

A CONCEPTUAL FRAMEWORK FOR UNCERTAINTY IN

SOFTWARE SYSTEMS AND ITS APPLICATION TO SOFTWARE

ARCHITECTURES

Chawanangwa Lupafya

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2023

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Identifiers to use to cite or link to this thesis:

DOI: https://doi.org/10.17630/sta/264

 http://hdl.handle.net/10023/26909

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
https://doi.org/10.17630/sta/264
http://hdl.handle.net/10023/26909

A Conceptual Framework for Uncertainty
in Software Systems and its Application to

Software Architectures

Chawanangwa Lupafya

This thesis is submitted in partial fulfilment for the degree of

Doctor of Philosophy

at the University of St Andrews

July 2022

Abstract

The development and operation of a software system involve many aspects including
processes, artefacts, infrastructure and environments. Most of these aspects are
vulnerable to uncertainty. Thus, the identification, representation and management
of uncertainty in software systems is important and will be of interest to many
stakeholders in software systems. The hypothesis of this work is that such
consideration would benefit from an underlying conceptual framework that allows
stakeholders to characterise, analyse and mitigate uncertainties. This PhD proposes
a framework to provide a generic foundation for the systematic and explicit
consideration of uncertainty in software systems by consolidating and extending
existing approaches to dealing with uncertainty, which are typically tailored to
specific domains or artefacts. The thesis applies the framework to software
architectures, which are fundamental in determining the structure, behaviour and
qualities of software systems and are thus suited to serve as an exemplar artefact.
The framework is evaluated using the software architectures of case studies from 3
different domains. The contributions of the research to the study of uncertainty in
software systems include a literature review of approaches to managing uncertainty
in software architecture, a review of existing work on uncertainty frameworks
related to software systems, a conceptual framework for uncertainty in software
systems, a conceptualisation of the workbench infrastructure as a basis for building
an uncertainty consideration workbench of tools for representing uncertainty as part
of software architecture descriptions, and an evaluation of the uncertainty framework
using three software architecture case studies.

Acknowledgements

My gratitude goes to my supervisor, Dharini, for the guidance and support throughout
the PhD process. To you, I dedicate the following quote: at times our own light
goes out and is rekindled by a spark from another person. Each of us has cause to
think with deep gratitude of those who have lighted the flame within us. - Albert
Schweitzer. Thank you!

To the University of St Andrews and to the School of Computer Science, thank
you for the Scholarship which made my studies possible and the various funding
opportunities which have supported me through my studies.

To my family, Mother, Brother and Sisters, thank you for being there for me
throughout!

To my Auntie(Mum - Mercy Msiska, Mrs Mwandira), Oh, how much I was looking
forward to telling you that I completed my studies, but life had a different plan: I
still miss those I loved who are no longer with me but I find I am grateful for having
loved them. The gratitude has finally conquered the loss. - Rita Mae Brown

To all those I have met during the Ph.D. period, both virtual and physically, too many
to mention, I dedicate the following quote because you have been good to me and I
am grateful: cultivate the habit of being grateful for every good thing that comes to
you, and to give thanks continuously. And because all things have contributed to
your advancement, you should include all things in your gratitude. - Ralph Waldo
Emerson

To my friends who we met in St Andrews, Cupar and in Scotland in general, and
back home in Malawi, thank you for being wonderful, you have contributed in
so many ways to making my PhD experience great! In particular, I would like to
mention the only friend from Malawi who we met here in St Andrews, Kondwani
Katundu, I couldn’t have asked for a better friend!

Candidate's declaration

I, Chawanangwa Lupafya, do hereby certify that this thesis, submitted for the degree of PhD,
which is approximately 45,000 words in length, has been written by me, and that it is the
record of work carried out by me, or principally by myself in collaboration with others as
acknowledged, and that it has not been submitted in any previous application for any
degree. I confirm that any appendices included in my thesis contain only material permitted
by the 'Assessment of Postgraduate Research Students' policy.

I was admitted as a research student at the University of St Andrews in September 2017.

I received funding from an organisation or institution and have acknowledged the funder(s) in
the full text of my thesis.

Date 24 July 2022 Signature of candidate

Supervisor's declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution and
Regulations appropriate for the degree of PhD in the University of St Andrews and that the
candidate is qualified to submit this thesis in application for that degree. I confirm that any
appendices included in the thesis contain only material permitted by the 'Assessment of
Postgraduate Research Students' policy.

Date 6 January 2023 Signature of supervisor

Permission for publication

In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work not
being affected thereby. We also understand, unless exempt by an award of an embargo as
requested below, that the title and the abstract will be published, and that a copy of the work
may be made and supplied to any bona fide library or research worker, that this thesis will be
electronically accessible for personal or research use and that the library has the right to
migrate this thesis into new electronic forms as required to ensure continued access to the
thesis.

I, Chawanangwa Lupafya, confirm that my thesis does not contain any third-party material
that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publication of
this thesis:

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date 24 July 2022 Signature of candidate

Date 6 January 2023 Signature of supervisor

Underpinning Research Data or Digital Outputs

Candidate's declaration

I, Chawanangwa Lupafya, understand that by declaring that I have original research data or
digital outputs, I should make every effort in meeting the University's and research funders'
requirements on the deposit and sharing of research data or research digital outputs.

Date 24 July 2022 Signature of candidate

Permission for publication of underpinning research data or digital outputs

We understand that for any original research data or digital outputs which are deposited, we
are giving permission for them to be made available for use in accordance with the
requirements of the University and research funders, for the time being in force.

We also understand that the title and the description will be published, and that the
underpinning research data or digital outputs will be electronically accessible for use in
accordance with the license specified at the point of deposit, unless exempt by award of an
embargo as requested below.

The following is an agreed request by candidate and supervisor regarding the publication of
underpinning research data or digital outputs:

No embargo on underpinning research data or digital outputs.

Date 24 July 2022 Signature of candidate

Date 6 January 2023 Signature of supervisor

I dedicate this work to my Mother (Esther), Chimwemwe, Brenda,
Gomezgani and Mercy!

Publications

Publication 1 Lupafya C. A framework for managing uncertainty in software
architecture. In Proceedings of the 13th European Conference on Software
Architecture-Volume 2 2019 Sep 9 (pp. 71-74).

Publication 2 Lupafya C, Balasubramaniam D. A Framework for Considering
Uncertainty in Software Systems In2022 IEEE 46th Annual Computers,
Software, and Applications Conference (COMPSAC) 2022 Jul. IEEE.

Submitted to Journal 1 Lupafya C, Balasubramaniam D. Towards an Uncertainty
Framework for Software Systems, Journal - Information and Software Tech-
nology, Submitted in June, 2022

Submitted to Journal 2 Lupafya C, Balasubramaniam D. Uncertainty in Software
Architecture: A Survey, Journal - ACM Computing Surveys, Submitted in July
2022

COVID STATEMENT OF IMPACT
I received twelve months of COVID Discount Time due to both personal health and research-
related issues during the COVID period. The main impact on my research was in terms of project
timelines and the evaluation approach.

CONTENTS

Contents i

List of Figures vi

List of Tables vii

Acronyms ix

1 Introduction 1
1.1 Research context and motivation . 1
1.2 Research Questions . 3

1.2.1 Research Question 1 . 3
1.2.2 Research Question 2 . 3

1.3 Contributions . 3
1.4 Organisation of Dissertation . 4

2 Methodology 7
2.1 Scope and approach . 7
2.2 Phases and steps . 8

2.2.1 Phase one . 8
2.2.2 Phase two . 8

2.3 Discussion . 10
2.4 Conclusions . 10

3 Uncertainty and software systems Background - illustrative example 11
3.1 Overview . 11
3.2 Uncertainty and software systems . 11
3.3 Uncertainty and its expression - illustrative example 12
3.4 Managing uncertainty in software systems . 14
3.5 Conclusion . 15

4 Uncertainty in Software Architecture: A Survey 17
4.1 Overview . 17
4.2 Related work . 19
4.3 Survey design . 19

4.3.1 Identifying aspects of software architecture 20

i

II CONTENTS

4.3.2 Survey questions . 21
4.3.3 Inclusion and exclusion criteria . 21

4.4 Survey process . 23
4.4.1 Data collection and trends . 23
4.4.2 Limitations and threats to validity . 25

4.5 Survey Data . 28
4.6 Overview of software architecture aspects . 28
4.7 Categorisation of software architecture aspects 29
4.8 Uncertainty in software architecture aspects 32

4.8.1 Architecture Definitions and Concepts 32
4.8.2 Architecture Activities . 36
4.8.3 Architecture Artefacts . 39
4.8.4 Architecture Tools and Notations: Uncertainty capabilities 40
4.8.5 Summary . 42

4.9 Risks and opportunities of uncertainty in software architecture aspects 42
4.10 Mitigation and exploitation of uncertainty in software architecture aspects . . . 43
4.11 Discussion: Gaps and directions for Future Work 44
4.12 Conclusions . 47

5 Uncertainty characterisation concepts: state of the art 49
5.1 Overview . 49
5.2 Existing approaches for considering uncertainty in software systems 50

5.2.1 Uncertainty in cognitive science . 51
5.2.2 Uncertainty in complex systems . 52
5.2.3 Uncertainty in cyber-physical systems 53
5.2.4 Uncertainty in self-adaptive systems 54

5.3 Summary of existing frameworks . 56
5.4 Conclusion . 57

6 Framework 59
6.1 Overview . 59
6.2 A framework for considering uncertainty in software systems 60

6.2.1 Framework definition . 60
6.2.2 Applying the framework . 64
6.2.3 Uncertainty representation and analysis 66

6.3 Evaluation and discussion . 67
6.3.1 Case studies . 67
6.3.2 Illustration of uncertainties in case studies 69
6.3.3 Demonstration of extensibility: Future studies concept 72
6.3.4 Discussion . 73

6.4 Conclusion . 74

7 The Workbench Infrastructure 75
7.1 Overview . 75
7.2 Concepts of the workbench infrastructure . 76

CONTENTS III

7.3 Design of the workbench infrastructure . 76
7.4 Realisation of the workbench infrastructure 78
7.5 Implementation of the uncertainty capture tool 79
7.6 Critical discussion of the workbench infrastructure 82

7.6.1 Validity of the workbench infrastructure concept 82
7.6.2 Workbench infrastructure tools and notations support 82
7.6.3 Application of workbench infrastructure 82

7.7 Conclusion . 83

8 Evaluation strategy 85
8.1 Introduction . 85
8.2 Evaluation strategy . 85
8.3 Architecture case study selection criteria . 86
8.4 The case studies and evaluation . 87
8.5 The case studies evaluation approaches . 90

8.5.1 Case study 1: Knowledge generation: uncertainty capturing and docu-
mentation . 90

8.5.2 Case study 2: Uncertainty analysis of software architecture 90
8.5.3 Case study 3: Alternative candidate architecture uncertainty ranking and

selection . 92
8.6 The ATAM overview and customisation . 93

8.6.1 ATAM Customisation . 93
8.6.2 The uncertainty framework and the ATAM 94
8.6.3 Independent application of the uncertainty framework - MSc project

vs An Architecture and Open-Source Software Framework for Aerial
Robotics (AEROSTACK) . 96

8.7 Conclusion . 97

9 Case Study 1: AEROSTACK - Uncertainty Knowledge Generation and Docu-
mentation 99
9.1 Overview . 99
9.2 AEROSTACK Architecture Description . 100
9.3 Logical view . 102
9.4 Development view . 105
9.5 Discussion . 106

9.5.1 Encoding and interpreting uncertainty knowledge and documentation . 106
9.5.2 Uncertainty documentation and knowledge 110

9.6 Conclusions . 111

10 Case Study 2: IMPALA - uncertainty architecture analysis 113
10.1 Overview . 113
10.2 IMPALA platform architecture description . 113
10.3 Logical view . 116

10.3.1 Uncertainty of the Capture component 117
10.3.2 Uncertainty of the Transport component 117

IV CONTENTS

10.3.3 Uncertainty of the Refine component 117
10.3.4 Uncertainty of the Store component 118
10.3.5 Uncertainty of the Analyze component 118
10.3.6 Uncertainty of the Distribute component 118
10.3.7 Uncertainty of the Manage component 119

10.4 Functional view . 122
10.5 Infrastructure view . 126
10.6 Network view . 129
10.7 Security view . 130
10.8 Discussion . 130

10.8.1 Uncertainty data overview . 132
10.8.2 Uncertainty knowledge and Documentation 133
10.8.3 Uncertainty data quality . 133
10.8.4 IMPALA platform uncertainty consideration architecture analysis - Report133
10.8.5 IMPALA platform ATAM architecture analysis - Report 137
10.8.6 Comparison of analysis reports insights: uncertainty consideration

framework vs the customised ATAM 142
10.9 Conclusions . 143

11 Case study 3: IoV - comparison of candidate architectures on uncertainty 145
11.1 Overview . 145
11.2 IoV Architectures . 147

11.2.1 Candidate Architecture One . 147
11.2.2 Candidate Architecture Two . 150

11.3 Candidate Architectures Comparison approach 153
11.3.1 Uncertainty influence measure attribute 153
11.3.2 Framework extensibility - Influence measure attributes 153
11.3.3 The common uncertainties . 154
11.3.4 Uncertainties analysis - ordinal data generation 155
11.3.5 Ranking candidate architecture: comparison 163

11.4 Discussion . 167
11.5 Conclusions . 168

12 Conclusions 171
12.1 Overview . 171
12.2 Summary of main contributions . 171

12.2.1 A literature survey of uncertainty in software architecture from 1991 to
2021 . 171

12.2.2 A literature survey of uncertainty frameworks for software system . . . 172
12.2.3 A definition of a conceptual framework for considering uncertainty in

software systems . 172
12.2.4 The specification and development of the workbench infrastructure concept172
12.2.5 Evaluation of the uncertainty consideration framework on software

architecture case studies . 173
12.2.6 Critical reflection on the uncertainty consideration framework 173

CONTENTS V

12.2.7 Final thoughts on the main contributions 174
12.3 Future work . 174

12.3.1 Continuous uncertainty management 175
12.3.2 Uncertainty and Agile software development 175
12.3.3 Uncertainty framework automation . 175
12.3.4 Uncertainty framework customisation 175
12.3.5 Final thought on future work . 176

12.4 Conclusions . 176

References 177

Appendix A Appendix-A - Architecture Survey Literature Sources 189

Appendix B Appendix-B Uncertainty framework data and meta-data 195
B.1 Uncertainty Attributes - JSON OBJECT template 195
B.2 XML data for screenshot . 198

Appendix C Appendix-C: Case Study 3 Uncertainty framework data 227

LIST OF FIGURES

4.1 Distribution of literature sources per year from 1991 - 2021 25

5.1 Taxonomy of Ignorance (Reproduced from [1]) 51
5.2 Uncertainty in complex systems (Based on [2] . 52
5.3 Conceptual model (Reproduced from [3]) . 53
5.4 MAPE-K Loop (Image from [4]) . 54

6.1 Conceptual model: characterisation of uncertainty in systems 62

7.1 Logical view of the technology stack of the workbench infrastructure 77
7.2 Technology stack of the workbench infrastructure 77
7.3 Screenshot of the workbench (XML source code for the screenshot is in Appendix B

Listing B.2) . 80

9.1 Logical view of AEROSTACK from the original image in [5] 101
9.2 Development view of AEROSTACK Architecture from the original image in [5] . . 105

10.1 Logical view of IMPALA platform from the original in SDD1 115
10.2 Functional view of IMPALA platform from the original image in SDD1 122
10.3 Infrastructure view of IMPALA platform from the original image in SDD1 126
10.4 Network view of IMPALA platform from the original image in SDD1 129
10.5 Security view of IMPALA platform from the original image in SDD1 131

11.1 Universal IoV for smart cities overview (Image from [6]) 148
11.2 Universal IoV Layers (Image from [6])) . 149
11.3 Candidate architecture two - IoV Layers (Image from [7]) 151

vi

LIST OF TABLES

4.1 Databases search results from 1991-2021 . 22
4.2 Coverage of aspects in literature sources . 26
4.3 Languages, notations, and tools designed for explicitly working with uncertainty in

software architecture . 41

5.1 Literature sources on uncertainty frameworks . 50

6.1 Consolidated uncertainty characterisation attributes.
CgS - cognitive science, CxS - complex systems, CPS - cyber-physical systems, SAS
- self-adaptive systems, REL - the RELAX language 65

6.2 Examples of uncertainty framework values . 70
6.3 Extending mapping - Mitigation attribute . 72

8.1 Selection criteria for the three case studies summary 89
8.2 Comparison of the completed uncertainty attributes 96

9.1 Uncertainties of the Logical view . 103
9.2 Uncertainties of the Logical view . 104
9.3 Uncertainties of the development view . 107

10.1 Uncertainties of the Logical view . 120
10.2 Uncertainties of the Logical view . 121
10.3 Uncertainties of the Functional view . 125
10.4 Uncertainties of the Infrastructure view . 128
10.5 Uncertainties of the Network view . 130
10.6 Uncertainties per architecture component . 132
10.7 IMPALA customised Architecture Tradeoff Analysis Method (ATAM) analysis results139
10.8 IMPALA customised ATAM analysis Results . 140

11.1 Uncertainties and their influence measures . 155
11.2 Uncertainties, Influence, and Candidate Architectures 156
11.3 Uncertainties, influence, and candidate architectures with encoded values 164
11.4 Uncertainty weighing digits . 164
11.5 Candidate architecture and uncertainty weighing digits 165
11.6 Candidate architecture and uncertainty weighing digits 165
11.7 Uncertainties with similar influence scores eliminated 167
11.8 Candidate architecture and uncertainty weighing digits with similarities eliminated 167

vii

VIII LIST OF TABLES

A.1 Part 1 of 5: Research focus of literature source: aspects 190

C.1 Internet of Vehicles common uncertainties data 228
C.2 Internet of Vehicles common uncertainties . 229

ACRONYMS

ADL Description Language

ADLs Description Languages

AEROSTACK An Architecture and Open-Source Software Framework for Aerial Robotics

AHP Analytic Hierarchy Process

API Application Programming Interface

ARA Aerial Robotics Architecture

ATAM Architecture Tradeoff Analysis Method

BI Business Intelligence

BSC Battlefield Control System

Cd-Sys Connected systems

CHAM Chemical Abstract Model

COTS Commercially available Off-The-Shelf

CPS Cyber-Physical Systems

CRUD create, read, update, and delete

D2D Device-to-Device

ERD Entity Relationship Diagram

ERP Enterprise Resource Planning

ETL Extract, Transform, Load

FAME Fuzzy self-Adaptation ModEling

GPS Global Positioning System

IDE Integrated Development Environment

ix

X ACRONYMS

IMPALA The Information Management Platform for Data Analytics and Aggregation

IoT Internet of Things

IoV Internet of Vehicles

ITS Intelligent Transport Systems

JSC Johnson Space Centre

JSON JavaScript Object Notation

MASH Mission Associated Summary of Health

MEDB Medical Evaluation Document, Part B

MEME Mission Extended Medical Enterprise

NAMS NASA Access Management System

NASA National Aeronautics and Space Administration

NIC Network Interface Cards

OED The Oxford English Dictionary

OLAP Online analytical processing

RADAR Requirements and Architecture Decision AnalyseRl

RAID Redundant Array of Independent Disks

SA-LC Stages Uncertainty in software architecture lifecycle stages

SDD System Design Document

SoADL Systems-of-Systems Architecture Description Language

SoS Systems-of-Systems

SysML Systems Modeling Language

Sys-Q System qualities

UAS Unmanned Aerial Systems

UAV Unmanned Aerial Vehicle

UIoV Universal Internet of Vehicles

UML Unified Modeling Language

ACRONYMS XI

V2B Vehicle-to-Building

V2D Vehicle-to-Device

V2G Vehicle-to-Grid

V2H Vehicle-to-Home

V2I Vehicle-to-Infrastructure

V2R Vehicle-to-Road

V2S Vehicle-to-Sensor

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VPN Virtual Private Network

XML Extensible Markup Language

1CHAPTER ONE

INTRODUCTION

This chapter introduces the work conducted to define a conceptual framework for uncertainty in
software systems and its application to software architectures. Software architecture is one of
the many facets of a software system. Thus, this chapter introduces software architecture in the
context of a software system, and then outlines the research context and motivation, the research
questions, main contributions of the work and organisation of the rest of the thesis.

1.1 Research context and motivation

The development and operation of software systems involve many facets, such as processes,
requirements, software architecture, infrastructure and environments [8]. All such facets are
subject to uncertainty which can potentially cause positive or negative consequences [2, 9].

On the one hand, it may be possible to exploit the positive consequences of uncertainty as
opportunities [2]. For example, excess resources from over-estimation during project planning or
system design may be re-invested to increase productivity or improve system quality, instead of
being treated as waste or losses.

On the other hand, it may be necessary to mitigate the adverse effects of uncertainty, such as
network disruptions, data loss or security breaches because these can lead to risks to system
functionality and performance, among other consequences [2, 10]. Thus, it is important to
understand and manage uncertainty in all facets of software systems.

One of the key facet of any software systems is its architecture, since it represents the foundation
of the software system [11]. Any risks of uncertainty in the software architecture can have
significant consequences for the overall system. Therefore, it is important to attempt to anticipate

1

2 CHAPTER 1. INTRODUCTION

and mitigate the impact of uncertainty risk on the software architecture and, consequently, the
system [12].

This work presents our efforts to develop a generic conceptual framework for considering
uncertainty in software architecture, which we have developed in the context of software systems.
To the best of our knowledge, currently, no generic uncertainty characterisation framework exists
for characterising uncertainty in various facets of software systems such as software architecture.

Uncertainty is a broad concept with multiple dimensions [1, 2, 13–15]. It has been studied
from different perspectives in different contexts of software systems, including its architecture,
resulting in different approaches to characterising and managing it [1, 2, 12–15]. However,
such characterisation approaches are not generic, but target specific domains [12]. Chapter 3,
discusses the challenge of expressing uncertainty in software systems.

In our search for the definition of the framework, our first step was to explore uncertainty in
software architecture to understand its specific consideration within it. To achieve this, we
conduct a survey which provides insight into uncertainty in software architecture. Chapter 4
presents the Uncertainty in Software Architecture Survey.

As previously stated, considering that software architecture is the foundation of any software
systems, and that uncertainty is also studied in software systems in general, we further explored
uncertainty consideration frameworks in software systems in general, in our effort to develop
the generic uncertainty framework. In this regard, we have developed a generic uncertainty
framework for software systems, which we evaluate in the context of software architecture.

Thus, this thesis presents an extensible conceptual framework for uncertainty in software systems
and its application to software architectures. The framework defines a foundation for systematic
and explicit consideration of uncertainty in facets of software system such as software architecture.
In this work, the framework is specifically discussed and evaluated in the context of software
architecture.

The proposed framework was built by consolidating and extending existing uncertainty concepts
and attributes from various domains related to software systems.

In general, this work aims to answer the two research questions presented in Section 1.2.
The contributions of the thesis are presented in Section 1.3. The audience of the thesis
includes stakeholders in the fields of software systems architecture, such as - analysts, architects,
evaluators, etc. The organisation of the rest of the chapters is presented in Section 1.4.

1.2. RESEARCH QUESTIONS 3

1.2 Research Questions

Research question one guides the definition of the uncertainty framework. Then research
question two guides the evaluation of the uncertainty consideration framework through software
architecture case studies.

1.2.1 Research Question 1

How can definitions, conceptualisations and characterisations of uncertainty from specific
contexts of software systems be consolidated to create a viable generic uncertainty framework
which can be used to identify, represent and characterise uncertainty in software architecture?

1.2.2 Research Question 2

How can an uncertainty framework that defines, conceptualises, and characterises uncertainty in
software systems be used to identify and represent uncertainty as part of software architecture
documentation so that it can contribute to the analysis of known uncertainties in the software
architecture?

1.3 Contributions

The following 5 elements are the key contributions of the work:

Contribution 1 A literature survey of uncertainty in software architecture from 1991 to 2021.
This period spans from the inception of software architecture as a formal research discipline
in software engineering to the presents (in the contexts of this thesis when we conduct
the literature search). The survey provides insight into uncertainty in aspects of software
architecture.

Contribution 2 A literature survey of uncertainty frameworks for software systems. We
conducted an open literature search in established computer science literature sources
databases. The survey explores the existence of frameworks for explicitly considering
uncertainty in software systems.

Contribution 3 A definition of a conceptual framework for considering uncertainty in software
systems. This is an extensible framework which we apply and evaluate in the contexts of
software architecture. However, the framework can be used in other aspects of software
development, such as requirements, user stories, and design.

4 CHAPTER 1. INTRODUCTION

Contribution 4 The specification and development of the infrastructure for building a work-
bench of tools for considering uncertainty in software systems, including a prototype tool
to capture uncertainty in software architecture design based on the conceptual framework
and generate uncertainty data for the system.

Contribution 5 Evaluation of the uncertainty consideration framework on software architecture
case studies. We conduct architecture analysis to illustrate the application of the uncer-
tainty framework to uncertainty knowledge generation and documentation, uncertainty
architecture analysis, and uncertainty candidate architecture selection.

1.4 Organisation of Dissertation

A short description of the rest of the chapters of the thesis is given below.

Chapter 2 discusses the research methodology, which is split into two phases. First, the research
focused on the literature reviews. The results of the literature reviews were then used as a
basis to define the uncertainty framework. The second phase of the research focused on
the application and evaluation of the uncertainty framework.

Chapter 3 presents, using an illustrative example, the challenge of expressing uncertainty
in software system. This provides a background for the definition of the uncertainty
framework. The papers Publications 1 and 2, and Submitted to Journal 1 and 2, cover this
chapter.

Chapter 4 presents a survey which explores uncertainty in software architecture. It highlights
the aspects where uncertainty is considered in software architecture. The survey identifies
and presents a comprehensive list of aspects of software architecture where uncertainty is
considered. The systematic literature review explores uncertainty in software architecture
in literature sources from 1991 to 2021. The contents of this chapter are cover in the survey
paper Submitted to Journal 2.

Chapter 5 presents existing literature about uncertainty characterisations in software systems.
The chapter reviews uncertainty characterisation approaches to identify relevant concepts
and notions for characterising uncertainty. These concepts are then used as a basis for
proposing the uncertainty framework in Chapter 6. The contents of this chapter are covered
in Publication 2 and the paper under Submitted to Journal 1.

Chapter 6 presents the uncertainty consideration framework. It discusses the rationale for
defining the framework, relates the various concepts and attributes of the framework,

1.4. ORGANISATION OF DISSERTATION 5

and discusses their literature sources. Further, using illustrative examples, this chapter
conceptually evaluates the framework through demonstrating how the individual attributes
can be used to capture uncertainty in software architecture. The contents of this chapter
are covered in Publication 2 and the paper under Submitted to Journal 1.

Chapter 7 discusses the infrastructure for building a workbench for considering uncertainty in
software architecture. It includes a prototype tool for capturing uncertainty in software
architecture description using the attributes of the framework. The concepts of the
workbench introduced in Publication 1 & 2 and the paper under Submitted to Journal 1.

Chapter 8 presents the evaluation strategies of the uncertainty framework, including the
use of ATAM. The evaluation is based on three case studies. The evaluation strategy
and objectives are discussed for each of the three case studies. The case studies are
from AEROSTACK [5], The Information Management Platform for Data Analytics and
Aggregation (IMPALA)1, and Internet of Vehicles (IoV) [6, 7, 16]. An overview of the
evaluation approach is discussed in the Publication 2 and the paper under Submitted to

Journal 1. Further, as part of the evaluation strategy, we highlight that the framework
defined in this research has been applied else where [17], in an independent MSc research
project - A Visual Representation of Uncertainty in Software Systems [17].

Chapter 9 presents the first case study. This exemplary evaluation uses the uncertainty
framework to generate architecture knowledge and document the identified uncertainties
of the AEROSTACK architecture. The aim of the exemplary evaluation is to illustrate a
fundamental application of the framework, which is to generate uncertainty data.

Chapter 10 presents the second case study, the evaluation of IMPALA. This evaluation aims
to illustrate the application of the uncertainty framework data to conduct architecture
analysis to assess an architecture design. As a baseline for the validity of the IMPALA
analysis results, we conducted a parallel analysis of the IMPALA platform using the
established ATAM approach. The results of the two approaches are discussed to assess the
insight of the analyses and the feasibility of using the uncertainty framework in conducting
architecture evaluation. An overview of the case study is discussed in the the paper under
Submitted to Journal 1.

Chapter 11 presents the case study of IoV. The aim of this evaluation is to use the uncertainty
framework to assist with selecting a candidate architecture from alternative designs, based
on its potential capabilities for risk mitigation. Thus, the framework is used to contribute
towards addressing one of the familiar challenges in software architecture: How to select

1https://ntrs.nasa.gov/citations/20160011412

6 CHAPTER 1. INTRODUCTION

an implementation architecture from a set of alternative candidate architectures? In the
process, we discuss three algorithms for conducting the evaluation basing on the framework
data.

Chapter 12 presents the conclusion with a discussion of main contributions, critical reflections
and future work, and the conclusion of the thesis.

2CHAPTER TWO

METHODOLOGY

The research was organised in two phases. Phase one addressed the first research question.
Phase two addressed the second research question. In addition, we proposed an uncertainty
consideration workbench infrastructure.

2.1 Scope and approach

Phase one of the methodology involved reviewing the literature on uncertainty in software
architecture and software systems. Realising this gap, which we express in research question one,
we worked systematically to propose a foundational conceptual framework for considering
uncertainty in software systems, which we specifically apply in the context of software
architecture.

Although defining the framework was the main goal of phase one, we also conducted systematic
literature surveys that provide 1) an overview of uncertainty in aspects of software architecture
and 2) reviews uncertainty consideration frameworks in software systems. The results of the two
surveys contribute to Chapter 4 and Chapter 5, respectively.

Phase two of the methodology addressed research question two. Application and evaluation of
the uncertainty framework in the context of three software architecture case studies. In addition,
it discussed the development of tools for incorporating uncertainty in software architecture.

The case studies explored three scenarios: 1) application of the uncertainty framework to
generate architecture uncertainty knowledge and documentation. 2) application of the uncertainty
framework to conduct an architecture uncertainty analysis, and 3) application of the uncertainty
data to select a candidate architecture which is less likely to be vulnerable to the known
uncertainties.

7

8 CHAPTER 2. METHODOLOGY

In addition, as part of the framework application, we proposed the infrastructure for building
a workbench of tools for incorporating uncertainty in software architecture descriptions. A
prototype tool is defined, based on the framework, to support the capturing and representation of
uncertainty data in the architecture description of the software system.

2.2 Phases and steps

The following are the two phases of the research methodology that address research questions
one and two, respectively.

2.2.1 Phase one

Phase one of the methodology addressed research question one, the definition of the framework.
The following outline presents the steps we took to define the uncertainty framework.

1. Survey uncertainty in software architecture through a systematic literature survey to
understand existing work on uncertainty in software architecture and research gaps.

2. Conduct a literature review on uncertainty frameworks in software systems through a system-
atic literature survey to understand the definitions, conceptualisations, and characterisations
of uncertainty in software systems.

3. Consolidate the results of the literature search to define an uncertainty framework for
considering uncertainty in aspects of software systems, such as software architecture.

4. Conceptually evaluate the uncertainty framework through illustrative examples to assess the
feasibility of capturing uncertainty details in software architecture.

2.2.2 Phase two

Phase two addressed the second research question - applying and evaluating the uncertainty
framework in the context of software architecture on three software architecture case studies.
Research work of phase two also involved specifying the infrastructure for developing a
workbench of tools for incorporating uncertainty in software architecture descriptions.

Phase two involved selecting the systems to evaluate, identifying uncertainties about the
architecture and analysing the results. Below is an overview of the steps of phase two that
are discussed in detail in the Evaluation chapter, Chapter 8.

2.2. PHASES AND STEPS 9

1. Select systems to use as case studies on the basis of availability of the architecture description
details, among other factors.

2. Identify, capture and represent the software architecture related uncertainties from the system
information sources like documentation and architecture designs details.

3. Analyse the uncertainty data to generate insight about uncertainty in software architecture.
The analysis involves exploring risks, mitigations, uncertainty metrics, and other relevant
analysis dimensions.

• Also, checking whether the uncertainty framework allows the capturing and representation
of all known uncertainties?

4. In addition to the evaluation of the case studies, we proposed the infrastructure for building a
workbench of tools for incorporating uncertainty in software architecture. We present this in
Chapter 6.

5. Then we conduct a critical qualitative assessment of the general strengths and weaknesses of
the framework.

a) What is the significance of the framework? How effective was the application of the
framework in achieving the following:

i. Capturing, representing, and documenting uncertainty

ii. Generating uncertainty data

iii. Analysing architecture uncertainty

iv. Enabling or facilitating software architecture improvements such as uncertainty
mitigations and exploitations

• We use the term enabling, so we do not suggest that the framework supports
automatic recommendation.

b) Finally we assess the results and draw some conclusions about the application of the
uncertainty framework. Specifically, we discuss the following points:

i. Is the framework a feasible approach to the identification and representation
of uncertainty in software architecture to positively contribute to uncertainty
management?

• What do we conclude after applying the approach to the case studies?

10 CHAPTER 2. METHODOLOGY

ii. What are the aspects of the uncertainty framework that are not possible to
implement?

iii. In general, where did the uncertainty framework succeed and fail?

2.3 Discussion

The first research question focuses on understanding existing work and the challenges of
considering uncertainty in software systems and software architecture. The research methodology
addresses the first research question in phase one.

Phase one, Section 2.2.1, of the methodology covers the literature search that is the basis for
the definition of the uncertainty framework. The key anticipated results for phase one are
comprehensive reviews of the literature on uncertainty in software architecture and software
systems and the definition of the uncertainty framework. Furthermore, in phase one, we use
a conceptual approach to evaluate the feasibility of the framework by demonstrating that the
framework can be used to identify and represent uncertainties in software architecture.

Phase two, Section 2.2.2, of the methodology explores the application of the framework and its
evaluation in the software architecture. This includes evaluating the usefulness of the framework
for managing uncertainty in software architecture. This is achieved by applying the framework
to three case studies.

Thus, together, phase one and two in Sections 2.2.1 and 2.2.2 of the methodology address the
definition of the uncertainty framework and its evaluation. The detailed evaluation strategy is
discussed in Chapter 8.

2.4 Conclusions

The methodology presents the approach to addressing the two research questions. Each research
question is addressed separately in one of the two main phases of the methodology. The first
phase of the methodology focuses on the literature surveys and the definition of the framework.
The second phase then focuses on the application of the framework in the context of software
architecture and its evaluation. Finally, conclusions are drawn from the application of the
framework.

3CHAPTER THREE

UNCERTAINTY AND
SOFTWARE SYSTEMS

BACKGROUND -
ILLUSTRATIVE EXAMPLE

3.1 Overview

This chapter presents a background of uncertainty in software systems and the challenge of
expressing uncertainty using an illustrative example. Thus, presenting the foundation for defining
the uncertainty framework with multiple uncertainty attributes and dimensions.

3.2 Uncertainty and software systems

While formulating his Laws of Software Evolution, Lehman divided software systems into three
types: S, P and E [8]. S-type systems can be defined and derived from a specification. P-type
systems deal with problems which can be precisely stated, but whose solution depends on an
approximation of the real-world. In contrast, E-type systems have neither a precise definition nor
a formal specification. Instead, they are real-world systems, inherently prone to changes, and
designed to target complex problems, such as automating human or societal activities [8].

Lehman later refined his classification to reflect the vulnerability of the different types of systems
to uncertainty [18]. S-type systems are ideal; they operate in a closed context and are thus

11

12 CHAPTER 3. UNCERTAINTY AND SOFTWARE SYSTEMS BACKGROUND - ILLUSTRATIVE EXAMPLE

effectively isolated from uncertainty. E-type systems are real-world systems and are the most
exposed to uncertainty, which can emerge from diverse sources including project management,
political environments, operating conditions, supply chains and geographical factors. In this
context, P-type systems are subsumed by E-type systems. Indeed, uncertainty is an inherent
feature of most real-world software systems.

The development and operation of software systems involve many facets, which can be considered
in categories such as processes, artefacts, infrastructure and environments. All such facets are
subject to uncertainty, potentially with positive or negative consequences [2, 12, 19, 20]. On the
one hand, it may be possible to exploit the positive consequences of uncertainty as opportunities.
For example, excess resources from over-estimation during project planning or system design
may be re-invested to increase productivity or improve system quality, instead of being treated
as waste or losses. On the other hand, it may be necessary to mitigate the adverse effects of
uncertainty, such as network disruptions, data loss or security breaches because these can lead to
risks to system functionality and performance, among other consequences [2, 10]. Thus, it is
important to understand and manage the uncertainty in all facets of software systems.

The scope of the framework we define is uncertainty in general, thus in the context of E-type
systems and their facets, such as software architecture. The rest of the chapter is organised as
follows. Section 3.3 describes the challenges of expressing uncertainty. Section 3.4 discusses
uncertainty in software systems. Section 3.5 is the Conclusion.

3.3 Uncertainty and its expression - illustrative example

The Oxford English Dictionary (OED)1 defines uncertainty as “the quality of being uncertain
in respect of duration, continuance, occurrence, etc.; liability to chance or accident. Also, the
quality of being indeterminate as to magnitude or value; the amount of variation in a numerical
result that is consistent with observation”.

The multiple dimensions of uncertainty in this definition demonstrate its wide scope and highlight
the need for precision and rigour in its treatment. For instance, this definition can apply in the
following ways in relation to software systems:

• the uncertainty about duration might relate to the length of time for which a system operates
under stress conditions before failing;

• uncertainty about continuance might relate to whether a system continues to operate until or
1https://www.oed.com/

3.3. UNCERTAINTY AND ITS EXPRESSION - ILLUSTRATIVE EXAMPLE 13

despite a specified event;

• uncertainty about occurrence might relate to an event such as a possible but not guaranteed
increase in demand for a service during a particular period;

• uncertainty in terms of chance and accident often relates to the probability or possibility of
an event occurring during system operation; and

• uncertainty about numerical variations might be concerned with observed quantities or values
in the system such as network bandwidth.

As illustrated through the definition and illustrative examples, uncertainty is a common and
familiar concept in both casual and formal settings. Its familiarity makes it prone to ambiguity
when used without precision [1].

In casual everyday conversations, people instinctively grasp the essence of the uncertainty when
situations or events are referred to as being uncertain. For example, let us assume that Person A
and Person B previously agreed to meet at a specific time. Sometime later, Person A is concerned
that they may not be able to make the meeting on time. When Person A tells Person B that they
may not arrive on time, Person B understands that the essence of the uncertainty is temporal and
responds appropriately.

Person B’s understanding of Person A’s situation may involve considering a number of factors,
including the reasons for Person A’s uncertainty, possible ways of mitigating the uncertainty, and
the consequences of Person A not arriving on time. They can even use Person A’s uncertainty
regarding arrival time as an opportunity to complete other tasks, since they no longer have to
commit to the meeting time agreed initially.

The nature of an uncertainty is critical to understanding it. Person A’s uncertainty is due to
a lack of knowledge about the exact time they will arrive. As a consequence of this lack of
information, Person B is also uncertain from their viewpoint of Person A’s arrival time. Given
more information, Person A can reduce the uncertainty and then tell Person B the precise,
possibly different, time of their arrival, or they can try to find a mitigation against the risk of
being late so that they arrives at the originally planned time. This kind of uncertainty depends on
available knowledge, and is called epistemic uncertainty [21, 22].

In contrast, there is another kind of uncertainty, which is due to inherent variability [21, 22].
Such uncertainty is a feature of the item, event, or thing, instead of being due to the state of
knowledge. For instance, when tossing a fair coin, the uncertainty of getting either a head or a
tail, in the long run, can be measured using probability as 50% [23]. Statistically, this is simply

14 CHAPTER 3. UNCERTAINTY AND SOFTWARE SYSTEMS BACKGROUND - ILLUSTRATIVE EXAMPLE

the reality of tossing a fair coin; any discrepancy of the odds would mean bias. This kind of
uncertainty, which is due to inherent variability or phenomenon, is called aleatory uncertainty.

In casual contexts, such as the situation with Person A and Person B, uncertainties can be handled
in an ad-hoc manner, without rigorous consideration of their nature and other characteristics.
However, in software systems, particularly those used for critical purposes, systematic and
rigorous approaches for the consideration of uncertainty are necessary [2, 15].

3.4 Managing uncertainty in software systems

As previously described, uncertainty is an inherent feature of E-type software systems. It can be
handled in an ad-hoc manner during the life of a system through the vigilance of stakeholders
such as architects, designers, developers and testers [19]. However, as software systems become
more ubiquitous and decoupled, and are deployed in a variety of fast-changing environments,
more systematic approaches to handling uncertainty are needed [24].

Existing approaches typically address uncertainty in specific facets of software systems or
target particular challenges. Examples include addressing uncertainty through requirements
management in self-adaptive systems [25], uncertainty management in early architecture
decisions [26], evaluation of software architecture under uncertainty [27], classification of
uncertainty in adaptive systems with multiple quality requirements [21] and understanding
uncertainty in cyber-physical systems through a conceptual model [3]. Mathematical approaches,
such as probability, can be used to measure specific uncertainties in software systems.

One consequence of this specialisation is that there is no foundational approach to the explicit
and systematic consideration and analysis of uncertainty for software systems in general. As
decoupled E-type systems become more common, it is likely that domain-specific frameworks
are not sufficient to address the risks of uncertainties that arise at different stages of the system
lifecycle. The focus of this work is a more comprehensive treatment of uncertainty that subsumes
mathematical approaches. The inclusion of additional attributes such as the nature and location
of an uncertainty will allow users to not only identify and measure it but also devise mitigations
against its risks. Our approach aims to help software engineers identify, represent and manage

uncertainty.

• Identification refers to how uncertainty is recognised in the different facets or aspects of a
system;

• Representation refers to how details of uncertainties are captured and modelled in system
artefacts; and

3.5. CONCLUSION 15

• Management refers to the process of analysing uncertainty and exploiting or mitigating its
risks in a system.

3.5 Conclusion

This work contributes towards addressing the lack of a generic foundational and customisable
framework for the consideration of uncertainty in software systems. We hypothesise that such a
framework will help software engineers determine the consequent risks and possible mitigations
more accurately.

4CHAPTER FOUR

UNCERTAINTY IN
SOFTWARE

ARCHITECTURE: A
SURVEY

Researchers have long recognised the influence of uncertainty on different aspects of software
architecture. Uncertainty in some aspects of software architecture, such as architecture design
and evaluation, has typically generated more research interest and results than in others. This
chapter presents a systematic survey of uncertainty in software architecture aspects, focusing
on the period between 1991 to 2021 inclusive. It identifies twenty five (25) aspects of software
architecture with existing work on uncertainty. The survey discusses existing work on uncertainty
in these software architecture aspects, provides insights into the state of the art, and suggests
potential directions for future work in addressing uncertainty in software architecture.

4.1 Overview

Since its formalisation as a research area in the 1990s, the software architecture of a system
has been defined in various ways [28, 29]. Examples include definitions that treat software
architecture as the high-level structure and behaviour of the system, the key design decisions
about the system, and the configuration of the system in terms of components linked by
connectors based on rationale [29–31]. In essence, all such definitions agree that software
architecture represents the foundation of a software system [28].

17

18 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

Consequently, risks from uncertainty in software architecture, such as those from unanticipated
changes, incomplete documentation, or variability in the operating environment that affect
architectural assumptions, can pose a threat to the quality of the system and lead to high costs [2].
These costs can be in terms of finance [32], performance [33], reliability [34], legal issues [35]
and business disruptions [9]. Therefore, uncertainty in software architecture should be identified
and avoided, or at least its risks mitigated, as much as possible [2].

The aim of this survey is to review existing work on uncertainty in software architecture. The
survey is novel in recognising that since software architecture is multifaceted, a comprehensive
review of uncertainty in software architecture will also be multifaceted. Thus, the survey analyses
uncertainty in individual aspects of software architecture to build up a comprehensive overview
of uncertainty in software architecture [36, 37].

The process of defining, using and maintaining a software architecture includes various activities
such as design and evaluation. These activities generate artefacts, such as documentation, and
require tools to support the activities and notations to represent the outcomes of the activities.
All these are examples of aspects of software architecture.

Understanding uncertainty in software architecture aspects can be crucial to minimising its
negative consequences [26, 38]. For instance, knowledge of uncertainties during software
architecture design can help architects invest in appropriate mitigations, learning cycles and
feedback loops in agile development to manage the uncertainty [39]. This survey chapter explores
existing work on uncertainty in all aspects of software architecture found in literature.

The remainder of this chapter is structured as follows. Section 4.2 outlines related work in the
form of other surveys with similar motivation. Section 4.3 describes the design of the survey,
while Section 4.4 presents the survey process. Section 4.5 shares the survey data. Section 4.6
provides an overview of the survey results. Section 4.7 categorises the aspects of software
architecture based on the survey results. Section 4.8 discusses the uncertainty in the identified
aspects, according to their respective categories. Section 4.9 discusses uncertainty risks and
opportunities in the context of software architecture aspects. Section 4.10 presents an overview
of the mitigation and exploitation approaches of uncertainty in software architecture aspects.
Section 4.11 provides a discussion of the general findings, including the strengths and limitations
of existing approaches and future work. Finally, some conclusions are given in Section 4.12.

4.2. RELATED WORK 19

4.2 Related work

We are not aware of any existing work which reviews uncertainty in diverse software architecture
aspects. The two closest outputs we have identified are: 1) a literature review by Mahdavi-
Hezaveh et al. [21], in which the authors explore uncertainty in architecture-based self-adaptive
systems with multiple requirements and define a classification, and 2) a systematic literature
review by Sobhy et al. [40] in which the authors explore uncertainty in the context of software
architecture evaluation.

In contrast to these works, this chapter reviews uncertainty in diverse aspects of the software
architecture of software systems in general and attempts to build a holistic picture of how
uncertainty is currently addressed in software architecture. We empirically identify the aspects
of software architecture through reviewing literature sources. Aspects thus identified include
Activities, Artefacts, Tools and Notations.

Other researchers have pointed out the need for software engineering to consider uncertainty
[19] and explored the understanding of uncertainty from a self-adaptive perspective [41]. Our
work contributes towards such objectives with a focus on exploring uncertainty in aspects of
software architectures.

4.3 Survey design

The objectives of this survey were to identify literature sources related to uncertainty in software
architecture and to analyse the data from these sources to identify aspects of software architecture
that have been considered, their relationship to uncertainty and the approaches that have been
proposed to manage uncertainty in these aspects. Literature sources were identified through the
following two main steps.

The first step was an automated search of six databases (IET Digital Library1, Web of Science2,
DBLP3, Scopus4, ACM Library5, and IEEE Xplore6). These databases are among those regarded
as reliable literature data sources in Computer Science [42, 43]. This range of databases increase
the thoroughness and likelihood of finding relevant literature sources.

The search was made through two queries, one with filters and the other with wildcards. We
1https://digital-library.theiet.org/, last accessed on 08 April, 2022
2https://apps.webofknowledge.com, last accessed on 08 April, 2022
3https://dblp.org/, last accessed on 08 April, 2022
4https://www.scopus.com, last accessed on 08 April, 2022
5https://dl.acm.org/, last accessed on 08 April, 2022
6https://ieeexplore.ieee.org, last accessed on 08 April, 2022

20 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

compared the results of these two queries as one way of demonstrating the comprehensiveness
and validity of the systematic search. The key words in the queries are based on the survey
objectives and questions (discussed in Section 4.3.2).

1. uncertainty AND "software architecture" AND published between

1991 and 2021

2. uncertainty AND "software architecture" AND (language OR cap-

ture OR document OR model OR description OR stakeholder OR rep-

resentation) AND published between 1991 and 2021

The second step was a manual filtering process. This was conducted through reading the literature
sources identified in the first step. During this process, we identified other relevant literature
sources from references in the original set. Section 4.3.2 presents the survey questions and
Section 4.3.3 covers inclusion and exclusion criteria.

4.3.1 Identifying aspects of software architecture

In the context of the survey chapter, we define architectural aspects as specific areas in which
uncertainty is considered or discussed in the identified literature sources related to software
architecture. For example, uncertainty might be discussed in relation to architecture requirements,
documentation or evaluation. All these are specific aspects.

However, since there is no established list of aspects where uncertainty is studied in software
architecture, the survey uses a manual process to identify such aspects. The author read and
analysed the literature sources to identify the relevant aspects.

Query 1 uses a wildcard in its search, and thus potentially identifies most of the literature sources
which discuss uncertainty and software architecture. Query 2 includes a subset of some familiar
terms or words in software architecture, as potential aspects, and thus is likely to generate a
subset of the results of Query 1.

We can make the list of terms in Query 2 as long as possible to refine the search and minimise the
effort for manual search. However, this will search for only known aspects. Query 1 identifies
most results because it includes both the aspects that are known to us and those unknown to us,
by definition of using the wildcard. Therefore, as part of validation test of the search results,
we expected that all the literature sources identified by Query 2, should be in Query 1 results.
And this was generally the case. Section 4.3.3 further elaborates on the inclusion and exclusion
criteria of the literature sources and the aspects

4.3. SURVEY DESIGN 21

4.3.2 Survey questions

To guide the review, we defined a set of questions to achieve our objectives, focusing on
uncertainty, sources of uncertainty, aspects of software architecture, the impact of uncertainty
on software architecture and the representation and mitigation of uncertainty risks in software
architecture, thus exploring uncertainty in software architecture aspects [2, 12].

The questions are in two categories – specific and general. Specific questions address individual
concerns relating to uncertainty in software architecture. The general question aims to provide
broad insights into uncertainty in software architecture, and thus is addressed throughout the
chapter and particularly in Section 4.11.

These questions are partly based on the framework by McManus and Hastings [2] for
understanding uncertainty in complex systems, which states that uncertainty causes risks or
opportunities which are handled by mitigations or exploitations to, ideally, result in the desired
outcomes.

