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Abstract  1 

Developing spinal circuits generate patterned motor outputs while many neurons with 2 

high membrane resistances are still maturing. In the spinal cord of hatchling frog 3 

tadpoles of unknown sex, we found that the firing reliability in swimming of 4 

inhibitory interneurons with commissural and ipsilateral ascending axons was 5 

negatively correlated with their cellular membrane resistance. Further analyses 6 

showed that neurons with higher resistances had outward rectifying properties, low 7 

firing thresholds and little delay in firing evoked by current injections. Input synaptic 8 

currents these neurons received during swimming, either compoundˎ unitary current 9 

amplitudes or unitary synaptic current numbers, were scaled with their membrane 10 

resistances, but their own synaptic outputs were correlated with membrane resistances 11 

of their postsynaptic partners. Analyses of neuronal dendritic and axonal lengths and 12 

their activities in swimming and cellular input resistances did not reveal a clear 13 

correlation pattern. Incorporating these electrical and synaptic properties in a 14 

computer swimming model produced robust swimming rhythms whereas randomising 15 

input synaptic strengths led to the breakdown of swimming rhythms, coupled with 16 

less synchronised spiking in the inhibitory interneurons. We conclude that the 17 

recruitment of these developing interneurons in swimming can be predicted by 18 

cellular input resistances, but the order is opposite to the motor-strength based 19 

recruitment scheme depicted by Henneman’s size principle. This form of 20 

recruitment/integration order in development before the emergence of refined motor 21 

control is progressive potentially with neuronal acquisition of mature electrical and 22 

synaptic properties, among which the scaling of input synaptic strengths with cellular 23 

input resistance plays a critical role. 24 

 25 
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Significance Statement  1 

 2 

The mechanisms on how interneurons are recruited to participate circuit function in 3 

developing neuronal systems are rarely investigated. In two days old frog tadpole 4 

spinal cord, we found the recruitment of inhibitory interneurons in swimming is 5 

inversely correlated with cellular input resistances, opposite to the motor-strength 6 

based recruitment order depicted by Henneman’s size principle. Further analyses 7 

showed the amplitude of synaptic inputs neurons received during swimming was 8 

inversely correlated with cellular input resistances. Randomising/reversing the 9 

relation between input synaptic strengths and membrane resistances in modelling 10 

broke down swimming rhythms. Therefore, the recruitment or integration of these 11 

interneurons is conditional upon the acquisition of several electrical and synaptic 12 

properties including the scaling of input synaptic strengths with cellular input 13 

resistances.  14 
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Introduction 1 

 2 

Most animals need to execute basic motor functions early in development and the 3 

strength and complexity of movement then increase with age (de Vries et al., 1982; 4 

O_Donovan, 1999; Drapeau et al., 2002; Gallahue et al., 2012; Wan et al., 2019). In 5 

this process, the developing neuronal circuit needs to maintain existing functions 6 

while new populations of neurons are added. An orderly connection of developing 7 

neurons with their mature partners and their progressive recruitment in circuit 8 

activities is critical. Two basic conditions need to be met: first, the outputs from 9 

developing neurons onto the existing circuit should not interrupt circuit functions; 10 

second, the inputs from the existing circuit onto the developing neurons should not be 11 

excitotoxic and interrupt their further differentiation. Since the circuit needs to sustain 12 

network outputs, we expect appropriate properties must be expressed in the 13 

developing neurons to allow this smooth integration. 14 

 15 

These properties may belong to intrinsic and firing properties of developing neurons. 16 

For example, membrane input resistance (Rinp, and time constant) decreases when 17 

neurons mature in development (e.g. in sensory motor cortex (McCormick and Prince, 18 

1987), prefrontal cortex (Zhang, 2004), amygdala (Ehrlich et al., 2012), and thalamus 19 

(Ramoa and McCormick, 1994)), and action potentials become narrower (Spitzer and 20 

Baccaglini, 1976; Zhang, 2004; Ehrlich et al., 2012) or neurons acquire persistent and 21 

hyperpolarisation-activated inward currents (Sharples and Miles, 2021). Developing 22 

neurons have different synaptic properties from their mature counterparts as well, 23 

including the composition of postsynaptic glutamatergic receptors which conveys 24 

developmental synaptic plasticity (Isaac, 2003; Herring and Nicoll, 2016) and vesicle 25 
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release machinery (Mozhayeva et al., 2002; Andreae et al., 2012). How do developing 1 

neurons integrate into a functioning circuit? Henneman’s size principle states that as 2 

movements become stronger, small motoneurons with high input resistances are 3 

recruited before larger ones with lower input resistances (Henneman, 1957; 4 

Henneman et al., 1965b; McLean et al., 2007; Gabriel et al., 2011). Further 5 

determinants of this type of motor-strength based recruitment include soma size, 6 

intrinsic properties and synaptic inputs (McLean et al., 2007; Gabriel et al., 2011). 7 

This recruitment and decruitment of neurons take place when different motor strength 8 

is required or with the expansion of behaviour repertoire (McLean et al., 2007; Fetcho 9 

and McLean, 2010; Tripodi and Arber, 2012; Pujala and Koyama, 2019).  10 

 11 

Will developmental recruitment follow rules similar to the motor-strength based size 12 

principle? The properties of developing neurons have been compared with those of 13 

their adult counterparts mostly in vitro (e.g. (Zhang, 2004; Ehrlich et al., 2012)). Few 14 

studies have simultaneously monitored network functions and identified the relation 15 

between neuronal physiological, anatomical properties and the developmental 16 

recruitment. In two days old Xenopus laevis tadpoles, we studied the developmental 17 

recruitment by analysing neuronal intrinsic and firing properties, synaptic and 18 

anatomical features of inhibitory interneurons in the intact spinal circuit, while 19 

simultaneously monitoring network outputs resembling natural swimming behaviour 20 

(Roberts et al., 2010). We correlated these measurements with cellular input 21 

resistances, which have been widely reported to closely reflect how advanced neurons 22 

are in development (McCormick and Prince, 1987; Ramoa and McCormick, 1994; 23 

Zhang, 2004; Ehrlich et al., 2012). We then employed computer modelling to reveal 24 
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that input synaptic currents during swimming played a key role in the orderly 1 

integration of developing neurons in the tadpole swimming circuit. 2 

 3 

Materials and methods  4 

 5 

Electrophysiology and anatomy 6 

Pairs of adult male and female Xenopus laevis were injected with Human chorionic 7 

gonadotropin to induce mating following procedures approved by local Animal 8 

Welfare Ethics committee and UK Home Office regulations. Embryos were then 9 

collected and incubated at varying temperatures to stagger their development speeds. 10 

Tadpoles at stage 37/38, the sex of which couldn’t be identified, were cut open to 11 

allow immobilisation for 20 - 30 minutes using α-bungarotoxin (12.5 µM, Tocris 12 

Cookson, Bristol, UK) after brief anaesthetisation with 0.1% 3-aminobenzoic acid 13 

ester (MS222, Sigma, UK). The saline included (in mM): NaCl 115, KCl 3, CaCl2 2, 14 

NaHCO3 2.4, MgCl2 1, HEPES 10, with pH adjusted to 7.4 with NaOH. After 15 

immobilisation, the tadpole was fixed onto a rubber stage with pins. Dissections were 16 

carried out to expose the nervous system and ependymal cells lining the central canal 17 

of caudal hindbrain and rostral spinal cord were removed to expose neuronal cell 18 

bodies to allow whole-cell recordings. Whole-cell recordings were made in either 19 

current clamp or voltage-clamp mode using either an axon-2B or multiclamp 700B 20 

amplifier. Patch pipettes were filled with 0.1% neurobiotin (Vector Labs, Burlingame, 21 

CA) in the intracellular solution containing (in mM): K-gluconate 100, MgCl2 2, 22 

