = 10K, given a 480 × 640

image with its corresponding depth image, our method runs at about 3 fps (with 10K

hypotheses) on a desktop with an Intel i7-4930K 3.4GHz CPU and a GTX 1080 Ti

GPU. Specifically, the 2D detector takes 10 ms for object location, and pose estimation
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for each bounding box takes a total of 230 ms ∼530 ms of which 30 ms for vector

prediction and 3D segmentation by PointPoseNet, and 200 ms ∼500 ms for hypotheses

generation and selection. In Table 3.6, we report the running speed of the proposed

method with different numbers of hypotheses and the corresponding performance on

the Occlusion LINEMOD dataset.

Table 3.6: Running time on the Occlusion LINEMOD dataset. The first column

is the number of the pose hypotheses. The last column is the average accuracy of all

objects in the Occlusion LINEMOD dataset.

Number Running Speed (fps) Hole Puncher Average

1000 15 17.3% 25.4%

2000 9 45.8% 58.4%

5000 5 66.2% 73.4%

10000 3 81.8% 79.5%

20000 1.3 89.1% 80.4%

3.4.5 Failure Cases

Although our method achieves state-of-the-art performance, we also observe failure

cases of our work. Our method has difficulty with objects with large flat surfaces, espe-

cially when they are occluded. One way to alleviate this problem is to increase the num-

ber of pose hypotheses, however, this can dramatically increase the running time (see

Table 3.6 for details). In Figure 3.9, we show failure examples on Occlusion LINEMOD

dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Failure cases. We show the output of each step of one failure case on

object ‘Hole Puncher’: a) object location, b) point cloud in the target region, c) point

cloud segmentation, d) vector prediction, e) keypoint hypotheses. (the black point is the

ground truth), f) pose estimation result. We can see that due to non-focused keypoint

hypotheses, the pose estimation result is not very good.

3.5 Conclusion

In this chapter, we introduce a novel deep learning pipeline that mainly consists of two

parts for 6D object pose estimation in 3D point clouds. In the first part, we train a

2D detector to fast locate the object region. In the second part, we train the proposed

network to regress point-wise unit vectors that point to the pre-defined 3D keypoints, i.e.

the corners of the 3D bounding box. Then these vectors are used to generate different

pose hypotheses for best pose selection. The main work of this thesis is focusing on

improving the ability of the second part, i.e. pose estimation part.
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In this chapter, we can get state-of-the-art performance from the pose estimation

part, however, as reported in Section 3.4.4, the running speed of the proposed pipeline is

very slow that is far away from the requirements of real-world application. To overcome

this issue, in the next chapter, we will describe how to design a real-time framework

based on the pipeline described in this chapter, and in chapter 5, we further extend the

proposed work to category-level pose estimation tasks.



Chapter Four

Embedding Vector Features for

Real-Time 6D Object Pose Estimation

4.1 Overview

In this chapter, we focus on improving the real-time performance of 6D object pose

estimation, which plays an essential role in augmented reality [Marchand et al., 2016,

Marder-Eppstein, 2016], and robotic manipulation [Tremblay et al., 2018, Zhu et al.,

2014]. As the low-cost depth data collection equipment is becoming more and more

popular, researchers pay more attention to RGB-D information, many compelling meth-

ods [Chen et al., 2020, Kehl et al., 2016, Li et al., 2018, Xiang et al., 2017] have been

proposed. These methods can achieve higher performance on benchmark datasets than

RGB-based methods, however, they are usually computation-intensive and thus cannot

meet the real-time requirement.

The reason why they are computation-intensive is that they cannot extract view-

point information from depth information effectively, thereby they need an extra step

to further process depth information that includes, post-refinement or hypothesis gen-

eration/verification. Although one can use the method proposed by [Krull et al., 2017]

to process a large number of hypotheses efficiently, their methods still cannot meet the
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real-time requirement.

To overcome this computation-intensive issue in RGB-D methods. First, we

analyse what causes the issue. The depth image contains translation and rotation in-

formation of the object relative to the camera coordinate. Previous methods processed

both information together. However, translation and rotation information tangle with

each other. It is hard to directly access accurate 6D pose from depth. Therefore, these

methods need the post-refinement or hypothesis generation/verification mechanism to

further extract 6D pose information, which leads to computation-intensive. To address

the issue, we choose to decouple the translation with rotation from the input data. Fur-

thermore, we find that compared to translation estimation, rotation estimation is diffi-

cult. To better extract viewpoint information from depth data, we propose to use the

novel embedding vector features.

Specifically, our network is built on [Qi et al., 2018] with three major novelties:

i) instead of locating the object point cloud by a frustum, we locate the object point

cloud by a 3D sphere, which can limit the 3D search range in a more compact space

(see Section 4.3.1 for details), ii) to estimate the rotation more accurate, we propose the

point-wise embedding vector features to effectively capture the viewpoint information

from the point cloud transformed from the depth image, and iii) we estimate the rotation

residual between predicted rotation and the ground truth. The rotation residual estimator

further boosts the pose estimation accuracy.

We evaluate our method on three 6D object pose estimation datasets, i.e. LINEMOD

[Hinterstoisser et al., 2012], YCB-Video [Xiang et al., 2017] and TUD-Light [Hodan

et al., 2018] datasets. Experimental results show that the proposed method achieves

state-of-the-art or comparable performance in terms of both accuracy and speed on these

datasets.

In summary, the contributions of this chapter are as follows:
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• We propose a novel real-time framework to estimate 6D object pose from RGB-

D data in a global to local (G2L) way. Due to efficient feature extraction, the

framework runs at over 20fps on a GTX 1080 Ti GPU, which is fast enough for

many applications.

• To better utilize viewpoint information, we propose an orientation-based point-

wise embedding vector features (EVF) mechanism.

• We propose a rotation residual estimator to estimate the residual between pre-

dicted rotation and ground truth, which further improves the accuracy of rotation

prediction.

4.2 Related Works

Most of the related works have been described in Chapter 2, in the following, we analyse

the works related to the proposed G2L pipeline.

4.2.1 Pose Estimation at One-stage

Given an image, previous methods aim to estimate the 6D pose, which includes 3D

position and orientation, at once. Conventional methods [Hinterstoisser et al., 2012,

Lepetit et al., 2005, Lowe, 1999] calculated 6D object pose by matching RGB features

between templates (or 3D object model) and test image. They treated the 6D pose

estimation as a classification task. However, these methods mainly utilized handcrafted

features that are not robust to background clutter or image variations [Peng et al., 2018,

Shin and Balasingham, 2017, Yuan et al., 2016]. To overcome this issue, many methods

began to use deep learning techniques that have been made huge progress in the image

field, in their algorithms. For example, Rad et. al. [Hu et al., 2019, Oberweger et al.,

2018, Peng et al., 2018, Rad and Lepetit, 2017, Rad et al., 2018, Tekin et al., 2018]
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employed CNNs to predict 2D keypoints (projected by the 3D bounding box of the

object 3D model). The estimated 2D keypoints contain both rotation information and

translation information, then these methods calculated the 6D pose from the estimated

2D keypoints with pre-defined 3D keypoints.

4.2.2 Pose Estimation with Decoupling

Different from the aforementioned methods, some other methods [Li et al., 2018, 2019,

Xiang et al., 2017] estimated the two terms, i.e. rotation term and translation term, of

6D pose separately. [Kehl et al., 2017] used one network to output the rotation and

translation. They discretized the rotation and translation space into classifiable bins.

Then they estimated the rotation and translation by a CNN-based classifier. [Li et al.,

2018, 2019, Xiang et al., 2017] employed different network branches for rotation and

translation. In [Li et al., 2019] the network estimated rotation and translation via 2D-

3D correspondences. In [Xiang et al., 2017] the rotation is estimated via quaternion

regression, and in [Li et al., 2018] the rotation and translation estimation are regarded as

a classification task. When depth information is available, [Li et al., 2018] added depth

as the fourth channel for the network. Our proposed method also estimates the rotation

and translation with different branches, but with the 3D point could input. It has been

shown that treating depth as a 2D image cannot fully take advantage of 3D geometric

information [Maturana and Scherer, 2015]. Therefore, our method can better extract

viewpoint information from the given depth data.

4.2.3 Iterative Pose Refinement

As mentioned in Section 2.3.1, to achieve better 6D pose estimation results, the ICP

algorithm is employed after the initial poses are predicted. However, ICP suffers from

the issue of local minima due to its calculation procedure. To overcome this issue, some
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methods [Li et al., 2018, Rad and Lepetit, 2017, Zakharov et al., 2019] refined the initial

pose based on image observation. They first map the 3D model of the target object with

the initially estimated pose, then they compared the rendered image with real-world

observation. They usually trained another network that takes the rendered 3D model

and real-world observation as input and outputs the final 6D pose.

In contrast, we propose a new rotation residual network to boost the rotation

estimation. With the new proposed residual network, we can get the rotation and pre-

dicted rotation residual parallelly, which saves the running time compared to iterative

pose refinement. In addition, our method can be easily extended to an iterative version

for further refinement, and the iterative version of our method does not need an extra

module or network (See Section 4.4.5 for details).

4.3 Global to Local Real-Time Pipeline

In this section, we will describe our framework in detail. In Figure 4.1, we show the

architecture of our G2L-Net that estimates the 6D object pose in three steps: global

localization, translation localization, and rotation localization.

In the global localization step, we try to complete these tasks: recognize and

locate the target object. In the translation localization step, we further access the more

precise position of the object based on the first step. Based on the first two steps, we

finally estimate rotation by the proposed point-wise embedding vector features and ro-

tation residual estimator. Since for a single step, the network can easily achieve good

performance, when combining these three steps, our proposed method achieve state-of-

the-art performance without the post-refinement component that is widely used in 6D

pose methods [Kehl et al., 2017, Rad and Lepetit, 2017, Xiang et al., 2017].
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Figure 4.1: Pipeline of the proposed G2L-Net. (a) For the RGB image, we use a

2D detector to detect the bounding box (bbox) of the target object and the object label,

which is used as one-hot features for the following networks. Also, we additionally

choose the maximum probability location in the class probability map (cpm) as the

sphere center (we transfer this 2D location to 3D with known camera parameters and

corresponding depth value), which is used to further reduce the 3D search space. (b)

Given the point clouds in the object sphere, we use translation localization networks

to perform 3D segmentation and translation residual prediction. Then we use the 3D

segmentation mask and the predicted translation to transfer the object point cloud into

a local coordinate. (c) In the rotation localization network, we first train the embedding

vector feature extractor and the top decoder (block A) to predict point-wise unit vectors

pointing to the keypoints for embedding vector feature extraction. Then we feed the

extracted features to decoders: the middle decoder (block B) directly outputs the rotation

prediction, and the bottom decoder (block C) outputs the residual between predicted

rotation and ground truth. k is the dimension of the output vector. Hollow “ + ” denotes

feature concatenation.
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4.3.1 Global Localization

In this step, we aim to limit the 3D search space of the object to a more tight space

in the global scene. There are three dimensions, x, y, z, to be limited. With the help

of a 2D detector, we can fast locate the x, y position of the target object: inspired by

[Qi et al., 2018] we train a state-of-the-art 2D CNN detector, YOLOv3 [Redmon and

Farhadi, 2018], to detect the object bounding box in RGB image and output object label.

