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Abstract

The Sullivan dictionary provides a beautiful correspondence between Kleinian groups acting on
hyperbolic space and rational maps of the extended complex plane. We focus on the setting of
geometrically finite Kleinian groups with parabolic elements and parabolic rational maps. In this
context an especially direct correspondence exists concerning the dimension theory of the associated
limit sets and Julia sets. In recent work we established formulae for the Assouad type dimensions
and spectra for these fractal sets and certain conformal measures they support. This allows a rather
more nuanced comparison of the two families in the context of dimension. In this expository article
we discuss how these results provide new entries in the Sullivan dictionary, as well as revealing
striking differences between the two families.

Mathematics Subject Classification 2020: 28A80, 37C45, 37F10, 30F40, 37F50.

Key words and phrases: Sullivan dictionary, Assouad dimension, Assouad spectrum, Kleinian
group, rational map, Julia set, Patterson-Sullivan measure, conformal measure, parabolicity.

1 Introduction

Seminal work of Sullivan in the 1980s [39] resolved a long-standing problem in complex dynamics by
proving that the Fatou set of a rational map has no wandering domains. This work served to establish
remarkable connections between the dynamics of rational maps and the actions of Kleinian groups.
This connection subsequently stimulated activity in both the complex dynamics and hyperbolic ge-
ometry communities and led to what is now known as the Sullivan dictionary; see, for example, [30].
The Sullivan dictionary provides a framework to study the relationships between Kleinian groups and
rational maps. In many cases there are analogous results, even with similar proofs, albeit expressed
in a different language. See [12, Table 1] and also [41] and references therein.

Both Kleinian groups and rational maps generate important examples of dynamically invariant
fractal sets: limit sets in the Kleinian case, and Julia sets in the rational map case, see Figure |1l The
Sullivan dictionary is very well-suited to understanding the connections between these two families
of fractal and the correspondence is especially strong in the context of dimension theory: in both
settings there is a ‘critical exponent’ which, for certain classes of Kleinian groups and rational maps,
describes all of the most commonly used notions of fractal dimension. For Kleinian groups the critical



exponent is the Poincaré exponent, denoted by §, and for rational maps the critical exponent is the
smallest zero of the topological pressure, denoted by h. For both non-elementary geometrically finite
Kleinian groups and parabolic (or hyperbolic) rational maps, the critical exponent coincides with the
Hausdorff, packing and box dimensions of the associated fractal as well as the Hausdorff, packing, and
entropy dimensions of the associated ergodic conformal measure of maximal dimension.

There has been a recent increase in interest in the Assouad type dimensions and these dimensions
(and associated dimension spectra) do not behave in such a straightforward manner in the presence
of parabolicity. In particular, the critical exponent does not necessarily give the Assouad dimension
of the associated fractals. As we shall see, by slightly expanding the family of dimensions considered,
a much richer and more varied tapestry of results emerges. In this expository paper we discuss recent
work from [19] 21], 22] and show how this can be used to provide a new perspective on the Sullivan

dictionary.
Kleinian groups Rational maps
Kleinian group I rational map T
Kleinian limit set L(I") Julia set J(T)
Poincaré exponent critical exponent h
Patterson-Sullivan measure p h-conformal measure m
dimyg L(T") = dimp L(T") = 6 dimyJ(T) = dimpJ(T) = h
dimpgp =46 dimgm = h
finite set of inequivalent parabolic points finite set of parabolic points £
rank of parabolic point k(p) petal number of parabolic point p(w)
dimension bound § > kpax/2 dimension bound A > pmax/(1 + Pmax)

Table 1: Some well-known ‘entries’ in the Sullivan dictionary in the setting of geometrically finite
Kleinian groups and parabolic rational maps. See the following section for definitions and notation.
In Section [3] we describe an expansion of this dictionary, including several new entries as well as some
striking differences (‘non-entries’).

