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Abstract 

Wound healing assessment and management are both important in ensuring a correct 

healing sequence. Most of these assessment techniques involve simple observation 

with the naked eye, which causes two main issues: the parameters assessed are highly 

subjective, and they rely upon the knowledge and experience of a trained medical 

professional. Any failure or incorrect management can result in further complications 

and even fatality, therefore quantitative wound assessment techniques are the next 

step towards a more accessible and reliable wound management strategy.  

Current research in this field is focused on utilising non-invasive imaging techniques, 

mainly within the visible and infrared (IR) range, to identify the biological and chemical 

changes during the wound healing process. Any abnormalities can then be identified 

earlier to aid in the correct diagnosis and treatment of the wound. Technologies that 

utilise concepts of non-contact imaging, such as optical imaging and spectroscopy can 

be used to obtain spatial and spectral maps of biomarkers, which provide valuable 

information on the wound (e.g., precursors to improper healing or delineate viable and 

necrotic tissue). This work extends this research further by investigating two different 

imaging modalities, Negative Contrast Imaging (NCI), along with Spatial Frequency 

Domain Imaging (SFDI) for the applications of point of care wound assessment. 

Intelligent data analysis algorithms, in the form of k-means clustering and principal 

component analysis were applied to spectral data, collected from wound biopsies as 

part of a previous study, highlighting the ability to diagnose wound healing status from 

the contrast of spectral information, which is not reliant upon a subjective clinical 

diagnosis. These methods provided the motivation for a larger cell culture trauma 
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study, in which the NCI was utilised to obtain spectral reflectance maps across a 2.5-

3.5 μm wavelength region of both healthy and traumatised human epidermal 

fibroblasts, induced via chemical assays. Using the same intelligent analysis tools, 

along with pre-processing methods including spectral derivatives, the resulting clusters 

can be utilised as a diagnostic tool for the assessment of cellular health and were 

quantifiable metrics were defined to compare the different analysis methods 

Near infrared (NIR) methodologies were also investigated, with two areas of SFDI 

identified for further advancements. Current SFDI acquisition and optical property 

parameter recovery is performed via a pixel-wise process, generating large amounts 

of data and a high computational burden for parameter recovery. Data reduction, 

through the application of Compressive Sensing (CS) at both the image acquisition 

and data analysis stages provided up to a 90% reduction in data, whilst maintaining 

<10% error in recovered absorption and reduced scattering optical maps. 

This pixel-wise methodology also affects the forward modelling and inverse problem 

(imaging), based upon the diffusion approximation or Monte-Carlo methods due to their 

pixel-independent nature. NIRFAST, an existing FEM based NIR modelling tool, was 

adapted to produce pixel-dependent forward modelling for heterogenic samples, 

providing a mechanism towards a pixel dependent SFDI image modelling and 

parameter recovery system. 
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CHAPTER 1 
 

1 Introduction 

1.1 Background 

Traumatic injuries, whether in military or civilian personnel, are a leading cause of 

mortality and morbidity worldwide, accounting for 11% of the global burden of 

disease [1]. Wound assessment and management from point of injury throughout 

the evolution of the wound are important to ensure appropriate healing with 

minimal scarring and to avoid an acute wound becoming chronic in nature. The 

majority of wound assessment techniques currently employed in clinical practice 

involve simple observation with the naked eye, which causes two main issues: the 

parameters assessed are highly subjective, and they rely upon the knowledge and 

experience of a trained medical professional. Any failure or incorrect management 

can result in further complications and even fatality [2]. Therefore, objective and 

quantitative wound assessment techniques, which are preferably non-invasive, would 

provide a step-change in realising a more accessible and reliable wound 

management strategy.  

Current research in this field is focused on utilising optical imaging techniques, mainly 

within the visible and near infrared (NIR) range, in order to identify the biological and 

chemical changes during the wound healing process, often in an non-invasive manner 

[3, 4]. Any abnormalities can then be identified earlier to aid in the correct diagnosis 

and treatment of the wound. Whilst these methodologies have offered some 

advancements in the field, limited work has been performed beyond this, particularly 
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from the NIR into the short-wave infrared (SWIR) and mid-wave infrared (MWIR) 

regions using non-invasive modalities. This work aims to address this through the 

development of state-of-the-art imaging methodologies for wound monitoring 

applications. Due to the interdisciplinary nature of this work, a grounding in the 

fundamental biology of wound healing is presented within this chapter, along with 

further motivations for this work. 

Chapter 2 then considers the background of optical imaging within biological tissue, 

before presenting a review of current imaging modalities within the field. Chapter 3 

presents novel analysis of data obtained from combat wound biopsies by the Defence 

Science Technology Laboratory (Dstl) to maximise the information gathered from 

precious clinical samples.  

Chapter 4 then applies these methods to cellular trauma data, collected using a 

negative contrast imaging (NCI) device. Full details of the cell trauma methodology 

are presented, alongside the use of a unique signal detection technique. 

Chapter 5 then considers the use of Spatial Frequency Domain Imaging (SFDI) for 

wound healing assessment, focusing upon the application of Compressive Sensing 

(CS) to the image analysis protocols. Chapter 6, the final results chapter, investigates 

the implementation of a finite element method (FEM) tool for numerical based 

simulations for SFDI, before overall conclusions and future work are discussed in 

Chapter 7. 

1.2 Thesis Contributions 

In this thesis, contributions are made to the wound healing field through the 

investigation of two imaging modalities, NCI and SFDI. Improvements to the data 
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analysis steps alongside novel applications of the techniques to biologically relevant 

data, in the form of wound biopsies, cell cultures, human hand imaging and tissue 

models have been made. Primarily, these can be broken down into key areas: 

• Intelligent data analysis, through the application of clustering and data 

reduction methodologies, of historical spectral data from wound biopsies 

demonstrates non-subjective methods for assessing wound healing state. 

This work demonstrates the additional information available across the full 

spectral region to aid in sample discrimination. These methods provide the 

basis for a further cell culture study. 

• To further assess the intelligent analysis methods developed, cell cultures of 

wound relevant human keratinocytes were utilised alongside a trauma 

inducing assess to create samples for novel NCI spectral analysis. Using the 

ground truth sample information demonstrates accurate clustering of healthy 

and traumatised samples using pre-processing in the form of background 

subtracted spectral derivative data. This further demonstrates the 

applicability of intelligent data analysis methods for non-subjective wound 

assessment. 

• Alongside this, SFDI methodologies were investigated for data reduction 

approaches, moving towards hyperspectral data collection. Here it was 

shown that compressive sensing, on biologically relevant samples of 

increased heterogeneity, were able to be reconstructed at both the image 

acquisition and data analysis stage using reduced data. 

• Additionally, through the adaptation of existing FEM based modelling tools, 

forwards modelling of samples of increasing heterogeneity were modelled for 
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pixel-dependent SFDI. This work advances the modelling capabilities for 

wound healing applications, moving towards improved parameter recovery 

and hyperspectral modelling 

Overall, this these contributes the foundations for improved wound healing 

methodologies and approaches to reduce the reliance upon subjectivity gold 

standard tools that rely upon trained and experience clinicians.  

1.3 Wound Healing 

The wound healing process is a natural and complex series of events that occurs 

following tissue injury. These events take place at both the cellular and molecular 

level, resulting in the resurfacing, reconstruction and overall restoration of the 

injured tissue [5]. Whilst this process is continual, it is often broken down into four 

key overlapping phases: Haemostasis, Inflammation, Proliferation and Maturation 

[6] (Figure 1.1). Each of these phases must occur for a wound to heal correctly, and 

any deviation from this can result in incomplete healing or lead to further 

complications such as infection. 
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Figure 1.1: The four stages of wound healing. Schematic representation of each of the 
four wound healing phases.1  

1.3.1 Haemostasis 

The first stage of the wound healing process is haemostasis. When wounding 

occurs, breaching the epidermis, and other structures depending on the severity of 

the wound, blood vessels are disrupted, and blood constituents are leaked from the 

wound.  From the very first moments of injury, molecular and cellular processes are 

initiated to form a clot in order to stem the loss of blood.  Initially, the blood vessels 

supplying the affected area constrict, in a process called vasoconstriction. This limits 

 
1 Figure created by Hollie Broadway-Stringer 
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the supply of blood and reduces the initial blood loss, which causes the wound to 

temporarily blanch. The revealed subendothelium causes platelet activation upon 

attachment to the exposed collagen. This then releases cytokines, chemokines and 

hormones, such as fibroblast growth factor (FGF), in order to control the bleeding 

whilst promoting clot formation. Alongside this, chemokines then attract 

inflammatory cells to the wounded area, in a process called chemotaxis, before the 

next phase begins. This stage is initiated immediately following injury and can last 

for up to 3 days, but it is primarily active within the first hour post-trauma [7].   

1.3.2 Inflammation 

Following the activation of platelets, inflammatory cells, including neutrophils, 

macrophages and lymphocytes migrate to the wounded area. Neutrophils are the 

predominate cells in the early stages of inflammation. They have many functions, 

with one of the most important being the removal of both invasive microbes and 

cellular debris. During this phase, clinical signs such as swelling, pain and redness 

occur. Macrophages initially release cytokines, to recruit additional leukocytes to 

increase the inflammatory response [8]. They also play a key role in the healing 

process by inducing and removing apoptotic cells. Lymphocytes are also an 

important cell type during this phase, although their role is not fully understood, but 

it is believed they are important for cellular immunity and antibody production [9, 

10]. Finally, macrophages undergo a phenotype transition that stimulates further cell 

types, initiating the next phase of wound healing [11]. 

1.3.3 Proliferation 

The proliferation phase overlaps with inflammatory phase, beginning within 3-5 days 

of injury in regular wound healing.  This phase can be split into different sub phases, 
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which do not occur in discrete time frames, but combine and overlap to contribute 

to the overall proliferation phase [12]. 

Epithelialisation 

Epithelialisation (or re-epithelialisation) is the process of the reformation of the 

epithelium over the wound surface. Epidermal cells, such as keratinocytes, from the 

edge of wounded surface migrate short distances to generate a protective layer 

between the underlying wound and the environment. As the cells migrate, along 

intracellular actin microfilaments, they dissect the wound. They secrete 

collagenases and plasminogen activators, which promote the production of collagen 

and plasmin respectively. This process continues, with the cells interacting with the 

underlying matrix, until the wound is fully covered with the new epithelial layer [13]. 

Fibroplasia 

Fibroplasia is the process in which new fibrous tissue is formed and begins between 

3-5 days post injury and can last up to 14 days. Fibroblast cells are a key component 

in the formation of this tissue. They are responsible for the production of a variety of 

the extracellular components, such as collagen, elastin and fibronectin. The most 

important of these is collagen, which is secreted into the extracellular space in the 

form of procollagen, that undergoes further interactions to form the final collagen 

filaments [5]. 

Angiogenesis 

Angiogenesis is the formation of new blood vessels, which is a vital process to help 

sustain the newly formed tissue. Macrophages produce angiogenic factors in 

response to low tissue oxygenation, which recruit additional endothelial cells. New 



8 
  

blood vessels are formed, increasing oxygenation and the delivery of healing factors 

to the wounded region [14]. 

Contraction 

Wound contraction is the final sub-phase of proliferation and involves the movement 

of wound edges to close the wound defect. This contraction is dependent upon the 

myofibroblast activity and connection with the extracellular matrix [15]. 

1.3.4 Maturation 

The remodelling stage is the final phase in the wound healing process. This stage 

typical occurs after 21 days of injury and can last for years. It is characterised by the 

continued degradation and deposition of collagen within the wound. Collagenases 

and matrix metalloproteinases aid in the removal of excess collagen, while inhibitors 

of metalloproteinases ensure a balance of between the removal of old collagen and 

formation of new fibres.  

Type III collagen is remodelled to type I collagen, cellular activity is reduced and the 

number of vessels is also reduced in the wound area [16]. 

Overall, the wound healing process involves the interaction of multiple cell types, 

each performing different, and often multiple roles in a multiphase process.  The 

complexity of this process creates many diagnostic problems, with improper healing 

likely at any stage, and that can be attributed to multiple factors. A visual 

representation of the wound healing timeline is shown Figure 1.2, with approximate 

duration for each phase and the overlapping that occurs also represented. This 

provides an estimation of the wound healing time scale, which is dependent on a 
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variety of additional factors such as the wound severity, patient age along with any 

underlying health conditions. 

 

Figure 1.2: Wound healing timeline. The approximate duration of each of the four phases 
of wound healing is shown across the full wound healing timeline. The overlapping of 
phases is also represented.  

1.4 Wound Healing Issues 

With the high complexity and multistage nature of the wound healing process, there 

are many reasons how, and why, incorrect wound healing can occur. These factors 

can be split into two categories, local and systemic (Table 1.1). 
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Local Factors Systematic Factors 

Oxygenation 

Infection 

Foreign body 

Venous sufficiency 

Age and Gender 

Sex hormones 

Stress 

Ischemia 

Diseases: Diabetes, Keloids, 

Fibrosis, Hereditary healing 

disorders, Jaundice, Uremia 

Obesity 

Medications 

Alcoholism and smoking 

Immunocompromised 

conditions 

Nutrition 

Table 1.1: Factors affecting wound healing. 

These factors can be involved singularly or simultaneously and can affect any of the 

four healing phases. Wound healing statistics show that, in the year 2017/18, wound 

management cost the NHS approximately £8.3 billion [17],  with non-healing wounds 

affecting between 3-6 million people in the US [18]. 

1.5 Clinical Wound Assessment 

Despite the significant cost of wound management, in both the NHS and worldwide, 

clinical wound assessment has changed very little in the last few decades. Wound 

assessment involves the identification and collection of information about the patient 

and how the wound occurred. Continued assessment of the wound is required 

throughout the healing process to identify any changes.  Within the UK, initial 

assessment is commonly undertaken by a clinician, with follow up assessment 

completed by nurses, or other health care professionals. This highlights one of the 
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main issues with the current assessment methods, the introduction of subjectivity 

from different assessors [2]. 

To the author’s knowledge, there is no standardised assessment tool for generic 

wounds. Assessment tools do exist for specific wound types however, such as the 

Bates-Jensen wound assessment tool, designed for pressure ulcers. This is a good 

example of the current gold standard method for wound assessment. The test 

consists of the measurement of 13 wound components independently, with a score 

between one and five given for each component.  The components include clearly 

measurable values, such as wound size and epithelialisation coverage, but also 

many subjective measures including exudate amount (none, scant, small, moderate 

or large), as well as exudate type and necrotic tissue type. The scores are then 

totalled and recorded on a weekly basis, in order to track the wound healing process 

[19]. The full assessment tool is available in Appendix A.1. Despite some clear 

guidelines, assessment tools like this only increase the subjectivity further, with the 

assessment commonly completed by different practitioners with varying levels of 

training and experience. 

1.6 Military Wounds and Assessment 

The previous text highlights the general outline of wound healing difficulties and 

clinical assessments; however, special consideration must be given to wounds from 

the battlefield. Trauma sustained during combat provides some unique medical 

challenges, largely associated with the mechanism and severity of injury, and the 

environment and logistical context in which injuries are managed. The recent 

conflicts in Iraq and Afghanistan saw the development of allied post hoc trauma care 

to a point of capability never before achieved in war [20]. The mechanism of injury 
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produced by military munitions often generates injuries of a greater number and of 

a far higher severity than the relatively low energy mechanisms of, for example, a 

fall from height or a motor vehicle collision. Injuries often involve the loss of a large 

volume of tissue which may include traumatic amputation of more than one limb. 

Combat wounds are highly contaminated with fragment debris, clothing, soil, fungal 

spores, and foreign bacteria. The wounds also exhibit high levels of exudate and 

are prone to fungal and bacterial injections. 

These unique challenges are then translated further during the assessment and 

management stage. Initial assessments are often performed by battlefield medics 

or trained soldiers, who all receive a basic training in wound management at the first 

instance [21]. Patients are then transferred through a series of dedicated medical 

facilities, generally of increasing sophistication, before final evacuation to a firm 

base. For the recent operations in Afghanistan this was the Queen Elizabeth 

hospital in Birmingham. The Operational Patient Care Pathway (OPCP) details how 

injured personnel should be managed from point of wounding up until evacuation to 

firm base when performing joint medical support on NATO operations [22]. The 

precise timelines and nature of this pathway may change depending on the location 

and environment of combat. Some of the current UK Defence Medical research 

requirements are geared towards consideration of a more complex and protracted 

OPCP than experienced in the conflict in Afghanistan. A cartoon depicting an 

example of this more complex OPCP can be seen in Figure 1.3 [23]. Regardless of 

the precise nature of the OPCP injured personnel will be subject to multiple wound 

assessments, in both sterile and non-sterile environments, further increasing the 

subjectivity of current wound assessment techniques.  In an attempt to reduce some 
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of this subjectivity, simple digital photography is used by Defence Medical Services 

(DMS) during its wound management procedure. Images are taken at a variety of 

different stages, including during dressing changes. This allows the nurse/clinician 

to make independent comparisons of any progress made, with the previous 

assessment report providing additional information, opposed to the only source. 

This method has also been transferred to the field hospital using telemedicine, with 

consultations between the DMS and on-site clinicians common [24]. This technology 

has been taken one step further, with the use of 3D imaging within the clinic. These 

images offer additional details on wound topography and depth, with accompanying 

software that is able to accurately calculation wound area and volume [25]. 
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Figure 1.3: Operational Patient Care Pathway (OPCP). The main operational stages for 
a modern battlefield injury. This figure has been replicated from [23].  

1.7 Wound Debridement 

Whilst some wounds do heal naturally following the previously described four stage 

process, more complex wounds, such as those experienced within a military setting, 

require wound management to promote adequate healing. The main surgical 

intervention technique applied to wounds, particularly those of a more severe, 

complex nature, is wound debridement.  This is the first in a four step general 

process, known as DIME: Debridement, Inflammation management, Moisture 

control, and Environmental and Epithelialisation assessment [26]. Wound 

debridement is the removal of dead tissue, scar tissue, debris and any other material 

which will prevent regular healing. A clinician will assess a wound before any 

intervention is made, along with a surgical consult, to determine the boundaries for 
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the debridement. Multiple wound debridement’s can occur on the same wound, with 

the continual assessment of the wound and surrounding tissue vital to ensure this 

step is not taken unnecessarily. Again, the designation of healthy tissue and that 

which is to be removed during debridement is performed in a subjective manner, 

whilst staining of wounds is possible [27], this is an invasive technique and cases of 

adverse reactions to the chemical dye have been reported, alongside impairments 

to the overall wound healing process [28, 29]. 

The boundaries of healthy/necrotic tissue occur at the cellular level, further 

compounding the issue of accurately identifying the correct tissue to remove. The 

removal of excess healthy tissue can further delay the wound healing process, whilst 

the failure to successfully debride the wound fully can result in infection with further 

wound healing complications. These issues are amplified in a military setting, with 

complex wounds, and further tissue loss from larger wounds. The magnitude of 

primary and secondary tissue loss demands novel reconstructive approaches and 

comprehensive programmes of functional rehabilitation [30]. 

1.8 Conclusion 

The biological and chemical process for a full wounding pathway is complex, highly 

integrated, and subject to issues at any stages. Whilst the individual stages are 

understood, there has been limited improvements in the wound healing assessment 

methodologies. Current gold standard wound assessments are based upon visual 

observation throughout the healing process, performed by a variety of medical 

professionals with different levels of experience and training. This introduces the 

issues with the subjective form of opinions of varying wound assessors, and the 

subjectivity of the parameters themselves. These issues are compounded when 
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considering wounds from a military setting, due to both the complex logistical 

pathway and the severity and additional complications arising of the chronic 

wounds. 

NIR imaging has been shown to address these issues, with multi-parameter 

assessment possible, using non-invasive, portable and robust methodologies, 

demonstrating the ability to utilise and advance these technologies for a point of 

care wound assessment tool. This chapter has shown the biological motivation for 

this work, whilst also introducing the background problem itself. The following 

chapter will provide a fundamental overview of imaging within biological tissues, 

before reviewing current imaging modalities that are being applied to the field of 

wound assessment.  
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Chapter 2 
 

2 Wound assessment imaging technologies 

Traditional wound assessment techniques, as discussed in section 1.5, rely heavily 

upon visual observation by trained and experienced clinicians. New technologies 

are currently in development to aid in this process, focusing on a wide variety of 

imaging techniques, including those in the visible and infrared (IR) wavelength 

regions. These techniques aim to provide further information on the wound 

characteristics, including quantification of oxygenation, haemoglobin and other 

wound relevant markers, such as lipid concentration and cytochrome-c-oxidase. 

With a better quantification of wound parameters, more accurate and objective 

assessments can be made, preventing unnecessary surgery, excessive tissue loss 

with a potential of saving lives. 

Imaging methods collect information regarding the properties of the skin, wound bed 

and any other objects/tissue within a wounded area. These are analysed and 

interpreted, using intelligent data analysis methods, in order to assess overall wound 

severity, as well as wound healing potential and progress. These imaging 

techniques cover a broad range of wound types, with a large proportion focused on 

burns. Despite this initial focus area, these technologies are applicable to different 

wound types, with factors such as depth, size, vascularisation, and hydration all key 

to healing. These methods utilise the optical properties of soft tissue, which weakly 

absorb and highly scatter NIR light. This allows for a deeper interrogation, as 

compared to the ultraviolet (UV) and optical range. 
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2.1 Imaging biological tissue 

In order to understand the requirements and challenges for imaging within biological 

tissues, the fundamentals of light interaction within the diffuse region of the 

electromagnetic spectrum must be discussed. Within this region, photon interaction 

is dominated by two principal effects, absorption, and scattering, which will be 

discussed further. The first interactions of light with tissue, regarding reflection and 

refraction will also be presented, to provide a thorough overview of tissue-light 

interactions.  

The elementary particle used to quantise energy from the electromagnetic spectrum 

is called a photon. It is often described as a ‘packet’ of energy with its interactions 

at the atomic level key to the previously mentioned effects. A single photons energy, 

E, is dependent on its frequency, f, or wavelength, λ, as described by the Planck-

Einstein relation shown in Equation 2.1. 

𝐸 = ℎ𝑓 =  
ℎ𝑐

𝜆
,     (2.1) 

where c is the speed of light in vacuum and h is Planck’s constant [31]. When 

photons interact with biological tissue, the first phenomena occur at the tissue 

boundary. When the incident photon beam enters the biological tissue, the beam is 

either refracted or reflected, due to the differing refractive indices between mediums. 

This refractive index defines the speed at which the beams travels through any given 

media and is defined as the ratio between c and the speed of light within the medium 

[32]. Figure 2.1 depicts these interactions, between two separate media of refractive 

indices n1 and n2. 
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Figure 2.1: Reflection and refraction schematic. An incident light beam, propagating 
through a medium with refractive index n1 at an angle θ1 to the normal. The beam is 
reflected from the medium interface at the same angle, and/or refracted into the second 
medium, at an angle θ2, determined using Snell’s Law (Equation 2.2). 

At this boundary, part of the beam is reflected at an angle θ1 to the normal, equal to 

the incident angle. This reflection is also known as specular reflection. The 

remaining beam propagates through to the second medium where it undergoes 

refraction. This occurs due to the changes in both the speed and direction of the 

propagating beam, with the new propagation angle, θ2, determined using Snell’s law 

[33]: 

𝑛1𝑠𝑖𝑛 𝜃1 = 𝑛2𝑠𝑖𝑛 𝜃2.    (2.2) 

2.1.1 Absorption 

Once an incident photon beam has propagated into the tissue, whose energy is not 

high enough to eject or ionise, the energy can be transferred to an electron within a 

molecule inside the medium. This absorption of the energy raises the electrons 

energy level, moving it to a higher state. As this beam travels through the medium, 
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the probability of a given photon being absorbed is defined by the absorption 

coefficient, μa. 

 

Figure 2.2: Absorption schematic. 

