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Abstract
The advance of quantum technology relies heavily on an accurate understanding of the
unavoidable interactions between quantum systems and their environment. While it
is often adequate to account for the environment using approximate time-local (i.e.
Markovian) equations of motion, in many scenarios such a description fails, and a more
general non-Markovian theory becomes necessary. The failure of Markovian descrip-
tions concerns not only quantitative aspects of the reduced dynamics of a quantum
system, but also qualitative and conceptual aspects, such as the failure of the quan-
tum regression formula relating the system’s dynamics to its multi-time correlations.
Despite considerable progress in recent years, the description and simulation of non-
Markovian open quantum systems remains a conceptual and computational challenge.
In this thesis we develop a versatile set of numerical methods for non-Markovian open
quantum systems by combining the so-called process tensor framework with the numer-
ical power of tensor network methods. The recently introduced process tensor is an
alternative approach to open quantum systems and is—unlike the canonical approach
based on dynamical maps—well suited for a rigorous characterisation of non-Markovian
open quantum systems. We construct and apply process tensors in a matrix product
operator form (PT-MPO) to yield a numerically exact, yet efficient representation of
non-Markovian open quantum systems, which allows for a variety of practical applica-
tions. Building on the PT-MPO we introduce general methods to (1) efficiently find
optimal control procedures for non-Markovian open quantum systems, (2) compute the
dynamics and multi-time correlations of chains of non-Markovian open quantum sys-
tems, and (3) construct a time-translational invariant PT-MPO, which allows efficient
computation of steady states even in non-equilibrium non-Markovian scenarios.
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Chapter 1

Introduction

The theory of open quantum systems is one of the key ingredients for making quantum
mechanics more applicable for experimental applications. It describes the dynamics of
microscopic systems governed by the rules of quantum mechanics, but unlike the theory
of closed systems, open systems additionally incorporate the unavoidable interactions
with the environment. As such it is essential for the development of quantum compu-
tation and quantum communication devices [1, 2], but also key in understanding the
role of quantum mechanics in biological systems [3–5] and the development of better
photo-voltaic devices [6]. Because a full quantum mechanical treatment of the total
system (i.e the open system together with its environment) is in almost all practical
cases unfeasible, the main effort of the field is to find appropriate effective equations
of motion for the open system alone, while accounting for the complex influence of the
environment. The form of these equations depends heavily on the specific problem at
hand.

Some physical scenarios allow for simple time-local effective equations of motion [7, 8].
Such a description is called Markovian, which means that the future evolution of the
system only depends on its present state, but not explicitly on its history. Such a de-
scription is often adequate for scenarios with unstructured environments that couple
weakly to the system of interest as, for example, often encountered in the field of quan-
tum optics. There, one typically considers single atoms or high quality cavity modes
that interact weakly with the surrounding electromagnetic field [9, 10]. The influence of
the field onto the atoms or cavity modes can then often be described by some effective
decay rate or driving term that does not depend on the history of the evolution.

Many interesting physical scenarios, however, do not admit such a simple time-local
description and thus make a non-Markovian theory necessary [11–13]. These include
scenarios where the environment is structured or the interaction with the open system is
strong. In these cases the environment may retain information about past interactions
with the system and then, with some time delay, act back on it, leading to time non-local
effective equations of motion for the system. Compared to the predictions of a Marko-
vian theory, non-Markovian equations of motion have the potential to capture physical
effects that are obscured otherwise, which can lead to qualitatively different behaviour
of the system, as seen for example in the spin-boson model phase transition [14]. In
general, the complexity of such problems scales exponentially with the memory time
of the environment, which makes both deriving and solving the effective equations of

1



1 Introduction 2

motion a challenging task.

Non-Markovian open quantum systems appear in a number of relevant applications.
Solid state based quantum devices, for example, such as quantum dots and nitrogen-
vacancy colour centres in diamonds are promising platforms for quantum communica-
tion, quantum computation, and quantum sensing applications [2]. As these systems
are part of a solid object they often interact strongly with the lattice vibrational modes,
surrounding charges, or magnetic spins [15]. For an accurate computation of the evolu-
tion, the strength of the interactions with the environment demands a non-Markovian
treatment in many cases [16–19]. The study of the evolution of a single excitation
inside a larger object is also an important ingredient for the development of better
light-harvesting devices [6] and understanding the role of quantum mechanics in bio-
logical systems [5]. In both light-harvesting devices and biological systems (such as the
Fenna-Matthews-Olson complex [3]) considerable effort goes into understanding how
the environment impedes or enhances the transport of energy [20]. Apart from these
particular applications, the general theory of non-Markovian quantum systems is also
of importance for fundamental research, such as the study of strong coupling quantum
thermodynamics [21–27] and the development of theoretical tools for the characterisa-
tion of quantum devices [28].

While the theory of Markovian open quantum systems has resulted in a rich and well
developed set of analytical and numerical tools within a well established mathematical
framework, the treatment of non-Markovian scenarios is more challenging. There exist
various approaches to general (non-Markovian) open quantum systems developed over
the last several decades that can be roughly put into four categories: (1) perturbative
approaches [29–34], (2) stochastic trajectory approaches [35–37], (3) methods that con-
struct a larger Markovian system extended with the most relevant environment degrees
of freedom [38–41], and (4) methods that keep track of the environment’s time non-local
influence onto the system [42–49]. The latter two approaches which explicitly or im-
plicitly keep track of the environment have benefited enormously from the development
of tensor network methods in recent years. Tensor network methods were originally
designed for many-body quantum systems, where the key idea is to restrict the huge
state space of many-body systems to a low-dimensional manifold that captures the
physically most relevant correlations [50, 51]. For a wide class of many-body quantum
systems this makes an effective numerical simulation feasible even for a large number
of interacting quantum systems, for which a direct approach would be intractable. It
is thus unsurprising that tensor network methods may benefit approaches that trans-
form a non-Markovian open system into a Markovian many-body problem [38–41]. The
same is in fact true, albeit maybe less obvious, for approaches which do not directly
keep track of the environment but only of the influence of the environment onto the
system [45, 49, 52–58].

Despite the large number of available approaches and numerical methods for general
open quantum systems, there are still a lot of open challenges that are of importance
to the applications mentioned above. While the perturbative and semi-analytical ap-
proaches often need to make crude approximations or are applicable only to a quite
restricted set of problems, the numerical approaches often involve challenging compu-
tations. This makes, for example, optimisation of control protocols for non-Markovian
quantum systems often an numerically unfeasible task, which would be particularly de-
sirable for a design of quantum information devices [59, 60]. Also, there are physical
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scenarios that include both many-body quantum systems and strongly coupled struc-
tured environments [61–65]. However, almost all methods for the study of many-body
systems only consider closed or Markovian dynamics, while methods for the study of
general open quantum systems are generically restricted to small system sizes. Fur-
thermore, there appears to be some disagreement and possibly even confusion on a
conceptual level in the community about how to describe the properties of an open
quantum system. This conceptual disagreement is apparent, for example, in the zoo
of inequivalent definitions and measures of quantum (non-)Markovianity proposed by
different authors [66]. Although this might seem like an irrelevant dispute over the
meaning of the word “Markovian”, it often makes the literature cumbersome to follow
or even prone to misinterpretation and incorrect conclusions, especially when a specific
definition is assumed but not explicitly stated. Related to this are also other conceptual
challenges, such as the questions on how to obtain correct multi-time correlations of
the system and how to accommodate initial states that are not separable between the
system and the environment.

In this thesis we will address several of these challenges by combining the so called
process tensor framework [67] for general open quantum systems with the numerical
power of tensor network methods. In chapter 2 we first give a brief introduction to
the general theory of open quantum systems, the process tensor framework, and the
theory of tensor networks. We then combine the process tensor framework with tensor
network algorithms to yield the so called process tensor in matrix product operator form
(PT-MPO). In chapter 3 we show how the PT-MPO may be employed to find optimal
control procedures for general open quantum systems, and illustrate the procedure by
optimising the shape of a laser pulse to prepare a quantum dot in a specific state [54].
In chapter 4 we combine the PT-MPO with an established many-body tensor network
method to compute the dynamics and multi-time correlations of chains of general open
quantum systems [68]. Furthermore, we propose a method to study the thermalisation
and resulting effective temperature of subsystems even when their coupling to the rest
of the chain and the environment is strong. We exemplify this by studying an XYZ
Heisenberg spin chain in both equilibrium and non-equilibrium scenarios. In chapter 5
we exploit time-translational invariance of the system-environment coupling to construct
a time-translational invariant PT-MPO, which allows efficient computation of steady
states even in non-equilibrium scenarios. Finally we conclude and briefly discuss future
directions in chapter 6.



Chapter 2

Background

In this chapter we introduce the concepts and formalisms that form the basis for the
rest of this thesis. We begin with the general formulation of open quantum systems and
a brief discussion of the most commonly applied concepts such as the evolution of the
reduced density matrix and the dynamical map. The limitations of these concepts then
motivate the introduction of the so called process tensor formalism [67] in section 2.1.4
as an alternative approach for the description of general open quantum systems. After
a brief introduction to tensor networks in section 2.2, we discuss the construction of
the process tensor in matrix product operator form (PT-MPO), which combines the
computational efficiency of tensor network methods with the conceptual advantages of
the process tensor formalism for the description of general open quantum systems. The
PT-MPO will play an important role in all subsequent chapters.

2.1. Open quantum systems

2.1.1. General formulation

Most generally, the field of open quantum systems seeks to describe properties of a
quantum system, called the open system or simply the system, which is part of a larger
quantum system, called the total system [8, 69]. The part of the total system that is
not the open system is called the environment. Typically, the open system is a small
system of central interest, such as the electronic exciton states of a single quantum dot.
The environment is on the other hand typically a large system comprising a continuum
of states, such as the lattice phonon modes that couple to the exciton of the quantum
dot. In principle there are however no restrictions on the sizes of the respective Hilbert
spaces. Also, the border between environment and open system is a choice and as such
physically arbitrary and only a matter of the intention of the theoretical study. The total
Hilbert space H is assumed to be the product of the open system and the environment
spaces, i.e. H = HS ⊗HE. Most commonly one separates the total Hamiltonian

Ĥ(t) = ĤS(t) + ĤE(t) + ĤI(t), (2.1)

into a pure system HS(t) ∈ B(HS), a pure environment HE(t) ∈ B(HE), and an interac-
tion part HI(t) ∈ B(HS ⊗HE). The expression B(H) denotes the set of bounded linear
operators on the Hilbert space H. One often allows that the total Hamiltonian is ex-
plicitly time dependent, which signals that the total system itself need not be closed in

4



2 Background 5

the strictest sense, because for example, energy is then not necessarily conserved. From
the point of view of the field of open quantum systems a total system of the form in
equation (2.1) is, however, considered quasi-closed in the sense that its overall evolution
is unitary. However, in most applications the interaction and environment Hamiltonian
are not explicitly time dependent, i.e. ĤI(t) = ĤI and ĤE(t) = ĤE. To differentiate
between certain classes of environments, we call a time independent environment with
an infinite number of degrees of freedom a reservoir and we call an initially thermalised
reservoir a bath.

For some open quantum systems it is possible to directly study the total system ana-
lytically, such as the independent boson model [14, 70]. For most physical scenarios of
interest, however, the entirety of the system and environment is too complex to allow
for a direct treatment. Thus the general approach in the field of open quantum systems
is to derive some effective equations of motion (EOM) for the quantities of interest. The
canonical approach is to find EOM that describe the evolution of the reduced density
matrix ρS(t) of the open system for a given initial total state ρ0. As a starting point
for such an approach let us consider the EOM for the total system in the form of the
von Neumann equation (in units of ~ = 1)

d

dt
ρ(t) = −i

[
Ĥ(t), ρ(t)

]
. (2.2)

Let us assume that ρ(t) is a solution of this equation for the initial state ρ(0) = ρ0 with
ρ0 ∈ B(HS ⊗HE). We can then define a one parameter family of density matrices

ρS(t) := TrE {ρ(t)} , (2.3)

where TrE · denotes the partial trace over the environment Hilbert space. This one
parameter family is called the evolution of the reduced density matrix ρS(t), or in short,
the reduced dynamics. Most approaches assume that the initial state is a product state
with respect to the system and environment Hilbert spaces, i.e. ρ0 = ρS

0 ⊗ ρE
0 . In this

case one can further straightforwardly define the so called dynamical map Λt0, which
maps any initial system state ρS

0 to the reduced density matrix at later time t,

Λt0ρ
S
0 ≡ Λt0[ρS

0 ] = ρS(t). (2.4)

These two related objects, namely the evolution of the reduced density matrix ρS(t) and
the dynamical map Λt0, are the focus of most studies in the literature. It is therefore
vital to have a good understanding of how these quantities relate to experiments. For
this, let us assume we run an experiment with good control over a single small quantum
system that is in contact with some complicated environment. To measure the reduced
dynamics of the system ρS(t), we need to repeatedly prepare the system and environment
in the state ρ0 and then perform quantum state tomography on the system at time t.
In many experiments the initial state ρ0 is the steady state of the total system and the
evolution originates from a unitary protocol associated with some system Hamiltonian
ĤS(t) starting at the initial time t = 0. To obtain the dynamical map Λt0, on the other
hand, we need to not only prepare a single initial product state, but even repeatedly

prepare a product state for different system basis states
{
ρE

0 ⊗ ρ
S,α
0

}
α

and then perform

full quantum state tomography at time t for each state ρS,α
0 . Conversely, knowing ρS(t)

or even Λt0 encodes all expectation values that one could measure from the system in
such a prepare-evolve-measure type protocol.
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Figure 2.1: Schematic summary of some “Markovian” concepts and their relation. The Born, Markov
and secular approximations always result in equations of motion in GKSL form. Also, any
GKSL master equation results in CP-divisible dynamics, and any differentiable CP-divisible
dynamics can be described by a GKSL master equation.

However, not all properties of an open system can be measured in a prepare-evolve-
measure type experiment. In many experiments the observed quantities are related
to multi-time correlations, such as the fluorescence and absorption spectra in molec-
ular spectroscopy [71], and bunching and anti-bunching of photons in quantum optics
experiments [10]. Also, in the context of quantum information protocols, one is often in-
terested in predicting the state of the system after multiple interactions with additional
ancillary systems [72]. With the exception of very special circumstances (on which we
will comment in section 2.1.3) neither the reduced dynamics ρS(t) nor the dynamical
map Λt0 encode multi-time correlations or how the system will react to multiple inter-
actions with an ancilla. This also means that any property one defines solely on the
basis of the reduced dynamics ρS(t) or the dynamical map Λt0 is only a statement about
expectation values of prepare-evolve-measure type experiments described above. There
is no a priori guarantee that any such property would persist in a different context in
which, for example, an extra ancillary system interacts with the open system at multiple
times.

Therefore, to completely characterise general open quantum systems a different ap-
proach is necessary. In section 2.1.4 we briefly introduce such an approach brought
forward by Pollock et al. which will form the conceptual basis for all following chapters
of this thesis. To relate this alternative approach to the canonical methods we first
briefly review some important concepts and results of the reduced dynamics paradigm
in the following sections 2.1.2 and 2.1.3.

2.1.2. Quantum Markov processes

Obtaining the reduced dynamics for an open quantum system as described above is in
general a difficult task. There are, however, many open systems where the approximate
EOM for the reduced dynamics ρS(t) take a simple time-local form. This is the case if
at all times t1 > 0 the EOM for ρS(t) at that time t1 only depend on its current state
ρS(t1), but not on its history ρS(t′) with t1 > t′ ≥ 0. Such open quantum systems are
informally often said to be Markovian, referring to a quantum equivalent of the concept
for classical stochastic processes. Generic open systems are not Markovian because in
general there exist processes in which the system influences the environment and then
the environment acts back on the system with some time delay.

To make these informal statements more concrete, we now discuss three related concepts,
namely completely positive divisibility, the Gorini–Kossakowski–Sudarshan–Lindblad
master equation, and the Born-Markov and secular approximations. Figure 2.1 shows
an overview sketch of how these concepts relate to each other. Finally, we briefly discuss
the use of the term “Markovian” in a quantum context.
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CP-divisibility: A dynamical map Λt0 is called completely positive divisible [73, 74]
(CP-divisible) if and only if for all times t2 ≥ t1 ≥ 0, there exists a completely positive
and trace preserving (CPTP) map [72] Θt2

t1
such that

Λt20 = Θt2
t1

Λt10 , (2.5)

where Θt2
t1

Λt10 is to be understood as a composition, i.e. Θt2
t1

Λt10 ρS
0 = Θt2

t1

[
Λt10
(
ρS

0

)]
.

We note that often no distinction is made between the maps Λ and Θ in the literature.
We make this distinction here to emphasise their different operational meaning and
call the latter the generalised dynamical map Θ [66]. While Λt0 can be measured in an
prepare-evolve-measure type experiment, this is not true for Θt

t′ . The map Θt
t′ is in

general different from the map Φt
t′ that one would measure in an experiment in which

one performs measurements at time t after a system state preparation at time t′ [75].
As an example, consider a CP-divisible process which evolves any initial state into a
completely mixed state by the time ta > 0 and then continues the evolution unitarily.
Such a unitary evolution could be implemented by decoupling the environment from the
system at time ta, i.e. HI(t) = 0 for t > ta. Then, any unitary map would qualify as an
appropriate Θt2

t1
for t2 > t1 > ta in the sense of the above definition of CP-divisibility,

while a measurement of Φt2
t1

would reveal the specific unitary of the protocol.

GKSL master equation: A dynamical map is said to admit a Gorini–Kossakowski–
Sudarshan–Lindblad (GKSL) master equation if and only if it is the solution to EOM
of the form

d

dt
ρS(t) =− i

[
Ĥeff(t), ρS(t)

]
+
d2−1∑
k=1

γk(t)

(
Â†k(t)ρ

S(t)Âk(t)−
1

2

{
Â†k(t)Âk(t), ρ

S(t)
})

,

(2.6)

where d = dim(HS) is the dimension of the system Hilbert space, Ĥeff(t) ∈ B(HS) is an
effective Hamiltonian, Âk ∈ B(HS) are traceless orthonormal operators, and γk(t) ≥ 0
are positive real numbers. Any dynamical map that admits a GKSL master equation is
CP-divisible. The reverse is also true when we consider only differentiable CP-divisible
processes, i.e. processes for which limε→0+

(
Θt+ε
t /ε

)
is well defined for all t > 0 [73, 76–

79]. While this informs us under what circumstances a dynamical map admits such a
time-local GKSL master equation, there is still the question of how to obtain an explicit
GKSL master equation for a specific microscopic model given in terms of ĤS(t), ĤI(t),
ĤE(t), and an initial environment state ρE

0 . The most commonly applied method to
achieve this is to perform a particular set of approximations, which we briefly discuss
next.

Born, Markov and secular approximations: The Born, Markov and secular ap-
proximations are a sequence of approximations that are guaranteed to result in effective
EOM of the reduced dynamics in a GKSL form [8]. They are often applied to micro-
scopic models in the field of quantum optics. First, the Born approximation assumes
that during the entire evolution the environment is only altered in such a way that as
far as the effective EOM for the reduced dynamics are concerned the total state can be
assumed to be in a product state of the form ρ(t) = ρS(t)⊗ ρE

0 . Intuitively this approx-
imation may be justified for large and weakly coupled environments. It does, however,
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not assume that the environment truly stays in its initial state, or that a product state
would be a good approximation to the total state at later times—it rather assumes that
it does not make a significant difference to the EOM whether the true total state or this
product state enters into the calculation. Consider an open system in which the total
initial state is a pure state and the environment causes the system to obtain a fully
mixed state after some time. Then the system and environment must be maximally en-
tangled because the entire state is still pure. However, even in such a scenario the Born
approximation might still be justified. Second, the Markov approximation assumes that
the processes in which the system perturbs the environment that then acts back on the
system are much faster than the system evolution itself. Therefore the most important
contributions from such processes enter the EOM as time-local terms. And third, the
secular approximation is a type of rotating wave approximation in which fast rotating
terms in the effective EOM of the reduced dynamics are neglected. We refer the reader
to the canonical literature on the topic [8] for further details.

