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Deep neural networks have been very successful as highly accurate wave function ansätze for
variational Monte Carlo calculations of molecular ground states. We present an extension of one
such ansatz, FermiNet, to calculations of the ground states of periodic Hamiltonians, and study the
homogeneous electron gas. FermiNet calculations of the ground-state energies of small electron gas
systems are in excellent agreement with previous initiator full configuration interaction quantum
Monte Carlo and diffusion Monte Carlo calculations. We investigate the spin-polarized homogeneous
electron gas and demonstrate that the same neural network architecture is capable of accurately
representing both the delocalized Fermi liquid state and the localized Wigner crystal state. The
network converges on the translationally invariant ground state at high density and spontaneously
breaks the symmetry to produce the crystalline ground state at low density, despite being given no
a priori knowledge that a phase transition exists.

The correlated motion of electrons in condensed matter
gives rise to rich emergent phenomena. Although these
are governed by fundamental quantum mechanical prin-
ciples known for almost a century, they remain difficult
to understand and even harder to predict theoretically
or computationally. One of the major themes of modern
condensed matter physics is the study of phase transi-
tions caused by electron correlation.
The difficulty of solving the Schrödinger equation

scales exponentially with particle number in general, so
exact solutions for interacting many-electron systems are
rarely accessible. This explains why approximate numeri-
cal techniques have become such vital tools in the search
for exotic zero-temperature phases, providing accurate
predictions of experimentally observable quantities in
phases already understood qualitatively. Most compu-
tational approaches, however, encode prior assumptions
about the appropriate phase, which poses a substan-
tial difficulty in predicting previously unknown electronic
states. Changes in symmetry or topology are rarely dis-
covered computationally before they have been seen ex-
perimentally or proposed on theoretical grounds.
In this Letter, we introduce a neural-network-based ap-

proach to predicting the qualitative nature of electronic
ground states in condensed matter. We utilize a rep-
resentation of the wave function, the fermionic neural
network (FermiNet) [1], which is capable of represent-
ing any antisymmetric state [2], and requires no a priori
knowledge of the system being studied. Guided by the
quantum mechanical variational principle alone, without
reference to experimental data, FermiNet can learn the
ground state of a many-body interacting Hamiltonian.
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We extend FermiNet, which has previously only been ap-
plied to atoms and molecules [1, 3–5], to systems subject
to periodic boundary conditions. Phase transitions are
seen by studying changes in the ground state as the pa-
rameters of the system are varied.

A significant body of recent work has used machine
learning to detect phase transitions in simulated classi-
cal [6–8] and quantum [9–11] systems, but these studies
required a source of external data, looking for patterns
characteristic of different phases. Our approach requires
only the Hamiltonian. There has also been work using
neural network ansätze to study lattice models and spin
systems, including their phase transitions [12–16], but
for applications to many real systems, the wave function
must be treated, as in the present work, in continuous
space.

The flexibility of FermiNet hinges on the universal ap-
proximation property of neural networks [17, 18], which
makes them a versatile tool for approximating high-
dimensional functions and has led to radical advances
in many computational fields [19–22]. This success has
motivated the application of neural networks to solving
problems across the physical sciences, including quan-
tum mechanics [12, 23–25]. Several neural-network-based
wave functions in both first-quantized [1, 3, 26–28] and
second-quantized [29] representations have recently been
used to compute the ground-state energies of molecules
to a level of accuracy rivaling, or in some cases exceed-
ing, sophisticated quantum chemistry methods such as
coupled cluster [30]. FermiNet and ansätze derived from
it are the most accurate of these so far, gaining an ad-
vantage over second-quantized neural and most quan-
tum chemical approaches because they are basis-set free.
This, coupled with the flexibility of the neural represen-
tation, enables the application of FermiNet to generic
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phases of matter.
We demonstrate the flexibility of the periodic Fer-

miNet by studying the quantum phase transition between
the Fermi liquid and Wigner crystal [31] in the three-
dimensional interacting homogeneous electron gas (HEG)
[32]. Two-dimensional Wigner crystals were very recently
imaged for the first time [33–35], but three-dimensional
Wigner crystals have not yet been observed in electronic
systems and are thus less well understood. The zero-
temperature properties of the three-dimensional HEG de-
pend on a single dimensionless parameter, rs, defined
as the ratio of the radius of a sphere that contains one
electron on average to the Bohr radius. At high density
(small rs), the ground state is a weakly interacting Fermi
liquid. At low density (large rs), the correlations are
stronger and the translational symmetry breaks sponta-
neously, giving rise to a spatially ordered Wigner crystal
[31].

We find that the same neural network architecture
learns the appropriate ground-state wave function either
side of the Wigner phase transition, spontaneously break-
ing continuous translational symmetry when the crystal
phase is stable. As we give the network no information
about the nature of the ground state, the degree of in-
ductive bias in the determination is very low.

The Hamiltonian for a finite HEG of N electrons sub-
ject to periodic boundary conditions is

H = −1

2

N∑
i=1

∇2
i + UCoulomb, (1)

where the indices i label theN electrons in the simulation
cell and UCoulomb is the Coulomb energy per simulation
cell of an infinite periodic lattice of identical copies of
that cell In practice, the Coulomb energy is evaluated
using the Ewald method [36, 37]. We work in Hartree
atomic units, where energies are measured in Hartrees (1
Ha ≈ 27.211 eV) and distances in Bohr radii.