Specific questions:

1. What are the sources of uncertainty in software architecture?

2. How is uncertainty represented in software architecture?

3. What are the specific aspects of software architecture where uncertainty research is focused?

4. To what extent does the uncertainty research in software architecture cover these aspects?

5. What are the risks and opportunities of uncertainty at the software architecture level?

6. How are the risks and opportunities of uncertainty mitigated and exploited in software
architecture?

General question:

7. How has the study of uncertainty evolved in the last 30 years and to what extent is uncertainty
addressed in software architecture and its aspects?

4.3.3 Inclusion and exclusion criteria

Software architecture emerged as a research discipline in the 1990s [29]. To cover the earliest
work in the area, the survey starts the literature search from 1991 and continues up to and
including 2021, as the first step of data collection. Table 4.1 shows a summary of the search

22 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

Table 4.1: Databases search results from 1991-2021

Database
Name

Results
(Query 1)

Results
(Query 2)

Relevant
(Query 1)

Relevant
(Query 2)

1 IET Digital Library 87 86 4 6
2 Web of Science 170 120 22 15
3 DBLP 12 0 10 0
4 Scopus 322 194 36 20
5 ACM Library 904 902 16 14
6 IEEE Xplore 225 155 19 13

results. We identify pertinent literature sources by manually reviewing the relevant database
search results, and following up their relevant references to ensure that we identify other literature
sources which might be linked to uncertainty and software architecture.

Query 1 identifies literature sources with terms "software architecture" and "uncertainty" between
1991 and 2021. Query 2 adds context to the search string through the inclusion of key words
about familiar terms in software architecture: language, capture, document, model, description,
stakeholder and representation. software architecture and uncertainty are the minimum terms to
identify relevant literature sources. For the additional key words, language comes from software
architecture description language, model from architecture models, description from architecture
description, stakeholders are participants in the software architecting process, and so on.

On the one hand, Query 1 uses the key search terms without further constraints, thus implicitly
including all potential aspects of software architecture related to architecture requirements,
activities, artefacts, tools, notations and others. In Section 4.7 of the results, we provide an
analysis of the categories of software architecture aspects.

On the other hand, Query 2 explicitly includes familiar specific terms of software architecture
and filters the results. In addition, we used the following variants of the word uncertainty
together with software architecture: unpredictability, indeterminate, variability and unreliability.
However, using these synonyms did not find additional relevant literature sources. Most literature
sources discussing uncertainty use the term uncertainty and not its variants.

In fact, we were more likely to find literature sources which include the terms uncertainty

and architecture but are not necessarily within the scope of this survey as shown in Table 4.1.
Therefore it is reasonable to only consider uncertainty and exclude its synonyms.

4.4. SURVEY PROCESS 23

4.4 Survey process

4.4.1 Data collection and trends

As previously stated, we used data from six academic databases, executing Queries 1 and 2 on
them with last access on 08 April, 2022. For each database, Table 4.1 shows the results of each
query and the total relevant literature sources found though manual review. Executing these
queries through the search feature of each database should generate similar results to the survey
results column in Table 4.1. Below are the exact queries applied to each of the databases:

IET Digital library Queries:

1. from all fields including fulltext for ‘uncertainty AND "soft-

ware architecture"’ published between 1991 and 2021

2. from all fields including fulltext for ‘uncertainty AND "soft-

ware architecture" AND (language OR capture OR document OR

model OR description OR stakeholder OR representation)’ pub-

lished between 1991 and 2021

Web of Science Queries:

1. ALL=(uncertainty AND "software architecture")

2. ALL=(uncertainty AND "software architecture" AND (language OR

capture OR document OR model OR description OR stakeholder OR

representation)) Timespan: 1991-01-01 to 2021-12-31 (Pub-

lication Date)

DBLP Queries:

1. uncertainty AND "software architecture"

2. uncertainty AND "software architecture" AND (language OR cap-

ture OR document OR model OR description OR stakeholder OR rep-

resentation)

Scopus Queries:

1. TITLE-ABS-KEY (uncertainty AND "software architecture") AND

PUBYEAR > 1990 AND PUBYEAR < 2022

24 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

2. (TITLE-ABS-KEY (uncertainty AND "software architecture")

AND TITLE-ABS-KEY ((language OR capture OR document OR model

OR description OR stakeholder OR representation))) AND PUB-

YEAR > 1990 AND PUBYEAR < 2022

ACM Library Queries:

1. [All: uncertainty] AND [All: "software architecture"] AND

[Publication Date: (01/01/1991 TO 31/12/2021)]

2. [All: uncertainty], AND [[All: "software architecture"] OR

[All: uncertainty]] AND [All: "software architecture"] AND

[[All: language] OR [All: capture] OR [All: document] OR

[All: model] OR [All: description] OR [All: stakeholder]

OR [All: representation]] AND [Publication Date: (01/01/1991

TO 31/12/2021)]

IEEE Xplore Queries:

1. ("All Metadata":uncertainty AND "All Metadata":"software ar-

chitecture") Filters Applied: 1991 - 2021

2. ("All Metadata":uncertainty AND "All Metadata":"software ar-

chitecture") AND ("All Metadata":language OR "All Metadata":capture

OR "All Metadata":document OR "All Metadata":model OR "All Meta-

data":description OR "All Metadata":stakeholder OR "All Meta-

data":representation) Filters Applied: 1991 - 2021

Figure 4.1 shows an overview of the final data in terms of literature sources per year. Overall,
the trend in Figure 4.1 shows a positive growth in the distribution of references per year. This
trend suggests a rising interest in research or discussion of uncertainty in software architecture,
particularly from 2011.

After the manual review, we identified eighty two (82) relevant literature sources in total. Table
A.1 provides an overview of literature sources for each aspect we identified.

There are relatively few sources between 1991 to 1997, averaging around one per year with
exceptions as shown in the chart. The low number of literature sources during this period suggests

4.4. SURVEY PROCESS 25

Figure 4.1: Distribution of literature sources per year from 1991 - 2021

that it was uncommon for uncertainty and software architecture to be explicitly associated at the
time.

Indeed, we note that most of the search results during this period were related to the establishment
of the study of software architecture. Therefore, they focus on the concept of software architecture
and stages of architecture process such as design, analysis, evaluation and modelling using
architecture description languages [28, 29].

Many of the sources from 1998 to 2004 discuss uncertainty in architecture analysis and
evaluation approaches and architecture requirements [44–48]. From 2004 to 2021, we see
discussions about uncertainty in diverse software architecture aspects including architecture
design methodologies, run-time system architecture adaptation, analysis of uncertainty in
architecture artefacts, communication of architectural uncertainty among stakeholders and
conceptualisation of new approaches to designing software architecture of specific applications
or system domains such as Systems-of-Systems (SoS).

4.4.2 Limitations and threats to validity

While our objective was to be as thorough as possible in identifying and analysing relevant
literature sources with the available resources, we are aware of limitations and threats that can
impact the validity of the survey. They relate to bias and domain of study. To enable replication
of the results of the analysis, Section 4.5 includes a description of the repository of the data of
references that we analysed to produce the insights presented in this survey.

26 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

Table 4.2: Coverage of aspects in literature sources

Aspects Count Coverage
Definitions and Concepts
1 Classification 9 11%
2 General 13 16%
3 Systems of systems 6 7%
4 Internet of Things 3 4%
5 Knowledge 3 4%
6 SE Methodology 3 4%
7 Performance 4 5%
8 Reliability 5 6%
9 Stability 3 4%
10 Risk 3 4%
Activities
11 Communication 1 1%
12 Decisions & Tradeoffs 13 16%
13 Analysis 17 21%
14 Deployment 2 2%
15 Design 26 32%
16 Evaluation 18 22%
17 Evolution 2 2%
18 Run-time 21 26%
19 Self-Adaptation 21 26%
Artefacts
20 Description 11 13%
21 Documentation 6 7%
22 Requirements 8 10%
23 Traceability 2 2%
Tools and Notations
24 Tools 21 26%
25 Notation 21 26%
Number of literature sources from 1991 - 2021 82

4.4. SURVEY PROCESS 27

4.4.2.1 Bias

The literature search, identification of relevant literature sources and interpretation of the results
were carried out by the author. Thus, the survey may be biased towards their perceived notions
of uncertainty and software architecture. Ideally, at least a second person would have also done
an independent literature selection to compare with the current results to minimise the potential
effect of bias.

The use of a systematic process is likely to have mitigated the potential personal biases. In
addition, the literature sources were identified from six reputable Computer Science literature
databases, using a systematic approach to increase the likelihood that search results and selection
are independent and comprehensive. The details of these queries and selection are provided in
the Data Collection Section 4.4.1.

4.4.2.2 Domain of study

Even though uncertainty and software architecture are associated with each other in literature
sources, the exact aspect of software architecture is sometimes not explicitly stated or there are
multiple aspects affected by the uncertainty.

This is a challenge for the survey since we analyse and collate literature sources which might not
be explicitly related. Therefore, some of the literature sources we have reviewed may be classified
in ways that are broader or more specific than intended by the original authors. Nevertheless,
we have focused on discussing software architecture aspects which are acknowledged or can be
justified by the literature sources and we provide references to sources for further information, in
addition to our interpretation. This should minimise the threat of misinterpretation.

Further, the terminology used in the survey, such as uncertainty, software architecture and various
aspects of software architecture, are well-established but they lack standardised and precise
definitions.

Uncertainty is defined in a number of ways. Similarly, software architecture and its constituents
do not have universal definitions [49]. We have cited a number of sources to highlight the
diversity of definitions and meanings, and specified our interpretation of concepts in the context
of this survey.

28 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

4.5 Survey Data

To promote the validity and reproducibility of the analysis and insights presented in this chapter,
we include a repository7 of the raw data which we analysed to gain insight into the uncertainty
aspects. Each row of the data represents an individual literature source. There are a total of
eighty two (82) rows and one (1) header row.

Each row includes the following details: the year of publication of the literature source (year),
the reference ID, the architecture aspect(s) in which uncertainty is considered (Aspects), name
of the tool or notation if the literature source contains one, the uncertainty context, the mitigation
strategy, the desired outcome, the nature of the uncertainty considered, and the full reference
details.

We use these details to analyse and identify the uncertainty aspects, show the trend of uncertainty
consideration in software architecture and generate the graphs and tables included in this survey
chapter. As the data is empirically generated, it is not perfect. It contains some null values, some
of the data is free text notes without format, and the identified architecture aspects might not be
exhaustive.

4.6 Overview of software architecture aspects

As stated in Section 4.3.1, we manually analysed each literature source to identify the specific
architecture aspect(s) in which uncertainty is considered. Table A.1 shows the individual
literature sources and their aspects where uncertainty is studied in software architecture.

In total, we identified twenty five (25) unique aspects through this analysis. Table 4.2 presents a
summary of the aspects and their associated references.

Since multiple aspects can appear within a single literature source, each literature source is
mapped to its aspects, as shown in Table A.1. This mapping was a manual process, which
involved reading a literature source and tagging it with relevant architecture aspects.

Many of the software architecture aspects identified in Tables 4.2 and A.1, such as architecture
requirements, self-adaptation and deployment, are reasonably well-known terms in software
architecture. In addition to these, we identify a few less established aspects such as communi-
cation, classification, general and Systems of Systems, which require clarification. Therefore,
Section 4.7 provides a description of the individual aspects and their categorisation. After that,
Sections 4.8 to 4.10 present answers to the survey questions introduced in Section 4.3.2.

7https://bit.ly/3z4WNWv, last accessed on 25 July, 2022

4.7. CATEGORISATION OF SOFTWARE ARCHITECTURE ASPECTS 29

4.7 Categorisation of software architecture aspects

Table 4.2 shows the extent of uncertainty consideration in software architecture aspects through
their coverage in the literature sources. The coverage is the percentage of literature sources
focusing on an aspect of software architecture out of the total 82 literature sources.

Table A.1 shows a more detailed analysis of each literature source. The initial set of the 25
architecture aspects were distinct items, without an explicit relationship with each other. Thus,
they were open to various categorisations, depending on the basis of the categories.

Defining a classification or categories of items, things or concepts in information systems is a
challenging problem due to, among other reasons, the process being subjective and empirical
[50]. Our approach to defining the categories of aspects is based on identifying similarities or
common elements of the architecture aspects, which are used as the basis for the categories [50].
As such, the categorisation is from empirical to conceptual [50].

Ideally, when conducting a classification, besides identifying common elements as the basis for
classification, its important to get external input from others, conduct discussions, and go through
a number of interactions to improve the classification and minimise the subjective influence [50].

In this case, the categories were defined among the two authors. However, we base the
classification on existing software architecture lifecycle terminology, with the exception of
Concepts and Definition category which is generic and miscellaneous [49].

In this survey, we propose the following five categories of the architecture aspects: architectural
Definitions and Concepts; architectural Activities; architectural Artefacts; and architectural Tools

and notations. Below is a description of each of these categories of architectural aspects, the
aspects contained in the category, and the justification of the category.

The aspects in the Definitions and Concepts category aim to present different perspectives or
approaches to managing uncertainty in software architecture. This category is miscellaneous as
it includes various aspects which do not fit into the other specific categories. However, within
this category, we organise the individual aspects into related sub categories as discussed below.
These include:

• Classification of uncertainty in software architecture (Classification)

• General discussion about uncertainty and software architecture (General)

• Connected systems (Cd-Sys) such as Internet of Things (IoT) and SoS, in which architecting
in the presence of uncertainty may require novel approaches

30 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

• The conceptualisation of architecture knowledge under uncertainty (Knowledge)

• The conceptualisation of uncertainty and software engineering methodologies such as Agile
and their resulting impact on software architecture (Methodology)

• System qualities (Sys-Q) of software architecture such as performance, reliability and stability,
which may be affected by uncertainty

• Risks arising from uncertainty in software architecture thus threatening the foundation of a
system (Risk).

The category of Architecture Activities includes the following:

• Uncertainty arising in architecture communications such as discussions about architecture
design decisions among stakeholders (Communication)

• Decision-making and trade-offs in the presence of uncertainty (Decisions)

• Uncertainty in software architecture lifecycle stages (SA-LC Stages) such as design,
evaluation, deployment and evolution. This category includes activities relating to managing
architecture at run-time and in self-adaptive systems, such as the evaluation of self-adaptive
policies at run-time. The list is as follows:

• Trade-offs

• Analysis

• Deployment

• Design

• Evaluation

• Evolution

• Run-time

• Self-adaptation

The activities identified above can be conducted by architecture stakeholders, the system or both.
For instance, activities related to self-adaptation at run-time will be carried out by the system
while design decisions during development are made by stakeholders.

4.7. CATEGORISATION OF SOFTWARE ARCHITECTURE ASPECTS 31

The category of Architecture Artefacts includes the set of tangible products or by-products of the
architecting process. These include:

• Uncertainty in architecture description (Architecture description)

• Uncertainty in architecture documentation (Documentation)

• Uncertainty related to architecturally significant requirements (Requirements)

• Uncertainty about architecture traceability such as among architecture models and other
artefacts (Traceability)

Although the Architecture description and Documentation aspects might appear similar, we
recognise them as distinct aspects since architecture description approaches such as Description
Languages (ADLs) focus on the representation of the architecture models, while documentation
is more general with items such as business documents which include contracts or stakeholder
communications, among other relevant architecture related documents.

The Tools and Notations category includes aspects which facilitate the architecting process.
Architecture processes require tools to support functionality such as diagramming, traceability
and visualisation. Similarly, software architecture may be represented using various notations.
Some of these, such as ADLs with precisely-defined syntax and semantics, are formal, some,
such as Unified Modeling Language (UML) diagrams, are semi-formal, and others, such as
boxes-and-lines diagrams, are casual but often widely adopted in practice.

The aspects in this category focus on the capabilities of architecting tools and notations to
represent uncertainty in software architecture. This category is somewhat different from the
others in the sense that uncertainty may not directly affect them and we are concerned with their
capabilities to model and analyse uncertainty.

In Section 4.8.4, the survey presents and discusses the tools and notations identified for working
with uncertainty in software architecture. It also specifies the specific aspects in which the tools
and notations are applied to support the management of uncertainty.

A key challenge in categorising architecture aspects relates to the Definitions and Concepts

category, in which there is a collection of architecture quality attributes such as reliability
and stability, architecture application domains such as IoT or SoS, architecture development
methodology and architecture risk among others, as shown in Table 4.2. We divide them into
specific subcategories for ease of understanding. This was deemed a suitable compromise in
presenting an overview of the topic.

32 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

From Table 4.2, we note that most of the discussion about uncertainty in software architecture
relates to Design, with a coverage of 32%. The least covered aspects are Activities - Deployment

and Evolution and Artefacts - traceability, both at 2% coverage.

4.8 Uncertainty in software architecture aspects

Uncertainty in software architecture emerges from various sources and influences diverse
architecture aspects. In this section we consider uncertainty in the four categories of aspects
introduced in Section 4.7, based on the results of our survey. For each aspect, an overview of the
relevant literature sources and specific uncertainty details are provided. For each category, the
discussion is through presenting an overview of literature sources, thus presenting a justification
of our identification of the aspect.

4.8.1 Architecture Definitions and Concepts

4.8.1.1 General

The general aspect highlights literature sources which are concerned with discussions of
uncertainty in software architecture and systems, in the general sense. Uncertainty in software
architecture and software engineering is often discussed in a general context to advocate and
highlight that software systems should consider uncertainty as a first-class concern [19]. Various
research results have advocated for a paradigm shift in software engineering, systems and
architecture to incorporate uncertainty [19, 20, 40, 51]. Software practitioners and researchers
have long recognised the threats of uncertainty in the software development process, which can
result in bugs, delays in projects, high costs and other negative implications to the delivery of
quality software [52].

4.8.1.2 Classification

The classification aspect relates to understanding, considering and interpreting uncertainty in
various contexts of software architecture [12]. Uncertainty classifications can be identified
within literature sources discussing uncertainty in specific domains or in relation to software
architecture [9, 12, 15, 21]. For instance, uncertainty classification is discussed in self-adaptive
systems, including in relation to their architecture [14, 21, 22]. Classification of uncertainty is
also discussed in specific system domains such as complex systems [9] and then adopted for
application in software architecture [53].

4.8. UNCERTAINTY IN SOFTWARE ARCHITECTURE ASPECTS 33

Uncertainty can be classified as aleatory or epistemic [2, 53]. However, software architecture
requires a more specific and specialised classification [21].

Uncertainty has also been classified according to its risk mitigations: whether the uncertainty

can be reduced or is irreducible [2]. In self-adaptive system requirements gathering, uncertainty

can be classified as being based on ambiguity or false assumption; under design, uncertainty

can be about unexplored alternatives or untraceable design; and under run-time, uncertainty

can be about the operating environments, or relate to various system components such as sensor

failure and sensors noise [14, 22]. In a general model, uncertainty can be classified in terms of

dimensions such as location, level and nature [15]. The classification framework of uncertainty
in architecture-based self-adaptive systems with multiple quality requirements considers similar
dimensions of uncertainty but with specific options for self-adaptive systems [21].

There is currently no uniform approach to classifying uncertainty in software architecture,
although there are efforts to explore this topic [12]. Uncertainty classification in software archi-
tecture is an ongoing research area with open discussions on the definitions, conceptualisations
and classification of uncertainty [12, 21].

4.8.1.3 Connected systems - SoS

The SoS aspect considers uncertainty in the software architecture of systems of systems. Such
systems are common in the domains of IoT and Cyber-Physical Systems (CPS) [54–56].

The SoS software architecture composition is prone to epistemic uncertainty because some of
the constituent elements of their architecture cannot be determined at design time, but can only
be realised at run-time [57]. Since software architecture may be used as the foundation of the
composition of a system, epistemic uncertainty during design time raises the challenge of how
to design the architecture of a system whose actual architecture elements and configuration
are dynamic and can only be adequately known in the future, for instance, during runtime
[54, 57, 58]. Therefore, instead of designing a traditional architecture, the SoS design approach
uses an abstract architecture, which serves as the template for the real architecture that can only
be fully realised at runtime [58].

Research on handling uncertainty in SoS architecture includes the definition of SoS architec-
ture description languages such as Systems-of-Systems Architecture Description Language
(SoADL)to formally describe the SoS software architecture [54]. In addition, other approaches
address uncertainty in SoS through tools to support architecture decision making during its
design under uncertainty. Examples of these tools include a fuzzy logic expert system to support
architecture design in terms of documentation and decision making through reuse of knowledge

34 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

of recurring decisions [59] and a tool called Ark which supports a constraint-based method for
architecture synthesis of a smart SoS [58].

4.8.1.4 Connected systems - IoT

In terms of the literature sources identified during the survey, the IoT aspect is closely related
to SoS. There are some literature sources with exclusive focus on each while others are shared
[54, 55]. An example of a shared research area is a fuzzy architecture description for handling
uncertainty in IoT Systems-of-Systems [55]. This extends SoADLwith uncertainty capability to
support IoT systems [55]. Uncertainties in IoT can emerge from the operating environment, loose
coupling of system components, deployment, security threats and user interactions [24, 55, 60].
Thus, software engineering for IoT requires a paradigm-shift from traditional approaches to
handle the inherent uncertainty [24]. Research questions in IoT include how to define software
architectures in the context of ubiquitous uncertainties in IoT and how to control or handle
the uncertainty in the software architecture of IoT [24]. Further, IoT introduces the challenge
of software deployment under uncertainty [60]. One proposed solution for deployment is the
goal-driven approach for deploying self-adaptive IoT systems [60].

4.8.1.5 Knowledge

Software architecture knowledge is generated and documented throughout the lifetime of a
system and its architecture [11, 49]. Sources of uncertainty in architecture knowledge include
the state of the knowledge itself, such as knowledge availability, validity, completeness, quality
and accuracy [35, 39]. Uncertainty in knowledge impacts architecture design as well as other
architecture aspects [26, 35, 39, 61]. For example, design decisions such as deciding on elements
of a system to out-source [35] can be affected by uncertainty in knowledge. In addition, the
requirements may be unknown at the beginning of a project, yet legal agreements must be made
and costs estimated [35].

4.8.1.6 Methodology

Software systems are often developed in an environment where there is uncertainty due to lack
of knowledge on the software’s structure, behaviour and execution context, which need to be
represented as part of the software architecture [24]. This presents a challenge to software
development methodologies relating on how to strategically handle uncertainty.

A specific challenge, in terms of methodologies, is the relationship between software architecture
and the Agile software development methodology [62]. By definition, software architecture
is the foundation of the software system, and thus, it may be hard to change later. However

4.8. UNCERTAINTY IN SOFTWARE ARCHITECTURE ASPECTS 35

the Agile methodology encourages continuous iterative development of software and embraces
change. This contradiction needs to be handled [11, 28, 62].

Addressing the relationship between the Agile methodology and software architecture is one
of the research topics relevant to handling uncertainty in software architecture. One practical
approach to handling this is to design an agile architecture so that it is modifiable and change-
tolerant [62]. This approach is based on the following proposed five guiding tactics to building
an agile architecture: keep designs simple, improve the architecture code iteratively, use good
design practices, delay decision making and plan for options [62].

4.8.1.7 System quality - Performance

Performance is a software architecture quality attribute. Uncertainty about performance in
software architecture arises in relation to architecture analysis and evaluation activities since
performance is one of the key quality attribute for assessing the suitability of a candidate
architecture [30, 46]. A specific example of research on uncertainty and software architecture
performance is in the performance analysis of architecture models under uncertainty [33, 63].
Performance results of a system can be analysed and traced to specific architecture components of
a system to understand the relationship between the performance of a system and its architecture
model [64]. However, there is often uncertainty in precisely identifying such a relationship, and,
as such, fuzzy approaches are required to implement and handle the mapping [64].

4.8.1.8 System quality - Reliability

Similar to performance, reliability is a quality attribute which is significant to architecture
analysis and evaluation [30]. Uncertainties relating to the reliability of architecture components
can result in reliability issues for the overall system [65, 66]. Evaluating architectures through
early predictions of software component reliability is vulnerable to uncertainty [66]. The lack
of information about architecture components during the early phases of software architecture
development makes it hard to assess the reliability of an architecture [65, 66]. The lack of data
on intended behaviour of an architectural component, its operational profile, implementation
details and failure behaviour can make the architecture reliability assessment process unreliable
[65, 66]. The accuracy of architecture-based reliability evaluations depends on a number of
parameters that need to be estimated, such as environmental factors or system usage [34, 67].
Techniques used to mitigate the risks from lack of reliability data include estimating components
parameters [68] and modeling and simulation to handle uncertainty in architectural parameters
[67].

36 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

4.8.1.9 System quality - Stability

Stability is another quality attribute of software architecture. Uncertainty in the context of stability
arises from techniques for predicting the stability of an architecture. Modelling techniques such
as the use of a model based on the theory of real options to predict the stability of software
architectures have been explored [47, 69]. The uncertainty in predicting architecture stability is
related both to the accuracy of the prediction functions and to the input into the prediction or
analysis function [47].

4.8.1.10 Risks

This aspect relates to risk in architectures due to uncertainty. Risk is a direct consequences of
uncertainty [2]. "Architectural risk, intuitively, is the degree to which the performance of a
design is fragile in the face of unknowns" [70]. Risk analysis aims to estimate and understand
architectural risk from uncertainty [70]. There are a range of sources of risks in software including
project uncertainty, process uncertainty and design uncertainty [70]. Software architecture design
in the context of rapidly evolving technologies involves dealing with the risk that a design will
fail to meet its performance objectives [65, 66, 70].

4.8.2 Architecture Activities

4.8.2.1 Communication

Uncertainty in communication arises during the exchanging of architecture information through
speaking, writing or using some other medium. Sources of communication uncertainty include
language use and interpretation [61, 71]. In terms of verbal or written language, uncertainty
may arise from the meaning of uncertain language key words such as may, might and maybe

in sentences which can signal uncertainty [71]. Besides, the presence of such uncertainty
key words in architecture documentation and presentations can signal feedback, preference,
opinion, reassurance or figure of speech [71]. For instance, during an architecture presentation to
stakeholders, the presenter might use uncertain language key words to solicit feedback or opinion
[71]. In addition to language use, uncertainties in communication arise within architecture
documents due to missing information, assumptions or ambiguities [61].

4.8.2.2 Decisions

There are many areas where decisions are vulnerable to uncertainty in software architecture
[72]. These include uncertainty in documenting architecture decisions, uncertainty in domain
specific architectural decisions (such as mobile systems), uncertainty in decisions that aim to

4.8. UNCERTAINTY IN SOFTWARE ARCHITECTURE ASPECTS 37

achieve specific quality attributes (reliability or scalability), and uncertainty in making decisions
and grouping architecture decisions [42, 72, 73]. During architecture design and evaluation,
uncertainty may emerge while selecting implementation architectures among alternatives due to
lack of information; for example, there may be uncertainty about the implications of a decision
[39, 72–74]. Uncertainty in decision making can be handled through its reduction by gathering
knowledge through modelling, simulation and testing [74]. Software development methodologies
can support decision making under uncertainty through feedback loops on architecture decisions,
thus enabling the progressive maturity of the architectural knowledge base [39, 75].

4.8.2.3 Trade-offs

Trade-offs are a part of the essence of architecture design and are closely related to architecture
decisions and analysis [76]. Trade-offs are prone to uncertainty from lack of knowledge during
design, evaluation and architecture execution in the context of self-adaptive systems [48, 77, 78].
There is need for tools and techniques to facilitate the management of trade-offs in software
architecture [78]. Recent work on a related topic considers the feasibility of the use of a machine
learning approach to explain the architecture trade-off design space in the context of uncertainty
[76].

4.8.2.4 Analysis

Analysis is one of the core activities in software architecture. Uncertainty in analysis may emerge
from its techniques and methods, such as quantification of values or approximation, as well as
stakeholder input into the analysis process among other aspects [26, 30, 44, 48].

We have previously discussed uncertainty in analysis through other aspects such as reliability
[65, 68], trade-off [48, 76–78], stability [79] and performance [33]. Besides, analysis is discussed
in literature in the context of software architecture and security in terms of confidentiality [80],
and uncertainty in analysis of architecture during run-time [44, 45].

4.8.2.5 Deployment

Deployment uncertainty in architecture is discussed in the contexts of self-adaptive systems,
SoS and IoT [60, 81]. Deployment uncertainty relates to available resources, components and
quality attributes of the system [81] and both structure and behaviour of software architecture
[81]. Uncertainty can arise due to the topology of deployed components being unpredictable
in dynamic environments, particularly in the context of self-adaptive systems [60] and the
reconfiguration and dynamic synthesis of architecture in operational systems [81].

38 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

4.8.2.6 Design

In the design aspect, discussion about uncertainty often concerns other architectural aspects.
These include in SoS [54, 57–59], IoT [55], tools [58, 82, 83], analysis [76, 78], evaluation
[84], decisions [75, 83] and knowledge [35]. An additional area of uncertainty in architecture
design is in relation to machine learning architectural components which might be affected by
uncertain behaviour from learning [84]. An architecture with machine learning components has
an inherent uncertainty regarding functional stability which makes architecture evaluation and
trade-off analysis challenging [84, 84].

4.8.2.7 Evaluation

Uncertainty in evaluation techniques emerge from the challenge of forecasting the impact of
the architecture decisions on the software architecture quality attributes and the assessment of
alternative candidate architectures to select a suitable architecture [32, 85, 86]. Evaluation relates
to other architecture aspects such as performance [46], stability [69, 69], reliability [34, 66–
68], and analysis [68]. In a recent systematic review, the concept of continuous evaluation of
software architecture from design time to runtime is proposed to handle uncertainty in software
architecture evaluation [40]. Continuous evaluation of software architecture is necessary given
the dynamic and uncertain nature of complex systems such as IoT, SoS and self-adaptive systems,
which influences their architecture evaluation results [40].

4.8.2.8 Evolution

Software changes with time as new requirements are introduced, features are modified and
errors corrected. Some such changes arise due to uncertainty and may themselves be subject
to uncertainty. Thus, predicting the stability of a software architecture is a major source of
uncertainty in evolution [47, 87, 88]. Uncertainties in software architecture evolution arise from
the fact that the understanding of how architectural decisions map to quality attribute responses,
in terms of costs and benefits, depends on intuition and expert opinion [87]. Thus, the subjective
nature of the process leads to uncertainty [87]. Evolution can cope with uncertainty through,
for instance, determining the appropriate degree of architectural flexibility and balance with
economic consideration of the mitigations [47, 87].

4.8.2.9 Run-time

This aspect relates to uncertainty in run-time analysis [44, 45], deployment [81] and evaluation
[40] of the architecture of the system. Discussions about uncertainty at run-time in software
architecture often relate to self-adaptation, which we discuss in the next sub-section [89].

4.8. UNCERTAINTY IN SOFTWARE ARCHITECTURE ASPECTS 39

4.8.2.10 Self-adaptation

Self-adaptation is one of the architecture aspects in which uncertainty in general and uncertainty
in software architecture are widely considered [41, 90–93]. Often, uncertainty is considered in
the context of the operational environment at run-time, the adaptation-function execution, and
variable user needs [41, 94].

In self-adaptive systems, uncertainty can emerge from system parameters, uncertainty in
analytical models and uncertainty in user preferences [95]. Uncertainty in such systems can be
internal (such as predicting the impact of a system configuration change on quality attributes) or
external (such as weather conditions requiring adaptation) [95].

Literature sources on self-adaptation contain a range of discussions of uncertainty in relation
to other aspects: design [96], cyber-physical systems [97, 98], requirements and runtime [99]
and machine-learning techniques for proactive architectural adaptation [100] and deployment
[60]. However, despite the range of such discussions, there is still a need to clarify the concept
of uncertainty in self-adaptive systems [41].

4.8.3 Architecture Artefacts

4.8.3.1 Architecture description

Architecture description is the main artefact of software architecture [57, 92]. An area of research
interest about uncertainty in architecture description is the ability of the description to include
and represent uncertainty details [57, 92]. There are a few existing approaches that can explicitly
describe and capture uncertainty in architecture description. These include using ADLs and
enhanced UML notation, such as SoADL[57] and Fuzzy self-Adaptation ModEling (FAME) [96].
Besides, there are analytical architecture description approaches, which include mathematical
characterisation of uncertainties and fuzzy representation of uncertainty [26, 27].

There are two kinds of approaches to representing uncertainty in architecture description:
encoding the uncertainty as part of the architecture description artefact or representing the
uncertainty using a mathematical or analytical approach [92]. In Section 4.8.4, where we
consider tools and notations, we will provide a description of some of these tools and notations,
which are used to generate description artefacts.

4.8.3.2 Documentation

We consider documentation in the context of the following research areas: automatic uncertainty
detection in software architecture documentation [61] and uncertainty expressions in software

40 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

architecture group decision making [71]. In these approaches, uncertainty in architecture
documentation relates to architecture communication artefacts such as stakeholder discussions
and business contracts relating to architecture. This is in contrast to architecture descriptions,
which are about architecture models such as architecture views and ADLs [96, 101]. Sources
of uncertainty in documentation often relate to lack of information resulting in communication
uncertainties such as ambiguity and confusion [61].

4.8.3.3 Requirements

Uncertainty may influence architecturally significant requirements [38, 102–104]. Uncertainty in
requirements impacts architecture design since requirements are the primary input into the design
process [25]. Therefore, even though uncertainty representation in requirements might not always
be specific to software architecture, it still is significant in informing the architecture process
[25]. Software architecture should be designed for change since requirements are often volatile
[38]. Designing for change requires that architectures are flexible, modifiable and scalable, to
support the incorporation of uncertainty [38, 104].

4.8.3.4 Traceability

Finally, uncertainty in traceability applies when mapping between architecture description
elements and other systems aspects such as performance and code [64, 105]. For instance,
following literature sources highlight traceability between architecture models and code [105]
and between performance results and architecture components [64].

4.8.4 Architecture Tools and Notations: Uncertainty capabilities

Given the range of architecture aspects, there are different approaches to handling uncertainties,
such as analytical approaches or explicit recording of uncertainty details [9]. Mathematical
or analytical techniques can be used to represent uncertainty in software architecture. These
include probability theory [95], Bayesian theoretical approaches such as Bayesian networks
[73, 79, 84, 99], variations of Markov chains [99], Evidence theory [34, 106], Possibility theory
[9, 54, 106] and fuzzy approaches such as fuzzy logic and numbers [26, 32, 55, 59, 77, 86, 96].

Explicit uncertainty handling approaches encode uncertainty in artefacts though notations and
architecture languages with capabilities to capture or include uncertainty details. Examples of
these include architecture description languages based on fuzzy concepts [55], fuzzy UML
notation [96] and fuzzy traceability notation to capture uncertainty between architecture
components and performance or sources code [64, 105].

4.8. UNCERTAINTY IN SOFTWARE ARCHITECTURE ASPECTS 41

Table 4.3: Languages, notations, and tools designed for explicitly working with uncertainty in software
architecture

Target Aspects Description - central concept Ref
Languages
1. SoADL Systems of System

Design
SoADL can represent epistemic uncertainty in the composition
of SoS architectures

[54, 57]

2. Fuzzy Sos Architecture
Description Language

SoS & IoT Design Fuzzy SoADLis used to model architectures of System of
systems of IoT incorporating uncertainty

[55]

3. RELAX Self-adaptation re-
quirements

RELAX specifics variant and invariant requirements and cap-
tures uncertainty in the operating environment

[25]

4. Stitch language Self-Adaptation Stitch, which has uncertainty capabilities, represents
architecture-based self-adaptation to automate system
administration

[91]

5. Architecture and code
traceability language

Traceability and
Code

Traceability language for mapping between source code and
architecture model components. It handles uncertainty in the
mapping i.e, ambiguity, incompleteness and assumptions.

[105]

6. Architecture and perfor-
mance traceability lan-
guage

Traceability and Per-
formance

Traceability language for mapping between performance results
and architecture model components. It handles uncertainty in
the mapping i.e, ambiguity, incompleteness.

[64]

Notations
7. FAME Self-Adaptation FAME is a UML like enhanced modelling notation which

supports diagrams such as Fuzzy Case Diagram, Fuzzy Class
Diagram and Fuzzy Sequence Diagram for self-adaptive sys-
tems

[96]

8. Chemical Abstract
Model (CHAM)

Self-Adaptation CHAM is a computational model notation which uses a chemi-
cal reaction analogy to model possible configurations of archi-
tectural self-adaptation, thus incorporating uncertainty

[92]

Tools
9. GuideArch Evaluation GuideArch is an architecture analysis and evaluation tool which

ranks candidate architecture alternatives using fuzzy notation to
select a suitable implementation architecture

[27]

10. iArch-U Integrated De-
velopment Environment
(IDE)

Design iArch-U is an IDE for managing uncertainty in a module fashion
in all phases in software development. It supports addition or
deletion of uncertain concerns to/from models, code and tests
whenever these concerns arise or are fixed to concerns.

[82]

11. MU-MMINT: An IDE
for Model Uncertainty

Design MU-MMINT IDE allows developers to express their design
time uncertainty within software artifacts and perform a variety
of model management tasks such as reasoning, transformation
and refinement in an interactive environment

[83]

12. Requirements and Archi-
tecture Decision Analy-
seRl (RADAR)

Requirement and de-
cision Analysis

The RADAR tool includes the RADAR modelling language to
consider impact of uncertainty in requirements and architecture
decisions.

[73]

Notations that can represent uncertainty can be incorporated in architecture development tools
to enhance them with capabilities to handle uncertainty. Tools like Guidearch explore the
architecture solution space under uncertainty using a fuzzy notation which represents uncertainty
about architecture candidate alternatives [27]. Stitch is a language for self-adaptive system
administration in the context of uncertainty [91].

Besides, there are IDEs with capabilities to model uncertainty when developing architectures
[82, 83]. However, such tools are not widely adopted in practice [107], an example of an
uncertainty consideration IDE is the Interface-Centric Integrated Uncertainty Aware Development
Environment (IArch-U) [82].

RELAX is a language to model the requirements of self-adaptive systems [25] which incorporates

42 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

uncertainty. While not all RELAX-ed requirements are architectural, some of them are likely to
be architecturally significant in the context of self-adaptive systems.

Table 4.3 is a list of languages, notations and tools which are designed explicitly for working
with uncertainty in various aspects of software architecture under the categories identified in
Section 4.7 - indicated in the Target Aspects column. We present these tools, notations, and
languages to illustrate the research on the consideration of uncertainty in software architecture.
Data on their adoption or use in practice is not available.

4.8.5 Summary

In this section, we have discussed works on uncertainty related to software architecture aspects
in the categories of Definition and Concepts, Activities, Artefacts, and Tools and Notations. For
each category, we have summarised the research relevant to identifying, representing, analysing
and managing uncertainty where relevant.

A number of diverse approaches have been described in literature with these aims. One
implication of such diversity is that, when the term uncertainty is used, it is not always clear
what it exactly refers to, unless specific details are provided from the specific context. This
ambiguity is one reason why it is challenging to categorise works discussing uncertainty in
software architecture, software systems and software engineering [12, 19]. Indeed, Ambiguity

too is a form of uncertainty [1].

4.9 Risks and opportunities of uncertainty in software
architecture aspects

Uncertainty can cause risks or can create opportunities [2, 9]. In this context, a risk is a negative
influence of uncertainty and opportunities are its positive consequences [2, 9]. Discussions of
uncertainty in the literature generally deal with its risks. All the literature sources we found in
this survey discuss uncertainty only with respect to its negative consequences. Opportunities of
uncertainties are not considered. Consequently, the exploitation of uncertainty is not discussed
in any of the 25 aspects.

Risk mitigation is an integral part of managing uncertainty [2]. In fact, there is a software
architecture development methodology driven by risk called risk-driven architecture [108]. There
are many possible risks that can arise from uncertainty in software architecture with the potential
to result in significant negative consequences. Discussions of such risks in literature tend to

4.10. MITIGATION AND EXPLOITATION OF UNCERTAINTY IN SOFTWARE ARCHITECTURE ASPECTS 43

be specific to an aspect, such as during software architecture analysis [30, 48] and evaluation
[26, 47].

For example, during architecture analysis using techniques such as ATAM [30], one potential
risk from uncertainty might be identifying incorrect architecturally significant requirements or
priorities, and this might have serious consequences. In contrast, during evaluation [27], the risk
might be selecting the wrong candidate architecture for deployment, and this too, might have
serious consequences.

Thus, uncertainties in software architecture such as those arising from unanticipated changes,
incomplete documentation or variability in the operating environment, create risks to the quality
of the system with consequences of potentially high costs [2]. These costs can be in terms
of finance [32], performance [33], reliability [34], legal issues [35] and business disruptions
[9]. Therefore, uncertainty in software architecture should be identified and avoided, or at least
mitigated, as much as possible [2].

4.10 Mitigation and exploitation of uncertainty in software
architecture aspects

Since opportunities are rarely discussed in literature with respect to uncertainties, their
exploitation is also not discussed. The main focus is on risks and their mitigations, as we
have demonstrated in this chapter.

Mitigation strategies manage risks from uncertainty in software architecture aspects such as re-
quirements, analysis, design, evaluation, run-time, documentation, traceability and classification.
For instance, risk from uncertainty to interpretation and understanding can be mitigated though
classifications or taxonomies [15, 21]. Often, such classification approaches target specific areas,
such as uncertainty in self-adaptive systems or complex systems [2, 14].

Classifications can provide a basis for defining the scope of uncertainty, with some mitigation
strategies targeting epistemic uncertainties while others target aleatory uncertainties or both
[54]. Likewise, the lack of knowledge and the use of imprecise techniques can cause epistemic
uncertainty in architectural decision making. Therefore, approaches for dealing with architecture
knowledge can be used to mitigate such uncertainties during decision making or trade-offs [35].

Similarly, methodological approaches such as agile development can mitigate epistemic
uncertainty through feedback loops on architecture decisions and alternatives [39, 62]. Moreover,
modelling, simulation and testing strategies can be used to fill the knowledge gap as mitigations

44 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

in decision making [33, 67].

Other uncertainty mitigation approaches include design tools and techniques which help
architects work with uncertainty. These include tools such as IDEs, techniques for reasoning
about uncertainty in design and frameworks for synthesising architectures in uncertain conditions
to achieve the desired balance of quality attributes. This survey identifies some tools, notations
and languages, for explicitly working with uncertainty in Table 4.3.

Multiple mitigation approaches exist for uncertainty in architecture evaluation. These include
the use of fuzzy representation to aid in selecting candidate architecture [27], Analytic Hierarchy
Process (AHP) [86], possibility theory (an alternative to probability theory for handling
uncertainty) [109] or simulations such as the Monte-Carlo method [106], continuous software
architecture evaluation [40], among others.

Mitigations in architecture design include conceptual approaches. For instance, designing for
stability is important for the durability of software architecture as it evolves. Similarly, mitigation
approaches for architecture evolution focus on architecture flexibility in the context of stability
so that the architecture can handle unanticipated requirements [47]. Architecture flexibility in
the context of evolution is considered as an investment in the system, returning benefits from
future adaptations and reducing maintenance costs [47].

Mitigations in methodology focus on recommendations and good practices such as keeping
architecture designs simple, delaying decision making and planning multiple options [62].
Testing, prototyping and designing for flexibility mitigate uncertainty risks from architecturally
significant requirements [38]. Prototyping and incremental development help with identifying
uncertainty and coping with them, respectively [102].

Overall, some mitigations may target specific aspects of software architecture, and others may
target a range of aspects such as run-time and self-adaptation. Mitigations can also be vulnerable
to uncertainties. For example, within the self-adaption mechanism, there may be uncertainties
about the adaptation-function itself as it executes, and thus it may require further mitigations to
guarantee satisfactory execution [94].

4.11 Discussion: Gaps and directions for Future Work

This survey identifies aspects of software architecture from the results of a literature survey,
categorises these aspects and discusses current work on uncertainty in their respective contexts.

The architecture aspects within the identified categories of Definition and Concepts, Activities,

4.11. DISCUSSION: GAPS AND DIRECTIONS FOR FUTURE WORK 45

Artefacts, and Tools and Notations are inter-related. They share data, techniques and feedback
mechanisms. Thus, uncertainty identified in one aspect is potentially uncertainty in multiple
aspects of the software architecture.

Recognising the influence of uncertainty within each category and within each aspect is a positive
step in considering uncertainty in software architecture. Other significant steps are its systematic
identification, minimisation and resolution. The last two involve mitigations of uncertainty
risks [83]. Potential future work for considering uncertainty as a first class concern in software
architecture therefore involves uncertainty management in all categories and individual aspects
of software architecture.

This chapter demonstrates that uncertainty in software architecture is an open research area with
increasing interest and effort, but with many outstanding issues to address, including approaches
for identifying, representing, analysing and managing uncertainty in various aspects of software
architecture. Many of the available approaches target uncertainty in specific aspects and are
limited in scope because they do not share their results with other architecture aspects, which
may also be impacted by the same or similar uncertainties.

In terms of Definitions and Concepts, there are many novel and innovative approaches being
proposed to address uncertainty in software architecture. However, there is a lack of clarity
on how to organise, select and apply such approaches. As discussed in Section 4.8.1, there
are General, Classification, Cd-Sys such as SoS or IoT, Knowledge, Methodology, System
qualities and Risks aspects, each with distinct approaches to addressing uncertainty in software
architecture. Thus, there is a need for a systematic approach to organising and integrating this
work instead of treating them in miscellaneous categories.

In defining uncertainties, it is important to understand their sources. Some sources of uncertainty
in software systems have received particular attention, such as the operating environment in
self-adaptive systems architecture [94]. Progress has been made in designing architectures of
adaptive systems.

In architecture Activities, which we discussed in Section 4.8.3, specific approaches exist to
address uncertainty in aspects such as Communication, Decision making, Trade-offs, Analysis,
and others in their respective context. However, most of these works are done in isolation and will
require coordination approaches to be integrated and support each other to manage uncertainty
in a systematic manner.

In architecture Artefacts, such as architecturally significant requirements and architecture
descriptions, uncertainties, their mitigation and desired outcomes should be represented at

46 CHAPTER 4. UNCERTAINTY IN SOFTWARE ARCHITECTURE: A SURVEY

the relevant level of detail. For example, uncertainties and outcomes may be part of requirements
while architecture descriptions and resulting detailed designs may include details of mitigation.
Existing approaches support this for specific domains or artefacts and thus there is a lack of
support for uncertainty representation in software architecture artefacts in general. Artefacts
which include uncertainty information are likely to help minimise future risks through making
the uncertainty knowledge explicitly available to stakeholders throughout the software lifecycle.
The incorporation of uncertainty information in artefacts requires tools to support all the activities
of this process.

Further, there is a general lack of traceability of uncertainty information among the aspects.
However, there are some attempts towards addressing this, such as tracing between architecture
documentation and code or performance under uncertainty [64, 105].

In most of the aspects considered in the chapter, support from tools and notations for considering
and managing uncertainty in software architecture is lacking. Some work on tools and notations
is discussed in Section 4.8.4; however, we did not find evidence of these approaches being widely
adopted by practitioners.

Based on these observations, we suggest the following research directions for the future:

• Definitions and Concepts: More work is required on the interpretation and understanding
of uncertainty as an architecture concern with precise definitions and characterisations. A
generic conceptual model for uncertainty that considers its different dimensions and attributes
would provide a robust basis for considering uncertainty in architecture artefacts and processes.
We suggest more research on explicitly identifying and exploiting opportunities afforded by
uncertainty since there appears to be little work published on this topic.

• Activities: More research is needed to investigate how the explicit consideration of uncertainty
can be embedded in all architecture activities and broader software engineering processes to
produce outcomes that are robust in the face uncertainty.

• Artefacts: Information about uncertainties need to be represented in a usable and explicit
manner in architecture artefacts to support their use in architecture activities. In addition,
more work on traceability among software artefacts is needed in general, with a focus in this
particular context of traceability of uncertainty information within architecture artefacts and
with other artefacts. This information must be accessible to all relevant stakeholders and be
human or machine readable depending on their proposed use in the software lifecycle.

• Tools and Notations: All of the above require support from the notations and tools used in

4.12. CONCLUSIONS 47

software architecture and broader development activities. A particular concern here is that
such notations and tools must be integrated into existing development infrastructure since the
need to learn and use additional notations and tools is likely to hinder their adoption.

We note that the elements of the suggested potential future work are interconnected. In a
broader sense, we would thus propose the development of a generic but customisable approach
to uncertainty management in software systems. Such an approach would include addressing
uncertainty in software architecture as a vital and foundational artefact in the software lifecycle.

The consideration of uncertainty as a first-class concern in software architecture requires
understanding of its nature, sources, risks, and mitigation in all aspects [2, 21]. In addition, its
management to achieve the desired outcomes, such as system qualities, requires the definition and
development of notations, mitigation tactics, activities and tools with capabilities of representing,
analysing and mitigating uncertainty in software architecture. This PhD thesis contributes
towards this vision.

4.12 Conclusions

This chapter reviewed literature sources from 1991 to 2021 to explore uncertainty in software
architecture aspects, including architecture Definitions, Concepts, Activities, Artefacts, Tools

and Notations. The survey resulted in 82 literature sources, which highlighted 25 specific
software architecture aspects where uncertainty is explicitly considered and provided a potential
categorisation of these aspects. Each of these aspects has received varying degrees of focus in
terms of research interest and results. The survey identified existing approaches for addressing
uncertainty in these aspects of software architecture as well as gaps in the state of the art.

There is a need for further research to enhance uncertainty consideration, representation, and
management in all the aspects of software architecture. In addition to the gaps highlighted in the
survey, a systematic approach to the management of uncertainty in software architecture also
needs to be devised. Future research directions include addressing uncertainty within each of
the four categories of aspects and within each individual aspect. In the Discussion Section, we
highlighted potential future research directions for each category.

This PhD thesis presents our current work on developing a generic framework for considering
uncertainty in software systems, with a particular focus on software architecture. This
framework enables the generation of uncertainty data for software architecture to support
software architecture uncertainty documentation, representation, analysis and management.

5CHAPTER FIVE

UNCERTAINTY
CHARACTERISATION

CONCEPTS: STATE OF THE
ART

Few approaches, which explicitly represent the various dimensions of uncertainty in software
architecture or software systems, exist. This chapter presents specific approaches that consider
uncertainty in its multiple dimensions in software systems. The chapter builds on the background
from Chapter 3.

5.1 Overview

Section 5.2 presents an overview of the existing uncertainty consideration approaches from the
background discussed in Chapter 3. Section 5.3 presents an overall summary of the existing
approaches. Section 5.4 is the conclusion.