As the beam attenuates through the medium, the resulting loss in intensity, in a 

purely absorbing medium, can be defined using the Lambert-Bouger law [34]: 

𝐼 =  𝐼0𝑒−𝜇𝑎𝐿,     (2.3) 

where, I0 is the incident light intensity, L, the pathlength and, I, the residual intensity. 

This is represented with the schematic shown in Figure 2.2 with the exponential 

decay of the Lambert-Bouguer law also shown. The absorption coefficient is 

dependent upon the medium’s chromophore concentrations through the Beer-

Lambert law [35]:   

𝜇𝑎(𝜆) =  ∑ 𝜀𝑖(𝜆)𝑐𝑖
𝑛
𝑖=1 ,        (2.4) 

where, within a given medium containing i chromophores, ε is the wavelength 

dependent excitation coefficient and 𝑐𝑖 is the chromophore concentrations. The 
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excited electron will also return to its ground state, through processes including 

fluorescence, where a photon of energy equal to the difference in ground and 

excited state is realised from the molecule, which will be discussed later within this 

chapter. 

2.1.2 Scattering 

Within biological tissue, light propagation in the visible-MWIR range is described as 

diffuse, which is where scattering is the dominant interaction. When a photon 

changes direction due to interaction with a particle within the medium, the photon 

will scatter with no energy transferred (elastic) or a small transfer (inelastic) due to 

the differences in refractive index between the particle and medium background. 

Inelastic scattering is the basis for Raman spectroscopy (2.2.8), however these 

events are rare in biological tissue within the visible and NIR ranges. When the size 

of the scattering particle is comparable to the photon wavelength, as is the case with 

vis-NIR light and many biological constituents (cell membrane, nucleus, and 

mitochondria), elastic scattering occurs [36]. As with absorption, the probability of a 

scattering event can be defined using a single coefficient, μs, the scattering 

coefficient.    
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Figure 2.3: Scattering schematic. A: Scattering through a medium. B: Single scattering 

event.  

The photons can scatter in both a forward or backward direction, with multiple 

scattering events possible. Assuming a scattering only medium, as shown in Figure 

2.3 A, photons which scatters and transmit through the sample, contributing to I, the 

reduced transmitted intensity, via the following exponential relationship: 

𝐼 =  𝐼0𝑒−𝜇𝑠𝐿.    (2.5) 

Those photons that do not propagate through the length of the tissue can scatter 

back out of the medium, contributing to the diffuse reflectance. Whilst this coefficient 

contains information of the scattering probability, the angle of the scattered photon 

is not equal for all particles. The reduced scattering coefficient, μs', considers this 

angle through the anisotropy factor, g. The mean cosine value of the scattering 

angle, θ (Figure 2.3 B), is related to this factor, where an incident photon vector â is 

scattered to a new vector â'. The anisotropy has a value between -1 to 1, with -1 

representing fully back scattered light, 0 an isotropic scatterer (equal in all 

directions) and 1, a fully forward scattering medium, whilst in biological tissue, 

typical values range from 0.7-0.99 [37]. The scattering, reduced scattering and 

anisotropic factor are related via: 
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𝜇𝑠
′ = (1 − 𝑔)𝜇𝑠.               (2.6) 

Both μa and μs' have units of mm-1, therefore the inverse of these coefficients 

contains information regarding the average propagation distance a photon will travel 

before experience either an absorption or scattering event. 

2.1.3 Functional Imaging 

Whilst absorption and scattering provide us with some information regarding a tissue 

or sample of interest, these parameters are dictated by the presence of different 

biological chromophores (Equation 2.4). To understand the contributions of these 

chromophores, and how these are utilised for the benefit of imaging biological tissue 

within the vis-MWIR window, a quantisation of different chromophores is required. 

For biological tissue, the key parameters are shown in Figure 2.4. This figure also 

highlights the importance of the optical window, in which water absorption remains 

low, whilst tissue chromophores, such as oxy- and deoxyhaemoglobin, fat, collagen, 

and cytochrome c have defined absorption spectra. The ability to quantise these 

chromophores provides the motivation for biological imaging within this wavelength 

window.   
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Figure 2.4: Absorption spectra for a key biological chromophores present in human tissue 
[38]. 

Haemoglobin is a key molecule whose absorption spectra is dependent on the 

presence of bound oxygen. The molecule is a water-soluble globular protein, 

consisting of two alpha and two beta chains, where HHb is the non-bound 

deoxyhaemoglobin molecule and O2Hb oxyhaemoglobin [39]. Imaging at two or 

more wavelengths allows for the decoupling of these chromophore contributions, 

which can be utilised to determine two clinically relevant parameters: total 

haemoglobin (tHb) and oxygen saturation (StO2), where: 

𝑡𝐻𝑏 = 𝐻𝐻𝑏 + 𝑂2𝐻𝑏,     (2.7)  

𝑆𝑡𝑂2 =  
𝑂2𝐻𝑏

𝑡𝐻𝑏
.          (2.8) 

These parameters are useful for both diagnostic and monitoring purposes for 

varying pathologies, including wound healing [40]. 
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2.1.4 Radiative Transport Equation and Diffusion Approximation 

With a knowledge of the fundamentals of photon interaction within biological tissue, 

alongside how these parameters can be used to determine chromophore 

concentrations for diagnostic and monitoring purposes, the final step is 

understanding how to extract this information through the modelling of light 

interactions. The radiative transport equation (RTE), also known as the Boltzmann 

equation, is a complex integro-differential equation used to model the transport of 

light through an absorbing and scattering medium [41]: 

1

𝑐

𝛿𝐿(𝑟,𝑎̂,𝑡)

𝛿𝑡
=  −𝑎̂  ∙  ∇𝐿(𝑟, 𝑎̂, 𝑡) − 𝜇𝑡𝐿(𝑟, 𝑎̂, 𝑡) +

 𝜇𝑠 ∫ 𝐿(𝑟, 𝑎̂, 𝑡)𝑃(𝑎̂, 𝑎̂′)𝑑𝛺′ + 𝑆(𝑟, 𝑎̂, 𝑡)
4𝜋

  

(2.9) 

 

Where L(𝑟, 𝑎̂, 𝑡) is the radiance, defined as the energy flow per unit area per unit 

solid angle per unit time – at position 𝑟, time, 𝑡, in direction 𝑎̂. The total attenuation 

coefficient, 𝜇𝑡, is defined as (𝜇𝑎 +  𝜇𝑠), whilst  𝑃 represents the probability of 

changing direction due to scatter all from the source 𝑆(𝑟, 𝑎̂, 𝑡). Due to its complexity, 

solving the RTE for all but the most trivial cases are both challenging and 

computationally expensive. 

A series of assumptions can be made to simplify the RTE into the diffusion 

approximation (DA), allowing for an analytical solution. The given assumptions are 

as follows: 

• The dominant photon interaction is scattering. 

• Light fluence does not change rapidly with time. 
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• The region of interest is a large distance from both the source location and 

boundaries. 

By expanding the source and the radiance, the DA can be defined as a first order, 

P1 spherical approximation assuming isotropic distribution, resulting in a time 

dependent form [41]: 

1

𝑐

𝛿𝛷(𝑟,𝑡)

𝛿𝑡
+ 𝜇𝑎𝛷(𝑟, 𝑡) − 𝛻 ∙ [𝐷𝛻𝛷(𝑟, 𝑡)] =  𝑆(𝑟, 𝑡),   (2.10) 

where 𝛷(𝑟, 𝑡) is the fluence rate, 𝑆(𝑟, 𝑡) is the isotropic source and 𝐷 the diffusion 

coefficient, which is defined as: 

𝐷 =  
1

3(𝜇𝑎+ 𝜇𝑠
′)

.      (2.11)  

This represents a simplified approach to solving light propagation predictions, with 

varying forms of Equation 2.10 for different applications, such as time independent 

and continuous wave, which are common applications in biological light propagation 

models. Both the RTE and DA can be applied to varying models for simulating light 

propagation, with Monte Carlo models utilised to numerically solve the RTE [42], 

and FEM for discretised complex geometries, where simple infinite or semi-infinite 

analytical solutions of the DA are no longer valid [43]. These methods are applied 

across a variety of different imaging modalities for wound healing assessments, 

which the remainder of this chapter will review. 

2.2 Non-invasive imaging wound assessment techniques 

An important characteristic of these imaging modalities is that they are non-invasive. 

With the sensitivity of the wound healing process, and the high risk of infection, 

ensuring minimal interference with the wound is vital, which largely explains why the 
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current best practice is still visual inspection for clinical wound assessment. With 

these non-invasive methods, the true cellular environment of the wound is not 

disturbed or affected, allowing for uninterrupted data collection. A variety of these 

imaging techniques are discussed below, with a key gap in the literature identified 

at the SWIR/MWIR spectral range, alongside the need for robust analysis protocols, 

reducing the subjectivity associated with multiple visual assessments. 

2.2.1 Photography 

The simplest methodology for recording wound healing progression is using digital 

photography. A series of images, collected throughout the wound healing phases, 

can provide an accurate record of a variety of wound facets, such as size, colour, 

and healing progression [44, 45]. Considerations for simple issues, such as 

consistent imaging parameters including field of view, lighting, and resolution limit 

the wider availability of this technique. However, imaging with a digital camera is 

cheap and simple compared to other techniques to be discussed later. Advances in 

image processing and time-of-flight cameras allow for depth sensitive 

measurements and automated wound area monitoring, moving towards 3D 

structural imaging [46-48]. Despite these advantages, digital photography is only 

suitable for estimation of wound healing progression, applicable as a complimentary 

methodology, requiring validation from trained clinicians.  

2.2.2 Thermography 

Measurements of the emitted broadband IR photons from objects is known as 

thermography, or thermal imaging. Many objects, including skin and wounds, emit 

thermal IR photons and it has been proved that this radiation correlates to the 

temperature of the object. This allows for thermographic images from the wound 
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area to be analysed to identify changes in temperature, and with image processing, 

pseudo-coloured images can also be generated for simpler visual interpretation [49]. 

An example of a thermographic wound image is shown in Figure 2.5. 

 

Figure 2.5: Example thermography images. Both the gross appearance and 
thermographic images are shown on a left and right ankle venous leg ulcer. Adapted from 
[49].  

The use of thermography has been researched since the early 1960s, where it was 

implemented in the assessment of burn depth. It was found to have an accuracy of 

90% in diagnosing the correct burn classification, when confirmed with histological 

measurements and is based upon the principle that burns are warmer than uninjured 

skin [50], whilst other wound types may be colder when observed in tissue, such as 

the ulcer shown in Figure 2.5. These studies have been continued further, with 

thermographic imaging used to predict the healing outcomes of burns, to determine 

if they will heal within a three week window or require excision [51]. 
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A more advanced technique than the static thermography described above is active 

dynamic thermography (ADT). In this method, an initial set of static measurements 

is taken using the previously described thermography method of naturally emitting 

photons. This is then followed by thermal excitation, usually a halogen lamp, and 

subsequent imaging to detect the thermal diffusivity of different tissue components. 

ADT has been used along with high-resolution thermal imaging cameras to assess 

burn depths, with comparisons between the static IR and ADT methods, proving 

ADT is superior for burn depth classification [52]. 

With the increase in demand for faster and cheaper assessment methods, smart-

phone apps are now being assessed for potential clinical use. This system works 

through a smartphone attached to a thermal imager, which is used to diagnose 

wound healing. Via an app, measurements of not only temperature, but also blood 

flow and wound inflammatory index can be taken to aid in a fast and effective wound 

assessment. The blood flow is measured using temporal temperate changes whilst 

the wound inflammatory index, as first proposed by Bharara et.al. is a quantitative 

measure of the wound temperature, isotherm area and total wound bed area [53, 

54].  Despite these advantages, any measurements have yet to be taken on human 

tissue, and the modality only focuses upon blood flow. To measure this blood flow, 

the process of angiogenesis (section 1.3) needs to have already begun, with a more 

significant advantage being able to predict this process, making this an assessment 

tool rather than a diagnostic aid. However, with the simplicity of this system, it has 

potential for wider clinical use in poorer and less accessible medical facilities [53]. 

Thermography has not only been investigated with burn wounds, but also diabetic 

ulcers, pressure ulcers and other generic wound types [55]. One such wound type 
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is a free flap, experienced in some surgeries. Dynamic Infrared Thermography 

(DIRT) is used to indirectly determine blood perfusion through the recording of 

temperature in these skin flaps. This method has been compared to a current clinical 

method, indocyanine green video-angiography (ICGA). ICGA, however, is an 

invasive method, therefore with DIRT having been shown to perform comparably, it 

is a promising and preferable alternative [56]. 

2.2.3 Fluorescence Imaging 

Fluorescence imaging is a technique that uses either endogenous or exogenous 

fluorophores within the skin. The basic concept of fluorescence imaging is to excite 

a fluorophore using a particular wavelength of laser light, followed by detection of 

the emitted light, which is filtered to ensure only the fluorescence emission is 

measured. The measured intensity is proportional to both the fluorophore 

concentration and size, which is used to determine the biological or chemical 

measurement of interest. 

One of the most common techniques is the use of indocyanine green (ICG) dye, 

which can be used to determine vascularisation and burn depth [57].  The ICG dye 

is an exogenous dye and is injected into the circulatory system.  In order to make 

the method non-invasive, endogenous fluorophores can be used.  An example of 

this technique is fluorescence lifetime imaging. In this method, nicotinamide adenine 

dinucleotide (NADH) is used as a natural fluorophore. Found in the wound bed, 

NADH can be used as a marker in cutaneous wound healing [58]. This method 

allows for the quantification of cellular metabolism, which can be used along with 

other methods to improve the overall wound healing assessment procedure. 

Endogenous fluorescence has also been used for wound boundary infection 
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detection. Figure 2.6 depicts both a white light and fluorescent image for diabetic 

foot ulcer diagnostics. The red fluorescence depicts the infected tissue that is not-

visible in the white image and would be missed using simple visual inspection 

techniques.    

 

Figure 2.6: Endogenous fluorescence wound boundary detection. Comparison between 
white light and fluorescence imaging of a diabetic foot ulcer. Scale bars are 1 cm, image 
adapted from [59]. 

Despite the clear advantages of these techniques, issues arise with the complexity 

of the equipment required. The lasers and detectors often require trained and 

experienced clinicians, as well as controlled hospital conditions. In order to get 

assessments of wounds at an earlier stage, and in more diverse areas, such as 

battlefield hospitals or even the patient’s home, investigations have begun into 

portable technologies. This research has initially focused on the application of skin 

healing rejections in transplants but would be applicable to all wound types. The 

device consists of 6 red laser diodes and has been shown to work with both auto-
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fluorescence from tissue components, as well as exogenous fluorophores. This can 

detect levels of inflammation from the skin, and be used to assess the wound healing 

progression [60]. 

2.2.4 Spectroscopy 

Visible Light Spectroscopy  

Imaging spectroscopic methods are based upon combining a spectral light source, 

either broadband and modulated or narrow band and tuneable, to provide sample 

illumination at variable wavelengths, with a camera, or other light collection 

mechanism with a tuneable filter to collect the spectral response. The combination 

of these techniques collects a series of images, at each wavelength, generating 

spectral data of each pixel of the captured image. Depending on the number of 

spectra collected, these can be categorised as multispectral or hyperspectral. 

In a traditional digital camera image, only light from three channels, red, green, and 

blue (RGB) is collected and used to build the image (Figure 2.7) 

 

Figure 2.7 RGB, Multispectral and Hyperspectral Imaging. 

However, in hyperspectral imaging (HSI), data is collected at a much higher 

resolution, often with hundreds of different images collected per sample. This 
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information is combined to generate a 3D data hypercube. This contains two spatial 

dimensions and one spectral dimension. Therefore, any hyperspectral image 

contains a spectral map of information, with the spectrum of each individual pixel 

available. An example of this is shown in Figure 2.7 [61]. Multispectral imaging 

(MSI), also shown in Figure 2.7, is similar to HSI. It also collects a 3D hypercube, 

with fewer wavelengths taken, often 10-100 per hypercube. 
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Figure 2.8: Hyperspectral imaging schematic. This figure has been replicated from [61]. 

HSI methods have been employed to assess a variety of different wound types and 

medical applications [62]. These methods traditionally use visible to near infrared 

light to investigate tissue oxygenation, via O2Hb and HHb respectively. Other tissue 

parameters such as melanin content, burn characteristics, and epidermal thickness 

have also been measured [4]. Through the measurement of these parameters at 

multiple wavelengths, each of which has a depth dependency due to the differing 
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penetration depths of photons at varying wavelengths, information regarding the 

properties of the sample at varying depths can be obtained. 

HSI is more commonly used as it offers higher spectral resolution as compared to 

multi-spectral measurements and is more suitable for the clinical setting, with 

modern system imaging within only a few seconds now achievable, compared to 

earlier imaging systems. A preliminary study by Calin et.al has used HSI to assess 

burn depth. Hyperspectral images of a leg and foot burn were taken 5 days post 

injury. These were taken with a simple imaging setup, consisting of only a 

hyperspectral camera, imaging 346 spectral bands between 400-1000 nm, and a 

pair of 300 W halogen lamps.  The resulting images were then analysed and 

principal component analysis was used to identify different burn regions [63]. This 

study shows promising results and merits further investigation, with only one patient 

imaged for this initial study. 

MSI has also been used widely but is often focused on specific wavelengths. MSI is 

used within the clinic currently, with dermatological detection of skin lesions [64], 

and is also being investigated in the assessment of diabetic foot ulcers. Traditional 

RGB imaging has been compared to MSI of 36 wavelengths between 430 - 780 nm 

imaging of in vivo artificial wounds upon pigs back, to assess chromophore 

mapping. It was found that multispectral imaging identified the ability to determine 

regions of the epithelium and those of granulated tissue, through the additional 

spectral information for discrimination, compared to simple RGB imaging, which can 

aid in both burn diagnostics and treatment [65]. 
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Near Infrared Spectroscopy 

Many instrumental methods in development for wound assessment utilise NIR light, 

850 - 1000 nm. The soft tissue that is characteristic of skin and muscle wounds have 

optimal optical properties for NIR wavelengths, specifically that it is weakly absorbed 

and highly scattered, making it more suitable than visible or UV methods. Near-

infrared spectroscopy (NIRS) is a technique which utilises these characteristics by 

collecting spectral information from strongly absorbing compounds in the NIR 

region. The two compounds that are used to determine the tissue oxygenation are 

O2Hb and HHb, which have peak absorption wavelengths of 760 nm and 900 nm 

respectively. Water content, which is linked to tissue edema, can also be analysed 

with a peak absorption of around 980 nm. 

 

Figure 2.9: A simple near-infrared spectroscopy example. 

A simple example of a NIRS set up is shown in Figure 2.9. Briefly, a system of light-

emitting diodes (LEDs) or laser diodes are used to illuminate the tissue through the 
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skin. The light then passes through the tissue, being absorbed, reflected or 

scattered, with the diffuse reflected signals collected by a CMOS (complementary 

metal oxide semiconductor) or photodiode detector from the skin surface, which are 

typically located a few centimetres away from the source. These signals can then 

be analysed to quantify the concentration of a given compound, such as O2Hb, HHb 

and H2O, which provide further information for a variety of wound types. 

Blood perfusion and oxygenation have been measured using NIRS. Discrete 

wavelengths of light were used to determine these physiological parameters, which 

can be used as a metric for determining wound severity [66]. Tissue oxygenation 

has been utilised to differentiate between healing and non-healing wounds in 

diabetic foot ulcers. 24 wound subjects were imaged over a 4 week period, with an 

82% positive prediction of wound healing, highlighting the potential of the technique 

to predict successful healing, prior to any costly and potentially ineffective 

treatments [67]. 

Burn wound assessment is also a key area of research, with the focus upon burn 

depth classification and tissue edema. As the severity of a burn increases, there is 

a reduction in circulation, which can be correlated with the levels of HHb, O2Hb and 

H2O. NIRS has been shown to be able to characterise between superficial and full 

thickness burns, with successful determination of superficial, partial and full 

thickness burns with the additional edema quantification [68]. 

Commercially available devices, such as the Kent Imaging device, have been shown 

to aid in wound assessment for a variety of wound types, through the measurement 

of oxygen perfusion. This device uses an array of IR emitters to capture data from 
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large areas of skin (150 cm2). In an eight second imaging window, it collects a 

clinical image (conventional photo), as well as an oxygenated and deoxygenated 

image respectively. Built in algorithms then allow for these images to be overlaid, to 

display overall tissue oxygenation. This device has been used with diabetic foot 

ulcers, looking at predicting wound healing dehiscence, skin graft incorporation and 

gangrenous changes to toes [69]. 

2.2.5 Perfusion Imaging 

Perfusion imaging methods are those that are based on the observation and 

quantification of how blood flows through tissue, including the heart, skin and 

muscle. One of the most widely used techniques for perfusion imaging is Laser 

Doppler Perfusion Imaging (LDI or LDPI). LDI uses the Doppler principle to measure 

the changes in wavelength of backscattered light from moving erythrocytes within 

the tissue. A source laser is used to illuminate a region of interest, with the reflected 

light from both the static tissue and moving red blood cells collected. A schematic 

image of this is shown in Figure 2.10. The light from the moving erythrocytes 

experiences a shift in wavelength, either blue or red shifted, depending on the 

direction of movement. This is then compared with the reflected light for the 

stationary tissue, which remains at the same wavelength, in order to calculate both 

blood density and perfusion within the tissue [70]. 

LDI has been approved by the American Food and Drug Administration as a method 

to assess the depth of burn tissue [71]. This is used clinically alongside traditional 

visual assessments, to reduce the decision-making time for skin grafts, and improve 

the overall treatment of the wound. Although this method is used with a clinician, it 

has also been shown to accurately predict burn depth independently, with more 
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accuracy when compared to clinical visual assessment alone [72], although this was 

only tested upon a small sample type, with further trials needed before it could be 

implemented without an experienced clinician. LDI has only been applied in a limited 

manner to other types of wound healing, other than burns, with diabetic ulcers [73], 

pressure ulcers [74] and scar progression [75]. Historically, this method has also 

been used to look at wound healing, which focused on the microcirculation of skin 

flaps, to identify normal wound healing and necrotic tissue [55]. 

LDI is a method that uses single point illumination, with a scanning mechanism, to 

measure the whole sample, as shown in Figure 2.6. Another method, laser speckle 

contrast imaging (LSI or LSCI), can be used to measure a larger 2D surface to image 

the tissue in full. LSI expands a coherent laser output to illuminate a 2D shape upon 

the region of interest. The surface imaged contains many irregularities, as the back 

reflected photons can experience constructive or destructive interference, which 

creates a speckle pattern. When the measured surface contains moving objects, 

such as erythrocytes, these speckle patterns contain dynamic information that can 

be used to calculate blood flow, via image blur analysis. 
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Figure 2.10: Laser Doppler Perfusion Imaging (LDI) schematic. Changes in the 
wavelength of backscattered light from the moving red blood cells, which are observed 
due to the Doppler principle, are measured to determine the density and perfusion of 
blood within the tissue region of interest. 

 

The level of blurring correlates to the blood flow, although LSI is only a qualitative 

technique, compared to LDI which can be used quantitatively [76]. Similarly to LDI, 

LSI has been predominately applied to burn wound assessment, where it can 

identify regions that require grafting in less time than traditional visual inspection 

methods [77]. 

2.2.6 Spatial Frequency Domain Imaging 

Spatial frequency domain imaging (SFDI) is a form of NIR spectroscopy with a 

different illumination method. In SFDI, spatially modulated light patterns are 

projected onto a region of interest in the NIR range.  The illumination consists of 

sinusoidal incoherent monochromatic light patterns at specific frequencies and three 

different phases. The diffused backscattered light is collected and processed to 

determine the reflectance at each specific wavelength and spatial frequency.  This 
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is then further separated into absorption and reduced scattering through the use of 

a light propagation model, including Monte Carlo simulations or diffusion equation 

approximations [78]. 