However, in [Qi et al., 2018], they only use the 2D bounding box to generate frustum

proposals which can only reduce the 3D search space of two axes (X ,Y). The third axis

(Z) still has infinite possibilities.

To overcome this issue, we propose to employ a 3D sphere to further reduce the

3D search space in the third axis (z) (see Figure 4.2 for details). The center of the 3D

sphere [X, Y, Z] is transferred from the 2D location [x, y] that has the maximum value in

the class probability map with known camera matrix K and corresponding depth value

z: 
X

Y

Z

 = s ∗

(


1
fx

0 0

0 1
fy

0

0 0 1

 · (

x

y

1

−

ux

uy

0

)

 , (4.1)

where s is a scale factor that has the same value as z, fx, fy, ux and uz are parameters

in K.

The radius of this 3D sphere is the n times diameter of the detected object (set as

1 in our experiments). We only choose points in the intersection region of this compact

3D sphere and the frustum, which makes the learning task easier for the following steps.

Another possible way is to cut out a smaller frustum around the center point [X, Y, Z],

which is similar to the proposed 3D sphere.
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(a) (b)

Figure 4.2: Global 3D sphere. In the global localization step, we locate the object point

clouds by bounding box as well as a 3D sphere. (a) Locate the object point cloud by

bounding box. In this case, it can only locate the object in two-dimensional space, some

points can still be far away from the object on the third axis. (b) Locate the object point

cloud by the intersection region of the bounding box and the 3D sphere. All points lay

in a more compact space.

4.3.2 3D Point Cloud Segmentation and Translation Estimation

Although the extracted point cloud from the global localization step is tight, there are

still two issues that remain: 1) the point cloud in this 3D sphere contains both object

points and non-object points, and 2) the precise distance between the object and the

camera is still unknown. With these two issues, the network cannot estimate the pose

accurately.

For the first issue, we use PointNets [Qi et al., 2017,] to segment the object

point cloud from background point clouds. For the second issue, we train another tiny

PointNet to output the residual vector between the mean value T̄ of the segmented points

and object translation T. This residual can be used to calculate the translation of the

object. Then we employ the calculated translation vector to transfer the segmented point

cloud to a canonical space. With this step, we can remove the shift property of the point

cloud, which makes the rotation estimation task easier. An alternative way is to directly
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output the translation value of the object, however, due to the large displacements among

different poses, the network cannot converge easily in this fashion.

4.3.3 Rotation Estimation with Embedding Vector Features

We use PointNet as our main backbone. However, PointNet [Qi et al., 2017] directly

operates on points coordinate, which means they are sensitive to points shift [Lin et al.,

2020]. This makes directly estimating rotation from the point cloud difficult. To elim-

inate the impact of the points shift, we use the translation vector calculated from the

previous step to transfer the point cloud of the object to local canonical space. Thereby,

the viewpoint information is more evident and the PointNet can be free from the point

cloud shift. In this local space, the network can estimate the rotation easily and accu-

rately.

Embedding Vector Features

Theoretically, we need at least four different viewpoints to cover all parts of an object

(see Figure 4.3) in 3D space [Draim, 1987]. For the pose estimation task, we usually

have hundreds of different viewpoints for one object during training which should be

enough to access the accurate pose of the object. However, the previous methods [Qi

et al., 2018, Wang et al., 2019] still cannot get accurate pose results in real-time. One

main issue is that they cannot extract the viewpoint information effectively.

To effectively extract the viewpoint information from limited training examples,

inspired by the work described in Chapter 3, we propose the point-wise embedding vec-

tor features. Specifically, we design the rotation localization network architecture as

shown in Figure 4.5 to predict point-wise unit vectors pointing to keypoints (illustrated

in Figure 4.4). The keypoints are some pre-defined 3D points based on each 3D object

model. Two aspects need to be decided for the keypoints: number and location. A sim-
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Figure 4.3: Different viewpoints. For a 3D object, we need at least four viewpoints to

cover all the parts of the 3D object.

Figure 4.4: Point-wise vectors. Here we show point-wise vectors pointing to the green

keypoint. We train our network to predict such directional vectors. The color is decided

by the orientation of the vector. We map the angle of the vector relative to the three axes

to RGB space.

ple way is to use the 8 corners of the 3D bounding box of the object model as keypoints,

which is shown in Chapter 3, Figure 3.5 (a). This definition is widely used by many

CNN-based methods in 2D cases [Oberweger et al., 2018, Rad and Lepetit, 2017, Rad

et al., 2018, Tekin et al., 2018]. In our experiments, we also use this keypoints fashion,

and in the experimental part, we show that this fashion can get the best performance.

The rotation localization network consists of three blocks: A, B, and C (as shown

in Figure 4.5). We train block A with embedding vector feature extractor to predict the

unit vectors pointing to the keypoints. By training this block, the network learns to

extract point-wise embedding vector features from the input segmented point cloud.

Then we use block B to integrate the point-wise embedding vector features with the
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Figure 4.5: Architecture of the rotation localization network. In the training stage,

there are three blocks in the rotation localization network. We use block A to predict

the unit vectors pointing to the keypoints, the loss function of this block is shown in

Equation 4.3. By training this block via the embedding vector feature extractor, the

network can learn how to extract point-wise embedding vector features from the input

point cloud. Then we use block B to integrate the point-wise embedding vector features

with the output of block A to predict object rotation that is represented as the 3D co-

ordinates of 8 keypoints in our pipeline. The loss function of this block is described in

Equation 4.4. For rotation residual estimator block C, we use the Euclidean distance

(see Equation 4.5) between the predicted 3D keypoints position (output of block B) and

ground truth as ground truth. k ∈ R24 is the dimension of the output rotation vector.

Hollow “ + ” denotes feature concatenation.

output of block A to predict object rotation. The loss function of this block is the

mean square error between the predicted rotation and ground truth. For rotation residual

estimator block C, we use the Euclidean distance between the predicted 3D keypoints

position (output of block B) and ground truth as ground truth (see Section 4.3.3 for

details).

Compared to the global features used in [Qi et al., 2018], our new proposed EVF

can learn more discriminative features for pose estimation. In Figure 4.6, we show the
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Figure 4.6: Different feature fashion with T-SNE for visualization. The left image

is the T-SNE distribution for EVF of 50 point cloud examples. The right image is the

distribution for the global features of 50 point cloud examples.

T-SNE distribution of EVF and global features for randomly selected 50 point cloud

examples from the training set. From Figure 4.6, we can see that the distribution of

our EVF is well distributed, while some feature points are entangled with each other in

global feature distribution.

Different from other state-of-the-art methods [Chen et al., 2020, Peng et al.,

2018, Xiang et al., 2017], we adopt a multilayer perceptron (MLP) that takes point-

wise embedding vector features as input and outputs the rotation of the object (shown

in Figure 4.1). Please note, during inference, we use the rotation matrix to represent the

rotation, which is computed from the keypoint positions using the Kabsch algorithm.

Over the training process, as per the definition of point-wise vectors, we used the 3D

keypoint positions to represent rotation. In experiments, we have found that our pro-

posed method can make faster and more accurate predictions than other methods [Chen

et al., 2020, Peng et al., 2018, Xiang et al., 2017].
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Rotation Residual Estimator

To better utilize the viewpoint information from the point-wise embedding vector fea-

tures, we add an extra network branch (block C in Figure 4.5) to estimate the residual

between estimated rotation (block B in Figure 4.5) and ground truth. However, we do

not have the ground truth for this residual estimator. To address this problem, we train

this estimator in an online fashion. Assuming that the ground truth for block B of ro-

tation localization network is GTB and the output of block B is OTB, then the target

of our rotation residual estimator (block C) is the residual between GTB and OTB. As

the rotation network converges, it becomes harder to learn the residual. If the rotation

localization network fully exploits the embedding vector features, the rotation residual

estimator can be ignored. However, when the rotation network cannot fully exploit the

embedding vector features, the rotation residual estimator has a big impact on the final

results, we show this property of the rotation residual estimator in Figure 4.8 (b). Please

note, our proposed rotation residual estimator is different from the post-refinement mod-

ule in the previous state-of-the-art methods [Li et al., 2018, Wang et al., 2019, Xiang

et al., 2017]. Our proposed rotation residual estimator outputs rotation residual with

estimated rotation synchronously, which saves the running time.

Our rotation estimator and rotation residual estimator together estimate the 6D

pose of the object in a cascaded fashion. In [Dollár et al., 2010], the authors also esti-

mated the pose in a cascaded fashion, however, in essence, their method is an iterative

algorithm, our method output the rotation and corresponding residual at the same time.

4.4 Experiments

There are two parts in this experiments section. Firstly, we do ablation studies on key-

points selection schemes and empirically validate the three innovations introduced in
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our new frame on the LINEMOD dataset: 3D sphere (‘SP”), point-wise embedding

vector features (“EVF”) and rotation residual estimator (“RRE"). Then we test our

proposed G2L-Net on several benchmark datasets, i.e. LINEMOD, YCB-Video, and

TUD-L datasets. Our method achieves state-of-the-art performance on these datasets.

4.4.1 Implementation Details

We implement our framework using Pytorch. All the experiments are conducted on a

PC with Intel i7-4930K 3.4GHz CPU and GTX 1080 Ti GPU.

Our pipeline contains two different deep network architectures: CNN and multi-

layer perceptron (MLP). For the CNN part, we fine-tune the 2D detector, i.e. YOLOv3

[Redmon and Farhadi, 2018], which trained on the ImageNet [Deng et al., 2009] to

locate the 2D region of interest and calculate the 3D sphere. For the MLP part, i.e.

PointNets, we train the translation and rotation localization networks together. The

translation localization network performs two related tasks: 3D segmentation and trans-

lation residual estimation. For 3D segmentation, we use cross-entropy loss Lseg. For

translation residual estimation, the loss function is defined as:

Ltran =
∥∥∥∆T− ∆̃T

∥∥∥
2
, (4.2)

where ∆T = T− T̄ is the residual between the ground truth translation T and the mean

value T̄ of the segmented points, ∆̃T is the estimated translation residual.