Figure 1: Left: an example of a Kleinian limit set. Here d = 2 and the boundary S? has been identified
with R? U {oo}. Parabolic points with rank 1 are easily identified. Right: an example of a parabolic
Julia set. Parabolic points with petal number 4 are easily identified. See the following section for
definitions and notation.



2 Definitions and Background

2.1 Dimensions of sets and measures and ‘dimension interpolation’

We recall and motivate the key notions from fractal geometry and dimension theory which we use.
For a more in-depth treatment see the books [0} [I8] for background on Hausdorff and box dimensions,
and [20] for Assouad type dimensions. We work with fractals in two distinct settings. Kleinian limit
sets will be compact subsets of the d-dimensional sphere S¢ which we view as a subset of R*1. On
the other hand, Julia sets will be compact subsets of the Riemann sphere C=cu {oc}. However, by
a standard reduction we will assume that the Julia sets are compact subsets of the complex plane C
which we identify with R?, see Section Therefore, it is convenient to recall dimension theory for
non-empty compact subsets of Euclidean space only.

Throughout this section, let F C R? be non-empty and compact. Perhaps the most commonly
used notion of fractal dimension is the Hausdorff dimension, but it will be especially important for
us to consider several notions of dimension together. We write dimgF, dimpF, dimgF and dimg F’
for the Hausdorff, box, upper box and lower box dimensions of F', respectively, but refer the reader to
[0, 18] for the precise definitions. We write

[F| = sup [z —y| € [0,00)
zyel
to denote the diameter of F'. Given r > 0, we write N,.(F") for the smallest number of balls of radius
r required to cover F. In the last 10 years there has been an increase in interest in the Assouad
dimension in the context of fractal geometry. This notion has been of central importance in other
fields for much longer, however, and stems from work in embedding theory and conformal geometry,
see [27,133]. The Assouad dimension of F' is defined by

R S
dimAF:inf{s20|E!C>0 :VO<r<R :VxeF : NT(B(x,R)ﬂF)gC(> }
T
The lower dimension is the natural ‘dual’ to the Assouad dimension and it is particularly useful to
consider these notions together. The lower dimension of F' is defined by

R S
dimLF:sup{s>0|E|C>0 :VO<r<R<|F| : VzeF : NT(B(:U,R)HF)>C<r> }

provided |F'| > 0 and otherwise it is 0. Importantly, (and using that F' is compact)
dimp, F < dimpgF < dimgF < dima F.

The Assouad and lower spectra were introduced much more recently in [23] and provide an ‘interpola-
tion’ between the box dimension and the Assouad and lower dimensions, respectively. The motivation
for the introduction of these ‘dimension spectra’ was to gain a more nuanced understanding of fractal
sets than that provided by the dimensions considered in isolation. This is already proving a fruitful
programme with applications emerging in a variety of settings including to problems in harmonic anal-
ysis, see work of Anderson, Hughes, Roos and Seeger [2] and [34]. These spectra provide a parametrised
family of dimensions by fixing the relationship between the two scales r < R used to define Assouad
and lower dimension. Studying the dependence on the parameter within this family thus yields finer



and more nuanced information about the local structure of the set. For example, one may understand
which scales ‘witness’ the behaviour described by the Assouad and lower dimensions. For 6 € (0,1),
the Assouad spectrum of F' is given by

r

2] S
dim&F:inf{s>0\30>o :V0<r<1:VeeF : NT(B(x,re)ﬂF)gC<r> }

The lower spectrum of F', denoted by dimrp,F, is defined similarly by using the parameter to fix the
relationship R = 7¥ in the definition of the lower dimension. It was shown in [23] that
dimpF }

T (2.1)

dimpF < dim% F < min {dimAF,
dimp, F < dim{ F < dimpF.