An example of the experimental setup and spatial illumination patterns is shown in 

Figure 2.11. An illumination source, such as an LED, illuminates a digital micromirror 

device (DMD) to generate the spatially modulated patterns. This is projected onto a 

sample of interest, and the backscattered light is collected using a charge coupled 

device (CCD) camera. These methods then allow for the quantification of tissue 

parameters, O2Hb, HHb and H2O, which are used for the diagnostics of the state of 

wound healing.  SFDI has mainly been used for burn wound imaging and diabetic 

ulcers, due to its ability to provide depth selectivity, with commercial systems used 

clinically within the US [79, 80]. Animal models have been used to show that this 

method can characterise burn wound depths, which is a vital step for wound 

assessment and appropriate treatment [81]. SFDI allows for the assessment of large 

areas, when compared the microscopic methods, providing clinicians with a greater 

ability to predict areas at risk of further damage, via vascular damage spreading, or 

edema progression [82]. 
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Figure 2.11: Simple SFDI setup  

The 2D quantitative maps generated by SFDI have been preliminary trialled for the 

assessment of surgical cutaneous wounds. Skin flaps cut during surgery can suffer 

complications from vascular occlusion. SFDI has been used to image these flaps to 

quantify changes within the wound, allowing clinical intervention before complete 

tissues loss [83]. More recently, pressure ulcers have also been investigated using 

this technique. Early detection of these wounds can drastically reduce costs and 

complications of treatment, and a preliminary study has shown that SFDI can be 

used to quantify the current wound status of a small sample of patients [84]. Overall, 

the depth specificity of the technique is its main advantage, while further work is 

needed to reduce the imaging time whilst maintaining the image resolution. 

2.2.7 Optical Coherence Tomography 

Optical Coherence Tomography (OCT) is a technique which produces 2D images 

based on the principal of low-coherence interferometry [85]. Often referred to as 
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’optical ultrasound’, OCT uses NIR light and measures the optically scattered light 

from the tissue, compared to a reference source. A beam of laser light is split into 

two optical paths, with once reflected from a reference plate, and one from a sample 

of interest. These reflected beams then recombine to generate an interference 

pattern, as shown in Figure 2.12. If the difference in length of the light pathways is 

equal to the coherence length of the source, the coherence signal is imaged. In 

general, OCT images tissue with a large field of view (up to 20 x 20 cm2 ) [86], 

generating structural information for larger tissue regions. 

 

Figure 2.12: OCT schematic set-up. 
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An additional modification of OCT is the measurement of the light polarization. 

Polarization sensitive OCT (PS-OCT) measures the changes in the polarization of 

the illuminated light, which occurs due to materials within the skin, mainly collagen. 

PS-OCT has been used in the assessment of burn depth, due to the relationship 

between collagen birefringement and burn severity, which is reduced with increasing 

wound severity [87]. This method has also been taken one step further with burn 

depth, as PS-OCT has also been shown to provide information on the 

microvasculature of burns, which would also be useful in other wound type 

assessments [88]. 

OCT has been used to assess in vivo wound healing in a small animal study.  

Cutaneous wounds were induced, and OCT was used to assess structural changes 

observed during the wound healing process. Through the measurement of the 

epidermal layer of the skin, the wound healing process can be tracked during the 

reepithelization phase, whilst also measuring wound size and depth mode, which is 

made possible by OCT’s macroscopic imaging method [89].  Despite these 

advantages, OCT is limited by only providing structural information, and requires 

supplementary imaging methods to the provide the key cellular level information 

needed for the most accurate wound assessment techniques. 

2.2.8 Raman Spectroscopy 

Although not always an imaging technique, Raman spectroscopy has also been 

used to investigate healing for a variety of wound types. Raman spectroscopy 

utilises inelastic scattering of light from a monochromatic source, in the visible, near 
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infrared or UV range.  Laser light interacts with the molecular vibrations of the 

sample, causing the photons to scatter. These consist of both Rayleigh and Raman 

scattered light. When the energy of the light is unaffected, the light is Rayleigh 

scattered, but when altered, this is Raman scattering. The light can both decrease 

or increase in energy and is known as Stokes or anti-Stokes shift respectively. 

Figure 2.13 shows a schematic representation of the Raman principle and 

spectroscopy method. 

 

 

Figure 2.13: Schematic representation of Raman spectroscopy. A: Monochromatic light 
source in the UV, visible or near-IR range, B: Target molecule within a sample, C: Light 
is scattered from the molecule and then undergo both Rayleigh and Raman scattering 
processes, D: A narrow band filter is used to block out the considerably stronger Rayleigh 
scattering, leaving only the Raman scattered light, E: Diffraction grating used to determine 
the spectral resolution, F: Detector. 

 

Approximately 10-8 of the incident photons are converted to a Raman signal [90], 

therefore only a weak signal is observed, and considerations for maximising this 

signal must be made to target specific molecules of interest. One such area is 

collagen, which plays a key role in wound healing, as discussed in Chapter 1. Gene 

expression for collagen has been investigated in combat wounds, with 24 samples 

of both normal and impaired healing measured [90]. Samples of 1 cm3 were 
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collected from wound debridement samples before being processed for gene 

expression analysis. It was found that gene expression for both collagen type I α1 

and collagen type III α1 were lower for wounds that experienced impaired healing, 

compared to those which healed normally [90]. Despite these promising results, this 

was only a preliminary study and further investigations on a greater number of 

samples and patients’ needs to be performed. Chronic wounds have also been 

analysed with Raman spectroscopy. Mouse models were used, with full thickness 

dermal wounds induced at different time points corresponding to the different stages 

of the wound healing process. Spectral data was collected from each of the samples 

and analysed using multivariate spectral analysis. Cluster analysis was used to 

separate the wounds by the healing stage, with outliers identified as those 

experiencing improper healing [91]. Raman spectroscopy has similarly been used 

in burn wounds and diabetic foot ulcers [92, 93]. 

Although Raman spectroscopy has provided positive results for a variety of wound 

types, the low signal presents a couple of key issues. The first is that the 

instrumentation needed to detect this signal needs to be sensitive and optimised, 

and current methods are limited to lab-based studies. Secondly, the weak signal is 

reduced further by any contamination, and combat and blast injuries suffer this in 

greater amounts compared with other wound types. Finally, heating from over 

exposure of the laser, when trying to maximise the signal detected, can cause the 

sample to heat, damage and even cover the Raman spectrum completely. 

2.2.9 Negative Contrast Imaging 

One final technique that has been used to investigate the wound healing field is a 

negative contrast imaging (NCI) device. This NCI device, developed by M Squared 
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Lasers (West of Scotland Science Park, Glasgow, UK), is a reflectance imaging 

device that collects hyperspectral images from illumination in both the SWIR and 

MWIR spectral regions. The device has been used previously to identify spectral 

differences between wound biopsies, with 7 human samples imaged to predict the 

wound healing outcome [94], along with chemical detection applications [95, 96]. 

This device is made up of an optical parametric oscillator as its SWIR/MWIR (1.5 – 

1.9 µm and 2.4 – 3.8 µm) photon source along with an image acquisition system 

containing a Mercury Cadmium Telluride (MCT) detector. The generated images 

are the result of the back reflected light collected for each pixel, up to a 512 by 512 

image resolution. Each hyperspectral data cube consists of images collected 

between a user specified wavelength range, with a resolution of up to 2 nm. Spectral 

changes were observed between samples that underwent correct healing, 

compared to those that dehisced or showed delayed healing. This spectral change 

was observed in the 3100 nm wavelength region, related to changes in common 

chemical bonds, such as C-C and C-H, and was initially identified using Fourier 

Transform Infrared (FTIR) microspectroscopy. This brief proof-of-concept study 

extended the wavelengths of investigation beyond the NIR region, with the ability to 

detect multiple chemical and biological changes within a unique spectral fingerprint. 

The NCI device is not commercially available, with the limited sample study 

representing the first application in biomedical imaging. The NCI device maturity can 

be described through technology readiness levels (TRLs), which are a measure for 

assessing an emerging technology, developed by NASA during the 1970s [97]. The 

NCI has reached a TRL of 3-4, with the next stage of development requiring further 

investment, which is currently not in place. TRLs are not reached via a linear cost 
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relationship, with the development costs at approximately 13% for reaching TRL 4, 

compared with the full cost of a TRL 9 system [98], therefore significant investment 

would be required to advance the NCI technology further along the developmental 

timeline. 

2.3 Intelligent Data Analysis 

The aim of the methods discussed in section 2.2 is to provide additional information, 

which is not obtainable via simple observation, to aid clinicians in the wound 

assessment process. However, even with this additional information, the subjectivity 

of individual medical and clinical staff analysing the data can still occur. For 

example, the fluorescence imaging shown in Figure 2.6 utilises a handheld imaging 

device to identify the areas of chronic wound infection via endogenous 

autofluorescence [59]. Whilst this method provides clearer images of the boundaries 

in real time, the gradient across the wound boundary must still be assessed and 

created by visual observation, producing room for subjective analysis. Similarly, the 

resulting spectra for FTIR imaging in section 2.2.9 still requires the visual 

assessment of the obtained reflectance spectra to separate out the different wound 

healing pathologies for diagnostic purposes, whilst also unable to identify one third 

of the healthy wounds [94]. Additional processing and analysis of data obtained from 

these wound assessment methodologies can therefore aid in this processing, 

providing even more information to aid in point-of-care wound assessment to reduce 

or even remove any potential subjectivity of a clinician’s assessment. 

These data analysis methods can be split into two main parts: pre-processing and 

intelligent analysis. Data pre-processing aims to deal with any problems with the 

data, such as missing or noisy data, whilst also optimising any information within to 
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aid in the data analysis processing. The data analysis then extracts this information 

for a variety of uses such as prediction and diagnosis, as is with the cases of wound 

healing assessment [99]. 

2.3.1 Data pre-processing 

Data pre-processing for wound assessment covers a wide range of methodologies. 

Simple ordering and editing can help remove unwanted data and repeated data, 

removing any bias from experimental error or the extraction of relevant data from a 

larger data set. For example, the removal of pixels to separate out a specific region 

of interest, whilst selecting a specific subset of a full sweep region can reduce the 

processing time [100].  

Noise reduction and filtering of data represents another large area of pre-processing 

methodologies. Noise can be attributed to data from a variety of experimental 

sources such as amplifiers, analogue-to-digital conversions or external sources 

[101]. Median filtering, alongside adaptions of this technique such as adaptive 

median filtering, are common place in both single wavelength images and spectral 

methods, reducing the effect of noise in both cases before the data analysis stage 

[102, 103]. Additional filters can also be applied in isolation or combination of the 

above to correct, homogenous or equalise specific wavelengths of an image or 

spectra [104-106]. 

Spectral derivatives and normalisation are also used as common pre-processing 

steps within spectral analysis. These steps aim to extract any key features within 

the data, whilst also improving signal to noise ratios. First and second spectral 
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derivatives are the most used, with normalisation proceeding to allow comparison 

between different samples containing varying noise [107, 108].  

 

Figure 2.14: Spectral derivative and vector normalisation. A common spectral analysis 
pre-processing method takes the first or second spectral derivative of the raw signal 
before performing vector normalisation, allowing for comparison across large data sets. 
Adapted from [109] 

A final pre-processing method to note is data reduction. Often, spectral data can be 

remapped to a different space in which the key features can be extracted, and noise 

or unwanted data can be removed. These methods include principal component 

analysis (PCA) and singular value decomposition (SVD), which both use linear 
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dimensional reduction and are used in wound assessment methodologies [110], 

including those for diabetic foot ulcers and burns [111, 112]. 

2.3.2 Data analysis methods 

The pre-processing and feature extraction methods discussed in the previous 

section are undertaken for specific data analysis methods, to improve the outcome 

of the process. The data analysis methods aim to group or classify similar samples, 

which for the case of wound healing, assist or undertake fully, the processes of 

assessment or diagnosis. The optimised data sets can then undergo machine 

learning processing of varying methods to generate the result. These methods can 

be broadly split into three classes: clustering, classification and neural networks. 

Clustering 

Clustering methods are a form of unsupervised machine learning, in which the data 

is group into clustering using a similarity parameter. As an unsupervised technique, 

these methods do not require any a priori information about each sample’s origin. 

Clustering methods, such as k-means and hierarchical clustering are commonly 

used for spectral data to group similar spectra for wound assessment purposes 

[113-115].  

A further clustering method, known a fuzzy c-means has been used to cluster pixels 

of diabetic ulcers, similar to those seen in Figure 2.6. Like k-means, each data point 

is however assigned a ‘weighting’ to all clusters, create a soft linkage to each cluster, 

compared to the hard assignment of k-means [116]. Using the mean Euclidian 

distance metric, an accuracy of up to 99% was achieved in identifying different 

tissue types [117] 
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Classification 

If a priori information is used, the methods become supervised learning techniques 

and can be broadly determined as classifiers. Classifiers split the data into training, 

testing and often validation subsets, therefore meaning more data is generally 

required than used in some clustering methods. The data also requires labelling by 

a trained clinician or expert to build the classifier initially.  

Many different classification tools exist for the wound imaging and spectra 

assessment and analysis. These include linear discriminant analysis (LDA), support 

vector machines (SVM), k-nearest neighbours (KNN), Bayesian classifiers and 

neural networks, which will be discussed further in the next subsection [65, 118, 

119]. The decision to use any of these methods is based on data availability, ease 

of training and computational time [109]. In the field of burn wound assessment, 

SVMs have been used to analysis NIRS data which has also undergone data 

reduction via PCA. The method identified different microbial species within the 

wound bed to detect levels of infection, with up to a 100% detection rate [120]. 

Neural Networks 

A final subset of classifiers commonly used in wound assessment is neural 

networks. These methods are more prevalent with the increase of eHealth medicine, 

and have been applied to a variety of wound types [121]. A neural network contains 

an input and output layer, with a series of neurons in which the original data is acted 

upon with via a specific function. Each layer then outputs to the next via series of 

weightings. These are defined as self-learning methods which model human 

neurons and synapses. An example of these methods is using feedforward neural 

networks for detection. A five-layered feedforward neural network was design to 
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perform wound segmentation and detection upon chronic wounds. These networks 

were optimised to handle varying input images to improve the overall robustness. 

Overall, the intelligent data analysis methods discussed aim to reduce the reliance 

upon trained and experienced clinicians to perform individual diagnosis and 

assessment across a variety of different wound types. These methods help process 

the additional information obtained from the wound imaging and spectroscopy 

methods discussed in 2.2. 

2.4 Conclusion 

The imaging modalities described above are at the cutting edge of current wound 

assessment research. The most common wound type for assessment is burns, 

which could be for a variety of reasons. Burns are which have easily definable 

grades of severity, which can be produced repeatably in both in vivo and ex vivo 

samples [122]. The severity of the wound can be independently classified via the 

wound histology, providing a ground truth for modalities to be compared with. 

Quantification of the accuracy of these methods can then be made, and easily 

compared with current best practise clinical methods, as well as other novel 

methods currently in development. Burn wounds are also common across all ages, 

sexes, and races, and are experienced worldwide, with little difference between 

wound characteristics for burns of the same severity. Overall, burns experience 

many issues that are common in all wound types, vascularisation problems, 

necrosis, edema and infection, making them a suitable model for generic wound 

assessment. A summary table of the different wound assessment techniques 

discussed, along with the wound types they have been applied to is shown in Table 

2.1. 
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Imaging Modality Wound Type 

Photography Burn [123] 

Pressure Ulcer [45] 

Thermography 

 

Burns [50-53] 

Diabetic Ulcers[55] 

Skin Flap [56] 

Fluorescence 

 

Burn [57, 58] 

Transplant [60] 

Multi- and Hyperspectral 

 

Burn [4, 63] 

Skin Lesions [60] 

Near-Infrared Spectroscopy 

 

Burn [68, 69] 

Diabetic Ulcers [66, 67] 

Spatial Frequency Domain Imaging 

 

Burn [81, 82, 124] 

Skin Flap [83] 

Perfusion Imaging 

 

Burn [71, 72, 77] 

Diabetic Ulcers [73] 

Pressure Ulcers [74] 

Scar Progression [75] 

Optical Coherence Tomography 

 

Burn [87] [88] 

Cutaneous [89] 

Raman Spectroscopy 

 

Blast [125] 

Burn [92] 

Chronic [91] 

Diabetic Ulcers [93] 

Negative Contrast Imaging Blast [94, 126, 127] 

Table 2.1: Summary table of non-invasive wound assessment methods 

Whilst these methods represent some of the latest advancements in wound 

assessment, there are a few common areas in which they are limited. Despite the 
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success of many studies, the gold standard wound healing assessment remains 

visual observation. Although many of the methods offer additional visual information, 

such as pseudo colour images [128], these ultimately still require interpretation by 

a trained expert, resulting in the subjectivity of the method and any resulting 

assessment or diagnosis. Whilst some methods of intelligent data analysis, as 

discussed in section 2.3, there is a clinical need for a robust imaging modality that 

provides both quantitative information for the assessment of different wound healing 

parameters and complimentary analysis tools based on computational methods, 

removing the subjectivity of current methods.  

Additionally, these methods have been focused within the visual and NIR regions, 

with limited work performed beyond this. Whilst the clear benefits of imaging within 

this region have been discussed in section 2.1.3, additional information regarding 

further wound healing facets exists within the SWIR-MWIR range [127], with further 

discussion of the particular spectral regions and parameters of interest to come in 

the following chapter. The remainder of this thesis will discuss work made to further 

the field in these two areas of interest. 
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Chapter 3 
 

3 Intelligent data analysis 

Within this chapter, novel data analysis methods are applied to previously obtained 

FTIR results [94]. As discussed in section 2.3, intelligent pre-processing and 

analysis methods can be used to extract additional information for assessment and 

diagnosis of wounds. An initial study at Dstl, in collaboration with the Naval Medical 

Research Center (NMRC), Bethesda, Maryland, USA, investigated the spectral 

differences between different wound biopsies using both FTIR and NCI methods in 

the IR region. Whilst visible differences were identified between the seven samples 

measured, and key spectral regions for discrimination between three different 

wound states: healed, delayed and dehisced, were identified, these were only 

discovered through detailed visual observation of the spectra, which is a laborious 

process and unsuitable for larger data sets. In this chapter, work to create a machine 

learning based robust methodology for spectral differentiation is presented and 

applied to the existing FTIR wound biopsy data. The material for this chapter is 

based upon work presented at the Photonics West Conference 2019 ‘Mid-infrared 

spectroscopic imaging to assess wounded tissue health’. 

3.1 Introduction 

Wound healing assessment and management are both important in ensuring a 

correct healing sequence. The majority of these assessment techniques involve 

simple observation with the naked eye, which has two main drawbacks: the 

parameters assessed are highly subjective, and interpretation relies upon the 
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knowledge and experience of trained medical professionals. Any failure in wound 

assessment or incorrect management can result in further complications and even 

fatality [2], therefore quantitative and more objective techniques are the next step to 

a more accessible and reliable wound management strategy. Previously, seven 

different wound samples (waste material from serial debridement’s of US military 

personnel injured in Afghanistan) were characterised using Raman spectroscopy 

[129, 130]. These samples were also subjected to FTIR to identify key spectral 

regions for discrimination between three different wound states: healed, delayed 

and dehisced. Healed wounds were defined as those that definitively closed within 

the thirty-day window post injury. Delayed wounds are those that exhibited definitive 

wound closure two standard deviations away from the regular wound healing 

closure time window. Finally, dehisced wounds were defined as those that ruptured 

following surgical intervention, re-opening the wound. 

The FTIR data from this study exhibited differences in the spectra for two of the 

three healed results within the 3400-3000 cm-1 spectral region, when compared with 

all other spectra. However, these differences were only discovered through detailed 

visual observation of the spectra, which is a laborious process and unsuitable for 

larger data sets. For ‘big data’ a variety of machine learning and computational 

techniques can be used to separate data sets, providing labels for different subsets 

and grouping similar data together. These techniques, along with data reduction 

methods can detect differences in large data sets using computational algorithms. 

For instance, this approach can provide a robust method for distinguishing between 

the different pathological outcomes observed in the previous study [94], by 
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attempting to extract features within the data that may not be obvious in the simple 

plotted spectra.  

In the present study, clustering was observed using both raw data and data that had 

been dimensionally reduced using principal component analysis when using an 

unsupervised computational algorithm. Separation of data into regular/irregular 

healing and the three different pathological outcomes was then investigated to 

provide more objective wound assessment. 

3.2 Methods 

3.2.1 Clinical Biopsies 

The clinical data, collected as part of a previous study [94], from the wound biopsies 

were performed under the review boards of the NMRC and the Walter Reed National 

Military Center. Patients for this study were all over 18 years old and had 

experienced high-energy combat-related traumatic injuries. Informed consent was 

provided prior to biopsy collection for all participants. The wounds for this study all 

had an Injury Severity Score greater than or equal to 9 and a wound surface area 

of greater than 75 cm2 or a traumatic amputation with an open wound [131]. During 

surgical wound debridement, biopsies of approximately 1 cm3 were collected from 

the wound bed, every 48 to 72 hours. Following collection, the biopsies were fixed 

in 10% neutral buffered formalin. These were then stored at 4 °C until use. Finally, 

the wound closure time point was determined by the attending surgeon. 

3.2.2 Fourier Transform Infrared Spectroscopy of Wound Biopsies 

FTIR microspectroscopy of the seven different wound samples was performed using 

a Bruker Optics LUMOS FTIR microscope, which comprises a liquid nitrogen cooled 
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Mercury Cadmium Telluride (MCT) detector along with a ZnSe beam splitter. The 

samples were mounted to an aluminium coated mirror slide, which was then placed 

upon a motorized x-y stage attached to the interferometer. For each sample, a 

minimum of nine FTIR spectra were collected from different locations (Figure 3.1) 

with a sampling aperture size of 120 x 120 µm. Each single-point spectrum 

consisted of an average of 32 scans with a spectral resolution of 4 cm-1 in the 

spectral region 650-4000 cm-1 (2.5-15.4 µm). Background scans from a region 

containing no sample were also taken and normalized against each sample 

spectrum. 

 

Figure 3.1: Wound biopsy and FTIR map. A: Example photograph of the formalin-fixed 
tissue biopsies from different debridement’s of a typical wound. B: Tissue biopsy image 
from the FTIR collection. Spectra were collected from multiple locations on each section 
sample (red boxes) which are 120 x 120 μm.  

3.2.3 Fourier Transform Infrared Spectroscopy Spectral Difference 

In a previous study [94], visual representation of the seven different spectra 

exhibited a difference at approximately 3200 cm-1. Figure 3.2 A shows the mean 

spectra from each of the wound samples, which has been baseline corrected using 

a 15-point linear interpolation and normalised to the amine I peak. These differences 
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are highlighted further when the vector normalised 1st derivative of each wound 

sample spectra is considered. These whole spectra are shown in Figure 3.2 B, with 

the key region-of-interest shown in Figure 3.2 D. However, these differences are 

only visible in wounds A and B, with the third healed wound, wound C, exhibiting 

similar results to the delayed and dehisced wounds. 

 

Figure 3.2 FTIR spectral panel. A: FTIR spectra collected from each of the seven different 
wound tissue samples. Each spectrum consists of the mean value from the different 
locations, as shown in Figure 3.1. These values are then baseline corrected using a 15-
point interpolated linear baseline and normalised to the intensity of the amide I peak. B: 
Vector normalised 1st derivative spectra of the FTIR spectra. C: An expanded region 
detailing a spectral region of interest with key differences between the majority of healed 
spectra. D: Same wavenumber region of the vector normalised spectra with a clear visual 
difference between two of the three healed wound tissue samples.  
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3.2.4 K-means clustering 

K-means clustering is a method of unsupervised machine learning, which has been 

applied to a variety of biomedical applications [132]. Typically, supervised 

classification methods, such as convolutional neural networks, are used. However, 

these methods require larger sample numbers in excess of 1000, allowing some 

data to be used as training sets with pre-labelled outcomes to train classifiers [133].  

The aim of the k-means algorithm is to take unlabelled data and group them into k 

clusters, which exhibit similar properties. This method can be used with FTIR data 

with the aim of grouping different spectra into clusters [109]. 