The wave function represented by a FermiNet is a sum
of determinants of many-electron functions [1, 3]:

Ψ({xj}) =
ndet∑
k

det
[
ψk
i (xj ; {x/j})

]
, (2)

where x = (r, α) labels the spatial and spin coordinates
of an electron, and the set {x/j} includes all electron

coordinates except xj . The orbital ψk
i (xj ; {x/j}) de-

pends on the coordinates xj of the j-th electron, and, in
a permutation-invariant fashion, on the set of all other
electron coordinates. The use of many-electron orbitals
makes a FermiNet determinant much more flexible than
a Slater determinant of one-electron orbitals and a linear
combination of a small number of FermiNet determinants
has a much greater representational capacity than a lin-
ear combination of a similar number of Slater determi-
nants [1]. The original FermiNet architecture assumed,

as is conventional in variational Monte Carlo (VMC) [40],
that the determinants in Eq. (2) can be factorized into
spin-up and spin-down determinants. Removing this con-
straint has proven to be more accurate (see Supplemen-
tary Material) and is used here.
FermiNet uses a neural network to approximate the

many-electron orbitals appearing in the determinants [1].
The network consists of two parallel streams, for process-
ing one-electron and two-electron information. The one-
electron stream is constructed of repeating blocks, where
each block contains a nonlinear layer and a permutation-
equivariant function. The two-electron stream is a com-
paratively small fully-connected feed-forward network.
The outputs of the one- and two-electron streams at
each layer are fed into the permutation-equivariant func-
tion. The multiple outputs of the one-electron stream
are fed through a final linear layer to produce the re-
quired number of many-electron functions, {ϕkαi }. Fi-
nally, the network outputs are multiplied by a parame-
terized envelope, f , to produce the many-electron orbitals
ψkα
i (r) = fkαi (r)ϕkαi (r). The electron position vectors ri

and norms ∥ri∥, and the electron-electron separation vec-
tors (ri−rj) and norms ∥ri − rj∥, are supplied as inputs
to the network. Full details of the network architecture
are given in Ref. [1] and the Supplementary Material.
To adapt the FermiNet architecture to periodic sys-

tems, it is sufficient to modify the input features to en-
sure that periodic boundary conditions are satisfied. Pe-
riodic input features are most easily expressed in the ba-
sis {a1,a2,a3} of primitive Bravais lattice vectors of the
simulation cell. For an arbitrary vector r ≜ s1a1+s2a2+
s3a3, the periodic input features are obtained from the
fractional coordinates si via the component-wise trans-
formation si → (sin(2πsi), cos(2πsi)). A periodic ana-
logue of the Euclidean norm may be defined as

∥s∥2p =
∑
ij

[1− cos(2πsi)]Sij [1− cos(2πsj)]

+ sin(2πsi)Sij sin(2πsj),

(3)

where Sij = ai · aj acts as a metric tensor in the frac-
tional coordinate system. This definition of the norm is
smooth, periodic with respect to the simulation cell, and
proportional to the Euclidean norm as s → 0. Unlike the
simpler norm introduced in [41], it retains these prop-
erties for non-cubic simulation cells. Convergence speed
and asymptotic convergence are improved by including
an envelope of the form

fkαi (r) =
∑
m

[
νkαim cos(km · r) + µkα

im sin(km · r)
]
, (4)

for real wave functions, or

fkαi (r) =
∑
m

νkαim exp(ikm · r), (5)

for complex wave functions. The km are simulation-cell
reciprocal lattice vectors up to the Fermi wavevector of



3

TABLE I: Correlation energy of the spin unpolarized N = 14 HEG with simple cubic boundary conditions. The
i-FCIQMC energies [38] were calculated using a basis of 778 plane-wave orbitals for rs = 5.0 or 2378 plane waves
otherwise, corresponding to Hilbert spaces of 1024 and 1031 Slater determinants, respectively. The extrapolation of
i-FCIQMC results to the complete basis set limit may yield correlation energies that are 1–2 mHa too negative [39].

Correlation energy [Hartree]
Method rs = 0.5 rs = 1.0 rs = 2.0 rs = 5.0
SJB (ndet = 1)

VMC −0.58624(1) −0.5254(1) −0.437(3) −0.30339(2)
DMC −0.58778(1) −0.5254(1) −0.4385(3) −0.30474(8)

FermiNet
ndet = 1 −0.58895(6) −0.52568(3) −0.43881(1) −0.30468(1)
ndet = 16 −0.59094(6) −0.52682(3) −0.44053(1) −0.30495(1)

i-FCIQMC[38]
finite basis −0.5939(4) −0.5305(5) −0.4430(7) −0.304(1)
basis set limit −0.5969(3) −0.5325(4) −0.4447(4) −0.306(1)

the noninteracting electron gas, and νkαim, µ
kα
im are learn-

able parameters. Finally, when simulating the electron
gas, the absence of nuclei (and hence electron-nuclear
cusps) removes the need to include the norms of the elec-
tron positions as inputs. The FermiNet wave function is
optimized using VMC [40]. Unless specified, all calcu-
lations used the same training procedure and hyperpa-
rameters as in Ref. [1]. Further details are given in the
Supplementary Material.

Table I shows the results of FermiNet calculations of
the total energy of a 14-electron simple cubic simula-
tion cell of unpolarized HEG at four different densities.
This system is sufficiently small that near-exact initia-
tor full configuration interaction quantum Monte Carlo
(i-FCIQMC) benchmarks are available [38, 42].