Quantum Markovianity: The definition of CP-divisibility is most commonly ac-
cepted as a definition for the word “Markovian” in a quantum context, but it is not
generally agreed upon in the field. As explained in a review article [11] by the au-
thors of a related seminal paper [74] CP-divisibility can be understood as a quantum
version of classical divisibility, which—for one-time probabilities—is equivalent to clas-
sical Markovianity. Even for classical processes, divisibility does not in general imply
Markovianity, because to judge the latter the knowledge of all multi-time correlations
is necessary [11, 75, 80]. Thus CP-divisibility appears to be an appropriate definition
of quantum Markovianity for one-time probabilities, i.e. for any observable that is
measurable in a prepare-evolve-measure type experiment as discussed in the previous
section 2.1.1. In case one intends to classify open quantum systems with respect to
their multi-time correlations (which are in general not encoded in the dynamical map)
other concepts are necessary. It is unsurprising that CP-divisibility, whose definition
is based solely on the dynamical map cannot classify open quantum systems with re-
spect to observables that are not encoded in the dynamical map. A review by Li, Hall
and Wiseman [66] summarises the most commonly used definitions that are refereed to
as “Markovian” at various places in the literature and presents a hierarchy of which
definitions imply which others. This shows that caution is in order when the term
“Markovian” is used in a quantum context. In the review [66] the authors argue “that
there is no single concept that deserves the name quantum Markovianity”, and advocate
to “regard quantum Markovianity as very much context-dependent”.

In this thesis we do not rely on any particular definition of Markovianity because all our
core results do not rely on any approximation that could be considered “Markovian”.
However, we use the term non-Markovian as a synonym for “general” whenever we
want to stress that we do not assume Markovianity (which is thus independent of the
exact definition). We use the term Markovian to hint at approximations that might
be considered “Markovian” by some authors, and we call an open quantum system not
Markovian if we want to point out that it significantly contradicts a particular definition
of Markovianity. For the use of the terms Markovian and not Markovian we specify, if
relevant, their meaning in a given context.
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2.1.3. The quantum regression formula

As argued above in section 2.1.1, there is no a priori reason to assume that the dynamical
map would encode the information necessary to predict multi-time correlations. In fact,
there exist examples even for CP-divisible processes that show that there is measurable
information encoded in multi-time correlations which is not present in the dynamical
map [75]. The scenario outlined above following the definition of CP-divisibility in
equation (2.5) is one such example. There, the map Φt2

t1
can be understood as a two-

time correlation that is not obtainable through the dynamical map. It has been shown
by Lax [81] that one may obtain, however, approximate two-time correlations from the
EOM for the reduced dynamics under certain assumptions. A common formulation of
Lax’s result for CP-divisible processes is that〈

Â(t2)B̂(t1)
〉
' TrS

{
ÂΘt2

t1

[
B̂ Θt1

0

(
ρS

0

)]}
, (2.7)

where Â(t2) and B̂(t1) are system operators in the Heisenberg picture at times t2 ≥
t1 ≥ 0, and Θt2

t1
is the generalised dynamical map as defined in equation (2.5). We call

Eq. (2.7) the quantum regression formula (QRF).

The key idea behind this formula is that the EOM for the matrix X̂ := B̂ Θt1
0

(
ρS

0

)
=

B̂ρS(t1) starting at time t1 are (due to linearity) the same EOM as for the reduced
dynamics of a system in an experiment that has been prepared at time t1. While this
statement is true, it is however in general not true that the generalised dynamical map
Θt2
t1

corresponds to the EOM of such an experiment. Thus for t1 > 0 the QRF is
in general an additional approximation on top of any other approximation that may
have been made in order to obtain the generalised dynamical map. This is exemplified
by the model of an harmonic oscillator experiencing random thermal forces, which
leads to the correct EOM for the reduced dynamics in a weak coupling limit when
employing the Born, Markov and secular approximations, but fails to predict correct
two-time correlations in the same limit [82]. Despite the ongoing discussion about exact
criteria for the validity of the quantum regression formula [82–86], it should be noted
that its usefulness in many scenarios (in particular in a quantum optics context) is
generally undisputed. It is, however, important to appreciate the approximate nature
of this formula, especially when considering multi-time correlations of general (i.e. “non-
Markovian”) open quantum systems.

2.1.4. The process tensor

In sections 2.1.1 to 2.1.3 we have seen that the canonical approach to describe open
quantum systems in terms of the reduced dynamics is in general only suitable for the
description of single time correlations in prepare-evolve-measure type experiments. In
many experiments the observed quantities are however related to multi-time correla-
tions. Furthermore, the dynamical map approach is in many cases ill equipped to
describe scenarios with initially correlated states. The most relevant initial states for
experiments are however equilibrium or steady states, which generically show entan-
glement between the system and environment. In view of these demands a different
approach to describe open quantum systems seems necessary. We will now give a brief
introduction to the so called process tensor formalism [67] which allows us to address
these challenges.
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env. sys. env. sys.

env. sys. env. sys.

env. sys. anc.
env. sys. anc.env. sys.

(a) (b)

(c) (d)

(e)

(f) (g)

Figure 2.2: Quantum circuits of the environment (env.), system (sys.), and ancillar (anc.) showing
various different interventions at a single time (a-e) and multiple times (f-g). The panels show
quantum circuits to: (a) make no intervention, (b) perform full quantum state tomography
and re-preparation, (c) discard and re-prepare the system state, (d) apply a unitary system
gate US, (e) apply a unitary system-ancilla gate USA, (f) apply a series of CP maps AS

n on
the system, and (g) apply a series of CP maps ASA

n on the system and ancilla.

The process tensor formalism takes an operational approach to describe open quantum
systems. This means that the emphasis of this approach lies on the question of how one
would obtain the described quantities in an experiment, or similarly: “What quantities
of an open quantum system are experimentally accessible?” Thus, the aim is to describe
an open quantum system with a mathematical object that stands in a one-to-one relation
to the experimentally accessible quantities. This means that both every experimentally
accessible quantity should be extractable from the mathematical object and the entire
mathematical object can be constructed from experimental observations alone. The
so called process tensor, which we introduce in the following, is such a mathematical
object.

To motivate and construct the process tensor we will first ask the question: “What
is the set of all possible experiments on an open quantum system?” To answer this
question we assume that we have perfect access to the system, but no direct access to
the environment. This means that we assume that we can perform any experimentally
possible intervention on the system at any time. Possible interventions include projective
measurements, the application of gates to the system together with additional ancillas,
as well as the preparation of the system in any state at any time. For simplicity we
consider that these interventions happen instantaneously (i.e much faster than any other
evolution) and only at a finite set of time slots {tn}n∈{0,...,N}. In principle this could
be generalised to continuous interventions by considering the limit of an infinite set of
times. For simplicity, however, we will omit such an analysis.

It is well known from quantum information theory that any intervention can be de-
scribed by a CPTP map [72]. Even more generally, we could allow for experiments
with interventions corresponding to specific outcomes of measurements. Such interven-
tions are represented by completely positive (CP) maps which may decrease the trace
of the input state. Thus, for our purposes, any experiment is a finite set of CP maps
{An}n∈{0,...,N−1} that act on the system and possibly any number of additional ancillas
at the times {tn}n∈{0,...,N−1}. We visualise this by drawing exemplary quantum circuits
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env. sys. env. sys. env. sys.

(a) (b) (c) (d)

Figure 2.3: Various representations of the process tensor. (a) A quantum circuit with a sequence of three
interventions. (b) A tensor network re-interpretation of the quantum circuit, excluding the
interventions. (c) A tensor network representation in a matrix product operator form. (d) A
many-body representation employing the Choi-Jamio lkowski isomorphism.

in Fig. 2.2. In these figures the environment Hilbert space HE is symbolically repre-
sented with five lines although in many practical cases the environment might include an
infinite number of subsystems such as the continuum of bosonic field modes of the free
electro-magnetic field. Note that by drawing the initial total state as a single triangle
across the environment and the system, we symbolise that it might not be a separable
state.

Figures 2.2(a-e) show examples for possible interventions at time t0. We can perform
full quantum state tomography (Fig. 2.2b) or simply discard the system state (Fig. 2.2c)
before preparing it in a new state. We can apply a unitary operation on the system
alone (Fig. 2.2d) or include additional ancilla systems (Fig. 2.2e). Also, we can choose
not to perform any operation (Fig. 2.2a), which corresponds to the identity map on the
system. Considering the most general case for multiple times {tn}n∈{0,...,N−1} we draw
Fig. 2.2f which shows the quantum circuit for an experiment with a set of interventions
on the system {AS

n}n∈{0,...,N−1} for N = 3. Also, Fig. 2.2g shows the analogous quantum

circuit for interventions {ASA
n }n∈{0,...,N−1} that act on both the system and additional

ancillas. Between any two adjacent interventions the total system evolves unitarily with

U tn+1

tn =
←
T exp

(∫ tn+1

tn

L(t) dt

)
, (2.8)

where
←
T denotes time ordering, and L(t) · = −i

[
Ĥ(t), ·

]
is the Liouvillian of the total

Hamiltonian.

We are now in a position to define the process tensor. The process tensor T0:N is defined
to be the map from the set of all intervention sequences AS

0:N−1 = {AS
n}n∈{0,...,N−1} to

the (possibly sub-normalised) final reduced state of the system

ρS(tN ) = T0:N

[
AS

0:N−1

]
. (2.9)

In reference [67] Pollock et al. prove that the process tensor exists for every open
quantum system and that it is in an one-to-one relation to the set of all operationally
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Figure 2.4: Quantum circuits showing the construction of the process tensor T1,3,4 contained in T0:6.
(a) The process tensor T0:6. (b) The construction of T1,3,4 from T0:6. For this we insert
identities at t0, t2, t5, prepare any normalised state µ at time t4, and trace over the last
time step t6. (c) The resulting process tensor T1,3,4 for time steps 1, 3, and 4.

accessible quantities in the sense of the above description. The process tensor T0:N is
not only a map but indeed a tensor (i.e. a multi-linear map) with the total dimension
of d4N+2, where d = dim

(
HS
)

is the Hilbert space dimension of the system. Pollock et
al. further show that it obeys the following three key properties:

1. Linearity. For any two intervention sequences AS
0:N−1,B

S
0:N−1 and two real num-

bers a, b ∈ R: T0:N

[
aAS

0:N−1 + bBS
0:N−1

]
= aT0:N

[
AS

0:N−1

]
+ bT0:N

[
BS

0:N−1

]
.

2. Complete positivity. When the controls act on the system and ancillas (A)
then the final reduced system-ancillas state

(
T0:N ⊗ IA

) [
ASA

0:N−1

]
= ρSA(tN ) ≥ 0

is positive. The map IA denotes the identity process on the ancillas.

3. Containment. If the full process tensor T0:N for the time steps {tn}n∈{0,...,N} is
known then one can compute the process tensor TD for any subset of time steps
{tn}n∈D with D ⊆ {0, 1, . . . , N}.

Graphically, the red shaded area in Fig. 2.3a might be loosely identified as the process
tensor T0:N . It is important to note, however, that the process tensor does not include
the entire explicit information about the environment’s dynamics shown under the red
shaded area. Instead, the process tensor includes only the information relevant to the
system and it may be constructed from the quantum circuit shown in Fig. 2.3a in
two equivalent ways. First, we can construct the process tensor by reinterpreting the
quantum circuit as a tensor network shown in Fig. 2.3b. Note that the relevant outer
tensor network legs of the process tensor have the dimension of the system Liouville
space. We will discuss tensor networks and this approach to the process tensor in the
sections 2.2 and 2.3 below. Second, we can construct the process tensor by means
of the Choi-Jamio lkowski isomorphism (CJI) [87] as described in [67] and depicted in
Fig. 2.3d. Analogous to the canonical application of the CJI in which a quantum
channel is mapped onto a two-body state, we can map the process tensor to a many-
body state, called the Choi representation of the process tensor by performing swap
operations with pairs of ancillas at each time step. For this, the ancillas are initially in
the state ψ+ = |ψ+〉〈ψ+| with |ψ+〉 =

√
1/d

∑d
i=1 |i〉 ⊗ |i〉, where {|i〉}i∈{1,...,d} is a set
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env. sys. env. sys.

(a) (b)

Figure 2.5: Quantum circuits for the measurement of the dynamical map Λtnt0 . (a) A quantum circuit for
the measurement of the dynamical map starting in an uncorrelated initial state. (b) A quan-
tum circuit for the measurement of the dynamical map, explicitly including the necessary
preparation of the system state.

of basis states and d = dim(HS). In this construction the final many-body state of the
ancillas together with the final system state carry the exact same information as the
original process tensor and can thus be used to compute the outcome of any intervention
sequence.

The process tensor TD for a subset of time steps D ⊆ {t0, t1, . . . , tN} can be computed
by applying identities and trace operations to the full process tensor T0:N . Let tM be
the latest time slot in the set D. In order to remove any of the earlier time slots tm with
m < M one simply inserts an identity control at that time tm. All the later time slots
in the process tensor can be removed by first, inserting any state at time tM , second,
applying any trace preserving control operations at times tp with M < p < N , and
third, tracing over the final state at time tN . We draw exemplary quantum circuits for
this procedure in Fig. 2.4.

Connections to the dynamical map

To create a connection to the more common approaches to open quantum systems we
now discuss the notion of dynamical maps Λtnt0 and generalised dynamical maps Θtn

tk
from an operational perspective. In a first step, drawing this connection amounts to
answering the question of “How would the dynamical map be inferred from an experi-
ment?” As defined in Eq. (2.4) the dynamical map Λtnt0 maps any initial system state
ρS

0 to the reduced system state ρS(tn) := TrE ρ(tn) assuming that the total initial state
ρ(0) = ρS

0 ⊗ ρE
0 is uncorrelated. To measure the data for the construction of Λtnt0 it is

thus necessary to prepare the system in several different states and to perform quantum
state tomography for each of them at the later time tn. Because we can safely assume
that Λtnt0 is linear it is sufficient to do this for a basis set of system states. We can
draw the corresponding quantum circuit in two equivalent ways. In Fig. 2.5a we draw
the initial state as a product, while in Fig. 2.5b we explicitly include the preparation
procedure of the initial system state. Although Fig. 2.5a might appear to be the more
suitable quantum circuit, we draw Fig. 2.5b to point out explicitly that there is a state
preparation involved in the experimental process at time t0. Both figures show that
the dynamical map as defined above constitutes a quantum channel because there is
a (freely choosable) input state ρS

0 , a quantum circuit that processes it and an output
state ρS(tn). As a consequence the dynamical map Λtnt0 is guaranteed to be a CPTP
map as expected. We can describe this scenario in terms of the process tensor T{0,n} by
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Figure 2.6: Quantum circuits for the measurement of the generalised dynamical map Θtn
tk

. (a) Quantum

circuits that show the meaning of Θtn
tk

conditioned on the preparation of the initial system

state ρS
0 . (b) Quantum circuits that show the meaning of Θtn

tk
for an initially correlated

state. In both cases Θtn
tk

relates a system output state at time tk with another system output

state at time tn. Therefore the map Θtn
tk

does not constitute a quantum channel.

choosing A0 : ρS 7→ ρS
0 , which results in

ρS(tn) = T{0,n} [A0] . (2.10)

To explicitly construct the dynamical map Λtnt0 from the process tensor we consider
the completely positive map A : ρS

0 7→
(
ρS 7→ ρS

0

)
, which maps the state ρS

0 to the
preparation intervention that maps any state ρS to ρS

0 . The dynamical map can then be
expressed as Λtnt0 = T{0,n} ◦ A. Because the composition preserves complete positivity

and T{0,n} is a completely positive map [67], this proofs that also Λtnt0 is completely
positive.

The dynamical map Λtnt0 for n ∈ {0, 1, . . . , N} only describes the map of the system
state starting from time t0 at which the initial preparation of the system takes place.
Another map that is often considered in the literature is the map Θtn

tk
that maps the

reduced system state ρS(tk) at time tk to the state ρS(tn) at time tn. It is important to
appreciate the conceptual difference this map compared to Λtnt0 , which is apparent when
taking an operational point of view. To understand this in more detail we consider two
cases. In Fig. 2.6a we include an intervention to prepare the system’s initial state in ρS

0 .
In contrast to that Fig. 2.6b shows the case in which the total initial state is some fixed
state ρ(0) = ρ0 which is not necessarily a product state. In both cases we can see that
the map Θtn

tk
maps an output state ρS(tk) to an output state ρS(tn). Thus Θtn

tk
as defined

above is in general not a quantum channel and it is not necessarily CPTP. Also, from
an operational point of view, in the case of an initially correlated state the map Θtn

tk

only maps one state, namely ρS(tk), to one other state, namely ρS(tk), and not a set
of states to another set of states because the total initial state is fixed. Although it is
mathematically straightforward to define the map Θtn

tk
, this shows that its operational

meaning is in fact quite limited.

If one is interested in addressing questions such as “What is the evolution of the system
between time tk and time tn?” in an operationally meaningful way one thus needs to
consider an alternative protocol. For this one could consider a setup in which after
some initial preparation of the system in state ρS

0 at time t0 one prepares the system
again in some state ρS

k at time tk before finally performing measurements at time tn.
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Figure 2.7: Quantum circuits for the measurement of the operational dynamical map Φtntk . (a) Quantum

circuits for the measurement of Φtntk [ρS
0 ] conditioned on the preparation of the initial system

state ρS
0 . (b) Quantum circuits for the measurement of Φtntk for an initially correlated state.

In both cases Φtntk relates an system input state at time tk with system output state at time

tn. The map Φtntk always constitutes a quantum channel.

Figure 2.7a shows the corresponding quantum circuit. We see that the map Φtn
tk

maps
the input states at time tk to the output states at tn and that these input and outputs are
connected through a single quantum circuit. Therefore this map represents a quantum
channel and is CPTP. We can also see, however, that the quantum circuit and thus also
the map Φtn

tk
might depend explicitly on the initial input state ρS

0 , i.e.

ρS(tn) = Φtn
tk

[ρS
0 ]
(
ρS
k

)
. (2.11)

In terms of the process tensor T{0,k,n} this setup can be expressed by choosing A0 :

ρS 7→ ρS
0 and Ak : ρS 7→ ρS

k for which

ρS(tn) = T{0,k,n} [A0,Ak] . (2.12)

Finally, we note that the process tensor bears similarity (or is even equivalent) to the
Feynman-Vernon influence functional [49, 57, 88], the so called quantum comb [89], and
the so called process matrix [90]. The benefit of the process tensor approach lies not
in the mathematical framework alone, but in the insight that the process tensor (or
equivalently the quantum comb, etc.) stands in a one-to-one relation to experimentally
accessible quantities and is thus a suitable object for the complete characterisation of
general open quantum systems. While this is conceptually very useful, from a practical
perspective the process tensor suffers from exponential scaling with the number of con-
sidered time steps N , which severely limits its applicability in numerical simulations.
We can see by virtue of the Choi-Jamio lkowski isomorphism in Fig. 2.3d that this ex-
ponential scaling is analogous to the exponential scaling of many-body systems. It thus
seems natural that the methods developed to tackle the exponential scaling in many-
body systems may be of practical use to dealing with process tensors for the description
of general open quantum systems. One such approach is the description of many-body
systems in terms of tensor networks. We give a brief introduction to tensor networks
in the next section 2.2 and then discuss how these methods can be used to create a
numerically efficient representation of the process tensor in section 2.3.
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Figure 2.8: Exemplary tensor network diagrams. (a) Tensor diagrams for the 4-rank tensor T , the
matrix A, and the vector v. (b) Tensor network representing the contraction of a matrix A
and vector v. (c) Tensor network diagram representing the contraction of several 3-rank and
2-rank tensors. (d) Tensor network diagram representing a singular value decomposition
(SVD).