An example of the k-means clustering algorithm used is outlined in Figure 3.3, which 

is a 2D data set containing 6 data points represented by crosses. Using a pre-

defined number of clusters, k = 3, cluster centroids were randomly assigned within 

the 2D space, shown as circles of three different colours. Each data point was then 

assigned to its nearest cluster centroid completing the first iteration. The centroid 

means were recalculated using the mean value for each dimension from the data 

points assigned to it, shown as the centroid relocation step. This process was 

repeated until convergence, which can be defined as either a set number of 

iterations, or the point at which no data points change cluster following centroid 

relocation. 
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Figure 3.3: k-means clustering. Simple 2D k-means clustering example for k = 3 clusters 
upon 6 data points. Three cluster centroids (Circles) are initiated at random, and the data 
points (Crosses) are assigned to their nearest centroid in the first iteration. The cluster 
centroids are then relocated, before the point assignment is repeated in the next iteration. 
This process is repeated until convergence, defined as either a set number of iterations, 
or when no points change cluster assignment. 

With three different pathological outcomes observed across the seven samples, 

clustering with k = 2, to differentiate regular and disrupted healing, and k = 3, to 

differentiate the different outcomes, were investigated. Using the full FTIR spectra, 

the dimensionality of the data is 1667 and the cosine similarity metric was utilised 

to measure the data point to centroid distance. Due to the random nature of the 

cluster centroid locations, the clustering algorithm was repeated to find the modal 
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cluster, and its frequency reported as the modal cluster frequency in subsequent 

results.  

3.2.5 Principal Component Analysis 

Principal component analysis (PCA) is a dimensionality reduction technique used 

on large data sets with minimum data loss and has been applied to FTIR spectra 

previously, to aid in clustering and classification [134]. PCA reduces this data into a 

lower number of dimensions, known as principal components (PCs), which are 

output in decreasing order of variance and are linearly uncorrelated. In order to 

determine the PCs of a data set, first the covariance matrix, Cx, is calculated by 

transforming the normalised original data matrix such that their covariance is 

represented within a diagonal matrix: 

𝐶𝑥 =  
1

𝑛−1
(𝑋 − 𝑋)(𝑋 − 𝑋̅)𝑇     (3.1) 

where 𝑋 is the m  n original data matrix, m is the number of measurement types, 

n the number of samples and where each column of 𝑋 is a mean value of 𝑋. From 

this, the eigenvalues and eigenvectors are calculated and sorted from largest to 

smallest based on their eigenvalues. This creates an m  m matrix whose rows each 

represent a value along a given PC. 

This linear transformation projects the data onto a new coordinate system, where 

the greatest variance within the data is exhibited across the first coordinate system 

PC1, second over PC2, etc. A schematic example is shown within Figure 3.4, where 

a set of data points, represented in two dimensions can be processed using PCA, 

and the new PCA dimensional axis can be used to represent the data, with the 
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maximum variance of the data shown along PCA dimension 1, and the orthogonal 

axis representing the 2nd PCA dimension. 

 

Figure 3.4: Principal Component Analysis Example. Simple 2D PCA example for a 
collection of data points. Using PCA, the data can be projected onto new dimensions, 
PCA Dimension 1 and 2, which represent the greatest variance within the original data. 

Although each of these PCs does not represent a physical value, such as a given 

intensity at a specific wavenumber, it separates the data to find the maximum 

variance, allowing for any hidden distinguishing features to be extracted. PCA is 

used as a pre-clustering step, aiming to reduce the 1667-dimensional full spectra 

data. Following this dimensional reduction, the PCs which corresponded to >95% of 

the variance were selected, with k-means clustering then applied to the reduced 

data set, as described in 3.2.4. The combination of k-means clustering and PCA is 

suitable for the low sample numbers within this study and is common in biological 

spectral analysis [135, 136]. 
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3.3 Results and Discussion 

3.3.1 K-means clustering optimisation 

K-means clustering is an unsupervised learning algorithm that aims to collect similar 

data into k groups. The initiation of this algorithm uses a random cluster centroid, 

meaning the start location for each cluster will vary each time the algorithm is ran, 

potentially producing different final cluster, so repeat runs of the clustering are 

required to collect the optimal outcome. In order to quantify this parameter, the 

modal clustering method is used. The modal cluster is defined as the highest 

occurring clustering outcome across a series of algorithm repeats, with its frequency 

also used for optimisation. This frequency, at which the modal cluster occurred, was 

recorded for an increasing number of clustering repeats. The optimal number of 

clustering repeats was defined by the modal frequency varying by <0.5%, which 

occurred at 10,000 repeats for both 2 and 3 clustering groups (Figure 3.5). This 

figure depicts the modal cluster frequency for both the 2 cluster (red line and left-

hand y axis) and 3 cluster (blue line and right-hand y axis). At lower numbers of 

repeats, the modal clustering frequency varies greatly, showing the data is 

dependent on the initial clustering values. The larger number of repeats appears to 

stabilise this result, confirming the modal cluster. 
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Figure 3.5: k-means optimisation. Due to the random initiation of clusters in the k-means 
algorithm, repeats are required to improve the accuracy of the result. The optimal 
clustering repeat number was determined when the frequency of the modal cluster varied 
by <0.5%, which occurred at 10,000 repeats for both 2 and 3 initial clusters. 

 

3.3.2 Data selection 

Figure 3.2 shows the full spectral results of both the absorbance spectral data and 

the vector-normalised 1st derivative (VN1D) data. Both data sets, along with the PCA 

data from the VN1D spectra, were subjected to the k-means clustering algorithm in 

order to cluster the spectra into different pathological outcomes. Initially, an 

investigation into the separation of the data into two clusters, regular and irregular 

wound healing, denoted as green and red in Table 3.1 was performed. For each 

data set, the modal cluster is shown, and compared to the ground truth pathological 

outcome as determined by the attending surgeon. The frequency at which the modal 

cluster occurred within the 10,000 repeats is also shown. This process was then 
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repeated for the k=3 models, with green, yellow, and red colours denoting the 

regular healing, delayed and dehisced data respectively. 

3.3.3 K-means clustering 

Two cluster analysis 

The simple absorbance data produced a modal clustering which contained both 

false negatives and positives, and a low model clustering frequency of only 16.14%. 

An improvement was observed when the VN1D data was analysed with an increase 

in the modal clustering frequency and a reduced number of false negatives; 

however, a much greater improvement was made when PCA is applied to this data.  

Clustering of this data set produced a 97.51% modal cluster which correctly 

clustered two of the three healed wounds, observed in Figure 3.2 B and D.  The use 

of the whole data set also produced an improved modal clustering than the reduced 

data set containing the FTIR spectra from 3500-3000 cm-1, suggesting additional 

discriminative information lies outside of this observed region of interest. 

Data Set Modal Wound Cluster Modal Cluster 
Frequency 

Ground Truth A B C D E F G N/A 

Absorbance        16.14% 

Vector-normalised 
1st derivative 

       26.69% 

PCA of VN 1st 
derivative 

       97.13% 

PCA of VN 1st 
derivative (3500-
3000 cm-1) 

       95.51% 

Table 3.1: k-means results for k = 2 clusters. Regular healed wounds are denoted in ‘green’, 
while irregular healed wounds (delayed and dehisced) are denoted in ‘red’. Following 
10,000 repeats of the clustering algorithm, the modal cluster and modal clustering frequency 
for different data sets are shown. 
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Three cluster analysis 

Although the two-class clustering provided an accurate method for detecting two of 

the three healed wounds, without the need for human spectral assessment, three 

class clustering could detect and cluster the three different pathological outcomes 

observed within the biopsy data set. The results for k=2 clustering demonstrated the 

presence of additional information within the full spectral region obtained by the 

FTIR, therefore only the three full spectra data sets were analysed with three-class 

clustering, with the results shown in Table 3.2. The PCA data from the VN1D spectra 

accurately clustered the three healed samples correctly but produced a false 

positive result for wound sample G, which clustered as a delayed sample. This 

modal cluster was also seen in the VN1D data set alone, but with a lower modal 

clustering. 

Data Set Modal Wound Cluster Modal Cluster 
Frequency 

Ground Truth A B C D E F G N/A 

Absorbance        8.32% 

Vector-normalised 
1st derivative 

       10.02% 

PCA of VN 1st 
derivative 

       68.5% 

Table 3.2: k-means clustering results for k=3 clusters Regular healed wounds are denoted 
in ‘green’, while delayed wounds are shown as ‘yellow’ and dehisced are denoted in ‘red’. 
Following 10,000 repeats of the clustering algorithm, the modal cluster and modal clustering 
frequency for different data sets are shown. 

The seven different wound samples can be visualised in their respective clusters by 

displaying the data along the first two principal components (Figure 3.6). Although 

this clustering does not accurately group all the biopsies, the three wounds that 

healed regularly were separated successfully. 
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Figure 3.6: Three cluster PCA visualisation. Following the application of principal 
component analysis to the vector normalised 1st derivative data, the seven different 
wound samples are clustered into three separate groups, corresponding to the difference 
pathological outcomes. Only wound G is incorrectly clustered when comparted to the 
ground truth labels. This cluster was observed as the modal cluster with a frequency of 
68.5%.  

 

3.4 Conclusion 

Seven wound biopsies taken from blast injuries were analysed using FTIR 

microscopy in the mid-infrared region. Visual inspection of a key region, 3500-3000 

cm-1, showed spectral differences for two of three samples which observed regular 

healing. However, the third healed biopsy, along with the others which observed 

delayed and dehisced healing were indistinguishable, and manual inspection of 

spectra is not suitable for a larger data set. Clustering, via the k-means algorithm, 

was applied to the spectra, along with principal component analysis, a 

dimensionality reduction technique. These machine learning techniques were 

applied to group similar spectra for diagnostic purposes. With two clusters, the same 

result occurred, with two of three healed samples being identifiable. With three 
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clusters, following the application of PCA, the three healed wound samples were 

separated from the others in the modal cluster, demonstrating the ability of intelligent 

data analysis methods using dimensional reduction and ML based methods for 

improving diagnostics. However, the two other pathological outcomes were not fully 

matched correctly. Additionally, with only seven samples examined, classification 

methods were not suitable due to a lack of training data, and the reliability of the 

clustering methods described would need to be tested further. Despite our best 

efforts, additional samples were not available due to reasons beyond our control. 

Nevertheless, the work has shown a possible method for discrimination and 

clustering of FTIR spectra, which is not reliant upon a subjective clinical diagnosis. 

Alongside this, clinical colleagues have identified the essential need for non-invasive 

non-contact imaging methods for guided wound debridement which can be 

seamlessly integrated into the field. Future work will focus upon control of the levels 

of trauma each sample receives through lab-based trauma inducing experimental 

methods for cellular studies and performing a larger study to increase the sample 

size. Investigations into wound relevant cell cultures will look at spectral changes 

between healthy and traumatised cells, with the levels of induced chemical trauma 

controlled and independently verified, all of which are the topic of the following 

chapter. 
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Chapter 4 
 

4 Negative Contrast Imaging Cellular Health 

The previous chapter highlighted the ability of machine learning based methods for 

intelligent spectral data analysis, performed upon a small set of human tissue 

samples, imaged as part of a previous study [94]. Due to the limited sample number, 

alongside the requirement to control the sample trauma for investigations into 

differing cell trauma methods, the following work utilises cell cultures models for 

trauma analysis. An introduction into the motivation beyond the use of in vitro trauma 

models is presented, along with an outline of the methods used. This, alongside the 

use of the NCI device to collect spectral information of varying cell trauma models, 

generates the data for which the previously described data analysis methods are 

applied and modified for the larger data set. This work has been published in PLOS 

ONE under the title ‘Machine learning utilising spectral derivative data improves 

cellular health classification through hyperspectral infra-red spectroscopy’ [127]. 

4.1 Introduction 

IR hyperspectral imaging and spectroscopy methods have been used widely in 

clinical applications for a variety of medical problems since the 1990s [137]. One of 

the most common areas for this technology is within the field of wound healing and 

diagnostics, covering a range of medical applications including diabetic foot ulcers 

[138] and burns [139]. These methods detect spectral information, such as those 

discussed in 2.1.3 from the underlying biology and assess differences between 

healthy and non-healthy tissue and their cellular constituents. Despite these 
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advances, many of such methods are still focused upon the NIR optical window, 

while there has been some insight into the SWIR region, incorporating 900 to 2500 

nm [140]. This has also been extended further into the MWIR region with both IR 

and Raman microspectroscopy [141], but little work has been done using macro 

tissue or cellular models. 

Spectroscopic imaging in the extended IR region, beyond the conventional NIR 

methods used, requires additional considerations for both sample preparation and 

imaging methodology. Due to the high absorption of water within this region, 

biological samples are often chemically ‘fixed’ to remove the unwanted water 

signature [142], however this process can also remove significant spectral features, 

such as water concentration itself, along with degradation of the cell membrane 

which effects lipid concentrations, for accurate classification [143, 144].  Despite 

these challenges, imaging further into the IR window would provide complimentary 

information about specific spectral features such as lipids, collagen and other 

cellular constituents for clinical diagnostics, alongside current imaging modalities 

including SFDI [145], LDPI [71] and thermography [146], which are more readily 

available. 

Most methods used to date investigate ex vivo tissue samples only, which contain 

multiple signals from bulk tissue, such as cells, blood and other tissue constituents. 

These mixed signals are difficult to separate, prompting work towards in vivo 

methods of individual elements contributing to detectable spectral features. Live cell 

imaging methods have been advancing in the last two decades, through the use of 

microspectroscopy and Raman spectroscopy [146, 147]. These also often require 

specialised cell preparations, including fixing and drying of samples, which have 
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been shown to exhibit a loss in cellular content, effecting the resulting IR spectra 

and detectable contrast [144]. More recently, the work has moved towards custom 

imaging systems for live cell analysis, such as the use of narrow viewing windows 

and IR transparent housing [148]. It has been shown that in both the SWIR and 

MWIR, spectral regions of interest corresponding to lipids (1200, 1400, 1700, and 

3333-3533 nm), collagen (1200 and 1500 nm) and other cellular constituents are 

detectable [147, 149, 150]. These studies highlight the need for further inspection 

into the IR region, with the need to target several different wavelengths of interest 

across a broad spectral range using a hyperspectral approach that will maximise 

signal contrast and features, while minimizing signal contamination from its local 

sampling environment. 

Compared to the methods discussed, hyperspectral methods utilise up to three 

orders of magnitude more wavelengths, vastly increasing the size and 

dimensionality of the resulting data-set. This subsequently creates an additional 

need for intelligent data analysis, which was introduced through the concepts of 

classification and dimensionality reduction in Chapter 3, to produce both reliable and 

easy-to-interpret results for the clinical setting. In traditional clinical imaging, simple 

statistics such as mean values, standard deviation and range, of simple detectable 

characteristics such as intensity of each pixel within a single image, or the 

differences across a temporal data-set, are used to aid clinical diagnosis. However, 

for larger dimensional data-sets this provides a challenge with the increased number 

of variables and dependability of these values across samples, imaging environment 

and sample preparation, i.e., signal contamination. The use of machine learning 

(ML) in medical applications is not new [151], although the majority of these methods 
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use supervised learning approaches, which require large data-sets, which are not 

often available within pre-clinical studies, where these methods are typically 

developed. Unsupervised methods, such as clustering, alongside dimensionality 

reduction methods, offer an alternative; these require reduced data-sets removing 

any bias created in the supervision stage [152]. 

K-means clustering provides a method in which a pre-defined number of clusters 

can be used. For a binary diagnostic problem of healthy versus traumatised as used 

for this study, k=2, where k is the number of required clusters, creating a two-cluster 

problem designed for the separation of the two different cell states. K-means is often 

used in medical image processing to provide an improvement in image 

segmentation of different tissue types or classes, where ML tool is specifically 

applied to increase the accuracy of  segmentation, as well as the total throughput of 

images as compared to human image analysis [153]. K-means has also been 

applied in the field of spectral analysis for clinical diagnosis, with endoscopic 

imaging producing a large spectral data-set, which were sampled and analysed 

using a pre-determined number of clusters to represent the different clinical 

diagnoses [154]. These applications, although just an example and not completely 

covering the vast amount of work undertaken in this field, highlight the ability of k-

means clustering as an intuitive, controllable, and simple method for grouping 

similar data for diagnostic purposes. 

PCA is an additional tool used for high dimensional data to aid in the 

clustering/classification process. PCA reduces the dimensionality of the data by re-

representing the information onto a set of principal components that highlight the 

largest variability within the data-set [155]. PCA is often used in Raman 
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spectroscopy applications, for example, where spectral information is collected from 

different biological systems, such as single cells or tissue samples, with many high 

dimensional spectra collected from each system. PCA aids in the extraction of the 

differences between the obtained spectra, whilst reducing the dimensionality, aiding 

further with the post-processing computational time [156] and is commonly applied 

in spectral analysis prior to k-means clustering [135].   

All the clustering methods outlined above utilise data from an imaging modality 

which typically undergoes pre-processing to improve clustering output, such as 

background noise removal, spectra/temporal smoothing, bias removal and 

averaging. Such data pre-processing converts raw measured data to different ‘data-

types’ typically containing different information content. The use and effect of such 

data-types and utilisation of any clustering algorithm, then itself becomes an 

important issue to better understand the information content and feature selection 

for classification.  

Here a combination of the use of IR hyperspectral imaging within the SWIR/MWIR 

window is presented alongside the use of unsupervised machine learning methods 

for diagnostic analysis. The combination of these two techniques, which combines 

the imaging method’s ability to detect subtle spectral differences between cell 

culture models and the ability of ML to identify and classify these, produces a novel 

approach for the detection and diagnosis of cellular health. A live cell model was 

created, containing cells of relevance to wound biology and with facets that 

permitted interrogation in the mid-IR range and cell death induced. Spectral data 

was collected from live and dead/dying cells with the aim of determining spectral 

differences and grouping the two different cell states. K-means clustering and PCA 
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were applied to different data-types, to determine which method provides the most 

accurate and reliable diagnostic tool. The aim of this work is to provide a binary 

clustering tool for the diagnosis of the state of cell health. Following clustering, the 

use of a-posteriori information allows for a quantifiable comparison of the 

diagnostics tools ability to accurately diagnose the two different cellular health 

states. 

4.2 Methods 

4.2.1 Cell culture 

Human dermal fibroblast (HDFa, Gibco) cells were cultured in 12-well Costar 

Transwell inserts with a polyethylene terephthalate (PET) membrane (Corning) in 

Medium 106 supplemented with Low serum growth supplement (all Gibco) at liquid-

liquid interface (LLI) (4 inserts/plate). Growth medium was removed from inside the 

insert and reduced to 0.5 mL below the insert to achieve air-liquid interface (ALI), 

immediately before infrared imaging (Figure 4.1).  

 

Figure 4.1: Air-liquid interface cell insert. Schematic representation of cells upon the air-
liquid interface (ALI). The standard cell well is shown as dark grey, with the insert 
represented as the dark grey, which the cells, green, attach to. 



79 
  

Conditions for inducing necrosis and apoptosis were derived from the literature and 

confirmed for this cell line [157, 158]. Cells were seeded at 1 x 105 cells/cm2 and 

incubated at 37˚C, 5% CO2 overnight for at least 90% confluency the following 

morning. Necrosis was induced using 0.01% (v/v) Triton X-100 (TX100, Sigma) for 

1 hr in serum free media (SFM) or 5 mM H2O2 in DMEM (Sigma) for 4 hr. Apoptosis 

was induced using 100 μM H2O2 for 4 hr. Cell death was confirmed by staining with 

Calcein AM (Invitrogen) and propidium iodide (Sigma), or Apoptosis/Necrosis 

Detection Kit (Abcam). For each experimental data set collected (biological 

replicate), two technical replicates were completed each for untreated, healthy 

controls, and treated samples. This imaging set-up was repeated for each of the 

different trauma types applied. A total of 18 repeats were collected across the three 

different trauma protocols, creating 72 (18 x 4) insert measurements of 36 healthy 

and 36 traumatised cell cultures. 

4.2.2 Cell Staining 

To confirm the apoptosis or necrosis of the cells following treatment, cells were 

stained with culture medium containing 2 μg/ml Calcein AM and 2 μg/ml propidium 

Iodide, or the Apoptosis/Necrosis Detection Kit according to manufacturer’s 

protocol. Cells were visualised using an ImageXpress Pico cell imager (Molecular 

Devices). Figure 4.2 shows an example of the staining images collected for both the 

Triton X-100 and 5 mM H2O2 Apoptosis/Necrosis Detection Kit. The green CAM 

stain highlights the live cells, while the red PI stain the necrotic. Theses stains, along 

with those for apoptosis, confirmed the correct levels of chemical trauma were 

applied for the desired cellular health outcome. This further highlights the 

importance of an objective method for classification, with only estimates of the 
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quantification of cellular death possible, along with the importance of non-invasive 

imaging methods suitable for in vivo techniques, in contrast to the cell staining 

utilised here. 

 

Figure 4.2: Necrotic cell staining. Confirmation of cellular trauma was achieved through 
the staining of treated cells. Necrotic staining was achieved using an Apoptosis/Necrosis 
Detection Kit (Abcam), with CAM stain (green) and PI stain (red) for the live/necrotic cells, 
respectively. These staining images show both the Triton X-100 and higher concentration 
of H2O2 produced >99% necrosis within the culture. 
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4.2.3 Negative Contrast Imaging (NCI) System Set-up 

Hyperspectral images of the 12-well plates for the trauma study were collected using 

a prototype NCI device [96]. This NCI device, developed by M-Squared Lasers 

(Glasgow, UK), is a reflectance imaging device that collects hyperspectral images 

from illumination in both the SWIR/MWIR and has been used to identify spectral 

differences between wound biopsies, with seven human samples being imaged to 

predict their wound healing outcome [94]. 

Preliminary data was collected from the NCI, to identify image quality and 

characteristics. One clear issue was a spatial distortion present within all collected 

images, independent of system zoom or wavelength. This distortion originates from 

the hysteresis of the galvanometer actuated mirror at its turning points. This 

distortion was corrected in collaboration with M-Squared and is outlined in Appendix 

A.2. Alongside this correction, the placements of the external optical components 

were optimised for the imaging of cell culture systems. 

Figure 4.3 shows the optimised system set-up for imaging of the cell inserts. The 

NCI device (1) outputs light at discrete wavelengths which then propagates to a gold 

coated steering mirror (2). This mirror reflects the light into the custom-built imaging 

housing (3), which maintains the sterile environment for the cell culture. The housing 

has a built-in calcium fluoride (CaF2) viewing window (4), which is transparent within 

the wavelength region used for this study. Preliminary testing of reflectance 

phantoms within the custom-built housing was performed to assess the effects of 

any stray light and ensure the correct alignment of the gold-coated steering mirror 

and CaF2 viewing window.  
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Figure 4.3: Negative Contrast Imaging (NCI) system set up. Images A and B show the 
set up used for collecting the hyperspectral images of the 12-well plates containing the 
cellular inserts. (1) Main NCI device (2) Gold coated steering mirror (3) Custom built 
imaging box (4) Calcium fluoride window. 

 

A schematic representation of the same set up is shown in Figure 4.4, including the 

inner workings of the NCI, used to collect the hyperspectral data for each sample. 

All elements housed within the NCI device are contained by the dashed box, and a 

full technical description has been previously published [94]. The Intracavity Optical 

Parametric Oscillator (ICOPO) provides with illumination in the MWIR range used 

for this study (1). The outgoing beam is directed using an internal gold coated 

steering mirror (2) towards the two galvanometer mirrors controlling the y-axis (3) 

and x-axis (4) before leaving the NCI housing. The beam then propagates towards 

the external gold coated steering mirror (5) which directs the beam vertically towards 

the sample. The custom-built sterile chamber (6) contains a CaF2 IR transparent 

optical window (7) allowing the transmission of the beam to the sample (8). The 

reflected light then travels back to the NCI system via the external steering mirror 

(5) and is directed towards the detection optics with the two galvanometers (4) and 
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(3) internally. A CaF2 focusing lens (9) is then used before the reflectance signal is 

collected by a Zn doped MCT detector (10).  