49

50 CHAPTER 5. UNCERTAINTY CHARACTERISATION CONCEPTS: STATE OF THE ART

Table 5.1: Literature sources on uncertainty frameworks

ID Focus area Title Year Reference

1 Cognitive Science Ignorance and uncertainty: Emerging
paradigms

1989 [1]

3 Complex Systems A framework for understanding uncertainty
and its mitigation and exploitation in complex
systems

2004 [2]

4 Complex Systems A classification of uncertainty for early prod-
uct and system design

2007 [9]

10 Cyber-Physical
Systems

Understanding uncertainty in cyber-physical
systems: a conceptual model

2016 [3]

11 Self-Adaptive Sys-
tems

A classification framework of uncertainty in
architecture-based self-adaptive systems with
multiple quality requirements

2017 [21]

5 Self-Adaptive Sys-
tems

Relax: Incorporating uncertainty into the spec-
ification of self-adaptive systems

2009 [25]

5.2 Existing approaches for considering uncertainty in
software systems

To identity these approaches, we searched the following academic databases: IET Digital
Library1, Web of Science2, DBLP3, Scopus4, ACM Library5, and IEEE Xplore6. The search
terms we used to find literature sources in the databases were: ‘uncertainty AND (software

OR system) AND framework’. In addition, we conducted a manual search to obtain more
comprehensive results by following up references from results returned by the search. We
then analysed the search results manually to identify primary references, which either propose
or consolidate concepts for characterising uncertainty, as shown in Table 5.1. Our approach
to determining primary sources included 1) checking for citations among results to check
dependencies among literature sources, and 2) checking whether further useful information
would be gained by retaining a source.

The results of our search show that there are not many existing approaches that consider
uncertainty in software systems as a first class concern. We identified one source from cognitive
science which has been cited in literature related to software systems, two generic frameworks

1https://digital-library.theiet.org/
2https://apps.webofknowledge.com
3https://dblp.org/
4https://www.scopus.com
5https://dl.acm.org/
6https://ieeexplore.ieee.org

5.2. EXISTING APPROACHES FOR CONSIDERING UNCERTAINTY IN SOFTWARE SYSTEMS 51

from complex systems, a conceptual model from cyber-physical systems, a literature review
of uncertainty in self-adaptive systems and an approach for characterising uncertainty in self-
adaptive systems. Thus, four contexts contribute to our study of existing approaches.

The identified approaches consider uncertainty in the following contexts. Cognitive science is
related to human thought and behaviour [1]. There is a strong intertwined relationship between
physical and software components in cyber-physical systems [3]. Complex systems comprise
numerous complex components, interconnections and dynamism [2]. Self-adaptive systems
automatically adapt to counter the influence of uncertainties against performance goals [94, 95].

Our work consolidates and extends these individual frameworks into a generic customisable
framework for considering uncertainty. In Sections 5.2.1 to 5.2.4, we examine and compare the
approaches from these contexts to extract concepts and attributes of uncertainty for consolidation.

Ignorance

Error

Distortion

Confusion Inaccuracy

Incompleteness

Uncertainty

Vagueness

Fuzziness Non-specificity

Probability Ambiguity

Absence

Irrelevance

Figure 5.1: Taxonomy of Ignorance (Reproduced from [1])

5.2.1 Uncertainty in cognitive science

In "Ignorance and uncertainty: emerging paradigms", Smithson defines uncertainty in the context
of ignorance [1]. Their working definition of ignorance states that “A is ignorant from B’s
point of view if A fails to agree with or show awareness of ideas which B defines as actually or
potentially valid” [1].

One stated benefit of this definition is that it avoids an absolutist problem by placing the onus
on the agent to define what they mean by ignorance [1]. This definition implies a subjective
perspective to uncertainty, such that different agents may not identify or perceive an uncertainty
in the same way.

52 CHAPTER 5. UNCERTAINTY CHARACTERISATION CONCEPTS: STATE OF THE ART

This definition focuses on knowledge; that is, ignorance can be due to “ignoring” or “being
ignorant” [1]. “Ignoring” implies an active conscious ignorance or Irrelevance. On the other
hand, “being ignorant” means a passive ignorance resulting in a flawed state of knowledge or
Error.

Figure 5.1 shows the taxonomy of uncertainty from ignorance. It shows that uncertainty is a form
of incompleteness of knowledge, where incompleteness itself is classified as an error that causes
ignorance. Besides, uncertainty has three measurement subcategories: vagueness, probability
and ambiguity. Vagueness has two categories: fuzziness and nonspecificity (generality) [1].
Since this classification is centred on knowledge, it deals with epistemic uncertainty.

5.2.2 Uncertainty in complex systems

Uncertainty

Lack of
knowledge

Statistically
Random

Known
unknown

Unknown
unknown

Lack of
Definition

Statistically
Random

Known
unknown

Unknown
unknown

Figure 5.2: Uncertainty in complex systems (Based on [2]

Hastings and McManus define a framework for managing uncertainty, and techniques for
mitigating and even taking advantage of it, in complex systems [2]. In this framework, uncertainty
is defined as both the lack of knowledge and the lack of definition. Each of these in turn has three
subcategories: statistically characterised (random) variability or phenomena, known unknowns
and unknown unknowns, as illustrated in Figure 5.2. There is an emphasis on knowledge-based
or epistemic uncertainty, though the subcategory of statistical variability or phenomena can
characterise aleatory uncertainty.

Furthermore, Hastings and McManus state that uncertainty leads to risks or opportunities,
which are handled by mitigation or exploitations, ideally leading to desired outcomes [2].
Risks are the potential negative consequences of uncertainty while opportunities are potential
positive consequences of uncertainty. Mitigations are the approaches to risk minimisation while
exploitations refer to approaches to value or opportunity enhancement. The outcomes are the
desired results of mitigating risks or exploiting opportunities. Thus, the work by Hastings and
McManus suggests a broad and systematic approach to considering uncertainty in systems.

In addition, there are numerous individual sources of uncertainty in complex systems. de Weck

5.2. EXISTING APPROACHES FOR CONSIDERING UNCERTAINTY IN SOFTWARE SYSTEMS 53

et al. [9] identify and classify sources of uncertainty into two broad categories: exogenous and
endogenous. Endogenous uncertainties arise within the system while exogenous uncertainties
are external to the system. Typically, the degree of influence in mitigating risks or exploiting
opportunities arising from uncertainties decreases from endogenous to exogenous uncertainties.
For example, an organisation can better control uncertainties within the development environment
but might have limited influence on external uncertainties from natural disasters [9].

5.2.3 Uncertainty in cyber-physical systems

Belief

Measure Uncertainty

import import

Figure 5.3: Conceptual model (Reproduced from [3])

Zhang et al. [3] describe a conceptual model for uncertainty in cyber-physical systems. They
consider uncertainty to be subjective, thus dependent on the beliefs of an agent, such as a
human, a system, or an object, whose state of knowledge represents a particular world view
[3]. Uncertainty is considered and represented at three logical levels of a cyber-physical system:
application, infrastructure and integration [3, 110, 111]. Their model has three main components
as shown in Figure 5.3: belief, uncertainty and measure.

Belief represents an agent’s subjective view, with its beliefs being valid or invalid. Beliefs
are represented using belief statements. Beliefs can change with time as an agent’s state of
knowledge changes [3]. Since belief statements can be either valid or invalid, they have to be
validated. For this purpose, the model acknowledges an objective world with facts independent
of the beliefs of the agent.

The known objective facts constitute the evidence, which is used to assess the validity of belief
statements. The objective relationship between a belief statement and its evidence is called
evidence knowledge. The existence of evidence can be known or unknown, thus resulting in
uncertainty [3].

Uncertainty is based on an agent’s confidence over its belief depending on the available evidence
[3]. Specifically, uncertainty occurs when an agent lacks confidence in its belief statement due to
lack of evidence to validate its beliefs [3]. Besides, uncertainty arises through indeterminacy:
a state where full knowledge does not exist to determine the validity of a belief statement.
Indeterminacy manifests through an indeterminacy source, which results in lack of confidence in
the belief statement and thus uncertainty [3].

54 CHAPTER 5. UNCERTAINTY CHARACTERISATION CONCEPTS: STATE OF THE ART

Measure defines a non-exhaustive list of scales that can be used for quantifying uncertainty [3].
These include probability, ambiguity and vagueness, with vagueness categorised into fuzziness
and non-specificity [1].

The conceptual model also identifies the following attributes of uncertainty:

• Lifetime - the duration of the existence of uncertainty. For instance, it may exist for a while

and then disappear, or it may live in perpetuity until resolved.

• Pattern - how the uncertainty might change with time, such as in a systematic or aperiodic

manner. A systematic pattern can be periodic or persistent, while aperiodic patterns can be

transient or sporadic. Additional patterns may also exist.

• Locality - where an uncertainty occurs in the belief statement.

• Risk - the level of risk from low, medium, high to extreme, with the extreme case requiring

particular attention.

5.2.4 Uncertainty in self-adaptive systems

In this section, we present the following two approaches from Table 5.1: uncertainty in self-
adaptive systems with multiple quality requirements in section 5.2.4.1 and uncertainty in self-
adaptive system requirements in section 5.2.4.2.

5.2.4.1 Self-adaptive systems with multiple quality requirements

Figure 5.4: MAPE-K Loop (Image from [4])

Mahdavi-Hezavehi et al. [21] consolidate existing works in the domain to define a framework for
characterising uncertainty in self-adaptive systems with multiple quality requirements [21]. Here,
uncertainty is discussed within the context of the adaptation model such as the one depicted by

5.2. EXISTING APPROACHES FOR CONSIDERING UNCERTAINTY IN SOFTWARE SYSTEMS 55

Figure 5.4. The dimensions of uncertainty include location, nature, level/spectrum, emerging
time and sources. Each of the dimensions has specific options:

• Location is where uncertainty manifests itself within the overall adaptation process. It has

six options: model, goal, function, environment, resource and managed system locations.

• Nature specifies whether the uncertainty is due to the imperfection of available knowledge i.e.

epistemic, or the inherent variability of the phenomena described, i.e. aleatory.

• Level or spectrum indicates the position of uncertainty along the spectrum between

deterministic knowledge and total ignorance.

• Emerging time is when the existence of uncertainty is acknowledged or appears during the

lifecycle of the system, such as design or run-time.

• Sources are the circumstances affecting the adaptation decision. These are organised into

classes based on the origin of uncertainty including model, adaptation function, goal and

environment. Each of these classes can have further sub-options [21].

5.2.4.2 Self-adaptive system requirements: RELAX

RELAX is a requirements language with the capacity to express uncertainty in self-adaptive
systems. It provides explicit constructs for uncertainty: operators to encode uncertainty in
requirements statements and environmental factors to capture the uncertain environment.

RELAX transforms the traditional SHALL requirements statements into RELAX-ed require-
ments. These are requirements that can be temporally relaxed when operating conditions of the
system change so that the critical non-relaxable requirements can continue to be strictly adhered
to [25]. The relaxable requirements are called variant, while the non-relaxable requirements are
invariant.

Relaxable requirements are specified by applying uncertainty operators to the SHALL statements
in compliance with the RELAX grammar [25]. RELAX defines three types of operators: modal,
temporal and ordinal.

• The modal operator expresses the possibility of functionality and actions through modal verbs
such as MAY.

• The temporal operator expresses uncertainty related to time through operators from fuzzy
temporal logic such as EVENTUALLY, UNTIL, BEFORE, AFTER, IN, AS EARLY AS

56 CHAPTER 5. UNCERTAINTY CHARACTERISATION CONCEPTS: STATE OF THE ART

POSSIBLE, AS LATE AS POSSIBLE and AS CLOSE AS POSSIBLE TO some frequency
value.

• The ordinal operator expresses quantitative uncertainty through fuzzy terms such as AS
CLOSE AS POSSIBLE TO some quantity and AS MANY or AS FEW AS POSSIBLE.

Factors of the uncertain operating environment are identified by the following attributes:
environment (ENV), environment monitors (MON), relationship (REL) and dependencies (DEP).

The environment is the operating environment, which is a source of uncertainty. Environment
monitors are used to monitor for uncertain conditions in the environment. Since it may not
always be possible to identify uncertainty directly from the environment, the relationship
defines the connection between the environment and monitors for detecting uncertainty. Finally,
dependencies state which related requirements are affected by the uncertainty in the current
requirement statement [25].

5.3 Summary of existing frameworks

The work described in the preceding sections influenced the framework proposed in this thesis.
Hastings and McManus’ theory that uncertainty leads to risks or opportunities, which are handled

by mitigation or exploitation, leading to desired outcomes underpins our framework. While the
frameworks discussed in this section are aimed at specific contexts, their characterisation of
uncertainty contributed to the set of uncertainty attributes in the proposed framework which we
present in Chapter 6.

There are various approaches that conceptualise uncertainty in specific domains or contexts,
such as policy modelling [15], self-adaptive systems [14, 22, 112], complex systems [2, 9],
cyber-physical systems [3, 110] and cognitive science [1]. The major difference between these
solutions and our approach is that our framework consolidates, generalises and extends existing
concepts so that they can be used regardless of context. Our conceptual model can also be
adapted as necessary.

Walker et al. [15] define a conceptual basis for uncertainty management in model-based decision
support systems. Mahdavi-Hezaveh et al. [21] define uncertainty and consolidate dimensions
of uncertainty with a focus on self-adaptive systems with multiple quality requirements. Their
review is used in this work and we discuss their results in section 5.2.4.1. The framework
from complex systems by Hastings and McManus [2], discussed in section 5.2.2, specifies the
relationship between uncertainty, risks or opportunities, mitigation or exploitation and outcomes.
Zhang et al. [3] define a conceptual approach for managing uncertainty in cyber-physical

5.4. CONCLUSION 57

systems, with a focus on epistemic uncertainty, as discussed in section 5.2.3. Smithson [1]
defines uncertainty as a subcategory of ignorance. We discuss this work in section 5.2.1. Whittle
et al. [25] define a language, RELAX, for explicitly representing uncertainty in self-adaptive
system requirements, as discussed in section 5.2.4.2. Finally, we previously discussed the need
for clarity in characterising uncertainty in software architecture in [12].

5.4 Conclusion

Often, uncertainty is treated using mathematical or analytical approaches. However, such
approaches do not capture or highlight other details about the uncertainty, such as its location,
nature and more. The details about the uncertainty can be captured or characterised using the
various attributes of uncertainty. In this chapter, we explored existing works which explicitly
state attributes and characteristics of uncertainty. These include sources from complex systems,
self-adaptive system, cognitive science and cyber-physical systems. We use the concepts and
notions of uncertainty identified in this chapter as a basis for defining an uncertainty framework
for software systems.

6CHAPTER SIX

FRAMEWORK

This chapter presents the uncertainty consideration framework and conceptually evaluates its
application using software architecture illustrative examples. The framework is built form the
concepts and observations discussed in Chapter 5.

6.1 Overview

This chapter presents an extensible conceptual framework, which defines a foundation for
the systematic and explicit consideration of uncertainty in software systems. The proposed
framework consolidates and extends uncertainty concepts and attributes from the contexts of
cognitive science, complex systems, self-adaptive systems and cyber-physical systems, which
have been identified following a review of existing work in the area in Chapter 5.

The identified attributes are organised into broad categories, to which additional uncertainty
attributes can be added. The extensibility property addresses the need for customising the
framework, since the pre-defined list of attributes in the context of open-ended E-type systems
might not be exhaustive. Three case studies from different application contexts of software
architecture are used to conceptually evaluate the framework.

The novel contribution of the work is a generic but customisable framework for considering
uncertainty in software systems. While the characteristics of uncertainties present in a specific
system may be context-dependent, we hypothesise that the use of a generic framework will
help the systematic consideration of uncertainties and mitigation of their risks. With software
systems becoming more ubiquitous and decoupled [24], domain- or context-specific uncertainty
frameworks may be too narrow in scope to identify, analyse and mitigate associated risks.

59

60 CHAPTER 6. FRAMEWORK

The rest of the chapter is as follows: Section 6.2 proposes the new framework of consolidated
uncertainty attributes, and a suggested workflow of applying it. Section 6.3 provides illustrative
examples and a demonstration of the extensibility of the framework. Finally, Sections 6.3.4 and
6.4, are discussion and conclusions, respectively.

6.2 A framework for considering uncertainty in software
systems

In this section, we consolidate and extend the concepts discussed in Section 5.2 with the aim of
using them to systematically consider uncertainty in software systems in general.

6.2.1 Framework definition

We define uncertainty as the lack of certainty arising from both lack of knowledge, which
subsumes lack of definition as well as active and passive ignorance, and inherent variability.
Each uncertainty has the potential to cause negative or positive consequences depending on
the specific system and its facets. The consequences can be risks or opportunities, which
require mitigation or exploitation, targeting one or more specific outcomes. In this framework,
uncertainty is a concept characterised by multiple attributes.

The resulting conceptual model is shown as an Entity Relationship Diagram (ERD) in Figure
6.1, with attributes of uncertainty detailed in Table 6.1. The framework includes details of the
software system, its facets, which are aspects of development and operation where uncertainty
might be present, and viewpoints, which are the perspectives from which uncertainty might be
considered. A system has at least a facet where uncertainty is identified from at least a viewpoint.
Each system may also have many uncertainties.

Each uncertainty is characterised by a set of attributes. These attributes were identified in the
following two ways.

First, as discussed under Chapter 5, from the contexts of cognitive science, complex systems,
self-adaptive systems and cyber-physical systems. The basis for the identification of these
attributes was one of the hypothesis of this thesis, captured in Question 1, that if an attribute
can be used to characterise uncertainty in a specific contexts of software systems, it can also be
used to characterise uncertainty in other contexts of software systems. Later, we evaluate the
application of the attributes to assess there suitability for characterise uncertainty in the context
of software architecture.

6.2. A FRAMEWORK FOR CONSIDERING UNCERTAINTY IN SOFTWARE SYSTEMS 61

Secondly, some of these attributes were extended or customised depending on identified
additional information from various literature sources in the course of this research. Of course,
the attributes are empirical thus not exhaustive. Table 6.1 presents the list of attributes and theirs
sources, together with their extension status.

Figure 6.1 shows the mapping among the various uncertainty characterisations concepts. The
rest of the entities of the AEROSTACK in Figure 6.1, from the causes to Outcome, define the
consequences of the uncertainty.

The values of attributes defined in Table 6.1 can provide useful information when decisions
need to be made in the presence of uncertainty. Some details of an uncertainty can be identified
by asking questions such as what for its description, when for its emerging time, where for its
location, and why for its cause.

Each attribute is annotated with a superscript denoting its cardinality constraint: +, ∗, n, n+,
such that + means at least one, ∗ means zero or more, n is an exact positive integer and n+

means at least n.

Out of the twenty seven (27) proposed attributes in Table 6.1, all but one can apply to both (B)
epistemic (E) and aleatory (A) uncertainties. The attribute Evidence is specific to epistemic
uncertainty since it depends on the availability of specific knowledge.

As indicated in Section 5.3, this model uses the work of Hastings and McManus [2] as the
basis of the framework. Each uncertainty can result in multiple risks or opportunities. These
in turn require one or more mitigations or exploitations with the goal of achieving specific
outcomes. The main entities of the framework are therefore, the system, its facets, viewpoints,
risks, opportunities, mitigations, exploitations and outcomes.

A comprehensive consideration of uncertainty requires details of these concepts as well as their
relationships to be defined. Since the proposed framework is generic, we do not prescribe
specific processes for applying it. However, there is existing work relating to these concepts
for some artefacts. For instance, viewpoints are often analysed and characterised in the context
of software architectures [37]. The software architecture of a system can be represented in
terms of a viewpoint set, such as the 4+1 model, which prescribes the physical, logical, process
and development views, in addition to scenarios [37]. The framework can be used to explicitly
consider and represent uncertainties in each of these views using the attributes of Table 6.1 and
relationships in Figure 6.1. Where necessary, additional attributes maybe added or removed to
suit the context.

The rest of the section describes the uncertainty attributes in the framework. We have

62 CHAPTER 6. FRAMEWORK

Viewpoint has Uncertainty

Attributes
in Table

6.1

hasFacethasSystem causes
Risk or
Oppor-
tunity

requires
Mitigation

or Ex-
ploitation

achievesOutcome

n
m

n
m

n
m

n

m
n

m

1
1+

Figure 6.1: Conceptual model: characterisation of uncertainty in systems

organised these attributes into six categories, as shown in Table 6.1: description, source, system,
manifestation, time and mapping.

• Uncertainty description attributes:

• Description captures the specifics of the uncertainty in natural or structured language.

• Nature of the uncertainty is either epistemic or aleatory.

• Bounds are the known limits or scope of uncertainty as it occurs.

• Perspective determines the interpretation of uncertainty. A subjective uncertainty depends
on the agent defining the uncertainty and is therefore relative, while objective uncertainty
is absolute.

• Awareness is an agent’s consciousness of uncertainty, which can be a known unknown or
an unknown unknown.

• Level of uncertainty is the position of uncertainty in a spectrum from certainty to total
uncertainty. This can be expressed in various ways, for instance, using fuzzy values such
as High, Medium and Low.

• Uncertainty source attributes:

• Source type of uncertainty can be internal (endogenous) or external (exogenous).

• Cause is the trigger of the uncertainty, such as humans in the loop, operational interference
and business changes.

• Uncertainty system attributes:

6.2. A FRAMEWORK FOR CONSIDERING UNCERTAINTY IN SOFTWARE SYSTEMS 63

• Uncertainty influences systems. A software system might be composed of sub-systems
and their components. In addition, the system can be characterised through its name,
purpose, facets and viewpoints. Uncertainty can influence both the structure and the
behaviour of a system.

• A viewpoint is a standpoint from which we consider and analyse uncertainty. Interests
of stakeholders typically determine system viewpoints. Each viewpoint in a system may
have multiple uncertainties and an uncertainty may be relevant to multiple viewpoints.

• We use the term facet to refer to a specific aspect of a software system. For instance,
facets of a system may include activities related to development and operation, artefacts,
infrastructure and environments. All such facets can be influenced by uncertainty.

• Location is where the uncertainty appears in the system or its facets.

• Uncertainty manifestation attributes:

• Manifestation represents how the uncertainty appears or emerges. Possible options include
system states, nature of input, availability of resources or future outcomes.

• Measure is the expression of the degree of uncertainty. Depending on the uncertainty,
measures might include probabilistic, ambiguous, non-specific and fuzzy values.

• Monitors detect uncertainty manifestation in the sources of uncertainty such as the
operational environment, business context and processes. The output of monitors
contributes to evidence.

• Evidence demonstrates the existence of uncertainty. Additional evidence, as objective
facts, can reduce epistemic uncertainty.

• Relationship is an intermediary function which can be used to confirm uncertainty
manifestation in the absence of direct feedback of detecting uncertainty from monitors.
Thus, a relationship can be used for inferring uncertainty from its manifestation location.

• Uncertainty time attributes:

• Emerging time is when the uncertainty manifests during the system lifecycle, such as
development time or run-time.

• Lifetime indicates whether the uncertainty has a limited lifetime or exists in perpetuity.

• Change indicates how uncertainty is influenced by time, determining whether it is dynamic

64 CHAPTER 6. FRAMEWORK

or static. Some uncertainties may change with time. For instance, epistemic uncertainty
can disappear with more evidence as knowledge improves.

• Pattern represents the behaviour of uncertainty with time, such as systematic or aperiodic
or other custom trends.

• Uncertainty mapping attributes:

• Dependency identifies the uncertainties which are related to the current uncertainty. This
information can facilitate tasks such as impact analysis using an uncertainty dependency
graph and allow users to derive additional information regarding the system as a whole.

• Uncertainty causes Risks or Opportunities which require Mitigation or Exploitation to
achieve one or more specific Outcomes. Each of these can be individually characterised
with further attributes in the context of specific systems.

• Operators are key words, phrases or terms that can express or signal uncertainty or its
constraints. The specific syntax and semantics of operators may require a grammar for
their application and interpretation. Operators may also be used in ordinary or structured
language to signal uncertainty [71]. We have discussed modal, temporal and ordinal
categories of operators, as defined in RELAX [25]. In addition to these operators, ordinal
operators AT LEAST and AT MOST, as used in software architecture facets for traceability
[64, 105], and temporal operator AROUND <time> are included in the framework. Others
may be added by users as required. We can also use operators to signal the scope or limits
of uncertainty in desired uncertainty management outcomes. Table 6.2 of section 6.3.2
illustrates the use of operators in the description of outcomes.

Table 6.1 shows the consolidated attributes and their origin. Some attributes are used exactly
as they are defined in the frameworks described in section 5.2. Others have been extended or
introduced. The last column in table 6.1 distinguishes between the Extended or introduced
attributes and those from existing work.

6.2.2 Applying the framework

This section outlines a possible process which can be used to apply the framework for the
consideration, representation and management of uncertainty. This is not prescriptive and other
workflows may be used depending on the specific context and need. This process illustrates
the approach we used to identify and represent the uncertainty values of the case studies from
Section 6.3.1.

6.2. A FRAMEWORK FOR CONSIDERING UNCERTAINTY IN SOFTWARE SYSTEMS 65

Table 6.1: Consolidated uncertainty characterisation attributes.
CgS - cognitive science, CxS - complex systems, CPS - cyber-physical systems, SAS - self-adaptive
systems, REL - the RELAX language

Attributes Options CgS CxS CPS SAS REL Extended
Uncertainty description attributes
Description+ [What] ✓ ✓ ✓ ✓ ✓ No
Nature1 Aleatory or Epistemic ✓ ✓ ✓ ✓ No
Bound* Known limits around the uncertainty ✓ Yes
Perspective1 Objective or Subjective ✓ ✓ No
Awareness1 Known unknown or Unknown unknown ✓ ✓ ✓ No
Level1 Certainty to uncertainty ✓ ✓ ✓ No
Uncertainty source attributes

Source type+1 Endogenous or Exogenous ✓ No
Cause+1 [Why] ✓ ✓ ✓ ✓ ✓ No
Uncertainty system attributes

Viewpoint+1 ✓ ✓ ✓ Yes
Facets+1 ✓ ✓ ✓ ✓ ✓ Yes
Location+1 [Where] ✓ ✓ No
Uncertainty manifestation attributes

Manifestation+1 Observable impact ✓ ✓ ✓ ✓ ✓ No
Measure+1 ✓ ✓ ✓ No
Monitor* ✓ Yes
Evidence* ✓ No
Relationship+1 Between evidence and monitor ✓ Yes
Uncertainty time attributes

Emerging time+1 [When] ✓ ✓ ✓ Yes
Lifetime+1 Limited or Perpetuity ✓ ✓ No
Change+1 Dynamic or Static ✓ ✓ No

Pattern*
Systematic - periodic, Systematic - persistence,
Aperiodic - transient, or Aperiodic - Sporadic ✓ No

Uncertainty mapping attributes

Dependencies* with other uncertainties of the system ✓ No
Risk+1 or
Opportunity+1 Negative or positive consequences of uncertainty ✓ No

Mitigation+1 or
Exploitation+1 ✓ No

Operator+1
Modal, ordinal and temporal operators to express
managed uncertainty outcomes ✓ Yes

Outcome+1 Uncertainty management objectives ✓ No

66 CHAPTER 6. FRAMEWORK

Firstly, the target system and its boundaries are identified. By definition, we can only consider
known uncertainties. However, stakeholders must be aware that currently unknown uncertainties
are likely to emerge in future. The complete set of uncertainties comprises known and unknown
uncertainties.

Secondly, the facets, in which uncertainties are recorded and analysed, are identified. For instance,
facets of interest may include system requirements, architecture, design, implementation,
hardware infrastructure and operating environment. All such aspects of the systems are vulnerable
to uncertainty, and the framework can be used with them.

While facets are identified, it might be useful to consider the perspective or viewpoint from
which uncertainties in each facet will be identified and captured. In the case of complex facets,
uncertainties can be identified in individual viewpoints and later aggregated to understand or
analyse the whole facet.

Thirdly, we identify the uncertainties in the system. Software engineers can use different
approaches to identify these uncertainties, such as scenarios, brainstorming, experience reports,
user feedback, technical specifications, budget details and risk assessment reports. Different
sources of uncertainty information may need to be considered for different facets.

Fourthly, for each uncertainty identified, its specific details, as listed in Table 6.1 and Figure
6.1, are recorded. Uncertainties may be associated through the dependency attribute if there is a
relationship amongst them.

Finally, depending on the context of the system and its environments, some of the attributes
may be irrelevant and additional attributes may need to be introduced. The framework allows
customisation in such cases.

The application of the framework can be an iterative process. It is possible and even likely that
information about uncertainties is gained throughout the lifecycle of a system and it can be
added at any stage. Uncertainty information about an existing or old system can be useful in
anticipating uncertainties in new development scenarios.

6.2.3 Uncertainty representation and analysis

While details of representations and analyses of uncertainty data are outwith the scope of this
chapter, this section briefly discusses possible options in relation to the proposed framework.
The detailed illustrative evaluation is in Chapters 9, 10, and 11.

The uncertainty details identified using the framework can be represented in different ways to

6.3. EVALUATION AND DISCUSSION 67

suit the system context and anticipated uses including analysis. Our approach does not stipulate
any specific notations. Possible forms of representations include tables, property graphs, data
interchange formats such as JSON, and visualisations. The rest of the thesis uses tables to present
the uncertainty data.

Different kinds of analyses can be carried out on the uncertainty data to support these tasks.
Depending on stakeholder needs, these can include determining the most vulnerable parts of
a system and calculating overall uncertainty measures for a system including the probability
of specific outcomes. Techniques from simple counts to Bayesian inference and logics for
knowledge and belief can be used for such analyses.

Mitigations for uncertainties that lead to unacceptable risks can be determined based the analyses
carried out. Again, the framework does not stipulate specific techniques or tactics for mitigating
risks since these will be context and system dependent.

6.3 Evaluation and discussion

In this section, we illustrate the application of the framework to case studies (sections 6.3.1 and
6.3.2), demonstrate the extensibility of the framework (section 6.3.3), and discuss the efficacy of
the overall framework (section 6.3.4).

6.3.1 Case studies

This section introduces case studies to illustrate and evaluate the use of the framework to consider
and characterise uncertainty in different contexts. Specifically, we use a Big Data platform by
the National Aeronautics and Space Administration (NASA), an Aerial Robotics Architecture
(ARA) and IoV. In these contexts, the framework is used as the basis for generating data on
uncertainties and their characteristics in the system architecture design facet. This data can be
used to facilitate processes such as uncertainty analysis in the architecture, risk assessment and
evaluation of system qualities. Such explicit and systematic characterisation of uncertainty has
potential for other uses, some of which are presented in the Discussion and Future Work sections.
Although the examples we identify in these case studies are from the system architecture facet,
other facets, such as design, requirements and hardware, can be similarly explored.

68 CHAPTER 6. FRAMEWORK

6.3.1.1 The Information Management Platform for Data Analytics and Aggregation

IMPALA1 is a Big Data reservoir for medical and health data of astronauts used by NASA. We
identified some of the uncertainties applicable to the architecture of IMPALA by reviewing its
System Design Document (SDD), which describes its requirements, system design and data
design.

The SDD is a live document that provides the latest information about IMPALA to stakeholders,
including the IMPALA infrastructure team, data architecture team, system integration team,
security management team, project manager, NASA data scientists and users. Therefore, the
uncertainties identified from it are likely to be relevant to a range of stakeholders.

The IMPALA architecture facet has the following views: Logical, Functional, Infrastructure,
Network and Security. Each viewpoint is described in the SDD using a diagram showing the
relevant architecture elements from the perspective of the viewpoint. We identify uncertainties
from each of these viewpoints, and list two uncertainties in the logical view in Table 6.2. While
uncertainties have been identified from the description in the SDD, we infer the values of some
of the attributes of the uncertainty, such as the the nature of the uncertainty, from the context
when they are not explicitly expressed.

6.3.1.2 An Architecture and Open-Source Software Framework for Aerial Robotics [5]

Unmanned Aerial Systems (UAS), more popularly known as Unmanned Aerial Vehicle (UAV),
are now used as part of critical systems in various domains from business activities and health
to military. However, their use needs to be simplified through fully autonomous operation to
facilitate their adoption in different domains.AEROSTACK is one of the proposed autonomous
architectures for UAS and aims to provide potential benefits such as reducing limitations to
its customisation and supporting versatility since it is not designed for a specific application
or aerial platform. Since AEROSTACK operates in dynamic environments, has a complex
system configuration, and is an open-source multi-purpose software framework for autonomous
multi-UAS operation, it can be vulnerable to a range of uncertainties.

The AEROSTACK architecture includes self-adaptation aspects and is organised in five layers:
Reactive, Executive, Deliberative, Reflective and Social [5]. In its physical infrastructure,
sensors and actuators are some of the components vulnerable to uncertainty. The AEROSTACK
architecture has a range of communication channels through a wireless network, including
human-robot (human sending commands to UAS) and robot-robot communication.

1https://ntrs.nasa.gov/citations/20160011412

6.3. EVALUATION AND DISCUSSION 69

We have analysed the description of AEROSTACK in literature [5] and related GitHub
documentation2 to identify uncertainties and express them using the uncertainty framework.
Such knowledge can be used for a range of purposes, such as tracking the status of uncertainty
risk mitigations, and marking handled uncertainties as closed.

6.3.1.3 Internet of Vehicles

This case study is from Intelligent Transport Systems (ITS) [6, 7, 16].IoV is a specific category
of ITS and an application of the IoT. In the context of IoV, each vehicle is considered a node in
the network of the IoT with vehicles connected to the Internet. IoV makes use of concepts and
technologies such as intelligent network systems and applications and software defined networks,
and they operate in complex environments. IoV have various potential communication channels
such as between vehicles and other vehicles, among devices within a specific vehicle, between
vehicles and road infrastructure and pedestrians. In fact, the potential communication in IoV is
defined as between vehicle and everything.

IoV have a range of potential benefits including the sharing of information and communication
among vehicles, and between vehicles and transport infrastructure or pedestrians or other relevant
entities. However, potential uncertainties relating to aspects such as coordination between
vehicles, insufficient information and scalability, also arise from these multiple interactions.
Nonetheless, advances in communication and computing technologies such as cloud and/or
fog computing, Big Data processing and analytics, machine learning, and artificial intelligence
present opportunities to mitigate such challenges. Here, we identify uncertainties which relate to
IoV in literature [6, 7, 16]. A list of common uncertainties can be used to compare the designs of
IoVs, based on their ability to handle and control such common uncertainties, as an example of
using the uncertainty data for system design analysis.

6.3.2 Illustration of uncertainties in case studies

Table 6.2 contains two uncertainties from each of the case studies. It illustrates how uncertainties
may be characterised using the attributes of the framework. The first column lists the uncertainty
attributes and the rest of the columns contain data from the case studies corresponding to these
attributes.

Uncertainties in each system were identified though analysing available documentations for
the system. As indicated in Table 6.2, values of some of the uncertainty attributes were
explicitly identified in the documentation, while others were inferred from the context. While the

2https://bit.ly/3MGgJV7

70 CHAPTER 6. FRAMEWORK

Table 6.2: Examples of uncertainty framework values

Attribute Uncertainties
System IMPALA platform architecture Aerial Robotics architecture Internet of Vehicles (IoV) architecture
Example # 1 2 1 2 1 2 Status

Description Future sources of
data

Data importation
capacity

timing and sequence
of UAV swarm inter-
actions

Network
availability

Data volume
growth

IoV computation
capability

Explicit

Nature Epistemic Epistemic Epistemic Aleatory Epistemic Epistemic Inferred
Bound up to 100% data up to 100% capac-

ity
Inferred

Perspective Objective Objective Objective Subjective Objective Objective Inferred
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown Inferred
Level Medium Medium Medium Medium High Medium Inferred
Source Exogenous Exogenous Exogenous Endogenous Exogenous Endogenous Explicit
Cause Emergence

of new data
source(s)

Data volume
growth from
sources

UAV joining or dis-
connecting from the
swarm

Network
hardware issue

Increase in data
collection

Limited comput-
ing process power

Inferred

Viewpoints Logical,
Deployment,
Physical

Logical,
Deployment,
Physical, Process

Logical,
Physical, Process

Logical,
Physical,
Network,
Security

Logical,
Deployment,
Physical, Process

Logical,
Physical, Process

Explicit

Facets Architecture Architecture Architecture Architecture Architecture Architecture Explicit
Location Capture compo-

nent
Transport compo-
nent

Social layer Reflective layer Data acquisition
layer

Processing layer Explicit

Manifestation New data sources Data import de-
lays

UAV coordination
and interaction fail-
ure

Failure to receive
commands

Data volume Processing speed Inferred

Measure Probability Importation fluc-
tuation

UAV swarm timing
misalignment

Timeout period Data growth rate Processing fluctu-
ations

Inferred

Monitor Governance -
data integration
requests

Data importation
rate

Coordination failure
report

Connectivity
monitor

Data volume
against storage
and processing

Processor moni-
tor

Inferred

Evidence New data source Data importation
history/trend

UAV coordination Connectivity Data volume Processing trends Inferred

Relationship Data importation
congestion

Inferred

Emerging time Run-time Run-time Development, &
Run-time

Run-time Run-time Run-time Inferred

Lifetime Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity Inferred
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Inferred
Pattern Aperiodic-

sporadic
Aperiodic-
sporadic

Aperiodic- sporadic Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Inferred

Dependencies Transport & Re-
fine components
uncertainties

Refine
component
uncertainties

Interactions
with other UAV
uncertainties

Communication
uncertainties

Data use appli-
cations uncertain-
ties

Security, control
and management
uncertainties

Explicit

Risks or Op-
portunities

Risk: Data Inte-
gration failure

Risk: Data loss &
import delays

Risk: Data import
delay and failure

Risk: Accidents
among UAV and
coordination fail-
ure

Risk: Loss con-
trol of UAVs

Risk: IoV slow,
real-time process-
ing failure, poten-
tial accidents etc.

Inferred

Mitigation or
Exploitation

Mitigation:
Extensible design
to integrate with
new data sources

Mitigation:
Transport layer
extensible design
to increase
capacity through
custom scripts

Mitigation: UAV
autonomy to
independently
enable and manage
coordination

Mitigation: UAV
autonomy to
complete mission
without human
intervention

Mitigation: data
processing and fil-
tering layer for re-
moving irrelevant
data

Mitigation:
Cloud computing
- both private and
public

Explicit

Outcome (with
operators)

Integration with
AS MANY future
data sources AS
POSSIBLE

AS MUCH data
AS available from
current sources

Enable UAS coordi-
nation AS EARLY
AS POSSIBLE

MAXIMISE
UAV
independence
to accomplish
missions

MINIMISE irrel-
evant data captur-
ing AS MUCH
AS POSSIBLE

MAXIMISE IoV
components’ and
application’s
computation
power and speed

Inferred

6.3. EVALUATION AND DISCUSSION 71

framework proposes a core set of attributes for characterising uncertainty, it does not prescribe a
data format in which attribute values should be stored. For readability, a tabular format is used
here.

We will now go through the values assigned to uncertainty ’Example #1’ of the IMPALA case
study to illustrate how framework attribute values may be determined.

This uncertainty relates to Future sources of data, as represented by the Description attribute.
Since we cannot fully know which data sources might have to be integrated within the IMPALA
platform in future, the Nature of this uncertainty is Epistemic due to the lack of knowledge.

The Bound attribute is blank because there are no specific boundaries to the uncertainty.

Current and new data sources can be specifically and explicitly identified, and therefore, the
Perspective of this uncertainty is Objective as its identification does not depend on knowledge of
an individual stakeholder or agent.

In terms of Awareness, this is a Known unknown uncertainty as it is anticipated. The Level of
uncertainty is estimated to be Medium and its Source is external or Endogenous to the IMPALA
platform. The Cause of the uncertainty is the Emergence of new data source(s).

The logical Viewpoint is where we explicitly identify the uncertainty. However, this uncertainty
may also impact Deployment and Physical views. All these views are related to the Architecture

Facet in which we consider this uncertainty.

Specifically, the Location of the uncertainty is the Capture component where various data sources
are integrated with the IMPALA platform, and its Manifestation is through the appearance of
New data sources.

The Monitor of the uncertainty is through Governance in the form of data integration requests

since new additions of data sources to the IMPALA platform will have to be approved by the
Governance team for security purposes before they are added to the system.

Similarly, the evidence which we can use to reduce the uncertainty is the knowledge of New

data sources. The Measure of this uncertainty is Probability and it does not have any specific
Relationships.

The Emerging time of the uncertainty is during system Run-time and the uncertainty will exist
(its Lifetime) as long as the system is in operation, thus it is in Perpetuity.

The uncertainty might Change with time, therefore, it is Dynamic. The Pattern of change is
irregular since new data sources might be available on demand but not on particular intervals,

72 CHAPTER 6. FRAMEWORK

Table 6.3: Extending mapping - Mitigation attribute

Attribute Options
Mitigation Preferred

Possible
Plausible
Probable

thus it is Aperiodic - sporadic.

Dependencies include uncertainties in Transport & Refine components. The uncertainty causes
the Risk of Data Integration failure. This requires Mitigation in the form of Extensible design to

integrate new data sources with the goal of achieving the Outcome of Integration with AS MANY

future data sources AS POSSIBLE.

Thus, uncertainty relating to Future data sources of the IMPALA platform is captured with the
framework. The other uncertainties can be interpreted in s similar way from Table 6.2.

Among the benefits of this encoding of these uncertainties is to support uniformity of expressing
the uncertainties. The data thus generated can then be used to analyse and manage the uncertainty,
as we discuss under the Discussion, Section 6.3.4.

6.3.3 Demonstration of extensibility: Future studies concept

To demonstrate extensibility of the framework, we use the concept of futures. Futures Studies
(FS) recognise the existence of infinitely many potential futures, rather than a single future [113].
The futures concept has four categories: possible, plausible, probable and preferable.

Possible futures are the set of all futures imaginable, including those we cannot currently realise
because they depend on future knowledge. Plausible futures are the set of futures that we can
achieve, i.e. those that are feasible. Probable futures represent likely futures which we can
realistically achieve, for example, based on current trends. Finally, Preferred futures represent
the futures we desire.

The concept of futures can be used to extend the mitigation attribute of the framework such that
we can represent Preferred, Probable, Possible and Plausible mitigations, as shown in Table 6.3.
This extension allows system architects and designers to capture not only the mitigation that is
finally chosen but the other options considered and their viability.

6.3. EVALUATION AND DISCUSSION 73

6.3.4 Discussion

The central hypothesis of this work is that a generic and useful conceptual framework for
considering uncertainty in software systems can be defined. We have observed that uncertainty
is characterised with distinct attributes in different contexts, potentially omitting useful details.
We have consolidated and extended attributes from four relevant contexts found in literature
to propose a generic, foundational and customisable framework of uncertainty for the broader
context of software systems. The use of the framework is demonstrated using case studies from
three different application domains.

The process of providing values for the proposed attributes contributes to the identification,
representation and management of known and anticipated uncertainties. Management includes
the analysis of the data to control or mitigate uncertainties and make more informed decisions
throughout the software lifecycle. For example, a record of aleatory and epistemic uncertainties
as part of the knowledge database of a system would facilitate the assessment of risks and
consideration of mitigations, and help track the status of known uncertainties.

The framework is not limited to specific development methodologies, system artefacts, notations
or levels of abstraction. It is intended to be applied to different artefacts and stages of the software
lifecycle.

Examples from case studies demonstrate that descriptions of uncertainty, its sources, manifesta-
tion, timings and dependencies together with risks, opportunities, mitigation, exploitation and
expected outcomes can be gathered using the framework, thus providing data for further analysis.
The framework provides a basis for extensibility since attributes can be included or removed
based on emerging information.

However, manually compiling all uncertainties associated with any non-trivial system would
be a time-consuming activity, in addition to being error-prone. Since the framework provides
a structured and systematic basis for capturing uncertainty data, automation may be a feasible
alternative for applying the framework on a larger scale. With automation, rules for associating
uncertainties with specific patterns of structure and interactions in the system can be specified and
used to generate an initial set of uncertainty data that can be manually augmented by stakeholders.

While we have provided a definition of each attribute in the framework, we have deliberately
avoided stipulating any processes or guidelines for populating these attributes. Therefore, the
granularity of the data might depend on the context of the specific system, the stage of the
lifecycle at which uncertainty is considered, and the aims of the users of the framework. It is
likely that values of attributes with well-defined options such nature, which can be either aleatory

74 CHAPTER 6. FRAMEWORK

or epistemic, will be uniform across systems. However, details such as description, dependencies
and outcomes might vary from the examples provided and across different systems.

For example, if the framework is used to capture uncertainties in the software architecture
of a system, attribute values are likely to depend on the specific architecture viewpoint and
the architecture model chosen. The logical viewpoint might have uncertainties relating to the
system topology or configuration during runtime, while the process viewpoint might focus on
uncertainties relating to system processes and interactions at runtime.

This chapter illustratively demonstrates the feasibility of defining a generic and extensible
framework from individual frameworks in existing literature sources. The framework is not
designed to be exhaustive or mandated on specific methodologies, but can be customised to
specific use cases.

The data generated can be used to assess the uncertainty in different system facets. For example,
in the case of software architectures, uncertainty information can be used in the evaluation
of candidate architectures and the selection of a suitable architecture design solution. Such
evaluation can be stand-alone focusing on uncertainty, or carried out as part of a broader
evaluation process such as ATAM [32, 114].

Besides, we anticipate that a conceptual framework such as the one proposed can also aid in
solving problems such as planning under epistemic uncertainty [115].

As the framework is applied to different facets of software systems, its effectiveness and viability
will be continuously evaluated and refined. As far as we are aware, no work currently exist that
expresses uncertainty attributes in a generalised format for software systems.

6.4 Conclusion

This chapter has presented a generic foundational conceptual framework for the systematic
consideration of uncertainty in software systems. This is the beginning of what we believe to
be an exciting and important avenue of future research. The rest of the thesis will demonstrate
the feasibility of applying the framework in software architecture on three case studies. As
the uncertainty framework is applied to different facets of software systems, its effectiveness
and viability will be continuously evaluated and refined. As far as we are aware, based on our
comprehensive literature reviews, no work currently exist that expresses uncertainty and its
attributes in a generalised format for uncertainty consideration in facets of software systems such
as software architecture.

7CHAPTER SEVEN

THE WORKBENCH
INFRASTRUCTURE

This chapter presents the workbench infrastructure we propose as a foundation for the
identification, enhancement, and realisation of software architecture tools and notations that
can support the representation of uncertainty in software architecture descriptions based on the
proposed framework.

7.1 Overview

Our vision is to develop a workbench of tools that can support the consideration of uncertainty
in software architecture. To achieve this, we first have to define a foundation on which the
workbench of tools will be developed. We refer to such a foundation as the workbench
infrastructure.

This chapter presents the workbench infrastructure and an illustrative example tool. The
workbench infrastructure is designed as a proof of concept to demonstrate one of the potential
applications of the uncertainty framework. So far, we have implemented a tool for capturing
the uncertainty framework attributes in software architecture description on the workbench
infrastructure. The infrastructure itself is realised using a existing open-source software
diagramming tool.

The rest of the chapter is presented as follows: Section 7.2 presents the concepts of the workbench
infrastructure, Section 7.3 presents the design of the workbench infrastructure, Section 7.4
discusses our proposed solution to the realisation of the workbench infrastructure. Section 7.5

75

76 CHAPTER 7. THE WORKBENCH INFRASTRUCTURE

discusses the implementation of the workbench. Then Section 7.6 presents a critical discussion
of the workbench infrastructure. Finally, Section 7.7 is the conclusion.

7.2 Concepts of the workbench infrastructure

There are various tools and notations which are used to capture and document software
architecture. Broadly, these are categorised into formal, semi-formal and casual, and these,
in industry, have been adopted with various degrees of success [107].

In practice, semi-formal approaches, such as diagramming tools, which include UML notation,
or other similar notations, are often used. In addition, casual notations, such as boxes-and-lines,
are common approaches to diagramming software architecture, as they are not prescriptive and
thus convenient for quick sketches in architectural design discussions or documentation [107].

Formal notations such as Description Language (ADL) are often research-focused and are rarely
adopted in practice [107]. Various formal notations have been proposed over the years, but these
have not been widely adopted [74, 107], as we previously discussed in Chapter 4.

In general, there is a challenge with the adoption of various software architecture tools and
notations by practitioners [107]. Thus, our approach to considering uncertainty in software
architecture does not introduce new specialised tools or notations. Instead, we propose that the
framework should be incorporated in existing tools and notations which software architects use
to capture software architecture.

However, if existing approaches are to achieve such enhancements, they have to meet some
specifications for data collection and analysis. In this regard, we define the workbench
infrastructure, which is a framework that specifies the criteria that architecture tools have
to meet so that they can be enhanced with uncertainty data capture and analysis capabilities.

Thus, we propose the workbench infrastructure. In Section 7.3, we present a layered workbench
infrastructure architecture and discuss the rationale for its design. Then in Section 7.4, we present
a possible approach to its realisation.

7.3 Design of the workbench infrastructure

The workbench infrastructure is based on a web-based model, considering that software
architecture design is a collaborative process, therefore, an online solution can conveniently
support such collaborative features. Figure 7.1 shows the logical structure of the workbench

7.3. DESIGN OF THE WORKBENCH INFRASTRUCTURE 77

Figure 7.1: Logical view of the technology stack of the workbench infrastructure

Figure 7.2: Technology stack of the workbench infrastructure

infrastructure. In Figure 7.2 we present the architecture of the workbench based on the stack of
the proposed implementation technologies.

The workbench infrastructure has three layers, as logically presented in Figure 7.1. These layers
focus on web technologies, the uncertainty framework, and sharing or interoperability of the
software architecture uncertainty data for analysis or documentation.

Level 0 - proposes that the workbench should be designed using web technologies such as
JavaScript, HTML, etc. so that the workbench is web-based. As stated earlier, a web-based
approach allows the workbench to include the benefits of the Web, including accessibility,

78 CHAPTER 7. THE WORKBENCH INFRASTRUCTURE

modifiability, collaboration, and interoperability, among other benefits.