2.2. Tensor networks

As pointed out in the previous section process tensors suffer from the same exponential
growth as many-body quantum systems. Tensor network methods attempt to address
this difficulty by representing large objects such as the total many-body state or the
total unitary evolution operator as a collection of many smaller objects that represent
the physically most relevant part of the state or operator. In this work, we will use
tensor network methods for tackling both many-body quantum systems and general
open quantum systems. We thus give a brief introduction to the topic. For a more
comprehensive introduction we refer the reader to the review texts by U. Schöllwock [50]
and R. Orus [51].

2.2.1. Diagrammatic representation

Let us start by introducing the diagrammatic representation of tensor networks. The
mathematical object of a tensor is represented as a square (or possibly any other shape
such as a circle or triangle) with several lines—called legs—attached to it. For our
purposes a tensor is a multidimensional generalisation of a matrix1. Each leg represents
one index of a tensor. For example, a matrix is represented by a square with two legs
(2-rank tensor) and a vector by a square with one leg (1-rank tensor). In general, it
matters which leg is which and so the legs are equipped with a label if necessary (see
Fig. 2.8a). Joining legs in the diagram represents a multiplication and summation over
the dimension of the legs analogous to the a repeated index in the Einstein convention.
In Fig. 2.8b we can see that joining one leg of the vector v with one leg of the matrix A
gives a 1-rank tensor, i.e. a vector, as expected. The same is also possible for multiple
tensors of larger ranks as exemplified in Fig. 2.8c. Legs that join two tensors need to

1A mathematically more rigorous definition of a n-rank tensor is: a multilinear map from the tensor
product of n vector spaces over the field K to K. The definition as a multidimensional generalisation
of a matrix follows for finite dimensional vector spaces after the choice of a basis. It can be shown
that the operations performed on tensor networks are independent of this choice.
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Figure 2.9: Tensor networks for various operations on a quantum state in Hilbert space and Liouville
space representations. (a) The tensor network representations of a state. (b) The tensor
network representations of the trace of a state. (c) The tensor network representations of
an operation on a state. The thin blue lines are legs with the Hilbert space dimension d,
whereas the thick red lines have the Liouville space dimension d2.

have the same dimension on both ends2. This process of calculating the resulting tensor
from two or more tensors by performing the multiplications and summations is called
contraction. Legs that are connected to other legs are termed internal legs, and legs
that are not connected are termed open legs.

Tensor networks in Liouville space: Most commonly, tensor networks represent
the wave functions of pure states and the unitary operations that act on these wave
functions. For the purpose of dealing with open quantum systems we will instead mostly
work in Liouville space and draw tensor networks that represent density matrices and
so called super-operators that map density matrices to density matrices. This results
in tensor networks of similar shape, however, with legs of the squared dimension (d2

instead of d). Figure 2.9 shows a table for a few example tensor networks in both the
Hilbert space representation and the Liouville space representation.

2.2.2. Truncated singular value decomposition

Let us assume we want to represent a wave function of a spin chain with N spins.
Choosing a basis for a single site |φn〉n∈1,...,d allows us to write any wave function |ψ〉 of

2In the more rigorous definition of tensors as multilinear maps, the internal legs must join vector spaces
with their covector spaces.
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(a) (b) (c) (d)

truncated
SVD

Figure 2.10: Compression of a tensor network representation of a 5-site chain. (a) The full 5-rank tensor
C representing a 5-site chain. (b) The matrix M after grouping indices α := (i1, i2) and
β := (i3, i4, i5). (c) The truncated singular value decomposition (SVD) of the matrix M .
(d) The compressed tensor network representation of the 5-site chain with the restored
indices i1 . . . i5.

the entire chain3 as

|ψ〉 =
d∑

i1,i2,...,iN

Ci1,i2,...,iN |φi1〉 ⊗ |φi2〉 ⊗ · · · ⊗ |φiN 〉, (2.13)

where the dN coefficients Ci1,i2,...,iN carry all information of the state. These coefficients
constitute a N -rank tensor which we represent in diagrammatic form in Fig. 2.10a. This
tensor, however, still scales exponentially with the number of spins N and there is so
far no advantage in expressing the state in this form. To represent a state of a spin-
1/2 chain with 30 sites like this takes 8 GB of memory and a chain with 50 sites would
already take 8192 TB of memory, etc. The essential benefit of tensor network algorithms
comes from the idea of approximating large rank tensors like this as a network of many
lower rank tensors.

The generic approach to split a large tensor into several smaller tensors is to perform
a singular value decomposition (SVD). The SVD of a matrix M ∈ Cm×n consists of
matrices with mutually orthonormal column vectors4 U ∈ Cm×r and V ∈ Cn×r, and
the diagonal matrix Σ ∈ Rr×r+ , with r ≤ min(m,n) such that M = UΣV †. This
decomposition is exact, not unique, and exists for any matrix M ∈ Cm×n. The values
in Σ are called the singular values of M , are unique, non-negative, and typically sorted
in decreasing order such that Σii ≥ Σkk for i > k. Figure 2.8d shows the tensor network
diagram of such an SVD.

We can decompose the full spin chain tensor (Fig. 2.10a) into a chain of 2-rank and 3-
rank tensors (Fig. 2.11a) by repeated applications of SVDs. To understand this process
we start by splitting the chain into two parts: a left part with sites {1, . . . ,K} and a
right part with sites {K + 1, . . . , N}. For this, we express the total state |ψ〉 in terms

of a basis for the left |φ(L)
α 〉 and right |φ(R)

β 〉

|ψ〉 =
∑
α,β

Mα,β|φ(L)
α 〉 ⊗ |φ

(R)
β 〉. (2.14)

Here α are the indices that join all left indices {i1, . . . , iK} and thus run from 1 to
dK . The index β is defined analogously. Because M is a matrix we can perform
an SVD, which will yield the matrices U ∈ Cm×r, V ∈ Cn×r, and Σ ∈ Rr×r+ , with

3The many body wave function need not be made from copies of the same system. We could also
consider lattices of systems with different Hilbert spaces. For this we would choose a different basis
for each site.

4The matrices U ∈ Cm×r and V ∈ Cn×r can be extended to be unitary matrices Ū ∈ Cm×m and
V̄ ∈ Cn×n by attaching sets of basis vectors as columns for the missing subspaces.
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m = dK , n = dN−K , and r ≤ min(dK , dN−K) as described above. We express this
diagrammatically in Fig. 2.10(b-c).

Because the column vectors of U and V are orthonormal, their application to the left and

right basis vectors yields sets of orthonormal states |ϕ(L)
γ 〉 and |ϕ(R)

γ 〉 with γ ∈ {1, . . . , r}.
Because Σ is a diagonal matrix we can express the total state as

|ψ〉 =
∑
γ

σγ |ϕ(L)
γ 〉 ⊗ |ϕ(R)

γ 〉, (2.15)

which can be identified as the Schmidt decomposition of the state |ψ〉, with σγ := Σγγ .
For a normalised state the sum of the squared singular values must be unity, i.e.∑

γ σ
2
γ = 1. We can see that the singular values λγ have a physical meaning: If only

one singular value is non-zero then the total state can be written as a product state,
which amounts to an unentangled state. If all singular values are non-zero and equal
to each other then |ψ〉 is a maximally entangled state. Most generic states are however
in neither category but instead show some distribution of larger and smaller singular
values. In such cases one can approximate the total state by discarding the smallest
singular values, i.e. one only keeps the χ ≤ r largest singular values. For this one re-
places the matrices U , V , and Σ with the truncated matrices Ũ ∈ Cm×χ, Ṽ ∈ Cn×χ,
and Σ̃ ∈ Rχ×χ+ . In this context, such a truncation of singular values may be under-
stood as the neglect of weakly entangled contributions to the state. More generally
(and regardless of what the matrix M represents from a physical perspective) one may
understand this as an approximation of the matrix M with M̃ = Ũ Σ̃Ṽ † for which∥∥∥M − M̃∥∥∥

F
=
∥∥∥Σ− Σ̃

∥∥∥
F

=
∥∥∥Σ− Σ̃

∥∥∥
2
, where ‖·‖F denotes the Frobenius norm and ‖·‖2

denotes the 2-norm. After the truncation process, we recover the original open legs by
splitting the indices α into {i1, . . . , iK} and β into {iK+1, . . . , iN} as shown diagram-
matically in Fig. 2.10(c-d). The internal leg connecting the two tensors that represent
the left and right part of the chain is call the bond, and its dimension χ is called the
bond dimension.

This process of combining indices, performing an SVD, truncating the singular values,
and finally splitting the indices again could now be performed on the resulting left and
right parts of the chain and so on, to then eventually yield a tensor network of the form
shown in Fig. 2.11a. In practice, however, one would like to avoid dealing with the
full tensor C throughout the computation. Thus, most tensor network methods start
the computation with an initial state that allows for a direct representation as a tensor
network with many low rank tensors (such as a product state) and then evolves this state
while maintaining its general decomposed form. Maintaining the decomposed form while
keeping the bond dimensions low typically requires the truncation of singular values like
explained above. The bond dimensions then enter the computation as a convergence
parameter. While there exist some rigorous statements about the accuracy of such
computations for specific scenarios [51], in practice, one performs a variational analysis
to estimate the accuracy of the computation. For this, one repeats the computation
with a series of increasing bond dimensions until the physical quantity of interest ceases
to show any significant change.

2.2.3. Matrix products (MPS/MPO)

The tensor networks shown in Fig. 2.11 are said to be in the form of a matrix product
state (MPS) [91, 92]. This form derives its name from interpreting the 3-rank tensors An
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Figure 2.11: A matrix product state (MPS) for N sites in different gauges. (a) An MPS in Vidal gauge
(given that the λ matrices are diagonal and correspond to the Schmidt coefficients). (b) The
same MPS as in (a), but in a different gauge with An = Γnλn. (c) The same MPS as in
(b), but with inserted identities 1 = X1X

∗
1 = . . . = XNX

∗
N . (d) The same MPS as in (b),

but in a different gauge with Ãn = X∗n−1AnXn.

in Fig. 2.11b as a collection of dn matrices
{
Ainn
}
in∈{1,...,dn}, where dn is the dimension

of the local Hilbert space at site n. The coefficients of the total chain state with respect
to a choice of local basis states for a specific index ~i = (i1, i2, . . . , iN ) can be expressed
as the product of these matrices

ψ~i =
N∏
n=1

Ainn , (2.16)

where the first and last factors Ai11 and AiNN are in fact row and column vectors, respec-
tively. Matrix product states have proven to be particularly powerful in representing
states of 1D many-body systems when the correlations among the sites decay rapidly
with distance. Intuitively, non-negligible long range correlations across the chain would
correspond to singular values that cannot be truncated, which would make a large bond
dimension necessary to represent the state accurately.

The representation of a many-body state as an MPS of the form in Fig. 2.11a or
Fig. 2.11b is not unique. One may, for example, contract the λn matrices into the
neighbouring Γn matrices by replacing: Γn  An = Γnλn and λn  λ̃n = 1. In this
case the λ̃n matrices could be omitted entirely, as shown in Fig. 2.11b. More generally,
any internal leg of a tensor network can be replaced by the application of some invertible
matrix X and its inverse X−1 as shown in Fig. 2.11c, resulting in different representa-
tions of the same total tensor. Specific choices of the representation are called canonical
forms or gauges in the literature [51]. This is an important aspect of tensor networks
because most truncation protocols only act on pairs of neighbouring sites. Depending
on the gauge, the tensors of two neighbouring sites might reveal or conceal the weak
correlations between sites further down the left and right parts of the chain and thus
might lead to a more or less efficient compression of the data. A particularly intuitive
canonical MPS form is the so called Vidal form [93], sometimes simply referred to as the
canonical form. An MPS is in Vidal form if at each bond K the matrix λK is diagonal
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Figure 2.12: A matrix product operator (MPS) for N sites in different gauges. (a) An MPO in Vidal
gauge (given that the λ matrices are diagonal and correspond to the singular values of the
entire left and right part of the tensor network). (b) The same MPO as in (a), but in a
different gauge with An = Γnλn.

and corresponds to the Schmidt coefficients of the Schmidt decomposition of the entire
chain into sites {1, . . . ,K} and {K+1, . . . , N}. In this case the λ matrices that contain
the singular values are unique and allow for the physical interpretation as explained in
the previous section.

The idea to represent multi-site states in MPS form can be generalised to chains of
operators and even higher rank tensors. For chains of operators, the corresponding
tensor network as shown in Fig. 2.12 is said to be of matrix product operator form
(MPO) [94]. We will see in section 2.3 that the process tensor may be brought into
MPO form in Liouville space, i.e. the process tensor is a chain of (possibly correlated)
super-operators.

There exist numerous tensor network methods that employ matrix product states and
matrix product operators in various forms, such as the density matrix renormalisation
group (DMRG) [95, 96], the time dependent variational principle (TDVP) [97, 98], and
time evolving block decimation (TEBD) [93, 99–101]. Time evolving block decimation
is a method that is particularly useful for the study of the explicit time evolution of a
chain of systems governed by a Hamiltonian with only on-site and nearest neighbour
interactions. In preparation for chapter 4—in which we extend this method to chains of
general open quantum systems—we now give a brief introduction to this widely applied
approach.

2.2.4. Time evolving block decimation

The time evolving block decimation (TEBD) method evolves an MPS in Vidal form
in small discrete time steps δt by applying propagators to neighbouring sites [93, 99].
Suppose we have a total Hamiltonian for a chain of N sites in the form

Ĥchain =
N∑
n=1

Ĥn +
N−1∑
n=1

Ĵn,n+1, (2.17)

where the on-site Hamiltonians Ĥn act only on site n and the nearest neighbour terms
Ĵn,n+1 act only on two neighbouring sites n and n + 1. As a first step we absorb the
on-site Hamiltonians into the nearest neighbour terms such that

Ĥchain =

N−1∑
n=1

K̂n,n+1, (2.18)
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Figure 2.13: Tensor networks for the construction and contraction the TEBD method. (a) The full
TEBD tensor network for three time steps of an N-site chain. (b-f) Contraction and
decomposition sequence for the application of a two-site gate G.

with

K̂n,n+1 := Ĵn,n+1 +


Ĥ1 + 1

2Ĥ2 for n = 1
1
2ĤN−1 + ĤN for n = N − 1
1
2Ĥn + 1

2Ĥn+1 otherwise.

(2.19)

We can then express the entire unitary propagator for a time step δt as

Û(δt) = exp
(
iĤchainδt

)
= exp

(
i

N−1∑
n=1

K̂n,n+1δt

)
. (2.20)

A Suzuki-Trotter expansion [102] of the propagator to first order in δt yields

Û(δt) =
∏
n odd

eK̂n,n+1δt
∏
p even

eK̂p,p+1δt +O(δt2). (2.21)

We may neglect the higher order terms O(δt2) whenever the time step δt is chosen small
enough such that for all n ∈ {1, . . . , N − 2}:

1

2

[
K̂n,n+1, K̂n+1,n+2

]
δt2 �

(
K̂n,n+1 + K̂n+1,n+2

)
δt. (2.22)

Because each operator eK̂n,n+1δt in Eq. (2.21) acts only on neighbouring sites n and
n + 1, we can approximate the total unitary propagator as a product of two-body
gates. Figure 2.13a shows the full tensor network for a TEBD simulation for three time
steps. It represents the state of the chain after three time steps for an initial state |ψ〉
expressed as an MPS in Vidal form. To compute the final chain state explicitly the
tensors need to be contracted. A direct contraction of the propagators with the initial
state, however, would not conserve the representation of the state in MPS form and
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lead to an exponentially growing memory requirement with every time step. Therefore,
the TEBD method involves a specific sequence of operations to ensure that the state at
later times continues to be an MPS in Vidal form. Figures 2.13(b-f) show the operations

for applying a two body gate G = eK̂n,n+1δt, which are:

(b-c) Contraction:
D := λn−1ΓnGλnΓnλn+1

(c-d) Truncated singular value decomposition:
UΣV † :' D and λ̃n := Σ

(d-e) Insert identities:
λn−1λ

−1
n−1 = 1 and λ−1

n+1λn+1 = 1

(e-f) Contraction:
Γ̃n := λ−1

n−1U and Γ̃n+1 := V †λ−1
n+1

This sequence of operations is local, i.e. it only involves tensors of the chain at sites n
and n+1, and it conserves the Vidal form of the MPS. Due to the pairwise independence
of the two-body gates in each layer (odd and even bond layers) this algorithm is also
well suited for high performance parallel computing.

Finally we mention that besides the use of higher order Suzuki-Trotter expansions in
Eq. (2.21), TEBD can be generalised in various ways. The TEBD method has been
generalised to tackle chains with closed boundary conditions [101], chains with long
range interaction terms [103], and chains of “Markovian” open quantum systems [100],
i.e. systems whose dynamics is governed by a GKSL master equation. In addition to
these generalisations, we will introduce a novel method in chapter 4 that generalises
TEBD to chains of general open quantum systems, i.e also including systems whose
dynamics might not admit a description with a GKSL master equation.

2.3. The process tensor in MPO form

While the process tensor is a versatile object for the description of general open quantum
systems it generically scales exponentially with the number of time steps which impedes
its numerical applicability. In this section we will show how to efficiently represent and
compute process tensors for a large class of open quantum systems by employing tensor
network methods. This opens up a wide range of potential applications that may benefit
from the flexibility of the process tensor while keeping the computational requirements
at a moderate level.

The key idea is to find an efficient tensor network representation of the process tensor
for a given interaction Hamiltonian. The choice of a suitable tensor network relies on
the internal structure of the process tensor. A process tensor may have an efficient
representation as an MPO (i.e. showing only linear scaling with the number of time
steps) if the correlations over time have a finite range. This is analogous to 1D many-
body systems for which an MPS representation is suitable if the spatial correlations are
localised to some finite distance. In many cases, it is thus possible to systematically dis-
card negligible correlations and express the process tensor in a matrix product operator
form (PT-MPO). For different environments different methods for the construction of a
PT-MPO exist [45, 49, 52–58, 104]. For linearly coupled Gaussian bosonic environments
one can directly construct a tensor network that yields a PT-MPO [49, 52, 54, 104].
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Figure 2.14: Tensor network construction of a PT-MPO. (a) A quantum circuit with a sequence of three
interventions. (b) A tensor network re-interpretation of the quantum circuit, excluding
the interventions. (c) Application of projection operators PnP

†
n onto the physically most

relevant environment subspace. (d) A process tensor in MPO form.

Other approaches allow the construction of PT-MPOs for any environment that can
be approximated by a finite set of independent degrees of freedom [55, 57], or allow an
explicit tensor network representation [45, 53, 56, 58]. It is also possible to construct
PT-MPOs directly from experimental measurements [28].

Before we briefly discuss some of these methods below, we first comment on a few
properties of process tensor representations in general and the MPO representation
in particular. As mentioned in section 2.1.4 we can interpret the quantum circuit in
Fig. 2.14a as a tensor network. The full process tensor is then a (2N + 1)-rank tensor
where each leg is of the dimension of the Liouville space d2. The representation shown
in Fig. 2.14b is readily in an MPO form that consists of the total Liouville propagators
for each time interval. The bond dimension of this particular MPO representation is
the full Liouville space of the environment, which in most cases is prohibitively large
for any practical numerical application. Conceptually, a more efficient representation of
the process tensor may be thought to be the MPO that results from inserting suitable
isometries Pn and P †n which project the total environment Liouvillian space to the
most relevant subspace as shown in Fig. 2.14c. The isometries Pn ∈ CE×χn and P †n ∈
Cχn×E must have the property that P †nPn = 1χn , where E is the dimension of the total
environment Liouville space and χn is the dimension of the relevant subspace. From a
practical perspective however, this is not a viable approach because it would still require
the explicit representation of the total Liouville propagator.