In particular, dimaAF — dimpF as § — 0. The limit of dimaAF exists and coincides with the quasi-
Assouad dimension. The quasi-Assouad and Assouad dimensions do not necessarily coincide, but in
many cases of interest they do. It is not necessarily true that dim{ F — dimpF as # — 0, but it
was proved in [20, Theorem 6.3.1] that this does hold provided F satisfies a strong form of dynamical
invariance. Whilst the fractals we study are not quite covered by this result, we shall see that this
interpolation holds nevertheless.

There is an analogous dimension theory of measures, and the interplay between the dimension
theory of fractal sets and the measures they support is fundamental to fractal geometry, especially in
the dimension theory of dynamical systems. For example, a problem of interest is to identify dynamical
measures witnessing the dimension of the support, e.g. invariant measures of full Hausdorff dimension.
Let v be a locally finite Borel measure on R?, i.e. v(B(z,7)) < oo for all z € R? and r» > 0. We
write supp(v) = {z € R? | v(B(x,r)) > 0 for all » > 0} for the support of v. We say that v is fully
supported on F' if supp(v) = F. We write dimpv for the (lower) Hausdorff dimension of v and note
that dimpr < dimgsupp(v) and (using that F' is compact)

dimg F = sup{dimpv | supp(v) C F'},

see [29]. The Assouad dimension of v with supp(v) = F is defined by
B S
dimpy =inf{s>0[3C>0 : VO<r<R<|F| : Vo€ F : Mgc R
v(B(z,r)) r
and, provided |supp(v)| = |F| > 0, the lower dimension of v is given by
B(z,R R\*®
dimp,v = sup 520|E!C>0:VO<T<R<|F|:V:cEF:w>C —
v(B(z,r)) r

and otherwise it is 0. By convention we assume that inf ) = co. The Assouad and lower dimensions
of measures were introduced in [25], where they were referred to as the upper and lower regularity
dimensions, respectively. It is well known (see [20, Lemma 4.1.2]) that, for a Borel probability measure
v supported on F,

dimpy < dimp, F < dimpa F' < dimpv

and, furthermore, we have the stronger fact that

dimp F' = inf {dimav | v is a Borel probability measure fully supported on F'}



and
dimp F' = sup {dimy,v | v is a Borel probability measure fully supported on F'} .

For 6 € (0,1), the Assouad spectrum of v, denoted by dimgu, and the lower spectrum of v, denoted
by dimiu, are defined similarly to the Assouad and lower dimensions but, again, using the parameter
6 € (0,1) to fix the relationship R = 7.

It is known (see [I7] for example) that

dimp,r < dimil/ < dimeAV < dimav
and, if v is fully supported on F', then
dimiy < dimiF < dim%F < dimgl/.

There are also upper and lower box dimensions for measures, recently introduced in [17]. We omit the
formal definitions, referring the reader to [I7, 20]. Following [17], it is useful to note that

dimpF = inf {mgy | v is a finite Borel measure fully supported on F}

with an analogous result for lower box dimension. Furthermore, it was shown that the upper box
dimension of v can be related to the Assouad spectrum of v in a similar manner to sets, that is, for
6 € (0,1),

HBI/
1-46

dimpr < dim%u < min {dimAy,
and so dimgy = limg_,q dim%u.

2.2 Kleinian groups and limit sets

For a more thorough study of hyperbolic geometry and Kleinian groups, we refer the reader to [4] 28].
For d > 1, we model (d + 1)-dimensional hyperbolic space using the Poincaré ball model

D = {z e R | 2] < 1}
equipped with the hyperbolic metric dy and we call the boundary
St ={zeR¥M ||z =1}

the boundary at infinity of the space (D!, dy). We denote by Con(d) the group of orientation-
preserving isometries of (D9*! dy). We say that a group is Kleinian if it is a discrete subgroup of
Con(d) (such groups are often referred to as Fuchsian in the case when d = 1), and given a Kleinian
group T', the limit set of T' is defined to be L(I') = I'(0) \ I'(0) where 0 = (0,...,0) € D! Tt is
well known that L(T") is a compact T-invariant subset of S¢, see Figure |1} If L(T") consists of zero, one

or two points, it is said to be elementary, and otherwise it is non-elementary. In the non-elementary
case, L(I") is a perfect set, and often has a complicated fractal structure. We consider geometrically
finite Kleinian groups. Roughly speaking, this means that there is a fundamental domain with finitely
many sides but we refer the reader to [8] for a precise definition. We define the Poincaré exponent of
a Kleinian group I' to be