EGTA 10, HEPES 10, Na2ATP 3, NaGTP 0.5 adjusted to pH 7.3 with KOH. Fictive 23 

swimming was induced by stimulating the tadpole trunk skin using a single 0.5 ms 24 

current pulse. Fictive struggling was induced by stimulating the rostral trunk skin 25 
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repetitively at a frequency between 30-40 Hz. Motor nerve (m.n.) recordings were 1 

made by placing suction electrodes on the swimming muscle clefts. Loose patch 2 

recordings were made using whole-cell recording electrodes containing intracellular 3 

pipette solution after applying gentle suction to the somata membrane.  4 

 5 

Final identification of neurons was based on their physiology during swimming and 6 

struggling and anatomy revealed by neurobiotin staining after recordings, the protocol 7 

of which was described previously (Li et al., 2001). The neurobiotin filling of these 8 

neurons were examined using a 100x oil immersion lens. Dendrites and somata were 9 

hand-drawn with the aid of a drawing tube using the 100x oil immersion lens and the 10 

axons were traced with 10x lens. The longitudinal positions of neuronal somata were 11 

measured relative to the mid/hindbrain border and axon trajectories were measured 12 

relative to somata. Where multiple ascending or descending branches existed only the 13 

longest one was measured and represented. Most commissural interneurons (cINs) 14 

and ascending interneurons (aINs) are unipolar, i.e. the axons arise from the primary 15 

dendrites (Li et al., 2001). The starting point of an axon was determined by the 16 

narrowing of dendrites to an even diameter.   17 

 18 

cIN/aIN responses to current injections at rest and during fictive swimming and 19 

struggling was recorded in current clamp mode. Spike threshold was defined as the 20 

membrane potential of an action potential when its derivative of derivative peaked, 21 

i.e. the depolarisation accelerated at its highest speed (Fig.4A). Spike duration was 22 

measured as the time difference between the two points when the membrane potential 23 

crossed 0 mV. AHP size was the difference between the spike threshold and the AHP 24 

trough. Spike height is the difference from the AHP trough to the spike peak. The 25 
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compound EPSCs and IPSCs they received during swimming were recorded in 1 

voltage-clamp mode by clamping the membrane potential at around -60 mV and 0 2 

mV, respectively. Only voltage-clamp recordings with a stable series resistance less 3 

than 30 MΩ (compensation: 70-85%) were used for quantifying synaptic currents. 4 

 5 

Modelling synaptic conductance in paired recordings 6 

In paired recording, leak currents were not subtracted when the postsynaptic cell was 7 

recorded in voltage-clamp mode. Synaptic conductance was calculated as the 8 

difference between the resting membrane conductance before cIN/aIN spiking and 9 

that at the peak/trough of IPSCs. When the postsynaptic cell was recorded in current 10 

clamp mode, synaptic conductance is estimated using multiple compartmental 11 

modelling. IPSP reversal was estimated from the regression line on the I-V plot. The 12 

anatomy of the postsynaptic neuron was drawn using a x100 oil lens. The potential 13 

synaptic contact locations were also examined at the same magnification. Then the 14 

long and short axis of somata, dendrite length and diameter and distance from 15 

synaptic contacts to soma were measured and used as model parameters. Any process 16 

with a diameter of < 2 microns was omitted to simplify modelling. Postsynaptic 17 

neurons typically had 1-3 main dendrites with 1-3 synaptic contacts with en passant 18 

presynaptic axon. In the case of more than one contact, the dendrites were merged as 19 

one assuming the same dendrite diameter. Soma was modelled as a single cylindrical 20 

compartment and dendrite as 10 compartments in series connection. Specific 21 

conductance for the soma and dendrites was given the same value and manually 22 

adjusted to match the cellular input resistance (Rinp ) obtained in experiments. Once 23 

the Rinp was matched, resting membrane potential (RMP), reversal and measured 24 

average IPSP size to a certain current injection level were fed to the model for 25 
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synaptic conductance optimisation. The optimisation process matched the IPSP in the 1 

model with the IPSP in experiments and returned the corresponding synaptic 2 

conductance value by minimising the squared difference between model and 3 

experimentally measured IPSP voltage peaks using the Newton-Raphson method.  4 

 5 

Modelling swimming neuronal network 6 

The network model contained 1382 single-compartment Hodgkin-Huxley neurons 7 

connected by ~ 90,000 synapses, modified from previous, biologically realistic  8 

models (Sautois et al., 2007; Johnston et al., 2010; Borisyuk et al., 2014; Roberts et 9 

al., 2014; Ferrario et al., 2018a; Ferrario et al., 2021) and resembled a 1.5mm-long 10 

section of the tadpole spinal cord. We simulated the axon growth during development 11 

and prescribed synaptic connections at the intersections of axons with  dendrites 12 

(Borisyuk et al., 2014; Roberts et al., 2014). The general connectivity between neural 13 

populations was in line with the schematics in Fig.1. The sensory Rohon-Beard 14 

neurons (RB), dorsolateral commissural interneurons (dlc) and dorsolateral ascending 15 

interneurons (dla) had the same composition of membrane ion channels as the 16 

motoneurons (MN) in Dale (1995). aIN and cIN ion channel composition followed 17 

Sautois et al. (2007), so they could show delayed firing to current injections (as in 18 

Fig.5). Since aINs tend to have more dendrites - and thus a larger surface area - than 19 

cINs (Li et al., 2001), we modified the capacitance of aIN model from 4pF to 9pF. 20 

The descending interneuron (dIN) model was based on that used in Hull et al, 2015 21 

(Hull et al., 2015) but was simplified to a single soma/dendrite compartment and it 22 

exhibited typical dIN rebound firing and oscillatory activity to NMDA perfusion 23 

(Roberts et al., 2014; Ferrario et al., 2021). The aIN/cIN Rinp was randomly assigned 24 

using a generalisation procedure (Borisyuk et al., 2014) to match the range and 25 
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distribution of experimental data in Fig. 2A1, B1 without the outward rectification 1 

properties. In this dataset we excluded values of Rinp<300𝑀Ω (4 aINs/9 cINs), to 2 

avoid the use of excessively high excitatory synaptic inputs (which diverges 3 

exponentially to ∞ as Rinp→0) to drive spiking during swimming. Excitatory synapses 4 

in the model had glutamatergic AMPARs and NMDARs with Mg2+ voltage-5 

dependency and inhibitory synapses are glycinergic. There was electrical coupling 6 

among dINs and MNs (Perrins and Roberts, 1995; Li et al., 2009). Different from 7 

previous tadpole models, excitatory synapses from dINs to both aINs and cINs 8 

included both AMPAR and NMDAR components measured experimentally (Fig. 6). 9 

aIN synaptic strength and decay time were set to 0.135 nS and 20 ms, respectively to 10 

avoid mid-cycle rebound firing in dINs and network synchrony rhythms (Li et al., 11 

2014). cIN inhibition strength was increased from 0.4nS to 0.7nS to compensate for 12 

the reduction in reliable-firing cINs from our previous models (Roberts et al., 2014).  13 

 14 

We incorporated the negative correlation between cINs/aINs Rinp and strengths of 15 

their input synaptic currents during swimming (Fig. 6B1, B2 and Fig. 7B) in the 16 

control model and then matched the cIN/aIN firing reliability in modelling with the 17 

experimental data in Fig.2A1, B1 by applying the following steps: (a) we estimated the 18 

synaptic conductance using Ohm’s law: 𝑔 = 𝐼 /(𝑉 − 𝑉 ), where 𝐼  is the 19 

measured compound EPSC (tonic, on-cycle) or IPSC (early-cycle, mid-cycle) in Fig. 20 

6B1, B2 and Fig. 7B, 𝑉  is the holding membrane potential and 𝑉  the reversal 21 

potential of each synapse (~ 0mV for EPSCs and ~-60 mV for IPSCs); (b) we fitted 22 

the relation between estimated compound conductance data and Rinp using 23 

exponentially decaying functions: 𝑓 𝑅 = 𝑎𝑒 . Python library SciPy 24 

(Virtanen et al., 2020) was used to optimise parameters a and b for each class of 25 
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conductance (blue curves in Fig.12); (c) We estimated unitary synaptic conductance 1 

by dividing each compound conductance with the number of active presynaptic 2 

neurons in the model (Borisyuk et al., 2014; Roberts et al., 2014), assuming them 3 

firing reliably and synchronously on each swimming cycle; (d) We multiplied the 4 

unitary EPSC strengths of cINs/aINs with high Rinp- by 3 to account for the 5 

rectification properties (Fig.3A, B). As a result, 39% cINs fired spikes (c.f. 39% in 6 

experiments) on more than 75% cycles and 27% aINs fired spikes (c.f. 24% in 7 

experiments) on more than 60% cycles in the swimming rhythms generated by this 8 

control model.  9 

 10 

We hypothesised that the experimentally derived negative association between 11 

cINs/aINs Rinp and the input synaptic current strengths (Fig. 6B1, B2 and Fig. 7B) was 12 

critical for the swimming rhythm generation. To test this hypothesis, we constructed 13 

“randomised”, “reversed” and “mature inputs” models by implementing artificial 14 

relations between aINs/cINs Rinp and the input synaptic current strengths.  In 15 