The Choi representation of the process tensor as a many-body state (see Fig. 2.3d)
is equivalent to the direct approach of reinterpreting the quantum circuit as a tensor
network up to appropriate reordering of legs and a rescaling of the input legs with a
factor 1/d. This is because in a tensor network interpretation the two body state ψ+ can
be rewritten as an identity matrix of dimension d2 × d2 divided by d, i.e. ψ+ = 1d2/d.
Because the Choi representation is a many body state with unity trace, we expect that
the total trace of the direct process tensor representation is dN . In order to keep the
numbers in all tensors involved at the order 1 it is thus advisable to rescale all tensors
for the purpose of the computation with the factor 1/d to fit the Choi representation.



2 Background 25

Figure 2.15: Tensor networks for the process tensor time evolving matrix product operator (PT-
TEMPO) method. (a) Tensor network representation of Eq. (2.29) for the reduced density
matrix after 4 time steps, with additionally inserted system interventions An. (b) Tensor
network for the reduced density matrix after 4 time steps employing the PT-MPO of T̃0:4

(encircled by the red dotted line). (c-f) Contraction and decomposition sequence for the
computation of the PT-MPO of T̃0:4.

However, because the direct representation is more suitable for most applications we
will always consider the direct representation (and not the Choi representation) unless
explicitly stated otherwise.

2.3.1. Time evolving matrix product operator

The time evolving matrix product operator (TEMPO) method is a tensor network
method for simulating the reduced dynamics of open quantum systems with Gaus-
sian bosonic environments [47, 52]. It is based on the Feynman-Vernon influence func-
tional [88] and, like the quasi adiabatic propagator path integral method (QUAPI) [43,
44], uses an augmented density tensor to capture memory effects of the bath. The
TEMPO method can be modified to yield the full process tensor by reordering its con-
traction sequence. In the following we explain the construction of the TEMPO tensor
network as presented in the methods sections of reference [47] and then present a con-
traction strategy to obtain the PT-MPO as suggested by Jørgensen and Pollock in
reference [49].

Construction of the TEMPO tensor network: The most general form of the total
Hamiltonian that we consider is (in units of ~ = 1)

Ĥ(t) = ĤS(t) + Ŝ
∑
k

(
gkâk + g∗kâ

†
k

)
︸ ︷︷ ︸

ĤI

+
∑
k

ωkâ
†
kâk︸ ︷︷ ︸

ĤE

, (2.23)
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where âk (â†k) are bosonic creation (annihilation) operators. The environment interac-

tion is fully characterised by the system coupling operator Ŝ ∈ B
(
HS
)

and the spectral
density J(ω), which is defined as

J(ω) =
∑
k

|gk|2δ(ω − ωk). (2.24)

The exact dynamics of the total system is given by the von Neumann equation

d

dt
ρ(t) = −i

[
Ĥ, ρ(t)

]
= Lρ(t) (2.25)

and its formal solution is

ρ(t) =
←
Te

∫ t
0 dt′L(t′)ρ(0), (2.26)

where L(t) · = −i
[
Ĥ(t), ·

]
is the Liouvillian super operator for Ĥ(t). We can split up

the total time evolution into N time steps of length δt = t/N and consider only the
reduced system state by performing the partial trace TrE over the environment degrees
of freedom

ρS(t) = TrE

{
←
Te

∫ t
0 dt′L(t′)ρ(0)

}
= TrE

{
N−1∏
n=0

(
←
T e

∫ tn+1
tn

dt′L(t′)

)
ρ(0)

}
, (2.27)

where
←
T denotes time ordering from right to left. Next, we approximate the propagator

for a time step δt by a symmetrised second order Trotter splitting [102] as

←
Te

∫ tn+1
tn

dt′L(t′) =

(
←
Te

∫ tn+1
tn+1/2δt

dt′LS(t′)
)(

eδtL
IE
)(←

Te
∫ tn+1/2δt
tn

dt′LS(t′)

)
+O(δt3), (2.28)

where the Liouvillians LS(t) and LIE correspond to the system ĤS(t) and the environment-
interaction parts ĤI + ĤE, respectively.

To continue, we assume that the initial state is a product state ρ(0) = ρS
0 ⊗ ρE

0 , with
an Gaussian initial environment state ρE

0 , which we choose to be the thermal state at
temperature T for simplicity. We work in a basis such that Ŝα,β = δα,βŜα,β is diagonal
and we write operators and density matrices in Liouville space.

Inserting Eq. (2.28) into Eq. (2.27), omitting the higher order O(δt3) terms, and per-
forming the trace over the environment leads to a discretised version of the Feynman-
Vernon influence functionals [52]. With this, we can write down the expression for the
system density matrix at time t explicitly as

ρjN (t) =
∑

j0,j1,...jN−1

[
N−1∏
n=1

P ′n(jn+1, jn)

(
n−1∏
k=0

Ik(jn, jn−k)

)
Pn(jn, jn−1)

]
ρj0(0), (2.29)

where Ik(j, j
′) are the influence functions and Pj,j′ is the system propagator

P ′n(j, j′) :=

[
←
Te

∫ tn+δt
tn+δt/2 dt′LS(t′)

]
j,j′

and Pn(j, j′) :=

[
←
Te

∫ tn+δt/2
tn

dt′LS(t′)

]
j,j′

. (2.30)

The influence functions are defined as

Ik(j, j
′) := exp

[
−S−j

(
S−j′ Re [ηk] + iS+

j′ Im [ηk]
)]
, (2.31)



2 Background 27

with

ηk =

{∫ δt
0 dt′

∫ t′
0 dt′′C(t′ − t′′) k = 0∫ (k+1)δt

kδt dt′
∫ δt

0 dt′′C(t′ − t′′) k 6= 0
(2.32)

and the environment correlation function

C(t) =

∫ ∞
0

dωJ(ω)
[
coth

( ω
2T

)
cos(ωt)− i sin(ωt)

]
. (2.33)

The super-operators S− · :=
[
Ŝ, ·
]

and S+ · :=
{
Ŝ, ·
}

are the commutator and anti-

commutator for the coupling operator Ŝ, respectively. Because the basis is chosen such
that Ŝ is diagonal, the super-operators S± are diagonal too, and S∓j := [S∓]j,j denote
these diagonal entries.

To express Eq.(2.29) as a tensor network we define the tensors bk to be

[bk]j,j′,l,l′ := Ik(j, j
′)δj,lδj′,l′ (2.34)

and draw them as indicated in Fig. 2.15a. With this definition it is straightforward to
check that the tensor network depicted in Fig. 2.15a represents Eq. (2.29). The bk tensors
at the left and top of the diagram are defined without the l respective l′ legs for which we
simply omit the corresponding Kronecker deltas δj,l and δj′,l′ in definition (2.34). With
this we have successfully constructed a tensor network that represents the system density
matrix at time t. The original TEMPO algorithm suggests that this tensor network is
contracted line by line while performing horizontal SVD truncation sweeps [47]. For
many physically relevant environments the correlation function C(t) rapidly decays to
zero for times longer than some maximal correlation time τmax. In such cases one may
omit all bk tensors in the tensor network for which k > τmax/δt =: Kmax. Employing
the zip-up algorithm introduced in [105] this method can be implemented with a total
computational cost scaling as O(N χ3D3Kmax), where χ is the bond dimension of the
boundary MPS during contraction and D is the Liouville space dimension.

Extraction of the process tensor: To see how this tensor network links to the
process tensor we include additional interventions An to the picture, which we draw
as blue squares in Fig. 2.15a. The tensor network in Fig. 2.15a now represents the
final state ρS(tN ) for any intervention sequence A0:N−1. We know from section 2.1.4
that the process tensor is the unique multilinear map with this property. We can thus
conclude that the tensor network within the red shaded area in Fig. 2.15 (excluding the
interventions A0,A1, . . .) must be a representation of the desired process tensor T0:N .

As we will see later, it is often advantageous to consider the slightly smaller part of this
tensor network shown as dotted area in Figs. 2.15a and 2.15b, which excludes the initial
state ρS

0 and the system propagators Pn and P ′n. This corresponds to the process tensor
T̃0:N for an initially uncorrelated state and a total Hamiltonian H̃ = ĤI + ĤE without
any contribution from the system Hamiltonian. From this perspective the final state is
then

ρS(tN ) = T0:N

[
{A0,A1, . . . ,AN−1}

]
= P ′N−1T̃0:N

[
{Ã0, Ã1, . . . , ÃN−1}

]
, (2.35)

with Ãn = Pn◦An◦P ′n−1 and Ã0 : ρS 7→ A0

[
P0

(
ρS

0

)]
. This means that the evolution due

to the system part of the Hamiltonian can be realised as a discrete set of interventions
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env.#1 sys. sys. sys.env.#k sys.

(a) (b)

Figure 2.16: Tensor networks for the automatic compression of environments (ACE). (a) Tensor network
construction for a PT-MPO of a single environment. (b) Tensor network construction of a
PT-MPO for k environments given the PT-MPO for k − 1 environments.

when the time steps δt are chosen small enough such that the higher order terms in
Eq. (2.28) can be neglected.

To compute T̃0:N from the tensor network shown in Fig. 2.15c, Jørgensen and Pollock
suggest to contract the network column by column with appropriate SVD sweeps during
the process [49]. We depict this procedure graphically in Figs. 2.15(c-f). This algorithm
scales similarly to the original TEMPO method as O(N χ3D3Kmax), where χ is the
bond dimension of the PT-MPO. Both the original TEMPO and the modified process
tensor TEMPO (PT-TEMPO) are available as part of our open source python package
OQuPy [104].

2.3.2. Automatic compression of environments

While the TEMPO method is restricted to Gaussian bosonic baths, an alternative
method, called automatic compression of environments (ACE), allows the construc-
tion of PT-MPOs for any environment that can be approximated by a finite set of
small independent parts [55]. ACE has been used to calculate PT-MPOs for bosonic
environments with non-Gaussian initial states as well as for fermion, spin baths and
combinations thereof.

The key idea of ACE is to construct the process tensors for each environment part
individually before combining them into one PT-MPO. For this the Hamiltonian must
be of the form

Ĥ(t) = ĤS(t) +
K∑
k

(
ĤI
k + ĤE

k

)
, (2.36)

where ĤI
k ∈ B

(
HS ⊗HE

k

)
and ĤE

k ∈ B
(
HE
k

)
are the interaction and environment

Hamiltonians of the kth environment. We assume that the Hilbert space dimension
dk = dim

(
HE
k

)
for each environment is small or can be truncated to some small effective

dimension. Given that the system Hilbert space dimension is small as well (i.e. allowing
exact numerical diagonalisation) it is straight forward to explicitly construct the prop-

agators U IE
k = exp

(
LIE
k δt

)
, with LIE

k · =
[
ĤI
k + ĤE

k , ·
]
. In order to obtain the process
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tensor T̃0:N for the total Hamiltonian excluding the pure system part H̃ = Ĥ(t)−ĤS(t),

we start by constructing the process tensor T (1)
0:N for the first environment as shown in

Fig. 2.16a. For this, one constructs the appropriate tensor network (including the envi-
ronment’s initial state and trace operation) and performs SVD truncations to obtain a
compressed PT-MPO. Then, one sequentially includes all other environments yielding

PT-MPOs for T (1)
0:N → T

(1:2)
0:N → T (1:3)

0:N → · · · → T (1:K)
0:N = T̃0:N as shown in Fig.2.16b.

For more details on this method we refer the reader to reference [55].

With these methods we are prepared to construct PT-MPOs for a large range of different
environments. In the rest of this thesis we will employ these PT-MPOs in various
different scenarios.



Chapter 3

Optimal Control of
General Open Quantum Systems

Equipped with a versatile set of tools for the theory of open quantum systems we now
turn to one of the primary fields of its application: quantum information technology.
The protocols of quantum information applications often consider a closed quantum
system as the ideal scenario [72]. Physical implementations of these protocols are how-
ever never truly isolated and thus the influence of the environment has to be taken
into account. The performance of most quantum applications crucially hinges on how
close the physical implementation reflects the ideal closed scenario. Even a slight fi-
delity improvement of the quantum protocols can lead to a considerable increase in
performance.

There exist various approaches to improve the fidelity of quantum information appli-
cations, such as the design of particularly well isolated systems [106–108], the use of
topologically protected states [109, 110], and the application of quantum error correc-
tion protocols [111]. Optimal control theory augments these approaches by searching
for protocols that achieve the highest fidelity of a process for a given experimental
setup [59, 60]. For this, it is necessary to be able to accurately compute the dynamics of
the system under the influence of the environment. Most of the research on control for
open quantum systems has been carried out in a Markovian limit where one assumes
a weak system-environment coupling and environment correlations that are short com-
pared to the timescale of the system evolution. However, in many solid-state devices
and other systems these assumptions break down [16–19, 112] and a non-Markovian
description becomes necessary. Furthermore, it has been shown that non-Markovian
effects can, in fact, improve the fidelity of quantum operations due to the possible in-
formation backflow from the environment to the system [113–115]. The simulation of
general open quantum systems is, however, a computationally challenging task, which
hampers progress on the design of optimal control procedures that may take advantage
of these effects.

There are several methods available that can be applied for the optimisation of vari-
ous specific non-Markovian scenarios [39–44, 116–130]. The most common approach
is to assume that the environment can be modelled with extra noise qubits which
couple strongly to the system and weakly to some Markovian environment [116, 120,
126]. Another method involves repeatedly solving the hierarchical equations of motion

30
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(HEOM) [42, 122, 123, 130], which performs well for environments with a spectral den-
sity that can be approximated with a small number of Lorentzians. A similar approach
would be possible with other numerically exact methods, such as the quasi adiabatic
path integral (QUAPI) [43, 44] or the time evolving density operator with orthogonal
polynomials (TEDOPA) [39, 40]. A major impediment to the use of these methods for
optimal control applications is, however, that they are computationally intensive and
the entire calculation needs to be restarted as a whole for each iteration step of the
optimisation.

In this chapter1 we introduce a general method based on the PT-MPO that makes an
efficient numerical exploration of control procedures for non-Markovian open quantum
systems possible [54]. The key insight is that, based on an appropriate Trotterisation
of the system and environment as shown in section 2.3.1, the PT-MPO for the envi-
ronment interaction can be computed independently of any specific control protocol for
the system. Thus the computation of the PT-MPO has to be performed only once for
a given environment. This enables us to repeatedly compute the reduced dynamics for
various sets of control parameters at very low computational cost, which we can use to
optimise control procedures with respect to any chosen aspect of the system evolution,
taking full account of non-Markovian effects. After a detailed introduction to the pro-
posed method in section 3.1, we illustrate it by optimising the shape of a laser pulse to
prepare a quantum dot in a specific state in section 3.2. For this we completely map out
the state preparation fidelity for a two dimensional parameter space of chirped pulses.
Furthermore, we apply a differential evolution algorithm to find an optimised laser pulse
in a 35 dimensional parameter space to simultaneously drive five detuned quantum dots
to the equator of the Bloch sphere.

3.1. Exploring control procedures using PT-MPOs

The most general scenario that we consider is a total Hamiltonian of the form

Ĥ(t, {ck}) = ĤS(t, {ck}) + ĤI + ĤE, (3.1)

where ĤS(t, {ck}) is an explicitly time dependent system Hamiltonian that is para-
metrised by a set of real control variables {ck}k∈{1,...,K}. The interaction and envi-

ronment Hamiltonians ĤI and ĤE are assumed to be independent of these control
parameters. This reflects the typical experimental scenario in which the experimenter
has control over some time dependent protocol (such as the length and detuning of a
laser pulse) that manipulates the system of interest (such as the electronic state of a
quantum dot), but has no direct control over the environment (such as the vibrational
states that couple to the quantum dot). In the simplest case the aim is to optimise
the choice of control parameters {ck} such that for a given initial system state ρS

0 the
final state ρS

final := ρS(tfinal) is as close as possible to a given target state ρS
target. More

generally, one might seek for optimal control parameters that not only optimise the pro-
tocol for a specific given initial state, but also for all other possible initial states. This
means that the choice of control parameters should bring the resulting dynamical map
Λtfinal
t0

as close as possible to a given target map Ξtarget. The optimisation of protocols
is a particularly challenging task when the environment interaction does not permit a
time-local effective description of the reduced dynamics.

1This chapter is based on an early draft (from the 13th of November, 2020) of the publication [54].
That draft had been written exclusively by the author of the present work.
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Figure 3.1: Quantum circuits and tensor networks for the PT-MPO approach to optimal control of gen-
eral open quantum systems. (a) Full quantum circuit for the system and environment for
three time steps. (b) Trotter splitting of the system and environment interaction parts.
(c) The PT-MPO of the environment interaction part with an appropriate system interven-
tion sequence.

To address that challenge we propose to use a Trotter splitting of the system and
environment parts to then compute the PT-MPO for the environment interaction inde-
pendently of the system Hamiltonian. Upon a suitable choice of the Trotterisation time
step δt we may then use the PT-MPO to compute the reduced dynamics (or dynamical
map) for a large set of different system control protocols at very little computational
cost. Employing standard numerical local [131] and global optimisation procedures
(such as basin-hopping [132] or differential evolution [133]) this enables us to optimise
control procedures for non-Markovian open quantum systems efficiently.

Trotterisation of system and environment parts: We separate the system and
environment interaction parts of the total evolution by performing a Suzuki-Trotter
expansion similar to the procedure presented in section 2.3.1, but not restricted to
Gaussian bosonic environments. The total evolution of system and environment from
time tn to tn+1 = tn + δt is given by the unitary super-operator

U tn+1

tn =
←
Te

∫ tn+1
tn

dt′L(t′,{ck}), (3.2)

where
←
T denotes time ordering from right to left and L(t, {ck}) · := −i

[
Ĥ(t, {ck}), ·

]
is

the total Liouvillian. A symmetrised second order Suzuki-Trotter expansion [102] yields
the same expression as in section 2.3.1

U tn+1

tn =

(
←
Te

∫ tn+1
tn+1/2δt

dt′LS(t′,{ck})
)

︸ ︷︷ ︸
=:P ′n

(
eδtL

IE

)
︸ ︷︷ ︸

=:Ũtn+1
tn

(
←
Te

∫ tn+1/2δt
tn

dt′LS(t′,{ck})
)

︸ ︷︷ ︸
=:Pn

+O(δt3), (3.3)

where LS(t′, {ck}) and LIE are the system and environment interaction Liouvillians,
respectively. Upon the choice of a small enough time step δt such that

1

2

[
ĤS(t, {ck}), ĤI

]
δt2 �

(
ĤS(t, {ck}) + ĤI

)
δt, (3.4)
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we can omit the higher order terms O(δt3) in Eq. (3.3). Figures 3.1a and 3.1b show the
corresponding quantum circuits for an evolution of three time steps. Upon inspection
of Fig. 3.1b we can identify the red shaded region comprising the propagators Ũ tn+1

tn =

eδtL
IE

to be the process tensor T̃0:N with respect to a total Hamiltonian

H̃ := Ĥ(t, {ck})− ĤS(t, {ck}) = ĤI + ĤE, (3.5)

which is independent of the system control parameters {ck}.

Computation of the PT-MPO for the environment part: To take advantage
of the Trotterised evolution we compute the process tensor T̃0:N in a matrix product
operator form (PT-MPO) with respect to H̃ from Eq. 3.5. This step is limited to
environments for which there exists an efficient representation of the process tensor
in MPO form and an adequate method to obtain such a PT-MPO is available. The
PT-TEMPO and ACE methods introduced in section 2.3 already cover a large class
of relevant environment interactions, but other methods [28, 45, 53, 56–58] may also
be applied. We note that the PT-MPO is a particular representation of a physically
meaningful object (the process tensor) and thus the details of how an appropriate PT-
MPO for a specific environment is obtained is not relevant to its application. The only
ambiguity lies in the gauge of the MPO representation, which if considered relevant,
can be removed by demanding a particular canonical form, such as the Vidal form.