However, the fermion sign problem in FCIQMC in-
creases rapidly with rs, rendering i-FCIQMC calcula-
tions at low densities with large basis sets impractical;
the calculations at rs = 5 were ∼104 times more expen-
sive than those at rs = 1 [38]. There is no clear sys-
tematic trend with the disagreement between FermiNet
and i-FCIQMC; FermiNet is 4-6mH above i-FCIQMC at
rs < 5 and 1mH above at rs = 5. The variance in the Fer-
miNet energies decreases with rs, however the magnitude
of the total energy of theN=14 HEG (see Supplementary
Material) also decreases sharply with rs. As a result, it is
ambiguous if the relative accuracy of FermiNet is greater
at lower density. Table I also includes VMC and fixed-
node diffusion Monte Carlo (DMC) results calculated us-
ing a conventional Slater-Jastrow-backflow (SJB) wave
function.

Although FermiNet is a VMC method, it achieves an
accuracy similar to that of SJB-DMC, with both ap-
proaches obtaining 99% of the i-FCIQMC correlation en-
ergy extrapolated to the complete basis set limit (which
may be 1–2 mHa too large [39]). FermiNet obtains a sim-
ilar fraction of the correlation energy for molecular sys-
tems with a comparable number of electrons [1]. Again
as in molecular systems, calculations using sixteen Fer-

miNet determinants are noticeably better than calcula-
tions using one FermiNet determinant.

To assess the performance of FermiNet as the strength
of the correlation increases, we study the N=27 electron
spin-polarized HEG in the density range from rs = 1 to
90 in a body-centred cubic (bcc) cell, as this minimizes
the packing density and has the lowest Madelung energy
[31] of the Wigner crystal in the low density limit. Prior
work [43, 44] had found Wigner crystallization to occur in
the interval rs = [100, 110], although a recent study [45]
lowers this estimate substantially. The 27-electron sys-
tem studied here is very small and there are substantial
finite-system-size effects that broaden the phase transi-
tion and move it to a much higher density.

Ground-state energies obtained using VMC with a Fer-
miNet wave function and using VMC and DMC with SJB
wave functions targeted at gas and crystal states are com-
pared in Fig. 1(a) for the 27-electron system. For rs ≤ 1,
real-valued FermiNets often become trapped in local min-
ima during optimization, with energies typically ∼0.1%
higher than the SJB-DMC benchmarks. Complex-valued
FermiNets do not become trapped in local minima at
these densities, and converge to wave functions with a
uniform-in-space complex phase, indicating that a com-
plex wave function improves optimization, rather than
simply increasing representational capacity. All other
results were obtained with real wave functions. The
SJB ansätze used to describe gases and crystals are de-
tailed in the Supplementary Material and Ref. [44]. Fer-
miNet VMC calculations produce a tighter variational
lower bound than both the SJB gas and crystal wave
functions at all densities. Furthermore, FermiNet out-
performs fixed-node DMC calculations based on a SJB
gas wave function across the entire density range, even
at rs ≤ 1. In the low-density regime, fixed-node DMC
calculations using the SJB crystal wave function give
slightly better results than our FermiNet VMC calcula-
tions. These results suggest that the nodal surface of the
SJB crystal wave function is highly accurate but that the
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FIG. 1. The N = 27 spin-polarized homogeneous electron gas in a body-centered cubic (bcc) simulation cell. (a) Single-
determinant Slater-Jastrow-backflow (SJB) ground-state total energies per electron relative to FermiNet. The “gas” and
“crystal” results were obtained using SJB wave functions built using determinants of plane waves and Gaussian orbitals,
respectively. Error bars are smaller than the markers. FermiNet results for rs ≤ 1 used complex wave functions. FermiNet-
VMC yields a variational improvement over SJB-VMC and SJB-DMC in the gas phase and over SJB-VMC in the crystal
phase. (b) One-electron density from FermiNet-VMC at rs = 10 (left) and 70 (right), projected into the (011) plane of the
conventional bcc structure. Four simulation cells are shown. Length scales are normalized by rs, such that the apparent length
scales are equivalent and crystal sites are superimposable. (c) Order parameter averaged over crystal axes for the bcc Wigner
crystal state. Error bars are smaller than the markers. At small values of rs, the order parameter is ∼0, corresponding to
a uniform one-electron density (gas-like); the order parameter rises sharply to a finite value at rs = 2, corresponding to the
emergence of a crystalline state.

shape of the wave function away from the nodal surface
is captured better by FermiNet. Figure 1(b) shows scans
of the one-electron density of FermiNet wave functions
at rs = 10 and 70 in the (a2,a3) plane, which is normal
to the (011) direction of the conventional bcc cell. Fig-
ure 1(c) shows the Fourier component of the one-electron
density, ρ̃ (see Supplementary Material), an order pa-
rameter appropriate for the Wigner crystal, as calculated
from VMC simulations using FermiNet and SJB gas and
crystal wave functions. These results show that FermiNet
is capable of learning wave functions in both the gas and
Wigner crystal states to very high accuracy without any
hand-crafted features indicating whether the wave func-
tion should be localized or diffuse, any specific designa-
tion of crystal sites, or any other information that a tran-
sition should occur. Unlike the gas and crystal SJB trial
wave functions required to describe the gaseous and crys-
talline states accurately, the FermiNet ansatz is identical
across the entire density range.