“randomised” models, we assigned each cIN/aIN a random value of compound 16 

synaptic conductance from the data distributions in Fig.6 and 7 using a generalisation 17 

procedure (Borisyuk et al., 2014). In the “reversed” model, we replaced the 18 

exponentially decaying dependence in the control model (blue curves in Fig. 12) by 19 

the respective reversed exponentials: 𝑓 𝑅 = 𝑎𝑒 ( ), where 20 

𝑅 (𝑅 ) is the minimum (maximum) of the 𝑅  values (red curves in Fig. 12). In 21 

addition, the unitary synaptic strengths of post-synaptic neurons with 𝑅  greater 22 

than 2.1𝐺Ω were set to the peak value of the reversed exponentials, to avoid 23 

excessively high values of synaptic strengths. In the “mature inputs” model, all aIN 24 

and cINs were given the strong synaptic inputs as the ones with low Rinp received in 25 
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experiments. In all three models, the distribution of cIN/aIN Rinp was kept the same as 1 

in the control model. Unitary synaptic conductance was also calculated and scaled up 2 

in similar way to what was used in the control model.  3 

 4 

In the “randomised” models, we classified simulation outputs in three groups. Typical 5 

swimming rhythms were characterised by periodic activity alternating between the 6 

two sides at a frequency between 15-19Hz, similar to the outputs from the control 7 

model but in some cases with increased mid-cycle dIN/cIN spiking. The second group 8 

showed one-sided rhythms in which activity persisted only on one side of the 9 

network. The frequency of the one-sided activity roughly doubled that for the normal 10 

swimming frequency of 15-19Hz, a rhythm likely sustained by dIN post-inhibitory 11 

rebound firing following the ipsilateral aIN inhibition. The third type of output only 12 

showed brief activity in the network which failed in a couple of rhythmic cycles. The 13 

termination of activity was always preceded with tonic firing of many cINs/aINs with 14 

high Rinp in the network. 15 

 16 

In order to understand how swimming rhythms failed, we analysed the cIN/aIN 17 

spiking phase in the swimming cycle and strengths of their synaptic outputs onto dINs 18 

in control, “randomised” and “reversed” models. We used the reliable dIN spiking to 19 

determine swimming cycles and only simulation periods with activities on both sides 20 

were used for analyses. The phase of each cIN/aIN spike was calculated as its delay 21 

from the preceding dIN spike divided by the cycle period determined by the 22 

immediate, corresponding two dIN spikes (𝛷 ∈ [0,1]). The strength of each aIN/cIN 23 

spike was the number of its connections to dINs normalised to the maximal 24 

connections any aIN/cIN could make to all dINs in the network (𝐴 ∈ [0,1]), 25 
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representing the influence of aIN/cIN spiking on dIN firing and swimming rhythm 1 

generation. The phases and strengths of all aIN/cIN spikes in individual simulations 2 

were shown in circular plots.  3 

 4 

Experimental design and statistical analyses 5 

Data were analysed using Dataview (courtesy of Dr W.J. Heitler in the University of 6 

St Andrews) and IBM SPSS. Two-tailed Pearson correlation was carried out on 7 

datasets with normal distributions to examine if a linear relationship existed between 8 

variables. Otherwise, Two-tailed Spearman's rank correlation was used to identify 9 

monotonic, curvilinear relationships. Independent Samples Mann-Whitney U tests or 10 

Kruskal-Wallis tests were carried out in cases where data were not normally 11 

distributed to compare mean ranks or medians. Levene’s Test was used to compare 12 

variances of cIN/aIN spiking phases in different modelling outputs. 13 

 14 

Results 15 

 16 

Different neuronal types and synaptic connections in the Xenopus tadpole swimming 17 

circuit have been systematically delineated based on physiological, anatomical and 18 

neurochemical and pharmacological criteria (Roberts et al., 2010). We focus on two 19 

types of inhibitory interneurons active during fictive swimming: cINs and aINs 20 

(Fig.1). Immunostaining for glycine (Dale et al., 1986; Roberts et al., 1988) and 21 

GABA (Roberts et al., 1987) has revealed that the cIN and aIN populations keep 22 

increasing from when tadpoles start swimming at around stage 32 until they hatch at 23 

stage 37/38 (Nieuwkoop and Faber, 1956). As the spinal circuit expands, the basic 24 

swimming pattern (i.e. frequency, left-right coordination, burst duration and rostral-25 
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caudal delay) remains unchanged until stage 42 (Sillar et al., 1991). We therefore 1 

recorded neurons mainly at stage 37/38, when both mature and developing 2 

interneurons coexist and ask how they were recruited during tadpole swimming.  3 

 4 

Recruitment of cINs and aINs during swimming  5 

 6 

When the skin of tadpoles at stage 37/38 is touched briefly, they swim away at a 7 

frequency of 10-25 Hz (Roberts et al., 2010). During swimming, tadpole central 8 

pattern generator neurons fire in a one-spike-per-cycle manner to sustain swimming 9 

rhythms after the transient sensory stimulus. In order to quantify cIN/aIN recruitment 10 

during swimming, we measured their firing reliability, i.e. percentage of cycles with 11 

spikes during the initial 5 seconds of swimming. In stage 37/38 tadpoles, we found 12 

both cIN and aIN firing reliabilities during swimming were negatively correlated with 13 

their cellular input resistances (Rinp), measured with negative step current injections (p 14 

< 0.001, Both Spearman’s rank correlation, Fig.2). The distribution of cIN firing 15 

reliability was skewed either to reliable firing or no firing. In contrast, the distribution 16 

of aIN firing is more skewed towards no firing with many neurons firing little or 17 

unreliably. The data show an orderly recruitment of cINs and aINs in swimming by 18 

their Rinp. 19 

 20 

 Rinp have been found to decrease with development (McCormick and Prince, 1987; 21 

Ramoa and McCormick, 1994; Zhang, 2004; Ehrlich et al., 2012). To confirm if there 22 

was a similar Rinp decrease in cIN/aINs in development, we recorded 27 cINs and 15 23 

aINs in younger embryos around stage 32 when stable swimming just started to 24 

emerge. There was a negative correlation between cIN Rinp and their firing reliability 25 
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(p < 0.01, Spearman’s rank correlation) but aIN Rinp and firing lacked correlation 1 

(Fig.2). In comparison with neurons in stage 37/38 tadpoles, the cIN Rinp, cIN and aIN 2 

firing reliabilities were similar but stage 32 aINs had higher Rinp (p < 0.05, 3 

Independent Samples Mann-Whitney U test). We further divided the neurons into two 4 

subgroups: one group with ≥ 50% firing reliability during swimming and the other 5 

with < 50% firing reliability. For 13 cINs and 6 aINs with ≥ 50% firing reliability at 6 

stage 32, their Rinp was higher than their stage 37/38 counterparts (p < 0.05, 7 

Independent Samples Mann-Whitney U test, Fig.2A1, B1).   This confirmed that Rinp 8 

could be used as an indicator for developmental maturation as in other preparations, at 9 

least for neurons recruited to fire reliably during swimming. 10 

 11 

Neuronal intrinsic and spiking properties  12 

Could some intrinsic properties that cINs and aINs possess determine their 13 

recruitment during swimming in stage 37/38 tadpoles? We first identified that cINs 14 

and aINs showed outward rectification to DC injections around their resting 15 

membrane potentials (RMP), especially when the Rinp was high. Neurons with 16 

outward rectification requires larger inward currents to get depolarised/excited than 17 

outward currents to become inhibited by the same amplitude. We used the ratio of the 18 

resistance measured with negative DC (Rinp-) to that measured with positive DC 19 

(Rinp+) as an index for rectification. Correlation was found between this ratio and Rinp- 20 

in cINs and aINs (both Spearman’s rank correlation, Fig.3A-C). For comparison, 21 

similar correlation is absent in the other two types of neurons active in tadpole 22 

swimming, i.e. descending interneurons (dINs) and motoneurons (MNs, both 23 

Spearman’s rank correlation, Fig.3D, E). 24 

 25 
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We next looked at the relation between Rinp- and RMPs and spiking parameters 1 

(Fig.4A) of cINs and aINs. In 41 aINs and 64 cINs, spike overshoots were lower in 2 

cINs with higher Rinp- (p < 0.05). Both firing thresholds and spike AHP troughs were 3 

negatively correlated with Rinp- (AHP: p < 0.01, Fig.4E; thresholds: p < 0.001, 4 

Fig.4F), whereas the rMP and spike width were not (Fir.g4B, D). There was also a 5 

correlation between neuronal Rheobases and Rinp- (p < 0.001, Fig.4G), suggesting 6 

cINs/aINs with low Rinp- require large synaptic currents to drive their firing during 7 

network activity like swimming. 8 

 9 

Firing pattern to current injections 10 

We previously showed that the presence of transient potassium currents (IA) in many 11 

neurons can cause delay in the onset of spiking, leave a gap in repetitive firing and 12 

affect neuronal firing thresholds (Li, 2015). The negative correlation between Rinp- 13 

and thresholds suggested that aINs/cINs with lower Rinp- could possess IA and show 14 

delayed firing to current injections. The aIN and cIN firing were examined with 15 

threshold and suprathreshold +DC currents and the responses were grouped in three 16 

categories: delayed firing with a clear gap between the first and subsequent spikes 17 

(clear delay), delayed firing from the DC onset (some delay) and no clear delay. The 18 

average Rinp- of neurons with clear delays was the lowest and that for neurons with no 19 

delay was the highest (n = 63 cINs, p < 0.001; n = 50 aINs, p <0.01; Independent 20 

Samples Kruskal-Wallis tests, Fig.5).  21 

 22 

Input synaptic currents in cINs and aINs during swimming 23 

 24 
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The spiking of neurons is determined by their intrinsic properties and also by the 1 

synaptic currents they receive. The “size principle” suggests that neurons with higher 2 