Extraction of the reduced dynamics: Assuming that we have access to a PT-MPO
of T̃0:N with tN = tfinal we can compute the final state

ρS
final = ρS(tN ) = P ′N−1T̃0:N

[
{Ã0, Ã1, . . . , ÃN−1}

]
, (3.6)

for any choice of control parameters {ck} and initial state ρS
0 by contracting the PT-

MPO with the appropriate intervention sequence Ã0 : ρS 7→ P0(ρS
0) and Ãn = Pn ◦P ′n−1

as shown in Fig. 3.1c. For small time steps δt the system propagators Pn and P ′n may
be approximated as

Pn =
←
T exp

[∫ tn+δt/2

tn

dt′LS
(
t′, {ck}

)]
' exp

[
LS

(
tn +

1

4
δt, {ck}

)
δt

2

]
(3.7)

and

P ′n =
←
T exp

[∫ tn+δt

tn+δt/2
dt′LS

(
t′, {ck}

)]
' exp

[
LS

(
tn +

3

4
δt, {ck}

)
δt

2

]
. (3.8)

We can thus write a 0th-order oracle routine φ : RK → R+, {ck} 7→ dT
(
ρS

final, ρ
S
target

)
that

takes a set of control parameters {ck}k∈{1,...,K} and returns the trace distance dT of the
final state to a given target state. We can then use any optimisation method suitable
for 0th-order oracles to find control parameters that minimise φ.

Scaling of the computational cost: The computation time of this method is typ-
ically dominated by the contraction of the PT-MPO with the system propagators (as-
suming that the bond dimension of the PT-MPO is significantly larger than the system
Liouville dimension). The contraction sequence as indicated in Fig. 3.1 can be imple-
mented with a computational cost scaling as O(χ2

PD
2) for each time step, where χP is
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the bond dimension of the PT-MPO and D is the system Liouville space dimension. An
optimisation process that takes M oracle calls thus involves C +O(NMχ2

PD
2) opera-

tions, where C is the number of operations necessary for the initial one-time computation
of the PT-MPO.

We consider the TEMPO method to compare the scaling of this approach to the brute
force approach of starting afresh for each given trial control parameter set. We choose
the TEMPO method because in its original form it requires the full computation for
every trial system Hamiltonian, but in the modified (PT-TEMPO) form may also yield
a PT-MPO. As mentioned in section 2.3.1 the TEMPO method in its original form
scales as O(N χ3

AD
3Kmax), where χA is the bond dimension necessary to accurately

represent the intermediate MPS of the computation, and δtKmax is the time scale at
which the environment correlation function decays to zero. The modified form that
yields a PT-MPO scales similarly as O(N χ3

PD
3Kmax), where the bond dimension of

the PT-MPO χP is not necessarily equal to the bond dimension required in the original
TEMPO computation χA. They are, however, typically of similar magnitude, such that
χ :' χP ' χA. Overall, we thus find that the proposed PT-MPO approach for the
search of control parameters scales as O(N χ3D3Kmax) + O(M N χ2D2) compared to
the direct TEMPO approach which scales as O(M N χ3D3Kmax). Considering that the
number of oracle calls is typically very large (M & 1000) this suggests a speed-up that
scales as O(χDKmax).

Optimisation of dynamical maps: To optimise a protocol with respect to a target
dynamical map Ξtarget, we need to be able to compute the resulting dynamical map
Λtfinal
t0

for any set of control parameters. We can compute the map by either repeatedly
computing the final state for a set of initial basis states, or by omitting the insertion of
an initial state in the tensor network and leaving the corresponding leg open during the

contraction sequence. Upon a suitable choice of a distance measure d
(

Ξtarget,Λ
tfinal
t0

)
,

the proposed strategy for the optimisation of dynamical maps is analogous to the above
described process for the optimisation of specific final states.

3.2. Optimised laser pulses for a quantum dot

We now demonstrate the performance of the PT-MPO approach introduced above by
applying it to a quantum dot that is strongly coupled to its phonon environment and
driven by a configurable laser pulse. Below, we completely map out the performance
of the laser pulse for a two dimensional parameter space (see Fig. 3.3) and we per-
form a global search with the differential evolution algorithm [133] on a 35 dimensional
parameter space (see Fig. 3.4).

Figure 3.2 shows a sketch of an experimental setup to drive exciton transitions in a
quantum dot with a shaped laser pulse. The pulse shaper consists of a pair of diffraction
gratings, lenses, and a spatial light modulator (SLM). We choose to parametrise the
system Hamiltonian in a way that emulates this particular experimental setup to ensure
that the resulting optimised protocol is indeed experimentally feasible. We consider the
ground state and the exciton state of the quantum dot and denote them with |↓〉 and
|↑〉 respectively. Under the rotating wave approximation the system Hamiltonian (with
~ = 1) is

ĤS(t) =
ω↑↓
2
σ̂z +

Ω(t)

2
e−iω0tσ̂+ +

Ω∗(t)

2
eiω0tσ̂−, (3.9)
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Figure 3.2: Sketch of the experimental setup to drive a quantum dot (QDot) with a shaped laser pulse.
The pulse form can be modified with a spatial light modulator (SLM). The insets show (i) the
phase mask function, (ii) the SLM pixel phase shifts, (iii) the input pulse, and (iv) the output
pulse.

where Ω(t) is the positive frequency part of the classical electrical field amplitude,
ω0 is the laser carrier frequency and ω↑↓ is the exciton energy. Also, σ̂z is the Pauli
matrix, σ̂+ = |↑〉〈↓|, and σ̂− = |↓〉〈↑|. The quantum dot couples strongly to its phonon
environment such that the total Hamiltonian has the form

Ĥ(t, {ck}) = ĤS(t, {ck}) + Ŝ
∑
k

(
giâi + g∗i â

†
i

)
︸ ︷︷ ︸

ĤI

+
∑
i

ωiâ
†
i âi︸ ︷︷ ︸

ĤE

, (3.10)

with the coupling operator Ŝ = σ̂z/2 and a super-ohmic spectral density

J(ω) :=
∑
i

|gi|2 δ(ωi − ω) = 2α
ω3

ω2
c

exp

(
−ω

2

ω2
c

)
. (3.11)

We choose realistic values for the unit-less coupling constant α = 0.126 and cut-off
frequency ωc = 3.04 ps−1 [18, 134]. The initial state is assumed to be the product of the
quantum dot ground state |↓〉 and the thermal state of the environment at T = 1.0 K.
We note that the environment auto-correlation function dies off only after about 2.5 ps,
which renders a Markovian approach invalid at comparable and shorter timescales.

For convenience, we transform the system Hamiltonian into the frame of the exciton
transition, such that

ĤS(t) =
E(t)

2
σ̂+ +

E∗(t)
2

σ̂−, (3.12)

where E(t) = Ω(t) exp(−i∆t) is the positive frequency part of the electric field in the
rotating frame, and ∆ = ω0 − ω↑↓ is the detuning of the carrier frequency of the input
pulse with respect to resonance. The input pulse (before it enters the pulse shaper) is
assumed to be Gaussian, i.e. Ein(t) ∝ τ−1 exp

(
−t2/τ2

)
exp (−i∆t), with an input pulse

duration τ assumed to be between 30 fs and 300 fs. The pair of diffraction gratings
and appropriate lenses allow the spatial separation of the frequency components of the
input pulse, with an approximately linear relationship between frequency and position
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at the SLM. Therefore each SLM pixel modifies a particular frequency range of the
pulse. We further assume that the pulse also has a finite spatial width with a Gaussian
profile which results in a finite spot size for each frequency part at the SLM. Assuming
that each SLM pixel can induce a phase shift φn to its corresponding frequency Ωn

the output pulse E(t) ∝ (h ∗ Ein) (t) is a convolution with the pulse shaper’s impulse
response function

h(t) ∝ sinc

(
δΩp t

2

)
e−

δΩ2
st

2

4

∑
n∈pixels

ei(Ωnt+φn), (3.13)

where δΩp is the pixel width and δΩs is the spot size in terms of their corresponding
frequency range [135, 136]. We assume 512 SLM pixels centred at the pulse carrier
frequency and evenly spaced over a frequency range of 2π×128.0 ps−1. Also, we assume
that the spot size of the pulse covers about two pixels, i.e. δΩs = 2.0× δΩp.

The setup described here leads to 515 open experimental parameters to modify the laser
pulse, namely, the initial pulse length τ , the initial pulse detuning ∆, the pulse area
Θ, and one phase shift φn for each of the 512 SLM pixels. Instead of directly using
the 512 parameters on the SLM, we use a continuous phase mask function f(x) on the
interval x ∈ [−1, 1], where −1 is mapped to most red detuned pixel and 1 is mapped
to the most blue detuned pixel of the SLM. Then, the phase shift φn of pixel n is
φn = 2π frac(f(x(n))/2π) ∈ [0, 2π), where x(n) = (n − 256)/256 and frac(y) = y − byc
denotes the fractional part. Figure 3.2 shows an example for the phase mask function
f(x) the resulting pixel phase shifts φn and the corresponding input and output laser
pulse to achieve a chirped laser pulse.

To study the dynamics of the quantum dot as a function of these experimental parame-
ters we employ the PT-MPO approach introduced above for which we first compute the
PT-MPO with respect to H̃ = ĤI + ĤE. For this we choose the PT-TEMPO method
with a time step of 10 fs and a memory time of 2.5 ps. Furthermore we employ a relative
singular value truncation, i.e. we truncate singular values that are smaller than 10−6.5

relative to the largest value. With this, the computation of the process tensor takes ap-
proximately 167 s, while the application of a system Hamiltonian to this process tensor
takes only 1.7 s on a single core of an Intel I7 (8th Gen) processor. For comparison,
a original TEMPO computation leading to a comparable accuracy of the result takes
approximately 230 s for each run.

Preparation of |y+〉: As a first example we apply a laser pulse to drive the quantum
dot from its ground state |↓〉 to the |y+〉 = (|↑〉+ i|↓〉)/

√
2 state. For simplicity we pick

a two dimensional parameter space, for which we fix the initial pulse length to τ = 50 fs
and the pulse area to Θ = 10π. We also fix the shape of the phase mask function to
a downward facing parabola f(x) = Φ − 1300x2 with a central phase shift Φ. This
parabola results in a broadened and chirped output laser pulse that starts blue detuned
and ends red detuned with respect to its carrier frequency. The central phase shift
simply induces an overall phase which rotates the x-y coordinate system. Applying our
method we can easily map out the trace distance of the final state to the |y+〉 target
state, as a function of the two open parameters ∆ ∈ [−50, 50] ps−1 and Φ ∈ [−π, π].
Figure 3.3a shows the results of 201×81 full non-Markovian simulations corresponding to
the different parameter sets. Employing the PT-MPO approach the entire computation
takes less than 8 hours on a single core of an Intel i7 processor, while it would take
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Figure 3.3: The dynamics of a quantum dot as a function of the detuning and overall phase of a chirped
laser pulse. (a) A heat map indicating the trace distance of the final state to the target
state |y+〉. (b-e) Dynamics of the quantum dot and the electric field for the laser pulse
parameters marked with the symbols � and ? in (a) respectively.

approximately 1040 hours or 43 days employing the original TEMPO method. We
find two local minima on this landscape which are marked by a star and a diamond
in Fig. 3.3a. The laser pulse that corresponds to the star parameter set is a chirped
pulse that starts strongly detuned and finishes on resonance. This can be thought
of as an interrupted adiabatic rapid passage, which has the advantage of being almost
independent of a possibly inaccurate pulse area, but has the disadvantage to be sensitive
towards the detuning of the pulse. The laser pulse that corresponds to the diamond
parameters, on the other hand, starts on resonance and ends strongly red detuned. In
this case the fidelity of the protocol is sensitively dependent on the pulse area, but
tolerant towards detuning inaccuracies, similar to a simple π/2-pulse.

Manipulating an ensemble of five detuned quantum dots: As a second example
to demonstrate the performance of the PT-MPO approach we consider an ensemble of
five detuned quantum dots and aim to find an optimal laser pulse to simultaneously
drive them to the equator of the Bloch sphere. The detunings of the quantum dots
relative to the middle dot are chosen to be [−10,−5, 0, 5, 10] ps−1. We perform a global
optimisation search employing the differential evolution algorithm on 35 pulse parame-
ters. We parametrise the phase mask function by splitting it up into 32 segments and
assigning one parameter to the slope of each segment. In addition to these 32 parame-
ters we also optimise over all three input pulse parameters τ , ∆ and Θ. To avoid extra
oscillations in the time domain, the phase mask function is smoothed out with a 3rd
order spline. We expect that a short π/2-pulse will successfully drive the states of the
quantum dots close to the equator of the Bloch sphere. This is because the shorter
the pulse is, the broader is its frequency distribution, leading to a suppressed detuning
dependency. We employ differential evolution with a population size of eight parameter
sets per dimension, where we set one element of the initial population to a simple 100 fs
π/2-pulse and chose the rest randomly.
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Figure 3.4: Optimisation of a laser pulse driving an ensemble of five quantum dots. (a) A sketch of the
quantum dot ensemble taking the place of the single quantum dot in the setup from Fig. 3.2.
(b) The phase mask function for the initial laser pulse (simple π/2-pulse) and the optimal
laser pulse. (c-f) Dynamics of the quantum dot and the electric field for the initial and the
optimal laser pulse denoted with • and ∗ respectively. The pulse length of both pulses prior
to the pulse shaper is 245 fs, the pulse areas for the initial pulse and the optimised pulse
are 0.5× π and 7.56× π respectively. The plots in (c) and (e) show the expectation values

〈Sxy(t)〉 =
√
〈Sx(t)〉2 + 〈Sy(t)〉2 for all five quantum dots.

The differential evolution algorithm employed 10 400 ensemble simulations, which each
entailed the computation of the full non-Markovian dynamics of 5 independent quantum
dots. Using the PT-MPO approach on all four cores of an Intel i7 processor this took
only about 11 hours, while the same computation would have taken more than a month
with the original TEMPO method. The result of this optimisation is shown in the right
column of Fig. 3.4. Surprisingly, the algorithm found an unexpected pulse form that
leads to a root mean square (RMS) distance to the equator of the Bloch sphere of 0.10,
which is significantly better than the performance of a π/2-pulse with the same initial
pulse duration of τ = 245 fs (see left column of Fig. 3.4). Also, it performs slightly
better than the shortest π/2-pulse with τ = 30 fs, which yields a RMS distance of 0.12.
However, we note that, unlike the π/2-pulse, the performance of the optimised pulse is
sensitively dependent on the exact detuning of the individual quantum dots.

3.3. Conclusion and outlook

We have shown that the PT-MPO approach makes optimal control of non-Markovian
open quantum systems a feasible task. It is limited to small system sizes and environ-
ments for which an efficient PT-MPO representation may be obtained.

We note that the control parameters that enter into the protocol are classical variables,
and thus the scenarios considered in this chapter are about optimal classical control
of open quantum systems. However, the method may readily be used to study control
sequences in which the control parameters exhibit a quantum nature. For this one
may consider, for example, the quantum circuit presented in Fig. 3.5a in which three
additional ancilla systems interact unitarily with the open system. In such a case one
may be interested in finding an optimal collective initial ancilla state σ for a given target
state of the system. This may be formulated as the tensor network shown in Fig. 3.5b
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env. sys. anc.

(a) (b) (c) (d)

Figure 3.5: Quantum circuits and tensor networks for the “quantum control” of a process (a-b) and the
derivative of the fidelity of a process (c-d). (a) Quantum circuit for a process controlled by
an initial ancilla state σA. (b) Tensor network representation of a process controlled by an
initial ancilla state, employing the PT-MPO of T̃0:N . (c) Tensor network representation of
the fidelity of the final state (with respect to the target state ρS

target). (d) Derivative of the
fidelity with respect to the system propagator at the second time step.

and contracted for many different trial states σ without the need to recompute the
PT-MPO representing the environment interaction.

Finally we note that the efficiency of the optimisation can be significantly improved
further by using the tensor network shown in Fig. 3.5c to compute the first derivative
(i.e. the Jacobian) of the fidelity with respect to the control parameters [137]. Due to
the linearity of tensor networks, the derivative of a tensor network with respect to one
of its parts is equal to the same tensor network without that part. Figure 3.5c shows
a tensor network that represents the fidelity for a given control parameter set. The
tensor network shown in Fig. 3.5d is thus the Jacobian of the fidelity with respect to
the system propagator P2 at time t2. Using an efficient contraction strategy one may
compute the Jacobians with respect to all system propagators and then use of the chain
rule to compute the Jacobian with respect to the control parameters. The resulting
1st-order oracle in conjunction with suitable optimisation algorithms may then further
drastically improve the performance of the search for optimal control parameters.



Chapter 4

Chains of
General Open Quantum Systems

In the previous chapters we have seen that the PT-MPO is a versatile tool for dealing
with general open quantum systems, even when the coupling to the environment is
strong. The exponential growth of complexity with memory time of such non-Markovian
open quantum systems is analogous to the complexity growth of many-body quantum
systems on lattices with the number of sites. We have seen that using tensor network
methods to represent the process tensor in MPO form allows us to tackle that growth
with memory time for small systems. There is, however, even a range of interesting
physical scenarios that include both many-body quantum systems and strongly coupled
structured environments [61–65]. Such scenarios are of importance for fundamental
research, such as the study of strong coupling quantum thermodynamics [21–24, 26,
27], as well as technological and biological applications [3–5, 25, 138–140]. However,
almost all currently available methods for the study of many-body quantum systems only
consider closed or Markovian dynamics, while methods for the study of non-Markovian
open quantum systems are generically restricted to small system sizes (we briefly review
the exceptions in section 4.1 below [39, 40, 141–149]).

In this chapter1 we introduce a numerical method that enables the computation of the
dynamics and multi-time correlations of chains of general open quantum systems. The
method is based on a combination of the PT-MPO approach and the time evolving
block decimation method (TEBD) [93, 99, 100, 150]. After introducing the key idea of
the method in section 4.1 we present a more detailed derivation in section 4.2. Equipped
with this, we suggest to employ the fluctuation dissipation theorem as a general approach
to judge the thermalisation of subsystems of many-body (open) quantum systems in sec-
tion 4.3. Finally, in section 4.4, we demonstrate the introduced approaches by studying
the thermalisation of individual spins of an XYZ Heisenberg spin chain strongly coupled
to thermal leads in both equilibrium and non-equilibrium scenarios.

4.1. PT-MPO augmented tensor network methods

The challenge of simulating many-body systems with non-Markovian environments lies
in the exponential scaling of both the Hilbert space of the many-body system with

1This chapter is based on various drafts of the publication [68].

40
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Figure 4.1: Tensor networks for (a) a single open quantum system using the PT-MPO approach, (b) a
chain of closed quantum systems using the TEBD method, and (c) a chain of open quantum
systems using the PT-MPO augmented TEBD method. The insets on the top of each panel
show the connectivity between individual systems (green discs) and individual environments
(red cups). The purple parts of the tensor network represent the initial state of the system,
the green parts represent the closed system propagators, and the red parts represent the
environment interaction.

the number of sites and the complexity of the environments with the degree of non-
Markovianity. To tackle these challenges the general approach described in this chapter
is to employ the PT-MPO for dealing with the non-Markovian environments and a suit-
able tensor network method for dealing with the many-body aspect of the problem. In
particular, we present a combination of the PT-MPO approach with TEBD to simulate
the dynamics and multi-time correlations of chains of open quantum systems. We note
however, that the general approach of augmenting many-body tensor network methods
with the PT-MPO may also be applicable to other methods such a the time-dependent
variational principle (TDVP) [98].