 

Figure 4.4: Schematic Negative Contrast Imaging (NCI) system set up. (1) The Intracavity 
Optical Parametric Oscillator (ICOPO) provides the IR illumination for measurements. 
The (2) gold coated steering mirror, (3) y-axis galvanometer mirror and (4) x-axis 
galvanometer mirror are also housed in the NCI system. (5) External gold coated steering 
mirror, (6) custom built transport chamber, (7) Calcium Fluoride (CaF2) viewing window 
all allow for the imaging of the (8) sample, within a sterile environment. The reflected light 
then retraces its path before passing through a (9) CaF2 focusing lens and onto the (10) 
MCT detector.  

Images were collected using the NCIs built-in spectroscopy mode. The image 

resolution was selected at the highest possible resolution, 512 × 512 pixels, with the 

largest system magnification generating a field of view of 550 × 550 mm, resulting 

in a pixel size of 0.93 mm. Within imaging mode, the range and spectral resolution 

can be controlled, with 2500–3500 nm at 10 nm chosen respectively giving a total 

of 101 wavelengths. These settings, along with the raster scan speed of the NCI, 

resulted in a total imaging time of <7 seconds per image, including data transfer. 

These spectral images were then combined to produce a 3D data hypercube for 

analysis. 
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4.2.4 Image Analysis 

Image analysis and the resulting ML applications were all performed using MATLAB. 

The data was grouped to form a 3D hypercube with x and y dimensions of each 

image corresponding to the first two dimensions (512 × 512), and the wavelength 

corresponding to the third (101). Each 3D data hypercube (512 × 512 × 101) was 

analysed individually to extract the spectrum for each of the 4 different inserts in the 

NCI field-of-view. Example images are shown in Figure 4.5 as taken at 2500, 2800 

and 3450 nm to highlight the differences between the healthy (Blue) and traumatised 

(Red) ‘Raw’ spectra, with the standard deviation shown, representing a sample from 

the 101 images which make up the hypercube for each sample. For each insert, a 

region of interest (ROI) based on a-priori knowledge for the location of the well was 

drawn with specific attention to ensure exclusion of the region of internal reflection 

from the source within each well and contains all pixels within and on the dashed 

lines. This can be observed in the images as the area of saturation in the right-hand 

side of each of the 4 inserts, creating a ‘C’ shape area for each ROI. This region 

was first outlined using the 2500 nm image to identify the bounds of the cell inserts, 

which was clearly visible at this wavelength. The exclusion region was then 

identified using images at the higher wavelengths and systematically checked at 

different wavelengths to ensure no internal reflection is part of each insert ROI. 
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Figure 4.5: 3D Hyperspectral data cube. Visual representation of three example images 
from the NCI imager forming a 3D hypercube. The corresponding ‘Raw’ spectra of the 
mean of each ROI is also shown. The blue spectrum represents a healthy sample, and 
the red a traumatised sample treated with Triton X. A region of interest is obtained for 
each insert to collect the spectra from each sample, removing the spectral contribution of 
the internal reflection saturating the detector. This can be observed in the right-hand side 
of each well within the images. 

These ROIs are then propagated throughout the hypercube for each data set, to 

resample the full spectra from each insert, within all 18 repeat measurements for 

the three different trauma protocols, which were then analysed by combining the 72 

(18 × 4 inserts) individual ROI spectra to generate the large data-set containing all 

the combined 36 healthy and 36 traumatised samples. 

4.2.5 Machine learning for cellular health detection 

Once the spectra for each sample had been obtained, the next step was to assess 

different pre- and post-processing methods for the measured and re-sampled raw 

data. Using the knowledge gained from data processing in Chapter 3, a variety of 

different methods were applied, which are next outlined. 
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Data Pre-processing 

Three different pre-processing methods have been used in this study, which were 

combined to generate four additional data-types, alongside the conventionally used 

raw ROI mean. The first involved utilisation of the ‘smoothts’ function within 

MATLAB to smooth the spectra for each data set. This function was chosen due to 

its ability to control the size and characteristics of the smoothing function, as 

compared to other available smoothing functions. A 5-point window size was used 

along with a gaussian smoothing function with a 0.5 standard deviation, which was 

applied to each spectrum from the ROI of the corresponding insert. Each smooth 

spectral point, RS(λ), was calculated as follows, 

𝑅𝑆(𝜆) =  ∑ 𝑅(𝜆) ∙ 𝐺𝜆+2
𝜆−2 ,     (4.1) 

where, 𝑅(𝜆) is the raw reflectance data at wavelength 𝜆 and 𝐺̂ is the normalised 

gaussian function in 1D, with a window size 5, standard deviation of 0.5, as 

implemented within the ‘smoothts’ MATLAB function. These window parameters 

were chosen to reduce the noise within each spectra, whilst maintaining the 

dominant spectral features. 

The second method applied was a simple background correction, which allows for 

the consideration of any spectral contributions from both the cell trauma method as 

well as the cell inserts. A supplementary data set was also collected for the three 

different trauma types and healthy controls. For each of these, the treatment media 

was applied to the standard four inserts set up, with no cells seeded. The same 

spectra, using the NCI, were collected and the spectra of each of the four inserts 

were then averaged (mean) to generate the background spectra for subtraction. 

Each spectra from the inserts containing live cells were then simply matched with 
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the corresponding media background spectra, which was then subtracted for each 

wavelength to generate the background subtracted data-type, RBG(λ). 

𝑅𝐵𝐺(𝜆) =  𝑅(𝜆) − 𝑀(𝜆)     (4. 2) 

where, 𝑅(𝜆) is the raw reflectance data and 𝑀(𝜆) is the reflectance data from the 

corresponding media only spectrum from the same trauma method at wavelength 

𝜆. As the cell insert preparation protocol is independent of the trauma method, 

removal of the background will highlight the differences between the healthy and 

traumatised sample spectra only and should remove any contributions from the cell 

trauma method or cell culture plastics/insert. Each of these three data-types are 

shown in Figure 4.6 A for comparison, showing a single traumatised spectrum. 
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Figure 4.6: Pre-processing data-type visualisation. A: Spectral comparison between the 
‘Raw’, smoothed and background subtracted data-types for a single traumatised 
spectrum. B: Spectral derivative comparison for both the smooth and background 
subtracted data sets shown in A. 

The final pre-processing applied was to calculate the spectral derivate of each data 

set. Derivative spectroscopy methods have been used since the 1950s, becoming 

more common place in the 1970s with the increased computational power available 

at the time. These methods are now common place in a variety of disciplines to 

eliminate any background signals and for resolving overlapping spectral features 

[159]. While these methods can be shown to amplify noise, derivative- based 

methods consider the direct relationship between the nearest neighbour wavelength 

measurements and hence can account for any spectrally independent systematic 

noise [160, 161]. This includes the field of wound healing, where derivative spectral 

methods have been utilised in Fourier Transform Infrared Spectroscopy for the 

classification of the spectral patterns for burn wound healing [162]. The spectral 

derivative, 𝑅𝑆𝐷(λ) can be calculated as show in Equation 4.3 below, 
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𝑅𝑆𝐷(𝜆) =
𝑑𝑅

𝑑𝜆
=  

𝑅(𝜆+1)−𝑅(𝜆)

(𝜆+1)− 𝜆
,     (4. 3) 

where 𝑅(λ) is the reflectance spectral value at a given wavelength λ. This method 

was applied to both the smoothed and BG subtracted data, generating the four 

additional data-types mentioned, which along with the raw ROI mean data, make up 

all the data-types tested for this study. An example of the 1st derivative of the 

smoothed and background subtracted spectra example are shown in Figure 4.6 B. 

Post Processing 

Each of the five data-types outlined above, also shown in Table 4.1 , were also 

subjected to two different post processing steps, clustering, and PCA-clustering, 

which have been described fully in Chapter 3. The popular k-means clustering 

algorithm, first described in the late 1960s [163], has been used to separate the data 

into ‘healthy’ and ‘traumatised’ clusters, which was then compared to the ground 

truth labels. For this study, two clusters (k=2) were considered to represent the 

‘healthy’ and ‘traumatised’ groups. The k-means clustering was applied to each of 

the five different pre-processed data-types to generate the clustering labels needed 

for their comparison. Due to the initial random assignment of the initial k cluster 

centres, the results can be subject to variation. Therefore, the k-means process was 

repeated 5000 times, producing a ≤1% variation in the clustering frequency, which 

was then defined as the number of times the modal clustering arrangement was 

reached divided by the total number of k-means repeats. 
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Pre-Processing Data-type 

Post-Processing Data-

type 

k-means PCA and k-

means 

‘Raw’ 98.5 98.2 

Smoothed 93.0 99.3 

Background Subtracted 100.0 100 

Spectral Derivate of Smoothed 47.6 34.7 

Spectral Derivative of Background Subtracted 52.1 39.6 

Table 4.1: Clustering frequency results for each of the pre- and post-processing data type. 

The second and final post processing method applied was using PCA [164]. This 

dimensionality reduction technique was applied to each of the five different pre-

processed data-types, reducing the original N-dimensional data set, N = 101, to that 

in which has M dimensions, representing ≥95% of the variance, such that M<<N. 

When the dimensionality of this data is high, these metrics can be affected by the 

sparsity of the data across all dimensions, resulting in poor clustering, an attribute 

of the ‘curse of dimensionality’. The use of PCA in wound healing hyperspectral 

imaging has been shown for the prediction of healing in diabetic foot ulcers, along 

with a threshold value for oxygenation or given principal components as a 

classification tool [111]. Research into clustering within high dimensional data has 

shown that, in general, reducing the number of dimensions improves the clustering 

using simple distance metrics, such as the cosine distance used in this study, but 

there is no general ‘one size fits all’ rule which can be applied to all data sets [165]. 

Therefore, both the full dimensional data sets, and those reduced by PCA were 
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analysed to determine the optimal procedure to correctly cluster the two different 

cellular health states. A full breakdown on the data collection process is shown in 

Figure 4.7.  

 

Figure 4.7: Data collection workflow. (1) HDFa cells are seeded onto 12-well plate inserts. 
(2) Cultured overnight until >90% confluent. (3) Treated with cell trauma inducing agent. 
(4) Incubated for 1-4 hours dependent upon cell trauma agent. (5) Cell staining to confirm 
apoptosis/necrosis levels. (6) Reduction of growth medium to 0.5 mL for imaging 
preparation. (7) Transfer to imaging box for NCI data collection. (8) Image collection using 
NCI SWIR/MWIR detector. (9) Images analysed to produce cell spectral data. (10) Pre- 
and post-process spectral analysis.  

4.3 Results 

To compare the clustering results of each of the different data-types, two additional 

metrics were used alongside the clustering frequency. Using the known status of 

each sample class, healthy or traumatised, two metrics for quantifiably comparing 

the clustering results were created. These are called Trauma Clustering Index (TCI) 

and Healthy Clustering Index (HCI) are defined as follows: 
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𝑇𝐶𝐼 =
# 𝑇𝑟𝑢𝑒 𝑇𝑟𝑎𝑢𝑚𝑎 𝑆𝑎𝑚𝑝𝑙𝑒

# 𝐹𝑎𝑙𝑠𝑒 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 + # 𝑇𝑟𝑢𝑒 𝑇𝑟𝑎𝑢𝑚𝑎 𝑆𝑎𝑚𝑝𝑙𝑒
    (4.4) 

𝐻𝐶𝐼 =
# 𝑇𝑟𝑢𝑒 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑆𝑎𝑚𝑝𝑙𝑒

# 𝑇𝑟𝑢𝑒 𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝑆𝑎𝑚𝑝𝑙𝑒 + # 𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑎𝑢𝑚𝑎 𝑆𝑎𝑚𝑝𝑙𝑒
.     (4.5) 

Here, a true trauma sample result is one in which a traumatised sample is clustered 

with a majority of other samples which also contain the trauma label, while a true 

healthy sample is one where a healthy sample is clustered with a majority of other 

samples containing the ‘healthy’ label. These two metrics were chosen to provide 

additional information about the accuracy of the binary clustering algorithm used 

within this study, by quantifying the algorithms’ ability to cluster spectra of the same 

class in the same clusters. Taking a combination of both TCI and HCI, an estimation 

of the accuracy of the clustering using the previously known labels can be made. 

This accuracy is defined as the mean of the two metrics. An ideal medical diagnostic 

test will be 100% accurate, i.e., all healthy patients will be identified as healthy, and 

all diseased as diseased, with no incorrect diagnosis. An accuracy of 100% is highly 

unlikely, requiring careful consideration of any given tests reported accuracy value. 

By considering the TCI and HCI of this diagnostic tool individually, a quantification 

for the number of false positives and negatives has been shown. This is important 

for this diagnostics tool, as the treatment, or lack of, to an incorrectly diagnosed 

diseased state can have detrimental effects on a patient’s outcome. 

Figure 4.8 shows the results for each of the five different data-types being processed 

directly by the k-means algorithm. Here, the raw mean, smoothed and BG 

subtracted all exhibit clustering frequencies of >90%, however show low scores, 

<25%, for either TCI or HCI. The spectral derivate of the smoothed data showed an 

improvement upon the three previous datatypes, with all three metrics above 40%, 

although the TCI is still below 50%. The most promising result comes for the spectral 
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derivate of the BG subtracted data set. Here, both the TCI and HCI were >94%, 

while the clustering accuracy was above 50%. 

 

Figure 4.8: Non-PCA data analysis. Three different metrics, clustering frequency 
(Orange), TCI (Blue) and HCI (Grey) were used to quantitatively compare different data-
types obtained from the raw hyperspectral images. 

This clustering was repeated for each of the five different data-types following the 

application of dimensional reduction, through the implementation of PCA. The 

number of principal components (PCs) for each data set was chosen such that 

>95% of the variance within the data set was represented, resulting in 4–14 PCs 

being considered, reducing the dimensionality from the original 101 dimensions, 

representing each of the wavelengths collected. The cumulative variance plots for 

each of the five different pre-processing types are shown in Figure 4.9, with the 95% 

threshold represented by a dashed line. 
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Figure 4.9: PCA cumulative variance. For the five different pre-processing data-types, the 
plot of the principal components (PC) against the cumulative variance is shown. Each 
data-type was represented by the PC number which incorporated >95% of the variance 
in the PCA and k-means study. 

For each of the PCA reduced data sets, the results are shown in Figure 4.10. Again, 

the five different data-types were compared using the clustering frequency, TCI, and 

HCI. Similar results were observed for the first three data-types; raw mean, 

smoothed and BG subtracted. These showed a high clustering frequency of >90%, 

along with a low, <20%, TCI and HCI. An improvement was seen with both the 

spectral derivative data-types. The spectral derivative of the smoothed data 

provided both a TCI and HCI of ~50%, while the clustering frequency was observed 

to be half of that seen in the non-PCA equivalent. As with the non-PCA result, the 

data set with the highest values for both TCI and HCI were found to be the spectral 

derivative of the BG subtracted data. Both values were >90%, although were slightly 

lower (0.3–1.1%) than the non-PCA data set, and the clustering accuracy was 

greatly reduced to <40%. 
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Figure 4.10: PCA Data Analysis. Three different metrics, clustering frequency (Orange), 
TCI (Blue) and HCI (Grey) were used to quantitatively compare different data-types 
obtained from the raw hyperspectral images, following PCA dimensional reduction, with 
>95% of the data variance retained. 

4.4 Discussion 

4.4.1 Algorithm 

The spectral derivative of the background subtracted data has been shown to be an 

effective and reliable tool for diagnosing healthy and traumatised cellular samples. 

Any binary diagnostic test, such as one to define if a sample is healthy or not, can 

have its accuracy quantified using both TCI and HCI. For example, a test which has 

a low TCI and a high HCI, while accurate in labelling healthy samples correctly, the 

inability to identify traumatised samples would render the test unsuitable as a 

diagnostic tool. This outcome was observed in raw mean and smoothed data-types 

of the clustered (Figure 4.8) and PCA-clustered (Figure 4.10), with the full results 

shown within Tables 4.1-4.3 for the clustering frequency, TCI, and HCI respectively. 
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Pre-Processing Data-type 

Post-Processing Data-

type 

k-means PCA and k-

means 

‘Raw’ 17.8 17.8 

Smoothed 22.5 16.9 

Background Subtracted 97.2 97.2 

Spectral Derivate of Smoothed 43.9 55.3 

Spectral Derivative of Background Subtracted 97.8 97.6 

Table 4.2: TCI results for each of the pre- and post-processing data type. 

The opposite of this was seen in the background subtracted data, with high TCI but 

low HCI. While accurate at identifying those cells which are traumatised, it is poor 

at confirming cells which are healthy. In a clinical setting, this would translate to the 

potential treatment of healthy samples, wasting resources and time, or in wound 

debridement, to the unnecessary removal of healthy tissue which can cause 

additional problems in the wound healing process and in the patient’s future. 

A significant improvement was seen in both spectral derivative data-types. The 

spectral derivative process adds to the complexity of the data by considering the 

changes in the reflectance spectra between neighbouring wavelengths. Through 

this simple step, additional bands in the data can be detected, and suitable spectral 

features enhanced. A previous study has looked at the effects of smoothing and 

spectral analysis up the exploration of subtle spectral differences [166]. However, 

the algorithms developed and optimised were modified for use with remote sensing 
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data, therefore this study considers a more traditional spectroscopic method via 

hyperspectral image analysis. The outcomes of both this study and that of Tsai et al 

highlights the importance of additional post-processing spectral analysis to improve 

upon the identification of key spectral features [166]. 

Pre-Processing Data-type 

Post-Processing Data-

type 

k-means PCA and k-

means 

‘Raw’ 93.2 93.2 

Smoothed 85.8 94.2 

Background Subtracted 5.6 5.6 

Spectral Derivate of Smoothed 59.7 71.3 

Spectral Derivative of Background Subtracted 94.4 93.3 

Table 4.3: HCI results for each of the pre- and post-processing data type. 

The first spectral derivative data-type to discuss is the smoothed data. Although 

exhibiting a lower value for clustering frequency in both the non-PCA and PCA post-

processing types, at ~50%, this is still a definitive clustering, with the 72 samples 

offering many possible clustering outcomes. Again, the TCI and HCI were around 

50% for the two post-processing types. Despite this improvement, for a binary 

diagnostic test with an even distribution of healthy and traumatised samples, a 50% 

TCI and HCI would be achieved through a random assignment of ‘healthy’ and 

‘traumatised’ clustering labels with a p = 0.5, q = 1-p probability respectively. 
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The final data-type tested was the spectral derivative of the background subtracted 

data. The raw background subtracted data exhibited a high clustering frequency and 

TCI, but the lowest HCI, ~6% for both post-processing types. Despite this, the 

spectral derivative of this data-type showed a significant improvement with the 

values for both TCI and HCI of >90% across all 5000 k-means clustering repeats. 

For the modal cluster, observed at a frequency of 52% and 38% for non-PCA and 

PCA respectively, all traumatised samples were correctly labelled while ≤3 of the 

healthy samples were incorrectly labelled as ‘traumatised’. In terms of a diagnostic 

test for wound healing, this method would provide an accurate and reliable measure 

for determining the status of cellular health. 

For the data reduction method as applied in this study, PCA, the accuracy of the cell 

health clustering was comparable to the non-PCA data equivalents. Although the 

data dimensionality was reduced to as low as 3, compared to the full 101 

wavelengths for the full data, different data reduction methods could also be 

investigated in future studies, with the aim of increased clustering accuracy and 

improved cluster grouping as represented by the silhouette score. Partial least 

squares (PLS) is an additional dimensionality reductions methodology that 

considers the correlation between both the dependant and independent variables, 

unlike PCA which only considers the independent variables [167]. Such methods 

have also been further developed with modified versions for analysis of Raman 

spectroscopy, with improved classification shown [168]. Dimensionality reduction 

could also be explored further through the use of autoencoders, which also consider 

non-linear contributions, although these require additional computation due to its 

neural network design [42]. 
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These results also highlight the methods ability to determine the state of the cellular 

health, independent of the trauma methods applied. Of the three different trauma 

methods used for this study, Triton X and H2O2, at the higher concentration of 5 mM, 

both induced necrosis of the cells. This form of cell death, which is not programmed 

and is unregulated, is different to apoptosis, or controlled cell death, which was 

induced with the lower H2O2 concentration of 100 μM. Despite these two different 

mechanisms, the imaging method and analysis can diagnose the healthy and 

traumatised samples. While the accuracy of the clustering algorithm through TCI 

and HCI calculations provides one metric for quantifiable comparison between data 

types, it is also possible to further assess the quality of each formed cluster. 

Silhouette cluster analysis is a method in which a data point is compared to every 

other within its cluster and a score from -1 to 1 is calculated for each point. A high 

score suggests a data point is closely matched with the other points within its own 

cluster, and a mean score can then be calculated for each cluster to quantify the 

quality of each formed cluster. With the TCI and HCI being the highest for both 

spectral derivative data types, the mean silhouette score for points within each 

cluster is shown in Figure 4.11 (A) for the non-PCA and Figure 4.11 (B) for the PCA 

results. 
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Figure 4.11: Silhouette cluster analysis. Mean data point silhouette score for each point 
within the healthy and traumatised cluster for (A) non-PCA and (B) PCA spectral 
derivative data types. 

The positive mean silhouette score for both of the spectral (the non-PCA and PCA) 

of the healthy samples suggests the formation of good clusters for each of the 

different methods, with this also being observed in the spectral derivative smoothed 

data for the traumatised cluster. However, the data type with the highest TCI and 

HCI, >93% for both non-PCA and PCA, exhibits scores of <0 for the traumatised 

cluster, could demonstrate that the formed clusters are either weak or artificial and 

that k-means clustering may not be the most suitable method as applied in this work. 

This may be due to the formation too few clusters and further work should 

investigate alternative clustering methods, such as hierarchical clustering, in order 
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to determine the optimum number of clusters within each data set and confirm the 

reliability of the clustering algorithms [169, 170].  

As seen in previous literature, the differences between both healthy and traumatised 

cells were detectable within the IR spectral region. The upper band of this study, 

3000–3500 nm, has been investigated through the use of FTIR spectroscopy [147, 

149], with differences attributed to the changes in cellular proteins and lipids during 

the apoptotic and necrotic processes. However, the sensitivity of a FTIR 

spectrometer is much greater than the NCI used here, and differences between the 

sample preparation must also be considered. Specialised sample preparation steps, 

including the drying and fixation of the cell monolayer have to be taken when using 

FTIR spectroscopy, which can affect the resultant spectra [144]. In this study, the 

cells were imaged within aqueous media and grown upon liquid-air interface inserts, 

allowing reflectance measurements to be taken without transmittance through the 

cell media solution. Although this provided a different method for imaging and 

spectral collection, differences between the healthy and traumatised samples were 

detectable, and accurate clustering of the two different cell health states was 

achieved. A comparison between a healthy and traumatised sample is shown in 

Figure 4.12, presenting the spectral derivative of the background subtracted data. 

This highlights a few key considerations and findings from this study. Firstly, as 

detailed above, the region between 3000–3500 nm has been considered with FTIR 

spectroscopy. For both the healthy and traumatised samples, this region is flat, due 

to the lower sensitivity of the NCI device, compared to that of an FTIR. However, a 

visual difference is observed from 3350–3500 nm, which has been shown to 

represent changes in lipid and protein conformational changes [147, 149]. Second, 
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the 2500–2700 nm contains the largest proportion of the spectral derivative 

information over the entire imaging range. Previous studies have considered >3000 

nm [149], along with limited investigation in the SWIR region incorporating 1000–

2000 nm [150]. This study highlights a new region of investigation in live cell spectra, 

meriting further work within this spectral region. 

 

Figure 4.12: Healthy and traumatised derivative spectra. Comparison between a 
representative healthy and traumatised cell spectra of the spectral derivative background 
subtracted pre-processing type. 