§=infqs>0]) e 090 < oo
ger



Due to work of Patterson and Sullivan [32, B8], it is known that for a non-elementary geometrically
finite Kleinian group I', the Hausdorff dimension of the limit set is equal to §. Further, it was later
proved by Stratmann and Urbanski [35, Theorem 3], see also Bishop and Jones [5, Corollary 1.5],
that the box and packing dimensions of the limit set are also equal to §. Even in the non-elementary
geometrically infinite case, 0 is still an important quantity. In fact it always gives the Hausdorff
dimension of the radial limit set, and therefore always provides a lower bound for the Hausdorff
dimension of the limit set, see [5].

From now on we only discuss the non-elementary geometrically finite case. We write u to denote
the Patterson-Sullivan measure, which is a measure first constructed by Patterson in [32]. Strictly
speaking there is a family of (mutually equivalent) Patterson-Sullivan measures. However, we may fix
one for simplicity (and hence talk about the Patterson-Sullivan measure since the dimension theory
is the same for each measure). The geometry of I'; L(I') and p are heavily related. For example,
is a conformal T'-ergodic Borel probability measure which is fully supported on L(I'). Moreover,
is exact dimensional (with dimension §) and therefore has Hausdorff, packing and entropy dimension
equal to . Exact dimensionality is a consequence of the global measure formula together with finer
analysis of the parabolic fluctuations, see [37]. The limit set is I'-invariant in the strong sense that
g(L(T")) = L(T") for all g € T". However, u is only quasi-invariant and pog is related to u by a geometric
transition rule, see [7, Chapter 14] for a more detailed exposition of this.

If T’ contains no parabolic elements, then

dimp L(T") = dimy, L(T") = dimap = dimpp = dimpp = 4,

see [19]. Therefore, we assume from now on that I' contains at least one parabolic element.

Let P C L(T") denote the countable set of parabolic fixed points. For p € P write k(p) to denote
the maximal rank of a free abelian subgroup of the stabiliser of p (in I') and call this the rank of p.
We write

kmin = min{k(p) | p € P}
kmax = max{k(p) ’ yAS P}

It was proven in [38] that 0 > kpax/2.

2.3 Rational maps and Julia sets

For a more detailed discussion of the dynamics of rational maps, see [11, B1]. Let T : C — C denote
a rational map of degree at least 2, and write J(T') to denote the Julia set of T, which is equal to
the closure of the repelling periodic points of T', see Figure [I} The Julia set is closed and T-invariant.
We may assume that J(7T') is a compact subset of C by a standard reduction. This is achieved by
conjugating a point in the complement of the Julia set to the ‘point at infinity’ and noting that the
case when the Julia set is the whole of C is trivial.

A periodic point ¢ € C with period p is said to be rationally indifferent (or parabolic) if (T?) (£) =
e?™4 for some ¢ € Q. We say that T and J(T) are parabolic if J(T) contains no critical points of T,
but contains at least one parabolic point. Define h to be the smallest zero of the topological pressure
t — P(T, —tlog|T"|). In the parabolic setting, it was proven in [I5] that dimyJ(7") = h. Furthermore,
in [I6] it was shown that the box and packing dimensions of J(T') are equal to h. Due to work of
Aaronson, Denker and Urbanski [I], 14, [15] it is known that, for parabolic T, there exists a unique



atomless h-conformal probability measure m supported on J(7T'). It also again follows from the global
measure formula together with finer analysis of the parabolic fluctuations, for example [36, Lemma
5.3 or Proposition 5.4], that m is exact dimensional (with dimension ) and therefore the Hausdorff,
packing and entropy dimensions of m are also given by h.