Rinp should be recruited to fire more reliably in response to similar synaptic currents 3 

than those with lower Rinp. Since no pacemaker properties have been identified in 4 

aINs or cINs (Li et al., 2010), the inverted recruitment order by Rinp suggests they 5 

may receive synaptic inputs with strengths scaled with Rinp. We therefore analysed the 6 

strengths of synaptic currents received by cINs and aINs during swimming. 7 

 8 

During tadpole swimming, rhythmic firing of CPG neurons including cINs/aINs is 9 

driven by the excitatory dINs on the same side. dIN excitation contains a phasic 10 

AMPAR- and nAChR-mediated component, which directly drives most CPG firing, 11 

and the long-lasting NMDAR-mediated tonic component, which is critical for 12 

maintaining swimming rhythms (Li et al., 2004; Li et al., 2006). To measure dIN 13 

mediated EPSCs we clamped cIN and aIN membrane potentials around -60 mV to 14 

reveal the inward tonic NMDA receptor mediated currents and phasic on-cycle 15 

EPSCs. There was positive correlation between on-cycle EPSC amplitude, tonic 16 

inward currents and the Rinp- of a combined dataset of 13 cINs and 14 aINs (Fig.6A-17 

B). Regarding the reliability of inward currents, only one cIN and one aIN did not 18 

receive measurable tonic inward currents. Similarly, most neurons received 100% 19 

reliable on-cycle EPSCs during swimming except for one cIN (14% with Rinp- of 1212 20 

MΩ) and one aIN (18.5% with Rinp- of 1571 MΩ). The ratios between on-cycle EPSC 21 

and tonic inward current were not correlated with cIN/aIN Rinp- (p = 0.68, n = 12 cINs, 22 

13 aINs, Two-tailed Spearman's rank correlation), suggesting similar excitatory 23 

receptor current composition across all cINs/aINs with different Rinp-.  24 

 25 
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In addition to excitation, spinal inhibitory neurons also receive mid-cycle inhibition 1 

from cINs on the opposite side and early-cycle inhibition from aINs on the same side 2 

(Roberts et al., 2010; Li and Moult, 2012). To measure the two types of IPSCs in the 3 

combined dataset of 13 cINs and 14 aINs, we held membrane potentials around 0 mV 4 

to minimise EPSCs. There was negative correlation between mid-cycle and early-5 

cycle IPSC amplitudes and the Rinp- of these cINs and aINs (Fig.7A-B). Mid-cycle 6 

IPSC reliability during swimming (percentage of cycles with mid-cycle IPSCs), was 7 

also negatively correlated with cIN and aIN Rinp-, suggesting potential differences in 8 

their synaptic release probabilities.  However, there was no correlation between early-9 

cycle IPSC reliability and cIN and aIN Rinp- (Fig.7C).  10 

 11 

We also asked if the different types of synaptic currents were correlated with each 12 

other, i.e. if they were scaled together or independently regulated? The amplitudes of 13 

mid-cycle IPSCs were correlated with on-cycle EPSCs and tonic inward currents but 14 

such correlation was not observed for the early-cycle IPSCs (Fig. 7D, E). These data 15 

show that the majority of synaptic currents received by cINs and aINs during 16 

swimming are scaled with their Rinp-.  17 

 18 

Synaptic outputs of cINs and aINs  19 

Once neurons are recruited to fire action potentials, their contribution to the network 20 

will be determined by their output synaptic strength relative to the postsynaptic Rinp.  21 

cINs and aINs are inhibitory so we could measure the size of IPSPs/IPSCs they 22 

produced in the postsynaptic neuron in paired recordings. However, the amplitude of 23 

IPSPs/IPSCs is determined by their reversal, which varied considerably in the 24 

recordings (range: -38 to -75 mV) although the same pipette solution was used. We 25 
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decided to analyse synaptic conductance, instead. When the postsynaptic cell was 1 

recorded in voltage-clamp mode (n = 5 cINs), leak currents were not subtracted 2 

during the recordings. Synaptic conductance was calculated as the difference between 3 

membrane conductance at rest before cIN/aIN spiking, and that at the peak/trough of 4 

IPSCs (Fig.8A). When the postsynaptic cell was recorded in current clamp mode (n 5 

=13 cINs, 18 aINs, Fig.8B), we estimated peak synaptic conductance by using 6 

multiple compartment modelling to optimally match IPSPs in paired recordings, after 7 

reproducing the anatomical feature of the postsynaptic neuron and synapse location 8 

(see methods). There was no correlation between cIN and aIN Rinp- and their output 9 

synaptic conductance. However, there was correlation between their output synaptic 10 

conductance and the postsynaptic Rinp- (p <0.01, Fig.8C, D). These data show that cIN 11 

and aIN output synaptic strengths are scaled to the Rinp- of their postsynaptic target 12 

cells, not to their own Rinp-.  13 

 14 

Estimating the number of unitary synaptic currents cINs/aINs received on each 15 

swimming cycle 16 

Fig.7 shows that cINs and aINs with higher Rinp- received smaller compound synaptic 17 

inputs during swimming. The scaling of unitary IPSCs with the postsynaptic neuronal 18 

Rinp- in Fig.8 provides one possible explanation for reduced compound synaptic inputs 19 

in neurons with higher Rinp-. The number of unitary synaptic currents can also directly 20 

determine the amplitude of compound synaptic inputs and influence cIN/aIN 21 

recruitment. We used a similar method to the one in Raastad et al. (1996) to estimate 22 

the average number of unitary IPSCs/EPSCs cINs/aINs received on each swimming 23 

cycle, but without extrapolating the number of undetectable events.  24 

 25 
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Firstly, we generated the derivative trace of the synaptic currents, with fast onsets of 1 

IPSCs/EPSCs producing peaks/troughs. Then a threshold was set in the derivative to 2 

pick up potential unitary IPSCs/EPSCs with further manual sorting to exclude highly 3 

synchronised, compound on-cycle EPSC or mid-cycle IPSC events. The amplitude of 4 

these potential unitary synaptic currents was measured and averaged (n = 76 ± 32.6 5 

events per cell). Lone synaptic events (arrowheads in Fig.9A1, B1) were used to 6 

measure unitary charge transfers by integrating currents over the EPSC/IPSC 7 

duration. Linear regressions were used to estimate the relation between the unitary 8 

IPSC/EPSC amplitude and charge transfer (n = 64 IPSCs and 68 EPSCs, Fig.9A2, B2). 9 

Then the total charge transfer by all IPSCs/EPSCs over 10-30 swimming cycles was 10 

measured in each cIN/aIN and divided by the number of cycles and unitary charge 11 

transfer predicted by the average unitary synaptic currents in that neuron with the 12 

regression equations. This allowed us to estimate how many unitary IPSCs/EPSCs 13 

every cIN/aIN received during each swimming cycle. Early-cycle and mid-cycle 14 

IPSCs are not discriminated in this analysis for simplicity.  15 

 16 

In conformity with Fig.8D, the unitary IPSC amplitude was correlated with cIN/aIN 17 

Rinp-  (n = 12 cINs, 13 aINs, p < 0.01). In contrast, similar correlation between unitary 18 

EPSC amplitudes and cIN/aIN Rinp-  was not significant (n = 11 cIN, 9 aINs, p = 19 

0.083, Fig.9C).  The average number of unitary EPSCs cINs/aINs received on each 20 

swimming cycle was negatively correlated with cIN/aIN Rinp- (n = 11 cINs, 9 aINs, p 21 

< 0.01). Similar correlation existed for unitary IPSCs (n = 12 cINs, 13 aINs, p < 0.01, 22 

both two-tailed Pearson correlation, Fig.9D). These results suggest that neurons with 23 

high Rinp- receive smaller numbers of presynaptic input, assuming most unitary 24 
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synaptic events that contributed significantly to cIN/aIN activity during swimming 1 

have been identified.  2 

 3 

Correlation of cIN and aIN anatomy with their firing reliability in swimming 4 

We next asked if any of cIN and aIN anatomical features could be predictors of  their 5 

recruitment in swimming. The whole-mount slides of the tadpole central nervous 6 

system allowed us to trace the whole dendritic arbour and axons to their growth cones 7 

in the majority of neurons with neurobiotin staining. We measured the longitudinal 8 

location of somata, soma area, primary dendrite diameter at its base, primary dendrite 9 

length, total dendritic lengths, ascending and descending axon lengths, combined axon 10 

lengths and correlated them with the firing reliability in swimming. 11 

 12 

Firstly, there was no correlation between the longitudinal cIN or aIN soma location 13 

and their firing reliability in swimming. For soma and dendritic measurements, only 14 

the total aIN dendritic length was negatively correlated with aIN firing reliability (n = 15 

29, p < 0.01, Table 1). Neither ascending nor descending axon length of aINs was 16 

correlated with their firing reliability although those with shorter ascending axons 17 

tended to fire more reliably in swimming (n = 22, p = 0.14, Fig.10A, C1). For cINs, 18 

neurons that fired more reliably during swimming had longer ascending axons (n = 19 

39, p < 0.01) and their descending branches also tended to be longer (n = 41, p = 0.13, 20 