The HEG Hamiltonian is symmetric under the simul-
taneous translation of all electron co-ordinates. Thus,
the true ground state of the Wigner crystal is uniform
in the one-electron density, with the crystal appearing
only in the pair-correlation function. This is known as
a “floating crystal“ state [46, 47]. In Refs. [44, 45], it is
shown

that the energy difference between the fixed and float-

ing crystal is approximately ∆E = 0.055r
−3/2
s . While

FermiNet differs from Slater-type wave functions used to

derive ∆E, we expect a similar reduction in kinetic en-
ergy. At low rs, ∆E is large (20mHa at rs = 2), so
we would expect FermiNet to learn the floating crystal
state. Fig. 1 (b, c) show that FermiNet instead learns the
fixed crystal. The notion of a fixed origin can be removed
by removing the one-electron features, however we find
this increases the energy obtained. This suggests that
the two-electron stream is insufficiently flexible to fully
describe the two-electron correlations in the Wigner crys-
tal without help from the one-electron stream. Improving
the flexibility of the two-electron stream will be the focus
of future work. We do not believe that these issues im-
pact the central conclusion of the present work, and stress
that in real condensed matter systems the Hamiltonian
does not possess continuous translational symmetry.

Other recent works have explored using neural net-
works to represent wavefunctions in real-space periodic
systems. Pescia et al. use a DeepSets architecture to
study bosons in 1D and 2D, obtaining results competi-
tive with conventional DMC [41]. The iterative backflow
network approach of Holzmann and co-workers [48–50]
represents Jastrow and backflow functions in a manner
equivalent to fully-connected neural networks. They ob-
serve liquid and solid phases of 2D (bosonic) 4He [49],
but the application to the HEG [50] gives a higher en-
ergy at low density than the crystal state observed by
Drummond et al. [44]. Whilst this manuscript was in
preparation, two related preprints were reported. Wil-
son et al. presented FermiNet-based and iterative back-
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flow results for the 14-electron system studied here, plus
7- and 19-electron HEGs [51]. Although they used a
more heavily modified version of the FermiNet architec-
ture and include a backflow-based term in the orbitals,
their results are similar to ours. Li et al. used a similar
but smaller FermiNet architecture to ours, with simpler
periodic inputs and no envelope function, to study the
N=54 HEG along with other atomic solids [52], but do
not outperform their SJB VMC or DMC baseline en-
ergies. Neither of these two preprints address Wigner
crystallization. We expect that other FermiNet-derived
models are capable of discovering phase transitions, as in
the present work, however we are unsure if this applies to
the heavily modified ansatz of Wilson et al. which intro-
duces a higher degree of inductive bias via the inclusion
of Hartree-Fock orbitals in the determinant. Applying
any of the aforementioned approaches to fermionic sys-
tems, including FermiNet, incurs the same O(N3) scaling
of determinant evaluation. An additional factor of N is
introduced if analytic gradients are not available and the
Laplacian must be evaluated via automatic differentia-
tion.

To summarize, we have extended the FermiNet neu-
ral wave function to calculations with periodic boundary
conditions. This we accomplished by making minimal,
physically-motivated, modifications to render the input
features periodic, and by adding a periodic envelope func-
tion. As proof of concept, we have demonstrated the ac-
curacy of the modified architecture on the N=14 HEG,
where we obtained ∼99% of the correlation energy and
slightly outperformed VMC and DMC calculations using
conventional one-determinant SJB trial wave functions.
For the N=27 HEG, we see that FermiNet is capable
of learning the localized Wigner crystal phase a priori,
producing energies in excellent agreement with SJB trial
wave functions which encode the qualitative nature of the
ground state in their construction. This suggests that
FermiNet may be capable of determining novel quantum
phases in condensed matter given only the Hamiltonian.

To study quantum phase transitions in realistic
strongly-correlated electronic systems, it will be neces-
sary to scale to larger numbers of electrons to over-
come finite-size effects. However, the scaling required to
achieve a fixed accuracy per electron is not yet known.
Achieving an acceptable accuracy at an affordable scaling
may require additional innovations in the neural network
architecture employed. FermiNet could also be used as
a trial wave function for DMC calculations in periodic
boundary conditions, an approach that yields small im-
provements in molecular systems [4]. More generally,
we believe that the flexibility and accuracy offered by
neural networks make them promising tools for studying
complex correlation effects and other emergent phenom-
ena. The advantages of neural-network-based methods
are most compelling when the phenomena in question
are unexpected or not yet understood.
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SUPPLEMENTARY

FERMIONIC NEURAL NETWORKS

The FermiNet architecture maps a set of input fea-
tures derived from the electron coordinates, {rαj }, where
α labels the spin of the electron, to the set of functions
ψkα
i (rj ; {r/j}). In the original FermiNet, this set of in-

puts to each layer of the network is

jlαi =

hα
i ,

1

n↑

n↑∑
j=1

hl↑
j ,

1

n↓

n↓∑
j=1

hl↓
j

1

n↑

n↑∑
j=1

hlα↑
ij ,

1

n↓

n↓∑
j=1

hlα↑
ij


(6)

where

h1α
i = (rαi − rI , ∥rαi − rI∥ ∀ I) (7)

h1αβ
ij =

(
rαi − rβj ,

∥∥∥rαi − rβj

∥∥∥) , (8)

with capitalized subscripts referring to atomic co-
ordinates, and ∥.∥ the Euclidean norm. These input fea-
tures are updated by consecutive transformations,

hl+1α
i = tanh

(
Vljlαi + bl

)
+ hlα

i (9)

hl+1αβ
ij = tanh

(
Wlhlαβ

ij + cl
)
+ hlαβ

ij . (10)