If T' contains no critical points nor parabolic points, then it is hyperbolic and, analogous to case of
geometrically finite Kleinian groups with no parabolic elements,

dimp J(T') = dimy,JJ(T') = dimpm = dimpm = dimgm = h,

see [21]. Therefore, we assume from now on that 7" is parabolic.
Write €2 to denote the finite set of parabolic points of T', and let

Qo={£eQ|T(¢)=¢ T'(§) =1}

As J(T™) = J(T) for every n € N, we may assume without loss of generality that £ = €g. Following
[16, [36], for each w € €2, we can find a ball U, = B(w, ) with sufficiently small radius such that on
B(w, 1), there exists a unique holomorphic inverse branch 7T, of T such that T, !(w) = w. For a
parabolic point w € €2, the Taylor series of T" about w is of the form

z4a(z —w)P@H
We call p(w) the petal number of w, and we write

Pmin = min{p(w) | SRS Q}
Pmax = max{p(w) | w € Q}.

It was proven in [I] that h > pmax/(1 + Pmax)-

3 A new perspective on the Sullivan dictionary

3.1 Recent results on Assouad type dimensions and spectra

In this subsection we state various recent results concerning geometrically finite Kleinian groups with
parabolic elements and parabolic Julia sets. These results provide a new perspective on the Sullivan
dictionary in the context of dimension theory. We will examine this new perspective more thoroughly
in the following two sections. The Assouad and lower dimensions of limit sets of geometrically finite
Kleinian groups and associated Patterson-Sullivan measures were found in [19]. The analogous results
for parabolic Julia sets were proved in [2I]. The results concerning Assouad type spectra were proved
in [21} 22]. Throughout we fix 6 € (0,1).

3.1.1 Patterson-Sullivan measure p

dima g = max{20 — kmin, Kmax }
dimpp = max{2 — kpin, 0}
dimp g = min{26 — kmax, Kmin }



§4+minq1, -2 775 ( (Fmax — 0) 0 < kmin

dimOAM = { 20 — Kmin + min 1, ﬁ (kmin + kmax — 25) kmin < 6 < (kmin + k‘max)/Q

20 — kmin o P (kmin + kmax)/Q
20 — /{Imax 0 < (kmin + kmax)/Q
dlmiu = { 26 — kmax — min ]-a % (26 - kmin - kmax) (kmin + kmax)/2 <46 < kmax
6 —min{ 1, %5t (6 — Kmin) § > Emax

3.1.2 Kleinian limit sets L(T")

dimp L(T') = max{d, kmax |
dimy, L(T') = min{6, kmin }

{1 0 -
dim% L(T") = { 0 + min {17 1;9} (Fmax — 6) g i Zmax
= max
dim! L(T 0 8 < Knin
1my, ( ) - d — min {1 Lg} (5 kmm) 0 > Kmin

3.1.3 h-conformal measures m

dimpam = max{1,h + (h — 1)pmax}
dimBm = max{h, h+ (h - 1)pmax}
dimpm = min{1,h + (h — 1)pmax}

1 epmax _
dim®,m = h+m1n{1 o }(1 h) h<1
h+(h_1)pmax h>1

di 0 h+(h 1)pmax h<l1
LA = h+min{ 9pmax}(1—h) h>1

3.1.4 Julia sets J(T)

dima J(T) = max{1,h}
dimp,J(T) = min{1, h}

h+minq 1, 2Pmax b (1 —h) h<1
ding(T):{ J”mn{ i }( )hil

din? I (T h h<1
i,/ (T) = homin {1,%m b (1-0) h>1




3.2 New entries in the Sullivan dictionary

Given the array of results in the previous section, it is clear that there are some parallels between the
Kleinian and Julia settings akin to the Sullivan dictionary. Here we take a closer look at some of these
parallels.