Fig.10B, C2, all Spearman’s rank correlations, Table 2). These data suggest axon 21 

lengths may be potential predictors of cIN and aIN recruitment in swimming.  22 

 23 

We also examined the relation between cIN and aIN anatomy and their Rinp- as 24 

neurons with larger dendritic arbours and somata normally have lower Rinp in mature 25 
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circuits. There was no correlation between the longitudinal soma positions of cINs or 1 

aINs and their Rinp-. aIN Rinp- was positively correlated with their primary and total 2 

dendritic lengths (n = 29, p < 0.05), opposite to what was expected in mature neurons. 3 

For axons, there was positive correlation between aIN descending axon lengths and 4 

aIN Rinp- (n = 22, p < 0.05). In contrast, the correlation between cIN descending axon 5 

lengths and their Rinp- was negative (n = 54, p < 0.05). The ascending axon lengths 6 

were not correlated with Rinp- in either type of neuron (Fig.10D1-2, Tables 1-2). 7 

 8 

cIN and aIN activity during struggling 9 

 10 

Could cINs or aINs that are inactive in swimming be specialised in struggling activity, 11 

i.e. is there motor pattern-based recruitment? When tadpoles are held, they produce 12 

stronger and slower contractions at 2-10 Hz called struggling (Roberts et al., 2010). 13 

We previously showed that most tadpole swimming CPG neurons were also active 14 

during struggling, which could be evoked by stimulating the skin of immobilised 15 

tadpoles repetitively (Fig.11A-B). The distribution of cIN activity during swimming 16 

looked bimodal (Fig.2A1). Neurons typically fire a single spike on each swimming 17 

cycle but multiple on the struggling cycles (Berkowitz et al., 2010). We used the 18 

number of spikes per struggling cycle as an index for recruitment in struggling since 19 

most neurons fire multiply on each cycle. 20 

 21 

There was no correlation between cIN firing reliability in swimming with their 22 

spiking in struggling but for aINs, neurons fired more reliably in swimming also fired 23 

more spikes per struggling cycle (n = 25, p < 0.01, Spearman’s rank correlation). We 24 

separated cINs and aINs into two groups, one group with >50% firing reliability in 25 
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swimming and the other ≤ 50%. When the activity of the two groups of neurons in 1 

struggling was compared, aINs but not cINs with >50% firing during swimming also 2 

fired more spikes per struggling cycle than those aINs with ≤ 50% firing in swimming 3 

(independent samples Mann-Whitney U test, p < 0.01, Fig.11C). During struggling, 4 

there was no correlation between the number of spikes per struggling cycle and Rinp- 5 

for either cINs or aINs (Fig.11D). The analyses thus did not support a clear 6 

segregation of cINs and aINs with specific involvement in struggling. 7 

 8 

Destroying the negative association between the Rinp and input synaptic currents 9 

broke down swimming in modelled swimming networks 10 

Based on the detailed analyses of cIN/aIN intrinsic and firing properties, their input 11 

and output synaptic properties, their anatomy and their activity during swimming and 12 

struggling, it appeared that the input synaptic strengths cIN/aIN received during 13 

swimming was a determinant for their recruitment. We next used populational 14 

modelling to investigate how altering the experimentally identified negative 15 

association between Rinp and input synaptic currents affected cIN/aIN activity and the 16 

network outputs. 17 

 18 

We have previously developed a detailed spiking neuronal network model of the 19 

tadpole spinal cord based on extensive anatomical and physiological data to simulate 20 

tadpole swimming (Roberts et al., 2014), in which all non-dIN neurons had identical 21 

ion channel composition and input resistances. Here we modified cIN/aIN models to 22 

give them delayed firing properties as shown in Fig.5 (Sautois et al., 2007). In 23 

addition, we re-assigned cINs and aINs input resistances (Rinp) to match distributions 24 

in Fig.2. To describe the dependence between cIN/aIN Rinp- and the synaptic strengths 25 
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(Fig.6, 7), we fitted the data with exponentially decaying functions (Fig.12). These 1 

were used to prescribe compound input synaptic conductance of cINs/aINs as 2 

functions of their Rinp. We divided the compound conductance by the estimated 3 

number of pre-synaptic cells of each type to obtain unitary synaptic strengths and 4 

scaled these strengths to reproduce the firing reliability of cINs/aINs during 5 

swimming (control model). Stimulation of sensory neurons initiated reliable, 6 

alternating swimming activities of CPG neurons between the two body sides at 7 

frequencies between 15-19Hz (Fig. 13A1, n = 100 connectomes). The cIN/aIN firing 8 

reliabilities qualitatively match experimental data in Fig. 2 (Fig. 13A2). Thus, our 9 

simulations show incorporating developing cINs/aINs with high Rinp and weak input 10 

synaptic strengths in the swimming network does not destabilize the swimming 11 

rhythms. 12 

 13 

Next, we used three approaches to destroy the negative association between Rinp and 14 

input synaptic strengths, whilst maintaining the distributions of cIN/aIN Rinp. In the 15 

first approach, we reversed the negative association between cIN/aIN Rinp and their 16 

input synaptic strengths by reversing the exponential correlations in the control model 17 

(“reversed” model, red curves in Fig.12). In 100 simulations, sensory stimulation 18 

initiated brief swimming rhythms for 1-4 cycles which broke down in all trials 19 

following tonic firing of cINs/aINs (Fig. 13B1). The natural recruitment pattern of 20 

cINs/aINs during the brief swimming rhythms was also reversed, i.e. the majority of 21 

neurons with low Rinp fired few spikes whereas those with higher Rinp spiked reliably.  22 

 23 

The second approach was to randomly shuffle the cIN/aIN input synaptic strengths by 24 

assigning a random value from the data distribution in Fig.6, 7 (“randomised” model). 25 
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Among 100 simulations, stable swimming rhythms with alternating motoneuron firing 1 

was seen in 33 cases. In the remaining simulations, 47 cases showed one-sided 2 

rhythmic firing in CPG neurons with double the normal swimming frequency (one-3 

sided activity) and 20 cases generated brief swimming rhythms which broke down 4 

after a few cycles and the neuron membrane potentials converged to steady state 5 

resting (brief activity, Fig.14). Such a resting state is a simple stable output of the 6 

model, in which all cells are inactive. The mechanisms leading to one–sided activity 7 

are clarified below in this section. 8 

 9 

 10 

Thirdly, all cINs/aINs were assigned with high synaptic inputs regardless of their Rinp 11 

in 42 simulations in the “mature inputs” model. In 19 simulations, swimming rhythms 12 

broke down after a few swimming cycles (similar to Fig.13B1). Reliable swimming 13 

was only seen in 2 simulations while the remaining 21 simulations produced 14 

synchrony alternating with swimming in which CPG neurons showed frequent mid-15 

cycle firing (similar to examples in Fig.14B but with activities on both sides, data not 16 

shown). 17 

 18 

We previously showed that dIN rebound firing from cIN inhibition was critical for 19 

swimming rhythm generation (Li et al., 2006; Soffe et al., 2009). In all models, most 20 

dINs fired reliably in a one-spike-per-cycle manner before the network activities 21 

stopped but aIN and cIN firing varied. Therefore, the differences in aIN and cIN 22 

activities may have decided the network outcome. We analysed the aIN/cIN spiking in 23 

the “reversed” and “randomised” models to identify changes that could potentially 24 

explain why swimming broke down. On one given side, dINs receive inhibition from 25 
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ipsilateral aINs and contralateral cINs. Therefore, the spiking phase of aINs and 1 

opposite side cINs was analysed together with their output strengths in the network 2 

(see methods). In the control model, aIN and cIN spiking was synchronised and their 3 

phases were separated by nearly half a swimming cycle (788 aIN spikes: 0.2 ± 0.03, 4 

2449 cIN spikes: 0.66 ± 0.03). In the “reversed” model, cIN spiking strengths 5 

remained similar to control but the phase distribution broadened (Independent 6 

Samples Mann-Whitney U tests, p < 0.001, Fig.13B1-3, C1,C2). aIN spiking strengths 7 

decreased, also with broader distribution than in control (Independent Samples Mann-8 

Whitney U tests, p < 0.001, Fig.13A3, B3, C3). In the “randomised” models, aIN and 9 

cIN spike strengths decreased in comparison to control models regardless of network 10 

outputs (all Independent Samples Mann-Whitney U tests, p < 0.001, Fig.14D, E). aIN 11 

spiking was still synchronised but the phase distribution peak shifted earlier in the 12 

swimming cycle (Independent Samples Mann-Whitney U tests, p < 0.001, Fig.14D, 13 

F). In contrast, cIN spiking was more variable. Swimming rhythms persisted when 14 

cIN spiking phase had low variance (0.66 ± 0.027, n = 2439). In the remaining cases 15 

when cIN spike timing was more variable and overlapped with aIN spiking, rhythmic 16 

activity stopped bilaterally (0.53 ± 0.135, n = 2575, p < 0.001) or unilaterally (0.58 ± 17 