The first transformation (one subscripted index) is re-
ferred to as the one-electron stream, and the second (two
subscripted indices) the two-electron stream. The out-
puts from the Lth transformation are subject to a final,
spin-dependent, linear transformation and multiplied by
(in open boundary conditions) an exponentially decaying
envelope [3] which enforces the decay of the wave function
as ri → ∞,

ψkα
i (rj , {r/j}) = ϕkαi (rj , {r/j})fkαi (rj) (11)

where

ϕkαi (rj , {r/j}) = (wkα
i · hLα

j + gkαi ) (12)

and

fkαi (rj) =

[∑
m

πkα
imexp

(
−σkα

im|(rαj −Rm)|
)]
. (13)

The functions ψkα
i are used as the inputs to the de-

terminants, Eq. (2), in the main text. The determi-
nant expansion in Eq. (2) does not require multiplica-
tive coefficients as they can be trivially absorbed into
the determinants[3]. Hutter showed that a single de-
terminant of such many-body functions can represent
any antisymmetric function[2], though the proof depends
upon the construction of discontinuous functions that
cannot be represented in practice by a finite network of

a reasonable size. Note that the pooling operations in
Eq. (6) are chosen such that the feature vector jlσi is only
permutation-invariant with respect to the exchange of
electrons of the same spin. Thus, the desired fermionic
exchange statistics are enforced even with the dense de-
terminant form, discussed below.
To construct complex wave functions, the number of

functions ϕkαi output from the network is doubled, and
the inputs to the determinant become

ψkα
i = (ϕkα2i + iϕkα2i+1)f

kα
i (14)

The set of parameters,

θ = {Vl,Wl,wkα
i ,bl, cl, gkαi , πkα

im, σ
kα
im}, (15)

are all learnable. Pretraining these parameters to
minimize the deviation between FermiNet orbitals and
Hartree-Fock orbitals is possible, but we find that it is
often unnecessary to achieve a well converged result and
it is not performed in any calculations in the current
study. The linear transformations specified by Vl and

Wl are known as hidden layers. For a more extensive
description of the FermiNet architecture, see Pfau et al.
[1].
FermiNets are trained via the variational Monte Carlo

(VMC) method: the parameters of the network are ad-
justed to lower the expectation value of the energy, which
is calculated using Metropolis-Hastings Monte Carlo in-
tegration over the 3N -dimensional space of electron po-
sitions. A detailed description of the VMC approach is
provided by Foulkes et al. [40]. The parameters θ are
optimized via gradient descent to minimize ⟨H⟩. This
guides the wave function Ψθ toward the ground state as
a result of the variational principle. Working in log-space,
the gradient of ⟨H⟩ with respect to the parameters θ is

∇θ⟨H⟩ = ⟨EL∇θlogΨ
∗ + E∗

L∇θlogΨ− 2 ⟨EL⟩∇θlog|Ψ|⟩ ,
(16)

where EL(r) = Ψ−1(r)HΨ(r) and the expectation value
is evaluated for samples of r taken from the probability
amplitude |Ψ(r)|2. The kinetic component of the local
energy is calculated in log-space via,

TL(r) = −1

2

∑
i

[
∂2 logΨ

∂r2i

∣∣∣
r
+

(
∂ logΨ

∂ri

∣∣∣
r

)2
]
. (17)

Gradients of the wavefunction are obtained using
standard back-propagation techniques. We employ the
Kronecker-factored approximate curvature algorithm (K-
FAC) [53] which approximates the Fisher information
matrix for large neural networks, and enables scalable
natural gradient descent [54]. Natural gradient descent
is equivalent, up to a normalization constant, to the
stochastic reconfiguration method [55] frequently used in
VMC [1, 56]. For complex wave functions, the inverse
Fisher matrix is not strictly the appropriate choice of
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metric for natural gradient descent, and one should in-
stead use the Fubini-Study metric [57]. In the present
work, we found that natural gradient using the usual
inverse Fisher was capable of finding the ground state,
possibly because the Hamiltonian is real-valued. A full
treatment of the optimization of complex wave functions
is beyond the scope of the present work. Unlike in con-
ventional VMC optimization, correlated sampling is not
used due to the small batch sizes, frequent parameter
updates, and implementation details of K-FAC.

PERIODIC BOUNDARY CONDITIONS

The ground state wave function of an interacting sys-
tem possesses a macroscopically large number of degrees
of freedom n, due to the many-body interactions between
all of the charges in the system. Solving for the many-
body wave function Ψ(r1, . . . , rn) in R3n is intractable
for n approaching the—effectively infinite on a computa-
tional scale—number of electrons found in a real solid.

To approximate real solids by simulating a small num-
ber of electrons we employ periodic boundary conditions:
a finite-sized simulation cell is embedded in a periodic ar-
ray of images of all charges in the simulation cell. The re-
sulting Hamiltonian possesses discrete translational sym-
metry: displacing any charge by a simulation cell lat-
tice vector leaves the system invariant. The many-body
eigenfunctions then have the property [58]

Ψ(r1, . . . , ri, . . . , rn) = Ψ(r1, . . . , ri +RS, . . . , rn), (18)

where RS is a simulation cell lattice vector. As a re-
sult, the problem of finding eigenfunctions on R3n for
extremely large n has been reduced to a problem of find-
ing eigenfunctions on the torus T3n where n is a small
number. The errors arising due to this approximation are
known as finite-size effects. A full treatment of finite-size
effects are beyond the scope of the present work, and do
not alter the conclusions of the comparisons presented as
all systems being compared are utilizing the same finite-
size Hamiltonian.