Finally, the differences between the two spectra shown in Figure 4.12 are subtle, 

which makes them difficult to differentiate visually. The use of ML has shown the 

ability to separate these results with a high level of accuracy, correctly classifying 

>93% of the samples. The TCI and HCI can be combined to produce a single 

‘accuracy’ metric for any given medical test. Due to the equal measurements of both 

healthy and traumatised samples, this metric is calculated by simply taking the mean 

of both values for each post-processing datatype. The resulting accuracy of both 

tests was above 95%, with the PCA before k-means observing the lower of the two 

tests at 95.5%, compared to the simpler k-means only accuracy of 96.1%. This 
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study, conducted across the SWIR/MWIR spectral regions, draws a focus to 

investigating additional IR regions to aid in the diagnostics process. Current wound 

healing diagnostic procedures rely upon visual inspection by trained clinicians, 

which introduces increased subjectivity and varying results of accuracy [2]. The 

introduction of clinical imaging and ML diagnostic tools beyond the visible-NIR range 

will aid in this process, although further study into more complex cellular or tissue 

models will be required. Whilst this study has highlighted the existence of 

differences between healthy and traumatised cell culture samples, no information 

on the specific biological constituents that give rise to these differences has been 

shown. 

4.4.2 Sample Size 

An increase in the number of samples tested, which was limited to 72 samples for 

the presented study, along with a thorough investigation into the biological changes 

that are occurring at the cellular level will further highlight the individual spectral 

contributions. A benefit of this presented method is to investigate the whole spectral 

range to identify any differences present, which is the only requirement for a 

diagnostic clustering purpose, with future work focussing upon each spectral 

contribution. Furthermore, a larger sample size would allow for the testing of further 

clustering and classification methods, with the aim of producing a binary classifier 

to clinically assess cellular health. However, for an increased sample size, further 

modifications to the NCI for increased imaging time should be considered. The 

current image capture and file transfer time is <7 s per wavelength. For the 101 

wavelength sweeps performed for this study, this represents over 10 minutes of 

acquisition time per hypercube. Whilst this was suitable for controlled experiments 
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of cell cultures, use of the NCI for real-time medical imaging would require significant 

improvements. This could be improved by both advancing the raster scanning optics 

of the image acquisition, alongside improvements to the image transfer system, 

which is currently performed using a separate laptop via an ethernet data transfer. 

Adaptions to the inbuilt image acquisition system would improve this time, alongside 

improvement to the imaging capturing software. The current system is operated 

using a Graphical User Interface (GUI) which is optimised for a single wavelength 

acquisition. Live image viewing is updated in real time, with a series of parameters, 

such as resolution and wavelength easily alterable. The wavelength sweep mode is 

less developed, with improvements such as whole image analysis for live spectral 

viewing, pre-saved imaging parameters and an extensive library of known spectra 

being of significant benefit to the system. 

4.5 Conclusion 

In summary, the use of a SWIR/MWIR hyperspectral imaging device, along with 

machine learning algorithms, has been shown to differentiate and diagnose the 

spectral differences between healthy and traumatised cell cultures. Human dermal 

fibroblast cells were imaged using an NCI imaging device, with hyperspectral 

images collected between 2500–3500 nm with a 10 nm resolution. Spectral 

information for both healthy and traumatised samples, dosed with trauma inducing 

agents, were analysed using a variety of different pre- and postprocessing methods. 

k-means clustering was applied to these different data-types, with the aim of 

correctly identifying the cellular health of each sample. The raw, background 

subtracted and smoothed data-types, although showing >85% for one of either TCI 

or HCI, were unable to accurately diagnose the cellular health of each sample. This 
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accuracy was greatly improved to >95% for both the full data set and the 

dimensionally reduced set corresponding to the spectral derivative of the same 

background subtracted spectra, however the formed traumatised clusters were 

found to be weak (as compared to healthy) suggesting that k-means clustering as 

applied within this work may not be best suited to differentiate diseased cells from 

healthy cells. Although tested on a small number of samples, <100, the ability for 

simple pre- and post-processing machine learning algorithms demonstrates the 

future for clinical diagnostics of wounds and subsequent wound healing procedure. 

These methods are not only applicable to wound relevant spectra, but for all spectral 

analysis problems where subtle spectral differences are undetectable using simple 

observation or classical techniques. This work has highlighted the ability to gain 

additional information for wound healing diagnosis by considering a broad range of 

imaging wavelengths. With the limitations of the NCI, as described previously, 

combined with benefits from additional spectral information from a broad spectral 

range, the remaining results chapters will consider a different imaging modality, 

focused in the NIR-SWIR range, Spatial Frequency Domain Imaging.
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Chapter 5 
 

5 Applications of Compressive Sensing in SFDI 

Analysis 

Whilst Chapters 3-4 focused upon SWIR/MWIR based imaging modalities, through 

the use of advanced spectral analysis and a novel Negative Contrast Imaging 

device, this work also highlighted the merit of using further wavelengths for 

additional information to aid in wound assessment. As discussed in Chapter 2, many 

imaging modalities used within wound diagnostics and assessment are based within 

the NIR range. These methods utilise the optical properties of haemoglobin and 

water to gain further information about the tissue’s health. Of these methods, SFDI 

has been chosen due to both its versatility in adaptations for specific imaging 

requirements, along with its accessibility through both open-source methodologies 

and low set up costs [171]. Section 2.2.6 discusses the use of SFDI in the field of 

wound healing, where it is regularly applied to wounds such as burns and diabetic 

foot ulcers [84, 124]. This method provides non-invasive imaging within the NIR-

SWIR range at high speeds (< 10 s), compared to the NCI, whilst also providing 

optical property depth information, such as wound tissue depth, from a given 

sample, which can be aid in the wound healing process [172]. Additionally, no 

sample preparations are required for SFDI capture, providing a suitable in-situ 

methodology for both in-vivo and in-vitro applications. SFDI can be used to rapidly 

and repeatedly assess wounds for both healing progression and effects of 

treatment, providing a quantitative assessment tool. 
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Although a brief introduction to SFDI has been provided in section 2.2.6, this chapter 

will provide a more thorough introduction to SFDI, before presenting a series of new 

image collection and processing methodologies, through the application of CS 

algorithms for data reduction applications. This work has been published in the 

Journal of Biomedical Optics under the title ‘Applications of compressive sensing in 

spatial frequency domain imaging’ [173]. 

5.1 Introduction 

Spatial frequency domain imaging (SFDI) is a form of diffuse optical imaging, 

traditionally performed within the visible/near-infrared (VIS/NIR) range [174]. This 

method projects spatially modulated light in the form of sinusoidal patterns onto a 

sample of interest to produce maps of absorption, μa, and reduced scattering, μ's, 

via images collected from two different spatial frequencies and three phases. If 

collected at more than one wavelength, tissue constituent maps can be derived for 

properties including oxy- and deoxy-haemoglobin, oxygen saturation, lipid content, 

and water [175]. 

Advances to SFDI have focused mainly upon the instrumentation and data 

acquisition. The wavelengths used by the system can be optimized for the samples 

of interest and have been extended beyond the VIS/NIR range [176, 177]. Multiple 

wavelengths can be imaged simultaneously using more than one monochrome 

camera or with temporally modulated illumination, both reducing the imaging time 

required [175, 178]. While these methods still use the two spatial frequencies and 

three phases, the single snapshot of optical property (SSOP) method requires only 

one illumination image at a non-zero spatial frequency, by performing the initial 
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image analysis directly in the frequency domain, increasing the acquisition rate by 

six-fold as a form of data acquisition improvement [179]. 

Both instrumentation and data acquisition improvements have been demonstrated 

previously with the application of CS [180], where the detection optics are changed 

to a single-pixel detector and a DMD to display the random pattern for each 

measurement, along with multiple LED illumination, to determine the tissue optical 

properties. This application to SFDI, named cs-SFDI, was used to measure the 

optical properties of a simple tissue-mimicking phantom with a cylindrical anomaly 

and compared to those obtained from a traditional SFDI measurement. The aim of 

this study was to reduce the number of measurements required to obtain the raw 

SFDI images, while also collecting three different illumination wavelengths 

simultaneously, working toward multi- and hyperspectral SFDI, without the use of 

expensive hyperspectral cameras [181]. The raw images for each wavelength were 

reconstructed using the denoising-based approximate message passing CS 

algorithm and analysed using the traditional pixel-by-pixel SFDI procedure to obtain 

optical property maps for both μa, and μ's. These maps were compared to those 

collected using a conventional camera-based SFDI method for two regions of 

interest, corresponding to the central anomaly and background of the tissue-

mimicking phantom. The percentage difference between the recovered optical 

properties for these two SFDI methods was <10% for an ∼90% reduction in 

measurements, with only 400 measurements required compared to the full 4096 

pixels for the camera-based SFDI. This lower measurement number is a form of 

data reduction, reducing the data size required to collect multiple wavelength 

measurements and the full image field of view. 
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Whilst this highlights a novel image acquisition process for SFDI, the study is limited 

by the low heterogeneity of the tissue-mimicking phantom. This increases the 

sparsity of the data set and hence reduces the number of patterns required to 

reconstruct an accurate image. The next step for the cs-SFDI method is to consider 

an increased heterogenic sample. The heterogeneity is defined as the increased 

variation of the spatial distribution and the corresponding contrast of the optical 

properties for both absorption and reduced scattering. This is performed using 

biological samples imaged with clinical SFDI measurements, to determine any 

possible data reduction and reduced measurements for the pixel-by-pixel detection 

for a reduced sparse sample. The parameter recovery algorithm is also performed 

in a pixel-wise manner; therefore, CS applications may also be tested here. 

CS has also been used for further biomedical imaging modalities, DOT and 

bioluminescent imaging through the use of single-pixel detectors to reduce the 

number of measurements [182, 183]. A multiple view DOT/fluorescence molecular 

tomography system, which has two DMDs for illumination and acquisition, uses 

structured illumination and compressive detection to collect data that has good 

agreement with the traditional CCD method [184]. Within the field of compressive 

fluorescence lifetime imaging, different compressive basis patterns have been 

assessed, including Fourier and Hadamard, and CS has been used for time-

resolved hyperspectral imaging [185, 186]. 

The aim of this chapter is to apply and test CS methods to both the SFDI image 

acquisition and analysis stage for the purposes of data reduction, improved 

computation time while maintaining accuracy on a realistic dataset. The cs-SFDI 

methodology has been simulated using the AppSFDI data set [187], consisting of 
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an increased heterogenic sample to validate this method, with the results showing 

that an increased number of measurements are required to accurately obtain optical 

property maps, although a reduction in data is still possible. Additionally, the 

parameter recovery algorithm has also been performed within the compressed 

state, and optical property maps were obtained for the App SFDI data set with an 

error of <10% for a data reduction of up to 80%. Overall, these methods show that 

the use of CS within multi stages of the SFDI imaging modality can greatly reduce 

the data required to accurately obtain optical property maps. 

5.2 Methods 

5.2.1 Spatial Frequency Domain Imaging 

SFDI has been used for both research and clinical imaging for over 10 years [79]. 

The theoretical background, instrumentation, data acquisition methods, and 

processing steps have been thoroughly described previously [174]. In SFDI, 

spatially modulated light patterns are projected onto a region of interest in the 

VIS/NIR range. The illumination consists of sinusoidal incoherent monochromatic 

light patterns at specific frequencies and three different phases. The diffused 

backscattered light is collected and processed to determine the reflectance at each 

specific wavelength and spatial frequency. This is then further separated into 

absorption, μa, and reduced scattering, μ's, using a light propagation model, 

including Monte Carlo simulations or analytical solutions. A breakdown of the three 

key steps is shown within Figure 5.1 (a). 
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Figure 5.1: SFDI analysis workflows. (a) Traditional three-stage workflow. (b) cs-SFDI 
based workflow, here, raw images are compressed and reconstructed to simulate single-
pixel detection, before following the traditional workflow. (c) CS-based parameter 
recovery algorithm, here, the demodulated images are compressed before both 
calibration and optical fitting are performed in the compressed space before image 
reconstruction to generate the optical property maps. 

To obtain the optical property maps of both μa and μ's, data from at least two different 

spatial frequencies are required. It has been shown that low frequencies are 

sensitive to changes in μa while higher frequencies are sensitive to μ's [79]. 

Therefore, it is common for SFDI measurements to be taken at spatial frequencies 

of 0 and 0.2 mm−1, as optimized in a previous study [174]. These two frequencies 

allow for the DC and AC demodulated images to be collected from the three different 

phase measurements, using Equations 5.1 and 5.2, respectively: 

𝐷𝐶(𝑥, 𝑦) =  
1

3
∙  {𝐼(𝑥, 𝑦, 𝜙1) +  𝐼(𝑥, 𝑦, 𝜙2) +  𝐼(𝑥, 𝑦, 𝜙3) }    (5.1) 

𝐴𝐶(𝑥, 𝑦) =  
√2

3
 ∙  {

[𝐼(𝑥, 𝑦, 𝜙1) − 𝐼(𝑥, 𝑦, 𝜙2)]2 +  [𝐼(𝑥, 𝑦, 𝜙2) − 𝐼(𝑥, 𝑦, 𝜙3)]2

+ [𝐼(𝑥, 𝑦, 𝜙3) − 𝐼(𝑥, 𝑦, 𝜙1)]2 
}

1
2⁄

,           (5.2) 



113 
  

where the three phase values, 𝜙, are 0, 2∕3π, and 4∕3π. These demodulated images 

then undergo a calibration against phantom images. These phantom images, of a 

set of known optical properties, are used alongside a forward model to correct for 

any instrument response using Equation 5.3: 

𝐼𝐶𝐴𝐿𝐼𝐵(𝑥, 𝑦, 𝑓
𝑥
) =  𝑃𝑟𝑒𝑑(𝑓

𝑥
)

𝑆𝑎𝑚𝑝𝐷𝐸𝑀𝑂𝐷(𝑥,𝑦,𝑓𝑥)

𝑃ℎ𝑎𝑛𝐷𝐸𝑀𝑂𝐷(𝑥,𝑦,𝑓𝑥)
,                               (5.3) 

where 𝑃𝑟𝑒𝑑(𝑓𝑥) is the model reflectance from the photon propagation model, 

resulting in the pair of calibrated images from the two different spatial frequencies. 

𝑆𝑎𝑚𝑝𝐷𝐸𝑀𝑂𝐷 and 𝑃ℎ𝑎𝑛𝐷𝐸𝑀𝑂𝐷 correspond to the sample and calibration phantom 

demodulated image respectively. With a set of calibrated images, a variety of 

methods can be used to determine the samples optical properties using the inverse 

model, including least-square methods and look-up tables, calculated from Monte 

Carlo simulations. 

5.2.2 Compressive Sensing 

Consider a 2D image of 𝑁 pixels, which can be represented as a 𝑁 ×  1 vector, 𝑥. 

This vector can be represented as a combination of its orthonormal basis,  

𝑥 =   ∑ 𝛹𝑖𝑠𝑖
𝑁
𝑖=1 =  𝛹𝑠,       (5.4) 

where 𝛹 is the transform operator and 𝑠 an 𝑁 × 1 vector of weight coefficients. 

Compressive sensing theory states that the signal, 𝑥, can be reconstructed using 

𝑀 ≪ 𝑁 patterns, with the sensing matrix 𝛷𝑀×𝑁 via the measurement vector, 

𝑦 =  𝛷𝑥 =  𝛷𝛹𝑠,                 (5.5)                                                             

where 𝑦 is the reconstructed image.This sensing matrix is composed of 1’s and 0’s 

(Fig. 2), in the form of a Bernoulli distribution to generate random patterns of N pixels 

per pattern, although other patterns such as Hadamard, wavelet, and speckle 
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patterns can be used, and the data are then represented in the basis where the 

signal is most sparse [182]. 

 

Figure 5.2: Compressive sensing visualisation. Representation of Equation 5.5.  The 
measurement vector 𝑦 is calculated by multiplying the sensing matrix, 𝛷𝑀×𝑁, by the image 

vector 𝑥, reducing the dimensionality of the data to 𝑀 ≪ 𝑁 values. 

Within this sparse space, the image vector 𝑥 is represented as a linear combination 

of 𝐾 basis vectors, where 𝐾 ≪ 𝑁. These bases included discrete Fourier transform, 

wavelet, and discrete cosine transform, which are used in common image 

compression applications such as JPEG-2000, with the discrete cosine transform 

used for this study. 

With the measurement vector and basis for representation defined, the final step is 

the reconstruction to recover the image 𝑥. Several different minimisation methods 

can be used including 𝑙2-norm, 𝑙0-norm and 𝑙1-norm reconstruction algorithms. 𝑙2-

norm is not suitable in seeking 𝐾-sparse solutions, instead almost always finding a 

nonsparse 𝑠̂ solution, while the 𝑙0-norm is both numerically unstable and NP-
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complete, hence difficult to minimise [188]. Therefore, to then reconstruct the 

original signal 𝑥, a solution to the 𝑙1-norm minimisation problem is required: 

𝑠̂ = 𝑚𝑖𝑛 ∑ ‖𝑠𝑗‖1
 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡𝑗  𝛷𝛹𝑠 = 𝑦                          (5.6)                                             

using the sensing matrix and transform operator as discussed previous, with the full 

image then reconstructed using, 

𝑥̂ =  𝛷𝑠̂.        (5.7)                                                                                

5.2.3 cs-SFDI 

Previous cs-SFDI applications have been based upon modifications to the detection 

side of equipment setup. The image detection camera is replaced with a DMD to 

display the sensing matrix patterns, with the reflected light from the DMD focused 

upon the single-pixel photodetector. The measurement matrix is therefore collected 

directly and the images for each of the frequencies and phases are reconstructed 

before the traditional analysis process of demodulation, calibration and optical fitting 

are performed to generate the optical property maps. 

To test this methodology upon an increased heterogenic sample, an open source 

data set from the University of Strasbourg was utilized [187]. AppSFDI is a software 

package for analysis of SFDI images and contains a sample data set of images from 

both a tissue mimicking phantom and a biological sample of interest. To simulate 

the cs-SFDI detection for these images, each image was converted to the signal 

matrix 𝑥 from Equation 5.4 and multiplied by the full sensing matrix 𝛷, resulting in a 

measurement vector, 𝑦, for each image within the AppSFDI data set. 

The raw images were then reconstructed using 𝑙1-minimisation and Equation 5.7. 

As with the previous study, these reconstructed images were then processed using 
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the traditional analysis procedure, performed as a pixel-by-pixel calculation, outlined 

in Figure 5.1(b). The resulting optical property maps from an increasing number of 

patterns used, were compared to those that were collected using the non-

compression-based method shown in Figure 5.1(a). 

5.2.4 cs-Based Parameter Recovery Algorithm 

While the cs-SFDI method addresses the issue of pixel-wise detection, the analysis 

procedure is also performed in a pixel-by-pixel manner, and hence, CS methods 

can also be applied to these steps. Figure 5.1(c) shows a compression-based 

analysis procedure, with both the calibration and parameter recovery performed 

within the compressed state. During the demodulation step (Equations 5.1 and 5.2), 

the pixel-by-pixel calculation is no longer linear, making the application of CS non-

trivial, although additional demodulation methodologies or CS for non-linear 

applications are areas for future study [189]. Therefore, for this study, the use of 

previously demodulated images was chosen to demonstrate the application of CS 

for the linear stages of the image analysis and parameter recovery. 

In this process, the demodulated images from the two spatial frequencies used 

within the AppSFDI data set, 0 and 0.2 mm−1, are compressed using Equation 5.5 

forming the two measurement vectors. These vectors are then normalized to the 

number of “on” pixels within each pattern of the sensing matrix 𝛷. This process is 

repeated for the phantom images before both the calibration, using Equation 5.3, 

and the optical fitting is performed. The normalization is then reversed before the 

optical maps of μa and μ's are reconstructed using the same procedure as outlined 

in the cs-SFDI method. Once again, these maps are compared to the non-

compressed method for a variety of pattern numbers. 
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5.2.5 App SFDI Data Set 

The field of SFDI has been proactive in moving toward open source methodologies, 

with Open SFDI providing full details of an open hardware system, while AppSFDI 

has produced software and MATLAB code to analyse SFDI images for a variety of 

methods [171, 187]. Within the AppSFDI software package, a typical data set of 

images is provided for testing and validating analysis methods and algorithms, with 

these images used for this study. The use of open access images for analysis 

comparison is common within other fields, such as hyperspectral imaging for remote 

sensing, with data sets such as Indian Pines and Salinas valley [190]. A variety of 

different algorithms have been applied to these data sets over the past 25 years and 

can be easily compared due to the same test data across many publications. This 

was the motivation for using the AppSFDI data, which although contains only the 

one sample (back of the hand) and one phantom for calibration, comparisons can 

still be made with any future advanced analysis method. 

5.2.6 Error Calculations 

In order to quantify the error between each different compression-based 

reconstruction method, the Root Mean Squared (RMS) error between the non-

compressed and reconstructed optical property maps was calculated using the 

following equation: 

 𝑅𝑀𝑆 =  √
∑(𝐴̅−𝐵̅)2

𝑁
∗ 100,     (5 8)                                                      

where 𝐴̅ and 𝐵̅ are the reconstructed and non-compressed original optical property 

maps of absorption or reduced scattering respectively. Each of these images is 
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normalised against the maximum pixel values for the non-compressed image. 

Similarly, the RMS error on an individual pixel basis can be calculated via: 

 𝑅𝑀𝑆_𝑃𝑖𝑥𝑒𝑙 =  √(𝐴𝑖̅ − 𝐵𝑖̅) 2 ∗ 100,                                     (5.9) 

where 𝐴𝑖̅ and 𝐵𝑖̅ are each reconstructed and non-compressed optical property map 

pixel respectively, which are again normalised against the maximum values for the 

non-compressed image. 

5.3 Results 

The cs-SFDI application, where each of the raw images from within the AppSFDI 

data set was compressed and reconstructed, was applied to a varying number of 

patterns. Each resized 64 by 64 pixel image requires 4096 individual pixel values to 

create the full image within the traditional imaging modality. A full sensing matrix is 

therefore represented by 4096 patterns, and a reduction in measurements is 

performed using less patterns, i.e., 2048 patterns is a 50% reduction in 

measurements. The cs-SFDI process was performed upon the AppSFDI data for 

820-3686 patterns, representing up to a 90% reduction in measurements required, 

at 10% reduction intervals. Figure 5.3 shows the optical property maps for a 

selection of pattern numbers along with a ground truth obtained through the 

traditional SFDI analysis process.  
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Figure 5.3: cs-SFDI image panel. Comparison between the original data and 
reconstructed images for increasing pattern numbers. 
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Full RMS values for both μa and μ's are shown in Figure 5.4. As expected, an 

increase in the number of patterns used reduces the RMS error, while a greater 

number of patterns are needed due to the increased heterogeneity than that 

observed in previous studies [180]. 

 

Figure 5.4: cs-SFDI RMS error results. RMS error for each optical property map obtained 
using the cs-SFDI algorithm, compared to the non-compression based ground truth 
results. 

While the cs-SFDI method has been previously tested with more homogenous two-

tone tissue-mimicking phantoms, the parameter recovery algorithm CS method has 

not been previously studied for SFDI. Phantom measurements can be simulated 

using the analytical model from Cuccia and colleagues [174] as used in the 

calibration step, to generate the demodulated DC and AC images from the 0 and 

0.2 mm−1 spatial frequencies used within the AppSFDI data. These simulated data 

sets are also 64 by 64 pixels in size and contain three different optical property 

anomalies. The background pixel values have optical properties of μa = 0.01 mm−1 

and μ's = 1 mm−1 with an anomaly varying each of μa and μ's, and the final anomaly 
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varying both (Figure 5.5). The optical properties of the anomalies were increased by 

50% compared to the background, and an unchanged phantom of purely 

background values was generated for the calibration step of the SFDI analysis 

procedure.  

 

Figure 5.5: Analytical anomaly ground truth maps for the CS parameter recovery phantom 
test. 