Figure 4.1c shows the combination of the TEBD method (see Fig. 4.1b) with PT-MPOs
(see Fig. 4.1a) on each site to include the influence of locally coupled environments. This
tensor network is suitable to simulate a chain of systems where each site may couple
strongly to its individual environment. We call this tensor network method PT-MPO
augmented TEBD because for each environment the TEBD method is augmented with
one additional leg that connects the site with its PT-MPO. This augmented leg thus
encodes the correlations of the site with its environment. Figure 4.1c shows the tensor
network for a first order Trotterised PT-MPO augmented TEBD tensor network. We
present the second order network in Fig. 4.2b alongside a more detailed description of
the method in section 4.2 below.

Before presenting the details of the PT-MPO augmented TEBD method, we now give
a brief overview of several alternative approaches [39, 40, 141–149]. A method pro-
posed by Suzuki et al. [143] is based on the transfer matrix approach and restricted to
Gaussian bosonic environments as well as diagonal system-system couplings (with re-
spect to the local system basis). The modular path integral (MPI) method proposed by
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Makri [142] is originally based on the same assumptions, but has recently been extended
to more general cases [146]. Also recently, Bose and Walters proposed a multi-site de-
composition of the tensor network path integral (MS-TNPI) [149], which is similar to
the method presented in this chapter, but restricted to Gaussian bosonic environments
and comparitively short memory times (only 4 time steps are presented). Furthermore,
for the special case where only the end sites couple to environments, a chain mapping
technique for Gaussian bosonic environments called time evolving density matrices us-
ing orthogonal polynomials (TEDOPA) [39, 40] may be used. However, due to artefact
reflections from the end of the chain (representing the environment) this method is
unsuitable for computing long time dynamics. The approach to periodically reset the
environment [144] solves this problem. However, because of the periodic destruction
of system-environment correlations this method cannot be used to compute multi-time
correlations (see the discussion on the failure of the quantum regression formula in
section 2.1.3).

All these alternative approaches attempt to tackle the numerical complexity of both the
system-system and the system-environment correlations simultaneously. In contrast to
that, the PT-MPO approach tackles these challenges sequentially by first systematically
reducing the numerical complexity originating from system-environment correlations
before integrating them into the full many-body problem. We expect that this has a
considerable positive impact on the performance, and that thus the PT-MPO augmented
TEBD method can access a much wider class of problems than any other currently
available method.

4.2. Derivation of PT-MPO augmented TEBD

In this section we present details of the PT-MPO augmented TEBD method. The
method allows the computation of the dynamics and multi-site multi-time correlations
of 1D many-body quantum systems in the presence of strongly coupled and structured
environments. We assume a total Hamiltonian of the form

Ĥ =

N∑
n=1

(
ĤS
n + ĤIE

n

)
+

N−1∑
n=1

Ĵn,n+1, (4.1)

as sketched in the inset of Fig. 4.1c. It consists of on-site system Hamiltonians ĤS
n ∈

B(HS
n), on-site environment interaction parts ĤIE

n ∈ B(HS
n ⊗HE

n), and nearest neigh-
bour coupling terms Ĵn,n+1 ∈ B(HS

n ⊗HS
n+1) for each of the N sites. Here, HS

n and HE
n

denote the system and environment Hilbert spaces of the nth site, and B(H) denotes
the set of bounded linear operators on H.

In principle the on-site system Hamiltonians can be completely absorbed in the definition
of the on-site environment interactions. However, as we have seen in the previous
chapter, it is often useful to separate the pure system part from the interaction part
as much as possible. In addition to the total Hamiltonian in Eq. (4.1), we will also
allow for on-site time-local dissipative processes described by a local master equation of
GKSL form.

In the following we show how to construct the TEBD tensor network augmented with
the process tensor approach and present a suitable contraction algorithm. Finally, we
will show how to extract the intermediate time chain dynamics as well as multi-site
multi-time correlations.
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(a) (b) (c)

Figure 4.2: Tensor networks combining process tensors and TEBD. (a) Tensor network for three time
steps using a second-order Suzuki-Trotter splitting between a 5-site chain and its environ-
ments. (b) Full tensor network for a 5-site chain using a second order Suzuki-Trotter splitting
in both environment and inter-site coupling. (c) Full tensor network to compute the two

time correlation
〈
B̂(2δt), Â(1δt)

〉
.

4.2.1. Tensor network construction

Like in the previous chapters, the entire following calculation is carried out in Liouville
space, i.e. we consider super-operators that act on the space of vectorised density
matrices. As a start we consider the formal solution of the von Neumann equation for
the total density operator at time t

ρ(t) = eLtρ(0) (4.2)

with the total Liouvillian L · = −i[Ĥ, · ]. We can separate this total Liouvillian into a
chain and an environment part

L = Lchain +
N∑
n

LIE
n , (4.3)

where

Lchain =

N∑
n

LS
n +

N−1∑
n

LJn,n+1, (4.4)

with each Liouvillian corresponding to a part of the total Hamiltonian in Eq. (4.1). As
mentioned above, the system Liouvillians may additionally include dissipative terms,
i.e.

LS
n · = −i[ĤS

n , · ] +
∑
k

(
L̂†n,k · L̂n,k −

1

2
{L̂†n,kL̂n,k, · }

)
, (4.5)

with GKSL operators L̂n,k ∈ B(HS
n).
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Analogously to the approach taken in the previous chapters, we divide the total propaga-
tion into M short time steps δt and perform a second-order Suzuki-Trotter splitting [151]
between the chain and the environment terms

eLt =
[
eLδt

]M
(4.6)

'
[
eLchain

δt
2 e(

∑N
n LIE

n δt) eLchain
δt
2

]M
(4.7)

=

[
eLchain

δt
2

(
N∏
n

eL
IE
n δt

)
eLchain

δt
2

]M
, (4.8)

where the last equality follows from the fact that the LIE
n act on different site-environment

pairs for different n. For ease of presentation we now apply this propagator to a total
initial state that is separable between the chain and each environment, which means
that ρ(0) = ρ̃chain

⊗
n ρ̃

E
n . We comment below how this can be extended to initially

correlated states. Let us now consider the reduced chain state, which we obtain by
performing the partial traces over all environments, i.e. TrE := Tr{

⊗
nHE

n}. Assuming
an initial separable state and the approximated propagator from Eq. (4.8), we show a
tensor network in Fig. 4.2a that represents ρchain(t) := TrE

{
eLt ρ(0)

}
for three time

steps.

So far, the tensor network in Fig. 4.2a is unsuitable for carrying out a numerical com-
putation. The tensors representing the interaction with the environment (red tensors)

explicitly involve the environment Hilbert spaces, and the chain propagators eLchain
δt
2

(green tensors) are still assumed to be exact, with a total dimension of dim(HS
n)4N .

This is impractical for any generic environment and any chain of significant length. In
the following we present how to construct the tensor network in Fig. 4.2b instead, which
is then suitable for an efficient numerical computation.

First, we consider the part of the tensor network that consists of the environment initial
state ρ̃E

n , the interaction propagators eL
IE
n δt, and the final environment trace TrHE

n
.

Together, these tensors constitute a multi-linear map, which is—per definition—the
process tensor of the environment interaction Hamiltonian ĤIE

n with the initial state
ρ̃E
n [67], as introduced in section 2.1.4. Depending on the type of the environment

we then may use one of the methods [45, 49, 52–58, 104] introduced in section 2.3 to
construct an efficient representation of the process tensor in MPO form. In Fig. 4.2b
we have replaced the full process tensors with the PT-MPOs obtained from any such
suitable method. Given that the computation of such a PT-MPO is often numerically
involved, it can be beneficial to absorb all pure on-site system terms into LS

n and reuse
the PT-MPO for any identical occurrences of the LIE

n environment interactions.

Next, we consider the chain propagators eLchain
δt
2 . To decompose these large tensors

into smaller tensors, we perform another second-order Suzuki-Trotter splitting (this
time among the chain sites), making use of the fact that the chain Hamiltonian only
contains on-site and nearest neighbour terms. This leads to a TEBD tensor network
for the chain evolution in Liouville space [100, 150], as discussed in section 2.2.4. For
this, we first absorb the on-site system Hamiltonians ĤS

n into the nearest neighbour
terms Ĵn,n+1 by defining K̂n,n+1 like in Eq. (2.19) such that Lchain =

∑N−1
n=1 LKn,n+1. In

Fig. 4.2b we replace the half time step chain propagators eLchain
δt
2 with the second-order

Suzuki-Trotter splitting, which is of a similar form as the first-order splitting presented

in Eq. (2.21). It consists of two body gates of the form eL
K
n,n+1

δt
4 .
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Figure 4.3: Contraction algorithms for the PT-MPO and augmented MPS. (a) Construction of the 4th

cap tensor C
(4)
n of the PT-MPO at site n. (b) Construction of the 3rd cap tensor C

(3)
n .

(c-h) Contraction and decomposition sequence for the application of a two-site gate G on
the augmented MPS. (i-j) Contraction of the augmented MPS with a PT-MPO tensor.
(k-l) Contraction of the augmented MPS with the cap tensors, yielding a canonical MPS.

Finally, we insert the initial chain state as a matrix product state (MPS) in Vidal
form [99]. Although the pure chain propagation works analogously to TEBD, each of the
Γ tensors of the MPS needs to have an extra leg which corresponds to the entanglement
of the chain site with its environment. We will call this MPS the augmented MPS. For
initially uncorrelated chain-environment states the MPS has initially no extra legs. In
such cases, we nonetheless include dummy legs of dimension 1. These are indicated with
dotted lines in Fig 4.2b. We do this such that the contraction algorithm for the first
time step is of the same form as for all later steps, as well as to allow for the case of an
initially correlated state [67], for which the dimension of the dotted legs is > 1.

4.2.2. Contraction algorithm

Figure 4.2b shows the full tensor network for three time steps of a 5-site chain. To
contract such a network we propose to absorb the tensors into the augmented MPS line
by line. This involves two different types of contraction sequences which we describe in
the following.

The first type is a contraction of the augmented MPS with the chain propagators,
which consist of two-site nearest neighbour gates. We suggest a sequence of operations
in Figs. 4.3(c-h). Compared to the canonical TEBD presented in section 2.2.4 above,
this sequence includes some additional operations for the augmented legs with the aim
of minimising the size of the intermediate tensors involved. Figures 4.3(c-h) show the

proposed operations for applying a two body gate G = eL
K′
n,n+1

δt
4 to an augmented MPS:

(c-d) Contraction:
BL := λn−1Γn and BR := Γn+1λn+1

(d-e) Truncated singular value decomposition:

UBL ΣB
LV
†B
L :' BL and UBRΣB

RV
†B
R :' BR
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(e-f) Contraction:

D := ΣB
L V

†B
L λnGU

B
R ΣB

R

(f-g) Truncated singular value decomposition:
UDΣDV †D :' D and λ̃n := ΣD

(g) Insert identities:
λn−1λ

−1
n−1 = 11 and λ−1

n+1λn+1 = 11

(g-h) Contraction:

Γ̃n := λ−1
n−1U

B
L U

D and Γ̃n+1 := V †DV †BR λ−1
n+1

We propose to use a relative singular value truncation threshold ε, i.e. we choose
the cut-off χ as large as possible while maintaining the overall truncation error to be∥∥∥Σ− Σ̃

∥∥∥
2
< εmax(Σ), where ‖·‖2 denotes the 2-norm and Σ̃ are the χ largest singular

values.

The other type of operation that occurs when absorbing the tensor network line by
line is the contraction of the augmented MPS with the subsequent parts of the PT-
MPOs. Figures 4.3(i-j) show the contraction of an augmented MPS site (Γn) with a
single tensor of a PT-MPO (Pn). This contraction only updates the Γ tensors of the
augmented MPS, where the bond legs of the PT-MPOs become the new augmented legs
of the augmented MPS.

The method is limited to 1D chains of systems whose state can be well approximated
by an MPS of some finite maximal bond dimension χ, as well as environments whose
process tensor can be well approximated by an MPO of maximal bond dimension ξ.
The computational effort is dominated by performing the singular value decompositions
involved in compressing the spatial MPS after the application of the nearest neighbour
gates. Employing the extended contraction/SVD sequence described above, reduces the
dimension of the largest intermediate matrix from (χξd2)×(χξd2) to (ηd2)×(ηd2), where
d is the system Hilbert space dimension of a single site and η is the intermediate bond
dimension that occurs in the step shown in Fig. 4.3(d-e), for which χ . η ≤ χξ. The
overall simulation of an N site chain for K time steps thus takes O(NKη3d6) operations.
We point out that the contraction sequences described above only act locally on a short
part of the augmented MPS for each step. This contraction scheme is therefore, like the
conventional TEBD algorithm, well suited for parallel computing.

4.2.3. Intermediate chain evolution

As presented thus far, this method would only yield a reduced chain state at the final
time step. We can, however, extract the reduced density matrix of the chain for every
intermediate time step by temporarily removing the correlations of the augmented MPS
with the environment. This can be done using the containment property of process
tensors as introduced in section 2.1.4, which allows the generation of process tensors
for a smaller set of time slots by tracing over all later times. For this we construct the

tensors C
(m)
n , which we call cap tensors, as shown in Figs. 4.3(a-b). Applying these cap

tensors to the augmented MPS at time step m, as presented in Figs. 4.3(k-l), removes
the augmented leg and yields a canonical MPS that represents the vectorised reduced
density matrix of the chain at that time.
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4.2.4. Multi-site multi-time correlations

Finally, we show how to compute multi-site multi-time correlations. As an example, we

could be interested in the correlation
〈
B̂(2δt)Â(1δt)

〉
, with Â and B̂ acting on the 5th

and 2nd spin of a 5-site chain respectively. More generally, we consider all time-ordered
correlations C of the form

C =

〈
P∏
p=1

Ĉp(mpδt)

〉
=
〈
ĈP (mP δt) . . . Ĉ2(m2δt) Ĉ1(m1δt)

〉
, (4.9)

with the operator Ĉp acting at the timempδt. Time ordering means thatmP ≥ . . . ≥ m1.
This can be written as

C = Tr

 P∏
p=1

(
CLp eL(mp−mp−1)δt

)
ρ(0)

 (4.10)

= Tr

 P∏
p=1

(
CLp [ eLδt](mp−mp−1)

)
ρ(0)

 , (4.11)

with m0 := 0 and the left acting super-operators CLp := Ĉp ·. To represent Eq. (4.11) as

a tensor network, we replace the full propagators for a single time step eLδt with the
same construction as in section 4.2.1 above. This leads to the same tensor network as
in Fig. 4.2b, but with additionally inserted super-operators and with additional traces
over the chain sites at the top of the network. We exemplify this in Fig. 4.2c for the

two-time correlation
〈
B̂(2δt)Â(1δt)

〉
. Finally, we mention that for anti time-ordered

correlations, the operators need to be inserted as right acting super-operators CRp := · Ĉp
instead.

4.3. Thermalisation of subsystems

With the above method we now have an efficient numerical tool at hand to study the
dynamics and multi-time correlations of chains of systems, where each system may
couple strongly to a structured environment. A natural question that often arises when
studying such open many-body systems is whether a particular subsystem thermalises.
Identifying that a subsystem is in thermal equilibrium allows one to link its microscopic
state to thermodynamic properties and is thus at the heart of the field of strong coupling
quantum thermodynamics [21–24, 26, 27].

One approach to judge whether a subsystem has thermalised is to compare its reduced
density matrix with the Gibbs state of some effective local Hamiltonian for that subsys-
tem. This approach works well when the subsystem only couples weakly to the rest of
the system. In the weak coupling limit the thermal reduced density matrix of the sub-
system is identical to the Gibbs state of the subsystem with respect to the local Hamil-
tonian. For weak but finite coupling, perturbation theory predicts that the reduced
part of the subsystem of the true total Gibbs state deviates from the Gibbs state with
respect to the local Hamiltonian at second order in the coupling strength [152]. There
exist perturbative methods that—given the total Hamiltonian—allow the computation
of the lowest order corrections to the effective local Hamiltonian for the subsystem.
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This means that judging the thermalisation of subsystems through the reduced density
matrix depends on the ability to compute an appropriate effective local Hamiltonian,
which in turn depends on the explicit knowledge of the total Hamiltonian. However, it
would be desirable to have access to a method that is capable of judging thermalisation
of a subsystem that does not require the explicit knowledge of the total Hamiltonian,
but instead only depends on observables of the subsystem. Such a goal cannot be
achieved by considering the reduced density matrix of a subsystem alone because any
density matrix can be expressed as a thermal Gibbs state of some suitably constructed
Hamiltonian.

Instead of studying the reduced density matrix, we therefore propose to use two-time
correlations of local observables in conjunction with the quantum fluctuation dissipation
theorem (FDT) to judge whether a subsystem has thermalised. This can be done with-
out the explicit knowledge of any Hamiltonian2. The FDT states that for a thermalised
quantum system at temperature T the ratio of the fluctuation and dissipation spectra
with respect to any observable Â must be

SA(ω)

χ′′A(ω)
= coth

( ω
2T

)
, (4.12)

for all frequencies ω [153, 154]. The fluctuation spectrum SA(ω) is the Fourier trans-

form of the Keldysh Green’s function SA(τ) = 1
2

〈
{Â(τ), Â(0)}

〉
and is also called the

symmetrised quantum noise spectral density [155]. Similarly, the dissipation spec-
trum χ′′A(ω) is the imaginary part of the Fourier transformed linear response function

χA(τ) = iΘ(τ)
〈

[Â(τ), Â(0)]
〉

, which is the retarded Green’s function that quantifies

the density of states with respect to transitions driven by the operator Â. The FDT is
a general result of statistical quantum mechanics and in the form presented above does
not involve any approximation. Operationally, the fluctuation and dissipation spectra
could be measured by weakly coupling a measuring device to the observable Â and
recording its fluctuations as well as its response to weak perturbations. Here, the weak
coupling assumption only applies to the coupling between the operator Â and the mea-
suring device. No such assumption is made about the coupling of Â to the rest of the
system, and this method is thus suitable to judge the temperature of subsystems even
when they couple strongly to the rest of the system.

It is important to note that many commonly applied approaches for open quantum
systems, such as time-convolutionless, Nakajima-Zwanzig, and the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equations [8], aim at correctly describing the re-
duced system dynamics, but in general do not yield the correct multi-time correlations.
As mentioned in section 2.1.3, Ford and O’Connell have shown that a GKSL master
equation may be adequate to describe thermalisation of the reduced density matrix of a
harmonic oscillator experiencing random thermal forces in the weak coupling limit, but
leads to incorrect fluctuation and dissipation spectra [82]. For the above proposition to
work, it is therefore necessary to have access to a method that can correctly compute
multi-time correlations of open quantum systems. The PT-MPO augmented TEBD

2The fact that one may judge thermalisation from multi-time correlations but not from the reduced
dynamics alone demonstrates the statement made repeatedly in chapter 2, namely that multi-time
correlations carry information that is not encoded in the reduced dynamics of an open quantum
system alone.
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method fulfils that necessity and thus allows the study of thermalisation of subsystems
in chains of general open quantum systems.

4.4. XYZ spin chain with thermal leads

To demonstrate the power of the approaches introduced in this chapter we study the
thermalisation of individual spins in an XYZ chain with strongly coupled thermal leads.
We consider the chain Hamiltonian of the form

ĤXYZ =

N∑
n=1

εnŝ
z
n +

N−1∑
n=1

∑
γ∈{x,y,z}

Jγ ŝγnŝ
γ
n+1, (4.13)

where ŝγn = σ̂γn/2 are the spin-1/2 operators at site n. Throughout this section, we
set ~ = kB = 1 and express all frequencies and times in units of some characteristic
frequency and its inverse. We choose Jx = 1.3, Jy = 0.7, and Jz = 1.2 to break the
symmetries of the Heisenberg model, and we start with studying the case of constant
εn = 1.0 for all sites.