1) Interpolation between dimensions. In both settings, the Assouad spectrum always interpolates
between the upper box and Assouad dimensions of the respective sets and measures regardless of what
form it takes, that is, gl—% dim F = dimp F where F can be replaced by p, L(T'),m or J(T). Recall

that this interpolation does not hold in general. Similar interpolation holds as 8 — 1 for the lower
dimensions and spectra.

2) Failure to witness the box dimension of measures. For the measures p and m, the lower spectrum
does not generally tend to the box dimension as  — 0. In fact, if the lower spectrum does tend to the
box dimension as # — 0, then it is constant and § = kpin = kmax (in the Kleinian setting) and h =1
(in the Julia setting).

3) General form of the spectra. For F' a given set or measure, consider

p=inf{# € (0,1) | dim} F = dimp F}.

This quantity will be referred to as the phase transition parameter. Following some algebraic manipu-
lation, we find that, in the cases where the Assouad spectrum is not constantly equal to the Assouad
dimension,

(1—p)
(1—0)p
where F' can be replaced by p, L(I'), m or J(T). This formula, and the fact that the Assouad spec-
trum can be expressed purely in terms of the phase transition p together with the box and Assouad

dim4 F' = min {dimBF + (dimp F — dimgF), dimAF} (3.1)

dimensions, has appeared in a variety of settings, see [20], Section 17.7] and the discussion therein.
For example, this formula also holds for self-affine Bedford-McMullen carpets. The phase transition
p often has a natural ‘geometric significance’ for the objects involved and opens the door to a new
‘dictionary’ extending beyond the setting discussed here. It is worth noting that does not hold
generally, even failing for simple examples such as the elliptical spirals considered in [10].

4) The phase transition and the Hausdorff dimension bound. There is a correspondence between
the phase transition p and the general lower bounds for the Hausdorff dimension. Applying
shows that, for any non-empty bounded set F', p > 1 — dimgF/dima F. When the spectra are non-
constant, in the Kleinian setting we always have p = 1/2, and in the Julia setting we always have
p =1/(1 4 pmax). Combining this with the general Hausdorff dimension bounds 6 > kmax/2 = kmaxp
and h > pmax/(1 + Pmax) = Pmaxp in both settings yields p > 1 — dimgF/dima F, showing that the
upper bound from is never achieved in either setting (but is sharp in the sense that examples
can be constructed with Assouad spectrum arbitrarily close to the upper bound from )

5) The realisation problem. Given the interplay between dimensions of sets and dimensions of
measures seen in Section one may ask if it is possible to construct an (invariant, or quasi-invariant)
measure v which realises the dimensions of an (invariant) set F', that is, dimv = dim F'. One can
ask this about a particular choice of dimension dim or if a single measure can be constructed to solve
the problem for several notions of dimension simultaneously. We note that the measures p and m
always realise the Hausdorff dimensions of L(I') and J(T') respectively. As for the Assouad and lower
dimensions, yu realises the Assouad dimension of L(T') when § < (Kmin + kmax)/2 and realises the lower
dimension when § > (Kmin + kmax)/2. Similarly, for m to realise the Assouad dimension of J(T') we



require h < 1, and for m to realise the lower dimension of J(7") we require h > 1. A similar relationship
holds for the box dimension too: in the Kleinian setting we require § < kpiy and in the Julia setting
we require h < 1.

6) A special case. Finally, we observe that in the (very) special case kmin = kmax = Pmax = 1, the
formulae for the Assouad type dimensions and spectra are identical in the Kleinian and Julia settings.
Does this suggest that this special case is one where we can expect the Sullivan dictionary to yield a
particularly strong correspondence in other settings?

3.3 New non-entries in the Sullivan dictionary

Here we discuss some notable differences between the Kleinian and Julia settings. These are especially
interesting to us since the Sullivan dictionary previously provided a very strong parallel in the context
of dimension theory.