0.114, n= 2880, p < 0.001, both Levene’s Test, Fig.14D-F).  18 

 19 

How could rhythm activity sustain only on one side in some of the “randomised” 20 

models with frequencies doubling that of normal swimming? We previously reported 21 

synchrony when both sides of the tadpole swimming circuit were active 22 

simultaneously with similar frequencies (Li et al., 2014; Ferrario et al., 2018b), in 23 

which cINs spiked immediately after dINs to evoke rebound firing more quickly and 24 

halved the cycle period. In the one-sided activity, the only source of inhibition-25 
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synchronous aIN firing- also appeared shortly after dIN spiking (0.12 ± 0.025, n = 1 

810, Fig.14B), suitable for evoking dIN rebound firing nearly half a swimming cycle 2 

early and sustaining the one-sided rhythms in a similar manner (also see modelling in 3 

(Ferrario et al., 2018a)). In contrast, aIN spiking phase in the “reversed” model was 4 

more variable (0.28 ± 0.231, n = 100, p < 0.001, Levene’s Test), which did not 5 

support one-sided rhythms.  6 

 7 

These modelling results confirm that the swimming network incorporated with 8 

developing cINs/aINs with the experimentally derived properties still generate robust 9 

swimming rhythms, and negative association between the Rinp and input synaptic 10 

currents may be a critical factor in the uninterrupted integration of developing 11 

cINs/aINs in the swimming circuit. Indeed, when this association was destroyed the 12 

firing of cINs/aINs became irregular and disrupted the swimming rhythm. 13 

 14 

Discussion  15 

 16 

During differentiation, neurons acquire the correct neurochemical identity, extend 17 

dendrites and axons to target areas and form connections with pre- and postsynaptic 18 

partners. They also need to express ion channels to tune electrical properties to suit 19 

their physiological roles. Here, we have analysed the intrinsic, firing and synaptic 20 

properties, anatomical features and synaptic inputs/outputs of neurons in situ while 21 

simultaneously monitoring neuronal recruitment in swimming. We found the 22 

recruitment of inhibitory interneurons could be predicted by their Rinp, an indicator for 23 

neuronal age in development (McCormick and Prince, 1987; Ramoa and McCormick, 24 
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1994; Zhang, 2004; Ehrlich et al., 2012). We identified that input synaptic strengths 1 

were critical in the order of recruitment. 2 

 3 

Recruitment of motoneurons had been historically described by Henneman and 4 

colleagues as following the “size principle”. This proposes that larger mammalian 5 

spinal motoneurons with lower Rinp were only recruited at high motor strengths and 6 

decruited first when the muscle relaxed (Henneman, 1957; Henneman and Olson, 7 

1965; Henneman et al., 1965b, a).  In zebrafish larvae up to 5 days-old, the 8 

motoneuron recruitment also follows size principle but in both excitatory and 9 

inhibitory interneurons only recruitment orders by Rinp or dorsal-ventral positions are 10 

observed (McLean et al., 2007; Menelaou et al., 2022). While interneurons with high 11 

Rinp are active at both slow and high swimming frequencies, those with low Rinp are 12 

only recruited at high frequencies. In adult zebrafish, the strong escape swimming and 13 

weaker explorative swimming are anatomically separate in that the latter is mediated 14 

by the caudal part of the spinal cord. Spinal motoneurons comprise four different 15 

pools with recruitment more topographically determined by their location, electrical 16 

properties and input synaptic currents, rather than size or Rinp (Gabriel et al., 2011). 17 

Analyses of V0v excitatory interneurons with commissural projections in adult 18 

zebrafish revealed similar grouping and recruitment mechanisms (Bjornfors and El 19 

Manira, 2016). The topographic recruitment of neurons during larval zebrafish 20 

swimming was later shown to represent both an order of movement speed/strength 21 

and the temporal emergence of network components (Kimura et al., 2006; McLean 22 

and Fetcho, 2009). The recruitment of newly developed neurons in this case appears 23 

to expand the range of movement, i.e. acquisition of weaker swimming in older larval 24 

fish (Berg et al., 2018).  25 
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 1 

The swimming frequency for stage 37/38 tadpoles ranges from 10 to 25 Hz (Roberts 2 

et al., 2010), narrower than the 20-100 Hz range of the larval zebrafish swimming 3 

(Saint-Amant and Drapeau, 1998; Muller and van Leeuwen, 2004). Unlike zebrafish 4 

larval swimming, the average tadpole swimming frequency does not vary much 5 

between episodes if the inter-episode resting periods remain similar (Zhang and Sillar, 6 

2012). We find cINs/aINs with low Rinp fire more reliably in swimming, opposite to 7 

the recruitment order of inhibitory interneurons in larval zebrafish (McLean et al., 8 

2007). For excitatory interneurons in zebrafish, those with high Rinp were often active 9 

at slow swimming but depressed during fast swimming (McLean et al., 2008; Kishore 10 

et al., 2014).  The En-1 expressing V1 interneurons were found to selectively inhibit 11 

excitatory interneurons and motoneurons at high swimming frequencies (Kimura and 12 

Higashijima, 2019). Similar modular control of swimming speed is unlikely in stage 13 

37/38 tadpoles since dINs fire reliably in a one-spike-per-cycle manner. In addition to 14 

swimming, the tadpole spinal circuit can also generate struggling rhythms, with 15 

motoneurons firing bursts of spikes, lower frequencies and tail-to-head activity 16 

propagation (Soffe, 1993; Li, 2015). Our analyses show the recruitment of neither 17 

cINs nor aINs in struggling could be predicted by their Rinp, against a possible motor 18 

pattern-based recruitment regime.  19 

 20 

We argue in stage 37/38 tadpoles that what we have described here is most likely a 21 

form of developmental integration of newly differentiated neurons into a functioning 22 

motor circuit, to accommodate a growing, larger neuromuscular system. Before 23 

tadpoles reach stage 42, new interneurons are born continuously to add to the existing 24 

circuit (Dale et al., 1986; Roberts et al., 1987; Roberts et al., 1988). The random 25 
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recordings we made should include a mixture of more mature, early-born neurons and 1 

newly differentiated neurons with high Rinp. The gradient of their firing reliability 2 

during swimming likely represent their progressive integration into the swimming 3 

circuit. At stage 42, swimming becomes more flexible following the addition of a new 4 

wave of small secondary neurons, neuromodulation and refinement of neuromuscular 5 

innervation (Sillar et al., 1991; Zhang et al., 2011). Modular microcircuits enabling 6 

both weak and strong swimming similar to those in larval zebrafish may also exist.  7 

 8 

Could cIN/aIN electrical properties explain the developmental recruitment or 9 

integration? Previous studies have identified some consistent changes in neuronal 10 

intrinsic properties during development (McCormick and Prince, 1987; Ramoa and 11 

McCormick, 1994; Zhang, 2004; McLean and Fetcho, 2009; Ehrlich et al., 2012). For 12 

example, with development, Rinp and time constant decrease, spike overshoot 13 

becomes higher, action potentials narrow and firing thresholds become more negative. 14 

High Rinp and low firing thresholds make neurons more excitable while the larger 15 

AHP may lower their firing frequencies (Zhang, 2004; Ehrlich et al., 2012; Matschke 16 

et al., 2018). cINs/aINs with higher Rinp have lower firing thresholds, unsupportive of 17 

their lack of activity during swimming. Both type of neurons, however, show 18 

outward-rectification (Ketchum et al., 1995; Maingret et al., 2002; Johnston et al., 19 

2010), rendering neurons with higher Rinp more easily inhibited than excited and 20 

potentially suppressing their firing during swimming. In the meantime, less negative 21 

firing thresholds due to IA does not necessarily reduce neuronal excitability since 22 

tonic excitation during swimming will inactivate IA currents (Li, 2015).  23 

 24 
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The main factor that determines the cIN/aIN developmental integration lies 1 

predominantly in their synaptic inputs, similar to what was observed in the prefrontal 2 

cortex (Zhang, 2004). Synaptic strengths are plastic in development due to changes in 3 

the postsynaptic receptor composition, presynaptic release probability, quantal 4 

response or number of synaptic contacts  (Mozhayeva et al., 2002; Isaac, 2003; 5 

Andreae et al., 2012; Herring and Nicoll, 2016). We did not find a correlation 6 

between EPSC receptor composition and Rinp-, suggesting the absence of NMDAR-7 

dependent plasticity in cIN/aIN inputs.  The less reliable mid-cycle compound IPSCs 8 

in neurons with high Rinp- suggests low release probabilities from inhibitory synapses 9 

but EPSCs are reliable. This may indicate dINs develop earlier in the circuit. In line 10 

with this, unitary IPSC but not EPSC strengths are negatively correlated with Rinp-. 11 

The number of unitary inputs of both IPSCs and EPSCs, however, increase with 12 

decreasing Rinp-, indicating that when neurons mature, they will receive inputs from 13 

more presynaptic partners. In our modelling, including developing cINs/aINs with the 14 

appropriate electrical and synaptic properties did not undermine swimming rhythm 15 

genesis. However, randomising input synaptic strengths in cINs/aINs made neurons 16 

with high Rinp fire reliably and led to the breakdown of swimming rhythms, especially 17 

when the relation between cIN/aIN Rinp and their input synaptic strengths was 18 

reversed. This supports the importance of our observed recruitment order and 19 

mechanisms in terms of maintaining circuit functions. 20 

 21 

Transiently increased activity has been shown to play a role in the integration of 22 

newly differentiated neurons into local networks in mammalian olfactory bulb 23 

(Livneh et al., 2014) and hippocampus (Ge et al., 2006; Marin-Burgin and Schinder, 24 