The loss function of block A is defined as the mean square error between the

predicted and ground truth directional vectors:

LA =
1

KNO

K∑
k=1

∑
p∈O

‖ṽk(p)− vk(p)‖2 , (4.3)

where K is the number of 3D keypoints. ṽk(p) and vk(p) are the kth predicted vector

and the ground truth vector of the point p, respectively. NO denotes the number of object

points.
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For block B, we use the modified corner loss proposed in [Qi et al., 2018]:

LB =
1

8

8∑
k=1

∥∥∥pkeykR − p̃keykb

∥∥∥
2
, (4.4)

where pkeykR is kth keypoint transferred by the ground truth rotation R, p̃keykb is the output

of block B. For block C, the loss function is defined as:

LC =
1

8

8∑
k=1

∥∥∥[pkeykR − p̃keykb ]− p̃keykc

∥∥∥
2
, (4.5)

where p̃keykc is the output of block C.

We combine all the losses together to simultaneously optimize all networks:

L = Ltran + λ1Lseg + λ2LA + λ3LB + λ4LC , (4.6)

where λi = {0.01, 1, 0.001, 0.001}.

Gap Between Different Architectures

There is one issue when we use different network architectures to process color images

and depth images, these two architectures cannot seamlessly connect. For example, in

the test phase, the state-of-the-art methods [Chen et al., 2020,, Wang et al., 2019,] first

use the color image to generate a mask or bounding box to locate the corresponding

position of the depth image and then convert the cropped depth image into point cloud

for subsequent processing. However, in the training stage, the point cloud is generated

by the ground truth mask or bounding box. When we use the points under these boxes

(or masks), the generalization performance of the trained model will suffer. The reason

is that there exist some differences between the ground truth and prediction, however,

the previous method did not consider how to mitigate the differences, which may lead

to the overfitting issue of the trained model.

Although, there are some data augmentation techniques proposed and employed

in 3D tasks [Chen et al., 2020,, Choi et al., 2020, Qi et al., 2018, Shi et al., 2020], or 2D
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computer vision tasks [Redmon and Farhadi, 2018], they either focused on 3D tasks or

2D tasks, how to bridge the gap between 2D augmentation and 3D augmentation is still

an open problem. One possible solution is generating the data with various masks or

bounding boxes offline, while this strategy will significantly increase the storage burden.

Another way is to use the predicted results from the CNN for training, however, there

are two issues here. First, if the detection is failed, we cannot train the subsequent

networks. Second, the prediction of the CNN is fixed for a certain object, which cannot

cover the various scenarios in test scenes. Here we provide an efficient way to alleviate

this gap.

Fast Point-Wise Relabelling

From Figure 4.7, we can see that there are three valid regions for the ground truth

and augmented 2D boxes: intersection region (yellow), newly added region (blue), and

region (purple) outside the augmented box. Our task is to access the point-wise label in

the blue and yellow regions. In the yellow region, the points are labelled in the ground

truth bounding box, and the points in the blue region are the background. The points

in the purple region are abandoned after the augmented. It seems that we already know

the label of all points in the augmented region, however, the fact is that the points in

the augmented 2D box are transformed from the newly cropped depth region by the

augmented 2D box, the order of these points are different from the pre-labelled points

in the ground truth 2D box, which means we cannot find the corresponding label in

the known label sequence. Our solution is to label the yellow region and blue region

separately. First, we find the intersection region of the augmented and ground truth box

(yellow region shown in Figure 4.7). Then for the yellow region, we use the pre-defined

point label. The issue is how to efficiently detach the blue and yellow region in the

augmented box. Our method is to set the depth value in the yellow region as zero, then

for the transformed point cloud, the coordinate of z is zero. Via removing the points

with z zero, the rest points are located in the blue region. Finally, we label these points
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Figure 4.7: Relations between bounding boxes. Green 2D bounding box denotes

ground truth. The red bounding box represents the augmented box. The yellow region

is the intersection region of the two boxes; the purple region is the region in the ground

truth box but outside the intersection region; the blue region is the region that belongs

to the augmented box apart from the intersection region.

in the blue region as background points. Please refer Algorithm 1 for more details.

Algorithm 1: Online 2D Augmentation
Input: bboxgt, bboxaug, camera matrix K, depth image

Output: points and point-wise label in bboxaug

1. Find the intersection region of bboxgt and bboxaug;

2. Find the point and label in the intersection region: pointinter and

labelinter;

3. Set the depth value in the intersection region as zero;

4. Transfer the depth in the bboxaug to 3D point cloud: point3D;

5. Remove the zero value in the z coordinate of point3D to get pointrest;

6. Label the rest points of point3D as background points and store the label

in labelrest;

7. Concatenate pointrest and labelrest with pointinter and labelinter to get

new points and label: pointaug and labelaug

4.4.2 Datasets

We employ the LINEMOD, YCB-Video, and TUD-Light datasets to test the proposed

method. The details of these datasets are described in Chapter 2. However, all these
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Table 4.1: Ablation studies of different novelties on the LINEMOD dataset with

ADD(-S) metric. “SP" means 3D sphere, “EVF" means embedding vector features,

and “RRE" denotes rotation residual estimator.

Method SP EVF RRE Acc Speed(fps)

EXP1 × × × 93.4% 25

EXP2 X × × 95.8% 25

EXP3 X X × 98.4% 23

EXP4 X X X 98.7% 23

datasets do not contain the point-wise label. To train G2L-Net in a supervised fashion,

we adopt an automatic way to label each point of the point cloud. As described in

Section 2.4, we label each point in two steps. First, for the 3D model of an object,

we transform it into the camera coordinate using the corresponding ground truth. We

adopt the implementation provided by [Hodaň et al., 2016] for this process. Second, for

each point on the point cloud in the target region, we compute its nearest distance to the

transformed object model. If the distance is less than a value ε = 8mm, we label the

point as 1 (belonging to the object), otherwise 0.

4.4.3 Ablation Studies

Compared to the baseline method [Qi et al., 2018], our proposed method has three

novelties. First, we fast locate the object point clouds with a 3D sphere that is different

from the frustum method in [Qi et al., 2018]. Second, we use the proposed point-wise

embedding vector features to estimate the rotation of the point cloud, which can better

utilize the viewpoint information. Third, we propose a rotation residual estimator to

estimate the rotation residual between ground truth and predicted rotation. From Table

4.1, we can see that the proposed three improvements can boost performance.
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Table 4.2: Ablation studies of different keypoints parameters on the LINEMOD

dataset with ADD(-S) metric. BBX-8 means using the 8 corners of the 3D bounding

box as keypoints. FPS-K denotes K keypoints generated by the FPS algorithm.

Method BBX-8 FPS-4 FPS-8 FPS-12

Acc 98.7% 98.5% 98.4% 98.6%

Speed (fps) 23 23 23 23

We also compare the different keypoints selection schemes in Table 4.2. How-

ever, it shows that different keypoints selection schemes make little difference in the

final results. For simplicity, we use the 8 corners of the 3D bounding box as keypoints

in our experiments.

4.4.4 Generalization Performance

In this section, we evaluate the generalization performance of the proposed method

G2L-Net. We gradually reduce the size of training data to see how the performance

of the algorithm is affected by the LINEMOD dataset. From Figure 4.8 (a), we can

see that even with only 5% of the training data, which is 1/3 of the normal setting, the

performance (88.5%) is still comparable.

4.4.5 Comparison with State-of-the-Arts

In this section, we compare our method with the state-of-the-art pose estimation meth-

ods on two popular datasets: LINEMOD [Hinterstoisser et al., 2012] and YCB-Video

[Xiang et al., 2017] datasets. Both visual and quantitative results are provided.

6D Object Pose Estimation on LINEMOD: Same as other state-of-the-art methods,

we use 15% of each object sequence to train and the rest of the sequence to test on the
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(a)Training size and performance (b) Training epoch and performance

Figure 4.8: Performance on LINEMOD dataset. (a) Influence of training data size

using the ADD(-S) metric. When using the same training size, compared to Frustum-P

[Qi et al., 2018], our method improves the performance significantly. For simplicity,

here we provide ground truth 2D bounding box and randomly choose an object point as

3D sphere center for evaluation. (b) As the rotation localization network converges, the

impact of the rotation residual estimator (RRE) decreases.

Figure 4.9: Qualitative pose estimation results on the LINEMOD dataset. Green

3D bounding boxes denote ground truth. Blue 3D bounding boxes represent our results.

Our results match ground truth well.

LINEMOD dataset. In Table 4.3, we compare our method with state-of-the-art RGB

and RGB-D methods. The numbers in brackets are the results without post-refinement.
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Table 4.3: 6D pose estimation accuracy on the LINEMOD dataset. We use ADD

metric to evaluate the methods. For symmetric objects ‘Egg Box’ and ‘Glue’, we use

the ADD-S metric. Note that, we summarize the pose estimation results reported in the

original papers on the LINEMOD dataset. For refinement, ‘ICP’ means ICP refinement,

and ‘HV’ means hypothesis generation/verification refinement.

Method
PVNet

[Peng et al., 2018]

DeepIM

[Li et al., 2018]

DPOD

[Zakharov et al., 2019]

Frustum-P

[Qi et al., 2018]

Hinterstoisser

[Hinterstoisser et al., 2016]

DenseFusion

[Wang et al., 2019]

PointPoseNet

[Chen et al., 2020]
Ours

Input RGB RGB RGB RGB-D Depth RGB-D RGB-D RGB-D

Refinement × X (ICP) X(ICP )(×) × X(ICP) X(ICP )(×) X(HV) ×

Ape 43.6% 77.0% 87.7% (53.3%) 85.5% 98.5% 92.3% (79.5%) 97.9% 96.8%

Bench Vise 99.9% 97.5% 98.5% (95.3%) 93.2% 99.0 % 93.2%(84.2%) 99.6% 96.1%

Camera 86.9% 93.5 96.0% (90.4%) 90.0% 99.3% 94.4%(76.5%) 98.5% 98.2%

Can 95.5% 96.5% 99.7% (94.1%) 91.4% 98.7% 93.1%(86.6%) 99.4% 98.0%

Cat 79.3% 82.1% 94.7% (60.4%) 96.5% 99.9% 96.5%(88.8%) 99.3% 99.2%

Driller 96.4% 95.0% 98.8% (97.7%) 96.8% 93.4% 87.0%(77.7%) 97.5% 99.8%

Duck 52.6% 77.7% 86.3% (66.0%) 82.9% 98.2% 92.3%(76.3%) 96.1% 97.7%

Egg Box 99.2% 97.1% 99.9% (99.7%) 99.9% 98.8% 99.8%(99.9%) 97.9% 100%

Glue 95.7% 99.4% 96.8% (93.8%) 99.2% 75.4% 100% (99.4%) 100% 100%

Hole Puncher 81.9% 52.8% 86.9% (65.8%) 92.2% 98.1% 92.1%(79.0%) 97.9% 99.0%

Iron 98.9% 98.3% 100% (99.8%) 93.7% 98.3% 97.0% (92.1%) 99.4% 99.3%

Lamp 99.3% 97.5% 96.8% (88.1%) 98.2% 96.0% 95.3%(92.3%) 99.1% 99.5%

Phone 92.4% 87.7% 94.7% (74.2%) 94.2% 98.6% 92.8%(88.0%) 98.9% 98.9%

Speed(FPS) 25 5 33(40) 12 8 16(20) 4 23

Average 86.3% 88.6% 95.2% (83.0%) 93.4% 96.3 % 94.3 %(86.2%) 98.4% 98.7 %

Figure 4.10: Visualizing pose estimation results on YCB-Video. White 3D bounding

boxes are ground truth. Colorful 3D bounding boxes represent our results. For different

objects, our prediction matches ground truth well.