4.4.1. Single thermal lead

As a first check we couple only a single bosonic bath at temperature T = 1.6 to the first
site of a short (N = 5) chain and study the steady state and its two-time correlations
(see Fig. 4.5e). The bath couples to the chain operator ŝy1 with

ĤIE
1 =

∞∑
k=0

[
ŝy1

(
gk b̂
†
k + g∗k b̂k

)
+ ωk b̂

†
k b̂k

]
, (4.14)

where b̂
(†)
k are bosonic lowering (raising) bath operators. The gk parameters are de-

termined by the spectral density J(ω) :=
∑

k |gk|
2δ(ω − ωk), which we choose to be

J(ω) = 2αω exp(−ω/ωc), where α quantifies a dimensionless coupling strength and ωc
is a cut-off frequency which we set to ωc = 4.0.

To employ the augmented TEBD method to this scenario we first need to compute the
PT-MPO for the particular environment at hand. For this we use the PT-TEMPO
method [49, 52, 54, 104] as introduced in section 2.3.1. Such a computation has three
convergence parameters: the time step δt, the maximal number of memory steps Kmax,
and the relative singular value truncation threshold εTEMPO. The product δtKmax is the
maximal correlation time of the environment that is included in the computation. For
the given spectral density the environment correlation function drops at time t = 8.0
below 10−3 of its maximum value. Consistent with this, we find the choice of δt =
0.2, Kmax = 40, and εTEMPO = 10−6 to be adequate. We comment on checking the
convergence of the simulations in section 4.4.2 below. To allow a study of how the above
scenario depends on the coupling strength α, we compute PT-MPOs with a length of
1600 time steps for various values of α using open source package OQuPy [104]. For
a coupling strength of α = 0.32 the computation takes approximately 4 minutes on a
single core of an Intel i7 (8th Gen) processor, resulting in a PT-MPO with a maximal
bond dimension of 37.
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Figure 4.4: Trace distance between the thermal Gibbs state of the closed 5-site spin chain and the
approximate steady state of the chain coupled to the bath with varying coupling strength
α. A fit shows that this difference is vanishing at a linear order in α (i.e. a quadratic order
in bath couplings gk) in a weak coupling limit.

Reduced steady state: Equipped with the appropriate PT-MPOs for various cou-
pling strengths, we can use the augmented TEBD method to evolve the spin chain from
the initial state at time ti = 0.0 to an approximate steady state at time tss. During the
TEBD propagation we use a relative singular value truncation of εTEBD = 10−6. We
find that for all scenarios considered tss = 192.0 (960 steps) is long enough to reach an
approximate steady state. For the results presented in the following we chose the initial
state of each spin to be ρ̃S

n ∝ exp
(
− σ̂z

T

)
. As expected, we find the same steady state

when starting from other random initial product states.

As mentioned in section 4.3, perturbation theory predicts that in a weak coupling limit
the reduced chain density matrix of the full thermal state differs from the Gibbs state of
the chain Hamiltonian at a quadratic order in the bath coupling [152]. The dimensionless
coupling strength α is proportional to the square of the bath coupling amplitudes |gk|2,
i.e. α ∝ |gk|2. Assuming that the chain thermalises with the bath in the long time limit,
we thus expect to find a difference between the reduced steady state and the Gibbs state
of the chain Hamiltonian that is proportional to α in a weak coupling limit. Figure 4.4
shows the trace distance for various coupling strengths α. A fit to the data shows that
the results are consistent with the expectation.

Two-time correlations: While we can compare the steady state to a known exact
result in a weak coupling limit, we lack a reliable reference for finite coupling. However,
following the approach suggested in section 4.3 we can check the consistency of two-time
correlations with the FDT to validate the thermalisation of the spin chain also at finite
coupling strengths.

To compute two-time correlations such as
〈
B̂(tss + τ)Â(tss)

〉
with respect to some

single site operators Â and B̂, we apply the left acting super-operator AL · = Â · to the
steady state and compute the expectation value of B̂ for all later times up to the final
time tf = 320.0. We can thus compute the two time correlations 〈σ̂zn(tss + τ)σ̂zn(tss)〉 of
spin n for all τ up to τmax := tf − tss with a single propagation starting from the steady
state. It is important to point out that the expression “steady state” refers to the state
of the whole (chain and environment) and not just the reduced chain state. Because
the two-time auto-correlations of the chain depend on the steady state correlations of
the chain with the environment it is vital to continue the propagation from the full
augmented MPS at time tss.

With this, we obtain 〈σ̂zn(tss + τ)σ̂zn(tss)〉 for all τ ∈ (0, τmax), which we identify with
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Figure 4.5: The dissipation spectrum (a), fluctuation spectrum (b), their ratio (c), and effective tem-
perature (d) at the steady state for the σz observable of the middle spin in the 5-site chain.
The solid and dashed lines show the results obtained employing the PT-MPO approach
and a 2-spin driving protocol [156–158], respectively. The PT-MPO results overlap with
the expected FDT tanh( ω

2T
) (dotted line) in (c) and show no frequency dependence in (d),

confirming complete thermalisation. Panel (e) shows a sketch of the 5-site chain coupled to
a single bath at temperature T = 1.6. Panel (f) shows a sketch of the 5-site chain extended
with two additional spins which are driven with a GKSL master equation towards their local
Gibbs state.

〈σ̂zn(τ)σ̂zn(0)〉ss at the steady state. Using

〈σ̂zn(τ)σ̂zn(0)〉ss = 〈σ̂zn(0)σ̂zn(−τ)〉ss (4.15)

= 〈σ̂zn(0)σ̂zn(τ)〉∗ss (4.16)

we can construct commutators and anti-commutators for τ ∈ (−τmax, τmax) and employ
a fast Fourier transformation on this interval to compute the fluctuation and dissipation
spectra.

Figures 4.5a and 4.5b show the simulation results for the dissipation and fluctuation
spectra for the σ̂z observable of the middle spin of the 5-site chain with a bath coupling
strength of α = 0.32. Figure 4.5c shows the ratio of the dissipation and fluctuation
spectra, which has the shape of a hyperbolic tangent. Inverting the FDT and plot-
ting a frequency dependent effective temperature T (ω) = ω/[2 artanh(χ′′(ω)/S′(ω)] in
Fig. 4.5d we can see from the perfectly flat line that the two-time correlations are con-
sistent with the FDT at the expected temperature. We find similar results for all other
spins and observables, and no dependency on the chosen initial chain state.

Figure 4.5 also shows the results of a different, widely applied numerical method to
study thermodynamic properties of spin chains [156–158]. For this, instead of coupling
the first spin to the bosonic environment, we attach two additional spins to the left hand
side of the first spin (see Fig.4.5f) and construct a Liouvillian LB which drives these two
spins towards the Gibbs state of their local Hamiltonian as described in section 2.4 of
reference [156]. The two-time correlations obtained using this method strongly deviate
from the FDT and are thus incorrect.

4.4.2. Two thermal leads

We now turn to an XYZ spin chain of length N = 9 coupled to two thermal leads at
different temperatures. Using the PT-MPO augmented TEBD method we couple one
bath at temperature TH = 1.6 to the first and one bath at TC = 0.8 to the last spin (see
Fig. 4.6e), using the same spectral density and coupling operator as before.
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Figure 4.6: The dissipation spectrum (a), fluctuation spectrum (b), their ratio (c), and effective tem-
perature (d) at the steady state for the σz observable of each spin in the 9-site spin chain.
The thickness of the lines in panel (d) represent an estimate of the numerical error. Panel
(e) shows a sketch of the 9-site spin chain placed between a hot (Thot = 1.6) and cold bath
(Tcold = 0.8).

The propagation from the initial state to the steady state took 8 hours 6 minutes on
four cores of an Intel Xeon E5-2695 machine. The propagation after the application of
the first σ̂zn took between 6 hours 37 minutes and 8 hours 39 minutes, depending on the
site n to which it was applied. In order to check convergence with respect to the com-
putation parameters, we study the finite difference of our results with respect to altered
parameters. We performed simulations substituting δt = 0.2→ 0.15, Kmax = 40→ 30,
εTEMPO = 10−6 → 10−5 for the process tensor computation; and εTEBD = 10−6 → 10−5,
tss = 192.0→ 160.0, and τmax = 128.0→ 160.0 for the augmented TEBD evolution. We
found that the resulting differences are dominated by the variation of εTEBD and we thus
consider these differences as an estimate of the numerical error.

Figure 4.6 show the dissipation χ′′(ω), fluctuation S(ω), and effective temperature T (ω)
for the σ̂z observable of each spin. The results in Fig. 4.6d show that at a mid frequency
range (between roughly 0.5 and 2.0) the inner spins adopt a common intermediate
effective temperature, while at higher frequencies (above approximately 3.0) each spin
adopts an effective temperature between that of the hot and cold bath depending on
its position. In the following we suggest an idea for why this kind of behaviour might
arise. For this, we first consider the eigenstates of the closed XYZ spin chain, which
consist of a set of delocalised “bulk” states plus localised “surface” states. The surface
states are mainly localised at each end of the chain, but reach into the bulk with an
exponentially decaying tail. For the chain parameters chosen here the density of states
for the closed spin chain slowly vanishes above a frequency of approximately 2.5 (see
the supplemental material of reference [68]).

Next, we include the coupling to the environment into our considerations. The strong
coupling leads to a significant hybridisation of the chain states with the environment
modes. Because the environments couple to the outer spins, they affect the bulk and
surface states differently. The delocalised bulk states have an equal and small overlap
with the two outer spins and therefore hybridise weakly with both environments. The
surface states, on the other hand, have a large overlap with either the first or last spin
and thus hybridise strongly with the left or right environment, respectively. In the mid
frequency range the density of states for the inner spins is dominated by the weakly
hybridised bulk states which, due to their equal overlap with both baths, assume an
intermediate effective temperature. For the higher frequencies the density of states are
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Figure 4.7: The dissipation spectrum (a), fluctuation spectrum (b), their ratio (c), and effective tem-
perature (d) at the steady state for the σz observable of each spin in a disordered 9-
site spin chain. The spin chain is paced between a hot (Thot = 1.6) and cold bath
(Tcold = 0.8) and has additional on-site disorder εn = 1 + xn, with a random draw
xn = (0.16, 0.69, 0.33, 0.14,−0.24, 0.47,−0.20, 1.25, 1.48) from a uniform distribution in the
interval (−1.6, 1.6).

dominated by the strongly hybridised surface states. Because the coupling of a spin
with the right and left surface states strongly depends on its position, the effective
temperature it adopts depends on its position as well.

We can further test this interpretation of our results by introducing disorder in the chain
to destroy the delocalised chain modes. For this, we add random on-site disorder to the
chain Hamiltonian by choosing εn = 1 + xn, with xn uniformly distributed in (−W,W ),
with W ∈ R. Figure 4.7 shows the results for a random draw with W = 1.6. In Fig. 4.7a
one can identify several localised modes. For example, there is a peak at a frequency of
about 1.9, which is supported by spins 5, 6, and 7, hinting at the existence of a localised
mode. Also, one can see in Fig. 4.7d that the disorder destroys the collective common
temperature at lower frequencies as expected.



Chapter 5

Long Time Limit of
General Open Quantum Systems

So far our study of open quantum systems focused on their explicit time evolution and
multi-time correlations following some initial preparation. In many experiments and
theoretical studies the main interest lies however in the steady state behaviour. While
the methods introduced in the previous chapters allow the study of quasi steady states
through a long time evolution, a more direct approach seems desirable.

In cases where the steady state is known to be thermal (i.e. coupled only to a single bath,
or to baths at the same temperature), a viable approach is to employ an imaginary time
evolution in which the propagation with respect to the total Hamiltonian Ĥ is taken

to be e−βĤ instead of e−itĤ . An imaginary time evolution adaption of TEMPO has
been demonstrated to be a very efficient method to calculate the mean-force Gibbs
state of a system coupled strongly to a bosonic environment [159]. However, such an
approach only yields the correct steady state density matrix in equilibrium scenarios,
but cannot be applied in non-equilibrium scenarios (e.g. coupled to baths at multiple
temperatures, or undergoing driving), or for the computation of steady state multi-time
correlations. For the case of linearly coupled bosonic environments, the iterative quasi-
adiabatic propagator path integral (QUAPI) introduced by Makri and Makarov [43, 44]
allows the study of non-equilibrium scenarios and multi-time correlations also in the long
time limit. It achieves this by constructing a time translational invariant propagator
for the augmented density tensor capturing memory effects of the bath. However, its
applicability is limited due to its exponential scaling with memory time.

In this chapter1 we present some preliminary work on a reformulation of QUAPI that
employs tensor network methods to compress the time translational invariant propaga-
tor to its physically most relevant parts. It allows us to tackle environments with much
longer memory times compared to its original formulation. Unlike the TEMPO method
introduced in section 2.3.1, the method introduced below preserves the time transla-
tional invariance, making it a suitable numerical method to study long time behaviour.
As a first check and demonstration of this method, we study the steady state of the
spin-boson model and compare it to known analytical results in the limit of vanishing
tunnelling strength. Before presenting the tensor network reformulation of QUAPI in

1The work presented in this chapter has been carried out in collaboration with Dominic Gribben.
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Figure 5.1: Tensor network construction of the infinite process tensor (iPT). (a) Process tensor network
for an open quantum system with a constant total Liouvillian L. (b) Process tensor network
with projections onto the physically most relevant environment Liouville subspace. (c) In-
finite process tensor in MPO form (iPT-MPO). The iPT unit cell may be repeated for the
construction of a PT-MPO for any number of time steps N .

section 5.2, we first introduce a time translational invariant adaption of the process
tensor—the so called infinite process tensor (iPT)—as a general concept in section 5.1.
The QUAPI method and its tensor network reformulation yield such an iPT for the spe-
cial case of a Gaussian bosonic environment. We conclude the chapter with an outlook
in section 5.3 on potential applications, improvements, and extensions to the method.

5.1. Infinite process tensors

Although the process tensor formalism is a very powerful concept, one of the drawbacks
in its current formulation is the necessity of choosing a finite number of time steps.
This is unavoidable in the most general case that allows arbitrarily time dependent
environment interactions. However, in most practical scenarios the environment inter-
action Hamiltonian is constant or at least periodic in time. In these cases it thus seems
desirable to find a formulation of the process tensor that reflects the time translational
invariance of the environment interaction and thus may represent the process tensor for
an infinite number of time steps.

In the following we propose a formulation of such an infinite process tensor (iPT). For
this, we first consider the simple case of a conventional (finite) process tensor with
N equidistant time steps tn = n δt for a constant total Hamiltonian Ĥ. Figure 5.1a
shows the explicit construction of the process tensor for such a case as introduced in
section 2.1.4 above. The methods introduced in chapter 2 allow the computation of an
efficient MPO representation for such a process tensor. However, the MPO represen-
tations that result from these methods do in general not reflect the time translational
structure of the original diagram in Fig. 5.1a. This is analogous to chains of quantum
systems with spatially translational invariant Hamiltonians, where boundary effects in
general destroy the spatial translational invariance of the chain’s MPS. For very long
chains a well known approach to solve this problem is to represent the bulk of the
chain with a so called infinite MPS for which one chooses an appropriate repeating unit
cell [101]. To yield a time translational MPO representation of the process tensor we
propose an analogous approach for which one chooses an appropriate unit cell spanning
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Figure 5.2: Tensor networks for the study of the steady state of a general open quantum system. (a) Con-
struction of the matrix T from the iPT unit cell and the interventions A. (b) Tensor net-

work representation of the right eigenvectors
→
v n. (c) Tensor network representation of

the left eigenvectors
←
v n. (d) Tensor network construction of the reduced system operator

X̂n ∈ B(HS) from a right eigenvector
→
v n.

one or more time steps.

Figure 5.1c shows an MPO representation that consists of an iPT boundary, an iPT unit
cell (in this case of length one) and an iPT cap vector. The iPT boundary is a PT-MPO
as introduced in section 2.3 for some (freely choosable) number of initial time steps with
the constraint that the last MPO bond leg must connect to the first bond leg of the
iPT unit cell. The iPT unit cell is an MPO representation of the time translational
invariant part of the process tensor and the iPT cap vector is used to terminate the
iPT-MPO. Figure 5.1b shows a possible construction of the iPT boundary, the iPT
unit cell, and the iPT cap vector by inserting projections PnP

†
n onto the most relevant

environment Liouville subspaces. Given those three parts, one can easily construct a
process tensor in MPO form for any number of time steps N by repeating the iPT unit
cell. We therefore call this 3-tuple an infinite process tensor in MPO form (iPT-MPO).

While the approach outlined in Fig. 5.1b may be helpful conceptually, it is unsuitable for
a practical computation due to the initially explicit representation of the full system-
environment Liouville propagators. Before we introduce an efficient tensor network
method to compute iPT-MPOs for Gaussian bosonic environments in section 5.2, we
first analyse several useful properties of the iPT-MPO.

Beside the defining property of an iPT-MPO (which is that it admits the direct con-
struction of a PT-MPO of any length) another useful property is that the iPT unit cell
can be used in various ways to study the long time behaviour of open quantum systems.
To explore this, let us assume that we have an iPT-MPO with a unit cell of length L
which we contract by inserting interventions A to yield a single 4-rank tensor as shown
in Fig. 5.2a. Grouping the output (α, i) and input legs (β, j) yields a square matrix T .
The eigenvalues and eigenvectors of this matrix encode various properties of the long
time dynamics. Let us consider the left eigenvectors

←
v n and right eigenvectors

→
v n of T

with respect to the eigenvalues λn. We can write the eigenvalues in the form

λn = eΓnLδt (5.1)

such that the coefficients Γn are in close analogy to the eigenvalues of the Liouvillian
in a GKSL master equation. The only difference is that here the eigenvectors are pro-
portional to system operators that are augmented with an extra index (i.e. a tensor
network leg) which encodes the system-environment correlations. The real and imagi-
nary parts of the coefficients Γn correspond to decay rates and oscillation frequencies.
In particular, for an open quantum system with a unique steady state, we expect that
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there is exactly one eigenvalue with Γk = 0 while Re [Γn] < 0 for all n 6= k. In this case

the corresponding right eigenvector
→
v k is proportional to the augmented steady state

density matrix, which not only encodes the reduced system steady state, but also its
correlations with the environment. It can thus also be used to compute multi-time sys-
tem correlations at the steady state, analogously to the quasi-steady state augmented
MPS in section 4.4.1. We can find the reduced system steady state ρS

ss by contracting
the eigenvector with the iPT cap vector (as sketched in Fig. 5.2d). Because eigenvectors
can contain an arbitrary multiplicative factor, we must normalise this by multiplying
the resulting system operator X̂k with an appropriately chosen complex number to yield
an Hermitian density matrix with unit trace. We will discuss the case of non-unique
steady states in the context of the independent boson model in section 5.2.3.

Finally we note that, similarly to the approach in chapter 3, it can be very beneficial to
perform a Trotterisation between the pure system part of the evolution and the envi-
ronment interaction part. In most physically relevant cases the environment interaction
part ĤIE = ĤI +ĤE is constant, which admits the construction of an iPT-MPO with an
arbitrarily small iPT unit cell. In such cases the same iPT-MPO can be used to study
dynamics and correlations for various (also time dependent) system Hamiltonians. For
constant or periodic system Hamiltonians one may also employ the eigenvalue analysis
explained above if the period coincides with a multiple of the iPT unit cell.

5.2. Gaussian bosonic environments

We now introduce a time translational invariant tensor network reformulation of QUAPI
for Gaussian bosonic environments. The QUAPI method takes advantage of the time-
translational invariant part of the Feynman-Vernon influence functional which, in fact,
constitutes a particular representation of an iPT unit cell as introduced above. The
bond dimension of this unit cell, however, grows exponentially with the memory time
of the environment, which limits the applicability of this method. In the following we
introduce a tensor network reformulation of QUAPI which compresses the vector space
that corresponds to that bond dimension, making a much wider range of applications
numerically feasible. Due to its similarities with the PT-TEMPO method we call it the
infinite process tensor TEMPO (iPT-TEMPO) method. While the structure of the PT-
TEMPO tensor network relies on the choice of a basis in which the coupling operator
is diagonal, this is not the case for iPT-TEMPO. For clarity we will thus introduce
iPT-TEMPO independently of any other method and only point out its similarities and
differences to QUAPI and PT-TEMPO during that process.