2012). cINs/aINs with higher Rinp did not exhibit any associated high activity in 25 
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tadpoles, in line with findings in the developing zebrafish optic tectum (Heckman and 1 

Doe, 2021). Sensory (Livneh et al., 2014; Alvarez et al., 2016) or motor activity (Hall 2 

and Tropepe, 2018) also help to stabilise the connectivity of new-born neurons with 3 

mature circuits. Tadpole cINs/aINs normally do not receive direct sensory inputs but 4 

belong to the swimming CPG. It remains to be seen if their integration into the 5 

swimming circuit is subject to similar activity-dependent plasticity.  6 

 7 

Does neuronal morphological growth match neuronal electrical properties and 8 

synaptic output? The lack of negative correlation between dendritic lengths and Rinp- 9 

suggests there may be a lag in leak potassium channel expression after dendritic 10 

extensions. cIN and aIN descending axon lengths are correlated with Rinp but the 11 

ascending branch lengths do not. The main axons for cINs/aINs are the ascending 12 

branches which develop earlier than the descending ones (Roberts et al., 1987; 13 

Roberts et al., 1988) and they do not cross the mid/hindbrain border, potentially 14 

accounting for their lack of correlation with cINs/aINs Rinp. Descending axons, in 15 

contrast, do not have a similar anatomical barrier unless they reach the caudal 16 

extremity. Their development may better coincide with the maturation of neuronal 17 

electrical properties. Meanwhile, since cINs/aINs synaptic outputs are scaled with the 18 

Rinp of their postsynaptic partners, not with their own Rinp., the molecular mechanism 19 

affecting synaptic strengths may be regulated by some target-derived factors, 20 

segregated from those controlling the maturation of electrical properties at somata 21 

and/or dendrites.  22 

 23 

In summary, we have found several physiological and anatomical features of 24 

developing inhibitory interneurons that correlate with their participation/integration in 25 
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swimming. Their recruitment is predictable by cellular input resistances but opposite 1 

to the order depicted by the motor strength-based size principle. It is important to 2 

reveal how the integration process is regulated by various transcription and growth 3 

factors and if such regulation has a critical time window.4 
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 1 

Fig.1 Tadpole commissural interneurons (cINs), ascending interneurons (aINs) and 2 

their synaptic connections with other spinal/hindbrain neurons (modified from (Li, 3 

2015)). Black circles stand for activity. Thickened circles denote vigorous activity in 4 

struggling. Grey means no/depressed activity during swimming or struggling. Sensory 5 

pathway neurons: RB/Rohon-Beard neuron; dla/dorsolateral ascending interneuron; 6 

dlc/dorsolateral commissural interneuron; ecIN/excitatory commissural interneuron; 7 

exN/hindbrain extension neurons. Other types of neuron active in swimming and 8 

struggling rhythms: dINr/repetitive firing descending interneuron; dIN/descending 9 

interneuron; MN/motoneuron. Each circle represents a population of neurons. 10 

Synapse on boxes means all neurons inside receive the input. 11 

 12 
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1 

Fig.2 Recruitment order of cINs and aINs in swimming by their Rinp-. A1-B1. cIN and 2 

aIN firing reliabilities plotted against their Rinp-. Correlation coefficients (c.e.) with 3 

significance levels (*** at p < 0.001, ** at p < 0.01) are given above the plots in this 4 

and following figures. Filled blue circles are recordings from stage 37/38 tadpoles and 5 

empty orange ones are for recordings from stage 32 embryos. A2-B2. Examples of cIN 6 

and aIN activity in stage 37/38 tadpoles during swimming started by electrical skin 7 

stimulation (arrowheads). Rinp- of each neuron is indicated on the left side of each 8 

recording trace.  9 

 10 
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 1 

Fig.3 Cellular input resistances of neurons active in tadpole swimming. A. I-V tests of 2 

a cIN and an aIN with rectification using step currents (Rinp-/Rinp+ on top of traces). B. 3 

Rinp-/Rinp+ plotted against Rinp-. Correlation co-efficient (c.e.) and significance (* at p 4 

<0.05; *** at p < 0.001) are indicated above plots. C. Example I-V curves for cINs 5 

(light blue) and aINs (dark blue) with different Rinp. D. Rinp-/Rinp+ plotted against Rinp- 6 

for MNs and dINs with little rectification and,  E. their I-V curve examples (MNs: 7 

green, dINs: red). Grey dashed lines in B and D indicate Rinp-/Rinp+ of 1. 8 

 9 
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1 

Fig.4 The relation between Rinp- and cIN/aIN RMP and spike parameters. A. 2 

Measuring spike parameters using derivatives, where the 2nd derivative is calculated 3 

from the 1st derivative of the spike trace (left). Dashed line indicates the peak time of 4 

the second derivative used to determine the spike threshold (filled circle). Spike width 5 

is measured between time points when the membrane potential crosses 0 mV. Spikes 6 

from three cINs with different Rinp- (right, color-coded with text, filled circles 7 

represent thresholds). B-G. The relation between Rinp- cINs/aINs and their RMP, 8 

spiking overshoots, spike widths, AHP troughs, thresholds and Rheobases (all 9 

Spearman’s rank correlation, significance: * at p <0.05; ** at p < 0.01, *** at p < 10 

0.001). 11 
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 1 

Fig.5 The relation between Rinp- and delayed firing in cINs and aINs. A1-B1. Rinp- of 2 

cINs and aINs categorized with clear, some or no delay in their firing to +DC 3 

injections. * at p < 0.05; ** at p < 0.01, *** at p < 0.001. A2-B2. Examples of firing 4 

patterns from cINs/aINs with different Rinp- evoked by threshold and suprathreshold 5 

current injections. Arrowheads point at delay before the first spike. * denotes gap 6 

between the first and subsequent spikes.  7 

 8 
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 1 

Fig.6 Inward currents that cINs and aINs receive during swimming and their 2 

correlation with Rinp-. A. Examples of tonic inward currents and on-cycle EPSCs in 3 

cINs and aINs with indicated Rinp-. B1-2. Correlation between inward currents and Rinp 4 

(significance:  *** p<0.001). 5 

 6 
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 1 

Fig.7 Correlation between IPSCs that cINs and aINs receive during swimming and 2 

their Rinp- and inward currents. A. Examples of mid-cycle (*) and early-cycle IPSCs 3 

(empty triangles) in cINs and aINs with indicated Rinp-. Filled triangles indicate time 4 

of electrical stimulation starting swimming. B. Correlation between the IPSC 5 

amplitude and Rinp-. C. There lacks correlation between early-cycle IPSC reliability 6 

and Rinp- but mid-cycle IPSC reliability is correlated with Rinp-. D. Mid-cycle IPSCs 7 

are correlated with on-cycle EPSCs but early-cycle IPSCs are not. E. Mid-cycle 8 

IPSCs are correlated with tonic inward currents but early-cycle IPSCs are not. 9 

Correlation significance in B-E: * p<0.05, ** p<0.01, *** at p<0.001. All are 10 

Spearman’s rank correlation except for the relation between early-cycle IPSC and aIN 11 

Rinp- in B (Pearson correlation). 12 
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 1 

Fig.8  The conductance of cIN and aIN IPSPs/IPSCs in paired recordings is correlated 2 

with the Rinp- of the postsynaptic neurons. A1. Superimposed traces of cIN synaptic 3 

currents recorded in a MN in a paired recording, where the presynaptic cIN is 4 

recorded in current-clamp mode and the postsynaptic MN is voltage-clamped at 4 5 

different levels. A2. I-V measurements of the MN in A1 at the time before cIN spiking 6 

(solid circles) and at the peak/trough of cIN IPSCs (unfilled circles). B1. Example 7 

traces of aIN unitary IPSPs in a dlc in a paired recording when both the presynaptic 8 

aIN and postsynaptic dlc are recorded in current-clamp mode. B2. I-V measurements 9 

at the time before aIN spiking (solid circles) and at the peak/trough of aIN IPSPs 10 

(unfilled circles) in B1. Regression lines in A2 are used to estimate conductance at rest 11 

and the peak of IPSPs/IPSCs with their difference representing the synaptic 12 

conductance. IPSC/IPSP reversal is the point where regression lines in A2 and B2 13 

(unfilled circles) intersect the vertical axis. C. There lacks correlation between cIN 14 

and aIN Rinp- and their output synaptic conductance (Spearman’s rank correlation). 15 
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Diagram shows the simplified multi-compartment model used for estimating the 1 

conductance of a synapse. D. cIN and aIN output synaptic conductance is correlated 2 

with the Rinp- of the postsynaptic neuron (Spearman’s rank correlation, ** p<0.01). 3 