These images were then compressed using the same pattern numbers, following 

the analysis workflow shown in Figure 5.1. The resulting reconstructed images and 

RMS errors are shown in Figure 5.6 and Figure 5.7, respectively.  
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Figure 5.6: Simulated data CS parameter recovery algorithm image panel. Comparison 
between the original data and reconstructed images for increasing pattern numbers. 
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Figure 5.7: Simulated data CS parameter recovery algorithm RMS error results. RMS 
error for each optical property map obtained using the data CS parameter recovery 
algorithm, compared to the non-compression based ground truth results. 

The CS-based parameter recovery algorithm was then tested further using the 

AppSFDI data once again. As with the other applications, pattern numbers were 

chosen to represent a data reduction of up to 90%, in 10% steps. A sample of the 

reconstructed images for both μa and μ's are shown in Figure 5.8, and the resulting 

RMS error for the different pattern numbers in Figure 5.9. 
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Figure 5.8: AppSFDI CS parameter recovery algorithm image panel. Comparison 
between the original data and reconstructed images for increasing pattern numbers. 
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Figure 5.9: AppSFDI CS based parameter recovery algorithm RMS errors. RMS error for 
each optical property map for the cs based parameter recovery algorithm, compared to 
the non-compression-based ground truth results. 

5.4 Discussion 

Through the application of CS methodology to the SFDI process, the number of 

measurements required to accurately reconstruct optical property maps can be 

reduced. For the cs-SFDI algorithms, where the collection of compressed data is 

simulated for comparison to previous studies [180], the RMS error for both 

absorption and reduced scattering (Figure 5.4) is <15% for 2048 and <10% for 2867 

patterns, representing a data reduction of 50% and 30%, respectively. While the 

original study showed a data reduction of 90% still obtained the optical properties 

within 10% error, this was taken using a simple two-tone phantom, which will have 

a much greater sparsity than the hand sample used in this study. Therefore, the 

number of patterns required, and hence, the level of data reduction achieved will 

always be lower with a data set that contains greater sparsity. However, this does 
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not represent the complex samples that are imaged using SFDI both within research 

and clinical settings, such as burn wounds or pressure ulcers [81] [84]. 

While the cs-SFDI application, with the data collected directly in the compressed 

state, addresses data reduction for the raw images, these images are still 

reconstructed to full size and each pixel is analysed to produce the optical property 

maps. The CS-based parameter recovery algorithm applies CS to the analysis 

stage, reducing the number of calculations required to obtain these maps. Phantom 

simulations were performed using the analytical solution to the diffusion 

approximation, as developed by Cuccia et.al [174]. As the same solution is used for 

the parameter recovery algorithm, any resulting RMS error is from the compression 

algorithm only. For all patterns tested the RMS error was below 6% for both μa and 

μ's, while each of the anomalies was clear (Figure 5.6) for even the lowest pattern 

number tested, 410, representing a data reduction of 90%. While this demonstrates 

a further application of CS to SFDI, and a novel methodology for obtaining the optical 

property maps, as with the cs-SFDI technique, however, the heterogeneity of the 

sample is low compared to research and clinical applications of SFDI. The AppSFDI 

data set was again used, with the hand sample showing an increased heterogeneity 

and analysed using the procedure shown in Figure 5.1(c). 

Although an RMS error of <15% is observed for the lowest pattern number tested, 

410, it is clear from Figure 5.8 that the sample is not distinguishable and any regions 

of interest, such as the veins on the surface of the hand, cannot be resolved. 

However, an RMS error of <10% is calculated for all subsequent pattern numbers, 

and the features of the hand sample are visible from 1229 patterns as shown in 

Figure 5.9 These maps were calculated using a 70% reduction in parameter 
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recovery calculations, producing a significant data reduction compared to the full 

uncompressed analysis procedure. Additional data reduction methods have been 

previously applied in the form of pixel binning [191]. Such pixel binning method could 

also be applied in conjunction with the CS algorithms used within this work, although 

maintaining original single-pixel values for reconstructions preserves the resolution 

and contrast of the original images, validating the contribution of CS for data 

reduction purposes as compared to other methodologies. 

A pixel-wise RMS map calculated using Equation 5.9, for both absorption and 

reduced scattering, demonstrates the locations upon the hand sample 

corresponding to the greatest error (Figure 5.10). The pixels with the highest error, 

>40%, align with the edge regions of the hand and background, where the greatest 

variance in optical property values occur. Within traditional SFDI image 

reconstruction, edge detection errors are common due to the challenges faced by 

surface curvature and discontinuity errors related to model-based assumptions of 

the technique, which can be addressed through the use of profilometry correction 

methods [78]. However, for this study, the ground truth values and corresponding 

error calculations are performed against the recovered images as determined from 

traditional methods and not the tissue ground truth values themselves. Therefore, 

the edge errors observed are due to a caveat of the l1-norm minimization by which 

the edges and boundaries of the largest optical property gradients are 

oversmoothed, producing the larger error compared to the ground truth maps. 
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Figure 5.10: Pixel-wise RMS error for 50% measurement reduction using the CS 
parameter recovery algorithm. 

Additional reconstruction algorithms, such as total variation regularization are 

known to produce sharper images due to the improved boundary preservation, 

although are more computationally difficult and will be considered in future studies 

[183]. The AppSFDI data set only contains images of a single wavelength, therefore 

limiting the possible benefit of CS approaches. From optical property maps at 

multiple wavelengths, quantitative maps of tissue properties such as oxy- and 

deoxyhaemoglobin can be produced, therefore, SFDI is most commonly used for 

two or more wavelengths. Traditionally, this has required illumination using multiple 

sources, each of an individual wavelength, increasing the number of measurements 

required, and hence the number of pixel-wise analysis calculations. Commercial 

systems, such as the Reflect RS™ from Modulim, contain nine different LEDs, and 

other systems contain multiple wavelengths based on previously optimized values 

for obtaining different tissue property maps [176]. While it is possible to obtain these 

maps for only two wavelengths, the wavelength optimization performed is highly 
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dependent on the assumed tissues properties, and therefore limited in the range of 

biological samples they can accurately obtain. Therefore, with the use of additional 

wavelengths, the number of calculations required to fit for both μa and μ's at each 

individual pixel and wavelength increases, and hence the data size. The application 

of the CS-based parameter recovery algorithm would reduce the number of 

calculations required by up to 70% as previously stated, which would also propagate 

across each wavelength used. 

5.5 Conclusion 

While CS has been applied to SFDI previously, this study has highlighted an 

additional application during the parameter recovery stage alongside the use of the 

cs-SFDI algorithm on increased heterogenic data, as seen within clinical 

applications. It has shown that the number of measurements required, while still 

maintaining an optical property error of <10% can be observed with as much as a 

90% data reduction during the parameter recovery stage. Due to the increased 

heterogenicity, and hence, sparsity of the sample the cs-SFDI application to the 

image acquisition stage only provides a data reduction of 30%, however, current 

advanced imaging methods, such as SSOP, already greatly reduce the data 

required during the initial image acquisition. Overall, these CS-based SFDI methods 

provide a novel application toward data reduction and merit further investigation 

upon physical samples working toward multi- and hyperspectral SFDI systems. 

The limitation of accurate edge detection for SFDI parameter recover has been 

briefly mentioned within this chapter. This issue is described further in the 

subsequent and final results chapter, in which further SFDI improvements are 

investigated, through the use pixel dependent modelling tools. 
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Chapter 6 
 

6 Numerical Methods for FEM based SFDI 

simulations 

Chapter 5 introduced the concept of applying compressive sensing methodologies 

to improve spatial frequency domain imaging. This work demonstrated the 

application of data reduction techniques throughout the SFDI processing timeline; 

however, these methods still rely upon either diffusion approximation or Monte Carlo 

based inverse solver methods for parameter recovery. Whilst these methods 

provide accurate results for homogenous samples, when considering both sample 

geometry and optical properties, increased recovery errors are obtained for 

heterogenous models. Conventionally, both forward modelling and optical property 

recovery are performed using pixel-independent models, calculated via analytical 

solutions or Monte-Carlo based look up tables, both assuming a homogenous 

medium. The resulting recovered maps are limited for samples of high heterogeneity 

where the homogenous assumption is not valid. Here, a full raw image SFDI 

modelling tool is presented for heterogeneous samples, providing a mechanism 

towards a pixel dependent SFDI image modelling and parameter recovery system. 

As discussed in previous chapters, the complex nature of the wound healing 

produces a complex environment of varying biological and chemical processes. This 

then creates heterogeneity across a wound bed, therefore reducing the ability of 

methods, such as SFDI, to accurately identify the optical properties across the whole 

wound. Improved detection at the wound boundary will allow for a more accurate 
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removal of apoptotic/necrotic tissue, whilst reducing the amount of heathy tissue 

also removed. 

This chapter presents the pixel-independent models currently used, whilst further 

highlighting their limitations. A pixel-dependent approach for forward modelling is 

described, through the adaption of NIRFAST, an existing FEM based NIR modelling 

tool. This work has been published in Photonics titled ‘A pixel dependent Finite 

Element model for spatial frequency domain imaging using NIRFAST’ [192]. 

6.1 Introduction 

The field of SFDI has advanced through improved instrumentation, such as single 

snapshot optical properties methodologies, and analysis procedures including 

compressive sensing applications [79, 173, 193]. Further details of these 

advancements are discussed in section 5.1. Current forward models for SFDI 

simulation have been limited, with no tools available for the prediction and modelling 

of complex heterogeneous samples, although Monte-Carlo based models have 

addressed patterned illumination for other applications [194, 195].  

Both the analytical model initially developed for SFDI and Monte Carlo simulations 

are based upon a pixel-independent methodology, with each pixel analysed in 

isolation, to extract the optical properties in a pixel wise manner. This limits the 

accurate analysis of complex and heterogeneous samples, with errors increasing at 

boundaries of varying optical properties. This is of particular importance in many 

biological applications, such as wound debridement surgeries, where the accurate 

localization of healthy and necrotic tissues for removal affects the overall healing 

outcome. Excessive healthy tissue removal can cause prolonged healing along with 
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excessive scarring, whilst the failure to remove all damaged or necrotic tissue can 

be fatal. The single pixel modelling methodologies have been developed through 

dual layer inverse modelling, demonstrating improved parameter recovery through 

heterogeneous sample adaptations [196]. However, the modelling is still limited by 

the laterally independent nature of the full sample parameter recovery, which is 

again concentrated at the boundaries of varying optical properties and underlying 

heterogeneity. 

Heterogeneous modelling tools have been developed for other imaging modalities, 

such as diffuse optical tomography. NIRFAST is a near-infrared FEM based 

MATLAB tool for the numerical modelling and image reconstruction within biological 

tissues [43]. NIRFAST has been utilized for both forward modelling, to optimize 

system design, along with inverse modelling for parameter recovery, and optimized 

for additional imaging modalities [183, 197, 198]. The FEM nature of NIRFAST 

allows for modelling of complex geometries alongside heterogeneous optical 

properties in a customizable manner. 

In this work, NIRFAST has been modified to implement and introduce pixel-

dependent forward modelling for SFDI applications. The customizability of the FEM 

meshes ensures accurate modelling of the spatial light patterns within the model, 

initially validated using homogenous samples, before moving towards a complex 

heterogeneous model of varying optical properties. This demonstrates the first of its 

kind SFDI forward modelling tool, outlining the first step towards pixel dependent 

SFDI for both forward modelling and increased accuracy for optical property 

parameter recovery. 
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6.2 Theory  

6.2.1 SFDI 

The underlying theory of SFDI is explained in full elsewhere, with a comprehensive 

review published in 2019 [1,6], therefore only a brief outline is given here. The initial 

equations for demodulation and calibration are shown in Chapter 5 (Equations 5.1-

5.3), which generate a series of calibration images of a sample/region of interest. 

Once obtained, the final stage to calculate the optical property maps of the sample 

is through model-data fitting. A variety of methods can be used to determine the 

samples optical properties using the inverse model, including least-square methods 

and look up tables, however all these methods are based on a single pixel process, 

fitting individual pixels, one at a time through each 2D image. These models are 

typically the same models as those used for the calibration step, Equation 5.3.  

In both the application of forward models for SFDI light propagation prediction and 

use of inverse solvers for optical property calculation, this pixel independent method 

creates increased error when applied to heterogeneous samples. Using the current 

approach, each pixel is assumed as a semi-infinite medium, and therefore the 

optical properties geometry or reflectance values from neighbouring pixels are not 

considered. Optically varying depth properties have recently been considered in a 

two-layered inverse model [196, 199], however most sophisticated methods are still 

based upon a Monte-Carlo semi-infinite homogenous medium to develop a look up 

table, which have been optimized for real-time image acquisition and analysis [200].  

All reported approaches to date model illumination directly within the spatial 

frequency domain, with the analytical solution modelling the source intensity as:   
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𝑞𝑜(𝑧) =  𝑃𝑜𝜇𝑠
′ 𝑒𝑥𝑝 (−𝜇𝑡𝑟𝑧),         (6.1) 

where Po is the incident optical power, μtr is the transport coefficient which is equal 

to μa + μs
′ , where μa is the absorption, μs

′  is the reduced scatter and qo(z) is the 

depth dependent illumination source. This source intensity is dependent on both the 

depth within the sample and its optical properties, and is used alongside the 

frequency dependent spatial component to generate the plane wave source: 

𝑞 =  𝑞𝑜(𝑧) 𝑐𝑜𝑠(𝑘𝑥 + 𝜑),           (6.2) 

where k = 2πf for any given spatial frequency. However, in real world SFDI, the 

illumination source must be applied differently, as it is not possible to produce a 

negative illumination value. For an experimental setup, Equation 6.3 describes the 

illumination as used within real world SFDI, producing spatially modulated patterns 

which are constant in the y-direction: 

𝑆 =  
𝑠0

2
[1 + 𝑀0 𝑐𝑜𝑠(2𝜋𝑓𝑥𝑥 +  𝜑)],     (6.3) 

where S0 is the illumination intensity and M0 is the modulation depth. 

6.2.2 NIRFAST 

To represent SFDI within NIRFAST, customized meshes for the finite element model 

(FEM) have been developed and optimized for the forward modelling of a spatially 

varying illumination pattern, to ensure both numerical accuracy as well as an 

accurate representation of the illumination pattern, Equation 6.3. Each FEM mesh 

is made up of a series of nodal points (vertices) of varying densities to ensure an 

accurate demodulation process. To model the characteristic illumination patterns, a 

modification to Equation 6.3 was developed to account for the depth and optical 

property dependability of the analytical solution, Equation 6.4. Specifically, the 

source for each [x, y] coordinate is placed at the nearest node to a depth of 1/μs
′  for 
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each point (z axis) within the illumination area. A series of detectors are modelled 

upon the reflectance surface to directly extract the resulting fluence, producing the 

2D images of spatially modulated light models for demodulation, calibration and 

optical property recovery steps detailed previously.  

6.3 Methods and Results 

Development towards the spatial modulated light models was preformed through a 

step-by-step validation, from spatially resolved spectroscopy (SRS) models to the 

full 3D FEM with spatially varying structured illumination. Each step is explained with 

results provided in the following sub sections. 

6.3.1 SRS semi-infinite model 

The first step is to consider a simple SRS model using NIRFAST semi-infinite 

analytical model, validated against an existing analytical solution from virtual 

photonics (VP). This validation data is derived from the virtual photonics modelling 

software, in which the reflectance at given distance, R(ρ) from a single isotropic 

point source located at a depth of l∗, the transport mean free path: 

𝑙∗ =  
1

𝜇𝑡𝑟
=  

1

(𝜇𝑎+ 𝜇𝑠
′)

.      (6.4) 

This solution is formed from the linear superposition of the infinite medium Greens 

function [201]. Detectors are located at a resolution of 0.2 mm to a maximum source 

detector separation of 100 mm. This configuration is repeated for the NIRFAST 

semi-infinite analytical model, which is performed using an analytical solution 

described previously [202]. The diffuse reflectance is plotted against the source-

detector separation distance for a series of l∗ values with a constant μs'/μa = 100 in 

Figure 6.1. 
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Figure 6.1: SRS model comparison. Diffuse reflectance versus source-detector 
separation distance for varying l* values, validating the NIRFAST semi-infinite analytical 
model against the virtual photonics solution. These reflectance plots are normalized to 
the nearest source-detector distance. 

As seen from Figure 6.1 the validity of the NIRFAST analytical solution for SRS is 

comparable to VP solutions, for a series of varying optical properties. Limited 

divergence in observed between the two models, particularly for high l* due to 

empirical differences between the source modelling, which represents models of low 

scatter. Specifically, NIRFAST models the source as a point source at one scattering 

distance within the medium whereas the VP models the source as an exponentially 

decaying source which is also a function of the scattering coefficient. 

6.3.2 SRS FEM model 

With a validated NIRFAST analytical model, the next step is to consider the FEM 

capabilities of NIRFAST through the modelling of an SRS simulation. As with section 

6.3.1, simulations of a point source within the FEM mesh were performed using an 

optimized two-resolution setup. This mesh contains two different regions, fine and 

coarse, to accurately model the light propagation and detector locations, whilst 
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generating a mesh that is computationally efficient. A central fine region is defined 

ranging from -25 to 25 mm in both the x and y direction, with a resolution of 0.2 mm. 

This region extends to a depth of 3 mm, with a decreasing resolution. The coarse 

region continues to a depth of 50 mm, with a minimum z-resolution of 5 mm. This 

coarse region also extends into the x and y dimensions to 50 mm, with a resolution 

of 5 mm. This creates a total mesh size of ~500,000 nodes, corresponding to 

~3,000,000 linear tetrahedral elements. Due to mesh size limitations, the source is 

located at a modified depth value of 1/μs
′ , to ensure the sources are located at a 

predefined nodal value, whist the detectors are limited to a maximum source-

detector distance of 25 mm.  

 

Figure 6.2: SRS FEM model comparison. Diffuse reflectance versus source-detector 
separation distance for varying l* values, comparing the pre-validated virtual photonics 
(VP) solution and NIRFAST analytical solution, to the NIRFAST FEM based SRS models. 
These reflectance plots are normalized to the zero source-detector distance.  

As shown in Figure 6.2, the FEM based SRS models show good qualitative 

comparison against both the NIRFAST analytical solution and VP. Again, the 

models show a strong correlation across the range of source-detector separation 
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distances between all three models, with the small discrepancies expected across 

different model assumptions, particularly regarding the source-depth modelling. The 

NIRFAST FEM model shows a better agreement with the VP model, which can be 

attributed to the boundary conditions utilized within NIRFAST, which is of a mixed-

type boundary condition [197]. 

6.3.3 Structured Illumination 

The major advantage of SFDI is its ability to image directly within the spatial 

frequency domain. Whilst the simulations of SRS data have qualitatively validated 

the use of NIRFAST, the aim of this work is to develop a direct spatial frequency 

domain modelling tool, working towards complex geometries and heterogeneous 

simulations. The illumination follows the sinusoidal Equation 6.3 above, with 

physical systems utilizing a DMD to project these patterns upon a sample of interest. 

However, a combination of these illumination patterns, and the illumination depth 

dependency of the numerical solution is required for accurate parameter recovery, 

as outlined in section 6.2.1. Alongside this, the resolution, particularly in the direction 

of the spatially varying patterns, of the FEM mesh for simulations must also be 

optimized to ensure accurate demodulation whilst also maintaining a suitable mesh 

size for computational simulations. The line profiles for a three phases illumination 

at 𝑓𝑥= 0.2mm-1 along with its associated demodulation are shown in Figure 6.3. The 

AC demodulation has less than 0.2% variation across the centre on the image, 

representing an accurate demodulation. 
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Figure 6.3: AC pattern and demodulation line profiles. Line profiles across the centre on 

the white bounding box for the three phases at 𝑓
𝑥
 = 0.2 mm-1 alongside the AC 

demodulated profile of the same region. Here the AC demodulation exhibits less than 
0.2% variation across the full profile. 

The calculated fluence for a forward model of homogenous optical properties are 

shown in Figure 6.4. Both measurements are modelled at a zero-phase value, with 

spatial frequencies of 0 mm-1 and 0.2 mm-1 and normalized to the maximum fluence 

of the zero-frequency model. The optimized FEM mesh is 100 mm by 100 mm by 

20 mm (x,y,z) with an illumination area of 80 mm by 80 mm (x,y). The detectors 

have a resolution of 0.5 mm and a field of view (FoV) of 20 mm by 20 mm (x,y), 

represented by the white bounding box in Figure 6.4. This structured illumination 

mesh contains a finer resolution area for accurate illumination and a coarse outer 

region, optimized for computational performance, creating a structure with over 

900,000 nodes and ~5,000,000 linear tetrahedral elements, which is applied in all 

subsequent simulations. 
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Figure 6.4: FEM model surface fluence. Normalized surface fluence from both a zero 

spatial frequency illumination and an illumination of 𝑓
𝑥
 = 0.2 mm-1 and zero phase. The 

field of view for the detected 2D images is shown by the white bounding box. 

The model mesh can also be shown in its tetrahedral element form with the green 

circle representing the model source location for a given depth value of 1/μs
′ , and 

the blue crosses representing the source locations (Figure 6.5). 

 

Figure 6.5: Tetrahedral meshing Mesh used for structured illumination modelling for SFDI 
direct in the spatial frequency domain. Tetrahedral mesh elements are created in two 
distinct regions, coarse and fine, with the model source (Green circle) and detector (Blue 
cross) locations shown across the large mesh model. 
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Homogenous Slab 

The first forward models of structured illumination were performed using 

homogenous slabs. Simulations of varying bulk absorption were analysed using the 

full SFDI analysis procedure, with a calibration model used with fixed optical 

properties of μa = 0.01 mm-1 and μs' = 1 mm-1. For each simulation, only the 

absorption coefficient was varied from -25% to +25%, in 5% increments, and 

compared to the calibration model, with the recovered absorption value reported 

from the centre of the image. An outline of the full procedure is shown below: 

1. Generate the 3D mesh of desired optical properties and model the 

structured illumination as described previously. 

2. Extract the model fluence from the mesh surface within the white 

bounding box of Figure 6.4 to obtain the SFDI 2D images, I(x,y).  

3. Demodulate to obtain the resulting demodulated images (AC/DC) for 

all frequencies of illumination using Equations 5.1 and 5.2. 

4. Calibrate using Equation 5.3 and a phantom simulation of known 

optical properties. 

5. Extract the optical properties using the pixel-independent model from 

Cuccia et.al [174]. The central nodal value from the bounding box 

surface is used for comparison. 

These recovered parameters were then compared to the modelled ground truth 

optical properties, and percentage errors quantified using the following equation: 

𝐸𝑟𝑟𝑜𝑟 =  
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑−𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
∗ 100.    (6.5) 
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The parameters recovered show <2% error across the full range of optical properties 

tested, with both the values and the recovery error shown in Figure 5. 

These initial models have demonstrated the validity of NIRFAST as compared to 

existing homogeneous SFDI modelling tools. The following sections consider 

increased heterogeneity through a series of simulations, highlighting the limitations 

of current SFDI modelling tools, providing further evidence for the need for pixel 

dependent approaches, for which the forward models as developed within NIRFAST 

provides. 

 

Figure 6.6: Homogenous slab simulation results. The recovered absorption is compared 
to the mesh ground truth alongside the parameter recovery error for each simulation, 
determined using Equation 6.5. 

Heterogenous Anomaly Slabs 

The second set of models applied a series of varying anomalies within the FEM 

mesh. Specifically, three variations of anomalies were simulated, of varying radius, 

depth as well as a tri-anomaly model as outlined in Figure 6.7. 
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Figure 6.7: Anomaly slab models. A: Varying radii cylindrical anomaly model for a range 
of absorption values. B: Varying depth cylindrical anomaly model for a range of absorption 
values. C: Tri-anomaly model containing three fixed-radii cylindrical anomalies varying 
different optical properties. 