We use Frustum-P [Qi et al., 2018] as our baseline. We re-implement Frustum-P to

regress the 3D bounding box corners of the objects. From Table 4.3, we can see that our

method outperforms the baseline by 5.4% in ADD accuracy and runs 2 times faster than
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Table 4.4: 6D Pose estimation accuracy on the YCB-V dataset. We use the ADD-S

AUC metric to evaluate the methods. For refinement, ‘ICP’ means ICP refinement, and

‘HV’ means hypothesis generation/verification refinement.

Method
PoseCNN

[Xiang et al., 2017] + ICP

MCN

[Li et al., 2018]

DenseFusion

[Wang et al., 2019]

(no refinement)

Heatmap

[Oberweger et al., 2018]

PVNet

[Peng et al., 2018]

PointPoseNet

[Chen et al., 2020]
Ours

Input RGB+Depth RGB+Depth RGB+Depth RGB RGB RGB+Depth RGB+Depth

Refinement X(ICP) X(HV) X(ICP) × × X(HV) ×

002_master_chef_can 95.8% 96.2% 95.2% 69.0% - 95.2% 94.0%

003_cracker_box 91.8% 90.9 % 92.5% 80.2% - 89.1% 88.7%

004_sugar_box 98.2% 95.3% 95.1% 76.2% - 96.0% 96.0%

005_tomato_soup_can 94.5% 97.5% 93.7% 70.0% - 91.9% 86.4%

006_mustard_bottle 98.4% 97.0% 95.9% 84.8% - 96.3% 95.9%

007_tuna_fish_can 97.1% 95.1% 94.9% 49.4% - 97.0% 96.0%

008_pudding_box 97.9% 94.5% 94.7% 82.2% - 96.5% 93.5%

009_gelatin_box 98.8% 96.0% 95.8% 81.8% - 97.8% 96.8%

010_potted_meat_can 92.8% 96.7% 90.1% 66.2% - 86.2% 86.2%

011_banana 96.9% 94.4% 91.5% 52.9% - 94.3% 96.3%

019_pitcher_base 97.8% 96.2% 94.6% 69.9% - 93.0% 91.8%

021_bleach_cleanser 96.8% 95.4% 94.3% 73.3% - 93.5% 92.0%

024_bowl 78.3% 82.0% 86.6% 80.3% - 82.8% 86.7%

025_mug 95.1% 96.8% 95.5% 50.5% - 97.2% 95.4%

035_power_drill 98.0% 93.1% 92.4% 78.3% - 91.1% 95.2%

036_wood_block 90.5% 93.6% 85.5% 65.2% - 86.1% 86.2%

037_scissors 92.2% 94.2% 96.4% 28.2% - 93.0% 83.8%

040_large_marker 97.2% 95.4% 94.7% 48.2% - 97.0% 96.8%

051_large_clamp 75.4% 93.3% 71.6% 47.2% - 96.1% 94.4%

052_extra_large_clamp 65.3% 90.9% 69.0% 47.5% - 93.6% 92.3%

061_foam_brick 97.1% 95.9% 92.4% 85.6% - 92.9% 94.7%

Average 93.0% 94.3% 91.2% 66.1% 73.4% 93.2% 92.4%

Speed (fps) < 0.1 - 20 - 25 <2 21

Table 4.5: 6D Pose estimation accuracy on the TUD-Light dataset. We use the ADD

metric to evaluate the methods. “ITER_I” means iteration I times.

Method G2L G2L+ITER_1 G2L+ITER_2 G2L+ITER_4

Obj_001 91.5% 94% 94% 94.0%

Obj_002 82.5% 86.5% 88.1% 88.7%

Obj_003 86.5% 90% 92.5% 96.0%

Average 86.8% 90.2% 91.5% 92.4%

Speed (fps) 23 10 5 2

the baseline method. Compared to the method [Hinterstoisser et al., 2016] that used

depth information, our method outperforms it by 2.4% in ADD accuracy and runs about
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Figure 4.11: 2D detection results and iterative refinement. Green 2D bounding boxes

denote ground truth. Light green bounding boxes represent original prediction results,

and yellow bounding boxes are refinement results.

3 times faster than it. When compared with our previous method [Chen et al., 2020],

our method achieves better performance and faster speed. Although DPOD and PVNet

are faster than our method, they only took RGB images as input. When using depth

information, our method achieves the fastest inference speed. In Figure 4.9, we provide

a visual comparison of the predicted pose versus the ground truth pose.

6D Object Pose Estimation on YCB-Video: Different from the LIMEMOD dataset,

in the YCB-Video dataset, each frame may contain multiple target objects. Our method

can also estimate the 6D pose for multiple objects at a fast speed. Table 4.4 compares

our method with other state-of-the-art methods [Chen et al., 2020, Li et al., 2018, Wang

et al., 2019, Xiang et al., 2017] on YCB-Video dataset under ADD-S AUC metric.

From Table 4.4, we can see that our method achieves a comparable accuracy (92.4%)

and is the fastest one (21fps) among all comparisons. In Figure 4.10, we also provide

visualization results on this dataset.

6D Object Pose Estimation TUD-Light: During training, we use the data augmenta-

tion technique to do 2D box augmentation to cover the possible distribution of the output

distribution. This works well in datasets such as LINEMOD and YCB-Video that have

no significant lighting condition changes. However, when encounters significant light-

ing condition changes, the performance of the 2D detector will drop, which decreases

the accuracy of the following step. As aforementioned, TUD-Light contains different
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light conditions, which pose a huge challenge to our 2D detector part. To solve this,

we adapt our pipeline in an iterative way, which can significantly improve the results

(see Figure 4.11). The iterative version of our method is shown in Figure 4.12. From

Table 4.5, we can see that with the proposed refinement procedure, G2L achieves better

results.
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Figure 4.12: Iterative refinement. With known camera parameters K and the refined

pose, we can render the object 3D model to 2D space to access the 2D bounding box.

Then we feed this new 2D bounding box to the G2L part to calculate the new pose. We

can iterate this procedure until it converges.

4.4.6 Running Time

For a single object, given a 480 × 640 RGB-D image, our method runs at 23fps on a

PC environment (an Intel i7-4930K 3.4GHz CPU and one GTX 1080 Ti GPU). Specif-

ically, the 2D detector takes 11ms for object location, and the pose estimation part

that includes translation localization and rotation localization takes 32ms. The rotation

residual estimator takes less than 1ms.
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4.5 Conclusion

In this chapter, we propose a novel real-time 6D object pose estimation framework. Our

G2L-Net decouples the object pose estimation into three sub-tasks: global localization,

translation localization, and rotation localization with embedding vector features. In

global localization, we use a 3D sphere to constrain the 3D search space into a more

compact space than the 3D frustum. Then we perform 3D segmentation and object

translation estimation. We use the 3D segmentation mask and the estimated object

translation to transfer the object points into local coordinate space. Since viewpoint

information is more evident in this canonical space, our network can better capture

the viewpoint information with our proposed point-wise embedding vector features. In

addition, to fully utilize the viewpoint information, we add the rotation residual esti-

mator, which learns the residual between the estimated rotation and ground truth. In

experiments, we demonstrate that our method achieves state-of-the-art performance in

real-time.

Although our G2L-Net achieves state-of-the-art performance, there are some

limitations. First, the extraction of the embedding vector features is based on the corners

of the bounding box of the 3D object model, when the 3D object model of the object

is unavailable, the performance will suffer. Second, while our G2L-Net is robust to the

labelled data decrease, it cannot handle the case when the labelled data is unavailable

of the object. In the next chapter, we will describe how we address the aforementioned

limitations by extending our G2L-Net to category-level pose estimation tasks.



Chapter Five

Category-Level 6D Object Pose

Estimation with Vector-Based Rotation

Representation

5.1 Overview

In Chapter 3 and Chapter 4, we described our pose estimation methods at the instance

level, although the proposed methods achieved good performance, they still need a large

number of labelled data to train and cannot be easily extended to category-level pose

estimation tasks. To alleviate this issue, in this chapter, we report how we estimate the

object pose in category level with the proposed method.

In category-level pose estimation tasks, one major challenge is the intra-class

variation that includes object shape and color variation. Existing deep learning based

methods addressed this problem by mapping the different objects from the same cate-

gory into a uniform model/map via RGB features or RGB-D fusion features. For exam-

ple, Wang et al. [Wang et al., 2019] trained a modified Mask R-CNN [He et al., 2017] to

predict the normalized object coordinate space (NOCS) map of different objects based
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on RGB features and then computed the pose with observed depth and NOCS map by

Umeyama algorithm [Umeyama, 1991]. Chen et al. [Chen et al., 2020] proposed to

learn a canonical shape space (CASS) to tackle intra-class shape variations with RGB-

D fusion features [Wang et al., 2019]. Tian et al. [Tian et al., 2020] trained a network to

predict the NOCS map of different objects, with the uniform shape prior learned from

a shape collection in NOCS-Synthetic dataset [Wang et al., 2019] and RGB-D fusion

features [Wang et al., 2019].

Although these methods achieved state-of-the-art performance, there are still

two issues. Firstly, the benefits of using the RGB features or RGB-D fusion features for

category-level pose estimation are questionable. In [Vlach, 2016], Vlach et al. showed

that people focus more on shape than color when categorizing objects, as different ob-

jects in the same category have very different colors but stable shapes (shown in Figure

5.1). Thereby, the adoption of the RGB features for category-level pose estimation can

lead to low performance due to huge color variation in the test scene. To address this

issue, the previous methods employed a large synthetic dataset [Wang et al., 2019] to

increase the generalization performance of the methods. In contrast, to alleviate the

color variation, we merely use the RGB features for 2D detection, while using the shape

features learned from point cloud cropped in depth image for category-level pose esti-

mation.