5.2.1. Analytical derivation

The most general form of the total Hamiltonian that we consider in this section is

Ĥ(t) = ĤS(t) + ŜF̂︸︷︷︸
ĤI

+
∑
k

ωkâ
†
kâk︸ ︷︷ ︸

ĤE

, (5.2)

where âk (â†k) are bosonic creation (annihilation) operators, Ŝ ∈ B
(
HS
)

is the system

coupling operator and F̂ ∈ B
(
HE
)

is an environment field operator which we assume to

be linear in âk and â†k. A common example for the field operator is the position coupling
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F̂ =
∑

k

(
gkâk + g∗kâ

†
k

)
characterised by the spectral density J(ω) :=

∑
k |gk|

2δ(ω−ωk).
Analogously to the considerations in section 2.3.1, we construct a process tensor for a
total Hamiltonian Ĥ ′ = Ĥ(t)− ĤS(t) that excludes the pure system part ĤS(t). If we
choose the time steps δt of the process tensor to be small enough, the evolution due to
the pure system part can be reinserted as interventions.

In the following derivation we work with super-operators in Liouville space and trans-
form the equations of motion into the interaction picture with respect to the pure
environment Hamiltonian ĤE =

∑
k ωkâ

†
kâk, such that the total Hamiltonian becomes

H̃(t) = Ŝ(t)F̂ (t). Formally we can express the process tensor with respect to H̃ for a
continuum of time steps as

T(0,t) =
〈
e
∫ t
0 L̃(t′)dt′

〉
E
, (5.3)

where L̃(t) · = −i
[
H̃(t), ·

]
and 〈X 〉E · = TrE

{
←
T X

(
· ⊗ ρE

0

)}
with the initial environ-

ment state ρE
0 and time ordering

←
T. Because the super-operators L̃(t′) act on the total

Liouville space (at time t′), the application of the partial trace over the environment
results in super-operators that act only on the system Liouville space (also at time t′).
Therefore the process tensor in Eq. (5.3) is a product of super-operators acting on the
system Liouville space for a continuum of times between t′ = 0 and t′ = t. Before we
discretise the time steps for the system Liouville space, we first rewrite the continuous
process tensor in terms of a cumulant expansion

T(0,t) = exp

( ∞∑
k=1

Φk

k!

)
(5.4)

where Φk is the k-th order cumulant of
∫ t

0 L̃(t′)dt′ with respect to 〈·〉E. The lowest order
cumulants are

Φ1 =

∫ t

0

〈
L̃(t′)

〉
E

dt′, (5.5)

Φ2 =

∫ t

0

∫ t

0

〈
L̃(t′)L̃(t′′)

〉
E

dt′′dt′ − (Φ1)2. (5.6)

To continue we assume that the initial environment state ρE
0 is a Gaussian state with a

zero mean (i.e. Φ1 = 0). In this case the only non-zero cumulant is Φ2 which we divide
into discretised time steps

Φ2 = 2

∫ t

0

∫ t′

0

〈
L̃(t′)L̃(t′′)

〉
E

dt′′ dt′ (5.7)

= 2

N−1∑
n=0

∫ (n+1)δt

nδt

{
n−1∑
m=0

∫ s(m,t′)

mδt

〈
L̃(t′)L̃(t′′)

〉
E

dt′′

}
dt′ (5.8)

with the upper integration bound of the inner integral s(m, t′) := min{(m+ 1)δt, t′}.

Inserting L̃(t) · =
[
Ŝ(t)F̂ (t), ·

]
into the time ordered integrand of Eq. (5.8) yields〈

L̃(t′)L̃(t′′)
〉

E
= S−(t′)

(
S−(t′′)Re

[
C(t′, t′′)

]
+ iS+(t′′)Im

[
C(t′, t′′)

] )
(5.9)
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with the environment correlation function

C(t′, t′′) = TrE

{
F̂ (t′)F̂ (t′′)ρE

0

}
, (5.10)

and the system commutator S− · =
[
Ŝ, ·

]
and anti-commutator S+ · =

{
Ŝ, ·

}
. The

correlation function only depends on the time difference τ = t′ − t′′, which means that

C(τ) = C(t′′ + τ, t′′). For the case that F̂ =
∑

k

(
gkâk + g∗kâ

†
k

)
and ρE

0 is the thermal

environment state at temperature T the correlation function is

C(τ) =

∫ ∞
0

dωJ(ω)
[
coth

( ω
2T

)
cos(ωτ)− i sin(ωτ)

]
. (5.11)

Up until this point the entire derivation is exact. We now make a first simplifying ap-
proximation by discretising the time steps of the system super-operators. For each of the
time intervals in Eq. (5.8) we approximate the system commutator and anti-commutator
at times t′ and t′′ to act only at the fixed intermediate times t̄n := (n+ 1/2)δt and
t̄m = (m+ 1/2)δt. We thus approximate all system operators that connect the time
step tn to time step tn+1 in the process tensor with operators acting at time t̄n. The
process tensor for the discrete time slots {tn}n∈0,...,N with tn = nδt can then be written
as

T0:N =
N−1∏
n=0

n−1∏
m=0

In,m (5.12)

with the influence functions

In,m = exp
(
S−(t̄n)

{
S−(t̄m)Re [ηn−m] + iS+(t̄m)Im [ηn−m]

})
(5.13)

where

ηk =

{∫ δt
0

∫ t′
0 C(t′ − t′′) dt′′dt′ k = 0,∫ (r+1)δt

rδt

∫ δt
0 C(t′ − t′′) dt′′dt′ k > 0.

(5.14)

We note that the application order of the system commutator and anti-commutator
super-operators does not matter, i.e. S−(t)S+(t) = S+(t)S−(t), and that thus the
execution order of the product in Eq. (5.12) may be chosen freely.

In most relevant physical scenarios the correlation function C(τ) decays towards zero
for large time differences τ and with this the influence functions Im+k,m decay towards
identity operations for large k. We thus now perform a second simplifying approximation
by only including influence functions Im+k,m for k time step differences up to some
maximum Kmax. With this we can write the process tensor for arbitrarily many time
steps N →∞ as

T0:∞ =
∞∏
m=0

Kmax∏
k=0

Im+k,m. (5.15)

Unlike the derivation of QUAPI and TEMPO as presented in their original publica-
tions [43, 44, 47], the above derivation of the process tensor did not require the choice
of a basis in which the system coupling operator Ŝ is diagonal. This formulation is
therefore straightforwardly extendable to interaction Hamiltonians with multiple non-
commuting terms, i.e. ĤI =

∑
p ŜpF̂p. Also, the tensor network that we construct in

the following does equally not depend on a particular choice of a basis. In contrast to
that, an adaptation of the original TEMPO tensor network to an arbitrary choice of the
basis would severely change and complicate its tensor network structure as explained in
detail in reference [52].
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Figure 5.3: Tensor networks for the iPT-TEMPO method. (a) Tensor network of the product of the
influence functions

∏Kmax
k=0 Ik,0. (b) Tensor network construction of an infinite process tensor

using multiple copies of
∏Kmax
k=0 Ik,0. (c) The resulting iPT-MPO. The two blue dash-dotted

lines in panel (b) indicate a periodic boundary condition.

5.2.2. Tensor network construction

We now express Eq. (5.15) in the form of a tensor network. For this we note that the
influence functions Im+k,m act on different time steps for different m but have otherwise
the exact same form for the same time step span k. As a first step we thus construct and
contract I0,0, I1,0,. . . , IKmax,0 while performing SVD truncations to compute an MPO

representation of
∏Kmax
k=0 Ik,0 as shown in Fig. 5.3a. We then construct the full process

tensor T0:∞ by applying this MPO at every time step m as shown in Fig. 5.3b. To
find an MPO representation of this infinite process tensor, we choose the iPT boundary
and iPT unit cell lengths to be Kmax + 1. The tensor network between the two blue
dash-dotted lines in Fig. 5.3b corresponds to the so called tensor propagator introduced
in the original QUAPI publication, however, without the need to choose the particular
basis in which the system coupling operator Ŝ is diagonal. Also, because QUAPI does
not employ any tensor network methods, the tensor propagator grows exponentially
with the number of necessary memory time steps Kmax.

To tackle this problem, we propose to use SVD truncations to compress the bond
dimension of the iPT unit cell. The periodic boundary condition implies that during the
contraction and SVD truncation the isometries that correspond to the SVD truncation
between time step n and n+1 must be the same as between n+Kmax+1 and n+Kmax+2.
Such a contraction then yields a process tensor acting at the times t̄n, which we can
redraw in the more familiar form in Fig. 5.3c with timeslots tn. The construction of a
cap tensor can be achieved in two ways. Either one creates an explicit construction of
a finite process tensor and traces out the later time steps, as presented in Fig. 5.3b, or
one uses the left unit cell eigenvector

←
v k corresponding to an eigenvalue with λk = 1.

The tensor network construction presented here allows a variety of different contraction
algorithms and choices of iPT unit cells resulting in the same iPT, but potentially in
different MPO gauges. These may lead to different compression efficiencies which may
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Figure 5.4: Dynamics of the independent boson model at zero temperature with an initial system state
|x+〉. The results using the iPT-MPO (coloured solid lines) match the exact analytical
result from Eq. (5.17) (the black dotted lines). The expectation value 〈σxy(t)〉 is defined as

〈σxy(t)〉 :=
(
〈σx(t)〉2 + 〈σy(t)〉2

)1/2
.

have a strong impact on the computational performance. A more detailed analysis of the
efficiency for different contraction algorithms is, however, yet to be carried out. For the
results presented in the next section we use a simple contraction algorithm for which
we contract the tensor network column by column while performing SVD truncation
sweeps with a relative truncation threshold after every contraction.

5.2.3. Spin-boson model

To demonstrate the iPT-TEMPO method we study the dynamics and steady states
with respect to a total Hamiltonian of the spin-boson model

Ĥ = ε
σ̂z

2
+ ∆

σ̂x

2︸ ︷︷ ︸
ĤS

+
σ̂z

2

∑
k

(
gkâk + g∗kâ

†
k

)
︸ ︷︷ ︸

ĤI

+
∑
k

ωkâ
†
kâk︸ ︷︷ ︸

ĤE

. (5.16)

We express all frequencies and times in terms of a characteristic frequency and its
inverse and set ~ = kB = ε = 1. Also, we assume that the environment is initially at
temperature T = 1/β = 0 and consider a super-ohmic spectral density of the form

J(ω) =
∑
k

|gk|2δ(ω − ωk) = 2α
ω3

ω2
c

e−
ω
ωc

with a coupling constant α = 0.16 and a cut-off frequency ωc = 4.0. For a vanishing
tunnelling strength ∆ = 0, the spin-boson model becomes the so called independent
boson model (IBM) and admits an exact analytical solution through a polaron transfor-
mation. Given a total initial state ρ(0) = ρS

0 ⊗ ρE
0 where ρE

0 is the environment ground
state, the reduced spin evolution for the IBM is

ρS(t) =

([
ρS(t)

]
↑↑

[
ρS(t)

]
↑↓[

ρS(t)
]
↓↑

[
ρS(t)

]
↓↓

)
=

([
ρS0
]
↑↑

[
ρS0
]
↑↓ e

−iεt e−φ(t)[
ρS0
]
↓↑ e

+iεt e−φ(t)
[
ρS0
]
↓↓

)
(5.17)

with

φ(t) =

∫ ∞
0

J(ω)

ω2
(1− cos(ωt)) dω = 2α

[
1 +

ω2
c t

2 − 1

(ω2
c t

2 + 1)2

]
. (5.18)
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Figure 5.5: Real (a) and imaginary part (b) of the eigenvalue coefficients Γn, and the steady state
expectation values (c) of the spin-boson model for different tunnelling strengths ∆. The
eigenvalue coefficients Γn are defined in Eq. (5.1) as λn = exp (ΓnLδt), where λn are the
eigenvalues of the contracted iPT unit cell, L is the iPT unit cell length and δt is the time
step length.

Following the approach described above, we construct an iPT-MPO for the environment
interaction part Ĥ ′ = ĤI +ĤE and insert the pure system propagators as interventions.
The results presented below have been obtained using a time step of δt = π/16, memory
steps Kmax = 32, relative SVD truncation threshold 10−7, and a unit cell of L = 2Kmax.
The iPT-TEMPO computation took 43 s on a single core of an Intel i7 (8th Gen)
processor, while inserting the system propagators and computing the eigenvectors of
the iPT unit cell took less than 0.1 s for each different system Hamiltonian.

As a first check we use the iPT-MPO to compute the spin dynamics for the IBM with an
initial state |x+〉 = 1√

2
(|↑〉+ |↓〉). Figure 5.4 shows good agreement between the results

obtained from the iPT-MPO calculation (coloured solid lines) and the exact results
(black dots) following Eq. (5.17). Apart from calculating the explicit time evolution,
we can also use the iPT-MPO to study the steady state by analysing the eigenvalues of
the iPT unit cell. Figures 5.5a and 5.5b shows the Γi coefficients of the iPT unit cell
contracted with system propagators for different tunnelling strengths ∆. Furthermore,
Fig. 5.5c shows the σ̂x, σ̂y, and σ̂z expectation values of the steady state corresponding
to the largest eigenvalue λ1 = 1 for each tunnelling strength ∆.

We notice several properties in Fig. 5.5 that are consistent with our expectations. For
the IBM limit (∆ = 0) we notice that all four non-zero eigenvalues have unit norm,
i.e. Re [Γ1] = Re [Γ2] = Re [Γ3] = Re [Γ4] = 0. Also, Im [Γ1] = Im [Γ4] = 0 and
Im [Γ2] = −Im [Γ3] = ε = 1.0. The four system operators corresponding to these
eigenvalues are proportional to X̂1 = |↑〉〈↑|, X̂2 = |↓〉〈↑|, X̂3 = |↑〉〈↓|, and X̂4 = |↓〉〈↓|.
Because the iPT unit cell contains no information on the initial state, the eigenvectors
with respect to eigenvalues of unit norm must encode the entire subspace of possible
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steady states. Therefore, for the IBM, any spin state rotating around the z axis with
frequency ε is a possible steady state.

For the spin-boson model with non-zero tunnelling ∆ > 0 we notice that there is
only one eigenvalue with unit norm and thus the steady state is unique. We find
that Re [Γ4] < Re [Γ3] = Re [Γ2] < Re [Γ1] = 0, as well as Im [Γ1] = Im [Γ4] = 0 and
Im [Γ2] = −Im [Γ3] > ε. The system operator corresponding to the first eigenvalue is
the steady state plotted in Fig. 5.5c, while the three other operators span the rest of the
system’s Liouville space and have zero trace as expected, i.e. Tr X̂n = 0 for n ∈ {2, 3, 4}.
Finally, we notice that the oscillatory part of the second and third eigenvalue increases
with ∆, but stays below the level splitting

√
ε2 + ∆2 of the closed system. This is con-

sistent with the expectation that the damped system oscillations have a lower effective
frequency than the closed system oscillations.

5.3. Outlook

We have shown that infinite process tensors are a useful tool to study steady state
properties of general open quantum systems, and that the iPT-TEMPO method can be
used to construct such an infinite process tensor in an efficient MPO representation. The
iPT-MPO approach can be used to study single and multi-time correlations of steady
states even in non-equilibrium scenarios. This could be particularly useful for the study
of out–of–equilibrium strong coupling quantum thermodynamics scenarios, such as the
three level quantum chiller [160] with strongly coupled thermal baths.

We note that preliminary results indicate that the numerical efficiency of the iPT-
TEMPO method heavily depends on the form of the long time tail of the correlation
function C(τ). It thus seems desirable to gain a better understanding of the limita-
tions of this method and to then optimise the contraction algorithm and MPO gauge
accordingly. Finally, we note that an adaptation of the automatic compression of en-
vironments (ACE) method [55] to construct iPT-MPOs is also conceivable and could
further significantly broaden the class of numerically accessible physical scenarios.



Chapter 6

Conclusion

In this thesis we have seen that the process tensor is a versatile approach to general
open quantum systems, and that its tensor network representation as a PT-MPO makes
a wide range of physical scenarios numerically accessible. The methods based on the
PT-MPO not only allow the simulation of the reduced system dynamics, but also the
computation of multi-time correlations, the optimisation of driving protocols, and the
study of steady state properties. We have seen that the PT-MPO methods introduced
in this thesis are applicable to single and many-body systems in equilibrium and non-
equilibrium scenarios. Furthermore, the process tensor formalism is not restricted to a
particular type of environment and several methods for the computation of PT-MPOs
are available for a wide range of different environments, such as boson, fermion, and
spin baths.

These numerical methods make a wide range of relevant applications numerically ac-
cessible. The method introduced in chapter 3 may, for example, be useful for various
optimal control problems, in particular in solid state quantum devices where the cou-
pling to vibrational modes is typically strong. The PT-TEBD approach presented in
chapter 4 enables the exploration of how environments affect many-body phenomena,
such as quantum transport and many-body localisation. Studies on these topics have
so far been carried out in a Markovian approximation. Such an approximation models
the environment as a source of white noise, which leads to the unphysical artefact that
the many-body system is forced to lose coherence at all energy scales. Such unrealistic
models are most likely to lead to equally unrealistic predictions that do not capture the
true nature of these phenomena. Employing the PT-TEBD method allows a more real-
istic incorporation of thermal environments in such scenarios. Also, the infinite process
tensor approach introduced in chapter 5 enables the study of periodically driven sys-
tems and quantum thermal machines with potentially strongly coupled and structured
environments. Despite their relevance in quantum technological applications, such as
the engineering of heat flow in nanostructures, these systems have so far been studied
predominately assuming weakly coupled unstructured environments. The iPT-MPO
method allows the simulation of these systems without any such assumption, which
makes the results more applicable to real quantum technologies and also has the poten-
tial to lead to fundamental insights that are obscured by the canonical approximations.

Given the large number of interesting applications it seems desirable to provide the
scientific community with a reliable access to efficient implementations of the numer-
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ical methods introduced in this thesis. For that purpose the TEMPO collaboration1

created an open source python package, called OQuPy (Open Quantum systems in
Python) [104]. To date, this package provides easy-to-use numerical tools of nine re-
cent publications [47, 49, 54, 67, 68, 161–164] to efficiently compute the dynamics of
non-Markovian open quantum systems.

Besides the open source project and the possible applications, the concepts and meth-
ods introduced in this thesis also suggest further methodological developments. An
alternative to the PT-MPO augmented TEBD approach presented in chapter 4 is to
use PT-MPOs in combination with other many-body tensor network methods, such as
projected entangled pair state methods [165] or tree tensor networks [166]. This would
allow the study of more complex open many-body systems, which may help to bet-
ter understand energy transport in complex chemical structures, such as organic and
biological systems. Similarly, alternatives to the MPO representation of the process
tensor might be more efficient for particular environments. For an environment with
polynomially decaying correlations, a multi-scale entanglement renormalization ansatz
(MERA) [167] could potentially reflect a resulting scale invariance of the process tensor.
Finally, we note that measurement-induced phase transitions seen in quantum trajec-
tory simulations [168, 169] may be conceptually related to the non-trivial multi-time
correlations captured by the process tensor. Establishing such a connection may assist
deeper insights into these phenomena.

1As of August 2022, main contributors to OQuPy are (alphabetically): Piper Fowler-Wright, Gerald
E. Fux, Dominic Gribben, and Dainius Kilda. Lead development: Gerald E. Fux.
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