1) Assouad dimension. Our results show that Julia sets of parabolic rational maps can never have
full Assouad dimension, that is, we always have dimaJ(7) < 2. This uses our result together with
[1, Theorem 8.8] which proves that h < 2. This is in stark contrast to the situation for Kleinian
limit sets where it is perfectly possible for the Assouad dimension to be full, that is, I' € Con(d) with
dima L(T') = d = dimS? for any integer d > 1. This can even happen when the limit set is nowhere
dense (that is, when 0 < d, see [40, Theorem D]). We note that dimaJ(T") < 2 also follows from [24]
Theorem 1.4], where it was proved that parabolic Julia sets are porous, together with [26] Theorem
5.2], which shows that porous sets in R? must have Assouad dimension strictly less than d. Our results
can thus be viewed as a refinement of the observation that parabolic Julia sets are porous.

We note that Julia sets of general rational maps need not be porous, and may even have positive
area (even withtin the quadratic family), see [3, [9]. We proved in [2I] that Julia sets with Cremer
fixed points have Assouad dimension 2 (and are therefore not porous).

2) Lower dimension. Our results, together with the standard bound h > pmax/(1 + Pmax), show
that dimp,J(7) = min{l,h} > pmax/(1 + Pmax), that is, the lower dimension respects the general
lower bound satisfied by the Hausdorff dimension. Again, this is in stark contrast to the situation for
Kleinian limit sets where the standard bound for Hausdorff dimension is § > kpax/2 but dimp, L(T") =
min{kmin, 0} < kmax/2 is possible, even in the d = 2 case.

3) Relationships between dimensions. An interesting aspect of dimension theory is to consider what
configurations are possible between the different notions of dimension in a particular setting. We refer
the reader to [20), Section 17.5] for a more general discussion of this. Our results show that

dimy,J(T) < dimpJ(T) < dimpJ(T)

is impossible in the Julia setting but the analogous configuration is possible in the Kleinian setting,
even in the d = 2 case.
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Configuration | Fuchsian | Kleinian | Julia
L=H=A v v v
L=H<A v v v
L<H=A X v v
L<H<A X v X

Table 2: Summarising the possible relationships between the lower, Hausdorff, and Assouad dimensions
of geometrically finite Fuchsian limit sets, geometrically finite Kleinian limits sets and parabolic Julia
sets with the obvious labelling. The symbol v' means that the configuration is possible, and x means
the configuration is impossible. In other situations it is interesting to add box dimension into this
discussion, but here this always coincides with Hausdorff dimension and so we omit it.

4) Form of the spectra. Turning our attention to measures, the Assouad and lower spectra of
in the Kleinian setting can take 3 different forms, in comparison to the Julia setting where we only
have 2 possibilities for m. Furthermore, in the Kleinian setting, both ky;, and kp.x appear in the
formulae for the Assouad and lower spectra, sometimes simultaneously, but in the Julia setting only
Pmax appears.

5) The realisation problem for dimension spectra. One can also extend the realisation problem to
the Assouad and lower spectra: when does an (invariant) set support an (invariant, or quasi-invariant)
measure with equal Assouad or lower spectra? In the Kleinian setting, we have dimfy = dim4 L(T")
when ¢ < kpin and dimg,u, = dimgL(I‘) when 6 > kpax. This can leave a gap when kpin < 6 < Kmax
where neither of the spectra are realised by the Patterson-Sullivan measure. This is in contrast to the
Julia setting where dim%m = dim%.J(T) when h < 1 and dim{m = dim{ .J(T) when h > 1, and so at
least one of the spectra is always realised by m.