Solid circles in C-D are for cINs and grey ones for aINs as the presynaptic neurons. 4 
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 1 

Fig.9  Estimating average numbers of unitary synaptic currents cINs/aINs receive on 2 

each swimming cycle.  A1. EPSCs in a cIN during 3 swimming cycles and their 3 

derivatives used for identifying potential unitary EPSCs (steps in the event channel 4 

above). A2. Linear regression between unitary EPSC amplitudes and their charge 5 

transfers (Gray line, y = -19.5x, R2 = 0.955). B1. IPSCs in another cIN during two 6 

swimming cycles and their derivatives used for identifying unitary IPSCs (steps in the 7 

event channel above). B2. Linear regression between unitary IPSC amplitudes and 8 

their charge transfers (Gray line, y = 9.46x, R2 = 0.916). C. Correlation between 9 

cIN/aIN Rinp- and the unitary EPSC/IPSC amplitudes. D. Correlation between cIN/aIN 10 

Rinp- and the deduced number of unitary EPSCs/IPSCs they receive on each 11 

swimming cycle. In A1 and B1, dashed lines illustrate thresholds for event-triggering 12 

and arrowheads point at lone unitary events used for integrating charge transfer in A2 13 
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and B2. In C and D, Spearman’s rank correlation is used for cINs and Pearson 1 

correlation is used for aINs. ** represents p < 0.01.  2 

  3 
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 1 

Fig.10 The correlation between cIN, aIN axon lengths and their firing in swimming 2 

and Rinp-. A. The longitudinal location of aIN somata (filled circles) and their 3 

simplified, maximal axon trajectories (lines, color-coded by their firing reliability 4 

range) relative to the mid/hindbrain border (0, arrowhead on diagram below indicates 5 

obex). B. Location of cIN somata and their axon trajectories (same symbols and color-6 

coding as in A). C1. aIN firing reliability plotted against ascending and descending 7 

axon lengths. C2. cIN firing reliability in swimming plotted against their ascending 8 

and descending axon lengths. D1. aIN Rinp- is correlated with their descending but not 9 

ascending axon lengths. D2. cIN Rinp- is correlated with their descending but not 10 

ascending axon lengths. Purple text and symbols are for ascending axons and green 11 

ones are for descending axons in C1-2 and D1-2. All are Spearman’s rank correlation 12 

except for the relation between aIN descending axon length and Rinp- in D1 (Pearson 13 

correlation, significance: * p < 0.05, ** p < 0.01). 14 
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Table 1: Correlation of aIN anatomical measurements with the main physiology 1 

indices. Italics: Pearson correlation; others: Spearman Rank correlation; sample size 2 

in brackets. 3 

 Soma 

location 

Soma 

area 

Primary 

Dendrite 

diameter 

Primary 

dendrite 

length 

Total 

dendrite 

length 

Ascending 

axon 

length 

Descending 

axon length 

Combined 

axon 

length 

Rinp- -0.25 

(39) 

0.15 

(29) 

0.20 

(29) 

0.45* 

(29) 

0.44* 

(29) 

-0.05 

(30) 

0.47* 

(26) 

0.42 

(22) 

Swimming 

firing 

reliability  

0.18 

(39) 

-0.15 

(29) 

-0.35 

(29) 

-0.3 

(29) 

-0.56** 

(29) 

-0.02 

(30) 

-0.45* 

(26) 

-0.24 

(22) 

Spikes per 

struggling 

cycle 

0.16 

(25) 

0.06 

(16) 

-0.29 

(16) 

0.11 

(16) 

-0.22 

(16) 

-0.05 

(19) 

-0.06 

(16) 

0.08 

(14) 

 4 

  5 
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Table 2: Correlation of cIN anatomical measurements with the main physiology 1 

indices. All used Spearman rank correlation and sample sizes are in brackets 2 

 Soma 

location 

Soma 

area 

Primary 

Dendrite 

diameter 

Primary 

dendrite 

length 

Total 

dendrite 

length 

Ascending 

axon 

length 

Descending 

axon length 

Combined 

axon 

length 

Rinp- 0.15 

(61) 

-0.19 

(53) 

-0.14 

(55) 

-0.06 

(55) 

-0.24 

(55) 

-0.36* 

(51) 

-0.22 

(57) 

-0.71** 

(43) 

Swimming 

firing 

reliability  

-0.23 

(59) 

-0.01 

(52) 

-0.13 

(54) 

-0.03 

(54) 

-0.04 

(54) 

0.44** 

(49) 

-0.05 

(55) 

0.33 

(41) 

Spikes per 

struggling 

cycle 

-0.07 

(48) 

-0.05 

(42) 

-0.08 

(44) 

0.26 

(44) 

0.33 

(44) 

-0.25 

(39) 

0.54 

(45) 

0.5** 

(32) 

 3 
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 1 

Fig.11 Lack of correlation between cIN and aIN firing intensity during struggling and 2 

their Rinp-. A-B. Examples of cIN (A) and aIN (B) activity during struggling (started 3 

by 30-40 Hz electrical skin stimulation, hollow bars). Rinp- of each neuron is given 4 

near its recording trace. Arrowheads point at individual struggling cycles. C. 5 

Correlating cIN and aIN firing reliability in swimming with their spiking in 6 

struggling. Box plots show spikes per struggling cycle of cINs and aIN with less and 7 

more than 50% firing reliability in swimming. D. Spikes per struggling cycle plotted 8 

against cIN/aIN Rinp-. All are Spearman’s rank correlation in C-D (** at p < 0.01). 9 
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 1 

Fig.12  Compound conductance for tonic (NMDAR), on-cycle (AMPAR) EPSCs, 2 

mid-cycle (INH-cIN) and early-cycle (INH-aIN) IPSCs of cINs/aINs during 3 

swimming (combined from Fig.6B1-2 and Fig.7B). Blue curves are the best 4 

exponential fits for the data used in control models, while red curves are reversed 5 

exponentials of the blue curves used in the “reversed” models. One datum point in the 6 

top right plot (x) was treated as an outlier and was excluded to achieve better fitting.  7 
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 1 

Fig.13 Simulating swimming using a network model including developing cINs/aINs. 2 

A1. The control model network generates stable swimming rhythms when cIN/aIN 3 

input synaptic strengths decay exponentially with their Rinp- (functions derived from 4 



55 
 

data in Fig. 6, 7). A2. The cIN/aIN firing reliability is high for neurons with low Rinp 1 

and low when the Rinp is high in the network model in A1. A3. Circular plot showing 2 

the phase and strength of aIN and cIN spikes in the control simulation. B1. The 3 

swimming rhythm breaks down in the “reversed” model in which the negative 4 

association between cIN/aIN Rinp and their input synaptic strengths are reversed. B2. 5 

cINs/aINs with high Rinp fire reliably in the “reversed” model in B1. B3. Circular plot 6 

showing the phase and strength of aIN and cIN spikes in a “reversed” model 7 

simulation. C1. Normalised aIN and cIN spike strengths in control and “reversed” 8 

models in A3 and B3 (numerals are numbers of spikes analysed). * indicates 9 

significance at p < 0.05 (Independent Samples Mann-Whitney U test). C2, 3. cIN and 10 

aIN spike phase in control (pink) and “reversed” models (Red for cINs, blue for aINs, 11 

yellow and green show overlapped distribution).  Color traces in A1, B1 show example 12 

activity of neurons of different categories (for abbreviations, see Fig.1) during one 13 

simulation. Spiking events of individual neurons at different rostro-caudal coordinates 14 

in the whole network are shown as dots colour-matched with the recording traces. 15 

Firing reliability for each cIN/aIN in A2, B2 (dot) is calculated by dividing the number 16 

of spikes each neuron fires with the median number of spikes fired by all ipsilateral 17 

motoneurons between 0.1-0.6s in the simulation (100% if >1). The radii of grey 18 

circles represent normalised output strengths for individual aIN and cIN spikes at 19 

0.25, 0.5 0.75 and 1, respectively in A3 and B3. 20 

 21 

  22 
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 1 

Fig.14 Simulation outcomes of the “randomised” model in response to sensory 2 

stimulation. A-C. swimming, one-sided rhythm and brief activity which fails to 3 

persist. Colour traces in each panel show example activity of neurons of different 4 

categories during one simulation (for abbreviations, see Fig.1). Spiking events of 5 

individual neurons at different rostro-caudal coordinates in the whole network are 6 
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shown as dots colour-matched with recording traces. D. Circular plots showing the 1 

phase and strength of aIN and cIN spikes in the “randomised” models with different 2 

outcomes. The radii of grey circles represent normalised output strengths for spikes at 3 

0.25, 0.5 0.75 and 1, respectively. E. Normalised cIN and aIN spike strengths in 4 

control and “reversed” models in D (numerals are numbers of spikes analysed). F1, 2. 5 

cIN and aIN spike phase in control (pink) and “reversed” models (Red for cINs, blue 6 

for aINs, yellow and green show overlapped distribution).  *** represent significance 7 

at p <0.001 (Independent Samples Mann-Whitney U tests). 8 

 9 