Level 1 - is the software architecture and uncertainty framework layer. This layer includes
software architecture features such as diagramming elements, architecture representation
elements such as viewpoints, and architecture quality attributes. Furthermore, the layer includes
the uncertainty framework attributes to capture details about uncertainties of specific architecture
elements or views. A key feature in this layer is that the elements for diagramming architecture
should be in a extensible data format so that the data can be available for analysis.

Level 2 - focuses on enabling the sharing and interoperability of the uncertainty framework data
with other relevant applications for analysis and documentation. We envision that the uncertainty
data will provide a platform for various software architecture uncertainty analysis. Therefore,
the API should be able to share uncertainty data in extensible formats such as JavaScript Object
Notation (JSON) or Extensible Markup Language (XML) to support integration with external
analysis applications.

As part of the thesis evaluation, we demonstrate some of the possible analyses that can be
conducted on the basis of the uncertainty data. However, the evaluations are performed using
manual processes, with the uncertainty framework data captured in tabular format.

7.4 Realisation of the workbench infrastructure

An existing open-source diagramming software, diagrams.net (previously known as draw.io)
1, has been cloned and extended to implement the workbench infrastructure. Tools can be
implemented in this implementation of the workbench infrastructure. Currently, we have
implemented a single tool on it as an exemplar. The tool can be used to capture the details of
uncertainty in software architecture diagrams.

diagrams.net uses an extensible representation format in which each element of a diagram is
represented as a vertex of a graph, and connections are represented as edges of the graph, based
on the JavaScript mxGraph Library2. The range of diagramming notations within diagrams.net

is not prescriptive, since it supports many of the major diagramming notations, including boxes-
and-lines, Systems Modeling Language (SysML) and UML.

Due to its design, diagrams.net meets the specifications of each of the levels of the technology
stack defined in the workbench infrastructure of Figures 7.1 and 7.2.

1https://github.com/jgraph/drawio
2https://jgraph.github.io/mxgraph/docs/manual.html

7.5. IMPLEMENTATION OF THE UNCERTAINTY CAPTURE TOOL 79

First, for Level 0, diagrams.net is a web-based diagramming software with various diagramming
tools and notations built using open-standard web technologies such as JavaScript, HTML, and
CSS. Of course, it has an equivalent Java implementation; however, our work focuses on its
JavaScript implementation.

In terms of Level 1 , diagrams.net stores its various images and data in extensible formats such
as XML. Besides, this data can be seamlessly converted or integrated with JSON representation,
as we will demonstrate with the implementation of the uncertainty capture tool in Section 7.5.

Finally, due to the ability to capture details in an extensible format in diagrams.net and since
each element or object within the workbench infrastructure can be uniquely identified with an
identifier, diagrams.net enables the support of an Application Programming Interface (API)
which can be used for create, read, update, and delete (CRUD) functionalities to export, document
and analyse the uncertainty data. This meets the requirements of Level 2.

7.5 Implementation of the uncertainty capture tool

Based on the workbench infrastructure, we implemented a prototype tool to capture uncertainty
within an architecture description through diagrams.net. Each uncertainty is associated with
the relevant architecture element, and its attributes are recorded. Uncertainties can be created,
read, updated, and deleted from an architecture element. These actions are achieved through the
manipulation of the XML and JSON data using JavaScript methods and the web user interface to
interact with the data and the graphics.

In addition to recording uncertainty data as part of the architecture model, users can calculate
metrics such as the number of uncertainties per architecture component.

Since diagrams.net supports the encoding of architecture diagrams in data formats such as XML
and JSON, the architecture models and the associated uncertainty data can be exported for further
processing in other tools or be recorded as part of the architecture knowledge for uncertainty
management activities.

Figure 7.3 shows a screenshot of the logical view of an architecture with the uncertainty
framework attributes on the right panel. The XML source code of this screenshot which includes
the uncertainty details is in Appendix B, under Listing B.2. As can be seen from the encoding in
the Listing B.2, the data and meta-data of a view is a large file and presents an opportunity for
automated processing.

Listing 7.1 shows the partial JSON template of the uncertainty data storage format. The complete

80 CHAPTER 7. THE WORKBENCH INFRASTRUCTURE

Figure 7.3: Screenshot of the workbench (XML source code for the screenshot is in Appendix B Listing
B.2)

7.5. IMPLEMENTATION OF THE UNCERTAINTY CAPTURE TOOL 81

JSON object of an individual uncertainty is in Appendix B - Listing B.1. The workbench relates
uncertainties, architecture views, and components. Each uncertainty has a unique ID that can be
used, for example, to map the relationships between the uncertainties.

diagrams.net handles each element of an architecture as a vertex of a graph, and the connections
are represented as edges of a graph. Therefore, our approach to incorporating uncertainty
involves encoding the uncertainty data of an architecture component into a JSON format and
associating it with its relevant component.

{
"id":1642559068879,
"facet":"",
"manifestation":"",
"monitor":"",
"bound":"",
"nature":{

"options":[
"Aleatory",
"Epistemic"

],
"value":""

},
"perspective":{

"options":[
"Subjective",
"Objective"

],
"value":""

},
"source":{

"options":[
"External",
"Internal"

],
"value":""

},
"viewpoint":{

"options":[
"Logical",
"Physical",
"Process"

],
"value":""

},
.
.
.

}

82 CHAPTER 7. THE WORKBENCH INFRASTRUCTURE

Listing 7.1: Partial JSON data

7.6 Critical discussion of the workbench infrastructure

In this chapter, we have introduced the concept of a workbench infrastructure. In this section,
we present its critical discussion in terms of the following: First, the validity of the concepts
of the workbench infrastructure. Second, its implementation: What are the suitable tools and
notations to implement the workbench infrastructure? Third, the application of the workbench
infrastructure.

7.6.1 Validity of the workbench infrastructure concept

Chapter 4, which presents a survey of uncertainty in software architecture, presented among
other aspects of software architecture which deal with uncertainty, the tools and notations aspects.
There, we highlighted 12 tools which incorporate various capabilities of considering uncertainty
in software architecture. However, none of these has the capabilities to capture uncertainty
data to generate architecture uncertainty knowledge documentation. As such, the workbench
infrastructure addresses a significant gap in terms of tools and notations support for uncertainty
consideration in software architecture. Of course, the idea of an architecture workbench is well
established [116, 117]. However, our specific approach is in the context of software architecture
and architecture uncertainty data generation and analysis.

7.6.2 Workbench infrastructure tools and notations support

The three levels of the workbench infrastructure provide a criterion for identifying suitable
software architecture tools and notations to support the incorporation of uncertainty in software
architecture. Level 0, Level 1 and Level 2 define the specification of existing architecture tools and
notations that can support documentation and analysis of uncertainty in architecture uncertainty.
We illustrate the application of this criterion to identify diagrams.net as a proof of concept.

7.6.3 Application of workbench infrastructure

The workbench infrastructure forms a base for building tools to support the incorporation and
analysis of uncertainty in software architecture. So far, we have built a tool to capture the
uncertainty details of the software architecture based on the workbench infrastructure.

7.7. CONCLUSION 83

As a proof of concept, the implementation of the workbench infrastructure has been demonstrated
as feasible, based on its realisation through the diagrams.net platform. As discussed in Section
7.5, diagrams.net meets the requirements of the implementation stack. Uncertainty data are
captured in interoperable and extensible data formats such as XML and JSON so that it can be
exported to external tools for documentation or analysis. The Listings in Appendix B presents an
overview of the data and meta-data of the realisation of uncertainty framework.

7.7 Conclusion

In this chapter, we have demonstrated the concept of the workbench infrastructure, which
can be a basis for building tools with capabilities to incorporate uncertainty into software
architecture. Representing the uncertainty data into extensible formats such as XML and
JSON, while associating it with architecture elements, can facilitate architecture uncertainty
data documentation and analysis automation. The automated data can be exported to tools for
further processing. The application of the framework does not depend on it being automated
or incorporated into a workbench. But for effective and efficient application of the uncertainty
framework, future work will require automation, considering the size of the data.

8CHAPTER EIGHT

EVALUATION STRATEGY

We qualitatively evaluate the uncertainty framework by applying it in the context of software
architecture in three case studies. These case studies cover the following scenarios: 1)
Architecture uncertainty knowledge generation and documentation. 2) Architecture uncertainty
analysis, and 3) a comparison of candidate architectures to select an architecture likely to be
less vulnerable to the known uncertainties. The framework has been applied in an independent
project elsewhere, in this Chapter, we also these highlight results [17].

8.1 Introduction

The evaluation aims to illustrative the application of the framework as an approach to uncertainty
analysis of software architecture. The evaluation is based on systems with existing architecture
artefacts, such as views and requirements. The rest of the chapter presents the following:
Section 8.2 discusses the evaluation strategies. Section 8.3 presents the selection criteria for
the case studies for the evaluation. Then 8.4 presents the three case studies. Section 8.5 is
the evaluation process. Section 8.6 discusses the ATAM and its customisations. Section 8.6.3
highlight independent research results which used the framework from published work [17, 118].
Finally, Section 8.7 is the conclusion.

8.2 Evaluation strategy

In conducting the architecture uncertainty documentation and analysis, our goal is to generate
insight into the software architecture case studies with respect to uncertainty. Stakeholders
can consider the analysis results to make decisions to improve the architecture or simply as
architecture knowledge and documentation for various uses.

85

86 CHAPTER 8. EVALUATION STRATEGY

The first scenario of the evaluation aims to illustrate the use of the framework to capture and
present uncertainty data. The results are presented in a table format and we discuss these.

The second evaluation scenario aims to conduct a software architecture uncertainty analysis. The
analysis aims to illustrate that the uncertainty data can be used to identify potential areas of focus
in a software architecture which might for instance require improvement or special attention.

To critically review the validity of the results of the uncertainty framework analysis, we compared
the framework results with the results of applying a customised version of ATAM on the same
architecture case study. ATAM is a generic qualitative analysis approach for software architecture
[119]. We used the ATAM as a baseline for assessing the uncertainty framework analysis results.

ATAM is a comprehensive architecture analysis method with specific steps, but these steps can
be customised before being applied to specific projects and context [119]. In our evaluation, we
customised the ATAM to meet one of the key constraint of our evaluation, that the evaluation is
being conducted by an individual person, the author. In Section 8.6 we present the customised
version of the ATAM with justifications of the customisation decisions.

The third evaluation case study assesses the use of the framework to compare candidate
architectures. In this regard, we identify known uncertainties, and assess which architecture best
addresses the identified uncertainty.

It is important to note that architecture analysis in general and, with respect to uncertainty in
particular, is about providing insights into the architecture to stakeholders [119]. The follow up
actions after the analysis report depend on the priorities of stakeholders [119]. The analysis only
identifies potential issues or areas of focus in the software architecture [119].

8.3 Architecture case study selection criteria

The evaluation used systems whose software architecture might be vulnerable to significant
uncertainties. The following are the key points in the selection criteria of the case studies:

1. Architectures of open source systems with characteristics such as being distributed across
multiple machines or operating on a network with multiple components or interacting with
multiple activities from system agents, users and data sources.

2. The availability of the software architecture information: one challenge with evaluating the
architecture of software systems is the lack of comprehensive documentation about the system
design. Often, even if the source code of a system is openly available on public repositories

8.4. THE CASE STUDIES AND EVALUATION 87

such as GitHub, there is generally a lack of architecture and design documentation for the
software system.

3. The architecture needs to have at least one architecture viewpoint documented: software
architectures are presented from multiple viewpoints to capture interests of stakeholders.
These include logical, physical, process and development viewpoints. Each of such
viewpoints might help with considering specific uncertainties.

4. The architecture documentation should include details of architecture styles, quality attributes
and use case scenarios so that the architecture can be analysed with the customised version
of the ATAM.

5. The architecture uncertainty context should be explicit. We need to specify the uncertainty
environment or sources where we are exploring the uncertainty. Uncertainty can manifest
in various areas such as security, data, hardware, development and others. The case studies
should present a definite context where we explore the uncertainty.

8.4 The case studies and evaluation

The following is an overview of each of the three case studies for evaluating the uncertainty
consideration framework.Table 8.1 shows the selection criteria for these three case studies.

1. An Architecture and Open-Source Software Framework for Aerial Robotics [5].

In this evaluation, we analyse the documentation of AEROSTACK to extract uncertainties
and encode them using the uncertainty framework. Thus aiding with uncertainty knowledge
generation and documentation about the AEROSTACK architecture. Such knowledge can be
used for a range of purposes, for instances tacking the status of implementing the uncertainty
risk mitigations, and the closing the handled uncertainties.

2. The Information Management Platform for Data Analytics and Aggregation (IMPALA)1

In this evaluation, we identify the uncertainties applicable to the architecture of IMPALA by
reviewing its SDD, which describes its requirements, system design and data design.

The SDD is a living document that captures capability enhancements and system improve-
ments to provide accurate details about IMPALA to stakeholders, including the IMPALA
Platform infrastructure team, data architecture team, system integration team, security
1https://ntrs.nasa.gov/citations/20160011412

88 CHAPTER 8. EVALUATION STRATEGY

management team, project manager, NASA data scientists and users. Therefore, the
uncertainties identified from it are relevant to a range of stakeholders.

The IMPALA platform architecture description has the following views - Logical, Functional,
Infrastructure, Network and Security. Each viewpoint is described in the SDD using a
diagram showing the relevant architecture elements from the perspective of the viewpoint.

3. Comparison of candidate architectures for emerging Internet of Vehicles (IoV) [16]

Various architectures of IoV have been proposed with different strengths. Under this
evaluation, we compare such candidate architectures of the emerging IoV basing on whether
they handle the common identified IoV uncertainties. Our approach is to identify common
uncertainties about IoV from the documentations then compare and evaluate the IoV
candidate architectures based on their handling of such common uncertainties. Thus, we
illustrate the potential application of the uncertainty framework data to compare and rank
candidate system architectures.

8.4. THE CASE STUDIES AND EVALUATION 89

Table 8.1: Selection criteria for the three case studies summary

Criteria IMPALA AEROSTACK IoV
1 System

architecture
overview
and
complexity

Big Data analytics sys-
tem built from as-
sembly of Commer-
cially available Off-
The-Shelf (COTS)
components, multiple
data sources including
future unknown data
sources, infrastructure
includes networking,
distributed storage and
computing, and secu-
rity consideration

Architecture for
UAS is design to be
hardware independent
thus flexible to operate
on a range of UAS
hardware and sensors.
Its self-adaptation and
configured software
components

IoV system architec-
ture

2 System Doc-
umentation

Architecture design
documentation within
the SDD including
architecture views,
architecture styles,
quality attributes, and
scenarios, suitable to
support the ATAM

Exiting documentation
include published
AEROSTACK
architecture design and
evaluation research
papers and a GitHub
repository which
includes, code, user
manual and other
documentation

Existing literature sur-
vey and research pa-
pers

3 Architecture
Viewpoint

Logical, Functional,
Infrastructure,
Network & Security
views

Logical (with Reac-
tive, Executive, delib-
erative, reflective and
social layers) & devel-
opment views

Logical & network
views

4 Uncertainty
context

Uncertainties
including those
related to data and data
sources, networking,
hardware, security,
system processing and
performance

UAS uncertainty
include vulnerable
from environment,
sensors, intelligence,
cognition, compatibil-
ity with other system,
autonomy etc.

Deployment environ-
ment & architecture
components

90 CHAPTER 8. EVALUATION STRATEGY

8.5 The case studies evaluation approaches

8.5.1 Case study 1: Knowledge generation: uncertainty capturing and
documentation

The evaluation for the first case study focuses on demonstrating the application of the uncertainty
framework to capturing and representing uncertainties. Such architecture knowledge and
documentation can be useful to stakeholders that use the architecture documentation. Steps for
uncertainty identification and capturing are as follows:

1. First identify the system whose uncertainty is to be documented

2. Then decide the viewpoints from which the uncertainty is to be identified and presented

• The decision of the viewpoints is based available architecture description artefacts - for
example, we may consider the logical, physical, or data views.

3. Decide the sources of uncertainty information about the system. This depends on the available
resources, such as documentation and other artefacts of the systems.

4. After the uncertainties are captured and represented, we need to check the following about
the uncertainty data.

a) On the uncertainty data quality: assess the completeness of the attributes for each unit
uncertainty. If an attribute is blank, what information can we infer from this? For
instance if the migration is blank then probably the uncertainty is a high threat to the
system?

b) While capturing uncertainties, it should be acknowledged if the uncertainty and its
attributes are explicitly identified in the system or inferred.

5. Finally, assess whether the evaluation demonstrates that the uncertainty framework feasibly
captures and represents uncertainty to generate and document architecture knowledge.

8.5.2 Case study 2: Uncertainty analysis of software architecture

Uncertainty analysis utilises the software architecture uncertainty data to calculate sensible
software architecture uncertainty metrics. Uncertainty metrics are quantitative or qualitative
indicators which can provide insight about the uncertainty in the software architecture description.
They are based on the unit uncertainties and the various uncertainty attributes.

8.5. THE CASE STUDIES EVALUATION APPROACHES 91

Below are the steps of the analysis which include pre-define metrics. In practice, other sensible
metrics can be defined depending on the context:

1. First identify the system whose uncertainty is to be documented and document the
uncertainties as discussed in Case study 1 - section 8.5.1.

2. After the uncertainties are captured and represented, we can define the metrics.

a) Calculate the uncertainty metrics using the uncertainty data. The metrics are defined
such that they convey information about the uncertainty of the software architecture. For
example, the number of uncertainties per architecture component of a particular view
informs us about the numbers of known uncertainties of that architecture component
depending on the particular viewpoint.

Additional metrics can be derived from existing metrics through for instance aggregation.
For example, the total count of unit uncertainties of an architecture component from
different views. Using such metrics, we can deduce information such as which
component has the highest number of known uncertainties.

b) Some software architecture uncertainty metrics include the following:

i. Count of uncertainties per component

ii. Count of types of uncertainties per component

iii. Among other possible metrics and aggregation of uncertainty metric calculations.

c) Analysis report - stakeholders can use the uncertainty information for various purposes.
For instance, developers may use the uncertainty data as input to their risk consideration
during development, operations team may consider operational risks and opportunities
from the uncertainty. Similarly, other stakeholders can use the uncertainty data to
explore opportunities, risks, mitigation and outcomes in addition to other sensible
information.

3. Finally, assess whether the evaluation demonstrates that the uncertainty framework feasibly
captures and represents uncertainty to document architecture knowledge, and that the analysis
generates useful insight. In this regards, we use an customised version of the ATAM to assess
the validity, soundness and sanity of our approach.

92 CHAPTER 8. EVALUATION STRATEGY

8.5.3 Case study 3: Alternative candidate architecture uncertainty
ranking and selection

One of the main challenges in architecture design is how to compare and select a candidate

architecture from comparable alternative architectures? In the context of uncertainty in software
architecture, we consider the use of the uncertainty details to address this challenge so that we
select a candidate architecture that is likely to be less vulnerable to uncertainty risks.

Among the attributes of an uncertainty, we introduce an influence measure attribute that
captures the potential influence of uncertainty. We can reasons about uncertainty by aggregating
uncertainties to compare or rank candidate architectures based on the mitigated or unmitigated
uncertainties and their potential influence of the system. The architecture designer is meant to
assign the value of the influence measure attribute.

The following steps outline the process of ranking and selecting a candidate architecture from
comparable architectures:

1. Select a system whose candidate architecture are to be compared basing on uncertainty.

2. Define or identify, if they already exist, alternative candidate architectures to compare and
rank.

3. Identify common uncertainties of the domain from sources such as system documentation
and others. This will define a common basis for comparing the candidate architectures.

• For each uncertainty, include an uncertainty influence attribute. This attribute captures the
potential influence an uncertainty is expected to have on the system if its risk is realised.

• The influence attribute is defined by the architecture designer and assigned values basing
on a rationale.

4. For each candidate architecture assess how it handles the known uncertainties.

5. The criteria for ranking candidate architectures is based on their mitigations or handling of the
common uncertainties. A candidate architecture which is less vulnerable to the uncertainties
ranks top.

• For each uncertainty conduct an architecture analysis

• Rank the candidate architectures based on the uncertainty data and select the most suitable
architecture

8.6. THE ATAM OVERVIEW AND CUSTOMISATION 93

• The most suitable architecture is the candidate architecture most likely to be uncertainty
robust depending on the uncertainty data.

6. To control and assess the validity of ranking approach, we propose three variations of the
ranking algorithm, which we apply separately, and compare their results.

7. This ranking only provides an uncertainty dimension to the candidate architecture selection
problem. Other approaches can contribute information to making the overall final decision
on the suitability of an implementation candidate architecture.

8.6 The ATAM overview and customisation

This section provides an overview of the ATAM and how it was customised for the purpose of
this thesis. We change the ATAM to adapt it so that it is suitable for application by an individual,
instead of a team of stakeholders.

8.6.1 ATAM Customisation

In this research we use a customisation of the ATAM omitting scenario generation activities,
quality attributes identification and architecture definition. The case studies we analyse already
have these details defined. The existing documentation of each case study provides such details.
Indeed the ATAM authors made the following observation about its application in practice and
customisation, while applying the ATAM to analyse the Battlefield Control System (BSC) [119]:

In describing the BSC ATAM, we will not describe every step of the method [the
ATAM]. This is for two reasons. The first reason is that the steps involve a reasonable
amount of repetition (of activities such as scenario elicitation); in describing the
method we simply describe a single instance of each activity. The second reason
is that no particular instance of the ATAM slavishly follows the steps as stated.
Systems to be evaluated are in different stages of development, customers have
different needs, and there will be different levels of architectural documentation in
different development organisations.

Thus, our approach to applying the ATAM involves applying existing scenarios to the existing
quality attribute and architecture styles to identify ATAM key results. As always, the final
outcome or results of the ATAM are the architecture risks, sensitivity points and trade-off points
with respect to quality attributes and architecture styles.

94 CHAPTER 8. EVALUATION STRATEGY

We use these ATAM analysis results to compare with the results from the uncertainty data from
the framework to identify insight about the uncertainty status of the case studies. The key for
such an evaluation is to qualitatively assess the usefulness of the uncertainty framework data and
its potential application to uncertainty consideration in software architecture.

Again, the point of considering uncertainty in software architecture is not to identify all
uncertainties and eliminate or mitigate them. Simply, architecture analysis cannot achieve
such a goal. The point is to generate insight so that the architecture stakeholders are aware of the
uncertainty within the system and can take other proactive approaches to manage it. Similarly,
the point of the ATAM is not perfect architecture analysis, as discussed by the following quote
from the authors [119]:

The point of this example [application of the ATAM on the BSC example] is not to
show which alternative the contractor chose, for that is relatively unimportant and
relied on their organizational and mission-specific constraints. The point here is to
show that the process of preforming an ATAM on the BSC raised the stakeholder’s
awareness of critical risk, sensitivity, and trade-off issues. This, in turn, focused
design activity in the areas of highest risk and caused a major iteration within the
spiral process of design and analysis.

Finally, it has to be realised that architecture analysis depends on the inputs of the process. The
quality of the results and usefulness of the analysis is a direct output of the analysis function and
its input- as noted by the following quote from the ATAM authors:

An architecture analysis method, any architecture analysis method, is a garbage-in-
garbage-out process. The ATAM is no different.

Therefore, the uncertainty consideration framework is no different, too. Its results depend on the
input. Of course, it might be difficult to generate all uncertainties during the initial architecture
review. As such, continuous uncertainty identification and analysis might be an appropriate
strategy in practice - for instance, by following the agile development methodology and update
the uncertainties through the multiple iterations.

8.6.2 The uncertainty framework and the ATAM

In the ATAM, its inputs include the architecture description, quality attributes, architecture
styles and scenarios to generate architecture risks, sensitivity points and trade-off points. In the

8.6. THE ATAM OVERVIEW AND CUSTOMISATION 95

uncertainty consideration framework evaluation, the inputs are the architecture description and
the output is the uncertainty data which can be analyses to generate the uncertainty insight about
the software system using various metrics.

As previously stated, our interest in applying the framework is to characterise the uncertainty in
the system so that stakeholders are aware of it for their uncertainty consideration. This is similar
to the ATAM interest expressed in the following quote:

What we are interested in doing - in the spirit of a risk identification activity - is
learning where an attribute of interest is affected by architectural design decisions,
so that we can reason carefully about those decisions, model them more completely
in subsequent analyses, and devote more of our design, analysis, and prototyping
energies on such decisions.

Thus, what we aim to do in the ATAM, in addition to raising architectural awareness
and improving the level of architectural documentation, is to record any risks,
sensitivity points, and trade-off points that we find when analyzing the architecture.

The uncertainty framework characterises the uncertainty of a system using various attributes:
uncertainty descriptive attributes, uncertainty source attributes, uncertainty time attributes,
uncertainty mapping attributes. Characterising the uncertainty of an architecture and using
sensible metrics can highlight significant uncertainty risk areas of the software architecture for
further consideration.

The key outputs of the ATAM are its identification of the architecture risks, sensitivity points and
trade-off points. In addition the ATAM assists with the architecture documentation. Similarly, the
purpose of the uncertainty consideration framework is to characterise the known uncertainties of
the software architecture with the goal of focusing attention on specific areas of an architecture
based on the awareness of the architecture uncertainties. Besides, such characterisation assist
with improving the documentation of the architecture uncertainties.

8.6.2.1 Summary of ATAM and the uncertainty framework

This section has discussed the customisation we made to the ATAM for its application in the
evaluation. Our adaptation of the ATAM takes advantage of the available existing results. We use
existing architecture descriptions, quality attributes, architecture styles and scenarios to apply the
ATAM. The objective of applying both the ATAM and the uncertainty consideration framework
is to compare the results of the two approaches.

96 CHAPTER 8. EVALUATION STRATEGY

8.6.3 Independent application of the uncertainty framework - MSc
project vs AEROSTACK

Table 8.2: Comparison of the completed uncertainty attributes

Attribute MSc - ERP [17] Coverage (%) MSc -IoT [17] Coverage (%)
Count of uncertainties 33 100% 31 100%

1 Description 33 100% 31 100%
2 Nature 33 100% 31 100%
3 Bound - -
4 Perspective 33 100% 31 100%
5 Awareness 33 100% 31 100%
6 Level 33 100% 31 100%
7 Source type 33 100% 31 100%
8 Cause 33 100% 31 100%
9 Viewpoints 33 100% 31 100%
10 Facets 33 100% 31 100%
11 Location 33 100% 31 100%
12 Manifestation 33 100% 31 100%
13 Measure 33 100% 31 100%
14 Monitor 33 100% 31 100%
15 Evidence 31 94% 31 100%
16 Relationship - -
17 Emerging time 33 100% 31 100%
18 Lifetime 33 100% 31 100%
19 Change 33 100% 31 100%
20 Pattern 33 100% 31 100%
21 Dependencies 23 70% 22 70%
22 Risk or Opportunities 33 100% 31 100%
23 Mitigation or Exploitation 33 100% 31 100%
24 Outcome (with operators) 33 100% 31 100%

The MSc project titled A Visual Representation of Uncertainty in Software Systems used
the framework as a foundation to generate and document uncertainty knowledge [17]. The
uncertainty information was then used to develop a website which offers automated models and
graphics for visualising the uncertainty data.

In the MSc project, [17], uncertainty data was generate for two systems: a cloud-based Enterprise
Resource Planning (ERP) system and an IoT consisting of sensors, devices, connectivity, data
processing and various interfaces. Thirty three (33) uncertainties were identified for the ERP
system, while thirty one (31) uncertainties were generated for the IoT system.

As shown in Table 8.2, in terms of these two projects: 1) The MSc - ERP system has all attribute
completed at 100% except the Bound, Relationship which are empty, and Evidence at 94% and
Dependencies at 70% [17]; 2) The MSc - IoT equally, has all attributes covered at 100% except
Bound, Relationship which are empty, and Dependencies at 70% [17].

As an empirical process, these incompleteness are expected, and the framework allows for
customisation. The MSc examples demonstrate that the framework has been used independently
by other to generate results and uncertainty knowledge. Table 8.2 shows an aggregate analysis of
the values identified under each of the examples for each of the framework’s attributes.

8.7. CONCLUSION 97

Together, the insight from both the case studies and the MSc projects [17] is the feasible
application of the framework to generate uncertainty knowledge for further analysis.

8.7 Conclusion

The evaluation focuses on applying the uncertainty framework in software architecture analysis
on three case studies: the AEROSTACK architecture, the IMPALA platform, and the IoV
architecture. The AEROSTACK evaluation focuses on generating knowledge and documentation.
The case study on the IMPALA platform focuses on uncertainty data analysis to gain insight
into the software architecture. Finally, the IoV case study conducts an analysis on candidate
architectures and the uses the results to select a candidate architecture which is likely to be less
vulnerable to uncertainty. Besides, in this chapter, we illustrated the feasibility of the framework
by highlighting independent results of an MSc dissertation which is based on the application of
the framework.

9CHAPTER NINE

CASE STUDY 1:
AEROSTACK -

UNCERTAINTY
KNOWLEDGE GENERATION

AND DOCUMENTATION

In this evaluation, we evaluate the use of the uncertainty framework to explore uncertainty of
AEROSTACK, which is documented in an open-source repository on GitHub1 and published
work[5]. This case study demonstrates a foundational use of the framework to generate
uncertainty knowledge and documentation.

9.1 Overview

The AEROSTACK case study focuses on identifying uncertainties and capturing them using the
uncertainty framework to generate uncertainty knowledge and documentation. The case study
evaluation follows the strategy described in Section 8.5.1. The objective of the case study is to
assess the feasibility of using the uncertainty framework to generate architecture uncertainty
knowledge and documentation. The data are captured and presented in a table.

1https://bit.ly/3MGgJV7

99

100CHAPTER 9. CASE STUDY 1: AEROSTACK - UNCERTAINTY KNOWLEDGE GENERATION AND DOCUMENTATION

AEROSTACK is designed to enhance the independent operation of UAS. Fully autonomous
operation is needed to simplify the usage of UAS and to flexibly extend UAS adoption to a range
of applications. Thus, both autonomy and versatility are among the main quality attributes of the
AEROSTACK architecture. In this evaluation, we identify and characterise the uncertainties of
AEROSTACK in the context of it being a multi-purpose software framework for autonomous
multi-UAS operation.

9.2 AEROSTACK Architecture Description

We identify the uncertainties in the documentation of AEROSTACK in its logical and devel-
opment view of the architecture. The logical view presents a layered architecture of the main
components of the AEROSTACK . The development view presents the modules, libraries and
application components of the AEROSTACK .

The AEROSTACK architecture considers uncertainty in its design as part of the various
architecture design decisions. One of the key non-functional requirements of the AEROSTACK
architecture is that it should be hardware independent. This ensures that the architecture can
operate with UAS from various manufacturers and with a range of sensor hardware technology,
thus handling uncertainty from possible UAS model variations and supporting versatility.

The AEROSTACK architecture is designed to run on the operative level of the UAS software,
instead of the firmware and middle-ware which are hardware dependent. A UAS has three
software levels - firmware, middle-ware and operative system.

The firmware runs on the UAS onboard computer, and it directly depends on the hardware and its
time-critical. The middle-ware is also time-critical to the control of the system, but it depends on
the firmware. In contrast, the operative system is computationally intensive but non-time-critical
and is used for UAS system management. AEROSTACK architecture runs at the operative level
and is hardware independent to cope best with UAS hardware variations.

Such AEROSTACK architecture design decisions as these may include both uncertainty consid-
eration and its mitigation. In the just-presented architecture decisions, the potential uncertainty
is about the UAS hardware variation, and its mitigation includes hardware independent design,
with the goal or outcome of supporting versatility or flexibility.

The case study identifies such uncertainties and characterises them using the uncertainty
framework. In Section 9.3 we identify uncertainties in the logical view of AEROSTACK .
Similarly, Section 9.4 identifies and documents uncertainties in the development view of the
AEROSTACK .

9.2. AEROSTACK ARCHITECTURE DESCRIPTION 101

Figure 9.1: Logical view of AEROSTACK from the original image in [5]

102CHAPTER 9. CASE STUDY 1: AEROSTACK - UNCERTAINTY KNOWLEDGE GENERATION AND DOCUMENTATION

9.3 Logical view

The logical view of AEROSTACK is organised into layers as shown in Figure 9.1. The main
layers of the logical view of the AEROSTACK architecture are Reactive, Executive, Deliberative,

Reflective and Social layers.

The AEROSTACK architecture is designed to be ready for use or adoption without the need
for specific customisations. It includes the main components within each layer to execute a
fully autonomous mission of a UAS or swarms of UAS . Furthermore, it has a collection of
ready-to-use and flight-tested modular components that can be reused by users and developers.
AEROSTACK supports compatibility with other aerial platforms and a large number of sensors.

In terms of layers, Reactive layer functions in the present - reacting to sensor input in a sensor-
action loop, while Deliberative layer uses information from the past and projection to the future
to generate complex solutions such as trajectory planning and other planning tasks for UAS .

To increase the degree of autonomy of UAS , AEROSTACK includes a Reflective layer based on
cognitive architectures to simulate self-awareness to supervise the other layers: check progress
and react to problems - unexpected obstacles, faults, etc. - with recovery actions. The Social

layer is to support multi-agent systems communication with human operators and other UAS .
Executive layer is responsible for navigation systems, including situation awareness, location
and mapping, and event detection.

The logical view of the AEROSTACK architecture shows a collection of highly interrelated
and specialised components organised to achieve a full autonomous UAS architecture. Such
an organisation of a solution creates challenges such as adaptability to different problems,
performance of the various components, efficiency, scalability, and others. The AEROSTACK
architecture addresses these challenges.

We identify uncertainties in the context of such challenges. Tables 9.1 and 9.2 show uncertainties
that we have identified related to the logical view of AEROSTACK , that is, known uncertainties.

9.3. LOGICAL VIEW 103

Table 9.1: Uncertainties of the Logical view

Attribute Uncertainties
Uncertainty ID 1 2 3 4 5 6
Description Network connec-

tion loss
New UAS joins
swarm

Obstruction appear-
ance

Localisation pre-
cision

Mapping environ-
ments

Trajectory and
mission planning

Nature Aleatory Epistemic Aleatory Aleatory Epistemic Aleatory or epis-
temic

Bound
Perspective Objective Objective Object Subjective Objective Objective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown
Level Low Medium Medium Medium High low
Source type Exogenous or En-

dogenous
Exogenous Exogenous Endogenous Exogenous Endogenous

Cause Hardware or soft-
ware failure &
UAS out of range

Data growth from
new and existing
sources

Unexpected object
on UAS path

Human error or
mistake

an unstructured
and changing
environments

unanticipated
changes and poor
data

Viewpoints Logical Logical Logical Logical Logical Logical
Facets Architecture Architecture Architecture Architecture Architecture Architecture
Location Reactive and So-

cial layers
UAV route UAV route Executive layer Executive and Re-

active layer
Deliberative and
Reflective layer

Manifestation No network con-
nection

UAS in or out of
swarm

Collusion Inaccuracy Lack of aware-
ness

Wrong trajectory
and failures

Measure Probability Probability Probability Error margin Mapping quality Errors rates
Monitor Network check -

ping command
Collision rates Trajectory

and planning
outcomes

Evidence UAS Swarm num-
bers

Localisation data Mapping data trajectory and
planning data

Relationship Object detection
sensor feedback

Emerging time Run-time Run-time Run-time Run-time Run-time Run-time
Lifetime Perpetuity Perpetuity Perpetuity Limited Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic-

sporadic
Aperiodic-
sporadic

Systematic Aperiodic- Spo-
radic

Aperiodic- Spo-
radic or system-
atic

Aperiodic- Spo-
radic or system-
atic

Dependencies Social, Executive,
and other UAS
uncertainties

Navigation
and social
uncertainties

Vision system and
radar system uncer-
tainties

Localisation
services
uncertainties

Environmental
awareness
services
uncertainties

Navigation aware-
ness

Risk or Oppor-
tunities

Risk: Communi-
cation loss, mis-
sion failure, and
accident

Risk: UAS colli-
sions & mission
failure

Risk: Crash acci-
dents

Risk: Errors in
trajectory

Risk: misleading
mapping, lack of
awareness, data
loss

Risk: Errors in
trajectory mission
failure

Mitigation or
Exploitation

Mitigation: Ab-
normal situations
problem manager

Mitigation: Fully
autonomous oper-
ation in UAS

Mitigation: Precise
control of the air-
craft

Mitigation: High
maneuverability
capabilities

Mitigation: High
definition and ac-
curacy sensors

Mitigation: Sit-
uation awareness
system

Outcome (with
operators)

MINIMISE mis-
sion dependency
on external com-
munication

Support MULTI-
robot swarming
POSSIBILITIES

MINIMISE
obstruction collision
chances

MAXIMISE lo-
calisation preci-
sion and accuracy

MAXIMISE and
enhance environ-
mental mapping

MINIMISE
trajectory errors
and MAXIMISE
accuracy

104CHAPTER 9. CASE STUDY 1: AEROSTACK - UNCERTAINTY KNOWLEDGE GENERATION AND DOCUMENTATION

Table 9.2: Uncertainties of the Logical view

Attribute Uncertainties
Uncertainty ID 7 8 9 10 11 12
Description Multi-tasking ex-

ecutions
New functionality
to UAS

Hardware and sen-
sor compatibility

Firmware change Sensor failure Environmental in-
stability

Nature Epistemic Epistemic Epistemic Epistemic Aleatory Aleatory
Bound
Perspective Objective Objective Objective Objective Objective Subjective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown
Level High Medium Medium Medium High low
Source type Exogenous Exogenous Exogenous Endogenous Exogenous Endogenous
Cause Parallel execution

requirements
UAS updates or
enhancements

Hardware and sen-
sors variety or diver-
sity

Updates or hard-
ware changes

Hardware or soft-
ware issues

For example,
weather

Viewpoints Logical Logical Logical Logical Logical Logical
Facets Architecture Architecture Architecture Architecture Architecture Architecture
Location Robotic agent AEROSTACK

layers
Social and Reactive
layers - interfaces

Reactive layer Reactive layer Executive layer

Manifestation Execution
conflicts

Incompatibility Incompatibility Firmware
changes causing
issues

Robotic agent is-
sues

Hazardous envi-
ronmental condi-
tions

Measure Probability Updates rate Failure rate Weather
conditions

Monitor Multi-tasking de-
mands

Updates require-
ments

Compatibility issues Sensor data input
issues

Hazardous envi-
ronmental warn-
ings

Evidence Multi-tasking
data

New functionality
requests data

Compatibility and
incompatibility
issues

Firmware updates
data

Sensor data Environmental
data

Relationship
Emerging time Run-time Run-time Run-time Data usage Run-time Run-time
Lifetime Perpetuity Limited Perpetuity Limited Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic-

sporadic
Systematic Aperiodic- sporadic Systematic Aperiodic- Spo-

radic
Aperiodic- Spo-
radic

Dependencies All layers uncer-
tainties

All layers uncer-
tainties

Reactive and Social
layers uncertainties

Hardware
and software
interfaces
uncertainties

Reactive layer un-
certainties

Executive, Delib-
erative and Reac-
tive layers uncer-
tainties

Risk or Oppor-
tunities

Risk: System low
efficiency

Risk: New func-
tionality failure

Risk: Incompatibil-
ity with associated
results

Risk: Firmware
change failure

Risk: data and
signal corruption
or loss

Risk: mapping
and localisation
failure and acci-
dents

Mitigation or
Exploitation

Mitigation: Dis-
tributed process-
ing, separate com-
mon and optional
processes

Mitigation: Com-
ponents arranged
by functionality
and dependency
level

Mitigation: Stan-
dardisation & exten-
sible design

Mitigation:
Independence
to hardware and
firmware

Mitigation:
Reflective layer -
failure detection,
notification, and
recovery

Mitigation: Fully
autonomous oper-
ation of UAS

Outcome (with
operators)

Scalability: UAS
needs to be AS
efficient and ef-
fective AS POS-
SIBLE in multi-
tasking

Versatility: intro-
duce AS MANY
new functionali-
ties AS POSSI-
BLE

AEROSTACK
needs to be
compatible to AS
MANY hardware
and sensor variety
AS POSSIBLE

AEROSTACK
needs to be AS
independent from
hardware AS
POSSIBLE

MINIMISE risks
of UAS from sen-
sor failure

MINIMISE risks
of UAS failure
from instability

9.4. DEVELOPMENT VIEW 105

9.4 Development view

Figure 9.2: Development view of AEROSTACK Architecture from the original image in [5]

Figure 9.2 shows the development view of the AEROSTACK architecture. All AEROSTACK
components run above the system libraries, thus achieving hardware independence. The
development view includes three categories of components.

106CHAPTER 9. CASE STUDY 1: AEROSTACK - UNCERTAINTY KNOWLEDGE GENERATION AND DOCUMENTATION

First are hardware dependent and operating system components, the System libraries, and the
Robot operating system (ROS). Next, we have the AEROSTACK architecture components. There
are seven components: from the AEROSTACK library to the AEROSTACK common processes,
as shown in Figure 9.2. Finally, there are the application components where software developers
can develop applications of UAS using the AEROSTACK architecture.

The main non-functional requirements of the architecture is to ensure that AEROSTACK is
hardware independent and that the components in the architecture can be easily modified. Table
9.3 present uncertainties in the context of the development view.

9.5 Discussion

In the previous two sections, Logical view Section 9.3 and Development 9.4, we identified
and encoded uncertainty data using the uncertainty framework as uncertainty knowledge and
documentation. In this section, we illustrate the interpretation of uncertainty in Section 9.5.1 and
then discuss the uncertainty documentation in 9.5.2. The other two case studies, in Chapters 10
and 11, build on the foundation in this case study to facilitate architecture analysis and evaluation.

9.5.1 Encoding and interpreting uncertainty knowledge and
documentation

Sections 9.2 and 9.3, together, they include sixteen (16) uncertainties, with twelve (12) identified
in the logical view and the rest identified in the development view.

Individually, each recorded uncertainties captures and documents specific uncertainty knowledge
or data. Collectively, the uncertainties provide comprehensive uncertainty documentation of the
AEROSTACK systems from the two perspectives - logical and development views.

Let us walk through the following uncertainties from each of the two views and analyse their
knowledge and data captured for illustration proposes:

First, we begin with the Uncertainty ID 1 from the Logical view, Table 9.1. The overall
uncertainty is about Network connection loss which is captured by the Description attribute.
Since network failure may occur from a variety of issues, such as various hardware failures, we
assign its Nature as Aleatory. On the contrary, Epistemic uncertainty is due to lack of knowledge,
where the uncertainty can be reduced by additional knowledge.

Proceeding with the uncertainty example, for this uncertainty, the Bound attribute is blank
because there are no specific boundaries to the uncertainty. When a network connection is lost,

9.5. DISCUSSION 107

Table 9.3: Uncertainties of the development view

Attribute Uncertainties
Uncertainty ID 13 14 15 16
Description Update ROS System libraries

change
Flight security at-
tacks

AEROSTACK
library changes

Nature Epistemic Epistemic Epistemic Epistemic
Bound
Perspective Subjective Subjective Objective Subjective
Awareness Known unknown Known unknown Known unknown Known unknown
Level Medium Medium High Medium
Source type Endogenous or Ex-

ogenous
Endogenous or Ex-
ogenous

Endogenous or Ex-
ogenous

Endogenous or Ex-
ogenous

Cause Modifiability issues
and human error

Need for modifica-
tions or new change
requests

Code vulnerabilities
which can be ex-
ploited

Need for modifica-
tions or new change
requests

Viewpoints Development Development Development Development
Facets Architecture Architecture Architecture Architecture
Location ROS System libraries Flight control and

applications
AEROSTACK
library

Manifestation Update failure Change causing
bugs

Detected
exploitations

Modification failure

Measure Updates failure rates Modification failure
rate

Monitor Modification or up-
date issues

Modification or up-
date issues

Count of detected
exploitations

Modification or up-
date issues

Evidence Update data Change data Threats data Modification or
change requests
data and plans

Relationship
Emerging time Development Development Development &

Run-time
Run & development
times

Lifetime Perpetuity Perpetuity Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic- sporadic Aperiodic- sporadic Aperiodic- sporadic Aperiodic- sporadic
Dependencies Uncertainties above

ROS layer
Uncertainties above
system libraries

Applications and
ROS uncertainties
etc.

UAS application un-
certainties

Risk or Oppor-
tunities

Risk: ROS update
failure

Risk: Update costs
and failure

Risk: Successful
software security at-
tacks

Risk: incompati-
bility with various
UAS platforms

Mitigation or
Exploitation

Mitigation: layered,
modular, extensible
design

Mitigation: layered,
modular, extensible
design

Mitigation: Fully
autonomous flights
to avoid attacks

Mitigation: modu-
lar, extensible de-
sign & hardware in-
dependence

Outcome (with
operators)

Update ROS AS
seamlessly AS
POSSIBLE

MINIMISE effort
to change library
source code

MAXIMISE
AEROSTACK
flight security from
attacks

MAXIMISE
AEROSTACK
modifiability

108CHAPTER 9. CASE STUDY 1: AEROSTACK - UNCERTAINTY KNOWLEDGE GENERATION AND DOCUMENTATION

it can be specifically identified; therefore, Perspective of this uncertainty is Objective as its
identification does not depend on the knowledge of an individual stakeholder or agent.

In terms of Awareness, this is a Known unknown uncertainty. The Level of the uncertainty is
low and its Source can be internal or external or Endogenous or Exogenous, respectively, to
AEROSTACK . The Causes of the uncertainty includes Hardware or software failure and UAS

being out of range.

The Viewpoint where we explicitly identified the uncertainty is in the Logical view; however,
this uncertainty can also impact views such as the Deployment, Network and Physical views.
All these views are of the Architecture Facet where we consider this uncertainty. Specifically,
Location of the uncertainty is the Reactive and social layers through which the network interfaces
with the UAS , and its Manifestation is through No network connection.

The Monitor of the uncertainty can be done through tools such as the Network check - ping

command. The evidence we can use to reduce the uncertainty is blank. The Measure of this
uncertainty is Probability and does not have any specific Relationship attribute value.

The uncertainty Emerging time is during the UAS Run-time and the uncertainty will exist or its
Lifetime is as long as the system is in operation, so it is in Perpetuity.

The uncertainty might Change over time; therefore, it is Dynamic. Its Pattern is irregular since
network connections can be lost abruptly and without particular regular intervals, so its Aperiodic-

sporadic.

In terms of influence, the Network connection loss uncertainty Dependencies includes Social,

Executive, and other UAS uncertainties of the architecture.

For Risks or Opportunities, the uncertainty causes Risk: Communication loss, mission failure,

and accident. The AEROSTACK architecture includes a specific component to handle risks:
Mitigation: Abnormal situations problem manager with the goal to MINIMISE mission

dependency on external communication as the Outcome (with operators).

Thus, the Network connection loss uncertainty is captured with the framework in this way.
Similarly, the other uncertainties can be interpreted in the same way from the encoding of the
uncertainty framework in Table 9.1.

Next, we consider one of the uncertainties from the development view - the last one. Specifically,
we look at Uncertainty ID 16 in Table 9.3.

The overall uncertainty is about AEROSTACK library changes which is captured by the
Description attribute. Since some changes can be planned, while others can be abrupt, therefore,

9.5. DISCUSSION 109

we assign its Nature as Epistemic - the more changes are planned and schedule, the less the
uncertainty. The Bound attribute is blank because there are no specific boundaries to the
uncertainty.

Different stakeholders might arrange or plan for different changes, depending on the priority;
therefore, Perspective of this uncertainty is Subjective as its identification depends on the
knowledge of individual stakeholders.

In terms of Awareness, this is a Known unknown uncertainty. The Level of the uncertainty is
Medium and its Source can be internal or external or Endogenous or Exogenous, respectively, to
AEROSTACK . The Causes of the uncertainty includes Need for modifications or new change

requests.

The Viewpoint where we explicitly identified the uncertainty is in the Development view, however,
this uncertainty can also impact such views as Deployment, and process views. All these views
are of the Architecture facet where we consider this uncertainty. Specifically, Location of the
uncertainty is the AEROSTACK library layer, and its Manifestation is through Modification

failure or change issues.

The Monitor of the uncertainty can be expressed by modification issues. The evidence we can
use to reduce the uncertainty is modifications or change requests data and plans. The Measure of
this uncertainty is Modification failure rates and does not have any specific Relationship attribute
value.

The uncertainty Emerging time is during the UAS Run and development times and the uncertainty
will exist or its Lifetime is as long as the system is in operation; thus, it is in Perpetuity.

The uncertainty might Change over time; therefore, it is Dynamic. Its Pattern is irregular since
some change will occur abruptly, on demand, and without particular regular intervals; therefore,
its Aperiodic- sporadic.

In terms of influence, the AEROSTACK library changes uncertainty Dependencies includes UAS

applications uncertainties which are built on top of the libraries.

For Risks or Opportunities, the uncertainty causes Risk: incompatibility issues with various UAS

platforms. The AEROSTACK architecture includes the following approaches to handle the risk:
Mitigation: modular, extensible design & hardware independence with the goal to MAXIMISE

AEROSTACK modifiability as the Outcome (with operators).

Thus, the AEROSTACK library changes uncertainty is captured with the framework. In this way,
as illustrated through these uncertainties: Uncertainty ID 1 from the Logical view, Table 9.1 and

110CHAPTER 9. CASE STUDY 1: AEROSTACK - UNCERTAINTY KNOWLEDGE GENERATION AND DOCUMENTATION

Uncertainty ID 16 in Table 9.3 of the Development view, uncertainties can be captured.

9.5.2 Uncertainty documentation and knowledge

The uncertainty framework provides a basis for a range of fundamental uncertainty data that
can be used for various analyses to gain insight into the uncertainty of a software system.
The opportunity to use the framework includes both qualitative and quantitative analyses.
Additionally, the process of capturing and completing the uncertainty attributes provides an
opportunity to think about or consider uncertainty in the context of the system.

The framework data defines the ground-data for further analysis. For example, considering the
current attributes of the framework, each of these contains information about the individual
uncertainty. Collectively, the group of attributes contains adequate information to characterise an
individual uncertainty, from its description, to risks or opportunities, mitigation or exploitation,
and outcomes.