Secondly, learning a representative uniform shape requires a large amount of

training data; therefore, the performance of these methods is not guaranteed with lim-

ited training examples. To overcome this issue, we propose to use 3D graph convolution

(3DGC) based autoencoder [Lin et al., 2020] to effectively learn the category-level pose

features via observed points reconstruction of different objects instead of uniform shape

mapping, and we propose a new vector-based rotation (VDR) representation that uses

two decoders to fully decode the learned category-level pose features. We further pro-

pose an online 3D data augmentation mechanism for data augmentation to reduce the

dependencies of labeled data.
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Figure 5.1: Stable shape and various colors. Top row: three mug instances randomly

chosen from the NOCS-REAL dataset. Bottom row: three mug instances randomly

cropped from the internet image search results (using the keyword ‘mug’). The color is

varied, while the shape is relatively stable.

To summarize, the main contributions of this paper are as follows:

• We propose a 3DGC-based autoencoder to reconstruct the observed points for

latent orientation feature learning and estimate category-level 6D object size and

pose. Due to the efficient category-level pose feature extraction, the framework

runs at 20 FPS on a GTX 1080Ti GPU.

• To fully decode the rotation information from the learned latent features, we de-

sign a new VDR representation. This new rotation representation also allows us

to naturally handle the circle symmetry object (in Section 5.3.3).

• Based on the shape similarity of intra-class objects, we propose a novel 3D defor-

mation mechanism to augment the training data.
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Figure 5.2: Architecture of FS-Net. The input of FS-Net is an RGB-D image. For

RGB channels, we use a 2D detector to detect the 2D location of the object, category

label ‘C’ (used for next tasks), and class probability map (cpm) (generate the 3D sphere

center via maximum probability location and camera parameters). With the detected

information and depth image, the points in a compact 3D sphere are generated. Given

the points in the 3D sphere, we first use the proposed 3D augmentation mechanism for

data augmentation. After that, we use a shape-based 3DGC autoencoder to perform ob-

served points reconstruction (OPR), as well as point cloud segmentation for orientation

latent feature learning. Then we decode the rotation information into two perpendicular

vectors from the latent features. Finally, we use a residual estimation network to predict

the translation and size residuals. ‘cate-sizes’ denotes the pre-calculated average sizes

of different categories, ‘k’ is the rotation vector dimension, and the hollow ‘+’ means

feature concatenation. Please note, the 3D augmentation mechanism and ground truth

bounding box (bbox_gt) are only deployed during training.
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5.2 Related Works

Related works about instance- and category-level 6D object pose estimation have been

reported in Chapter 2, in the following, we add the content close to the work in this

chapter.

5.2.1 Data Augmentation

In 3D object detection tasks [Chen et al., 2020,, Qi et al., 2018, Shi et al., 2020], online

data augmentation techniques such as translation, random flipping, shifting, scaling, and

rotation are applied to original point clouds for training data augmentation. However,

these operations cannot change the shape property of the object. Simply adopting these

operations on point clouds is unable to handle the shape variation problem in the 3D

task. To address this, [Choi et al., 2020] proposed part-aware augmentation that oper-

ates on the semantic parts of the 3D object with five manipulations: dropout, swap, mix,

sparing, and noise injection. However, how to decide the semantic parts is ambiguous.

In contrast, we propose a box-cage-based 3D data augmentation mechanism that gener-

ates the various shape variants (shown in Figure 5.6) and avoids semantic parts decision

procedure.

5.2.2 Rotation Representation

Widely used rotation representations, such as Euler angle representation, Quaternion

representation, and Axis-angle representation, suffer from discontinuous issue [Zhou

et al., 2019], which is not suitable for network learning. Although the R6D representa-

tion proposed in [Zhou et al., 2019] is free from the discontinuous issue, they took two

columns/row from the 3 × 3 matrix as their new representation, the geometry meaning

of this rotation representation is unclear. In contrast, our new VDR representation is
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defined based on two vectors, and each vector has a clear geometry meaning: up vector

and front vector.

5.3 Proposed Method

In this section, we describe the detailed architecture of FS-Net (shown in Figure 5.2).

Firstly, we use YOLOv3 [Redmon and Farhadi, 2018] to detect the object location with

RGB input. Secondly, we use 3DGC [Lin et al., 2020] autoencoder to perform 3D

segmentation and observed points reconstruction for the latent feature learning. Then

we propose the novel VDR representation to decode orientation information from the

learned latent features. Thirdly, we use PointNet [Qi et al., 2017] to estimate the trans-

lation and object size. Finally, to increase the generalization ability of FS-Net and save

storage space, we propose the box-cage-based 3D deformation for data augmentation.

5.3.1 Object Detection

Following our previous work[Chen et al., 2020], we train a YOLOv3 [Redmon and

Farhadi, 2018] to fast detect the object bounding box in RGB images, and output class

(category) labels. Then we adopt the 3D sphere to locate the point cloud of the target

object quickly. The 2D detection part provides a compact 3D learning space for the

following tasks. Different from other category-level 6D object pose estimation methods

[Chen et al., 2020, Tian et al., 2020, Wang et al., 2019] that needed semantic segmen-

tation masks, we only need object bounding boxes. Since object detection is faster and

easier than semantic segmentation [He et al., 2017, Redmon and Farhadi, 2018], the

detection speed of our method is faster than previous category-level pose estimation

methods.
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5.3.2 Shape-Based Network

The output points from object detection contain both object and background points. To

access the points that belong to the target object and calculate the rotation of the object,

we need a network that performs two tasks: 3D segmentation and rotation estimation.

Although many network architectures can directly process point cloud [Qi et al.,

2017,, Zhou and Tuzel, 2018], most of the architectures calculate on point coordinates,

which means their networks are sensitive to point clouds shift and size variation [Lin

et al., 2020]. This may decrease the pose estimation accuracy.

To tackle the point clouds shift issue, Frustum-PointNet [Qi et al., 2018] and

G2L-Net [Chen et al., 2020] employed the estimated translation to align the segmented

point clouds to local coordinate space. However, their methods cannot handle the intra-

class size variation.

To solve the point clouds shift and size variation problem, in this paper, we pro-

pose a 3DGC autoencoder to extract the point cloud shape features for segmentation

and rotation estimation. 3DGC is designed for point cloud classification and part seg-

mentation; our work shows that 3DGC can also be applied for category-level 6D pose

estimation tasks.

3D Graph Convolution

3DGC kernel consists of m unit vectors. The m kernel vectors are applied to the n

vectors generated by the center point with its n-nearest neighbors. Then, the convolution

value is the sum of the cosine similarity between m kernel vectors and the n-nearest

vectors. In a 2D convolution network, the trained network learned a weighted kernel

that has a high response with a matched RGB value, while the 3DGC network learned

the orientations of the m vectors in the kernel. The weighted 3DGC kernel has a high
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response with a matched 3D pattern, which is defined by the center point with its n-

nearest neighbors. For more details, please refer to [Lin et al., 2020].

Rotation-Aware Autoencoder

Based on the 3DGC, we design a 3DGC autoencoder for the estimation of category-

level object rotation. To extract the latent rotation features, we train the autoencoder

to reconstruct the observed points transformed from the observed depth region of the

target object. There are several advantages to this strategy: 1) the reconstruction of

observed points is view-based and symmetry invariant, 2) the reconstruction of observed

points is easier than that of a complete object model (shown in Table 5.3), and 3) more

representative latent features can be learned (shown in Table 5.2).

In [Sundermeyer et al., 2018, 2020], the authors reconstructed the input images

to observed views as well. However, the input and output of their models are 2D images

that are different from our 3D point cloud input and output. Furthermore, our network

architecture is also different from theirs. Our work shows that this strategy can also be

applied to point cloud reconstruction with a new architecture.

We utilize Chamfer Distance to train the autoencoder, the reconstruction loss

function Lrec is defined as:

Lrec =
∑
pi∈P

min
p̂i∈P̂
‖pi − p̂i‖2 +

∑
p̂i∈P̂

min
pi∈P
‖pi − p̂i‖2, (5.1)

where P and P̂ denote the ground truth point set and reconstructed point set, respec-

tively. pi and p̂i are the points in P and P̂ . With the help of 3D segmentation mask, we

only use the features extracted from the observed object points for reconstruction.

After the network convergence, the encoder learned the rotation-aware latent

features. Since the 3DGC is scale and shift-invariant, the observed points reconstruc-

tion enforces the autoencoder to learn the scale and shift-invariant orientation features
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under corresponding rotation. In the next subsection, we describe how we effectively

decode rotation information from the learned latent features with the proposed VDR

representation.

5.3.3 Vector-Based Decoupled Rotation Representation

In this section, we first propose a new rotation representation, and then we analyse the

properties of the proposed rotation representation.

As shown in Figure 5.3, we represent the rotation as two orthogonal vectors,

called Vector-based Decoupled Rotation (VDR). The two vectors are parallel with two

axes (up axis and front axis) of the object coordinate system. Then according to the

definition of rotation, it is easy to show that these two vectors can completely represent

the rotation information.

Y

z

Figure 5.3: Rotation represented by vectors. Left: The object rotation can be repre-

sented by two perpendicular vectors (green vector and red vector). Right: For circular

symmetry objects like the bottle, only the green(up) vector matters.

In the following, we provide the detailed analysis of the properties of the pro-

posed VDR representation.
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Decoupled Characteristic

Since the two vectors are orthogonal, the rotation information related to one of them is

independent to the other, which means that we can use one of them to recover partial

rotation information of the object. For example, in Figure 5.9, we use the green vector

to recover the rotation. We can see that the green boxes and blue boxes are aligned well

in the recovered vector orientation.

Given the latent features that contain rotation information, our task is to decode

the category-level rotation features. To achieve this, we utilize two decoders to extract

the rotation information in a decoupled fashion. The two decoders decode the rotation

information into the corresponding greed vector and red vector.

Each decoder only needs to extract the orientation information along the corre-

sponding vector, which is easier than the estimation of the complete rotation. Specifi-

cally, for each decoder, the output should be a vector with six variables: [vsx, v
s
y, v

s
z, v

e
x, v

e
y,

vez], where [vsx, v
s
y, v

s
z] is the start point of the predicted vector and [vex, v

e
y, v

e
z] is the end-

point of the predicted vector. Since the start point is always the origin, we only need to

estimate the endpoint of the vector. Then in the inference stage, we combine the output

from the two decoders with the origin to get a 3×3 matrix Ṽ . With matrix in the canon-

ical frame and the estimated matrix Ṽ , we can calculate the final pose via the Kabsch

algorithm. Since the Kabsch algorithm is based on singular value decomposition, we do

not require the two predicted vectors are completely orthogonal.

Although other rotation representations, such as Euler angle, Quaternion, and

Axis-angle, consist of several parts and each part has its particular meaning, the estima-

tion of different parts separately cannot achieve similar performance as the estimation

of the whole representation (shown in Table 5.7). One main reason is that the rotation

information contained in the sub-part of these representations is entangled with other

sub-parts.
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One evident advantage of this characteristic is that we can easily handle the

symmetry objects like the bottle, can, and bowl. Without loss of generality, we assume

that the green vector is along the symmetry axis; then we can simply abandon the other

vector while estimating the rotation to avoid rotation ambiguity.