FERMINET WITH PERIODIC BOUNDARY
CONDITIONS

To impose the constraint (Eq. (18)) on the FermiNet
with it is sufficient to choose an alternative set of in-
put features to the first layer of the FermiNet which are
invariant under the translation of any one electron coor-
dinate by a simulation cell lattice vector. In the following
sections we describe modifications to the coordinate and
distance features which fulfill this requirement.

Fractional coordinates

Any vector in real space can be expressed as a linear
combination of primitive simulation cell lattice vectors
(a1,a2,a3),

v = s1a1 + s2a2 + s3a3, s1, s2, s3 ∈ R, (19)

defining s = (s1, s2, s3) ∈ R3, which is an equally valid
representation of a position on the lattice that we will
refer to as fractional coordinates. There is a one-to-one
mapping between positions in real space and positions in
fractional coordinates,

s = A−1v (20)

where,

A =

 | | |
a1 a2 a3
| | |

 , (21)

is a matrix whose columns consist of the primitive sim-
ulation cell lattice vectors. The simulation cell is a par-
allelepiped in real space but a unit cube in fractional
coordinates. As a result, it is simple to construct maps
that are periodic under translations by simulation cell
lattice vectors using trigonometric functions.
All vectors v in the original set of input features [Eqs.

(7) and (8)] are replaced via the component-wise mapping

vn → (sin(2πsn), cos(2πsn)) . (22)

An additional subtlety is introduced by the fact that any
continuous, unique labeling of points on a unit circle re-
quires two numbers. This necessitates the use of both
sine and cosine input features for each spatial dimen-
sion by recognizing that the torus T3n decomposes into
a product of unit circles, Sn × Sn × Sn. Displacing v
by a simulation cell lattice vector leaves the value of the
right-hand side of (Eq. (22)) invariant as desired.

Periodic norm

The periodic analogue of ||v|| must retain a cusp as
v → 0, resembling the Euclidean norm. The inclusion
of the Euclidean norm features is known to have a sub-
stantial impact on the accuracy of the FermiNet [1]: the
network is incapable of introducing discontinuities into
the wave function, and thus cannot satisfy the Kato cusp
conditions [59] on the derivatives of the wave function as
electrons approach nuclei and each other without cusps
being included explicitly in the input features. Similarly,
the periodic norm must be continuous everywhere except
at the cusps, as the network will be unable to remove
these discontinuities from the wave function, resulting
in an unphysical contribution to the kinetic energy. In
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summary, we require a function of s which behaves like

|v| =
√
v2x + v2y + v2z as v → R, is periodic on the domain

[0, 1]3, and whose derivative vanishes at the simulation
cell boundaries to ensure continuity.

We proceed by considering the definition of the Eu-
clidean norm as the Euclidean inner product of a vector
with itself,

∥v∥2 = v · v = (As)T (As) =
∑
ij

siSijsj , (23)

where

Sij = ai · aj . (24)

We conjecture by analogy that the norm in terms of the
periodic co-ordinates (Eq. (22)) should be

∥s∥2p =
∑
ij

[1− cos(2πsi)]Sij [1− cos(2πsj)]

+ sin(2πsi)Sij sin(2πsj),

(25)

This definition of the norm possesses all of the proper-
ties that we desired: as si → 0 this expression reduces
to the Euclidean norm [Eq. (23)] by considering the first-
order Taylor expansions of sine and cosine; the periodic-
ity is obvious as the expression is invariant to translations
si → si± 1; and, as a result of reducing to the Euclidean
norm at the origin, this function retains the desired cusps,
while also being differentiable in the rest of the unit cell.
All distances, ||.||, in the original set of input features
[Eqs. (7) and (8)] are replaced by the periodic norm.

Periodic multiplicative envelope

For the periodic envelope function introduced in
Eqs. (4) and (5), νkim and µk

im are strictly positive learn-
able parameters, optimized during training. The enve-
lope eases the representation of highly oscillatory func-
tions, while still being trivially capable of representing
any function representable by the network with no enve-
lope because k0 = 0. All νkim and µk

im are initialized to
small random values except νki0 = 1. Other initialization
schemes may be more appropriate, but have not been
studied here. Fig. 2 demonstrates the improved training
performance due to the envelope.

ONE-ELECTRON DENSITY OPERATOR

The emergent localization of the wave function due to
Wigner crystallization can be seen by accumulating the
expectation value of the one-electron density operator,

ρ(r) =

〈
1

N

∑
i

δ(ri − r)

〉
, (26)

FIG. 2. Learning curves, given in terms of the correlation
energy, for the N = 14 spin unpolarized HEG at rs = 1.0 uti-
lizing 16 dense determinants, with and without a sinusoidal
envelope, using identical training parameters. An N = 500
moving average filter has been applied to both curves to im-
prove visual clarity.

where the expectation value is taken over samples of one-
electron coordinates. An order parameter for the broken-
symmetry state is the Fourier component of ρ(r) corre-
sponding to any primitive reciprocal lattice vector, bW

i ,
of the emergent crystal:

ρ̃
(
bW
i

)
=

〈
1

N

∑
j

exp
(
ibW

i · rj
)〉

. (27)

A state with ρ̃ = 0 is gas-like, and a state with ρ̃ ̸=
0 is crystalline. If the simulation cell is bcc in shape
and contains N = M3 (spin-polarized) electrons at low
enough density, it contains anM×M×M Wigner lattice
and bW

i =Mbi, where the bi are the primitive reciprocal
lattice vectors corresponding to the simulation cell.