As an aggregate, the uncertainty data can provide a basis which can be used to characterise the
uncertainty of the the architecture. For example, currently, for the AEROSTACK architecture,
we identified the sixteen uncertainties (16), all with different characteristics. This provides an
overview of the uncertainty with respect to the individual view points. We can analyse the data
on individual attributes to assess which location, for instance, in the architecture has the most
uncertainties, thus might likely be vulnerable to uncertainty risk.

More qualitative and quantitative analyses could be conducted to explore the uncertainty in the
architecture. The remaining two case studies conduct such detailed analyses. While applying
the uncertainty framework, we also observed some of its challenges and limitations in applying
it. For instance, the framework might require the use of structured texts for easier automated
analysis.

However, currently, this is not a major limitation as the framework has been designed to be generic
without specific restrictions on its application. But individual users are free to introduce the
necessary customisation for better usability in specific contexts, as illustrated by the framework’s
application in the MSc dissertation [17]. The framework does not prescribe specific steps to
follow when applying it. However, in Chapter 6, we specify a suggested approach to applying
the it.

9.6. CONCLUSIONS 111

9.6 Conclusions

The aim of this case study was to demonstrate the use of the framework to document and
generate uncertainty knowledge in software architecture. In the context of the case study,
we captured uncertainties of the AEROSTACK architecture from its logical and development
views. Additionally, we highlight some of the uncertainties to demonstrate the encoding and
interpretation of the uncertainty data. In addition, we discussed the potential uses of the data that
are developed in the other two case studies.

10CHAPTER TEN

CASE STUDY 2: IMPALA -
UNCERTAINTY

ARCHITECTURE ANALYSIS

The IMPALA case study focuses on analysis. The evaluation follows the strategy described in
Section 8.5.2. The objective of the case study is to evaluate the feasibility of using the uncertainty
framework to generate architectural uncertainty knowledge and documentation, and then to apply
it for architecture analysis.

10.1 Overview

In this evaluation, we use the uncertainty framework to explore the uncertainty of the architecture
of the IMPALA platform, which is documented in the SDD1. The SDD provides information
on the IMPALA architecture design from a number of architectural viewpoints. The IMPALA
platform is developed from a consolidation of COTS components. Its architecture is built from
the composition and integration of various COTS components.

10.2 IMPALA platform architecture description

The IMPALA platform architecture description has five views - Logical, Functional, Infrastruc-
ture, Network and Security. Each view is described with a diagram showing the components and
connectors that capture the architecture from the perspective of a viewpoint.

1https://ntrs.nasa.gov/citations/20160011412

113

114 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

In the following sections, we review each architecture view and identify uncertainties within it.
We capture and represent uncertainties using the uncertainty framework.

Each view is presented from its original diagram in the SDD. Its uncertainty data are captured in
the corresponding table. The components in the architecture description are associated with the
uncertainties according to the uncertainty framework attributes, as discussed in the uncertainty
framework design Chapter 6.

10.2. IMPALA PLATFORM ARCHITECTURE DESCRIPTION 115

Figure 10.1: Logical view of IMPALA platform from the original in SDD1

116 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

10.3 Logical view

Figure 10.1 shows the logical architecture view of the IMPALA platform. It has seven main
components: Capture, Transport, Refine, Store, Analyze, Distribute and Manage. The IMPALA
platform operates within the Mission Extended Medical Enterprise (MEME) network, that is
why all the components are enclosed within its block. The six smaller boxes in Figure 10.1
highlight the stakeholders; each of these has a pointer to a logical level at which they operate.

Each of the seven components have specific purposes. All components are internal to the
IMPALA platform except the Capture component, which is partially external to the IMPALA
platform because it includes external data sources for the IMPALA environment.

• Capture component interfaces with the current and future data sources, whose data is imported
into the IMPALA platform. Examples include RDBMS, NoSQL, files, cloud sources, and
others.

• The Transport component is responsible for the transmission (importing) of the captured data
through the Refine component to the Store component.

• The Refine component is responsible for various data cleaning tasks before the data is sent to
the Store component.

• The Store component is responsible for storage and includes data backup, redundancy, and
other data storage functionalities.

• The Analyze component is responsible for data use activities, including creating datasets and
their management, performing statistical and machine learning analyses, etc.

• The Distribute component is for data sharing to interested stakeholders, which may include
through other systems and user agents.

• And finally, the Manage component supports the internal components of the IMPALA
platform with various management tasks, such as monitoring the system and data health.

Each of these components can have associated uncertainties. In the following sections, we
identify uncertainties under each of the main components of the logical view. The uncertainties
are in the context of the description of the components highlighted in the SDD.

The identified uncertainties are not exhaustive by definition because there may be unknown
unknown uncertainties. In addition, some uncertainties might not be identified since this is an
empirical process. The uncertainties are characterised using the uncertainty framework attributes.

10.3. LOGICAL VIEW 117

Tables 10.1 and 10.2 show uncertainties we have identified for the components in the logical
view and express them using the framework attributes. The name of the relevant component(s) is
in the Location attribute of each uncertainty - a unit uncertainty is within a column.

10.3.1 Uncertainty of the Capture component

The Capture component relates to data sources; therefore, some of its uncertainties relate to
future data sources that must be integrated into the IMPALA platform. The SDD states that data
will initially be captured from existing data sources within the NASA environment, including the
EMR (Electronic Medical Record), the LSAH (Medical Evaluation Document, Part B (MEDB)
Lifetime Surveillance of Astronaut Health) and MEDB Sharepoint.

In addition to these sources, the IMPALA platform is extensible and capable of capturing data
from other types of data sources. The platform supports relational data sources such as Microsoft
SQL Server, and Microsoft Access, as well as data located in file shares, cloud-based data stores,
and local files of varying formats (XML, CSV, JSON, PDF, and more).

10.3.2 Uncertainty of the Transport component

Since uncertainty about future data sources in the Capture component could influence the
Transport component, therefore, future data sources uncertainty also belongs to the Transport

component. According to Table 10.1, future data sources uncertainty is linked to both the
Transport and Refine components because its dependency attribute includes both of these
components.

Uncertainties about the Transport component also relate to its capacity to handle traffic and the
range of data source connections. Capacity is related to the current maximum throughput of the
Transport component and the possibility that data input increases to the extent that the Transport

component becomes a bottleneck of the IMPALA platform.

10.3.3 Uncertainty of the Refine component

The Refine component is a transient phase in which the data is processed to be used within
the IMPALA platform for analysis. After refining, the data are sent to storage, the Store

component. Refinement can be manual or automated with activities such as data review, cleaning,
transformation and labelling (for use in machine learning).

Data processing in the Refine component is performed on a copy of the original data from
Transport to mitigate against uncertainties from refinement errors. Users such as Developers,

118 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

Data Owners, Data Stewards, Data Scientists and Data Analysts collaborate to refine and
catalogue the data.

10.3.4 Uncertainty of the Store component

The Store component is for persistent data storage after the data move from the Capture, Transport

and Refine components. The key principles guiding this component are scalability, redundancy
and performance of the data and storage infrastructure.

Scalability is handled through Apache Hadoop2. In addition, redundancy against data loss is
achieved through Apache Hadoop replication, across clusters of servers.

Uncertainty in performance is handled with the distributed processing capability of Apache
Hadoop. The IMPALA platform leverages the parallel processing feature of Apache Hadoop,
allowing the search, enrichment, cataloguing, and transformation of data by nodes in parallel.

10.3.5 Uncertainty of the Analyze component

The Analyze component is about the usage of the data from the Store component. Data usage
includes various tasks such as ad hoc queries, data mining, machine learning, searching, and
other data functions.

Taking into account the interactive nature of the analysis, a key aspect of the Analyze component
is the user interface. At the architecture level, architectural performance is critical to the
effectiveness of system interactions and feedback since these depend on the processing speed of
handling analysis operations such as queries.

Furthermore, considering that security is a concern at the user interface level, the architecture
needs to be secure against exploitation. Thus, uncertainty risks within the Analyze component
relate to the performance and security of the IMPALA platform, among other concerns.

10.3.6 Uncertainty of the Distribute component

The Distribute component is responsible for sharing or publishing datasets. Users can work with
the data in the Distribute component to gain insight, for example, into functionalities such as
visualisation. The uncertainty in the Distribute component relates to the capability of sharing
data and interoperability with other external systems.

2https://en.wikipedia.org/wiki/Apache_Hadoop

10.3. LOGICAL VIEW 119

10.3.7 Uncertainty of the Manage component

Manage components serve the Capture, Transport, Refine, Store, Analyze and Distribute

components, as shown in Figure 10.1. IMPALA platform system administrations, Data Stewards
and Developers use scripts to execute functionalities of the management component.

Such functionalities include data loading and transformation, data cataloguing, and domain-
knowledge-based tagging. The scripts are tested and deployed in their respective relevant
components for execution, either through a web interface or command line interfaces. Therefore,
uncertainty in management is related to the successful execution of management scripts.

In addition, system administrators use the management components for security in terms of
access and privacy control. Therefore, it is necessary to ensure the security of the data. As such,
data privacy and security are another source of uncertainty in the Manage component.

120 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

Table 10.1: Uncertainties of the Logical view

Attribute Uncertainties
Uncertainty ID 1 2 3 4 5 6
Description Future data

sources
Data import jobs
capacity to han-
dle data growth

Connections to fu-
ture data sources

Refinement mis-
takes & errors

Data rapid growth Data storage fail-
ure

Nature Epistemic Epistemic Epistemic Aleatory Epistemic Aleatory
Bound Up to 99% of ca-

pacity
98% above capac-
ity

66% or 2 to 3 stor-
age failure

Perspective Objective Objective Subjective Subjective Objective Objective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown
Level High Medium Medium Medium High low
Source type Exogenous Exogenous Endogenous Endogenous Exogenous Endogenous
Cause Identification of

new data source
Data growth from
new and existing
sources

Non-standard data
sources

Human error or
mistake

New data sources
or increase in data
collection

Store hardware or
software failure

Viewpoints Logical Logical Logical Logical Logical Logical
Facets Architecture Architecture Architecture Architecture Architecture Architecture
Location Capture compo-

nent
Transport compo-
nent

Transport
component

Refine
component

Store component Store component

Manifestation New data compo-
nent

Data import de-
lays

IMPALA failure to
connect with new
data sources

Demand supply Storage capacity
full

Data availability

Measure Probability Possibility Refinement cor-
rectness

Data growth rate Storage failure
rate

Monitor Governance -
data integration
requests

Demand for data
import

Integration failures
reports

Request for cor-
rection

Data growth &
against storage

Redundant clus-
ters failure rate

Evidence New data source
addition to Cap-
ture component

Data import job
history/trend

Pending data
sources due to
connection failure

Route preview Price difference

Relationship Import
congestion

Backlog of
out-standing
connections issues

Emerging time Run-time Run-time Development, De-
ployment & Run-
time

Data usage Run-time Run-time

Lifetime Perpetuity Perpetuity Perpetuity Limited Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic-

sporadic
Aperiodic-
sporadic

Systematic Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Dependencies Transport & Re-
fine components

Refine
components

Refine components Store & Analysis
components

Distribute, &
Analyse

Distribute, &
Analyses

Risk or Oppor-
tunities

Risk: Data Inte-
gration failure or
unknown data for-
mats

Risk: Data loss &
delay import

Risk: Data import
delay and failure

Risk: data corrup-
tion

Risk: data loss
due to lack of stor-
age

Risk: Data loss
due to storage
failure

Mitigation or
Exploitation

Mitigation: Ex-
tensible and able
to capture data
from other types
of sources

Mitigation: Ex-
tensible design

Mitigation: Stan-
dardisation & exten-
sible design

Mitigation: Use a
copy of original
data from trans-
port component

Mitigation:
Apache Hadoop
cluster to support
scaling

Mitigation:
Apache Hadoop
replication

Outcome (with
operators)

Integration with
AS MANY future
data sources AS
POSSIBLE

Import AS
MUCH data
as POSSIBLE
from AS MANY
sources AS
AVAILABLE

Connect with AS
MANY new data
sources AS POS-
SIBLE or Require
MINIMISE work to
connect to new data
sources

MINIMISE risk
of loosing data
from corruption
due to refinement
errors & mistakes

Scalability: Han-
dle ALL future
data storage de-
mands

MINIMISE
risks of data
loss through
redundancy

10.3. LOGICAL VIEW 121

Table 10.2: Uncertainties of the Logical view

Attribute Uncertainties
Uncertainty ID 7 8 9 10 11
Description System

performance
may degenerate

IMPALA’s capac-
ity to handle anal-
ysis demands and
security

Data distribution in-
teroperability

Management
scripts execution
success

Data access and
privacy assurance

Nature Aleatory Epistemic Epistemic Aleatory Epistemic
Bound Up to 99% of ca-

pacity
Perspective Objective Objective Subjective Objective Subjective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown
Level Medium Medium Medium Medium High
Source type Exogenous (New

data source & us-
age demand)

Exogenous
(Analysis
demand growth)

Exogenous
(external systems)

Endogenous (ex-
ecution environ-
ment)

Endogenous (Hu-
mans in the loop)

Cause System computa-
tion demands

Analysis
operations
on data

Non-standard data
sharing request

Management
script execution
failure

Data privacy
and security
violations

Viewpoints Logical Logical Logical Logical Logical
Facets Architecture Architecture Architecture Architecture Architecture
Location Store component Analysis compo-

nent
Distribute
component

Manage compo-
nent

Manage compo-
nent

Manifestation System slowing-
down

Analysis perfor-
mance and secu-
rity

IMPALA failure to
share date with ex-
ternal systems

Management
functionality
failure

Data security
breach

Measure Performance fluc-
tuations

Performance fluc-
tuations

Execution statis-
tics

Data breach de-
tection rate

Monitor Performance data
graph

Integration failures
reports

Management
functionality
results

User access logs

Evidence Performance
trends

Performance
trends

Pending data shar-
ing due to interoper-
ability issues

Management re-
sults

Relationship Backlog of
out-standing
interoperability
issues

Emerging time Run-time Run-time Deployment & Run-
time

Run-time Run-time

Lifetime Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic-

sporadic
Aperiodic-
sporadic

Systematic Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Dependencies Analyse, Manage
& Distribute com-
ponents

Distribute compo-
nents

External systems All components All components

Risk or Oppor-
tunities

Risk: IMPALA
performance de-
generation

Risk: IMPALA
performance de-
generation and se-
curity

Risk: Interoperabil-
ity failure

Opportunity: ear-
lier delivery

Risk: accident

Mitigation or
Exploitation

Mitigation:
Apache Hadoop
distributed
processing for
performance

Mitigation:
Apache Hadoop
distributed
processing for
performance

Mitigation: Stan-
dardisation & exten-
sible design

Exploitation: test-
ing

Mitigation:
Administration
through access
control

Outcome (with
operators)

Handle MAX
POSSIBLE
system demand

Handle MAX
POSSIBLE
analysis
operations
securely

Require MINIMUM
customisations to
share or publish
data

MAXIMISE suc-
cessful execution
of scripts

MINIMISE data
access and pri-
vacy violations

122 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

10.4 Functional view

Figure 10.2: Functional view of IMPALA platform from the original image in SDD1

The functional view in Figure 10.2 presents the components of the IMPALA platform from the
perspective of data importation and user interactions. It describes the functionality of each of the
architecture components and the user access of the IMPALA platform.

10.4. FUNCTIONAL VIEW 123

The main components of the functional view are Authentication, IMPALA Portal, Analyze,

Distributed Data Reservoir, Backup, Refine, Transport, Infrastructure Health Monitoring,

Security Posture Monitoring and Change Requests, Data Needed/Requested and User Access

Request. Some of these components have sub-components which we discuss in the specific
context. We consider uncertainty about each of these components and their associated
components.

As previously stated, the IMPALA platform is designed to use COTS and other already existing
components. For user management in the Authentication component, the IMPALA platform will
use the existing Johnson Space Centre (JSC) NASA Access Management System (NAMS) as
part of User Access Requests. Users with credentials interact with the IMPALA platform through
the JSC network from onsite workstations or through the JSC Virtual Private Network (VPN) by
accessing the IMPALA platform web-portal - the IMPALA portal component.

The Analyze component consists of the following functional components of the architecture:
Mission Associated Summary of Health (MASH) Report, Dashboard, Data Catalogue, Search

and Data Wrangling. All these components are designed to be customisable and flexible, thus
allowing users to explore data even with unanticipated user needs or requests. Users can create
information dashboards and visualisations, connect to multiple data sources, define and generate
a data catalogue, search for data, and wrangle(or clean) data before or after search.

The Transport component is responsible for transmitting the data from the Capture component.
It is implemented using Pentaho3 Data Integration tools to move / copy data, which is a Business

Intelligence (BI) software that provides data integration, Online analytical processing (OLAP)

services, reporting, information dashboards, data mining and Extract, Transform, Load (ETL)

capabilities3.

Furthermore, the Transport component helps with scheduling external transformation scripts
from the Refine component to be called from outside the standard copy of the data. This feature
is implemented using Trifacta4 which is designed for analysts to explore, transform and enrich
raw data in clean and structured formats.

The Refine component is implemented based on Trifacta and Pentaho to create and apply rule-
based data transformation before loading it into storage. Once created, some transformation can
be repeated for the cleaning of the data. Transformations that are saved for reuse are called static
transformations.

The Distributed Data Reservoir component and its associated Backup component are related
3http://www.pentaho.com/
4 https://www.trifacta.com/

124 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

to the Store component. In addition to storing the data, these storage components support
authentication and authorisation. The authentication is controlled using Kerberos5, which is a
computer network security protocol that authenticates service requests between two or more
trusted hosts in an untrusted network.

The authorisation uses role-based access control using Sentry6 which is a granular role-based
authorisation module for Hadoop. It provides the ability to control and enforce precise levels of
privileges on data for authenticated users and applications on a Hadoop cluster. The Backup is
implemented through the IMPALA Network Attached Storage.

IMPALA management consists of the Infrastructure Health Monitoring, Security Posture

Monitoring, and Change Requests components. These are implemented through existing
infrastructure management functionality within the MEME environment.

The Infrastructure Health Monitoring uses SolarWinds 7 which is monitoring software to detect,
diagnose, and resolve system issues such as network performance problems and outages. Security

Posture monitoring uses an agent-based log aggregation tool for security auditing and uses DELL
KACE for inventory and system management. DELL KACE8 is a system management and
deployment product that provides inventory and asset management, software distribution and
patch management. The tracking of issues is provided by Jira9, which is a software application
for issue tracking and project management.

These are the components of the functional view shown in Figure 10.2 and whose known
uncertainties we have identified in Table 10.3. Thus, together, the functional view shows the
functional interaction and capability of the IMPALA platform. The uncertainties identified and
captured in this view have the potential to directly impact the functionality of the system.

5https://www.simplilearn.com/what-is-kerberos-article
6https://cwiki.apache.org/confluence/display/sentry/sentry+tutorial
7https://www.solarwinds.com
8 https://www.quest.com/kace/
9https://www.atlassian.com/software/jira

10.4. FUNCTIONAL VIEW 125

Table 10.3: Uncertainties of the Functional view

Attribute Uncertainties
Uncertainty ID 12 13 14 15 16 17
Description NAMS disruption User access

request approval
time

Access connection
to the IMPALA plat-
form

Unanticipated
data requests

Untrusted access
connections

Introduce compo-
nents to the IM-
PALA platform

Nature Epistemic or
Aleatory

Aleatory Epistemic Epistemic Epistemic Epistemic

Bound
Perspective Objective Objective Objective Subjective Objective Objective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown
Level High Medium Medium Medium High low
Source type Exogenous or En-

dogenous
Endogenous Endogenous Exogenous Exogenous Exogenous

Cause NAMS access
failure

Approval gover-
nance committee
not available

VPN network done New data use
cases and datasets
requests

Internet access
connections

Store hardware or
software failure

Viewpoints Functional Functional Functional Functional Functional Functional
Facets Architecture Architecture Architecture Architecture Architecture Architecture
Location User Access Re-

quest & NAMS
components

User Access Re-
quest component

IMPALA portal Analyse compo-
nent

Distributed Data
Reservoir

IMPALA
Platform &
MEME network

Manifestation User access fail-
ure

Delays in grant-
ing user access

Not connection Existing features
not supporting
new request

Connections Data availability

Measure Probability Possibility Probability
Monitor Authentication

failure rates
Pending user as-
sess requests

Network status Frequency of data
analysis compo-
nent use

Data growth &
External connec-
tions

IMPALA
platform changes

Evidence System access
failure report data

Approvals pend-
ing data

No connection Count of non-
standard requests

Additional com-
ponents

Relationship out-standing
connection issues

Emerging time Run-time Run-time Run-time Data usage Run-time Deployment &
Run-time

Lifetime Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic-

sporadic
Aperiodic-
sporadic

Systematic Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Dependencies IMPALA Portal IMPALA Portal IMPALA platform Distributed Data
Reservoir

IMPALA portal,
Backup & Anal-
yse

Distribute, &
Analyses

Risk or Oppor-
tunities

Risk: Users can-
not access and
use IMPALA

Risk: Delays neg-
atively affecting
system use

Risk: IMPALA inac-
cessible

Risk: Data and
system exploita-
tion

Risk: Data secu-
rity breach

Risk: High cost
changes

Mitigation or
Exploitation

Mitigation: Mitigation: Mitigation:
Alternative
access through
Workstation JSC
network

Analyse
components
are customisable
and adaptable

Mitigation: Ker-
beros Authentica-
tion & Sentry au-
thorisation

Mitigation:
Configurable
platform

Outcome (with
operators)

IMPALA should
able available AS
CLOSE to 100%
AS POSSIBLE

Access should be
grant WITHIN
approved
TIMELINES

IMPALA should
able available AS
CLOSE to 100%
AS POSSIBLE

MAXIMISE data
use and exploita-
tion

MINIMISE risk
of external data
security breaches

MAXIMISE the
use of off-the-
self-components
and existing
infrastructure

126 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

10.5 Infrastructure view

Figure 10.3: Infrastructure view of IMPALA platform from the original image in SDD1

The infrastructure of the IMPALA platform is self-contained and is housed on a rack within a
room. It reside within the MEME network environment behind a firewall. The infrastructure

10.5. INFRASTRUCTURE VIEW 127

sub-components are deployed as both virtual machines and physical servers.

The application nodes, which are user-facing, are deployed on virtual machines across three host
machines. IMPALA Distributed Data Reservoir is deployed on two Master Nodes and four Data
Nodes. The network link between the application nodes and the data nodes within the rack is
through services on the Master nodes over a 10GB network.

In terms of connectivity infrastructure, the IMPALA rack has four switches, two 10GB switches
for intra-rack communication, and two 1GB switches for user and management access, both in a
High Availability (HA) configuration. The connection between the MEME firewall is through
the user/management switch.

Overall, the IMPALA platform infrastructure supports high performance through the following
attributes: clustering, Redundant Array of Independent Disks (RAID) configuration, Distributed
storage, Distributed processors, and Network throughput. These attributes contribute to the
handling of uncertainties according to the uncertainties of the infrastructure identified in Table
10.4.

128 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

Table 10.4: Uncertainties of the Infrastructure view

Attribute Uncertainties
Uncertainty ID 18 19 20 21 22 23
Description Application node

access
Link between
application nodes
and data nodes

Infrastructure
performance - Data
Nodes

Infrastructure per-
formance - OS
hard disks

Infrastructure per-
formance - Pro-
cessors

Infrastructure per-
formance - Net-
work Throughput

Nature Aleatory Aleatory Aleatory Aleatory Aleatory Epistemic
Bound
Perspective Objective Objective Objective Objective Objective Subjective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown
Level Low Low Medium Medium High Medium
Source type Exogenous or En-

dogenous
Endogenous or
Exogenous

Endogenous Endogenous Endogenous or
Exogenous

Endogenous or
Exogenous

Cause Hardware or soft-
ware failure

Network link fail-
ure or disconnec-
tion

Data node failure Hard disk failure Increase in pro-
cessing demand

Data transmission
growth

Viewpoints Infrastructure Infrastructure Infrastructure Infrastructure Infrastructure Infrastructure
Facets Architecture Architecture Architecture Architecture Architecture Architecture
Location Application

nodes
10GB network Nodes Nodes Nodes 10GB Network

Manifestation System down Loss of connectiv-
ity

IMPALA down IMPALA down Slow processing Slow network

Measure Probability Possibility Possibility Possibility Processor speed Bandwidths fluc-
tuation

Monitor Down-time Down-time Down-time Down-time Processing speed Network speed
Evidence Down-time data Connection time-

out data
No connection Count of non-

standard requests
Additional com-
ponents

Relationship
Emerging time Run-time Run-time Run-time Data usage Run-time Deployment &

Run-time
Lifetime Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic-

sporadic
Aperiodic-
sporadic

Aperiodic- sporadic Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Aperiodic- Spo-
radic

Dependencies User terminals Application &
Data Reservoir
nodes

IMPALA system Nodes Nodes Nodes

Risk or Oppor-
tunities

Risk: Users can-
not access and
use IMPALA ap-
plications

Risk: IMPALA
application inac-
cessible

Risk: Data loss Risk: Data loss Risk: System fail-
ure

Risk: Network
failure

Mitigation or
Exploitation

Mitigation:
Redundancy -
virtual machines
& three host
machines

Mitigation: Re-
dundancy - two
connections and
switches 10GB

Mitigation: nodes
are clustered

Mitigation:
RAID
Configuration
ensures continued
operations

Mitigation:
Distributed
Processors

Mitigation:
10GB intra-rack
backbone

Outcome (with
operators)

MAXIMISE
IMPALA
application
infrastructure
reliability

Connection
between
Application
and Data nodes
MUST ALWAYS
BE AVAILABLE

Avoid drop in un-
availability of ANY
of the nodes ser-
vices

ENSURE contin-
ued operations in
event of failure

Leverage
processor across
ALL servers
to MAXIMISE
performance

ENSURE
high speed
data transfer
BETWEEN
nodes, data nodes
and application
nodes

10.6. NETWORK VIEW 129

10.6 Network view

Figure 10.4: Network view of IMPALA platform from the original image in SDD1

The network architecture view shows the network components of the IMPALA platform. Section
10.5 of the infrastructure view implicitly refers to the components of the network architecture and
even identified some related uncertainties in Table 10.4 related to connectivity and throughput.
The network view explicitly shows the consideration of multipleNetwork Interface Cards (NIC)
teaming. The uncertainty related to the teaming of network cards to provide redundancy is
identified in Table 10.5.

130 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

Table 10.5: Uncertainties of the Network view

Attribute Uncertainties
Uncertainty ID 24
Description Network Card Status
Nature Aleatory
Bound
Perspective Objective
Awareness Known unknown
Level Low
Source type Exogenous or Endogenous
Cause Hardware or software failure
Viewpoints Network
Facets Architecture
Location Network Interface Cards (NIC)
Manifestation Connection down
Measure Probability
Monitor Down-time
Evidence Down-time data
Relationship
Emerging time Run-time
Lifetime Perpetuity
Change Dynamic
Pattern Aperiodic- sporadic
Dependencies Network connections & Nodes
Risk or Opportunities Risk: Users cannot access and use IMPALA applications
Mitigation or Exploitation Mitigation: Redundancy: Network Interface Cards Teaming
Outcome (with operators) MAXIMISE Network availability

10.7 Security view

The security architecture view shows five components of security: Perimeter Security, Authenti-

cation, Authorisation, Encryption and Policy. Figure 10.5 shows each of these components and
their associated implementation technologies/components.

The IMPALA platform is protected from network access vulnerabilities through Perimeter

Security: Within the MEME environment, IMPALA is protected through the firewall and external
user access through the VPN connection.

Section 10.4 previously discussed the implementation of authentication and authorisation security
and identified associated uncertainties. The security view clarifies the presentation of these
components by explicitly identifying their constituent components. Data in Data Reservoir are
encrypted, and data transmission is also in an encrypted. The security policy includes the use of
antivirus, logarithmic analysis, auditing, and Dell KACE, as shown in Figure 10.5.

10.8 Discussion

The preceding sections generated the uncertainty data based on specific architecture viewpoints.
This section assesses the data to evaluate their usefulness in considering uncertainty in software

10.8. DISCUSSION 131

Figure 10.5: Security view of IMPALA platform from the original image in SDD1

architecture. The analysis aims to raise awareness of the uncertainty within the architecture for
its consideration.

The discussion focuses on the following aspects: its presents an overview of the uncertainty data
in 10.8.1. Then it presents the uncertainty data as architecture knowledge and documentation in

132 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

10.8.2. Section 10.8.3 reviews the quality of the uncertainty data. Section 10.8.5 presents the
customised ATAM analysis of the IMPALA platform with quality attributes, architecture styles
or decisions, risks, sensitivity points, trade-off points, and rationale. Section 10.7, compares the
results of the uncertainty consideration framework with the results of the customised ATAM .
Finally, Section 10.9 is the conclusion.

10.8.1 Uncertainty data overview

In total, there are twenty four (24) uncertainties together from Table 10.1, 10.2, 10.3, 10.4, and
Table 10.5, identified in the Logical, Functional, Infrastructure and Network architecture views,
respectively. These are the known uncertainties. Table 10.6 lists the number of uncertainties per
architecture component.

The logical view has eleven (11) identified uncertainties, the functional view has six (6)
uncertainties, the infrastructure view has six (6) uncertainties and the network view has one (1)
uncertainty.

There are sixteen (16) unique architecture components where we identified the uncertainties. The
Nodes components found in the Infrastructure view and the Store component of the Logical view
have the relative highest number of uncertainties of three (3). The architecture design includes
mitigations for most of the uncertainties, except for two that are identified in the functional view
Table 10.3 with IDs 12 and 13, both of which are related to the User Access Request component.

Table 10.6: Uncertainties per architecture component

Architecture Component Uncertainties
Nodes 3
Store component 3
10GB Network 2
Analyze component 2
Manage component 2
Transport component 2
Application nodes 1
Capture component 1
Distribute component 1
Distributed Data Reservoir 1
IMPALA Platform and MEME network 1
IMPALA portal 1
NIC component 1
Refine component 1
User Access Request and NAMS components 1
User Access Request component 1
Total 24

10.8. DISCUSSION 133

10.8.2 Uncertainty knowledge and Documentation

As we illustrated in the overview of the uncertainty consideration data in Section 10.8.1, by simply
capturing the uncertainties, we create architecture uncertainty knowledge and documentation.
Analysing these data can provide potential information, which can be used to help focus the
efforts of the architecture designers and stakeholders to identify high-uncertainty areas or
components in the software architecture.

10.8.3 Uncertainty data quality

By definition, the set of the identified uncertainties is less than or equal to all uncertainties (the
set of all uncertainties is equal to known uncertainties and unknown uncertainties). Considering
that we cannot guarantee that the identified uncertainties are exhaustive because at least there is
possibility of the existence of the unknown unknown uncertainty; therefore, the current list of
uncertainties gives us a partial view of the system’s uncertainty status.

Furthermore, like most architecture analysis and evaluation approaches, the process depends on
the skills of stakeholders, the available resources to conduct the process, and other subjective
factors; thus, the quality of the data could be influenced by these factors.However, various
mitigations can be employed, such as an input from a second opinion.

In terms of the individual framework attributes, as has been illustrated through the uncertainties
we identified in the views, the attributes are applicable in various contexts, as they are generic to
uncertainties. However, customisations can be added to the framework depending on the need,
as we discuss later in this section.

10.8.4 IMPALA platform uncertainty consideration architecture analysis -
Report

In terms of the uncertainty framework, each of the attributes is important as they provide
information about uncertainty or its risks and mitigation as discussed in Chapter 6, the definition
of the uncertainty framework. Therefore, in this uncertainty analysis, we review the data on
some of the attributes.

The description attribute tells us about the individual uncertainties; therefore, these details are
specific. However, in the case of a repository of uncertainties, it might be important to perform
text processing with the description attribute to identify similarities among the uncertainties or
other relationships.

134 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

For most of the uncertainties, the bound attribute is blank. Two (2) uncertainties with ID 2 and 8
of the logical view, have their bounds limit up to 99%. Uncertainty ID 2 is about Data import

jobs capacity to handle data growth and uncertainty ID 8 is about IMPALA’s capacity to handle

analysis demands and security. The two uncertainties with bounds are uncertainty ID 5 and 6
which are about Data rapid growth and Data storage failure, respectively.

In terms of the Nature attribute, there are twelve (12) aleatory uncertainties and twelve (12)
epistemic uncertainties. This is a coincidence that the types are evenly distributed. However,
knowing either nature of the uncertainties helps us to think about possible mitigations if required.
Aleatory uncertainties arise from variability, thus might require different mitigation approaches
to epistemic, which arise from lack of knowledge, therefore can be reduced by managing the
knowledge gap. Each individual uncertainty requires a specific approach, as captured by the
framework.

In contrast to the nature attribute, for the perspective attributes, there are eighteen (18) objective
uncertainties and six (6) subjective uncertainties. Ideally, there should be consensus among
stakeholders about objective uncertainties, since these do not depend on the knowledge or opinion
of stakeholders. Subjective uncertainties are often relative and thus might not always generate
consensus among stakeholders.

All uncertainties are known unknowns, so, for the attribute Awareness, the identified uncertainties
are known unknowns. However, for the consideration of uncertainty, it is important to know that
there are unknown unknowns, and these can equally have a huge risk to the system. Examples of
these include natural disasters. In physical engineering construction or complex systems, often
structures are built with significant margins to mitigate against unknown uncertainties [2, 9].

An attribute that captures the expert opinion of stakeholders on uncertainty is Level of the
uncertainty attribute, which is a degree of uncertainty. The uncertainty can be high, low, or
medium. These are relative values and should not be considered absolute. Currently, the
IMPALA platform has six(6) high uncertainties, thirteen (13) medium uncertainties, and five (5)
low uncertainties. When considering uncertainties in the architecture, depending on the interest
of stakeholders, uncertainties may be prioritised based on level, in addition to other factors.

Out of the twenty four (24) uncertainties, nine (9) uncertainties are endogenous, and equally,
nine are (9) exogenous and six (6) are both exogenous or endogenous relative to the architecture
component. The uncertainty Source type provides useful information as it can tell stakeholders
where the vulnerability of the architecture uncertainties emerges the most. If most of the
uncertainties are from external sources, and that is a concern, then an alternative candidate
architecture can be proposed which reduces these. For the IMPALA architecture, from the

10.8. DISCUSSION 135

current data, it seems that the influence of both endogenous and exogenous uncertainties is
even. Therefore, the specific details of the uncertainties may need further analysis from the other
attributes to inform uncertainty management decisions.

Such specific details about the uncertainty could include understanding the underlying issue,
which is captured in the Cause attribute. Each one of the twenty four (24) IMPALA platform
uncertainty has a cause captured. It may be possible that, at times, the cause of an uncertainty
might not be obvious and will require investigation. However, knowing the cause of the
uncertainty is important, as this will inform the mitigations. Furthermore, in a larger dataset,
data about causes can be analysed to highlight key or frequent causes of uncertainties. Such an
analysis might require accumulation of the uncertainty data over a relatively longer period to
have sufficient data for significant statistical analysis.

In the Data Overview Section 10.8.1, we highlight the number of uncertainties identified from
each architecture viewpoint attribute. The Logical view has eleven (11) identified uncertainties,
the Functional view has six (6) uncertainties, the Infrastructure view has six (6) uncertainties,
and the Network view has a single uncertainty. It is important to note that each architecture
view presents architecture decisions or styles captured in terms of architecture components and
connectors. Therefore, the number of uncertainties identified in a view can be used as a good
heuristic to alert stakeholders to review the decisions made within an architecture view. We use
the term heuristic to emphasise that the uncertainty count only suggests a potential possible area
of concern.

In the context of the case study, the attribute facet is constant, as the uncertainty characterisation
we have carried out is only related to the software architecture.

Again, in the Data Overview Section 10.8.1 we highlighted the individual locations or architecture
components where the uncertainty manifests itself. Some components of the architecture have
more uncertainties than others, as highlighted in Table 10.6. In total, there are sixteen (16) unique
architecture components(locations) where we identified uncertainties. The Nodes components
found in the infrastructure view and the Store component of the Logical view have the relative
highest number of uncertainties of three (3). The architecture design includes mitigations for
most of the uncertainties, except for two that are identified in the functional view Table 10.3 with
IDs 12 and 13, both of which are related to the User Access Request component.

The Manifestation attribute indicates the appearance of the uncertainty or how the uncertainty
can be observed after its risk is achieved. Some uncertainties might have a similar manifestation,
for example, different uncertainties that cause the IMPALA platform to go down. Uncertainties
ID 20 and 21, for instance Infrastructure performance - OS hard disks and Infrastructure

136 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

performance - Data Nodes, respectively, might result or cause the IMPALA platform to go down.

Ten (10) of the uncertainties identified have the Measure attribute as Probability. The other
measure values we have identified are bandwidth fluctuation (1), data breach detection rate (2),
data growth rate (1), execution statistics (1), performance fluctuations (2), processor speed (1),
refinement correctness (1) and storage failure rate (1). Some of the uncertainties do not have any
specific measure.

The Measure attribute defines a scale which we can use to assess the uncertainty. In contrast,
the Monitor attribute is an indicator that we can use to detect uncertainty. Out of the twenty
four (24) uncertainties we have identified, most of them have there specific monitors, however,
some monitors are similar. For example, Down-time of the IMPALA platform is a monitor to
five (5) uncertainties, Integration failure reports to two (2) uncertainties, and the rest are mapped
one-to-one between the monitor and the respective uncertainty.

Both the Evidence and Relationship attributes can be used to manage a specific uncertainty and
therefore are tailored to the uncertainty. Similarly, Emerging time shows when uncertainty is
expected to manifest itself. For IMPALA, seventeen (17) uncertainties have the emerging time
during run-time, while three (3) are during data usage, and another three (3) during deployment
and run-time, and finally one (1) is during development, deployment, or run-time. Therefore,
it seems likely that the IMPALA platform might be more vulnerable to uncertainties during
runtime.

Closely related to Emerging time, are the life-time, Change, and Pattern attributes of uncertainty.
Out of the twenty four (24) uncertainties, all of them have a life-time of Perpetuity, but one (1)
which is limited. All uncertainties are expected to Change dynamically, with twenty one (21)
with a pattern of Aperiodic-sporadic and three (3) with a systematic pattern.

All twenty four (24) uncertainties have at least a value in the Dependencies attribute. This
highlights that the uncertainties in the IMPALA platform from one location are likely to impact
another uncertainty. The architecture components with the relatively high number of dependent
uncertainties are the Nodes, the Distribute and the Analyse components.

Uncertainties can have a positive or negative consequence on the system. Currently, twenty three
(23) uncertainties in the IMPALA are associated with risks. Only one uncertainty, ID 10, is
associated with a potential opportunity of earlier delivery of results if the management script
execution is successful within the Manage component of the Logical view.

One of the strengths of the IMPALA platform architecture is that twenty one (21) uncertainties
have their mitigations considered within the architecture design. One (1) uncertainty is related to

10.8. DISCUSSION 137

an opportunity, and thus it has an exploitation considered. Two (2) uncertainties, ID 12 and 13
do not have mitigations defined. These uncertainties relate to NAMS disruption and User access

request approval time, respectively.

Finally, for each uncertainty, we have specific its Outcome attribute. This is specific to the
uncertainty and related to the quality attributes of the architecture. Most of the outcomes are
related to availability, performance, security, extensibility, and scalability.

Therefore, by reviewing the uncertainty data on the IMPALA platform, we can generate
uncertainty information about the architecture, which will help stakeholders become more
aware of the uncertainty status of the architecture.

In the following Section 10.8.5, we re-analyse the IMPALA platform with the customised ATAM
approach to generate a report on the architecture. Then finally, in Section 10.8.6 we compare the
insight from the customised ATAM report with the uncertainty data report in terms of the insight
into the architecture.

10.8.5 IMPALA platform ATAM architecture analysis - Report

In terms of the ATAM , we highlight the IMPALA platform architecture risks, sensitivity points,
and trade-off points with respect to specific architecture styles and quality attributes.

In the ATAM , architecture styles are defined or identified with respect to how they aim to achieve
quality attributes. For example, one of the main quality attributes of the IMPALA platform
is performance. To achieve this, the general architecture approach of the IMPALA platform
is to use COTS architecture components with the Hadoop framework as a key component in
the architecture. This approach to achieving high performance is an architecture style. ATAM
identities specific architecture styles in an architecture with respect to quality attributes for
analysis.

Thus, in this example, the ATAM identifies the quality attribute as performance and the
architecture style as the COTS components built on Hadoop framework. The ATAM analysis of
the performance example then proceeds to identify risks, sensitivity points, and trade-off points if
present so that stakeholders are aware of them when implementing the architecture. The ATAM
only presents information and insight in a report to stakeholders. The next action will depend on
what the stakeholders consider appropriate.

Architecture styles represent architecture decisions with respect to quality attributes. The analysis
of an architecture decision with respect to a quality attribute results in the identification of its
risks or non-risks, sensitivity points or trade-off points.

138 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

In terms of the performance quality attribute, using Hadoop might be a good decision without
obvious risks, as Hadoop is an established Big Data high performance framework. However, if
we analyse the same architecture style (decisions of COTS Hadoop), in terms of the modifiability
attribute, we might realise that modifying the architecture by removing the Hadoop framework
might not be easy to achieve.

Thus, the same architecture style which works best for the performance quality attribute
introduces a risk for modifiability and a sensitivity point - since in terms of modifiability,
there is a limit to the customisations which can be applied on COTS components, depending
factors such licences and skills. Therefore, in implementing the COTS style, we have to deal
with a trade-off between the modifiability and performance quality attributes.

We can conduct a similar analysis of the IMPALA security quality attribute with respect to the
IMPALA security architecture style. In ATAM , the overall architecture of a software system
is considered an aggregation of architecture styles that focus on one or more quality attributes
[119].

In the following analysis of the IMPALA platform using the customised ATAM we introduced in
Section 8.6, we will present the architecture styles (which are decisions of the architecture) with
respect to one or more quality attributes. For each combination of style and quality attributes, we
will present some identified sensitivity points, trade-off points, and risks, if they are available.
Each of these will be justified with a rationale, as illustrated in the justification of the previous
performance quality attribute example.

Finally, we will compare the results of the ATAM with the uncertainty consideration framework
data to check if both approaches can be used to raise awareness to stakeholders to improve the
architecture by highlighting key areas of concern. As has already been highlighted through
the ATAM discussion in Section 8.6, the purpose of analysis is to help identify potential areas

where special attention might be required within the architecture as the system architecture is

implemented or evolves [119].

10.8. DISCUSSION 139

Table 10.7: IMPALA customised ATAM analysis results

Quality
attribute

Architecture style
(Decision)

Risk Sensitivity point Trade-off point Rationale

1 Scalability,
performance,
and
extensibility

Assemble
and install
the IMPALA
platform COTS
component on
the Hadoop
framework

Hadoop is a
non-risk since its
among the top
Big data storage
and analytics
framework

Hadoop is a
sensitivity point
as the scalability,
performance and
extensibility of
the IMPALA
platform depend
on it

There is a trade-
off in terms of
performance
and scalability
vs extensibility.
To take full
advantage of the
latest release of
Hadoop you need
to limit the local
customisations
to compatible
extensions with
future updates,
patches and
releases

Hadoop is a high
performance,
scalable and
available
framework
to store, process
and analyze data

2 Availability,
performance
and
scalability

The IMPALA
platform server
racks will
connect through
the existing
MEME network

The MEME
network
capability might
not cope with
future growth
and demand on
IMPALA

The MEME is a
sensitivity point
due all the three
quality attribute
depending on it

The MEME is
not a trade-off
point with respect
to these quality
attributes as they
are all negatively
affected when
MEME network
is under
performing
or vice versa

This decision
takes advantage
of the existing
NASA
infrastructure

3 Scalability,
Availability,
Security

Infrastructure
services such
as DNS, Active
Directory are
not part of
the IMPALA
platform.

If the infrastruc-
ture services were
out sourced, they
would have been
a risk of con-
trol, however, the
current services
are within NASA,
thus this is a non-
risk

Infrastructure ser-
vices are sensi-
tivity point with
respect to scala-
bility, availability
and security

Security might be
enhance with hav-
ing infrastructure
services as part
of IMPALA. But
excluding the im-
proves scalability
and availability of
the services

Instead, they
are made
available from
the Resource
Directorate
through the
Network Access
Control Board

4 Security The IMPALA
platform will not
automatically
patch or update
application
or operating
systems

Might miss im-
portant update

For security
and governance
consideration,
changes need
to be approved
before being
effected

5 Performance
and
availability

Power consump-
tion for each IM-
PALA rack is not
to exceed 5000
watts

Risk due to future
growth

Power limit High
performance
might require
more power but if
power demands
exceed limit, this
might negatively
affect availability

Limited due to
design considera-
tion

6 Accessibility
and security

IMPALA access
only through
NASA network
or VPN

Non-risk as since
this optimises Se-
curity

IMPALA
access:network
control and
restriction

Increase
accessibility
through widening
access can risk
security

Access control to
improve availabil-
ity and security

140 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

Table 10.8: IMPALA customised ATAM analysis Results

Quality
attribute

Architecture style
(Decision)

Risk Sensitivity point Trade-off point Rationale

7 Extensibility,
scalability
and
performance

Capture compo-
nent to handle a
range of present
and future data
sources

Unsupported fu-
ture data sources
formats

The capture
component range
of possible
data sources
is sensitive to
extensibility,
scalability and
performance

The more the di-
verse the type of
data sources sup-
ported, the bet-
ter the extensibil-
ity and scalabil-
ity. However,
this can impact
the performance
due to the require-
ment to manage
a variety data for-
mats

Big data system
have to be flex-
ible to incorpo-
rating a range of
data sources in ad-
ditional to rela-
tional databases

8 Performance
and Security

Transport compo-
nent to handle im-
portation of data
sources

Non-risk since
the nature of
importation is
well understood

The Transport
component is a
sensitivity point
to performance
since it can be a
bottleneck and
a single point of
failure

Transport
performance
may need to
compromise with
security since
transmission
security checks
and validation
can impact
performance

Mechanism
of running
importation
scripts to
transmit data
to destination

9 Availability
and
scalability

The Store
component
is built with
redundancy
and backup on
the Hadoop
framework

Non-risk as stor-
age is robust in
the Hadoop dis-
tributed file sys-
tem

Failure and per-
formance of the
storage will im-
pact availability
and scalability

No trade-off in
terms of availabil-
ity and scalability

Storage has to be
robust and recov-
erable

10 Performance,
scalability,
security,
availability

Analyze
component made
up of modular
components of
MASH Report,
Dashboard,
Data Catalog,
Search and Data
Wrangling

Analysis user
interface might
be vulnerable to
user exploitation
which can
threaten system
quality attributes

The Analyze
component is a
sensitivity point
to the IMPALA
use interaction
which influence
all the quality
attributes

The more security
measure are intro-
duced for users
to use the Anal-
ysis functionality
the less the sys-
tem is availability
and also might af-
fect performance
and scalability

The Analyze
component
architecture
design is to be
flexibility and
customisation
to support data
exploration and
unanticipated use
cases or requests

11 Performance,
security, and
availability

Distribute compo-
nent is deployed
on a master slave
style with two
master and four
slave nodes. Fur-
ther data is en-
crypted

Non-risk The distribute
component is a
sensitivity areas
with respect to
performance due
to data growth,
security due to
exploitation and
availability due
to failure

Encrypting Big
Data can affect
performance thus
are is a trade-off
between security
and performance

The architecture
design design
ensures robust
and high
performance
through
redundancy
and parallel
process

12 Scalability
and
availability

Manage compo-
nent is a compo-
sition of various
components: se-
curity & infras-
tructure monitor,
and issue tracking

Backup or
alternative
services of
management is
not discussed

Each module is
a sensitivity point
with regards to
the availability of
the management
services it pro-
vides

No trade-offs Management
functionality
are deployed as
independent or
modules services
thus support
scalability and
availability

10.8. DISCUSSION 141

Table 10.7 shows the ATAM results applied to the IMPALA platform with respect to the following
quality attributes: Scalability, Performance, extensibility, Availability, Modifiable and Security.
For each of these, we specify the architecture style used to achieve the quality attribute, any
potential risks, sensitivity points, and trade-offs, together with a rationale.

In total, we include twelve (12) analyses of the various combinations of quality attributes and
architecture style. Table 10.7 presents each of these. Overall, there are seven (7) architecture
styles that have risks; the rest are non-risk decisions. This means that about 58% of the identified
architecture decisions could be risky and therefore could require a further review of these. Of
course, this does not automatically mean that the architecture is flawed. The analysis is only
to highlight areas of the architecture which require attention. In ATAM , risks are architecture
decisions that might have negative consequences and those decisions that have not yet been made
[119]. In the case of the IMPALA platform, since the architecture is complete, all the risks are
based on decisions made, and thus their consequences have the potential to impact the system
while in operation.

In terms of sensitivity points, these are architecture points that have an impact on achieving a
quality attribute. The correlation might be positive or negative. The important point about a
sensitive point is to know that the desired behaviour of a quality attributes depends on them. For
example, if we look at the ATAM analysis ID 1 in Table 10.7: Hadoop is a sensitivity point to
achieving scalability, performance, and extensibility of the IMPALA platform. Changing the
Hadoop platform impacts these quality attributes. Table 10.7 presents the rest of the sensitivity
points.

Sensitivity points are directly related to trade-off points. When there are at least two (2) quality
attributes associated with a sensitivity point but in a contradicting manner, it raises a trade-off
point. For example, consider the analysis of ID 1 again. In terms of performance and scalability,
the use of Hadoop positively facilitates these. However, extensibility of the Hadoop framework
might raise a constraint such that the extensions that can be made on the IMPALA platform
should be compatible with the Hadoop updates. Otherwise, if the local customisations are
incompatible with Hadoop, future updates of Hadoop related to performance or scalability might
fail, thus negatively impacting these attributes. Therefore, a trade-off exists in this context.
Similar trade-offs on the rest of the architecture have been discussed in Table 10.7.