Continuous Representation with Geometry Meaning

In [Zhou et al., 2019], Zhou et al. pointed out that due to the periodic property of rota-

tion angle, the conventional rotation representations, such as Euler angle representation,

Quaternion representation, and Axis-angle representation, have problems with conti-

nuity. To address this issue, Zhou et al. employed the first two columns as the new

R6D representation for rotation. Although their new R6D representation can avoid the

discontinuous problem, the geometry meaning of using such a representation is unclear.

In contrast, we cast the rotation information into 3D space with the help of two

vectors. Then we can access a new continuous vector-based representation for the rota-

tion that has a clear geometry meaning: one up vector and one front vector.

Point-Matching Variant

Point-Matching loss is a widely used loss for pose estimation that calculates the loss

based on ADD-(S) metric [Hinterstoisser et al., 2012]. In [Wang et al., 2021], Wang et

al. employed a new variant Point-Matching loss that accesses the loss only via rotation:

LPM =
1

|M|
∑
p∈M

‖Rp− R̃p‖2, (5.2)

where R̃ and R are the prediction and ground truth. |M| is the number of points.

p ∈M means the points belonging to the object 3D modelM.

However, there exists one issue here. As shown in Figure 5.4(a), when the rota-
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tion changes θ, the distance d can be formalized as:

d = 2r sin(
θ

2
) (5.3)

From the Eq. 5.3, we can see that the distance is determined by rotation angle

θ and the radius r of the peripheral circle. When the point is closer to the center of

rotation, the distance is shorter, which means the points away from the center are more

important to the loss value with given θ. However, the conventional Point-Matching

loss does not consider this imbalance problem.

The Point-Matching loss transformers the object 3D model with different rota-

tion matrices and calculates the distance between the two transformed models. It trans-

fers the rotation distance to the object point distance. Following this idea, we propose

to use our VDR representation for Point-Matching loss.

Since our new representation is vector-based, we cannot directly calculate the

loss by multiplying the VDR with the 3D model points of the object. Therefore, we use

the add operation to replace the multiplication in Eq. 5.3. Then we can also transfer the

vector distance to the object point distance.

As shown in Figure 5.4(b), we move the 3D object points to the directions

pointed by the rotation vectors. Then the new Point-Matching loss can be defined as:

LR = avgp∈M ‖p + vg − (p + v̂g)‖2

+ avgp∈M ‖p + vr − (p + v̂r)‖2

(5.4)

where v̂g and v̂r are the predicted vectors for the green and red vectors shown in Figure

5.3. vg and vr are the ground truth.

It is obvious that the new Point-Matching loss LR is equal to mean square error
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(MSE) loss between the prediction and ground truth VDR:

LR = avgp∈M ‖p + vg − (p + v̂g)‖2

+ avgp∈M ‖p + vr − (p + v̂r)‖2

= avgp∈M ‖p + vg − p− v̂g‖2

+ avgp∈M ‖p + vr − p− v̂r‖2

= avgp∈M ‖vg − v̂g‖2

+ avgp∈M ‖vr − v̂r‖2

= ‖vg − v̂g‖2 + ‖vr − v̂r‖2

(5.5)

That means with MSE loss, the proposed VDR representation can naturally

avoid the imbalance issue existing in Eq. 5.3.

5.3.4 Residual Prediction Network

As both translation and object size are related to point coordinates, inspired by [Chen

et al., 2020, Qi et al., 2018], we train a tiny PointNet [Qi et al., 2017] that takes seg-

mented point cloud as input. More concretely, the PointNet performs two tasks: 1)

estimating the residual between the translation ground truth and the mean value of the

segmented point cloud; 2) estimating the residual between object size and the mean

category size.

For size residual, we pre-calculate the mean size [Sx, Sy, Sz]
T of each category

by 
Sx

Sy

Sz

 =
1

N

N∑
i=1

[Six, S
i
y, S

i
z]
T , (5.6)

where N is the amount of the object in that category. Then for object o in that category

the ground truth [δox, δ
o
y, δ

o
z ]
T of the size residual estimation is calculated as:

[δox, δ
o
y, δ

o
z ]
T = [Sox, S

o
y , S

o
z ]
T − [Sx, Sy, Sz]

T . (5.7)
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(a) Point Matching [Wang et al., 2021] (b) Point Matching with VDR

Figure 5.4: Point-Matching variant in 2D case. Red point cloud arrow is the original

point cloud. Blue is the one transformed by the ground truth value. Green is transformed

by the estimated value. The left image describes the Point-Matching variant loss used in

[Wang et al., 2021] that only considers the rotation term. r is the radius of the peripheral

circle. d is the distance between the point in the blue point cloud transformed by ground

truth rotation R and the point in the green point cloud transformed by estimated rotation

R̃. θ is the rotation residual between estimated rotation and the ground truth. The right

image describes the Point-Matching variant based on our proposed VDR representation

where the point clouds are transformed by the orientation of the vectors.

We use MSE loss to predict both the translation and size residual. The total loss

function Lres is defined as: Lres = Ltra + Lsize, where Ltra and Lsize are sub-loss for

translation residual and size residual, respectively.

5.3.5 Data Augmentation: 3D Deformation Mechanism

One major issue in category-level 6D pose estimation is the intra-class shape variation.

The existing methods employed two large synthetic datasets, i.e., CAMERA275(NOCS-
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Synthetic) [Wang et al., 2019] and 3D model dataset [Chang et al., 2015] to learn this

variation. However, this strategy not only needs extra hardware resources but also in-

creases the (pre-)training time.

To alleviate the shape variation issue, based on the fact that the shapes of most

objects in the same category are similar [Vlach, 2016] (shown in Figure 5.1), we propose

an online 3D deformation mechanism for training data augmentation. We pre-define a

box-cage for each rigid object (shown in Figure 5.6). Each point is assigned to its nearest

surface of the cage; when we deform the surface, the corresponding points move as well.

Though box cage can be designed more refined, in experiments, we find that

with a simple box cage, i.e. 3D bounding box of the object, the generalization ability

of FS-Net is considerably improved (Table 5.2). Different to [Yifan et al., 2020], we

do not need an extra training process to obtain the box-cage of the object, and we do

not need target shape to learn the deformation operation either. Our mechanism can be

applied during training on the fly, which can save training time and storage space.

To make the deformation operation easier, we first transfer the points to the

canonical coordinate system and then perform 3D deformation. Finally, we transform

them to the global scene:

{P1,P2, · · · ,Pn} = R(D3D(RT(P − T))) + T, (5.8)

where P is the point set generated after the 2D detection step. R, T are the pose ground

truth. {P1,P2, · · · ,Pn} are the new generated training examples. D3D is 3D deforma-

tion that includes cage enlarging, shrinking, changing the area of some surfaces.

In the canonical coordinate system, every box edge is parallel to an axis (shown

in Figure 5.5). This property makes the 3D deformation operation easier. For example,

when we need to elongate/shrink the mug along Y axis by n times. We enlarge the

distance between surface SF1,2,3,4 and surface SF5,6,7,8 by n times. Since these two

surfaces are parallel to the XZ-plane, the x and z coordinates are unchanged. Then
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Figure 5.5: 3D object model. We assume that the centre of the 3D bounding box is

the origin point of the coordinate. The surface is represented as its four corners. For

example, the top surface is represented as SF1,2,3,4.

points coordinates are changed from [x, y, z] to [x, ny, z]. Then for different axes we can

use the following equations to access the points coordinates after operation:

[x, ny, z] = Dx([x, y, z]), (5.9)

[nx, y, z] = Dy([x, y, z]), (5.10)

[x, y, nz] = Dz([x, y, z]), (5.11)

where Dx,y,z is the elongate/shrink operation along corresponding axis.

Further, if the object is the mug or bowl, we may need to change the top or

bottom size to generate new shapes (shown in Figure 5.6). In this case, assuming that

we enlarge the bottom alongX axis by n times, then from bottom to top, the coordinates

are changed as:

xnew = (1 + (n− 1)
l

L
)x, (5.12)



5.3. PROPOSED METHOD 94

Table 5.1: Shape similarity measurement. We use Chamfer Distance(×10−4) to mea-

sure the shape similarity between the training set and testing set under circumstances

w/o 3D deformation and with 3D deformation augmentation.

Category w/o 3D deformation 3D deformation

Bottle 3.57 0.92

Bowl 0.78 0.64

Can 1.33 0.51

Camera 4.16 2.61

Laptop 2.67 1.95

Mug 0.67 0.53

Average 2.20 1.19

where l is the distance from a point to the top surface, i.e. SF1,2,3,4 in Figure 5.5. L is

the height of the object. Please note, all the edges are kept straight during deformation.

To show that the proposed 3D deformation mechanism can mitigate the shape

variation issue in the category-level pose estimation task, in Table 5.1, we report the

minimal Chamfer Distance (CD) error between objects model in the training set and

testing set. In the instance-level 6D object pose estimation task, since the same ob-

ject is shared in the training and testing set, the CD error is zero. However, in the

category-level 6D object pose estimation task, due to the shape variation, there exists a

gap between the object model in the training set and the object model in the testing set.

We use CD error to measure this gap. When using the proposed 3D deformation data

augmentation technique, the average CD error is reduced by 45.9%, from 2.20 (×10−4)

to 1.19 (×10−4). This means with proposed data augmentation, the similarity between

the training and testing set is significantly improved.
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Original shape Enlarge mouth Shrink mouthStretch along Y

Figure 5.6: 3D deformed examples. The new training examples can be generated by

enlarging, shrinking, or changing the area of some surfaces of the box cages. The top

row is the augmented examples of the ‘bowl’ with corresponding deformed box cages,

the bottom is for ‘cup’. In the bottom row, we also show the original 3D bounding boxes

(green color) before deformation.

5.4 Experiments

5.4.1 Datasets

We use the NOCS-REAL and the LINEMOD datasets to the proposed method. Please

refer to Chapter 2 for the detailed description of these datasets. However, the original

6D pose estimation datasets do not provide the point-wise label. To train the proposed

network in a supervised way, as described in Chapter 2, Section 2.5.4, we use an auto-

matic method to generate the label for each point of the point cloud.

5.4.2 Training Details

We use Pytorch [Paszke et al., 2017] to implement our pipeline. All experiments are

deployed on a PC with i7-4930K 3.4GHz CPU and GTX 1080Ti GPU.
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First, to locate the object in RGB images, we fine-tune the YOLOv3 pre-trained

on COCO dataset [Lin et al., 2014] with the training dataset. Then we jointly train the

3DGC autoencoder and residual estimation network. For 3D deformation augmentation,

we randomly choose the n in the range [0.8, 1.2] for Eq. 5.9-5.12 according to the

uniform distribution. The total loss function is defined as:

LShape = λsegLseg + λrecLrec + λRLR + λresLres, (5.13)

where λs are the balance parameters that are set to keep different loss values at the same

magnitude. We use cross entropy for 3D segmentation loss function Lseg.