6) Dimension spectra as a fingerprint. Suppose it is not true that kyin = kmax = Pmax = 1. Then
simply by looking at plots of the Assouad and lower spectra, one can determine whether the set in
question is a Kleinian limit set or a Julia set. Whenever the Assouad spectrum is non-constant in
either the Kleinian or Julia setting, there is a unique phase transition at

p=inf{f € (0,1) | dim} F = dimp F}.

However, p = 1/2 in the Kleinian setting and p = 1/(1 + pmax) in the Julia setting. Note that in the
Kleinian setting the phase transition is constant across all Kleinian limit sets, whereas in the Julia
setting the phase transition depends on the rational map 7. This allows one to distinguish between
the Assouad spectrum of a Kleinian limit set and a Julia set just by looking at the phase transition,
provided pmax # 1. However, even if pupax 1, the spectra will still distinguish between the two

settings provided we do not also have kpin = kmax = 1.

3.4 Examples

We plot the Assouad and lower spectra for some examples. In the Kleinian setting, we assume that
d = 2 throughout for a more direct comparison with the Julia setting, and plot the following cases:
0 < Kmin, 0 > kmax, and kpin < 0 < kmax. In the Julia setting, we plot examples with: h < 1 and
h > 1. The following are plots of the Assouad and lower spectra as functions of # € (0,1). The
spectra of p and m are plotted with dashed lines, and the spectra of L(I') and J(T') by solid lines.
The Assouad spectra are plotted in black and the lower spectra are plotted in grey.
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Figure 2: Left: a Kleinian limit set with 6 = 0.6 and knin = kmax = 1. Right: a Julia set with h = 0.7
and ppax = 2.
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Figure 3: Left: a Kleinian limit set with 6 = 1.9 and knin = kmax = 1. Right: a Julia set with h = 1.4
and ppax = 4.

0.2 0.4 0.6 0.8 1 0

Figure 4: A Kleinian limit set with 6 = 1.7, knin = 1 and kpax = 2. In the Julia setting we always
have either dim%m = dim% J(T) or dim?m = dim? J(T), and so plots of this form are impossible in
the Julia setting.

4 Future directions

This paper has focused on discussing geometrically finite Kleinian groups and parabolic (or hyperbolic)
rational maps. We now have a fairly complete dimensional description of the Sullivan dictionary in
these settings, at least from the point of view of the notions of dimension we discuss here. It would
be interesting to move beyond these two settings and many open questions remain.

In the Kleinian setting some geometrically infinite examples were discussed in [19] which demon-
strate that the situation can be fairly wild. That said, one may consider certain classes, such as
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geometrically infinite, but finitely generated Kleinian groups. Here it is not known if the box and
Hausdorff dimensions of the limit set necessarily agree. One can ask how the Assouad dimension (and
spectra) fit into this story. For example, is it true that, for a finitely generated Kleinian group, the
Assouad dimension (and Assouad spectrum) can be characterised by parabolic points and a critical
exponent? One could also move to non-proper settings and groups acting on infinite dimensional
spaces, see [13].

In the rational maps setting even more questions arise. Most concretely, one can try to derive
formulae for the dimensions and dimension spectra we consider here for rational maps whose Julia set
contains critical points. One might expect most of the theory to go through in the non-recurrent case,
that is, when the presence of critical points is not so influential, but it is harder to predict what happens
in the presence of recurrent critical points. In [2I] we proved that the Assouad dimension of a Julia
set with a Cremer fixed point is 2. It is a well-known (and very difficult) open problem to determine
if the Hausdorff dimension of such Julia sets is also 2. An intermediate (and also open) question
is to determine if the box dimension is 2. Since we are now equipped with a family of dimensions
interpolating between the box and Assouad dimension we are led to a (continuous) hierarchy of open
questions. For example, can it be shown that the Assouad spectrum approaches 2 as 8 — 1, or perhaps
equals 2 for some 6 € (0,1)7 Another promising direction is to consider transcendental dynamics. Here
the dimension theory is often quite different from the rational maps case, and there appears to be very
little known about the Assouad type dimensions.
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