As we have seen, conducting architecture analysis provides extra insight into the architecture,
which, if acted on, can improve the existing architecture. Not all results of the analysis will
require immediate action. However, since the architecture of a system is an investment, it makes
sense to have this documentation and insight into the system. In the next Section, we compare

142 CHAPTER 10. CASE STUDY 2: IMPALA - UNCERTAINTY ARCHITECTURE ANALYSIS

the insight we have identified from the ATAM and the uncertainty data to assess if the results of
the uncertainty data provide any useful or additional analysis insights.

10.8.6 Comparison of analysis reports insights: uncertainty consideration
framework vs the customised ATAM

Software architecture analysis is a multi-stage incremental process that can go over iterations.
It requires inputs, processing, and outputs. The first aspect is the input, then the analysis itself,
with the final output as a report which shares the results of the analysis.

The uncertainty consideration framework and the customised ATAM analysis have different
inputs and analysis processes, so the two aspects of the analysis functions cannot be easily
compared. Therefore, we remain with the output of the two analyses to compare the two
approaches. However, again, the specific details about the output of the two analysis approaches
are different, thus, the individual specific details of the output might not be a suitable basis for
comparison.

But a solid basis for comparing the two analysis approaches is whether they contribute to the goal
or objective of architecture analysis. As we discussed in the evaluation strategy chapter, Chapter
8, the goal of architecture analysis is to identify insights into the software architecture and to
make stakeholders aware of the point of interest in the architecture for its potential improvement.
Given this information, a stakeholder may decide to take action, ignore the information, or
reserve any action until specific conditions are met.

Therefore, being aware of this rationale for conducting software architecture analysis, our
approach to compare the two approaches is to assess whether either approach generates insights
that could inform stakeholders about the architecture.

In terms of the ATAM process, in the customised version that we applied it, the input included
the software architecture, quality attributes, scenarios, and the analysis results are the risks,
sensitivity points, and trade-off points. Taking into account Table 10.7, there are some clear
insights from the analysis output that stakeholders should take into account when implementing
the IMPALA architecture.

For instance, consider the ATAM analysis ID 5, the architecture constraint on power that it should
not exceed 5000 watts per rack is a significant limitation, which requires careful consideration
of its consequences. Similarly, the ATAM result ID 6, with respect to accessibility and security
of the IMPALA platform, is a significant sensitivity point and raises a useful trade-off between
these attributes for consideration.

10.9. CONCLUSIONS 143

The results of Table 10.7 provide insight into the IMPALA architecture which stakeholders could
find useful and relevant. ATAM is an established architecture analysis methodology; thus, in
practice, it is highly likely that such output insights can influence the architecture of a system.

Similarly, if we consider the results of the uncertainty data analysis, the data provide a unique
perspective to the analysis of the software architecture. The uncertainty analysis approach is
unique, as no such an approach exists that characterises the uncertainty of a software architecture
into specific attributes and uses them for architecture analysis. The individual attributes of
the uncertainty framework, as we discuss in Section 10.8.4, provide information about the
architecture that can be considered to process and manage the uncertainty in the software
architecture.

From the uncertainty data analysis report, which we presented in Section 10.8.4, a number
of insights have been generated about the IMPALA architecture. Not only in terms of the
characterisation of the uncertainty, but also in terms of identifying uncertainties that lack
mitigation or might require exploitation. Of course, taking advantage of the analysis result
depends on other factors and priorities such as budget, time-lines, and implementation constraints.
However, having the uncertainty information in a concise and precise manner ensures that the
architecture details are documented and preserved as architecture knowledge for future use.

Thus, comparing the uncertainty consideration framework analysis from Section 10.8.4 and the
customised ATAM results from Section 10.8.6, both approaches provide documentation, generate
architecture knowledge, and can be exploited for insight to improve or understand the software
architecture of a system.

10.9 Conclusions

The IMPALA case study aimed to evaluate the uncertainty consideration framework as an
approach to considering uncertainty in software architecture and to assess the feasibility of the
approach. We identified uncertainties of the IMPALA platform architecture with respect of
various viewpoints. Then we aggregated the uncertainty data for analysis to generate architecture
knowledge, documentation, and analysis. To assess the soundness of our approach, we conducted
a separate analysis of the IMPALA architecture using a customised version of the ATAM to
generate architecture, knowledge, documentation, and analysis. Comparing the results from the
two approaches, we note that each provides a unique perspective to the architecture, but both
provide insightful information which can inform the architecture stakeholder about its state.

11CHAPTER ELEVEN

CASE STUDY 3: IOV -
COMPARISON OF

CANDIDATE
ARCHITECTURES ON

UNCERTAINTY

This case study is from ITS. A specific category of ITS is the concept of IoV, which is an
application of IoT. Various layered candidate architectures for IoV have been proposed with
different capabilities. These range from three-layer architectures to seven-layer architectures.
In this evaluation, we compare two state-of-the-art 7-layered candidate architectures of IoV
based on their potential to handle or mitigate specific common uncertainties of IoV. We identify
common uncertainties in the literature on the IoV architecture. The object of the case study is to
demonstrate that, using the uncertainty framework data, we can compare candidate architectures
and gain insight which can contribute to selecting a particular candidate architecture among
alternatives.

11.1 Overview

IoV are intelligent network systems with software-defined networks, software applications, and
operate in complex environments [6]. IoV have a variety of potential benefits, including the

145

146 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

sharing of information and communication between vehicles and between vehicles and the
transport infrastructure, pedestrians or other relevant entities [6, 7, 16].

However, from these multiple interactions also arise potential uncertainties, such as coordination
between vehicles, insufficient information, scalability, etc. However, advances in communication
and computing technologies such as cloud and/or fog computing, Big Data processing and
analytics, machine learning, and artificial intelligence present opportunities to mitigate such
challenges [16].

Various architectures of IoV have been proposed with different strengths [7, 16]. In this
evaluation, we compare such candidate architectures of the emerging IoV based on whether
they handle the common identified IoV uncertainties. Our approach is to identify common
uncertainties about IoV from the documentation and then compare and evaluate the IoV candidate
architectures based on their handling of such common uncertainties. Thus, we illustrate a
potential application of the uncertainty framework data to compare and rank candidate system
architectures.

The whole process has steps from step 1 to step 8 where we present the comparison or ranking
result:

1. Identify uncertainties and assign each of them an Influence measure value, as illustrated in
Table 11.1.

a) Decide the ordinal measure to use for Influence measure value

2. Identify the candidate architecture to compare or rank

3. Analyse the candidate architecture to assess its mitigations to handling the uncertainty risks.

a) Decide the ordinal measure to use for candidate architecture mitigation degrees

4. Assign ordinal scores to the candidate architecture to indicate the degree to which they can
potentially mitigate against uncertainty risks.

5. Generate the ground data of the architecture as illustrated in Table 11.2

6. Encode the ordinal data of Table 11.2 into numerical values, as illustrated in Table 11.3.

7. Apply specific algorithms details to determine the ranking of the candidate architecture. In
this case, we have three algorithms.

a) Algorithm one - weighting algorithm, Section 11.3.5.1

11.2. IOV ARCHITECTURES 147

b) Algorithm two - enhanced weighing algorithm with mean, Section 11.3.5.2

c) Algorithm three - eliminate similar uncertainties and then weigh, Section 11.3.5.3

8. Present the results which might be valid, invalid, or inconclusive.

In the following section, we introduce each of the architectures and the associated uncertainties.
Then we define the basis for comparing the uncertainties. After that, we compare the architecture
and present the results of the analysis.

11.2 IoV Architectures

IoVs are complex cyber-physical systems with numerous components that interact and a huge
amount of data generated to facilitate vehicle operation activities such as driver safety, traffic
efficiency and infotainment [6, 7, 16]. IoV possible range of communications include inter-
communications between vehicles and other objects using Vehicle-to-Vehicle (V2V), Vehicle-
to-Road (V2R), Vehicle-to-Infrastructure (V2I), Vehicle-to-Building (V2B), Vehicle-to-Home
(V2H), Vehicle-to-Everything (V2X) and Vehicle-to-Grid (V2G). Also within the vehicle are
intra-communications such as information exchanges between Vehicle-to-Device (V2D), Vehicle-
to-Sensor (V2S) and Device-to-Device (D2D) [6, 7, 16].

In smart cities, inter-communication could also include other environmental elements, such as
monitoring pollution and using vehicles for environmental awareness with the range of sensors,
including visual monitoring [6]. Figure 11.1 shows an overview of the IoV environment. In this
section, we introduce the two IoV architectures which we evaluate in this case study.

11.2.1 Candidate Architecture One

Figure 11.2 shows the components of one of the proposed Universal Internet of Vehicles (UIoV)
architecture, which considers the operation of IoV in the context of smart cities as illustrated in
Figure 11.1.

One of the challenges with architecture representation in practice is that architecture is rarely
represented with a formal consistent notation. Often, architecture is represented using informal
notation with a focus on presenting the idea while generally ignoring formal notations. In this
case study, we use the original image of the UIoV architecture as shown in Figure 11.3.

The issue of consistency among architecture representation approaches is one reason why we
designed the uncertainty framework to be generic without prescription for specific guidelines for

148 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

Figure 11.1: Universal IoV for smart cities overview (Image from [6])

its application. Thus, the framework can be applied in a range of different contexts with minimal
customisations.

The seven(7) layers that make up the UIoV architecture include the Identification, Physical Object,

Inter-intra Devices, Communication, Could Services, Multimedia & Big Data Computation and

Applications layers. In the following listing, we present the functionality and responsibility of

11.2. IOV ARCHITECTURES 149

Figure 11.2: Universal IoV Layers (Image from [6]))

each of the layers.

1. Identification layers assigns identifiers to IoV components. Within the IoV, there are two
categories of components, vehicles and non-vehicles. The Identification layer is responsible
for assigning such objects unique IDs for global identification.

2. Physical Objects layer is responsible for collecting data from all components, vehicles and
non-vehicles, within the UIoV environment. The data are sent to the intra- or inter-device
layer for processing. Thus, the Physical Objects layer is responsible for collecting data from
all UIoV components for the intra-inter layer.

150 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

3. Inter-intra devices layer is unique to UIoV. It works in coordination with Communication

layer to support UIoV communications. Intra components refer to sub-components of an
UIoV component. For example, a vehicle can have intra-components such as a traffic warning
system or a direction system like Global Positioning System (GPS) . The inter-components
refer to external components such as vehicles, pedestrians, road infrastructure, etc.

4. Communication layer is responsible for communicating among the IoV components,
including handling communication between heterogeneous components. Therefore, this
layer includes adapters to manage translation between heterogeneous components and
accommodate diversity and variety of components. In addition, this layer needs to handle
low-power communication in a noisy environment.

5. Cloud services layer support scalability and performance of UIoV by providing both
computing power, storage, and infrastructure. Cloud services can be implemented through
both public clouds and private clouds.

6. Multimedia and Big Data Computation layer is composed of three sub-layers which highlight
its functionality and performance: data pre-processing sub-layer, big data computation sub-
layer and intelligent transportation sub-layers. Together with the appropriate hardware, this
layer is designed to be high-performance for Big data processing, analytics and intelligence
libraries.

7. Applications layer is user orientated where smart application operate to provide services
ranging from traffic safety and efficiency to multimedia base infotainment.

Thus, these seven layers present the architecture of the UIoV. In the next section, we present the
architecture of the second candidate of the IoVs, which also has seven layers.

11.2.2 Candidate Architecture Two

Figure 11.3 shows the seven (7) layers of the second candidate architecture. The architecture is
designed with the seven layer to support the transparent interconnection of all components of the
IoV network and the distribution of data within the IoV environment [7]. Of particular interest in
this candidate architecture is the security layer, which is responsible for the following: managing
authentication, authorisation, and monitoring and auditing all transactions between all entities in
the IoV environment [7].

The other architecture layers are: User interface, Data Acquisition, Filtering & Pre-processing,

Communication, Control & Management, and Processing layers and a cross-cutting Security

11.2. IOV ARCHITECTURES 151

Figure 11.3: Candidate architecture two - IoV Layers (Image from [7])

Management layer. All of these layers work together to support the seamless and explicit
interconnection of all IoV elements in all environments. Each of these has the following
responsibilities:

1. User interface or vehicle interface which handles communication between driver and vehicle.
It includes a management unit to coordinate notifications to the driver and a user interface to
minimise distractions.

152 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

2. Next, we have the Data Acquisition layer, which aims to collect data from a variety of
sources. Data sources include internal vehicle sensors, the GPS, traffic lights, road signals,
etc.

3. Taking into account the data collected in the Data Acquisition layer, the next layer is the
Data Pre-processing layer, which filters out irrelevant data and thus reduces data growth.
Data filtering is configured through services created for the vehicle that has subscribed or
activated services.

4. After the data have been filtered, the next step is to transmit them to their destination. The
Communication layer is responsible for this role. One of its key functions is to select an
optimal network to send the data. Several factors are considered in making the decision
for the optimal path: These include congestion and quality of service levels over network
options, information relevance, privacy, and security, among other considerations.

5. Once the information is sent, the next activities relate to controlling and managing the
transmission networks. This is achieved with the Control and Management layer. At this
layer, the various network service providers within the IoV are controlled and managed.
Examples of such functionality include traffic management and traffic engineering.

6. The Processing layer follows the Control and Management layer. Its purpose is to process
large amounts of data and information. This is where the cloud computing infrastructure
is based. The key features of this layer include the storage, processing, and analysis of the
information received from the other layers.

7. Finally, the Security Management layer extends to the other layers since security is a
consideration in each aspect. It provides features such as data authentication, integrity,
non-repudiation and confidentiality, access control, availability, etc. In general, the security
layer aims to provide mitigation solutions to address security threats from various possible
attacks.

These seven layers present the second candidate architecture. Similar to the first architecture,
this architecture is presented with semi-formal notation with the architecture providing a logical
overview of the IoV system.

In the next section, we describe the approach we used to compare the two candidate architectures
based on the common uncertainties that we identified. Additionally, we introduce specific
attributes in addition to the existing attributes of the uncertainty consideration framework to

11.3. CANDIDATE ARCHITECTURES COMPARISON APPROACH 153

capture the potential influence of an uncertainty on the architecture. This illustrates the use of
the extensibility feature of the framework.

11.3 Candidate Architectures Comparison approach

Uncertainty can have various degrees of influence on a system. Among the attributes of a unit
uncertainty, for this case study, we have introduced an influence attribute. This attribute is used
to capture the potential influence of individual uncertainty, as we discuss in the next section.

11.3.1 Uncertainty influence measure attribute

The case study uses the uncertainty influence attribute to reason about the potential vulnerability
of a system’s architecture to uncertainty. The architecture designer is meant to assign the value
of the influence measure attribute. To do this, they should assess the unit uncertainty information
to come up with a rationale to justify their influence value choice. Thus, their choice depends on
both their expertise and the details of the unit uncertainty.

The use of user input is familiar in software architecture analysis and evaluation activities. Various
software architecture evaluation and analysis methods use the input or opinion of stakeholders
to reason about architecture analysis and evaluation [40, 119]. However, one limitation of
such approaches is that they depend on the knowledge of stakeholders, making them prone
to subjectivism and bias. Some mitigations to such threats include techniques such as voting,
averaging, and aggregation of input to achieve consensus [27, 86, 120].

In the context of this case study, the framework uses rationale and uncertainty details to justify a
user assignment of an uncertainty influence measure value. This does not guarantee accuracy and
objectivity, but encourages the architect to consider the available information on the uncertainty
while assigning the Influence measure.

11.3.2 Framework extensibility - Influence measure attributes

As stated above, the uncertainty influence measure captures the potential impact of an uncertainty
on the architecture. The architecture designer assesses the attributes of the uncertainty to arrive
at a judgement of the influence values of the unit uncertainty. Each category of uncertainty
attributes can provide details that can help the expert make a judgement about the uncertainty.

The uncertainty attributes, as defined in the framework, can contribute the following details:
the descriptive attributes can provide factual details of the uncertainty. The source attribute can
provide details on the cause of the uncertainty. The manifestation attribute can deal with details

154 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

about the materialisation of the uncertainty. Mapping attributes can contribute to the influence
assessment by presenting information about the relationship and impact of the unit uncertainty
with other uncertainties and architectural elements.

11.3.3 The common uncertainties

So far, we have identified twelve (12) common uncertainties for IoV, which we use to assess
candidate architectures. These uncertainties were identified in a similar approach we followed to
identify uncertainties in the previous two case studies. The raw uncertainty data are available in
the Appendix C in Tables C.1 and C.2.

The description attributes of each of the twelve (12) uncertainties have the following values:
IoV network bandwidth, IoV computation capability, IoV storage capacity, IoV network failure,

IoV coordination failure, IoV vehicle data and other components growth, IoV future services,

IoV protocols variations and heterogeneous, IoV range of communication or interconnection

channels, IoV real-time operation, IoV security and IoV mapping localisation.

For each of these uncertainties, we assigned an ordinal1 value to its Influence measure attribute
as shown in Table 11.1. Each influence measure value is based on the expert opinion given the
uncertainty details to justify its assessment. We use the following ordinal1 values: Very High,

High, Medium and Low to indicate the potential impact that uncertainty could have on a system
if its not mitigated and its risks manifest.

Since these are ordinal values, by definition, the differences between the values, for example,
between Very high and high do not have a significant meaning. The purpose of the individual
ordinal values is to signal that a degree of difference exists between values with one more extreme
than the other, therefore, supporting ordering or ranking. Thus, in terms of uncertainties, having,
for example, a Very high influence measure simply means that the particular uncertainty is more
significant to the architecture than the others with lower values, such as High or Low. The use of
an ordinal measure ensures that individual uncertainties can at least be ordered or ranked1.

Table 11.1 shows each uncertainty description and its associated potential influence measure in
the system. In the next section, we explore each of these uncertainties with respect to the two
candidate architectures, and then compare and rank the architectures depending on their potential
vulnerability to these uncertainties.

As indicated previously, an existing challenge in architecture evaluation and analysis is that, most
of the time, the source of ground truth data depends on expert opinion or stakeholder interest,

1https://en.wikipedia.org/wiki/Ordinal_data, last accessed on 05 June, 2022

11.3. CANDIDATE ARCHITECTURES COMPARISON APPROACH 155

Table 11.1: Uncertainties and their influence measures

Uncertainty description Influence measure
1 IoV network bandwidth High
2 IoV computation capability Medium
3 IoV storage capacity High
4 IoV network failure Medium
5 IoV coordination failure Medium
6 IoV vehicle, data, and other components growth High
7 IoV future services Medium
8 IoV protocols variations and heterogeneous Medium
9 IoV range of communication or interconnection channels Medium
10 IoV real-time operation Very high
11 IoV security High
12 IoV mapping localisation Medium

thus, the validity of most analyses or evaluation results are vulnerable to this threat [27, 120].
Our assignment of the Influence measure values to the twelve common uncertainties vulnerable
to this threat.

In the next step of the evaluation, which we present in Section 11.3.4, for each uncertainty
in Table 11.1, we assess the degree to which a candidate architecture mitigates the risks from
each of these twelve (12) uncertainties. For each candidate, we assign a corresponding score to
indicate the degree to which its mitigates against the risks from the uncertainty. Section 11.3.4
presents the justification or rationale for assigning a particular ordinal mitigation value to each
candidate. The resulting data are captured in Table 11.2 which is used as the basis for the final
analysis.

11.3.4 Uncertainties analysis - ordinal data generation

For each uncertainty handled, we assign it an ordinal measure, which signifies to what extent
the uncertainty is handled or controlled; collectively, we use the term mitigated. The ordinal
measures that we use to express this are the following: Strongly Mitigated, Mitigated, Partially

Mitigated and Unmitigated.

In the context of this case study, Strongly mitigated refers to a solution that explicitly considers
uncertainty and has been verified as a suitable mitigation. For example, consider an architecture
decision on a vehicle computation or processing requirements. If an architecture proposes a
solution that requires a minimum computational capacity for the vehicles to join the IoV, this
could Strongly mitigate against the risks of not meeting this computational requirement standard.

156 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

Table 11.2: Uncertainties, Influence, and Candidate Architectures

Uncertainty description Influence measure Candidate One Candidate Two
1 IoV network bandwidth High Partially Miti-

gated
Mitigated

2 IoV computation capability Medium Mitigated Mitigated
3 IoV storage capacity High Mitigated Mitigated
4 IoV network failure Medium Mitigated Strongly miti-

gated
5 IoV coordination failure Medium Mitigated Partially miti-

gated
6 IoV vehicle, data, and other

components growth
High Strongly miti-

gated
Strongly miti-
gated

7 IoV future services Medium Strongly miti-
gated

Mitigated

8 IoV protocols variations and
heterogeneous

Medium Mitigated Mitigated

9 IoV range of communi-
cation or interconnection
channels

Medium Strongly miti-
gated

Mitigated

10 IoV real-time operation Very high Mitigated Mitigated
11 IoV security High Partially miti-

gated
Mitigated

12 IoV mapping localisation Medium Mitigated Mitigated

Thus, this Strongly mitigates against the computational uncertainty risks.

The Mitigated ordinal measure signals a specific mitigation against an uncertainty that has
been explicitly considered to handle or control the uncertainty. It does not Strongly mitigate

the uncertainty, but it does mitigate it. For example, when there is uncertainty about Quality

of services regarding communication, the architect may consider a decision about a layer or
component that aims to select the most optimal communication option available. This might
be a good solution to Mitigate against uncertainty of the quality of services. But this does not
guarantee Strong mitigation, as a suitable option may not always be available to select from
among the set of available options.

The Partially mitigated refers to mitigations that can potentially be assigned or claimed to
have the capacity to handle or control some known uncertainty. Such mitigations are often
not explicitly defined for the purpose of mitigating the uncertainty but can be inferred or
demonstrated from the context to have the appropriate mitigation effect. For example, given an
uncertainty related to Network bandwidth fluctuations, an architecture with a design to handle or
control communication within a noisy environment might also handle or control communication

11.3. CANDIDATE ARCHITECTURES COMPARISON APPROACH 157

disruptions arising from Network bandwidth issues. Although the mitigation is not specifically
designed for this purpose, we consider this Partially mitigated.

Finally, the Unmitigated ordinal measure is an extreme where an uncertainty exists without
an explicit or implicit and obvious mitigation. This uncertainty exposes the system to the
consequences of unmitigated risks. Such unmitigated uncertainties could also arise from known
unknowns.

In the following list, we consider each of the two candidate architectures and assess how they
mitigate the risks of the uncertainties in Table 11.1. The twelve (12) uncertainties in Table 11.1
are assigned a corresponding mitigation score for each candidate architecture: Candidate one

and Candidate two. We use this analysis as a basis to compare and rank the two candidate
architectures with respect to the degree with which they are likely to be vulnerable to these
twelve (12) known uncertainties. The results of the analysis are captured in Table 11.2.

1. The IoV network bandwidth uncertainty is aleatory, with the network bandwidth variation
between the maximum available bandwidth and zero. The fluctuation of the bandwidth risks
the quality of services of IoV degeneration. Ideally, the IoV should aim to maximise the use
of the bandwidth to ensure network reliability and quality.

Candidate One architecture manages this uncertainty in its Communication layer where
issues such as noisy communication in a low-power environment are considered. However,
this mitigation is not explicitly for IoV network bandwidth uncertainty, thus we assign it a
score of Partially mitigated.

Candidate two similarly has a Communication layer where network related uncertainties are
mitigated. Specifically, with regard to bandwidth, communication layers include explicit
consideration of quality of service where data transmission is optimised by sending it through
the most effective option, depending on factors such as congestion and quality of service
levels over the network options, information relevance, privacy, and security, among other
considerations. Thus, we assign it a score of Mitigated.

2. The IoV computation capability is related to the computational power that could be required
to process data and run IoV applications, in addition to the real-time operational requirements.
Considering that vehicles may not have high computational power at their disposal, solutions
within the architecture are required that mitigate such an uncertainty.

Candidate One has a specific layer dedicated to cloud computing which handles scalability
or IoV computational capability. This layer considers various cloud computing technologies
including the public and private cloud. Vehicles and other elements can take advantage

158 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

of cloud computing infrastructure to enhance their computational capabilities. Thus, in
case of manifestation of risks from IoV computation capability uncertainty, the additional
computation capacity from cloud resources can help mitigate, if the connection is available.
Thus, this uncertainty is Mitigated.

Candidate two architecture has Processing layer where computational uncertainty can be
handled by the IoV using cloud computing infrastructure (private, public and enterprise).
Cloud computing is one of the key enablers of IoV; however, when the network is not reliable,
it can pose challenges in terms of real-time processing. Another enabling technology is
fog computing, which prioritises infrastructure near the IoV nodes, thus mitigating issues
such as latency. However, mitigation in the context of Candidate two only focuses on cloud
computing, which still handles this uncertainty, thus it is Mitigated.

3. IoV storage capacity is an area of uncertainty in IoV, considering the amounts of data growth,
individual IoV elements or components are likely to generate or require more data than
they can efficiently store or process, thus there is a need for Big Data solutions within IoV.
Among the possible solutions to Big Data challenges are the cloud solutions which both
of the two candidate architectures incorporate in their design; thus, they both mitigate this
uncertainty.

Candidate One architecture, as discussed previously, incorporates the cloud architecture style
within its architecture, thus mitigates this uncertainty.

Candidate two architecture, equally, as previously discussed, incorporates the cloud
architecture style within its architecture, thus Mitigates this uncertainty. We consider it
not Strongly mitigated as the cloud infrastructure could be unavailable due to uncertainties
such as IoV Network failure.

4. The IoV network failure uncertainties are related to the range of potential sudden connectivity
issues that might arise within the IoV. The cause of these could include hardware failures of
IoV component network receivers, transmitters, and relays, among other possibilities. The
risks of IoV network failure include data loss, related disruptions, and accidents.

Candidate One architecture handles uncertainty in network issues through abstracting the
communication within the Communication layer and the Inter-intra devices layer such that
both individual IoV elements and sub-elements communicate at an abstract level. Of course,
in the case of actual physical damage, in the absence of redundancy, the failure of the network
can be permanent; thus, we consider this uncertainty Mitigated instead of Strongly mitigated.

Candidate two architecture includes a more explicit consideration of the robustness of the

11.3. CANDIDATE ARCHITECTURES COMPARISON APPROACH 159

network within its Communication layers which has a Communications service provider

sub-layer that has communication options such as Wi-Fi, DSRC Roadside, LTE, and 3G.
This provides explicit alternatives in the case of a specific network failure due to the hardware
of some of these alternatives. Thus, we assign this architecture a score of Strongly mitigated.

5. The IoV coordination failure uncertainty might arise when interactions among IoV com-
ponents fail. These include inter-component coordination, such as between vehicles, and
intra-component such as among devices within a vehicle and inter-object, for example,
between a vehicle and road-traffic-light infrastructure or cameras. Coordination is a key
part of IoV applications, which facilitate driving safety and congestion management, among
other applications. For coordination to be operational, there must be both network and
storage capabilities to support coordination, in addition to the implementation of specific
coordination software applications.

Candidate One architecture supports coordination through unique identifiers of IoV compo-
nents, both vehicles and non-vehicles, specified within the Identification layers. In particular,
coordination is supported through the robustness of Communication layer and Intra-inter

devices layers where coordination challenges Mitigated. Additional coordination challenges
might arise for applications. This architecture considers an Applications layer but does not
discuss specific details that we can relate to the IoV coordination failure uncertainty. Thus,
we consider this uncertainty Mitigated.

Candidate two architecture considers coordination at the user level with User interface

layer which handles coordination of notifications between the driver of the vehicle and the
various interfaces within the vehicle to minimise distractions. The Communication layers

and Control and Management layers facilitate coordination between components through
their effective communication processing. However, this observation is not explicitly stated
within the design; therefore, we assign the mitigation measure of Partially mitigated.

6. The IoV vehicles and other components growth uncertainty is related to the potential uncertain
growth pattern that can emerge within the IoV due to demand and other factors. The number
of vehicles might grow; similarly, the number of components - whether within a vehicle or
the supporting infrastructure such as traffic lights, cameras, smart-road technology - might as
well grow in uncertain or unforeseen patterns causing pressure of the IoV, such as negatively
affecting the quality of services and management of scalability.

Candidate One architecture has been designed with scalability and Big Data management
as key drivers. Individual layers support specific scalability and growth characteristics.
Specifically, the Cloud services layers and the Multimedia and Big Data Computation layer

160 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

define specific capability to handle uncertainties of potential growth requirements. The
architecture is designed with specific capabilities to handle growth uncertainty; therefore, we
consider this Strongly mitigated.

Candidate two architecture is designed similarly with growth as one of its key quality
attributes. Each of its layers specifies a specific capability to support scalability and handle
growth in terms of Big Data. Some specific layers include specific capabilities, such as within
Data Acquisition layer, which collects data from a range of sources. Then Filtering & Pre-

processing layer removes irrelevant data to manage data growth. The communication layer

is designed to handle a range of possible communications and therefore supports scalability.
Each layer is designed with such specific capabilities to handle growth uncertainty; therefore,
we consider this Strongly mitigated.

7. The IoV future services uncertainty related to potential new services that could emerge over
time as the IoV transform. Initially, the IoV could focus on essential driving services, such
as road safety and traffic management, among other road services. However, as IoV develops
and evolves, other services may need to be introduced, such as providing a comfortable
driving experience, including infotainment and efficient driving for environmental protection.

Candidate One architecture has been explicitly designed with future services in mind
considering the evolution of IoV with smart cities. In this context, in addition to essential
driving services, the architecture considers infotainment services and using IoV in smart
cities to manage services such as environmental pollution monitoring. Thus, this uncertainty
is Strongly mitigated.

Candidate two architecture has been designed with explicit consideration of essential services
and infotainment future services. However, it does not consider future services such as using
the IoV to manage the environment within a smart-city. Therefore, this architecture handles
essential and information services but could be vulnerable to the requirements of new future
services, so we consider the uncertainty Mitigated.

8. The IoV protocols variations and heterogeneous relates to the number of different vehicles
or components that operate or can connect to the IoV and associated services. Such
differences might introduce uncertainty in terms of variations and heterogeneity. Thus,
an IoV architecture should be designed to support variations and heterogeneity uncertainty.

Candidate One architecture has Identification layer which allows the abstraction of IoV
components such that they can be uniquely but uniformly identified, independent of their
heterogeneity and specific protocol variations. Furthermore, the other layers support variation

11.3. CANDIDATE ARCHITECTURES COMPARISON APPROACH 161

and heterogeneity by providing generic approaches of interactions among objects, such as
Physical Object layer and Communication layer. However, considering that heterogeneity
and protocol variation can manifest in a range of unknown ways, we consider it Mitigated,
as it would be hard to justify Strong mitigation considering the range of possibilities.

Candidate two architecture Mitigates the uncertainty from heterogeneity and variations in
its various layers through generic interfaces and standardisation. It does not have a specific
layer which abstracts IoV components and objects. Communication depends on the standard
network infrastructure from Communication layer and also the generic process from Data

acquisition layer, which can collect data from a range of heterogeneous and various protocols,
including vehicle internal sensors, GPS , traffic lights, road signals, etc.

9. The IoV range of communication or interconnection channels uncertainty relates to the
possible communication channels with which IoV can be requested to support. Ideally, the
universal connection should be between Vehicle and everything [16]. However, specific
architectures are designed to handle a sub-set of the possible connections [16]. With the
Vehicle and everything model, new connections might emerge from unexpected sources or
objects, such as environmental monitors to monitor air pollution using vehicles or various
motion sensors in addition to driving-related activities [6].

Candidate One architecture is design as a universal architecture and, in the context of smart
cities, therefore, considers the possibility of communication with a range of channels. Its
communications depend on Identification layer, in addition to Physical objects, Inter-intra

device and Communication layers. Thus, this uncertainty is Strongly mitigated.

Candidate two architecture is designed for IoV with a focus on communication between
vehicles, within a vehicle, and the communication between a vehicle and inter-connected
infrastructure. It does not explicitly consider connections with everything in a smart city,
but its standard network technologies might still support most of the demands from such an
unexpected connection request, if required. Thus, we consider the uncertainty Mitigated.

10. The IoV real-time operation uncertainty relates to the requirement that IoV must operate in
real time for some applications, such as traffic management or vehicle warning systems, to
avoid or mitigate accidents. The real-time operation is related to both network connectivity
and the available capacity to process data or information in real-time, in a timely way.

Candidate One architecture includes various architecture styles and elements, which enhance
the robustness of the real-time operation of the IoV. These include the use of Cloud services

layer to enhance processing and storage, Communication layer to facilitate data transmission,

162 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

and Multimedia and Big Data Computation layer for high performance processing. With
real-time uncertainty, there might be many unknowns that might cause the failure; thus we
assign it Mitigated.

Candidate two architecture similarly, has various mitigations that can support the operation
of the IoV in the context of real-time processing uncertainty. These include Processing

layer which has various cloud computing services and Communication layer which supports
various robust data transmission technologies. Thus, mitigating against real-time operational
uncertainties.

11. The IoV security uncertainties, relate to the various security threats to which the IoV and its
individual elements might be exposed or threatened. Realistically, it is almost impossible
to Strongly mitigate against general security, as threats arise from many sources; however,
there are always specific measures that a system can take to mitigate the risks of security
uncertainty.

Candidate One architecture, does not, specify a specific layer to handle security, however,
the design implies security consideration within most of its layers from their design and
discussion thus its Partially mitigated.

Candidate two architecture does explicitly includes a security layer that is cross-cutting
among the other layers. The Security layer spans the rest of the layers and includes features
dealing with data authentication, integrity, non-repudiation and confidentially, access control,
availability, etc. Thus, we consider the risks of security Mitigated.

12. The IoV mapping localisation uncertainty is related to a possible application of IoV to
map and localise vehicles for various conveniences, such as finding the nearest services or
managing traffic congestion. As mapping and localisation are key services to the successful
operation of an IoV, architectures must be designed to support such a service and mitigate its
uncertainty in terms of accuracy and availability, among other factors.

Candidate One architecture uses existing services such as GPS to manage mapping and
localisation. Furthermore, it suggests that local sensors might be used to provide information
on mapping and localisation within a smart city environment. The uncertainty of mapping
localisation is Mitigated with such entities.

Candidate two architecture uses GPS services with Data acquisition layer to handle
localisation and mapping, thus relying on the robustness of GPS to Mitigate risks of IoV

mapping localisation uncertainty.

Thus, so far, we have individually assessed each candidate architecture and assigned it a degree

11.3. CANDIDATE ARCHITECTURES COMPARISON APPROACH 163

to which it mitigates against the individual risks of the twelve uncertainties. The next step is
to analyse these data so that we can compare the two candidates. We conduct this analysis in
Section 11.3.5. To achieve this, we define algorithms to guide us in the analysis.

11.3.5 Ranking candidate architecture: comparison

Table 11.2 shows the ordinal data we have generated from the uncertainty details of the two
candidate architectures. In this section, we use the data as ground data to perform an uncertainty
comparison and ranking of the two candidates. The results of the analysis aim to determine
which, if any, of the two candidate architectures is likely to be less vulnerable to uncertainty. To
conduct these comparisons and rankings, we propose three algorithms to produce the ranking or
comparison of the candidate architectures.

Before we proceed, let us first look at an overview of the process from the start to the end so
that we get a clear picture of the current stage, which is Step 7 in the procedure in introduced in
Section 11.1.

11.3.5.1 Ranking and comparison: algorithm one - weighing algorithm

The weighing algorithm works by ranking the candidate architecture based on their weights
candidate score as captured in Table 11.3. The higher candidate score, the better the candidate
architecture is ranked. Candidate architectures are equivalent if they mitigate similar uncertainties
with equal scores as indicated by the ordinal score of the mitigation. To perform this evaluation,
the following process is described:

Initially, the data are in the format indicated in Table 11.2. To transform the data for analysis,
we encode them using numerical values. For example, Influence measures (Very High, High,

Medium, Low) is encoded in the numerical Influence values (4, 3, 2, 1), in descending order,
respectively. Equally, Candidate measures (Strongly mitigated, Mitigated, Partially mitigated,

Unmitigated) are encoded in Candidate values (4, 3, 2, 1), in descending order, respectively.
Table 11.3 shows the encoded data. Having the encoding is relevant for the algorithm, as will be
illustrated in the following paragraphs.

After encoding, the next step is to generate what we call Uncertainty weighing digits. This
is a placeholder for an architecture comparison or ranking number. We generate Uncertainty

weighing digits by sorting the uncertainty according to Influence score.

If we consider the data in Table 11.3 and sort the uncertainties according to column number 3,
(Influence score), the uncertainty IDs will be ordered according to Table 11.4. This sorting is in
ascending order as illustrated in Table 11.4, below.

164 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

Table 11.3: Uncertainties, influence, and candidate architectures with encoded values

ID Uncertainty description Influence score Candidate One
score

Candidate Two
score

1 IoV network bandwidth 3 2 3
2 IoV computation capability 2 3 3
3 IoV storage capacity 3 3 3
4 IoV network failure 2 3 4
5 IoV coordination failure 2 3 2
6 IoV vehicle, data, and other

components growth
3 4 4

7 IoV future services 2 4 3
8 IoV protocols variations and

heterogeneous
2 3 3

9 IoV range of communi-
cation or interconnection
channels

2 4 3

10 IoV real-time operation 4 3 3
11 IoV security 3 2 3
12 IoV mapping localisation 2 3 3

Table 11.4: Uncertainty weighing digits

Uncertainty ID 10 1 3 6 11 2 4 5 7 8 9 12
Influence score 4 3 3 3 3 2 2 2 2 2 2 2
Uncertainty weighing digits _ _ _ _ _ _ _ _ _ _ _ _

As stated above, the uncertainties are sorted by Influence score in ascending order, as shown in
Table 11.4. The effect of sorting is to group the uncertainties based on Influence score, from
highest Influence score to lowest Influence score. As indicated in Table 11.4, the uncertainty
with ID 10 has an Influence score of 4 while the uncertainty with ID 12 has an Influence score of
2. The rest of the uncertainties are as mapped in Table 11.3.

Important note: Through sorting the individual uncertainties basing on the Influence score, in an
ascending order, implicitly, the uncertainty weight digits generated implies that the higher its
value, the more significant the uncertainties. This is the motivation to sort and define uncertainty

weight digits.

We then use the pattern of uncertainty weight digits to generate the weighting score for the
individual candidate architecture.

To generate a candidate uncertainty weight digits, we simply map Candidate score for each
Candidate architecture to the respective uncertainty weight digits placeholder for the relevant

11.3. CANDIDATE ARCHITECTURES COMPARISON APPROACH 165

Table 11.5: Candidate architecture and uncertainty weighing digits

Uncertainty ID 10 1 3 6 11 2 4 5 7 8 9 12
Influence score 4 3 3 3 3 2 2 2 2 2 2 2
Candidate one weighing digits 3 2 3 4 2 3 3 3 4 3 4 3
Candidate two weighing digits 3 3 3 4 3 3 4 2 3 3 3 3

uncertainty ID. Table 11.5 shows the two candidate architectures and their associated uncertainty

weighing digits. We then compare these two digits to find which candidate has a better score.

Candidate one weighing digits of (323423334343) is less than Candidate two weighing digits of
(333433423333), which suggests that the candidate two architecture is likely to be less vulnerable
to known uncertainties than candidate one architecture.

However, this value is vulnerable, since, in essence, it is only considering the comparison
between the highest influence uncertainties digits. The moment there is a difference, the rest
of Candidate weighing digits is ignored after that. This means that we lose all the information
without further insight.

Therefore, the analysis algorithm for uncertainty weight digits requires improvement on this
weakness. For example, instead of using individual uncertainty digits, we can consider calculating
the mean of the uncertainties with similar Influence score.

In fact, in the next section, we adapt and improve this algorithm by calculating the mean of
the values within uncertainty weight digits with a similar Influence score. In this way, we can
compare categories and determine in which aspects a candidate architecture better mitigates
uncertainties than the other. Thus, we proceed to algorithm two.

11.3.5.2 Ranking and comparison: algorithm two - enhanced weighing with
mean/average

Table 11.6: Candidate architecture and uncertainty weighing digits

Uncertainty ID 10 1 3 6 11 2 4 5 7 8 9 12
Influence score 4 3 3 3 3 2 2 2 2 2 2 2
Candidate one weighing digits 3 2 3 4 2 3 3 3 4 3 4 3
Candidate two weighing digits 3 3 3 4 3 3 4 2 3 3 3 3
Candidate one weighing mean 3 2.75 3.29
Candidate two weighing mean 3 3.25 3.00

Continuing with the analysis to improve Algorithm one, we proceed as follows.

166 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

We group uncertainties similar Influence scores into a single category. This is rational since
Influence score indicates that such uncertainties have a potential similar impact on the system. In
Table 11.5 we have three distinct influence scores among which the twelve uncertainties belong:
4, 3, 2. In Table 11.6 we have introduced columns to indicate these groups or categories.

The next step is to calculate the average / mean values for each of these uncertainties groups to
generate a weighted mean score.

After calculating the Candidate weighing mean values for each of the two candidate architectures
as shown in Table 11.6, the result now changes to candidate one having the following mean
values (3, 2.75, 3.29) and candidate two having mean values (3, 3.25, 3.00).

Indeed, this calculation is more robust, as it shows that, in terms of mitigating the highest
influence uncertainties, the two candidate architectures are similar, both with a score of 3.

However, when it comes to mitigating the High uncertainties and the Medium uncertainties,
Candidate architecture two(3.25) is better than Candidate architecture one(2.75) at the High.
Although Candidate architecture one(3.29) is better at handling Medium than Candidate

architecture two(3.00).

Currently, we do not consider the significance of the number or differences. In addition, of
course, these results depend on several factors, including the information available during the
analysis, the subjective technical expertise of the analysis, and the validity of the uncertainties.

Next, we finally look at the third and last algorithms that optimise the analysis.

11.3.5.3 Ranking and comparison: algorithm three - elimination then weigh algorithm

In this algorithm, we propose an approach that improves on previous algorithms by first
eliminating or removing uncertainties with same Candidate score and then assessing the
architectures based on uncertainties with different Candidate scores.

For example, if we consider in Table 11.3, the uncertainty with ID 3, since this uncertainty has
similar scores for both candidate architectures, we eliminate or remove this uncertainty from
consideration. The results after removing same uncertainties are shown in Table 11.7.

In addition to improving efficiency in the calculation of the weight score, by removing
uncertainties with similar scores, we highlight the uncertainties that can make a difference
for further analysis. These uncertainties may be explored further to understand the different
approaches to their mitigations in the different candidate architecture.

For example, with the help of Table 11.7, the architect could try to explore the underlying

11.4. DISCUSSION 167

Table 11.7: Uncertainties with similar influence scores eliminated

ID Uncertainty description Influence score Candidate One
score

Candidate Two
score

1 IoV network bandwidth 3 2 3
4 IoV network failure 2 3 4
5 IoV coordination failure 2 3 2
7 IoV future services 2 4 3
9 IoV range of communi-

cation or interconnection
channels

2 4 3

11 IoV security 3 2 3

differences between the candidate architectures to understand why uncertainties are handled
differently. This information could be used to improve either candidate architecture, if possible,
from the observation of the other candidate architecture.

Table 11.8: Candidate architecture and uncertainty weighing digits with similarities eliminated

Uncertainty ID 1 11 4 5 7 9
Influence score 3 3 2 2 2 2
Candidate one weighing digits 2 2 3 3 4 4
Candidate two weighing digits 3 3 4 2 3 3
Candidate one weighing mean 2 3.5
Candidate two weighing mean 3 3.00

Next, we analyse the uncertainty data in Table 11.7, using the weighted mean approach as
presented in the previous algorithm. Table 11.8, shows the results of the analysis from which we
can make the following ranking observations:

1. The candidate two architectures are better at handling uncertainty with the High influence

score (3) compared to the candidate one architecture.

2. Candidate one architecture is better at handling the uncertainty with Medium influence score

(2) compared to candidate two architecture.

3. Both candidate architectures have a similar capacity to handle Very high uncertainties.

11.4 Discussion

This evaluation has been an interesting exercise to illustrate another potential application of the
uncertainty framework. We aimed to compare two candidate architectures from the IoV domain.

168 CHAPTER 11. CASE STUDY 3: IOV - COMPARISON OF CANDIDATE ARCHITECTURES ON UNCERTAINTY

In terms of the two candidate architectures, in general, we can evaluate that Candidate

architecture two is likely to be better at handling uncertainties than Candidate architecture

one. Algorithm one indicated that Candidate architecture two was the preferable candidate based
on the Candidate weighting digits score. Also, Algorithm two indicated that the two candidates
had similar abilities to handle Very high influence but Candidate architecture two was better with
High influence score uncertainties. And finally, Candidate architecture two was better with High

influence score uncertainties under Algorithm three. Thus, heuristically, our analysis suggests
that Candidate architecture two is preferable to manage uncertainty than Candidate architecture

one.

Of course, this is not the final decision because, as we have seen in Table 11.7, there may be other
factors to consider, such as the number of uncertainties available in each category that can change
and impact the results. Ideally, considering that uncertainties are dynamic, they change with
time and new uncertainties might be discovered, existing uncertainties might become certainties,
and it might make sense to consider additional sources of information before making the final
selection.

As such, even though the uncertainty data provide enough information to provide uncertainty
analysis for the candidate architectures, it might be best to use it in conjunction with other
analysis approaches to make the final decisions. Besides, similar to most architecture analysis
results, this is a heuristic decision which might not always be correct, depending on the input
of the process. As always, it is important to keep in mind, during any architecture analysis
process, that the analysis is a garbage in garbage out process. Otherwise, this case study has
been successful from the perspective of illustrating a potential use case for the framework data.

11.5 Conclusions

In this case study, we illustrate the use of the uncertainty framework to compare and rank
candidate architectures from the IoV domain. Our approach involved first identifying common
uncertainties of the IoVs, which we used as a basis to compare the candidate architectures. Based
on the common uncertainties, we analysed the individual candidate architectures to assess how
well they mitigate the common uncertainty, which we recorded using ordinal values. By encoding
both the common uncertainties and their mitigation results for each candidate architecture, we
generated ground data, which we analysed to rank the candidate architectures. The ranking was
achieved through three related but improved versions of the weight algorithms. Overall, we
found that it was possible to analyse candidate architectures based on uncertainty data; however,
further details from another analysis approach might be required to provide the final results.

11.5. CONCLUSIONS 169

However, still, the uncertainty analysis provides useful information which can inform the overall
candidate architecture ranking and comparisons process.

12CHAPTER TWELVE

CONCLUSIONS

In this chapter we present the conclusions of the work, including an overview of the insights, a
summary of the main contributions, critical reflections and future work.

12.1 Overview

Overall, this research has generated interesting insights and observations on uncertainty in
software systems in general and in software architecture in particular. As part of this research,
the following work was undertaken: literature surveys of uncertainty in software systems and
in software architecture, the definition of a framework for considering uncertainty in software
systems and its illustration in the context of software architecture, the design and development of
a workbench infrastructure to facilitate future addition of tools for incorporating uncertainty in
software architecture, the implementation of a proof-of-concept of tool based on the framework
to represent uncertainty in software architecture specifications, the evaluation of the uncertainty
framework through applying it to three architecture case studies and a consideration of potential
future work.

12.2 Summary of main contributions

The following five elements are the key contributions of the work:

12.2.1 A literature survey of uncertainty in software architecture from
1991 to 2021

This chapter reviewed literature sources from 1991 to 2021 to explore uncertainty in software
architecture aspects, including architecture Definitions, Concepts, Activities, Artefacts, Tools

171

172 CHAPTER 12. CONCLUSIONS

and Notations. The survey resulted in 82 literature sources, which highlighted 25 specific
software architecture aspects where uncertainty is explicitly considered and provided a potential
categorisation of these aspects. Each of these aspects has received varying degrees of focus in
terms of research interest and results. The survey identified existing approaches for addressing
uncertainty in these aspects of software architecture as well as gaps in the state-of-the-art. There
is a need for further research to improve the consideration, representation and management of
uncertainty in all aspects of software architecture.

12.2.2 A literature survey of uncertainty frameworks for software system

Often, uncertainty is treated using mathematical approaches. However, such approaches do not
capture or highlight other details about the uncertainty, such as its location, nature and more.
The details about the uncertainty can be captured or characterised using the various attributes of
uncertainty. In this contribution, we explored existing work which explicitly defines uncertainty
characterisation attributes in software systems. These include sources from complex systems,
self-adaptive system, cognitive science and cyber-physical systems. We used these concepts and
notions of uncertainty to define the uncertainty consideration framework.

12.2.3 A definition of a conceptual framework for considering uncertainty
in software systems

The definition of a framework for considering uncertainty in software architecture was the
inspiration for this research. In this regard, we defined a generic framework for considering
uncertainty in software systems and applied it to software architecture for evaluation. The
uncertainty consideration framework is defined through consolidating attributes from existing
works, including self-adaptive systems, complex systems, cognitive systems and cyber-physical
systems. The uncertainty framework can be used in various contexts, including architecture
analysis or to enhance tools and notations with the capabilities to incorporate uncertainty.

12.2.4 The specification and development of the workbench infrastructure
concept

Based on the uncertainty framework, we explored the concept of the workbench infrastructure:
specifically, we explored the realisation of the uncertainty framework through the workbench
infrastructure, which defines the foundation for building an architecture workbench of tools
incorporating uncertainty in software architecture. The implementation of tools based on the
workbench infrastructure contributes to the proposed future work. The realisation of tools and

12.2. SUMMARY OF MAIN CONTRIBUTIONS 173

notations that support uncertainty in software architecture and software systems in general is one
of the key points which this work advocates.

12.2.5 Evaluation of the uncertainty consideration framework on software
architecture case studies

Finally, we evaluated the uncertainty consideration framework on three case studies. The first
case study illustrates a potential application of the uncertainty framework to generate architecture
uncertainty knowledge and documentation. The second case study uses the uncertainty data for
architecture analysis. To achieve this, the case study first generates uncertainty data about the
NASA IMPALA platform architecture. Then the evaluation focuses on analysing the architecture
design based on the uncertainty details. The validity of the analysis is compared with a similar
analysis using a customised version of the ATAM. Finally, the third case study applies the
uncertainty framework to the problem of comparing and ranking candidate architectures of a
system. This case study compares two candidate architectures from the domain of IoV using
three algorithms. The results of the evaluations suggest that the framework can provide useful
information to support evaluation of candidate architectures.