We adopt Adam [Kingma and Ba, 2014] to optimize the FS-Net. The initial

learning rate is 0.001, and it is halved every 10 epochs. The maximum epoch is 50.

5.4.3 Evaluation Metrics

For the category-level pose estimation, we use the IoUx and n◦ m cm (see Section 2.6

in Chapter 2 for details) to measure different methods.

For instance-level pose estimation, we compare the performance of FS-Net with

other state-of-the-art instance-level methods using the ADD-(S) metric [Hinterstoisser

et al., 2012].

5.4.4 Ablation Studies

We use the G2L-Net [Chen et al., 2020] as the baseline method which extracted the la-

tent features for rotation estimation via point-wise orientated vector regression, and the

ground truth of rotation is the eight corners of the 3D bounding box with the correspond-

ing rotation. The loss function for rotation estimation is the MSE loss between predicted

3D coordinates and ground truth. Compared to baseline, our proposed work has three
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Table 5.2: Ablation studies on the NOCS-REAL dataset. We use two different met-

rics to measure performance. ‘3DGC’ means the 3D graph convolution. ‘OPR’ means

observed points reconstruction. ‘VDR’ represents the decoupled rotation mechanism.

‘DEF’ denotes the online 3D deformation. In the last row, the values in the bracket are

the performance for the reconstruction of the complete object model transformed by the

corresponding rotation. Please note, for the sake of the ablation studies, we provide the

ground truth 2D bounding box for different methods.

Method 3DGC DEF OPR VDR IoU50 10◦10 cm

G2L [Chen et al., 2020] × X × × 94.65% 31.0%

G2L+VDR × X × X 96.21% 47.81%

Med1 X X × × 97.98% 46.4%

Med2 X X X × 95.61% 46.8%

Med3 X X × X 97.34% 61.1%

Med4 X × X X 97.30% 58.2%

Med5 X X X X 98.04% (94.44%) 65.9% (58.0%)

novelties: a) view-based 3DGC autoencoder for observed point cloud reconstruction; b)

VDR representation; c) 3D augmentation mechanism.

In Table 5.2, we report the experimental results of three novelties on the NOCS-

REAL dataset. Comparing Med3 and Med5, we find that reconstruction of the observed

point cloud can learn better pose features. The performance of Med2 (Med1, G2L) and

Med5 (Med3, G2L+VDR) shows that the proposed VDR representation can effectively

extract the rotation information. The results of Med4 and Med5 demonstrate the effec-

tiveness of the 3D deformation mechanism, which increases the pose accuracy by 7.7%

in terms of 10◦10 cm metric. We also compare the different reconstruction choices: the

reconstruction of observed points and the complete object model with corresponding

rotation. From the last row of Table 5.2, we can see that the observed points recon-

struction can learn better rotation features. Overall, Table 5.2 shows that the proposed

novelties can improve the accuracy significantly.
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5.4.5 Generalization Performance

NOCS-REAL dataset provides 4.3k real images that cover various poses of different

objects in different categories for training. That means the category-level pose informa-

tion is rich in the training set. Thanks to the effective pose feature extraction, FS-Net

achieves state-of-the-art performance even with part of the real-world training data. We

randomly choose different percentages of the training set to train FS-Net and test it on

the whole testing set. Figure 5.7 shows that: 1) FS-Net is robust to the size of the

training dataset and has good category-level feature extraction ability. Even with 20%

of the training dataset, the FS-Net can still achieve state-of-the-art performance; 2) the

3D deformation mechanism significantly improves the robustness and performance of

FS-Net.

Figure 5.7: Generalization performance. With the given 2D bounding box and a

randomly chosen 3D sphere center, we show how the training set size affects the pose

estimation performance. ‘w/o DEF’ means no 3D deformation mechanism is adopted

during training.
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5.4.6 Evaluation of Reconstruction

Point cloud reconstruction has a close relationship with pose estimation performance.

We computed the Chamfer Distance of the reconstructed point cloud with the ground

truth point cloud and compared it with other reconstruction types used by other meth-

ods. From Table 5.3, we can see that the average reconstruction error of our method is

0.86, which is 72.9% and 18.9% lower than that of Shape-Prior [Tian et al., 2020] and

CASS [Chen et al., 2020], respectively. It shows that our method achieves better pose

estimation results via a simpler reconstruction task. i.e. observed points reconstruction

rather than complete object model reconstruction.

5.4.7 Comparison with State-of-the-Arts

Category-Level Pose Estimation

We compare FS-Net with NOCS [Wang et al., 2019], CASS [Chen et al., 2020], Shape-

Prior [Tian et al., 2020], and 6-PACK [Wang et al., 2020] on NOCS-REAL dataset in

Table 5.4. We can see that our proposed method outperforms the other state-of-the-art

methods on both accuracy and speed. Specifically, with 3D detection metric IoU50, our

FS-Net outperforms the previous best method, NOCS, by 11.7% and the running speed

is 4 times faster. In terms of 6D pose metric 5◦5 cm and 10◦10 cm, FS-Net outperforms

the CASS by the margins of 4.7% and 6.3%, respectively. FS-Net even outperforms

6-PACK under 3D detection metric IoU50, which is a 6D tracker and needs an initial 6D

pose and object size to start. See Figure 5.8 for more quantitative details.

The qualitative results are shown in Figure 5.9. Please note, we only use real-

world data (NOCS-REAL) to train our pose estimation part. Other methods use both

synthetic dataset (CAMERA) [Wang et al., 2019] and real-world data for training. The

number of training examples in the CAMERA is 275K, which is more than 60 times than
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Table 5.3: Reconstruction type comparison. The comparison is on the NOCS-REAL

dataset with the Chamfer Distance metric (×10−3). ‘Complete’ means the reconstruc-

tion of the complete 3D model. ‘Observed’ denotes the reconstruction of the observed

points.

Methods CASS [Chen et al., 2020] Shape-Prior [Tian et al., 2020] Ours

Complete Complete Observed

Bottle 0.75 3.44 1.2

Bowl 0.38 1.21 0.39

Camera 0.77 8.89 0.44

Can 0.42 1.56 0.62

Laptop 3.73 2.91 2.23

Mug 0.32 1.02 0.29

Average 1.06 3.17 0.86

that of NOCS-REAL (4.3K). It shows that FS-Net can efficiently extract the category-

level pose features with fewer data.

Table 5.4: Category-level performance on the NOCS-REAL dataset with different

metrics. We summarize the pose estimation results reported in the origin papers on the

NOCS-REAL dataset. ‘-’ means no results are reported under this metric.
Method IoU25 IoU50 IoU75 5◦5cm 10◦5 cm 10◦10 cm Speed(FPS)

NOCS [Wang et al., 2019] 84.9% 80.5% 30.1% 9.5 % 26.7% 26.7% 5

CASS [Chen et al., 2020] 84.2% 77.7% - 23.5 % 58.0% 58.3% -

Shape-Prior [Tian et al., 2020] 83.4% 77.3% 53.2% 21.4% 54.1% - 4

6-PACK [Wang et al., 2020] 94.2% - - 33.3 % - - 10

Ours(w/o 2D aug) 81.3% 77.6% 53.1% 26.5 % 47.4% 51.2% 20

Ours 95.1% 92.2% 63.5% 28.2 % 60.8% 64.6% 20
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Table 5.5: Instance-level comparison on the LINEMOD dataset. Our method

achieves a comparable performance with the state-of-the-arts in both speed and accu-

racy.

Method Input ADD-(S) Speed(FPS)

PVNet [Peng et al., 2018] RGB 86.3% 25

CDPN [Li et al., 2019] RGB 89.9% 33

DPOD [Zakharov et al., 2019] RGB 95.2% 33

G2L-Net [Chen et al., 2020] RGBD 98.7% 23

Densefusion[Wang et al., 2019] RGBD 94.3% 16

PVN3D [He et al., 2020] RGBD 99.4% 5

Ours RGBD 97.6% 20

Figure 5.8: Result on NOCS-REAL. The average precision of different thresholds

tested on NOCS-REAL dataset with 3D IoU, rotation, and translation error.

Instance-Level Pose Estimation

We compare the instance-level pose estimation results of FS-Net on the LINEMOD

dataset with other state-of-the-arts instance-level methods. From Table 5.5, we can see

that FS-Net achieves comparable results on both accuracy and speed. It shows that our

method can effectively extract both category-level and instance-level pose features.
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Figure 5.9: Qualitative results on NOCS-REAL dataset. The first row is the pose

and size estimation results. White 3D bounding boxes denote ground truth. Blue boxes

are the poses recovered by two estimated rotation vectors. The green boxes are the

poses recovered from the estimated green vector. Our results match the ground truth

well in both pose and size. The second row is the reconstructed observed points under

corresponding rotation, although the reconstructed points are not perfectly in line with

the target points, the basic orientation information is kept. The third row is the ground

truth of the observed points extracted from the depth map.

5.4.8 Rotation Representation Comparison

In this section, we compare the VDR representation with other rotation representations

on 6D object pose estimation tasks. For the sake of fair comparison and following

the experimental protocol in [Zhou et al., 2019], we adopt MSE loss for all rotation

representations.

For category-level pose estimation, we use the proposed FS-Net pipeline as the

baseline method. Same as [Zhou et al., 2019] we use the geodesic errors to measure

different rotation representations. We report the results on Table 5.6 and Figure 5.10.

For instance-level pose estimation, we use our previous work G2L-Net [Chen et al.,
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(a)Without Decoupled Training (b)Decoupled Training (c)Decoupled and w/o Decoupled

Figure 5.10: Comparison on category level. The curve of accuracy under different

rotation error thresholds with different training fashions on FS-Net. ‘3D’ means using

eight corners of the 3D bounding box as the rotation representation. ‘MA’ denotes using

rotation matrix. ‘EU’ means Euler angle. ‘QU’ means Quaternion. ‘AE’ means Axis-

angle. ‘6D’ meansR6D proposed in [Zhou et al., 2019]. ‘DR’ means the proposed VDR

representation.

(a) AUC of Rotation (b)AUC of ADD(S) (c) AUC of Translation Error

Figure 5.11: Comparison on instance level. We report the AUC of rotation error,

ADD(S) error, and translation estimation error for different representations based on

G2L-Net. ‘3D’ means using eight corners of the 3D bounding box as the rotation rep-

resentation. ‘MA’ denotes using rotation matrix. ‘EU’ means Euler angle. ‘QU’ means

Quaternion. ‘AE’ means Axis-angle. ‘6D’ means R6D proposed in [Zhou et al., 2019].