To determine the accuracy of detecting different anomaly sizes, a cylindrical 

anomaly of varying absorption was placed within the centre of the FEM mesh, 

corresponding to the centre of the obtained 2D surface reflectance image (Figure 

6.7 A). The same homogenous calibration model was used for each of the 

simulations, and the radii of the anomaly model was increased from 2 mm up to a 

maximum of 14 mm with 2 mm increments. The reduced scattering value was 

maintained at a value of 1 mm-1 whilst the absorption values were varied for up to a 

50% increase as compared to the calibration phantom to a maximum value of 0.015 

mm-1 with a step size of 0.001 mm-1. The data calibration and demodulation, as 

outlined above, were applied and the recovered absorption values using the semi-

infinite model were calculated. The resulting recovery errors for all anomalies tested 

are shown in Figure 6.8 A, with the central pixel value of the recovered anomaly 

compared to the anomaly ground truth. 
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Figure 6.8: Single anomaly simulation results. A: Recovery errors for a centrally located 
anomaly of vary radii, with a range of absorption values simulated. B: Recovery errors for 
a centrally located anomaly of varying depths, with the same range of absorption values 
simulated. The recovery errors are determined using Equation 6.5. 

The largest errors occur when either the absorption value is at its maximum or the 

anomaly size is at its minimum. The largest recovery error is obtained for the 

combination of these two points, at less than 25%, underpredicting the ground truth 

value. For radii greater than 6 mm, the recovery error for the full range of optical 

properties is <10% and <5% for anomalies larger than 10 mm.  

Using the results from the radii models, the depth testing simulations were per-

formed using the same range of optical properties for an anomaly of 12 mm radius. 

The anomaly was lowered into the model, depicted in Figure 6.7 B, to a maximum 

depth of 3 mm in 0.5 mm steps. The recovery errors, determined using Equation 

6.5, are shown in Figure 6.8 B, again with the largest errors observed for the 50% 

increase in absorption. The parameter recovery accuracy also reduces as the 

anomaly is lowered into the mesh, with a maximum error of approximately 23%. 

The final set of forward simulations for the structured illumination consisted of a tri-

anomaly model, depicted in Figure 6 C. Three cylindrical anomalies, each 7 mm in 

radius, were placed equidistant from the model centre, each with varying different 
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optical properties. As with the previous models, the optical properties of each 

anomaly were increased in 5% increments to a maximum of 25%, compared to the 

calibration model values. The results for all three anomaly recovery errors, taken 

from each anomaly centre from the 2D reflectance image, are shown in Figure 6.9. 

As expected, the absorption only anomaly (Figure 6.9) follows the same trend as 

the radii example shown in Figure 6.8 A, with errors increasing to a maximum of 6% 

for the largest absorption value. 

 

Figure 6.9: Tri-anomaly model, single optical property variation simulation results. 
Recovery errors for absorption only and reduced scattering only anomalies. The recovery 
errors are determined using Equation 6.5, for the full range of optical properties simulated, 
to a maximum of 25% increase compared to background and calibration phantom values. 

The tri-anomaly models represent the first in which the reduced scattering value was 

also varied. The optical properties were recovered using the same method, and the 

reduced scattering recovery error calculated using Equation 6.5, with the results 

shown in Figure 6.9 for the scattering only anomaly. Here, the error remains <10% 

across all values of reduced scattering simulated. 
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Finally, the third anomaly from this model varied both of μa and μs' simultaneously 

across the same range. The recovered values for both parameters are shown in 

Figure 6.10, with the reduced scattering recovery error maintaining a similar trend 

to the scattering only anomaly results shown in Figure 6.9, with an underprediction 

of μs' by up to 10% for the largest variation when compared to the calibration 

phantom. 

 

Figure 6.10: Tri-anomaly model, single simultaneous property variation simulation results. 
Recovered parameter errors for both absorption and reduced scattering, determined 
using Equation 6.5. 

The recovered absorption errors were similar in magnitude to the absorption only 

anomaly (Figure 6.9) however the sign of the error is now positive, corresponding 

to an overprediction of ground truth value, with the largest error <7%. This is 

indicative of cross talk between the different optical properties, which can be further 

demonstrated by considering the qualitative results from the tri-anomaly model. 

Figure 6.11 outlines the full SFDI analysis procedure for a representative simulation, 

for an increase of optical properties by 25%. 
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Figure 6.11: Tri-anomaly model full analysis. Analysis procedure for SFDI from the raw 
images of the tri-anomaly model (Figure 6.7 C) with a 25% increase in optical property 
values. Raw images from two spatial frequencies and three phases are shown, alongside 
the demodulated and calibrated results. Finally, the recovered optical property maps for 
both absorption and reduced scattering are also shown. 

6.4 Discussion 

NIRFAST, an existing FEM based light propagation modelling tool, has been 

adapted for the forward simulation of SFDI models for pixel-dependent 
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heterogeneous modelling. Prior to running simulations of structured illumination, 

SRS validation was performed between existing analytical solutions and NIRAST 

semi-infinite solutions (Figure 6.2). This was followed by further validation of 

NIRFAST through the simulation of an FEM based SRS model. 

Whilst the validation of NIRFAST using SRS data is a key step towards full SFDI 

forward modelling, the aim of this work was to perform direct frequency domain 

modelling upon complex heterogeneous samples, towards pixel-dependent 

simulations. Optimization of the FEM mesh, to ensure both accurate modelling of 

the characteristic spatially modulated light and accurate demodulation alongside 

computational efficiency, was performed to reduce the recovery error for both 

absorption and reduced scattering parameters for direct SFDI simulations. 

The first series of simulations performed using the optimized mesh considered 

homogenous optical properties, with the computation time for each of the 

reflectance data-set (each phase and frequency) at ~1 second utilizing Tesla V100 

16 Gb graphics processing unit (GPU). These properties were varied by ±25% 

compared to a calibration phantom. Across this range, a recovery error of less than 

2% was observed, further validating NIRFAST as a SFDI modelling tool. The 

recovered optical properties are determined at the centre of each image, however, 

due to the homogenous properties of the mesh, the pixel-dependent recovery 

algorithm still recovers the parameters with limited errors. This is due to the model 

beginning to represent the semi-infinite solution due to the large mesh geometry. 

To test the full capabilities of NIRFAST as a SFDI forward modelling tool, 

heterogeneity was introduced through the addition of cylindrical anomalies of 
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varying optical properties (Figure 6.7). The first set of simulations placed this 

anomaly at the centre of the mesh, with increasing radii in 2 mm steps from 2-14 

mm, whilst also varying the absorption coefficient up to 50%, compared to both the 

calibration phantom and the remaining background mesh. The largest error, <25%, 

was observed for the smallest radii anomaly at the largest optical property variation. 

However, for anomalies of radii greater than 6 mm, recovery errors were less than 

10%, while for the largest anomalies these errors fall below 5% across the full range 

of absorption values tested. Limited improvements were observed between the 12 

mm and 14 mm anomaly; therefore the 12 mm radii anomaly was chosen for the 

depth sensitivity simulations. 

For the depth varying simulations, the 12 mm radii anomaly was lowered within the 

mesh in 0.5 mm steps, from the surface down to a depth of 3 mm. As expected, the 

recovery error increased as a function of depth, and a similar trend was observed 

when the absorption parameters were increased, with a maximum recovery error of 

approximately 23%. However, even the smallest variation in absorption was 

detectable at the maximum depth, although, due to the laterally homogenous 

recover algorithm, the ability to determine different optical properties within a single 

pixel is limited. This has been addressed in previous studies, with two layered 

Monte-Carlo simulations, but does not address the lateral variations of the 

heterogeneous models simulated.  

These single anomaly models only considered variations to the mesh absorption 

parameter, with the reduced scattering value maintained at 1 mm-1, the same as the 

calibration value. To simulate variations for both absorption and reduced scattering 

parameters, a tri-anomaly model was developed, containing three different 
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cylindrical anomalies, placed equidistant from the mesh centre, each varying 

different combinations of μa and μs' (Figure 6.6 C). The optical properties were again 

varied up to a 25% increase compared to the calibration phantom and mesh 

background values, with the recovery errors shown in Figure 6.10 and Figure 6.11 

for all three anomalies. The absorption only anomaly follows a similar trend to the 

radii testing results in Figure 6.8 A, whilst the scattering only anomaly also recovered 

the optical properties across the full range of variation, with a less than 10% error.  

For the final tri-anomaly model, both μa and μs' were varied simultaneously, with 

incremental increases of 5%, up to a maximum of 25% compared to the calibration 

phantom and mesh background values. The recovery errors for the reduced 

scattering parameter follow a similar trend to the reduced scattering only anomaly. 

Whilst the absorption errors are of similar magnitude, they are reversed in sign 

compared to the absorption only anomaly, with an overprediction now observed, 

compared to the ground truth mesh values. As the location of the source illumination 

is dependent upon the scattering value, recovered properties are affected when this 

is varied. The range of scattering values used for this study, along with the resolution 

of the optimized mesh, resulted in the source locations being the same for all 

simulations, at a depth of 1 mm into the mesh. However, this effects the recovered 

values, as the inverse model used has a fully dependent source depth, as shown in 

Equation 6.1. This results in the different recovery values when the reduced 

scattering is also altered, producing a cross talk between the two parameters. 

The cross talk is further observed in the qualitative analysis shown in Figure 6.11. 

The obtained optical property maps show a close match for the scattering 

anomalies; however, a false anomaly is detected within the absorption map, 
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compared to the ground truth shown in Figure 6.7 C. Despite this, the qualitative 

maps highlight the issue of pixel-independent simulations and recovery. Whilst the 

ground truths have a hard boundary between the two different optical properties of 

the anomaly and background mesh, the simulated reflectance produces a gradient 

across this region, due to the lateral interactions within the FEM simulation. This 

produces the recovered anomaly boundary limitations also observed within current 

clinical SFDI applications.   

6.5 Conclusion 

The use of a NIRFAST SFDI forward model allows for the simulation of arbitrary 

shaped models, along with both complex geometries and varying optical properties. 

Initial validation has been performed against existing homogenous SFDI models 

using spatially resolved spectroscopy methods before further validation in the spatial 

frequency domain using homogenous FEM models. With a fully verified modelling 

tool, heterogeneity was introduced through a serious of cylindrical anomalies of 

varying optical properties, demonstrating the ability to produce pixel-independent 

forward models, whilst also highlighting the limitations of current pixel dependent 

SFDI inverse solvers. Further work is needed to adapt NIRFAST as a full SFDI 

inverse solver for parameter recovery, which would improve the recovered anomaly 

boundary error detection. Specifically with the availability of a verified forward solver, 

it is aimed to extend this model to the creation of a mapping function (also known 

as the Jacobian) that will allow the recovery of spatially varying optical properties 

from SFDI measurements directly. The use of alternative models such as Monte 

Carlo are also possible to extend the accuracy of the light propagation, but it should 

be noted that such approaches will increase the computational complexity and 
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further work in establishing an efficient and accurate model based on these are 

needed. This work represents a key step towards the goal of pixel-dependent SFDI 

modelling and parameter recovery.
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Chapter 7 
 

7 Conclusions and Future Work 

7.1 General Conclusions 

Point-of-care wound healing assessment methods suffer from two major issues: 

subjectivity from the parameters considered, along with the reliance upon the 

knowledge and experience of highly trained professionals to assess each individual 

wound throughout its healing process. Parameters such as wound area, smell and 

discharge are used as gold standard metrics, with limited conformity in assessment 

parameters or gradings across different wound types [2, 19]. These issues are 

further compounded when considering a military battlefield setting, where wounds 

are often more severe and access to continual medical care is limited. 

Optical imaging techniques offer a solution to these issues and whilst different 

methods, ranging from simple RGB photography to advanced spectroscopic 

methods such as Raman and OCT, still possess limitations [47, 85, 92]. The aim of 

this work was to advance point-of-care wound assessment methodologies through 

research into hyperspectral imaging modalities within the infrared region. Two 

different modalities were considered in this work, Negative Contrast Imaging using 

a non-commercially available SWIR/MWIR device and Spatial Frequency Domain 

Imaging, which is focused within the NIR range, although it can be applied into both 

the visible and SWIR. These modalities fulfil the requirements for improved wound 

assessment through the quantification of tissue parameters such as absorption and 

reduced scattering coefficients, combating the subjectivity of current methods. They 
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are also deployable in varying environments, due to no reliance of either wound 

preparation or the need for specialised equipment. Wounds can be assessed 

regularly throughout the course of the wound healing timeline via a non-invasive 

process, with the ability to record optical maps of the quantified parameters for 

continued assessment from varying medical professionals. 

An introduction to the biology of wound healing is provided in Chapter 1, highlighting 

the complexity of the wound healing process and the many stages in which they can 

deviate from a normal healing process [203], hence the need for regular observation 

and assessment. This chapter also reviewed the challenges associated with wound 

healing within the military environment, from the complexities of blast injuries to the 

patient care pathway for injured personal [23]. This chapter outlined both the 

medical and operational requirements for any wound assessment tool, which can 

be addressed through optical imaging modalities. 

Chapter 2 introduces the key aspects of biomedical imaging, giving a theoretical 

grounding for the remainder of the chapter, which reviews existing imaging 

modalities for wound assessment. A range of methods were critically assessed, with 

areas for advancement identified. Namely, the need for robust modalities which offer 

both quantitative information across a range of wound healing parameters, 

alongside complimentary image analysis tools, based upon computational methods, 

with the aim of removing the subjectivity of existing gold standard methods, which 

are still based upon visual observation [2].  

The first of the computational tools was developed in Chapter 3, which considers 

samples analysed using FTIR spectroscopy for a previous study undertaken at Dstl 
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[94]. Wound biopsies from seven different donors were previously imaged using 

FTIR to obtain spectral data within the 2.4-15.4 μm wavelength range. Visually, two 

of the three wounds, which experienced regular healing, were identifiable in a 

focused spectral region around 3125 nm, however the third healed wound was 

indistinguishable from those that experienced non-regular healing. Intelligent data 

analysis methods, in the form of k-means clustering alongside dimensional 

reduction via PCA, were applied to separate the seven samples into either 

regular/unregular healing or the three different observed wound healing pathologies. 

For the two-class clustering, the same outcome occurred with only the same two of 

three healed samples correctly identifiable. However, when the three-cluster model 

was applied to the PCA data across the full spectral ranged measured, the three 

healed samples were separable, demonstrating that additional spectral information 

aides the clustering process, offering an improvement upon visual inspection. Whilst 

the sample number was limited, these methods were taken forward and applied in 

Chapter 4. 

Additional wound biopsy samples were unavailable for further study, therefore a 

different approach for wounded samples was taken. Cell culture of human epidermal 

fibroblasts, the main cell type present in the skins connective tissue, were grown for 

trauma modelling, in vitro. Two different levels of trauma were introduced through 

chemical assays to represent wound samples, which were compared to healthy cell 

cultures for a binary diagnosis. The NCI was used to image the cell cultures at a 10 

nm resolution across a broad 2500-3500 nm range, incorporating the region which 

separated the wound biopsies from Chapter 3.  
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Both k-means clustering and PCA were performed on the raw spectral data, as well 

as additional pre-processing methods such as smoothing and spectral derivatives, 

generating a series of different data types for clustering analysis. Whilst the majority 

of these data types showed either a high TCI or HCI, the highest performing data 

type was the background subtracted spectral derivative data set. Both the TCI and 

HCI were >95% for separation of the healthy and traumatised cell cultures, 

demonstrating the ability of the NCI, along with intelligent spectral analysis methods, 

to accurately diagnose healthy and traumatised cell cultures. However, further 

analysis of the cluster qualities found the trauma cluster observed a low score, 

meaning a weak cluster. This is likely due to both the different trauma methods 

applied, inducing either apoptosis or necrosis, alongside the relatively low sample 

number. Despite this, the work highlights the ability to gain additional information 

from a broader spectral range when analysed with computational tools, separating 

spectral data with undetectable differences when analysed through visual 

observation or classic analysis methods. This constitutes a key step towards non-

subjective methodologies for wound assessment. 

Whilst both the computational tools and sample methods were advanced in 

Chapters 3 and 4, the imaging modalities were not altered or optimised. The FTIR 

requires liquid nitrogen for detector cooling [162], making it unsuitable for versatile 

deployment and the NCI is a non-commercial prototype device [94], where 

additional advancements are required beyond the scope of this PhD, before meriting 

further study. With this in mind, alongside the demonstration that additional spectral 

information, from a broad range of IR wavelengths, aids in improving diagnostics, 

the remainder of the work focused upon the second imaging modality, SFDI.   
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SFDI is a low cost, versatile and non-invasive method which utilises spatially 

modulated light projections to extract both the absorption and reduced scattering 

coefficients within the visible-SWIR range for a sample of interest [79]. Reflectance 

images for multi-spectral imaging are obtained and processed in a pixel-wise 

manner to produce optical property maps to aid in wound diagnosis. Due to the pixel 

wise nature of the analysis procedure, two main areas of improvement were 

identified for investigation. The first of these, presented in Chapter 5, aimed to 

reduce the number of measurements required to obtain raw SFDI images non-

homogenous samples through the application of CS. Additionally, CS was applied 

to the image analysis stage to reduce the number of individual pixel measurements 

required to obtain optical property maps.  

Using an open-source data set from AppSFDI [187], containing SFDI data of a 

human hand, CS image acquisition was simulated with up to 30% data reduction 

observed whilst maintaining <10% error in recovered optical property maps. Whilst 

this produces a lower data reduction than a previous study [180], this represents the 

first application to a clinically relevant data set, which contains a lower level of 

sparsity, therefore a reduced data reduction is expected. During the analysis phase, 

following demodulation of the acquired sample images, optical property maps were 

determined using a pixel-wise methodology. CS was also applied to these steps of 

the analysis process, with a data reduction of up to 90% observed whilst still 

maintaining <10% recovery error. A pixel-wise RMS error map highlighted the areas 

of highest recover error, corresponding to the areas of greatest optical property 

gradient and the boundaries of the hand sample. Whilst this is in part due to the 
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recovery CS algorithm, the pixel wise analysis procedure of SFDI also contributes 

to these boundary errors. 

Traditional SFDI optical parameter recovery rely upon pixel-independent inverse 

solver methods based upon either the diffusion approximation or Monte Carlo look 

up tables [174]. Whilst suitable for homogenous samples, increased heterogeneity 

from varying optical parameter values of neighbouring pixels introduces boundary 

errors. Moreover, these same tools are utilised for forward modelling, limiting their 

applications for clinical applications. An approach for pixel-independent forward 

modelling is described in Chapter 6, through the adaptation of NIRFAST, an existing 

FEM based modelling tool [43]. Initially, forward models of homogenous samples 

were simulated to verify the methodology, with parameters recovered using a 

current pixel dependent SFDI inverse solver. This was followed by simulations of 

models containing both complex geometries and varying optical properties, 

demonstrating the ability of NIRFAST to produce pixel-independent forward 

modelling.  

7.2 Future Work 

Two main imaging modalities have been investigated during this PhD, with the NCI 

device utilised for live cell culture imaging, generating spectral data for intelligent 

data analysis methods along with SFDI, in which compressive sensing methods and 

pixel dependent forward modelling were applied to open-source data and theoretical 

models respectively. Future work for both modalities can be split into three separate 

areas, wound samples, hardware modifications and algorithm developments, which 

will be discussed below. However, a combination of both areas will build upon the 
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foundation provided by this PhD, working towards improved wound diagnosis 

methods. 

7.2.1 Wound samples 

Chapter 3 introduced the intelligent spectral analysis methods for spectral data, 

which were then applied to cell cultures for binary diagnosis in Chapter 4. These 

methods were designed to counteract the main limitation of this work, a small 

sample number of wound biopsies. Whilst additional information was extracted from 

this limited data set, and as additional samples were not accessible during this work, 

this should be a focus for future work. Not only can these samples be imaged and 

analysed using the NCI, the methods for advancing the field of SFDI require physical 

samples for further validation, which any fixed biopsy sample would provide. In 

addition, samples from ex vivo porcine blast models would provide a further 

validation data type for both imaging modalities [204].  

These models would increase the complexity of the biology imaged, providing 

grounds for further investigation into the individual biological constituents that 

generate the spectral differences between healthy and traumatised or wounded 

samples and cell cultures. This could be achieved through further cell culture 

studies, varying the cell types in single cell models, such as keratinocytes, 

neutrophils, and macrophages. Complex cell cultures, consisting of multiple cell 

types could then be developed, building towards tissue engineered skin cell models 

[205]. 
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7.2.2 Hardware modifications 

To optimise the use of further wound samples, improvements to system hardware 

could be implemented. As discussed in section 4.4.2, improvements to the NCI, 

including advanced detection for improved image resolution alongside faster image 

acquisition would allow the NCI to be used in situ for further clinical applications. 

Improvements to the system GUI could also provide real time imaging, improving 

user experience for varying medical professionals in the long term.  

Due to the open source nature of SFDI [171], implementation of a physical SFDI 

system would provide experimental validation to the work shown in Chapters 5 and 

6. The system can also be modified for additional wavelengths, to work towards 

multi- and hyperspectral SFDI imaging across the NIR/SWIR range. 

7.2.3 Algorithms 

The final area for further investigation would be improving existing algorithms and 

assessing further analysis methods. Due to the low sample numbers, classification 

methods were not explored for spectral analysis in Chapters 3 and 4. However, with 

a larger data set, training, testing, and validation subsets can be utilised for 

classification methods alongside the implementation of Neural Networks. These 

methods, as discussed in section 2.3, often require sample sizes into the 100s for 

classifiers, with neural networks also using 1000s and above, although an exact rule 

is not specified [206, 207]. As for the data labels, for both the wound biopsy and cell 

spectra studies on Chapters 3 and 4, the a priori labels already exist in the form of 

the wound healing outcome or applied trauma treatment. 
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Additional, more sophisticated, clustering and data reduction methodologies could 

also be implemented. Kernel PCA is a method in which PCA is applied in a nonlinear 

way, resulting in the construction of nonlinear mappings in order to maximise the 

variance. Further clustering algorithms, such as k-means++ and fuzzy c-means also 

merit further study as they are also used in wound healing spectral analysis [104, 

116]. 

Within the SFDI work, the compressive sensing methodologies could be applied to 

the full SFDI process, acquiring compressed images, demodulating within the 

compressed state then obtaining optical property maps. This requires further study 

into the demodulation method and could improve upon the data reduction already 

observed during this work. The major area of focus however comes from the pixel-

independent methods developed within NIRFAST. By extending the model to the 

creation of mapping functions, parameter recovery for inverse modelling could 

create improved SFDI optical property maps for samples of both complex geometry 

and increased heterogeneity, as seen in clinical wound applications. 
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Appendix 

A.1 Bates-Jenson Wound Assessment Tool 
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A.2 NCI Spatial Distortion Correction 

Through initial testing of the NCI imaging capabilities, a spatial distortion issue was 

identified through imaging of checkerboard patterns. An example of this is shown in 

Figure 3.14 as the uncorrected image. In discussion with the manufacturer, M 

Squared Lasers, they passed on a correction code for this known distortion, which 

applies in the y axis only. This however did not show the desired correction on the 

initial images collected. 

Following further discussion with M Squared Lasers and a visit to their labs in 

Glasgow, it was found that the aspect ratio of the collected image varied at different 

zoom levels, and the correction code was only suitable for the value set for the 

maximum zoom. The aspect ratio was altered for all zoom levels to ensure the 

correction is accurate. The correction code uses a linear interpolation of a sinusoidal 

function to adjust the pixels in the y axis. 
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Figure A2.1: NCI image correction. A 1 cm checker-board pattern was imaged to 
demonstrate the correction code applied to the NCI images for spatial distortion. The 
image on the left shows the raw image from the device, while the image on the right is 
the post-processed corrected image. 

This correction is built into the NCI imager, with the pseudo code below: 

1. Load Images File. 

2. Convert image to double format matrix. 

3. Identify image dimensions. 

4. Generate corrected y-axis image coordinates using sinusoidal function: 

𝑦 = 𝑛 ∗ [0.5 + 0.5 sin((
𝑥

𝑛−0.5
) ∗ 𝜋)], 

where 𝑛 is the size of the image in the y-axis, and 𝑥 is the corresponding x-

axis coordinate. 

5. Generate meshes for both original and corrected image. 

6. Interpolate image to corrected mesh. 

7. Convert matrix to image file. 
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