12.2.6 Critical reflection on the uncertainty consideration framework

In this section, we critically review the uncertainty consideration framework. First, we consider
the significance of our work.

This work has develop a framework for considering uncertainty in software architecture. This is
significant work since we introduce a novel approach for considering uncertainty in software
systems and software architecture. The motivation of the research was to develop such a
framework; therefore, we consider that we have achieved the objective of our work.

The evaluation of the framework was performed on three case studies, and the results
demonstrated that the framework is a feasible approach to considering uncertainty in software
architecture. In addition, considering the variation in the case studies, the evaluation has
demonstrated that the framework has potential for use in a variety of use cases.

However, there is still a lot of work to be done. Currently, the framework is generic, with
little constraint on its application. But in some contexts, the framework might require to be
customised. For instance, to manage data quality, in an automated context, the fields of the
attributes of the framework can be restricted to accept a specific data format or structure text.
Other enhancement might relate to enforcing relationships and dependencies among attributes

174 CHAPTER 12. CONCLUSIONS

and groups of uncertainties. But for the purpose of this thesis the framework achieves its initial
design motivation.

In terms of the evaluation case studies, all three case studies generate knowledge and docu-
mentation about the architecture. But only the first case study was specifically designed for
this purpose. The other two case studies demonstrate the uncertainty management potential
of the framework. First, IMPALA platform architecture analysis demonstrated that framework
uncertainty data can be analysed to generate insight into the software architecture. In addition,
the IoV candidate selection case studies demonstrated that the uncertainty data can be processed
using algorithms to contribute to software architecture decision problems. The results in all these
cases studies, were positive.

The major next phase of this work is to evaluate the framework with practitioners so that the
framework can be evaluated in practice. However, this will require tools and notations to
support the application of the framework. In this regard, we have proposed the workbench
infrastructure, which defines a basis for building a workbench of tools to consider uncertainty in
software architecture. Overall, as a proof of concept, the work has been successful and generated
interesting results.

12.2.7 Final thoughts on the main contributions

The central hypothesis of this work is that a generic and useful conceptual framework for
considering uncertainty in software systems can be defined. We have observed that uncertainty
is characterised with distinct attributes in different contexts, potentially omitting useful details.
We have consolidated and extended attributes from various software systems domains to propose
a generic, foundational, and customisable framework for uncertainty in the broader context of
software systems. The use of the framework is evaluation using three studies from three different
application domains. In addition, a concept of workbench infrastructure is developed on the
basis of the framework. Together, the contributes address the two research questions - first, the
definition of a generic uncertainty framework for software systems. Secondly, the application
and evaluation of the framework in the contexts of software architecture.

12.3 Future work

In terms of future work, throughout the thesis, we have highlighted potential future work
directions for the consideration of uncertainty in software architecture and systems. In this
section, we briefly present some specific future works.

12.3. FUTURE WORK 175

12.3.1 Continuous uncertainty management

Uncertainty management should be a continuous process. With time, more uncertainties may
be discovered; therefore, the number of uncertainties can increase. Similarly, some of the
uncertainties can be reduced so that they become certainties, thus decreasing the number of
uncertainties. Therefore, software architecture tools must be developed to actively manage
uncertainty in architecture and systems. The framework presents a platform for building such
tools.

12.3.2 Uncertainty and Agile software development

Another area we envision future work in the relationship between the uncertainty framework and
Agile software development. In an Agile process, where a repository of uncertainties could be
maintained and continuously updated to track the uncertainty status of the system, the uncertainty
framework can be used to create a tracker to monitor such aspects like uncertainty mitigation
implementations and risk statuses.

This can build on the extensibility of the uncertainty framework with attributes such as a Status

attribute for tracking whether an uncertainty is still open or closed can, for instance, be used
for such a purpose. Additionally, Timestamp attributes could be added to support monitoring of
changes in uncertainty status.

However, the framework is not limited to specific development methodologies, system artefacts,
notations, or levels of abstraction. It is intended to be applied to different artefacts and stages of
the software lifecycle.

12.3.3 Uncertainty framework automation

However, manually compiling all uncertainties associated with any non-trivial system would
be a time-consuming activity, in addition to being error-prone. Since the framework provides
a structured and systematic basis for capturing uncertainty data, automation may be a feasible
alternative to applying the framework on a larger scale. With automation, rules for associating
uncertainties with specific patterns of structure and interactions in the system can be specified and
used to generate an initial set of uncertainty data that can be manually augmented by stakeholders.

12.3.4 Uncertainty framework customisation

While we have provided a definition of each attribute in the framework, we have deliberately
avoided stipulating any processes or guidelines to populate these attributes. Therefore, the

176 CHAPTER 12. CONCLUSIONS

granularity of the data could depend on the context of the specific system, the stage of the
lifecycle at which uncertainty is considered, and the aims of the users of the framework.

It is likely that values of attributes with well-defined options such as that of nature, which
can be either aleatory or epistemic, will be uniform across systems. However, details such as
description, dependencies, and outcomes might vary from the examples provided and across
different systems.

12.3.5 Final thought on future work

The thesis has empirically demonstrated the feasibility of defining a generic and extensible
framework from individual sources in existing literature. The framework is not designed to
be exhaustive or mandated on specific methodologies, but can be customised to specific use
cases. A key part of future work will require that user evaluation studies be conducted with the
framework to evaluate its use in practice. This also includes understanding the use cases that can
be generated for the use of the framework data.

12.4 Conclusions

The work presented in this thesis is the beginning of what we believe to be an exciting and
important avenue of future research. As the framework is applied to different facets of software
systems, its effectiveness and viability will be continuously evaluated and refined. As far as we
are aware, no work currently exists that expresses uncertainty attributes in a generalised format
for software systems and architecture.

Uncertainty is a common concept in many contexts. In casual discussions, we can interpret
uncertainty in an ad-hoc manner from the context. However, in more formal or consequential
circumstances, such as during the life of critical software systems, a more precise specification
of uncertainty is likely to be required. We have defined a conceptual generic customisable
framework to considering uncertainty as a first-class concern in software systems. Several
attributes are included to capture the details of uncertainties, which can be extended as necessary.

REFERENCES

[1] M. Smithson, Ignorance and uncertainty: emerging paradigms. Springer Science &
Business Media, 1989.

[2] H. McManus and D. Hastings, “3.4. 1 A Framework for Understanding Uncertainty and its
Mitigation and Exploitation in Complex Systems,” in INCOSE international symposium,
vol. 15, pp. 484–503, Wiley Online Library, 2005.

[3] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Norgren, “Understanding uncertainty
in cyber-physical systems: a conceptual model,” in European conference on modelling

foundations and applications, pp. 247–264, Springer, 2016.

[4] G. A. Moreno, J. Cámara, D. Garlan, and M. Klein, “Uncertainty reduction in self-adaptive
systems,” in 2018 IEEE/ACM 13th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS), pp. 51–57, IEEE, 2018.

[5] J. L. Sanchez-Lopez, R. A. S. Fernández, H. Bavle, C. Sampedro, M. Molina, J. Pestana,
and P. Campoy, “Aerostack: An architecture and open-source software framework for
aerial robotics,” in 2016 International Conference on Unmanned Aircraft Systems (ICUAS),
pp. 332–341, IEEE, 2016.

[6] L.-M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “Deployment of iov for smart
cities: Applications, architecture, and challenges,” IEEE access, vol. 7, pp. 6473–6492,
2018.

[7] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, “Internet of vehicles:
architecture, protocols, and security,” IEEE internet of things Journal, vol. 5, no. 5,
pp. 3701–3709, 2017.

[8] M. M. Lehman, “Programs, Life Cycles, and Laws of Software Evolution,” Proceedings

of the IEEE, vol. 68, no. 9, 1980.

177

178 REFERENCES

[9] O. L. de Weck, C. Eckert, and J. Clarkson, “A classification of uncertainty for early product
and system design,” in International Conference on Engineering Design, Massachusetts
Institute of Technology. Engineering Systems Division, 2007.

[10] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, risk, and information value in software
requirements and architecture,” in Proceedings of the 36th International Conference on

Software Engineering, pp. 883–894, ACM, 2014.

[11] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” Computer,
vol. 17, no. 5, pp. 40–52, 1992.

[12] C. Lupafya, “A framework for managing uncertainty in software architecture,” in
Proceedings of the 13th European Conference on Software Architecture-Volume 2, pp. 71–
74, ACM, 2019.

[13] P. A. Laplante, “The Heisenberg uncertainty principle and the halting problem,” ACM

SIGACT News, vol. 22, no. 3, pp. 63–65, 1991.

[14] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A taxonomy of uncertainty for
dynamically adaptive systems,” in Proceedings of the 7th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems, pp. 99–108, IEEE Press,
2012.

[15] W. E. Walker, P. Harremoës, J. Rotmans, J. P. Van Der Sluijs, M. B. A. Van Asselt,
P. Janssen, and M. P. von Krauss, “Defining uncertainty: a conceptual basis for uncertainty
management in model-based decision support,” Integrated assessment, vol. 4, no. 1,
pp. 5–17, 2003.

[16] Y. Hichri, S. Dahi, and H. Fathallah, “Candidate architectures for emerging iov: a survey
and comparative study,” Design Automation for Embedded Systems, vol. 25, no. 4, pp. 237–
263, 2021.

[17] Y. S. Chan, “A visual representation of uncertainty in software systems (unpublished
master’s thesis),” msc dissertation, School of Computer Science, University of St Andrews,
School of Computer Science, University of St Andrews, Jack Cole Building, North Haugh,
St Andrews , KY16 9SX, aug 2022.

[18] M. M. Lehman and J. F. Ramil, “Software uncertainty,” in Soft-Ware 2002: Computing

in an Imperfect World (D. Bustard, W. Liu, and R. Sterritt, eds.), (Berlin, Heidelberg),
pp. 174–190, Springer Berlin Heidelberg, 2002.

REFERENCES 179

[19] D. Garlan, “Software engineering in an uncertain world,” Proceedings of the FSE/SDP

workshop on Future of software engineering research SE - FoSER ’10, 2010.

[20] H. Ziv, D. Richardson, and R. Klösch, “The uncertainty principle in software engineering,”
in Proceedings of the 19th International Conference on Software Engineering (ICSE’97),
1997.

[21] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns, “A classification framework of
uncertainty in architecture-based self-adaptive systems with multiple quality requirements,”
in Managing Trade-Offs in Adaptable Software Architectures, pp. 45–77, Elsevier, 2017.

[22] D. Perez-Palacin and R. Mirandola, “Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation,” in Proceedings of the 5th

ACM/SPEC international conference on Performance engineering, pp. 3–14, ACM, 2014.

[23] J. B. Kadane, Principles of uncertainty. CRC Press, 2011.

[24] M. Autili, V. Cortellessa, D. Di Ruscio, P. Inverardi, P. Pelliccione, and M. Tivoli, “Eagle:
Engineering software in the ubiquitous globe by leveraging uncertainty,” in Proceedings

of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering, pp. 488–491, ACM, 2011.

[25] J. Whittle, P. Sawyer, N. Bencomo, B. H. Chengy, J. M. Bruelz, B. H. C. Cheng, and J.-M.
Bruel, “RELAX: Incorporating uncertainty into the specification of self-adaptive systems,”
Proceedings of the IEEE International Conference on Requirements Engineering, pp. 79–
88, 2009.

[26] N. Esfahani, K. Razavi, and S. Malek, “Dealing with uncertainty in early software
architecture,” in Proceedings of the ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, p. 21, ACM, 2012.

[27] N. Esfahani, S. Malek, and K. Razavi, “Guidearch: guiding the exploration of archi-
tectural solution space under uncertainty,” in Software Engineering (ICSE), 2013 35th

International Conference on, pp. 43–52, IEEE, 2013.

[28] A. L. Wolf, “Succeedings of the Second International Software Architecture Workshop,”
SIGSOFT Softw. Eng. Notes, vol. 22, no. 1, pp. 42–56, 1997.

[29] D. E. Perry and A. L. Wolf, “Foundations for the study of software architecture,” ACM

SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40–52, 1992.

180 REFERENCES

[30] L. Bass, P. Clements, and R. Kazman, SoftwareArchitecture in Practice. Addison-Wesley,
2 ed ed., 2003.

[31] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture: Foundations,

Theory, and Practice. Wiley Publishing, 2009.

[32] C. Dhaya and G. Zayaraz, “Combined architectural framework for the selection of
architectures using ATAM, FAHP and CBAM,” International Journal of Computer

Applications in Technology, vol. 54, no. 4, pp. 350–361, 2016.

[33] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, and L. Grunske, “Model-based
performance analysis of software architectures under uncertainty,” in Proceedings of the

9th international ACM Sigsoft conference on Quality of software architectures, pp. 69–78,
ACM, 2013.

[34] A. Sedaghatbaf and M. A. Azgomi, “Reliability evaluation of UML/DAM software
architectures under parameter uncertainty,” IET Software, vol. 12, no. 3, 2018.

[35] C. Miksovic and O. Zimmermann, “Architecturally significant requirements, reference
architecture, and metamodel for knowledge management in information technology
services,” Proceedings - 9th Working IEEE/IFIP Conference on Software Architecture,

WICSA 2011, pp. 270–279, 2011.

[36] A.-j. Stoica, “Facets of the Software Development Represented by Model Systems :
Analysis and Enhancement,” 14th International Forum on COCOMO/SCM, pp. 1–25,
1999.

[37] P. Kruchten, “Architectural blueprints–the” 4+ 1” view model of software architecture,”
IEEE Software, vol. 12, no. November, pp. 42–50, 1995.

[38] I. Gorton and J. Haack, “Architecting in the face of uncertainty: An experience report,” in
Proceedings - International Conference on Software Engineering, vol. 26, 2004.

[39] R. Raman and M. D’Souza, “Knowledge based decision framework for architecting
complex systems,” in Proceedings of the ACM Symposium on Applied Computing, vol. Part
F1280, pp. 1147–1153, 2017.

[40] D. Sobhy, R. Bahsoon, L. Minku, and R. Kazman, “Evaluation of software architectures
under uncertainty: a systematic literature review,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 30, no. 4, pp. 1–50, 2021.

REFERENCES 181

[41] S. M. Hezavehi, D. Weyns, P. Avgeriou, R. Calinescu, R. Mirandola, and D. Perez-
Palacin, “Uncertainty in self-adaptive systems: A research community perspective,” ACM

Transactions on Autonomous and Adaptive Systems (TAAS), vol. 15, no. 4, pp. 1–36, 2021.

[42] I. Lytra, C. Carrillo, R. Capilla, and U. Zdun, “Quality attributes use in architecture design
decision methods: research and practice,” Computing, vol. 102, no. 2, 2020.

[43] V. Kumar, L. Singh, and A. K. Tripathi, “Reliability analysis of safety-critical and control
systems: A state-of-the-art review,” 2018.

[44] J. Kramer and J. Magee, “Analysing dynamic change in distributed software architec-
tures1,” IEE Proceedings: Software, vol. 145, no. 5, 1998.

[45] P. Oreizy and R. N. Taylor, “On the role of software architectures in runtime system
reconfiguration,” IEE Proceedings: Software, vol. 145, no. 5, 1998.

[46] L. Williams and C. Smith, “Performance evaluation of software architectures,” 1998.

[47] R. Bahsoon and W. Emmerich, “ArchOptions: A real options-based model for predicting
the stability of software architectures,” in Proceedings of the 5th Workshop on Economics-

Driven Software Research (EDSER-5), (Portland, USA), pp. 35–40, 2003.

[48] R. L. Nord, M. R. Barbacci, P. Clements, R. Kazman, and M. Klein, “Integrating the
Architecture Tradeoff Analysis Method (ATAM) with the cost benefit analysis method
(CBAM),” tech. rep., Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst,
2003.

[49] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America, “A general
model of software architecture design derived from five industrial approaches,” Journal of

Systems and Software, vol. 80, no. 1, pp. 106–126, 2007.

[50] R. C. Nickerson, U. Varshney, and J. Muntermann, “A method for taxonomy development
and its application in information systems,” European Journal of Information Systems,
vol. 22, no. 3, pp. 336–359, 2013.

[51] V. Grassi and R. Mirandola, “The tao way to anti-fragile software architectures: the
case of mobile applications,” in 2021 IEEE 18th International Conference on Software

Architecture Companion (ICSA-C), pp. 86–89, IEEE, 2021.

[52] F. Niederman, J. C. Brancheau, and J. C. Wetherbe, “Information Systems Management
Issues for the 1990s,” vol. 15, no. 4, pp. 475–500, 1991.

182 REFERENCES

[53] J. Axelsson, On how to deal with uncertainty when architecting embedded software and

systems, vol. 6903 LNCS. 2011.

[54] F. Oquendo, “Dealing with Uncertainty in Software Architecture on the Internet-of-Things
with Digital Twins,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11619 LNCS,
2019.

[55] F. Oquendo, “Fuzzy Architecture Description for Handling Uncertainty in IoT Systems-
of-Systems,” in SOSE 2020 - IEEE 15th International Conference of System of Systems

Engineering, Proceedings, 2020.

[56] F. Oquendo, “Case study on the fuzzy architecture description of cyber-physical sos under
uncertainty,” in 2021 16th International Conference of System of Systems Engineering

(SoSE), pp. 61–68, IEEE, 2021.

[57] F. Oquendo, “Formally describing the software architecture of Systems-of-Systems with
SosADL,” in 2016 11th Systems of Systems Engineering Conference, SoSE 2016, 2016.

[58] M. Guessi, F. Oquendo, and E. Y. Nakagawa, “Ark: a constraint-based method for
architectural synthesis of smart systems,” Software and Systems Modeling, vol. 19, no. 3,
2020.

[59] I. Lytra and U. Zdun, “Supporting architectural decision making for systems-of-systems
design under uncertainty,” in 1st ACM SIGSOFT/SIGPLAN International Workshop on

Software Engineering for Systems-of-Systems, SESoS 2013 Proceedings, 2013.

[60] F. Alkhabbas, I. Murturi, R. Spalazzese, P. Davidsson, and S. Dustdar, “A goal-
driven approach for deploying self-adaptive IoT systems,” in Proceedings - IEEE 17th

International Conference on Software Architecture, ICSA 2020, pp. 146–156, 2020.

[61] K. Shumaiev and M. Bhat, “Automatic uncertainty detection in software architecture
documentation,” in Proceedings - 2017 IEEE International Conference on Software

Architecture Workshops, ICSAW 2017: Side Track Proceedings, pp. 216–219, 2017.

[62] M. Waterman, “Agility, risk, and uncertainty, part 2: How risk impacts agile architecture,”
IEEE Software, vol. 35, no. 3, 2018.

[63] R. Pinciroli and C. Trubiani, “Model-based performance analysis for architecting cyber-
physical dynamic spaces,” in 2021 IEEE 18th International Conference on Software

Architecture (ICSA), pp. 104–114, IEEE, 2021.

REFERENCES 183

[64] C. Trubiani, A. Ghabi, and A. Egyed, “Exploiting traceability uncertainty between
software architectural models and performance analysis results,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 9278, 2015.

[65] L. Cheung, L. Golubchik, N. Medvidovic, and G. Sukhatme, “Identifying and addressing
uncertainty in architecture-level software reliability modeling,” in Parallel and Distributed

Processing Symposium, 2007. IPDPS 2007. IEEE International, pp. 1–6, IEEE, 2007.

[66] L. Cheung, R. Roshandel, N. Medvidovic, and L. Golubchik, “Early prediction of
software component reliability,” in Proceedings - International Conference on Software

Engineering, pp. 111–120, 2008.

[67] I. Meedeniya, I. Moser, A. Aleti, and L. Grunske, “Architecture-based reliability evalua-
tion under uncertainty,” in CompArch’11 - Proceedings of the 2011 Federated Events on

Component-Based Software Engineering and Software Architecture - QoSA+ISARCS’11,
2011.

[68] L. Fiondella and S. S. Gokhale, “Software reliability with architectural uncertainties,” in
IPDPS Miami 2008 - Proceedings of the 22nd IEEE International Parallel and Distributed

Processing Symposium, Program and CD-ROM, 2008.

[69] R. Bahsoon, W. Emmerich, and J. Macke, “Using real options to select stable middle-
wareinduced software architectures,” IEE Proceedings: Software, vol. 152, no. 4, 2005.

[70] W. Cui and T. Sherwood, “Estimating and understanding architectural risk,” in Proceedings

of the Annual International Symposium on Microarchitecture, MICRO, vol. Part F1312,
2017.

[71] K. Shumaiev, M. Bhat, O. Klymenko, F. Matthes, A. Biesdorf, and U. Hohenstein,
“Uncertainty expressions in software architecture group decision making: Explorative
study,” in ACM International Conference Proceeding Series, 2018.

[72] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema, “Past and future of software
architectural decisions - A systematic mapping study,” 2014.

[73] S. A. Busari, “Towards search-based modelling and analysis of requirements and
architecture decisions,” in ASE 2017 - Proceedings of the 32nd IEEE/ACM International

Conference on Automated Software Engineering, 2017.

[74] K. D. Evensen, “Reducing uncertainty in architectural decisions with AADL,” Proceedings

of the Annual Hawaii International Conference on System Sciences, pp. 1–9, 2011.

184 REFERENCES

[75] A. El Malki and U. Zdun, “Guiding architectural decision making on service mesh based
microservice architectures,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11681
LNCS, 2019.

[76] J. Cámara, M. Silva, D. Garlan, and B. Schmerl, “Explaining architectural design tradeoff
spaces: A machine learning approach,” in European Conference on Software Architecture,
pp. 49–65, Springer, 2021.

[77] M. Saadatmand and S. Tahvili, “A Fuzzy Decision Support Approach for Model-Based
Tradeoff Analysis of Non-functional Requirements,” in Proceedings - 12th International

Conference on Information Technology: New Generations, ITNG 2015, 2015.

[78] J. Cámara, D. Garlan, and B. Schmerl, “Synthesizing tradeoff spaces with quantitative
guarantees for families of software systems,” Journal of Systems and Software, vol. 152,
2019.

[79] M. Salama and R. Bahsoon, “Analysing and modelling runtime architectural stability for
self-adaptive software,” Journal of Systems and Software, vol. 133, 2017.

[80] S. Hahner, “Dealing with uncertainty in architectural confidentiality analysis.,” in Software

Engineering (Satellite Events), 2021.

[81] D. Sobhy, L. Minku, R. Bahsoon, T. Chen, and R. Kazman, “Run-time evaluation of
architectures: A case study of diversification in IoT,” Journal of Systems and Software,
vol. 159, 2020.

[82] K. Watanabe, N. Ubayashi, T. Fukamachi, S. Nakamura, H. Muraoka, and Y. Kamei,
“IArch-U: Interface-Centric Integrated Uncertainty-Aware Development Environment,” in
Proceedings - 2017 IEEE/ACM 9th International Workshop on Modelling in Software

Engineering, MiSE 2017, 2017.

[83] M. Famelis, N. Ben-David, A. Di Sandro, R. Salay, and M. Chechik, “MU-MMINT:
An IDE for Model Uncertainty,” in Proceedings - International Conference on Software

Engineering, vol. 2, 2015.

[84] A. Serban, E. Poll, and J. Visser, “Towards using probabilistic models to design software
systems with inherent uncertainty,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 12292 LNCS, 2020.

REFERENCES 185

[85] M. Galster, A. Eberlein, and M. Moussavi, “Systematic selection of software architecture
styles,” IET Software, vol. 4, no. 5, p. 349, 2010.

[86] S. Moaven and J. Habibi, “A fuzzy-AHP-based approach to select software architecture
based on quality attributes (FASSA),” Knowledge and Information Systems, vol. 62, no. 12,
2020.

[87] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic review of software architecture
evolution research,” Information and Software Technology, vol. 54, no. 1, pp. 16–40, 2012.

[88] H. P. Breivold, I. Crnkovic, R. Land, and S. Larsson, “Using dependency model to support
software architecture evolution,” Automated Software Engineering - Workshops, 2008.

ASE Workshops 2008. 23rd IEEE/ACM International Conference on, pp. 82–91, 2008.

[89] S. Bonfanti, E. Riccobene, and P. Scandurra, “A runtime safety enforcement approach by
monitoring and adaptation,” in European Conference on Software Architecture, pp. 20–36,
Springer, 2021.

[90] S.-W. Cheng and D. Garlan, “Handling uncertainty in autonomic systems,” Int’l Wrkshp.

on Living with Uncertainty, 2007.

[91] S. W. Cheng and D. Garlan, “Stitch: A language for architecture-based self-adaptation,”
Journal of Systems and Software, vol. 85, no. 12, pp. 2860–2875, 2012.

[92] H. Wang and Z. Zheng, “Self-adaptive method based on software architecture by inspect-
ing uncertainty,” in Proceedings - International Conference on Artificial Intelligence and

Computational Intelligence, AICI 2010, vol. 3, 2010.

[93] C. L. McGhan, R. M. Murray, R. Serra, M. D. Ingham, M. Ono, T. Estlin, and
B. C. Williams, “A risk-aware architecture for resilient spacecraft operations,” in IEEE

Aerospace Conference Proceedings, vol. 2015-June, 2015.

[94] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow:
Architecture-based self-adaptation with reusable infrastructure,” Computer, vol. 37, no. 10,
pp. 46–54, 2004.

[95] N. Esfahani, “A framework for managing uncertainty in self-adaptive software systems,”
in Proceedings of the 2011 26th IEEE/ACM International Conference on Automated

Software Engineering, pp. 646–650, IEEE Computer Society, 2011.

186 REFERENCES

[96] D. Han, Q. Yang, J. Xing, J. Li, and H. Wang, “FAME: A UML-based framework for
modeling fuzzy self-adaptive software,” Information and Software Technology, vol. 76,
pp. 118–134, 2016.

[97] T. Bureš, P. Hnětynka, F. Plášil, D. Škoda, J. Kofroň, R. Al Ali, and I. Gerostathopoulos,
“Targeting uncertainty in smart cps by confidence-based logic,” Journal of Systems and

Software, vol. 181, p. 111065, 2021.

[98] I. Gerostathopoulos, D. Skoda, F. Plasil, T. Bures, and A. Knauss, “Tuning self-adaptation
in cyber-physical systems through architectural homeostasis,” Journal of Systems and

Software, vol. 148, 2019.

[99] N. Bencomo and L. H. Garcia Paucar, “RaM: Causally-Connected and Requirements-
Aware Runtime Models using Bayesian Learning,” in Proceedings - 2019 ACM/IEEE

22nd International Conference on Model Driven Engineering Languages and Systems,

MODELS 2019, 2019.

[100] H. Muccini and K. Vaidhyanathan, “ArchLearner: Leveraging machine-learning tech-
niques for proactive architectural adaptation,” in ACM International Conference Proceed-

ing Series, vol. 2, 2019.

[101] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE software, vol. 12, no. 6,
pp. 42–50, 1995.

[102] D. Mishra, A. Mishra, and A. Yazici, “Successful requirement elicitation by combining
requirement engineering techniques,” 1st International Conference on the Applications of

Digital Information and Web Technologies, ICADIWT 2008, pp. 258–263, 2008.

[103] E. Letier, D. Stefan, and E. T. Barr, “Uncertainty, Risk, and Information Value in Software
Requirements and Architecture,” Proceedings of the 36th International Conference on

Software Engineering, pp. 883–894, 2014.

[104] S. Aaramaa, S. Dasanayake, M. Oivo, J. Markkula, and S. Saukkonen, “Requirements
volatility in software architecture design: An exploratory case study,” in ACM Interna-

tional Conference Proceeding Series, vol. Part F1287, pp. 40–49, 2017.

[105] A. Ghabi and A. Egyed, “Exploiting traceability uncertainty between architectural models
and code,” in Proceedings of the 2012 Joint Working Conference on Software Architecture

and 6th European Conference on Software Architecture, WICSA/ECSA 2012, 2012.

REFERENCES 187

[106] A. Sedaghatbaf and M. A. Azgomi, “SQME: a framework for modeling and evaluation of
software architecture quality attributes,” Software and Systems Modeling, vol. 18, no. 4,
2019.

[107] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What industry needs from
architectural languages: A survey,” IEEE Transactions on Software Engineering, vol. 39,
no. 6, pp. 869–891, 2013.

[108] G. Fairbanks, “The risk-driven model,” CrossTalk, p. 9, 2010.

[109] D. Dubois and H. Prade, “Possibility theory,” Scholarpedia, vol. 2, no. 10, p. 2074, 2007.

[110] M. Zhang, S. Ali, T. Yue, R. Norgren, and O. Okariz, “Uncertainty-wise cyber-physical
system test modeling,” Software & Systems Modeling, vol. 18, no. 2, pp. 1379–1418,
2019.

[111] A. Musil, J. Musil, D. Weyns, T. Bures, H. Muccini, and M. Sharaf, “Patterns for
self-adaptation in cyber-physical systems,” in Multi-disciplinary engineering for cyber-

physical production systems, pp. 331–368, Springer, 2017.

[112] N. Esfahani and S. Malek, “Uncertainty in self-adaptive software systems,” in Software

Engineering for Self-Adaptive Systems II, pp. 214–238, Springer, 2013.

[113] J. Voros, “A primer on futures studies, foresight and the use of scenarios,” Prospect: The

Foresight Bulletin, vol. 6, no. 1, 2001.

[114] R. Kazman, M. Klein, and P. Clements, “Atam: Method for architecture evaluation,” tech.
rep., Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst, 2000.

[115] P. Traverso, “Planning under uncertainty and its applications,” in Reasoning, Action and

Interaction in AI Theories and Systems, pp. 213–228, Springer, 2006.

[116] M. Schmitt Laser, N. Medvidovic, D. M. Le, and J. Garcia, “Arcade: an extensible
workbench for architecture recovery, change, and decay evaluation,” in Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pp. 1546–1550, 2020.

[117] L. O’Brien, “Architecture reconstruction to support a product line effort: Case study,” tech.
rep., CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING
INST, 2001.

188 REFERENCES

[118] C. Lupafya and D. Balasubramaniam, “A framework for considering uncertainty in
software systems,” in 2022 IEEE 46th Annual Computers, Software, and Applications

Conference (COMPSAC), pp. 1519–1524, IEEE, 2022.

[119] R. Kazman, M. Klein, and P. Clements, “Atam: Method for architecture evaluation,” tech.
rep., Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst, 2000.

[120] E. Ntentos, U. Zdun, K. Plakidas, S. Meixner, and S. Geiger, “Assessing architecture
conformance to coupling-related patterns and practices in microservices,” in European

Conference on Software Architecture, pp. 3–20, Springer, 2020.

[121] N. Esfahani, E. Kouroshfar, and S. Malek, “Taming uncertainty in self-adaptive software,”
in SIGSOFT/FSE 2011 - Proceedings of the 19th ACM SIGSOFT Symposium on

Foundations of Software Engineering, pp. 234–244, 2011.

AAPPENDIX A

APPENDIX-A -
ARCHITECTURE SURVEY

LITERATURE SOURCES

189

190
A

PPE
N

D
IX

A
.

A
PPE

N
D

IX
-A

-A
R

C
H

IT
E

C
T

U
R

E
SU

RV
E

Y
L

IT
E

R
A

T
U

R
E

SO
U

R
C

E
S

Table A.1: Part 1 of 5: Research focus of literature source: aspects

Definitions and concepts Activities Artefacts
Cd-Sys Sys-Q SA-LC Stages

Reference U
nc

er
ta

in
ty

C
la

ss
ifi

ca
tio

n

G
en

er
al

Sy
st

em
s

of
sy

st
em

s

Io
T

K
no

w
le

dg
e

SE
M

et
ho

do
lo

gy

Pe
rf

or
m

an
ce

R
el

ia
bi

lit
y

St
ab

ili
ty

R
is

k

C
om

m
un

ic
at

io
n

D
ec

is
io

ns
&

Tr
ad

eo
ff

A
na

ly
si

s

D
ep

lo
ym

en
t

D
es

ig
n

E
va

lu
at

io
n

E
vo

lu
tio

n

R
un

-t
im

e

Se
lf

-A
da

pt
at

io
n

D
es

cr
ip

tio
n

D
oc

um
en

ta
tio

n

R
eq

ui
re

m
en

ts

Tr
ac

ea
bi

lit
y

To
ol

s

N
ot

at
io

ns

A classification framework of uncertainty in
architecture-based self-adaptive systems with multiple
quality requirements [21]

B ✓ ✓ ✓ ✓

A classification of uncertainty for early product and
system design [9]

B ✓ ✓ ✓ ✓ ✓

A framework for managing uncertainty in self-adaptive
software systems [95]

B ✓ ✓ ✓ ✓ ✓

A framework for managing uncertainty in software
architecture [12]

B ✓ ✓

A Framework for Understanding Uncertainty and its
Mitigation and Exploitation in Complex Systems [2]

B ✓ ✓

A Fuzzy Decision Support Approach for Model-Based
Tradeoff Analysis of Non-functional Requirement [77]

E ✓ ✓

A fuzzy-AHP-based approach to select software archi-
tecture based on quality attributes (FASSA) [86]

E ✓ ✓ ✓

A goal-driven approach for deploying self-adaptive IoT
systems [60]

B ✓ ✓ ✓

A Runtime Safety Enforcement Approach by Monitor-
ing and Adaptation [89]

B ✓ ✓

A real options-based model for predicting the stability
of software architectures [47]

E ✓ ✓

A risk-aware architecture for resilient spacecraft opera-
tions [93]

B ✓ ✓ ✓ ✓

A systematic review of software architecture evolution
research [87]

E ✓ ✓

A taxonomy of uncertainty for dynamically adaptive
systems [14]

B ✓ ✓ ✓ ✓ ✓

Agility, risk, and uncertainty, part 2: How risk impacts
agile architecture [62]

E ✓ ✓

Analysing and modelling runtime architectural stability
for self-adaptive software [79]

B ✓ ✓ ✓ ✓

191

Part 2 of 5: Research focus of literature source: aspects

Definitions and concepts Activities Artefacts
Cd-Sys Sys-Q SA-LC Stages

Reference U
nc

er
ta

in
ty

C
la

ss
ifi

ca
tio

n

G
en

er
al

Sy
st

em
s

of
sy

st
em

s

Io
T

K
no

w
le

dg
e

SE
M

et
ho

do
lo

gy

Pe
rf

or
m

an
ce

R
el

ia
bi

lit
y

St
ab

ili
ty

R
is

k

C
om

m
un

ic
at

io
n

D
ec

is
io

ns
&

Tr
ad

eo
ff

A
na

ly
si

s

D
ep

lo
ym

en
t

D
es

ig
n

E
va

lu
at

io
n

E
vo

lu
tio

n

R
un

-t
im

e

Se
lf

-A
da

pt
at

io
n

D
es

cr
ip

tio
n

D
oc

um
en

ta
tio

n

R
eq

ui
re

m
en

ts

Tr
ac

ea
bi

lit
y

To
ol

s

N
ot

at
io

ns

Analysing dynamic change in distributed software archi-
tectures [44]

E ✓ ✓

Architecting in the face of uncertainty: An experience
report [38]

E ✓ ✓

Architecturally significant requirements, reference archi-
tecture, and metamodel for knowledge managementin
information technology services [35]

E ✓ ✓ ✓ ✓ ✓

Architecture-based reliability evaluation under uncer-
tainty [67]

E ✓ ✓

ArchLearner: Leveraging machine-learning techniques
for proactive architectural adaptation [100]

B ✓ ✓

Ark: a constraint-based method for architectural synthe-
sis of smart systems [58]

B ✓ ✓ ✓ ✓ ✓

Automatic uncertainty detection in software architecture
documentation [61]

E ✓

Case Study on the Fuzzy Architecture Description of
Cyber-Physical SoS under Uncertainty [56]

B ✓ ✓ ✓ ✓ ✓

Combined architectural framework for the selection of
architectures using ATAM, FAHP and CBAM [32]

E ✓

Dealing with uncertainty in architectural confidentiality
analysis [80]

B ✓

Dealing with uncertainty in early software architecture
[26]

E ✓ ✓

Dealing with Uncertainty in Software Architecture on
the Internet-of-Things with Digital Twins [54]

E ✓ ✓ ✓ ✓ ✓

Eagle: Engineering software in the ubiquitous globe by
leveraging uncertainty [24]

E ✓ ✓

Early prediction of software component reliability [66] E ✓ ✓

Estimating and understanding architectural risk [70] B ✓ ✓ ✓ ✓

Evaluation of software architectures under uncertainty:
a systematic literature review [40]

B ✓ ✓

192
A

PPE
N

D
IX

A
.

A
PPE

N
D

IX
-A

-A
R

C
H

IT
E

C
T

U
R

E
SU

RV
E

Y
L

IT
E

R
A

T
U

R
E

SO
U

R
C

E
S

Part 3 of 5: Research focus of literature source: aspects

Definitions and concepts Activities Artefacts
Cd-Sys Sys-Q SA-LC Stages

Reference U
nc

er
ta

in
ty

C
la

ss
ifi

ca
tio

n

G
en

er
al

Sy
st

em
s

of
sy

st
em

s

Io
T

K
no

w
le

dg
e

SE
M

et
ho

do
lo

gy

Pe
rf

or
m

an
ce

R
el

ia
bi

lit
y

St
ab

ili
ty

R
is

k

C
om

m
un

ic
at

io
n

D
ec

is
io

ns
&

Tr
ad

eo
ff

A
na

ly
si

s

D
ep

lo
ym

en
t

D
es

ig
n

E
va

lu
at

io
n

E
vo

lu
tio

n

R
un

-t
im

e

Se
lf

-A
da

pt
at

io
n

D
es

cr
ip

tio
n

D
oc

um
en

ta
tio

n

R
eq

ui
re

m
en

ts

Tr
ac

ea
bi

lit
y

To
ol

s

N
ot

at
io

ns

Explaining Architectural Design Tradeoff Spaces: A
Machine Learning Approach [76]

B ✓ ✓ ✓

Exploiting traceability uncertainty between architectural
models and code [105]

E ✓ ✓ ✓ ✓ ✓

Exploiting traceability uncertainty between software
architectural models and performance analysis [64]

E ✓ ✓ ✓ ✓ ✓

FAME: A UML-based framework for modeling fuzzy
self-adaptive software. Informationand Software Tech-
nology [96]

E ✓ ✓ ✓ ✓ ✓ ✓ ✓

Formally describing the software architecture of
Systems-of-Systems with SosADL [57]

E ✓ ✓ ✓ ✓ ✓

Foundations for the study of software architecture [29] ✓

Fuzzy Architecture Description for Handling Uncer-
tainty in IoT Systems-of-Systems [55]

E ✓ ✓ ✓ ✓

Guidearch: guiding the exploration of architectural
solution space under uncertainty [27]

E ✓ ✓ ✓ ✓

Guiding architectural decision making on service mesh
based microservice architectures [75]

E ✓ ✓

Handling uncertainty in autonomic systems. [90] B ✓ ✓

IArch-U: Interface-Centric Integrated Uncertainty-
Aware Development Environment [82]

E ✓ ✓ ✓

Identifying and addressing uncertainty in architecture-
level software reliability modeling [65]

E ✓ ✓

Information Systems Management Issues for the 1990s
[52]

✓

Integrating the Architecture Tradeoff Analysis Method
(ATAM) with the cost benefit analysis method (CBAM).
[48]

E ✓ ✓

Knowledge based decision framework for architecting
complex systems [39]

E ✓ ✓ ✓ ✓ ✓ ✓

Model-based Performance Analysis for Architecting
Cyber-Physical Dynamic Spaces [63]

B ✓ ✓

Model-based performance analysis of software architec-
tures under uncertainty [33]

E ✓ ✓ ✓ ✓

193

Part 4 of 5: Research focus of literature source: aspects

Definitions and concepts Activities Artefacts
Cd-Sys Sys-Q SA-LC Stages

Reference U
nc

er
ta

in
ty

C
la

ss
ifi

ca
tio

n

G
en

er
al

Sy
st

em
s

of
sy

st
em

s

Io
T

K
no

w
le

dg
e

SE
M

et
ho

do
lo

gy

Pe
rf

or
m

an
ce

R
el

ia
bi

lit
y

St
ab

ili
ty

R
is

k

C
om

m
un

ic
at

io
n

D
ec

is
io

ns
&

Tr
ad

eo
ff

A
na

ly
si

s

D
ep

lo
ym

en
t

D
es

ig
n

E
va

lu
at

io
n

E
vo

lu
tio

n

R
un

-t
im

e

Se
lf

-A
da

pt
at

io
n

D
es

cr
ip

tio
n

D
oc

um
en

ta
tio

n

R
eq

ui
re

m
en

ts

Tr
ac

ea
bi

lit
y

To
ol

s

N
ot

at
io

ns

MU-MMINT: An IDE for Model Uncertainty [83] E ✓ ✓ ✓ ✓

On how to deal with uncertainty when architecting
embedded software and systems [53]

B ✓ ✓

On the role of software architectures in runtime system
reconfiguration [45]

B ✓ ✓ ✓

Past and future of software architectural decisions - A
systematic mapping [72]

E ✓ ✓ ✓ ✓

Performance evaluation of software architectures. [46] E ✓ ✓ ✓

Quality attributes use in architecture design decision
methods: research and practice [42]

E ✓

Rainbow: Architecture-based self-adaptation with
reusable infrastructure [94]

B ✓ ✓

RaM: Causally-Connected and Requirements-Aware
Runtime Models using Bayesian Learning [99]

B ✓ ✓ ✓ ✓

Reducing uncertainty in architectural decisions with
AADL [74]

E ✓ ✓ ✓ ✓

RELAX: Incorporating uncertainty into the specification
of self-adaptive systems [25]

B ✓ ✓ ✓ ✓

Reliability evaluation of UML/DAM software architec-
tures under parameter uncertainty [34]

E ✓ ✓ ✓ ✓

Requirements volatility in software architecture design:
An exploratory case study [104]

E ✓

Run-time evaluation of architectures: A case study of
diversification in IoT [81]

E ✓ ✓

Self-adaptive method based on software architecture by
inspecting uncertainty [92]

B ✓ ✓ ✓ ✓ ✓ ✓

Software engineering in an uncertain world. [19] B ✓

Software reliability with architectural uncertainties [68] E ✓ ✓ ✓

SQME: a framework for modeling and evaluation of
software architecture quality attributes. [106]

E ✓

Stitch: A language for architecture-based self-adaptation
[91]

B ✓ ✓ ✓ ✓

194
A

PPE
N

D
IX

A
.

A
PPE

N
D

IX
-A

-A
R

C
H

IT
E

C
T

U
R

E
SU

RV
E

Y
L

IT
E

R
A

T
U

R
E

SO
U

R
C

E
S

Part 5 of 5: Research focus of literature source: aspects

Definitions and concepts Activities Artefacts
Cd-Sys Sys-Q SA-LC Stages

Reference U
nc

er
ta

in
ty

C
la

ss
ifi

ca
tio

n

G
en

er
al

Sy
st

em
s

of
sy

st
em

s

Io
T

K
no

w
le

dg
e

SE
M

et
ho

do
lo

gy

Pe
rf

or
m

an
ce

R
el

ia
bi

lit
y

St
ab

ili
ty

R
is

k

C
om

m
un

ic
at

io
n

D
ec

is
io

ns
&

Tr
ad

eo
ff

A
na

ly
si

s

D
ep

lo
ym

en
t

D
es

ig
n

E
va

lu
at

io
n

E
vo

lu
tio

n

R
un

-t
im

e

Se
lf

-A
da

pt
at

io
n

D
es

cr
ip

tio
n

D
oc

um
en

ta
tio

n

R
eq

ui
re

m
en

ts

Tr
ac

ea
bi

lit
y

To
ol

s

N
ot

at
io

ns

Successful requirement elicitation by combining require-
ment engineering techniques [102]

E ✓

Supporting architectural decision making for systems-
of-systems design under uncertainty [59]

E ✓ ✓ ✓ ✓

Synthesizing tradeoff spaces with quantitative guaran-
tees for families of software systems [78]

A ✓ ✓ ✓

Systematic selection of software architecture styles [85] E ✓

Taming uncertainty in self-adaptive software [121] E ✓ ✓

Targeting uncertainty in smart CPS by confidence-based
logic [97]

B ✓ ✓

The uncertainty principle in software engineering [20] E ✓

The Tao way to anti-fragile software architectures: the
case of mobile applications [51]

B ✓

Towards search-based modelling and analysis of require-
ments and architecture decisions [73]

E ✓ ✓ ✓ ✓ ✓ ✓

Towards using probabilistic models to design software
systems with inherent uncertainty [84]

B ✓ ✓ ✓ ✓ ✓

Tuning self-adaptation in cyber-physical systems
through architectural homeostasis [98]

B ✓ ✓

Uncertainties in the modeling of self-adaptive systems:
a taxonomy and an example of availability evaluation
[22]

B ✓ ✓

Uncertainty expressions in software architecture group
decision making: Explorative study [71]

E ✓ ✓ ✓

Uncertainty in Self-adaptive Systems: A Research Com-
munity Perspective [41]

B ✓

Uncertainty, Risk, and Information Value in Software
Requirements and Architecture. [103]

E ✓ ✓ ✓ ✓

Using real options to select stable middleware induced
software architectures. [69]

E ✓ ✓ ✓ ✓

BAPPENDIX B

APPENDIX-B
UNCERTAINTY

FRAMEWORK DATA AND
META-DATA

B.1 Uncertainty Attributes - JSON OBJECT template

{
"id":1642559068879,
"facet":"",
"manifestation":"",
"monitor":"",
"bound":"",
"nature":{

"options":[
"Aleatory",
"Epistemic"

],
"value":""

},
"perspective":{

"options":[
"Subjective",
"Objective"

],
"value":""

},
"source":{

195

196 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

"options":[
"External",
"Internal"

],
"value":""

},
"viewpoint":{

"options":[
"Logical",
"Physical",
"Process"

],
"value":""

},
"description":"",
"evidence":"",
"relationship":"",
"SourceDescription":"",
"cause":"",
"relatedUncertainties":{

},
"location":"",
"level":{

"options":[
"High",
"Medium",
"Low"

],
"value":""

},
"awareness":{

"options":[
"Known Unknown",
"Unknown unknown"

],
"value":""

},
"emergingTime":{

"options":[
"Requirement",
"Development",
"Runtime"

],
"value":""

},
"lifetime":"",
"change":{

"options":[
"Static",
"Dynamic"

],
"value":""

},

B.1. UNCERTAINTY ATTRIBUTES - JSON OBJECT TEMPLATE 197

"pattern":{
"options":[

"Periodic",
"Persistence ",
"Transient",
"Sporadic"

],
"value":""

},
"measure":{

"options":[
"Probability",
"Persistence ",
"Fuzziness",
"Temporal logic",
"Non-specificity"

],
"value":""

},
"dependency":"",
"risk":"",
"opportunity":"",
"mitigation":"",
"exploitation":"",
"outcome":""

}

Listing B.1: JSON data

198 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

B.2 XML data for screenshot

<mxGraphModel dx="2229" dy="780" grid="1" gridSize="10" guides="1" tooltips="1"
connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827"
pageHeight="1169" math="0" shadow="0">

<root>
<mxCell id="0" />
<mxCell id="1" parent="0" />
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-1" value="Logical architecture" parent="0"

/>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-30" value="Block" style="verticalAlign=top;

align=left;spacingTop=8;spacingLeft=2;spacingRight=12;shape=cube;size
=10;direction=south;fontStyle=4;html=1;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="40" y="80" width="785" height="560" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-32" value="MEME Network" style="text;html

=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;
strokeWidth=4;strokeColor=#000000;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="40" y="90" width="777.5" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-33" value="Governance and collaboration"

style="text;html=1;align=center;verticalAlign=middle;whiteSpace=wrap;
rounded=0;strokeWidth=4;strokeColor=#000000;fontStyle=1" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="170" y="162" width="640" height="20" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-35" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="170" y="520" width="630" height="105" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-47" value="Manage" style="text;html=1;

strokeColor=none;fillColor=none;align=center;verticalAlign=middle;
whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="180" y="526" width="40" height="20" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-48" value="Metadata" style="rounded=0;

whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="690" y="570" width="100" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-50" value="<div>ETL &amp; Data<

;/div><div>Preparation
</div>" style="rounded=0;
whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="690" y="530" width="100" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-51" value="Data Privacy" style="rounded=0;

whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"

B.2. XML DATA FOR SCREENSHOT 199

parent="Lx7MsKEuWNhGFfsztCJ6-1">
<mxGeometry x="560" y="570" width="120" height="36" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-52" value="Tagging" style="rounded=0;

whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="430" y="530" width="114" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-53" value="Data Quality" style="rounded=0;

whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="560" y="530" width="120" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-54" value="Data Security" style="rounded=0;

whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="430" y="570" width="115" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-55" value="" style="group" vertex="1"

connectable="0" parent="Lx7MsKEuWNhGFfsztCJ6-1">
<mxGeometry x="560" y="190" width="120" height="320" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-39" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry width="120" height="320" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-45" value="Analyse" style="text;html=1;

strokeColor=none;fillColor=none;align=center;verticalAlign=middle;
whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry x="9.230769230769232" y="8" width="36.92307692307693" height="
20" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-83" value="<div>Data Request</div&

gt;<div>Fulfilment
</div>" style="rounded=0;
whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry x="5" y="60" width="110" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-85" value="<div>Occ. Health</div&

gt;<div>Surveillance Analysis
</div>" style="
rounded=0;whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry x="5" y="100" width="110" height="50" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-84" value="<div>Exploratory</div&

gt;<div>Analysis
</div>" style="rounded=0;
whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry x="5" y="160" width="120" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-86" value="<div>Search, Mine &amp

;</div><div>Ad-hoc Query</div>" style="rounded=0;

200 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry x="5" y="200" width="110" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-87" value="<div>Reports &amp;<

;/div><div>Dashboards
</div>" style="rounded=0;
whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry x="5" y="240" width="110" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-88" style="edgeStyle=orthogonalEdgeStyle;

rounded=0;orthogonalLoop=1;jettySize=auto;html=1;exitX=0.5;exitY=1;
exitDx=0;exitDy=0;" edge="1" parent="Lx7MsKEuWNhGFfsztCJ6-55" source="
Lx7MsKEuWNhGFfsztCJ6-84" target="Lx7MsKEuWNhGFfsztCJ6-84">