EXPERIMENTAL SETUP

FermiNet calculations

Four A100 GPUs were used for all calculations pre-
sented. Calculations were carried out using single pre-
cision floating point numbers, as we found statistically
identical results were achieved using double precision at
the cost of approximately doubling runtime. The mod-
ifications to FermiNet were implemented using the JAX
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TABLE II: FermiNet hyperparameters for all
experiments in the paper. These are mostly the same
parameters as used in the original FermiNet paper,
except we omit pretraining and slightly increase the

number of training iterations.
Kind Parameter Value
Optim Batch size 4096
Optim Training iterations 3e5
Optim Pretraining iterations 0
Optim Learning rate (1e4 + t)−1

Optim Local energy clipping 5.0
KFAC Momentum 0
KFAC Covariance moving average decay 0.95
KFAC Norm constraint 1e-3
KFAC Damping 1e-3
MCMC Proposal std. dev. (per dimension) 0.02
MCMC Steps between parameter updates 10

Python library [60], extending a development version of
the FermiNet [61]. Optimization used a JAX implemen-
tation of the Kronecker-factored approximate curvature
(KFAC) gradient descent algorithm [3, 53, 62]. In the
N=14 electron gas, a FermiNet with 4 layers of 256
units in the one-electron stream and 32 units in the two-
electron stream was used for the 1 and 16 determinant
calculations. In all calculations for the N=27 HEG, we
used a FermiNet of four layers with 512/64 units in the
one/two-electron streams respectively with 16 determi-
nants. For both systems, the wave function was op-
timized over 3e5 training iterations and 5e4 additional
samples of ⟨H⟩ with the wave function parameters frozen
were taken to obtain the final energies. The standard er-
ror associated with these energies was evaluated using a
reblocking method [63] to account for sequential correla-
tions introduced by the Monte Carlo sampling strategy.

For the majority of calculations, we employ a set of
network and training hyperparameters identical to those
previously used to obtain results on molecular systems
[1]. For the N=27 HEG at rs = 2, 3, and 5, we find that
a more aggressive initial learning rate (base value 1e-2
versus the default 1e-4) is required to reliably avoid lo-
cal minima. This is accompanied by an increased KFAC
norm constraint and damping of 1.0 and 1e-1, respec-
tively.

Slater-Jastrow-backflow calculations

The Slater-Jastrow-backflow (SJB) wave function
ansatz used to produce the benchmark VMC and DMC
calculations in the main text takes the form of a Slater
determinant multiplied by a Jastrow factor

Ψ(r) = exp(J(r))det [ϕi(x(rj))] . (28)

The Slater determinant is composed of one-electron func-
tions and enforces the fermionic antisymmetry of the

wave function, just as in the FermiNet. This determi-
nant is evaluated at coordinates which are modified by a
backflow transformation,

x(rj) = rj + ξ(rj), (29)

and multiplied by a Jastrow factor exp(J) which is a
permutation-invariant function of the electronic coordi-
nates. Here we will only provide a brief overview of the
terms incorporated into these factors. A much more de-
tailed account is provided in Ref. [45]. All SJB VMC and
DMC calculations were performed using the casino pro-
gram [64, 65]. The parameters of the SJB VMC wave
functions were optimized using variance minimization
and then energy minimization. The DMC results were
extrapolated to zero time step.

For the Fermi fluid, the one-electron orbitals in the
Slater determinant are the Hartree-Fock orbitals for the
homogeneous electron gas,

ϕk(rj) = exp(ik · rj), (30)

where the {k} are the N/2 (spin unpolarized) or N (spin
polarized) smallest simulation cell reciprocal lattice vec-
tors. In the crystal, periodic one-electron orbitals are
evaluated as sums over periodic images of site-centered
Gaussian functions,

ϕRP(rj) =
∑
RS

exp
(
−C |rj −RP −RS|2

)
, (31)

where RP is a primitive-cell lattice point within the sim-
ulation cell, RS is a simulation cell lattice point, and
C is an optimizable parameter controlling the width of
the Gaussian. This sum is truncated when the contri-
butions of the images of the Gaussian basis functions
become smaller than 10−7 at the edge of the simulation
cell in which the orbital is being evaluated. There are N
primitive-cell lattice points within the simulation cell.

The Jastrow exponent consists of a sum of three terms,

J(r) =

N∑
i<j

[u(rij) + p(rij)] +

N∑
i

q(ri), (32)

where u is a power series in the electronic separations
which includes fixed terms to impose the Kato cusp con-
ditions [59]. This term is smoothly cut off at a radius less
than or equal to the radius of the largest sphere that can
be inscribed in the Wigner-Seitz cell of the simulation
cell. The p term is

p(rij) =
∑
A

aA
∑

G∈A+

cos(G · rij), (33)

where A consists of shells of simulation cell reciprocal
lattice vectors, and A+ excludes one from each pair of
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vectors which are related by inversion symmetry. Simi-
larly,

q(ri) =
∑
B

bB
∑

G∈B+

cos(G · ri), (34)

where B consists of shells of Wigner crystal primitive cell
reciprocal lattice vectors. The q term is omitted from the
Fermi fluid wave function, as it does not retain continu-
ous translational invariance with respect to the electronic
center of mass.

The backflow transformation consists of two terms,

ξ(ri) =

N∑
j ̸=i

η(rij)rij +

N∑
j ̸=i

π(rij), (35)

where η is mathematically identical to the Jastrow u
term, and π has the form of the gradient of the Jastrow
p term:

π(rij) = −
∑
A

cA
∑

G∈A+

sin(G · rij)G. (36)

The coefficients aA, bB , and cA are all optimizable pa-
rameters.