‘DR’ means the proposed VDR representation.



5.4. EXPERIMENTS 104

Table 5.6: Rotation error comparison. For different representations on category-level

6D object pose estimation, we provide the geodesic distance error of the rotation pre-

diction on the test set. The ‘RM’ means rotation mapping that proposed in [Pitteri et al.,

2019]. ‘w/o decoupled’ means training rotation as a whole term. ’decoupled’ means

training the rotation sub-terms with different network branches. ‘3D’ means using the

eight 3D corners to represent the rotation as in G2L[Chen et al., 2020]. ‘R6D’ is the

rotation representation proposed in [Zhou et al., 2019].
Category Bottle Bowl can camera laptop mug Average

w/o decoupled

FS-Net+3D+RM 6.14 5.08 4.38 25.55 7.06 19.42 11.27

FS-Net+Matrix+RM 8.94 4.84 5.33 41.87 17.70 32.92 18.60

FS-Net+Euler+RM 13.06 6.18 7.23 44.50 13.92 37.39 20.38

FS-Net+Quaternion+RM 7.24 5.07 5.81 41.94 13.08 27.47 16.77

FS-Net+Axis-angle+RM 10.30 6.96 10.33 41.00 16.07 31.41 19.35

FS-Net+R6D+RM 8.51 5.12 4.98 23.35 9.27 17.13 11.40

FS-Net+VDR+RM 5.88 4.92 4.40 24.72 7.96 19.12 11.17

decoupled

FS-Net+Axis-angle+RM 17.27 12.92 16.18 39.14 18.08 25.54 21.52

FS-Net+Euler+RM 17.46 16.91 19.05 52.58 40.30 55.81 33.68

FS-Net+Quaternion+RM 15.25 12.78 15.96 41.52 36.65 41.56 27.29

FS-Net+VDR [Chen et al., 2021] 5.71 3.85 3.97 21.59 8.00 13.77 9.48

2020] and the state-of-art method GDR-Net 1 [Wang et al., 2021] as baselines to test

different rotation representations. We summarize the results in Table 5.7 and Figure

5.11.

In Table 5.6, in the ‘decoupled’ part, we decouple the Axis-angle representation

as two sub-terms: vector part and the length of the vector; we decouple Euler represen-

tation as three angles, and we decouple Quaternion as four sub-terms which are four

variables in the Quaternion representation.

From Table 5.6, we can see that our new proposed VDR can achieve the best

performance for rotation estimation. Compared with the R6D rotation representation

1We use the code provide by GDR-Net to test different rotation representations: https://github.com/

THU-DA-6D-Pose-Group/GDR-Net

https://github.com/THU-DA-6D-Pose-Group/GDR-Net
https://github.com/THU-DA-6D-Pose-Group/GDR-Net
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Table 5.7: Rotation error for different representations on instance-level 6D pose

estimation. The best one is bolded. ‘PM’ means Point-Matching loss.
Method Ape Bench Vise Camera Can Cat Driller Duck Egg Box Glue Hole Puncher Iron Lamp Phone Average

G2L [Chen et al., 2020] 5.07 15.34 5.99 8.96 6.03 13.04 6.84 25.13 11.31 5.13 17.20 12.54 7.24 10.75

G2L+Matrix 7.86 11.73 8.28 7.76 9.14 9.83 8.58 17.02 13.36 6.69 8.26 13.49 9.87 10.14

G2L+Euler 42.79 54.67 42.33 53.59 43.07 46.06 39.41 52.32 49.91 51.66 45.03 53.87 48.20 47.92

G2L+Quaternion 13.29 17.36 12.35 18.70 12.42 14.54 15.28 22.52 17.32 13.52 16.91 20.70 16.26 16.24

G2L+Axis-angle 14.60 19.12 9.37 13.70 10.70 17.74 10.91 20.46 18.44 10.13 13.65 18.18 13.91 14.69

G2L+R6D[Zhou et al., 2019] 7.01 12.28 8.16 8.97 6.69 7.70 8.41 18.77 10.79 6.73 8.42 11.74 6.59 9.40

G2L+VDR 5.75 11.69 4.96 7.44 7.33 10.85 5.35 18.85 11.17 4.30 6.38 11.63 5.86 8.58

GDR-Net[Wang et al., 2021](+R6D(PM)) 2.11 1.85 1.81 1.82 2.02 2.02 1.98 1.72 2.37 1.96 2.33 1.87 2.30 2.01

GDR-Net+R6D 2.73 2.71 2.80 2.71 2.71 2.88 2.77 2.49 3.18 2.98 3.04 2.74 3.43 2.86

GDR-Net+VDR 1.83 1.82 1.67 1.73 1.80 1.83 1.83 1.58 1.95 1.88 2.04 1.68 2.19 1.83

proposed by Zhou et al. [Zhou et al., 2019], in instance-level pose estimation, our

rotation prediction error is 16.84% smaller than that of R6D representation. When com-

paring VDR representation in different training fashions, the decomposable property of

VDR can decrease the rotation error by 15.13%, from 11.17 to 9.48.

From Table 5.7, we find that the proposed VDR representation achieves the best

performance for both G2L-Net and GDR-Net. Compared with the R6D representation,

in G2L-Net, VDR decreases the rotation error from 9.4 to 8.58, a decrease of 8.72%.

In GDR-Net, we retrain the network with R6D(PM), R6D and VDR representation. All

other parameters are fixed except the rotation loss part. Compared with R6D(PM) and

R6D, our proposed VDR decreases the rotation error by 8.9% and 36%.

To see how the rotation representation can affect the translation estimation, based

on G2L-Net, we show the translation estimation error for different representations in

Figure 5.10.c. From Figure 5.10.c, we can see that the area under threshold curves of

translation for different rotation representations are almost overlapped with each other,

which means the rotation representation can merely affect the accuracy of rotation esti-

mation.
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5.4.9 Running Time

Given a 640× 480 RGB-D image, our FS-Net runs at 20 FPS on Intel i7-4930K CPU

and 1080Ti GPU. Specifically, the 2D detection takes about 10ms to proceed. The pose

and size estimation takes about 40ms.

5.5 Conclusion

In this chapter, we propose a fast category-level pose estimation method that runs at 20

FPS, which has the potential for real-time applications. The proposed method first ex-

tracts the latent features by the observed points reconstruction with a shape-based 3DGC

autoencoder. Then the category-level orientation features are decoded by the two de-

coders based on VDR representation. Finally, for translation and object size estimation,

we use the residual network to estimate them based on residual estimation. In addi-

tion, to increase the generalization ability of FS-Net and save the hardware source, we

design an online 3D deformation mechanism for training set augmentation. Extensive

experimental results demonstrate that FS-Net is less data-dependent and can achieve

state-of-the-art performance on category- and instance-level pose estimation in terms of

both accuracy and speed. The experimental results also show that the proposed VDR

representation is more suitable for the 6D object pose estimation tasks than other widely

used rotation representations. Please note, our 3D augmentation mechanism and VDR

representation are model-free, which can be easily plugged into other pose estimation

methods to boost the performance.



Chapter Six

Conclusion and Future Work

In this thesis, we report our works about 6D object pose estimation at the instance

and category level. In this chapter, we summarize the thesis and discuss the potential

research direction for future work.

6.1 Thesis Conclusion

In this thesis, we mainly have three findings. First, apart from RGB, the point cloud can

also be applied for 6DoF pose estimation in both instance level and category level.

In the first chapter, we give the overview of the whole thesis including thesis

motivation, the formulation and challenges of the research problems, and the proposed

methods with their contributions. To better understand the context of the proposed meth-

ods and the research problems, we summarize the related works, evaluation metrics, and

relevant datasets in Chapter two. Via addressing the problems in 6D object pose esti-

mation, this thesis produces three works that distribute in Chapters three, four, and five.

These three works have shown that:1) point cloud representation can also be used for

6D pose estimation;2)feature design is essential for 6D pose estimation tasks;3)different

rotation representations have a big influence on the 6D pose estimation results.
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Specifically, these three works use RGB information for object bounding box

detection and estimate 6D pose based on the point cloud representation. Then Chapter

3 describes how we extract point-wise features from the point cloud for the occlusion

scenario. In this chapter, we demonstrated that the features extracted from 3D space is

more suitable for 6D object pose estimation. However, the running speed of the pro-

posed method is slow due to inefficient feature extraction. In Chapter 4, we introduced

a novel embedding vector features for real-time instance-level 6D object pose estima-

tion. When comparing the 3D rotation estimation and 3D translation estimation, we

found that 3D rotation prediction is the hardest part of the 6D object pose estimation

task which is regarded as the viewpoint variation challenge in this field. Therefore, the

embedding vector features are proposed for better viewpoint information capture. With

the novel features, given an RGBD image, the proposed pipeline estimates the 6D pose

of the target object in real-time without post-refinement. While the method proposed in

Chapter 4 is fast and accurate, it needs a large number of labelled data to train, when the

annotation of the particular object is unavailable, the performance will drop. To address

this, we extend the method to category-level pose estimation, then Chapter 5 is about

how we address the intra-class variation challenges in category-level tasks with the pro-

posed 3D deformation mechanism and vector-based decoupled rotation representation.

In addition, we firstly use the 3D graph convolution kernel for category-level 6D object

pose estimation. With these novelties, the proposed framework estimates the size and

the 6D pose of the unseen object at a fast speed (20fps).

6.2 Future Work

Although the methods described in Chapters 3,4, and 5 can achieve state-of-the-art per-

formance, they still have several limitations. First, the pose estimation parts of the

methods are based on the 2D detection results from the 2D detector. Once the detection

failed, the pose estimation part could not work anymore. Second, the methods need
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a large number of labelled data to train. However, annotation 6D pose for the target

objects is harder than other computer vision tasks such as object detection and seg-

mentation. Third, we only test the proposed methods on benchmark datasets, how the

proposed methods perform on real-world applications is still unknown.

To address these limitations, our future work can focus on three points. First,

to make the method more robust, it should have the ability to directly detect the target

object from the point cloud. For this purpose, we can borrow some ideas from 3D

object detection methods [Misra et al., 2021, Shi et al., 2019] that can directly detect

3D objects from the point cloud. Second, to make the method less dependent on the

labelled data, we can apply the unsupervised methods [Chen et al., 2021, Mariotti et al.,

2021] or few-shot learning methodology [Wang et al., 2021,] to the 6D object pose

estimation field. However, for unsupervised learning, how to design the architecture

and the loss function of the network is an open question. For few-shot learning, the

main challenge is effectively extracting information from limited labelling data. Third,

to test the performance of the proposed methods, we can apply the method to some real-

world applications, such as robot grab [Wang et al., 2020] and virtual reality [Han et al.,

2020].
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