<mxGeometry relative="1" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-89" value="<div>Analysis &amp;<

;/div><div>Visualization
</div>" style="rounded
=0;whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-55">

<mxGeometry x="5" y="280" width="110" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-56" value="" style="group" vertex="1"

connectable="0" parent="Lx7MsKEuWNhGFfsztCJ6-1">
<mxGeometry x="690" y="190" width="110" height="320" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-40" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-56">

<mxGeometry width="110" height="320" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-46" value="Distribute" style="text;html=1;

strokeColor=none;fillColor=none;align=center;verticalAlign=middle;
whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-56">

<mxGeometry x="20.00153846153846" y="10" width="33.84615384615385" height=
"20" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-76" value="<div>
</div>

;<div>Reusable</div><div>Datasets
</div>
;" style="strokeWidth=2;html=1;shape=mxgraph.flowchart.database;
whiteSpace=wrap;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-56">

<mxGeometry x="10" y="50" width="80" height="60" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-77" value="<div>Packaged</div>&

lt;div>Datasets
</div>" style="shape=cube;whiteSpace=
wrap;html=1;boundedLbl=1;backgroundOutline=1;darkOpacity=0.05;
darkOpacity2=0.1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-56">

<mxGeometry x="13.75" y="210" width="82.5" height="60" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-80" value="Files" style="strokeWidth=2;html

=1;shape=mxgraph.flowchart.multi-document;whiteSpace=wrap;fillColor=#
ffffff;direction=south;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-56">

B.2. XML DATA FOR SCREENSHOT 201

<mxGeometry x="30" y="160" width="50" height="62" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-57" value="" style="group" vertex="1"

connectable="0" parent="Lx7MsKEuWNhGFfsztCJ6-1">
<mxGeometry x="430" y="190" width="114" height="320" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-38" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry width="114" height="320" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-44" value="Store" style="text;html=1;

strokeColor=none;fillColor=none;align=center;verticalAlign=middle;
whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="8.76923076923077" y="8" width="35.07692307692308" height="
20" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-90" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;fillColor=#ffffff;dashed
=1;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="15" y="190" width="84" height="110" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-91" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;fillColor=#ffffff;dashed
=1;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="15" y="30" width="84" height="130" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-92" value="<div>Ops</div><

div>Data
</div>" style="strokeWidth=2;html=1;shape=
mxgraph.flowchart.database;whiteSpace=wrap;fillColor=#ffffff;" vertex="1
" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="22.5" y="60" width="39" height="40" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-95" value="<div>Active</div><

;div>Data
</div>" style="strokeWidth=2;html=1;shape=
mxgraph.flowchart.database;whiteSpace=wrap;fillColor=#ffffff;" vertex="1
" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="52.5" y="60" width="39" height="40" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-94" value="<div>Master</div><

;div>Data
</div>" style="strokeWidth=2;html=1;shape=
mxgraph.flowchart.database;whiteSpace=wrap;fillColor=#ffffff;" vertex="1
" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="22.5" y="120" width="40" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-93" value="<div>Ref</div><

div>Data
</div>" style="strokeWidth=2;html=1;shape=
mxgraph.flowchart.database;whiteSpace=wrap;fillColor=#ffffff;" vertex="1
" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="52.5" y="110" width="39" height="40" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-101" value="Trusted Data" style="text;html

=1;strokeColor=none;fillColor=none;align=center;verticalAlign=middle;

202 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="15" y="30" width="80" height="20" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-100" value="<div>Raw Data</div>

" style="text;html=1;strokeColor=none;fillColor=none;align=center;
verticalAlign=middle;whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="11.5" y="190" width="80" height="20" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-96" value="EMR" style="strokeWidth=2;html

=1;shape=mxgraph.flowchart.database;whiteSpace=wrap;fillColor=#ffffff;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="23.5" y="210" width="39" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-97" value="LSAH" style="strokeWidth=2;html

=1;shape=mxgraph.flowchart.database;whiteSpace=wrap;fillColor=#ffffff;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="43.85" y="230" width="39" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-98" value="MEDB" style="strokeWidth=2;html

=1;shape=mxgraph.flowchart.database;whiteSpace=wrap;fillColor=#ffffff;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-57">

<mxGeometry x="60" y="250" width="39" height="40" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-58" value="" style="group;fontStyle=1"

vertex="1" connectable="0" parent="Lx7MsKEuWNhGFfsztCJ6-1">
<mxGeometry x="300" y="190" width="114" height="320" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-37" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-58">

<mxGeometry width="114" height="320" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-43" value="Refine" style="text;html=1;

strokeColor=none;fillColor=none;align=center;verticalAlign=middle;
whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-58">

<mxGeometry x="8.76923076923077" y="11" width="35.07692307692308" height="
20" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-103" value="Data Cataloging" style="rounded

=0;whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-58">

<mxGeometry x="5" y="40" width="104" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-106" value="<div>Error &amp;</

div><div>Exception</div><div>Management
&
lt;/div>" style="rounded=0;whiteSpace=wrap;html=1;strokeColor
=#000000;strokeWidth=2;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-58">

<mxGeometry x="5" y="80" width="104" height="60" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-107" value="Data Profiling" style="rounded

=0;whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"

B.2. XML DATA FOR SCREENSHOT 203

parent="Lx7MsKEuWNhGFfsztCJ6-58">
<mxGeometry x="5" y="150" width="104" height="30" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-108" value="Data Edits" style="rounded=0;

whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-58">

<mxGeometry x="5" y="190" width="104" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-60" value="" style="group" vertex="1"

connectable="0" parent="Lx7MsKEuWNhGFfsztCJ6-1">
<mxGeometry x="170" y="190" width="115" height="320" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-41" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-60">

<mxGeometry width="115" height="320" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-42" value="Transport" style="text;html=1;

strokeColor=none;fillColor=none;align=center;verticalAlign=middle;
whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-60">

<mxGeometry x="19.996153846153845" y="10" width="35.38461538461539" height
="20" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-116" value="<div>Connect to Data</

div><div>Source
</div>" style="rounded=0;
whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-60">

<mxGeometry x="5.5" y="40" width="104" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-118" value="<div>Ingestion at</div

><div>scale
</div>" style="rounded=0;whiteSpace=
wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-60">

<mxGeometry x="5.5" y="90" width="104" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-119" value="<div>Rules-based</div&

gt;<div>Cleaning
</div>" style="rounded=0;
whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-60">

<mxGeometry x="5.5" y="130" width="104" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-81" value="Access Control" style="rounded

=0;whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="300" y="570" width="114" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-82" value="Data Cataloging" style="rounded

=0;whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="300" y="530" width="114" height="36" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-120" value="" style="group" vertex="1"

connectable="0" parent="Lx7MsKEuWNhGFfsztCJ6-1">

204 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

<mxGeometry x="40" y="120" width="110" height="520" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-36" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-120">

<mxGeometry width="110" height="519.9999999999999" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-66" value="" style="group" vertex="1"

connectable="0" parent="Lx7MsKEuWNhGFfsztCJ6-120">
<mxGeometry y="31.108235294117648" width="110" height="366.53882352941173"

as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-67" value="" style="rounded=0;whiteSpace=

wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-66">

<mxGeometry y="21.02195592621081" width="110" height="345.5168676032009"
as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-68" value="Capture" style="text;html=1;

strokeColor=none;fillColor=none;align=center;verticalAlign=middle;
whiteSpace=wrap;rounded=0;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-66">

<mxGeometry x="19.995217391304347" y="21.019260803656167" width="
38.26086956521739" height="22.908541714460497" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-69" value="RDBMS" style="strokeWidth=2;html

=1;shape=mxgraph.flowchart.database;whiteSpace=wrap;" vertex="1" parent=
"Lx7MsKEuWNhGFfsztCJ6-66">

<mxGeometry x="25" y="45.817083428920995" width="60" height="
45.817083428920995" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-70" value="NoSQL" style="strokeWidth=2;html

=1;shape=mxgraph.flowchart.database;whiteSpace=wrap;" vertex="1" parent=
"Lx7MsKEuWNhGFfsztCJ6-66">

<mxGeometry x="25" y="103.08843771507225" width="60" height="
45.817083428920995" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-71" value="Cloud" style="ellipse;shape=

cloud;whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex=
"1" parent="Lx7MsKEuWNhGFfsztCJ6-66">

<mxGeometry x="5" y="240.53968800183523" width="85" height="
45.817083428920995" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-73" value="Files" style="strokeWidth=2;html

=1;shape=mxgraph.flowchart.multi-document;whiteSpace=wrap;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-66">

<mxGeometry x="20" y="171.81406285845372" width="70" height="
57.271354286151244" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-72" value="<div>File
</

div><div>Shares
</div>" style="shape=card;
whiteSpace=wrap;html=1;strokeColor=#000000;strokeWidth=2;" vertex="1"
parent="Lx7MsKEuWNhGFfsztCJ6-66">

B.2. XML DATA FOR SCREENSHOT 205

<mxGeometry x="20" y="297.8110422879865" width="55" height="
57.271354286151244" as="geometry" />

</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-122" value="" style="html=1;shadow=0;dashed

=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0.6;
dx=40;notch=0;strokeColor=#000000;strokeWidth=2;fillColor=#ffffff;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-120">

<mxGeometry x="-100" y="10" width="200" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-121" value="IMPALA System" style="text;html

=1;align=center;verticalAlign=middle;whiteSpace=wrap;rounded=0;
strokeWidth=4;strokeColor=#000000;fontStyle=1" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="170" y="130" width="640" height="20" as="geometry" />
</mxCell>
<object label="HH&P IT" uncertaintyDB="{"1623347515019":{"

;id":1623347515019,"system":"System name","
;manifestation":"","environmentMonitor":"&
quot;,"nature":{"options":["Aleatory",&
quot;Epistemic"],"value":""},"perspective&
quot;:{"options":["Subjective","Objective"
;],"value":""},"source":{"options&
quot;:["External","Internal"],"value":&
quot;"},"viewpoint":{"options":["Logical&
quot;,"Physical","Process"],"value":"
;"},"description":"Description","evidence&
quot;:"Evidence","SourceDescription":"",&
quot;relatedUncertainties":{},"location":"",&
quot;level":{"options":["Known Unknown","
Unknown unknown","Statistical"],"value":"&
quot;},"awareness":{"options":["Known Unknown&
quot;,"Unknown unknown"],"value":""},"
;emergingTime":{"options":["Requirement","
Development","Runtime"],"value":""},&
quot;lifetime":"","pattern":{"options"
;:["Periodic","Persistence ","Transient",&
quot;Sporadic"],"value":""},"measure"
;:{"options":["Probability","Persistence "
;,"Fuzziness","Temporal logic","Non-specificity
"],"value":""},"related":""
;,"operator":{"options":["Modal","
Temporal","Ordinal"],"value":"Modal"
;},"modal":{"options":["MAY","SHALL&
quot;],"value":""},"ordinal":{"
options":["AS CLOSE AS POSSIBLE TO '?'","AS
MANY POSSIBLE TO '?'","AS FEW AS POSSIBLE TO
'?'"],"value":""},"temporal"
;:{"options":["EVENTUALLY","UNTIL","
BEFORE","AFTER","AS EARLY AS POSSIBLE","AS
LATE AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"

;],"value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-6">
<mxCell style="swimlane;fontStyle=0;childLayout=stackLayout;horizontal=1;

startSize=26;horizontalStack=0;resizeParent=1;resizeParentMax=0;
resizeLast=0;collapsible=1;marginBottom=0;align=center;fontSize=14;"

206 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">
<mxGeometry x="-220" y="308" width="160" height="104" as="geometry" />

</mxCell>
</object>
<object label="System of Records" uncertaintyDB="{"1623347531099"

;:{"id":1623347531099,"system":"System name&
quot;,"manifestation":"","environmentMonitor&
quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&
quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-7">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-6">

<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Build ETL Process" uncertaintyDB="{"1623347529998"

;:{"id":1623347529998,"system":"System name&
quot;,"manifestation":"","environmentMonitor&
quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&

B.2. XML DATA FOR SCREENSHOT 207

quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-8">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-6">

<mxGeometry y="52" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Manage Interfaces" uncertaintyDB="{"1623347564024"

;:{"id":1623347564024,"system":"System name&
quot;,"manifestation":"","environmentMonitor&
quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&
quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["

208 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-9">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-6">

<mxGeometry y="78" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Governance" uncertaintyDB="{"1623347515019":{"

id":1623347515019,"system":"System name","
manifestation":"","environmentMonitor":"&
quot;,"nature":{"options":["Aleatory",&
quot;Epistemic"],"value":""},"perspective&
quot;:{"options":["Subjective","Objective"
;],"value":""},"source":{"options&
quot;:["External","Internal"],"value":&
quot;"},"viewpoint":{"options":["Logical&
quot;,"Physical","Process"],"value":"
;"},"description":"Description","evidence&
quot;:"Evidence","SourceDescription":"",&
quot;relatedUncertainties":{},"location":"",&
quot;level":{"options":["Known Unknown","
Unknown unknown","Statistical"],"value":"&
quot;},"awareness":{"options":["Known Unknown&
quot;,"Unknown unknown"],"value":""},"
;emergingTime":{"options":["Requirement","
Development","Runtime"],"value":""},&
quot;lifetime":"","pattern":{"options"
;:["Periodic","Persistence ","Transient",&
quot;Sporadic"],"value":""},"measure"
;:{"options":["Probability","Persistence "
;,"Fuzziness","Temporal logic","Non-specificity
"],"value":""},"related":""
;,"operator":{"options":["Modal","

B.2. XML DATA FOR SCREENSHOT 209

Temporal","Ordinal"],"value":"Modal"
;},"modal":{"options":["MAY","SHALL&
quot;],"value":""},"ordinal":{"
options":["AS CLOSE AS POSSIBLE TO '?'","AS
MANY POSSIBLE TO '?'","AS FEW AS POSSIBLE TO
'?'"],"value":""},"temporal"
;:{"options":["EVENTUALLY","UNTIL","
BEFORE","AFTER","AS EARLY AS POSSIBLE","AS
LATE AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"

;],"value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-2">
<mxCell style="swimlane;fontStyle=0;childLayout=stackLayout;horizontal=1;

startSize=26;horizontalStack=0;resizeParent=1;resizeParentMax=0;
resizeLast=0;collapsible=1;marginBottom=0;align=center;fontSize=14;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="-220" y="100" width="160" height="104" as="geometry" />
</mxCell>

</object>
<object label="Data Sharing Agreements" uncertaintyDB="{"1623347531099&

quot;:{"id":1623347531099,"system":"System name
","manifestation":"","environmentMonitor&
quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&
quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-3">

210 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-2">

<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Data Usage & Consent" uncertaintyDB="{"

;1623347529998":{"id":1623347529998,"system":&
quot;System name","manifestation":"","
environmentMonitor":"","nature":{"options&
quot;:["Aleatory","Epistemic"],"value":&
quot;"},"perspective":{"options":["
Subjective","Objective"],"value":""
;},"source":{"options":["External","
Internal"],"value":""},"viewpoint":{&
quot;options":["Logical","Physical","
Process"],"value":""},"description":&
quot;Description","evidence":"Evidence","
SourceDescription":"","relatedUncertainties"
;:{},"location":"","level":{"options&
quot;:["Known Unknown","Unknown unknown","
Statistical"],"value":""},"awareness"
;:{"options":["Known Unknown","Unknown unknown&
quot;],"value":""},"emergingTime":{"
options":["Requirement","Development","
Runtime"],"value":""},"lifetime":&
quot;","pattern":{"options":["Periodic&
quot;,"Persistence ","Transient","Sporadic"
;],"value":""},"measure":{"options&
quot;:["Probability","Persistence ","Fuzziness&
quot;,"Temporal logic","Non-specificity"],"
value":""},"related":"","
operator":{"options":["Modal","Temporal&
quot;,"Ordinal"],"value":"Modal"},"
modal":{"options":["MAY","SHALL"],&
quot;value":""},"ordinal":{"options"
;:["AS CLOSE AS POSSIBLE TO '?'","AS MANY
POSSIBLE TO '?'","AS FEW AS POSSIBLE TO '?'&
quot;],"value":""},"temporal":{"
options":["EVENTUALLY","UNTIL","BEFORE&
quot;,"AFTER","AS EARLY AS POSSIBLE","AS LATE
AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"],"
;value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-4">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-2">

<mxGeometry y="52" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="3rd Party Engagement Rules" uncertaintyDB="{"

;1623347564024":{"id":1623347564024,"system":&
quot;System name","manifestation":"","

B.2. XML DATA FOR SCREENSHOT 211

environmentMonitor":"","nature":{"options&
quot;:["Aleatory","Epistemic"],"value":&
quot;"},"perspective":{"options":["
Subjective","Objective"],"value":""
;},"source":{"options":["External","
Internal"],"value":""},"viewpoint":{&
quot;options":["Logical","Physical","
Process"],"value":""},"description":&
quot;Description","evidence":"Evidence","
SourceDescription":"","relatedUncertainties"
;:{},"location":"","level":{"options&
quot;:["Known Unknown","Unknown unknown","
Statistical"],"value":""},"awareness"
;:{"options":["Known Unknown","Unknown unknown&
quot;],"value":""},"emergingTime":{"
options":["Requirement","Development","
Runtime"],"value":""},"lifetime":&
quot;","pattern":{"options":["Periodic&
quot;,"Persistence ","Transient","Sporadic"
;],"value":""},"measure":{"options&
quot;:["Probability","Persistence ","Fuzziness&
quot;,"Temporal logic","Non-specificity"],"
value":""},"related":"","
operator":{"options":["Modal","Temporal&
quot;,"Ordinal"],"value":"Modal"},"
modal":{"options":["MAY","SHALL"],&
quot;value":""},"ordinal":{"options"
;:["AS CLOSE AS POSSIBLE TO '?'","AS MANY
POSSIBLE TO '?'","AS FEW AS POSSIBLE TO '?'&
quot;],"value":""},"temporal":{"
options":["EVENTUALLY","UNTIL","BEFORE&
quot;,"AFTER","AS EARLY AS POSSIBLE","AS LATE
AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"],"
;value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-5">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-2">

<mxGeometry y="78" width="160" height="26" as="geometry" />
</mxCell>

</object>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-123" value="" style="html=1;shadow=0;dashed

=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0.6;
dx=40;notch=0;strokeColor=#000000;strokeWidth=2;fillColor=#ffffff;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="-60" y="546" width="200" height="30" as="geometry" />
</mxCell>
<object label="Dat Stewards" uncertaintyDB="{"1623347515019":{&

quot;id":1623347515019,"system":"System name",&
quot;manifestation":"","environmentMonitor":&
quot;","nature":{"options":["Aleatory"
;,"Epistemic"],"value":""},"
perspective":{"options":["Subjective","
Objective"],"value":""},"source":{&

212 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

quot;options":["External","Internal"],"
value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-10">

<mxCell style="swimlane;fontStyle=0;childLayout=stackLayout;horizontal=1;
startSize=26;horizontalStack=0;resizeParent=1;resizeParentMax=0;
resizeLast=0;collapsible=1;marginBottom=0;align=center;fontSize=14;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="-220" y="502" width="160" height="104" as="geometry" />
</mxCell>

</object>
<object label="Data Catalog" uncertaintyDB="{"1623347531099":{&

quot;id":1623347531099,"system":"System name",&
quot;manifestation":"","environmentMonitor":&
quot;","nature":{"options":["Aleatory"
;,"Epistemic"],"value":""},"
perspective":{"options":["Subjective","
Objective"],"value":""},"source":{&
quot;options":["External","Internal"],"
value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"

B.2. XML DATA FOR SCREENSHOT 213

;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-11">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-10">

<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Curate Data" uncertaintyDB="{"1623347529998":{"

;id":1623347529998,"system":"System name","
;manifestation":"","environmentMonitor":"&
quot;,"nature":{"options":["Aleatory",&
quot;Epistemic"],"value":""},"perspective&
quot;:{"options":["Subjective","Objective"
;],"value":""},"source":{"options&
quot;:["External","Internal"],"value":&
quot;"},"viewpoint":{"options":["Logical&
quot;,"Physical","Process"],"value":"
;"},"description":"Description","evidence&
quot;:"Evidence","SourceDescription":"",&
quot;relatedUncertainties":{},"location":"",&
quot;level":{"options":["Known Unknown","
Unknown unknown","Statistical"],"value":"&
quot;},"awareness":{"options":["Known Unknown&
quot;,"Unknown unknown"],"value":""},"
;emergingTime":{"options":["Requirement","
Development","Runtime"],"value":""},&
quot;lifetime":"","pattern":{"options"
;:["Periodic","Persistence ","Transient",&
quot;Sporadic"],"value":""},"measure"
;:{"options":["Probability","Persistence "
;,"Fuzziness","Temporal logic","Non-specificity
"],"value":""},"related":""
;,"operator":{"options":["Modal","
Temporal","Ordinal"],"value":"Modal"

214 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

;},"modal":{"options":["MAY","SHALL&
quot;],"value":""},"ordinal":{"
options":["AS CLOSE AS POSSIBLE TO '?'","AS
MANY POSSIBLE TO '?'","AS FEW AS POSSIBLE TO
'?'"],"value":""},"temporal"
;:{"options":["EVENTUALLY","UNTIL","
BEFORE","AFTER","AS EARLY AS POSSIBLE","AS
LATE AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"

;],"value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-12">
<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;

spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-10">

<mxGeometry y="52" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Manage Data" uncertaintyDB="{"1623347564024":{"

;id":1623347564024,"system":"System name","
;manifestation":"","environmentMonitor":"&
quot;,"nature":{"options":["Aleatory",&
quot;Epistemic"],"value":""},"perspective&
quot;:{"options":["Subjective","Objective"
;],"value":""},"source":{"options&
quot;:["External","Internal"],"value":&
quot;"},"viewpoint":{"options":["Logical&
quot;,"Physical","Process"],"value":"
;"},"description":"Description","evidence&
quot;:"Evidence","SourceDescription":"",&
quot;relatedUncertainties":{},"location":"",&
quot;level":{"options":["Known Unknown","
Unknown unknown","Statistical"],"value":"&
quot;},"awareness":{"options":["Known Unknown&
quot;,"Unknown unknown"],"value":""},"
;emergingTime":{"options":["Requirement","
Development","Runtime"],"value":""},&
quot;lifetime":"","pattern":{"options"
;:["Periodic","Persistence ","Transient",&
quot;Sporadic"],"value":""},"measure"
;:{"options":["Probability","Persistence "
;,"Fuzziness","Temporal logic","Non-specificity
"],"value":""},"related":""
;,"operator":{"options":["Modal","
Temporal","Ordinal"],"value":"Modal"
;},"modal":{"options":["MAY","SHALL&
quot;],"value":""},"ordinal":{"
options":["AS CLOSE AS POSSIBLE TO '?'","AS
MANY POSSIBLE TO '?'","AS FEW AS POSSIBLE TO
'?'"],"value":""},"temporal"
;:{"options":["EVENTUALLY","UNTIL","
BEFORE","AFTER","AS EARLY AS POSSIBLE","AS
LATE AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"

;],"value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-13">
<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;

spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];

B.2. XML DATA FOR SCREENSHOT 215

portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-10">

<mxGeometry y="78" width="160" height="26" as="geometry" />
</mxCell>

</object>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-124" value="" style="html=1;shadow=0;dashed

=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0.6;
dx=40;notch=0;strokeColor=#000000;strokeWidth=2;fillColor=#ffffff;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="-60" y="353" width="70" height="30" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-125" value="" style="html=1;shadow=0;dashed

=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0.6;
dx=40;flipH=1;notch=0;strokeColor=#000000;strokeWidth=2;fillColor=#
ffffff;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="810" y="155.5" width="110" height="33" as="geometry" />
</mxCell>
<object label="Data Analysis" uncertaintyDB="{"1623347515019":{&

quot;id":1623347515019,"system":"System name",&
quot;manifestation":"","environmentMonitor":&
quot;","nature":{"options":["Aleatory"
;,"Epistemic"],"value":""},"
perspective":{"options":["Subjective","
Objective"],"value":""},"source":{&
quot;options":["External","Internal"],"
value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-14">

216 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

<mxCell style="swimlane;fontStyle=0;childLayout=stackLayout;horizontal=1;
startSize=26;horizontalStack=0;resizeParent=1;resizeParentMax=0;
resizeLast=0;collapsible=1;marginBottom=0;align=center;fontSize=14;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="920" y="120" width="160" height="104" as="geometry" />
</mxCell>

</object>
<object label="Data Consumers" uncertaintyDB="{"1623347531099":{&

quot;id":1623347531099,"system":"System name",&
quot;manifestation":"","environmentMonitor":&
quot;","nature":{"options":["Aleatory"
;,"Epistemic"],"value":""},"
perspective":{"options":["Subjective","
Objective"],"value":""},"source":{&
quot;options":["External","Internal"],"
value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-15">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-14">

<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Deliver Insights" uncertaintyDB="{"1623347529998"

;:{"id":1623347529998,"system":"System name&
quot;,"manifestation":"","environmentMonitor&

B.2. XML DATA FOR SCREENSHOT 217

quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&
quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-16">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-14">

<mxGeometry y="52" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Recommended Actions" uncertaintyDB="{"1623347564024"

;:{"id":1623347564024,"system":"System name&
quot;,"manifestation":"","environmentMonitor&
quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&
quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&

218 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-17">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-14">

<mxGeometry y="78" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Data Scientists" uncertaintyDB="{"1623347515019":{&

quot;id":1623347515019,"system":"System name",&
quot;manifestation":"","environmentMonitor":&
quot;","nature":{"options":["Aleatory"
;,"Epistemic"],"value":""},"
perspective":{"options":["Subjective","
Objective"],"value":""},"source":{&
quot;options":["External","Internal"],"
value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&

B.2. XML DATA FOR SCREENSHOT 219

quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-18">

<mxCell style="swimlane;fontStyle=0;childLayout=stackLayout;horizontal=1;
startSize=26;horizontalStack=0;resizeParent=1;resizeParentMax=0;
resizeLast=0;collapsible=1;marginBottom=0;align=center;fontSize=14;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="920" y="298" width="160" height="104" as="geometry" />
</mxCell>

</object>
<object label="Manage Data Relationships" uncertaintyDB="{"

;1623347531099":{"id":1623347531099,"system":&
quot;System name","manifestation":"","
environmentMonitor":"","nature":{"options&
quot;:["Aleatory","Epistemic"],"value":&
quot;"},"perspective":{"options":["
Subjective","Objective"],"value":""
;},"source":{"options":["External","
Internal"],"value":""},"viewpoint":{&
quot;options":["Logical","Physical","
Process"],"value":""},"description":&
quot;Description","evidence":"Evidence","
SourceDescription":"","relatedUncertainties"
;:{},"location":"","level":{"options&
quot;:["Known Unknown","Unknown unknown","
Statistical"],"value":""},"awareness"
;:{"options":["Known Unknown","Unknown unknown&
quot;],"value":""},"emergingTime":{"
options":["Requirement","Development","
Runtime"],"value":""},"lifetime":&
quot;","pattern":{"options":["Periodic&
quot;,"Persistence ","Transient","Sporadic"
;],"value":""},"measure":{"options&
quot;:["Probability","Persistence ","Fuzziness&
quot;,"Temporal logic","Non-specificity"],"
value":""},"related":"","
operator":{"options":["Modal","Temporal&
quot;,"Ordinal"],"value":"Modal"},"
modal":{"options":["MAY","SHALL"],&
quot;value":""},"ordinal":{"options"
;:["AS CLOSE AS POSSIBLE TO '?'","AS MANY
POSSIBLE TO '?'","AS FEW AS POSSIBLE TO '?'&
quot;],"value":""},"temporal":{"

220 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

options":["EVENTUALLY","UNTIL","BEFORE&
quot;,"AFTER","AS EARLY AS POSSIBLE","AS LATE
AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"],"
;value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-19">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-18">

<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Manual Data Edits" uncertaintyDB="{"1623347529998"

;:{"id":1623347529998,"system":"System name&
quot;,"manifestation":"","environmentMonitor&
quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&
quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-20">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-18">

<mxGeometry y="52" width="160" height="26" as="geometry" />
</mxCell>

B.2. XML DATA FOR SCREENSHOT 221

</object>
<object label="Create & Manage Datasets" uncertaintyDB="{"

;1623347564024":{"id":1623347564024,"system":&
quot;System name","manifestation":"","
environmentMonitor":"","nature":{"options&
quot;:["Aleatory","Epistemic"],"value":&
quot;"},"perspective":{"options":["
Subjective","Objective"],"value":""
;},"source":{"options":["External","
Internal"],"value":""},"viewpoint":{&
quot;options":["Logical","Physical","
Process"],"value":""},"description":&
quot;Description","evidence":"Evidence","
SourceDescription":"","relatedUncertainties"
;:{},"location":"","level":{"options&
quot;:["Known Unknown","Unknown unknown","
Statistical"],"value":""},"awareness"
;:{"options":["Known Unknown","Unknown unknown&
quot;],"value":""},"emergingTime":{"
options":["Requirement","Development","
Runtime"],"value":""},"lifetime":&
quot;","pattern":{"options":["Periodic&
quot;,"Persistence ","Transient","Sporadic"
;],"value":""},"measure":{"options&
quot;:["Probability","Persistence ","Fuzziness&
quot;,"Temporal logic","Non-specificity"],"
value":""},"related":"","
operator":{"options":["Modal","Temporal&
quot;,"Ordinal"],"value":"Modal"},"
modal":{"options":["MAY","SHALL"],&
quot;value":""},"ordinal":{"options"
;:["AS CLOSE AS POSSIBLE TO '?'","AS MANY
POSSIBLE TO '?'","AS FEW AS POSSIBLE TO '?'&
quot;],"value":""},"temporal":{"
options":["EVENTUALLY","UNTIL","BEFORE&
quot;,"AFTER","AS EARLY AS POSSIBLE","AS LATE
AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"],"
;value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-21">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-18">

<mxGeometry y="78" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Administrators" uncertaintyDB="{"1623347515019":{&

quot;id":1623347515019,"system":"System name",&
quot;manifestation":"","environmentMonitor":&
quot;","nature":{"options":["Aleatory"
;,"Epistemic"],"value":""},"
perspective":{"options":["Subjective","
Objective"],"value":""},"source":{&
quot;options":["External","Internal"],"
value":""},"viewpoint":{"options":[&

222 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"
value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-22">

<mxCell style="swimlane;fontStyle=0;childLayout=stackLayout;horizontal=1;
startSize=26;horizontalStack=0;resizeParent=1;resizeParentMax=0;
resizeLast=0;collapsible=1;marginBottom=0;align=center;fontSize=14;"
vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="920" y="484" width="160" height="104" as="geometry" />
</mxCell>

</object>
<object label="Data Sharing Agreements" uncertaintyDB="{"1623347531099&

quot;:{"id":1623347531099,"system":"System name
","manifestation":"","environmentMonitor&
quot;:"","nature":{"options":["
Aleatory","Epistemic"],"value":""},&
quot;perspective":{"options":["Subjective",&
quot;Objective"],"value":""},"source"
;:{"options":["External","Internal"],"
;value":""},"viewpoint":{"options":[&
quot;Logical","Physical","Process"],"value
":""},"description":"Description",&
quot;evidence":"Evidence","SourceDescription":&
quot;","relatedUncertainties":{},"location":&
quot;","level":{"options":["Known Unknown&
quot;,"Unknown unknown","Statistical"],"value&
quot;:""},"awareness":{"options":["
Known Unknown","Unknown unknown"],"value":"
;"},"emergingTime":{"options":["
Requirement","Development","Runtime"],"

B.2. XML DATA FOR SCREENSHOT 223

value":""},"lifetime":"","
pattern":{"options":["Periodic","
Persistence ","Transient","Sporadic"],"
value":""},"measure":{"options":[&
quot;Probability","Persistence ","Fuzziness",&
quot;Temporal logic","Non-specificity"],"value"
;:""},"related":"","operator":{&
quot;options":["Modal","Temporal","Ordinal
"],"value":"Modal"},"modal":{"
options":["MAY","SHALL"],"value":&
quot;"},"ordinal":{"options":["AS CLOSE AS
POSSIBLE TO '?'","AS MANY POSSIBLE TO '?'&

quot;,"AS FEW AS POSSIBLE TO '?'"],"value":&
quot;"},"temporal":{"options":["EVENTUALLY
","UNTIL","BEFORE","AFTER","AS
EARLY AS POSSIBLE","AS LATE AS POSSIBLE","AS CLOSE
AS POSSIBLE TO '?'"],"value":""}}}" id=
"Lx7MsKEuWNhGFfsztCJ6-23">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-22">

<mxGeometry y="26" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="Data Usage & Consent" uncertaintyDB="{"

;1623347529998":{"id":1623347529998,"system":&
quot;System name","manifestation":"","
environmentMonitor":"","nature":{"options&
quot;:["Aleatory","Epistemic"],"value":&
quot;"},"perspective":{"options":["
Subjective","Objective"],"value":""
;},"source":{"options":["External","
Internal"],"value":""},"viewpoint":{&
quot;options":["Logical","Physical","
Process"],"value":""},"description":&
quot;Description","evidence":"Evidence","
SourceDescription":"","relatedUncertainties"
;:{},"location":"","level":{"options&
quot;:["Known Unknown","Unknown unknown","
Statistical"],"value":""},"awareness"
;:{"options":["Known Unknown","Unknown unknown&
quot;],"value":""},"emergingTime":{"
options":["Requirement","Development","
Runtime"],"value":""},"lifetime":&
quot;","pattern":{"options":["Periodic&
quot;,"Persistence ","Transient","Sporadic"
;],"value":""},"measure":{"options&
quot;:["Probability","Persistence ","Fuzziness&
quot;,"Temporal logic","Non-specificity"],"
value":""},"related":"","
operator":{"options":["Modal","Temporal&
quot;,"Ordinal"],"value":"Modal"},"
modal":{"options":["MAY","SHALL"],&

224 APPENDIX B. APPENDIX-B UNCERTAINTY FRAMEWORK DATA AND META-DATA

quot;value":""},"ordinal":{"options"
;:["AS CLOSE AS POSSIBLE TO '?'","AS MANY
POSSIBLE TO '?'","AS FEW AS POSSIBLE TO '?'&
quot;],"value":""},"temporal":{"
options":["EVENTUALLY","UNTIL","BEFORE&
quot;,"AFTER","AS EARLY AS POSSIBLE","AS LATE
AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"],"
;value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-24">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];
portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-22">

<mxGeometry y="52" width="160" height="26" as="geometry" />
</mxCell>

</object>
<object label="3rd Party Engagement Rules" uncertaintyDB="{"

;1623347564024":{"id":1623347564024,"system":&
quot;System name","manifestation":"","
environmentMonitor":"","nature":{"options&
quot;:["Aleatory","Epistemic"],"value":&
quot;"},"perspective":{"options":["
Subjective","Objective"],"value":""
;},"source":{"options":["External","
Internal"],"value":""},"viewpoint":{&
quot;options":["Logical","Physical","
Process"],"value":""},"description":&
quot;Description","evidence":"Evidence","
SourceDescription":"","relatedUncertainties"
;:{},"location":"","level":{"options&
quot;:["Known Unknown","Unknown unknown","
Statistical"],"value":""},"awareness"
;:{"options":["Known Unknown","Unknown unknown&
quot;],"value":""},"emergingTime":{"
options":["Requirement","Development","
Runtime"],"value":""},"lifetime":&
quot;","pattern":{"options":["Periodic&
quot;,"Persistence ","Transient","Sporadic"
;],"value":""},"measure":{"options&
quot;:["Probability","Persistence ","Fuzziness&
quot;,"Temporal logic","Non-specificity"],"
value":""},"related":"","
operator":{"options":["Modal","Temporal&
quot;,"Ordinal"],"value":"Modal"},"
modal":{"options":["MAY","SHALL"],&
quot;value":""},"ordinal":{"options"
;:["AS CLOSE AS POSSIBLE TO '?'","AS MANY
POSSIBLE TO '?'","AS FEW AS POSSIBLE TO '?'&
quot;],"value":""},"temporal":{"
options":["EVENTUALLY","UNTIL","BEFORE&
quot;,"AFTER","AS EARLY AS POSSIBLE","AS LATE
AS POSSIBLE","AS CLOSE AS POSSIBLE TO '?'"],"
;value":""}}}" id="Lx7MsKEuWNhGFfsztCJ6-25">

<mxCell style="text;strokeColor=none;fillColor=none;spacingLeft=4;
spacingRight=4;overflow=hidden;rotatable=0;points=[[0,0.5],[1,0.5]];

B.2. XML DATA FOR SCREENSHOT 225

portConstraint=eastwest;fontSize=12;" vertex="1" parent="
Lx7MsKEuWNhGFfsztCJ6-22">

<mxGeometry y="78" width="160" height="26" as="geometry" />
</mxCell>

</object>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-126" value="" style="html=1;shadow=0;dashed

=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0.6;
dx=40;flipH=1;notch=0;strokeColor=#000000;strokeWidth=2;fillColor=#
ffffff;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="820" y="343.5" width="100" height="33" as="geometry" />
</mxCell>
<mxCell id="Lx7MsKEuWNhGFfsztCJ6-127" value="" style="html=1;shadow=0;dashed

=0;align=center;verticalAlign=middle;shape=mxgraph.arrows2.arrow;dy=0.6;
dx=40;flipH=1;notch=0;strokeColor=#000000;strokeWidth=2;fillColor=#
ffffff;" vertex="1" parent="Lx7MsKEuWNhGFfsztCJ6-1">

<mxGeometry x="810" y="520" width="110" height="33" as="geometry" />
</mxCell>

</root>
</mxGraphModel>

Listing B.2: XML data for screenshot

CAPPENDIX C

APPENDIX-C: CASE
STUDY 3 UNCERTAINTY

FRAMEWORK DATA

227

228 APPENDIX C. APPENDIX-C: CASE STUDY 3 UNCERTAINTY FRAMEWORK DATA

Table C.1: Internet of Vehicles common uncertainties data

Attribute Uncertainties
Uncertainty ID 1 2 3 4 5 6
Description IoV network band-

width
IoV computation capabil-
ity

IoV storage capacity IoV network fail-
ure

IoV coordination failure IoV vehicle, data,
and other compo-
nents growth

Nature Aleatory Aleatory Aleatory Aleatory Aleatory Epistemic
Bound 0 to 100% capability Maximum available pro-

cessor capacity
Perspective Objective Objective Subjective Objective Subjective Objective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown
Level Medium Medium High Medium Medium Medium
Source type Exogenous Exogenous Exogenous or En-

dogenous
Exogenous Exogenous or Endoge-

nous
Exogenous or En-
dogenous

Cause Bandwidth fluctua-
tions

Limited computing pro-
cess power

Growth in Big Data
from cameras, sen-
sors, and internal au-
tomotive actuators
(brakes, accelerator,
etc.)

Hardware (such
as transmitter, re-
ceiver and relay)
issues

Disruptions due to dy-
namicity and the mobility
of a vehicle

Unpredictable
growth in
vehicles, data,
application etc

Viewpoints Logical Logical Logical Logical Logical Logical
Facets Architecture Architecture Architecture Architecture Architecture Architecture
Location Network Computation Data store Network IoV nodes, components

and communication chan-
nels

IoV components,
infrastructure and
Data

Manifestation Bandwidth changes Processing speed Storage capacity Connectivity loss Lack of coordination
among nodes and
components and other
IoV elements

Growth
quantities,
magnitudes and
numbers

Measure Probability Fluctuations Storage capacity
proportion

Probability

Monitor Network connection Processor monitor Storage capacity
monitor

Connection status Coordination harmony Various growth
indicators

Evidence Bandwidth fluctua-
tion tends

Processing trends Free space Connectivity data Seamless cooperation
and sharing

Growth data

Relationship Ping command
feedback

Emerging time Run-time Run-time Run-time Run-time Run-time Run-time
Lifetime Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Aperiodic- sporadic Aperiodic- sporadic Aperiodic- sporadic Aperiodic-

sporadic
Aperiodic-sporadic Aperiodic-

sporadic
Dependencies Network, data traf-

fic and connectivity
uncertainties

Real-time processing un-
certainties

Data sources uncer-
tainties

IoV components
include vehicles,
infrastructure and
others

Communication
challenges and network
uncertainties

IoV uncertainties

Risk or Oppor-
tunities

Risk: Quality of Ser-
vice degeneration

Risk: System slow, real-
time failure, potential ac-
cidents

Risk: Data loss and
data inaccessibility

Risk: IoV fail-
ure, data loss, ac-
cidents and others

Risk: traffic conges-
tion, Insufficient informa-
tion between IoV com-
ponents, accidents and
other coordination depen-
dent aspects

Risk: Capability
limits, poor
performance,
data loss

Mitigation or
Exploitation

Mitigation: High
bandwidth network
such as 5G and use
of fog or edge com-
puting

Mitigation: Us clouding
computing and fog com-
puting

Mitigation: cloud
computing and stor-
age

Mitigation: Soft-
ware Define Net-
works (SDN) to
abstract hardware
issues

Mitigation: high capac-
ity networks and compu-
tation

Mitigation: IoV
Scalability design
include 5G, cloud
and fog comput-
ing

Outcome (with
operators)

MAXIMISE
network bandwidth
and network
reliability

MAXIMISE IoV compu-
tation power and speed

MAXIMISE IoV
Storage capacity

MAXIMISE net-
work availability,
reliability and ro-
bustness

MAXIMISE
coordination and data
sharing for optimal IoV
operation

Support
AS MUCH
unforeseen
growth AS
POSSIBLE

Influence mea-
sure

High Medium High Medium Medium High

229

Table C.2: Internet of Vehicles common uncertainties

Attribute Uncertainties
Uncertainty ID 7 8 9 10 11 12
Description IoV future services IoV protocols variations

and heterogeneous
IoV range of com-
munication or inter-
connection channels

IoV real-time op-
eration

IoV security IoV mapping lo-
calisation

Nature Epistemic Epistemic Epistemic Aleatory Epistemic Aleatory
Bound
Perspective Subjective Objective Objective Subjective Subjective Objective
Awareness Known unknown Known unknown Known unknown Known unknown Known unknown Known unknown
Level Medium medium Low Low Medium Medium
Source type Exogenous or En-

dogenous
Exogenous Exogenous or En-

dogenous
Endogenous

Cause Technology, market,
regulation and busi-
ness innovations

IoV message variations
due to factors such as ve-
hicle variety

Available communi-
cation channels op-
tions

Not always avail-
able due to vari-
ous issues

Security attacks from ma-
licious sources, cyber at-
tacks etc.

"Global Position-
ing System (GPS)
and sensors is-
sues"

Viewpoints Logical Logical Logical Logical Logical Logical
Facets Architecture Architecture Architecture Architecture Architecture Architecture
Location IoV services Network and Data Network IoV services IoV software and hard-

ware infrastructure
Network and IoV
services

Manifestation Upgrades and new
services

Message format for ve-
hicles, IoV infrastructure
and humans

New communica-
tion channel

Unavailability of
real-time opera-
tions

Detected security vulner-
ability and exploitation

Misreading direc-
tions and map-
ping

Measure Probability Approximation
Monitor Changes and update

requests
Interoperability monitor Real-time

feedback monitor
Security threats and at-
tacks monitor

Location and
mapping monitor

Evidence Upgrades and up-
dates

Interoperability issues New communica-
tion channel request

Real-time
feedback

Attack and vulnerability
data

Pattern
predictions
and data

Relationship Attack results
Emerging time Run-time & Deploy-

ment
Run-time Run-time Run-time Run-time Run-time

Lifetime Perpetuity Perpetuity Limited Perpetuity Perpetuity Perpetuity
Change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Pattern Systematic-

persistent
Systematic-persistent Systematic-limited Aperiodic-

sporadic
Aperiodic-sporadic Aperiodic-

sporadic
Dependencies IoV uncertainties IoV communication and

services uncertainties
Network uncertain-
ties

IoV uncertainties IoV uncertainties Coordination un-
certainties

Risk or Oppor-
tunities

Opportunities: new
Innovations

Risk: Communication
and corporation failure

Opportunity: IoV
growth with new
connections

Risk: handle
emergencies
such as collision
warning

Risk: Data loss, acci-
dents, traffic disruptions
and others

Risk: Data loss,
coordination fail-
ure, IoV disrup-
tion and accidents

Mitigation or
Exploitation

Exploitation: mar-
ket potential and
footprint

Mitigation: Standardisa-
tion of IoV enabling tech-
nologies

Mitigation: Soft-
ware Defined Net-
works and Interoper-
ability support

Mitigation: Fog
or edge comput-
ing

Mitigation: Architecture
security design consider-
ation

Mitigation: Con-
text Awareness

Outcome (with
operators)

IoV with BEST
AVAILABLE
services for
comfortable,
efficient and safe
driving

MAXIMISE
interoperability among
IoV components and
elements

MAXIMISE
possible
communication
channels and
options or IoV
architecture should
connect to AS
MANY components
AS POSSIBLE

Continuous
access and
exchanging
reliable data in
real-time

MAXIMISE safe driving
and ENSURE security

Ensure accurate
mapping and lo-
cation AS POSSI-
BLE

Influence mea-
sure

Medium Medium Medium Very high High Medium

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Research context and motivation
	Research Questions
	Research Question 1
	Research Question 2

	Contributions
	Organisation of Dissertation

	Methodology
	Scope and approach
	Phases and steps
	Phase one
	Phase two

	Discussion
	Conclusions

	Uncertainty and software systems Background - illustrative example
	Overview
	Uncertainty and software systems
	Uncertainty and its expression - illustrative example
	Managing uncertainty in software systems
	Conclusion

	Uncertainty in Software Architecture: A Survey
	Overview
	Related work
	Survey design
	Identifying aspects of software architecture
	Survey questions
	Inclusion and exclusion criteria

	Survey process
	Data collection and trends
	Limitations and threats to validity

	Survey Data
	Overview of software architecture aspects
	Categorisation of software architecture aspects
	Uncertainty in software architecture aspects
	Architecture Definitions and Concepts
	Architecture Activities
	Architecture Artefacts
	Architecture Tools and Notations: Uncertainty capabilities
	Summary

	Risks and opportunities of uncertainty in software architecture aspects
	Mitigation and exploitation of uncertainty in software architecture aspects
	Discussion: Gaps and directions for Future Work
	Conclusions

	Uncertainty characterisation concepts: state of the art
	Overview
	Existing approaches for considering uncertainty in software systems
	Uncertainty in cognitive science
	Uncertainty in complex systems
	Uncertainty in cyber-physical systems
	Uncertainty in self-adaptive systems

	Summary of existing frameworks
	Conclusion

	Framework
	Overview
	A framework for considering uncertainty in software systems
	Framework definition
	Applying the framework
	Uncertainty representation and analysis

	Evaluation and discussion
	Case studies
	Illustration of uncertainties in case studies
	Demonstration of extensibility: Future studies concept
	Discussion

	Conclusion

	The Workbench Infrastructure
	Overview
	Concepts of the workbench infrastructure
	Design of the workbench infrastructure
	Realisation of the workbench infrastructure
	Implementation of the uncertainty capture tool
	Critical discussion of the workbench infrastructure
	Validity of the workbench infrastructure concept
	Workbench infrastructure tools and notations support
	Application of workbench infrastructure

	Conclusion

	Evaluation strategy
	Introduction
	Evaluation strategy
	Architecture case study selection criteria
	The case studies and evaluation
	The case studies evaluation approaches
	Case study 1: Knowledge generation: uncertainty capturing and documentation
	Case study 2: Uncertainty analysis of software architecture
	Case study 3: Alternative candidate architecture uncertainty ranking and selection

	The ATAM overview and customisation
	ATAM Customisation
	The uncertainty framework and the ATAM
	Independent application of the uncertainty framework - MSc project vs ars

	Conclusion

	Case Study 1: AEROSTACK - Uncertainty Knowledge Generation and Documentation
	Overview
	AEROSTACK Architecture Description
	Logical view
	Development view
	Discussion
	Encoding and interpreting uncertainty knowledge and documentation
	Uncertainty documentation and knowledge

	Conclusions

	Case Study 2: IMPALA - uncertainty architecture analysis
	Overview
	IMPALA platform architecture description
	Logical view
	Uncertainty of the Capture component
	Uncertainty of the Transport component
	Uncertainty of the Refine component
	Uncertainty of the Store component
	Uncertainty of the Analyze component
	Uncertainty of the Distribute component
	Uncertainty of the Manage component

	Functional view
	Infrastructure view
	Network view
	Security view
	Discussion
	Uncertainty data overview
	Uncertainty knowledge and Documentation
	Uncertainty data quality
	IMPALA platform uncertainty consideration architecture analysis - Report
	IMPALA platform ATAM architecture analysis - Report
	Comparison of analysis reports insights: uncertainty consideration framework vs the customised ATAM

	Conclusions

	Case study 3: IoV - comparison of candidate architectures on uncertainty
	Overview
	IoV Architectures
	Candidate Architecture One
	Candidate Architecture Two

	Candidate Architectures Comparison approach
	Uncertainty influence measure attribute
	Framework extensibility - Influence measure attributes
	The common uncertainties
	Uncertainties analysis - ordinal data generation
	Ranking candidate architecture: comparison

	Discussion
	Conclusions

	Conclusions
	Overview
	Summary of main contributions
	A literature survey of uncertainty in software architecture from 1991 to 2021
	A literature survey of uncertainty frameworks for software system
	A definition of a conceptual framework for considering uncertainty in software systems
	The specification and development of the workbench infrastructure concept
	Evaluation of the uncertainty consideration framework on software architecture case studies
	Critical reflection on the uncertainty consideration framework
	Final thoughts on the main contributions

	Future work
	Continuous uncertainty management
	Uncertainty and Agile software development
	Uncertainty framework automation
	Uncertainty framework customisation
	Final thought on future work

	Conclusions

	References
	Appendix-A - Architecture Survey Literature Sources
	Appendix-B Uncertainty framework data and meta-data
	Uncertainty Attributes - JSON OBJECT template
	XML data for screenshot

	Appendix-C: Case Study 3 Uncertainty framework data