All of these terms are evaluated using a minimum im-
age convention.

BLOCK DETERMINANTS

We use, as is standard in VMC, spin-
assigned wavefunctions[40], where we replace
Ψ(r1, α1; . . . , rN , αN ) with a function of position alone:
Ψ(r1, . . . , rN ) ≜ Ψ(r1, ↑; . . . rN↑ , ↑; rN↑+1, ↓; . . . , rN↓ , ↓),
where N = N↑ + N↓ is the number of electrons
and N↑ − N↓ = 2Sz is the spin polarization. The
spin-assigned wave function is only antisymmetric on
interchange of the position coordinates of electrons of
the same spin, but assigning the spins has no effect on
expectation values of spin-independent operators. This
enables a Slater determinant to be factorized into a
product of spin-up and a spin-down determinants:

det[ψ] = det[ψ↑] det[ψ↓] (37)

The original FermiNet architecture similarly assumed
that the determinants were factorised into spin compo-
nents. Relabeling the electron positions according to the
assigned spins, this amounts to considering determinants
to be in a block-diagonal form:

det[ψ] =

∣∣∣∣∣∣
ψ↑
i (r

↑
j ; {r

↑
/j}, {r

↓}) 0

0 ψ↓
i (r

↓
j ; {r↑}, {r

↓
/j})

∣∣∣∣∣∣ , (38)

where the diagonal blocks are of dimension N↑ ×N↑ and
N↓ ×N↓.

TABLE III: Correlation energy of the spin unpolarized
N = 14 HEG with simple cubic boundary conditions,

compared between a FermiNet wave function
constructed from block diagonal and dense

determinants.

Correlation energy [Ha]
ndet rs = 0.5 rs = 1.0 rs = 2.0 rs = 5.0

Block determinants
1 −0.58831(7) −0.52510(3) −0.43842(1) −0.30433(1)
16 −0.58962(6) −0.52558(3) −0.43876(1) −0.30466(1)

Dense determinants
1 −0.58895(6) −0.52568(3) −0.43881(1) −0.30468(1)
16 −0.59094(6)−0.52682(3)−0.44053(1)−0.30495(1)

TABLE IV: Hartree-Fock energy of the N=14 HEG
with simple cubic boundary conditions.

rs EHF

0.5 48.368516
1.0 8.491476
2.0 0.322545
5.0 -0.812549

If we do not assume the block-diagonal form, we obtain
(dense) determinants

det[ψ] =
∣∣∣ψ↑

i (r
↑
j ; {r

↑
/j}, {r

↓}) ψ↓
i (r

↓
j ; {r↑}, {r

↓
/j})

∣∣∣ , (39)

where the blocks are now of dimension N × N↑ and
N × N↓. We have found that lifting the block-diagonal
constraint provides a small but noticeable variational im-
provement. Dense determinants are hence used unless
otherwise stated.
We provide a comparison with energies for the unpo-

larized N=14 HEG, obtained using block diagonal de-
terminants. These values are presented in Table III,
alongside the results obtained using dense determinants,
copied from the main text for comparison. In all cases
dense determinants offer a small variational improvement
in the correlation energy obtained.

HARTREE-FOCK ENERGIES OF N=14 HEG

In table Table I, we have given our results in terms of
the correlation energy to enable direct comparison with
published i-FCIQMC benchmarks. The results of our
calculations, however, are total energies. To obtain the
correlation energies we have subtracted the Hartree-Fock
energies given in Table IV, obtained using the casino
program [64, 65].
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TABLE V: Total energy per electron of the N=27 HEG in a body-centered cubic simulation cell at a range of
densities, obtained via variational Monte Carlo. SJB values were obtained from our calculations using the casino

package. Here, “gas” refers to a Slater determinant of plane-wave orbitals, and “crystal” refers to a Slater
determinant of Gaussian orbitals. FermiNet results for rs ≤ 1 used complex wave functions.

Total energy [Hartree per electron]
rs FermiNet SJB-VMC Gas SJB-DMC Gas SJB-VMC Crystal SJB-DMC Crystal
0.2 44.18067(2) 44.18235(4) 44.18224(1) 44.184815(4) 44.18468(3)
0.5 6.318704(2) 6.31983(2) 6.319754(7) 6.322090(8) 6.32130(6)
1.0 1.261547(1) 1.262022(8) 1.261975(2) 1.26286(1) 1.26254(2)
2.0 0.152086(1) 0.152393(3) 0.152344(3) 0.1521205(4) 0.152077(4)
3.0 −0.006961(2) −0.006693(2) −0.0067419(7) −0.006915(2) −0.006966(2)
5.0 −0.057691(4) −0.057453(1) −0.0575023(4) −0.0576496(9) −0.057702(1)
10.0 −0.050320(5) −0.0501501(6) −0.0502038(1) −0.0502782(7) −0.0503349(8)
30.0 −0.022541(5) −0.0224510(2) −0.02249870(5) −0.0225119(3) −0.0225620(2)
50.0 −0.014478(4) −0.0144033(1) −0.01444409(5) −0.0144528(1) −0.0144918(1)
70.0 −0.010693(3) −0.0106355(1) −0.0106735(1) −0.0106824(1) −0.0107118(1)
90.0 −0.008496(1) −0.0084277(1) −0.0084862(1) −0.00849274(7) −0.0085137(2)


