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Abstract

We report the experimental realization of the prime number quantum potential VN(x), defined as the potential entering the single-
particle Schrödinger Hamiltonian with eigenvalues given by the first N prime numbers. Using computer-generated holography, we
create light intensity profiles suitable to optically trap ultracold atoms in these potentials for different N values. As a further applica-
tion, we also implement a potential whose spectrum is given by the lucky numbers, a sequence of integers generated by a different
sieve than the familiar Eratosthenes’s sieve used for the primes. Our results pave the way toward the realization of quantum poten-
tials with arbitrary sequences of integers as energy levels and show, in perspective, the possibility to set up quantum systems for
arithmetic manipulations or mathematical tests involving prime numbers.
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Significance Statement:

Prime numbers are the building block of mathematics and their intriguing properties have been an endless subject of investigation
and wonder. The approach pursued here is to regard them as energy levels of a quantum system. To this aim, we devise and
experimentally implement the quantum potential of a Schrödinger Hamiltonian having the first N primes as eigenvalues. We also
experimentally realize a quantum potential with a spectrum given by the first N lucky numbers, a sequence that can be considered
as the “cousin” of the sequence of the primes. Being able to encode interesting sequences of integers in a quantum potential opens
the possibility of addressing purely mathematical questions of number theory through quantum experiments.

Introduction
Mathematics is a gold mine of surprises, starting from its very ba-
sic branch: arithmetic. Consider as major examples the sets of the
natural numbers

N = {1, 2, 3, 4, 5, . . .} (1)

and of the prime numbers

P = {2, 3, 5, 7, 11, . . .}. (2)

While the pattern of natural numbers is obvious, since no matter
which one you pick, it is straightforward to determine what the
next one is, the answer is instead highly nontrivial for the set of
prime numbers, whose intriguing and sometimes apparently er-
ratic properties never ceased to intrigue mathematicians, physi-
cists, scientists, and curious people in general (1–9).

The sequences of natural and prime numbers are mathemati-
cal objects: one could say that they are the mathematical objects
par excellence, being at the roots of arithmetic and therefore at the
roots of entire mathematics. However, a useful point of view—

particularly relevant for computational purposes—is to see them
as quantities that emerge from physical operations performed in
the physical world. The rationale is to have a physical system, an
abacus, on which one performs the desired operations acting on
the elements of certain sequences of integers. Since ultimately all
aspects of the world around us can be explained using quantum
mechanics, we would like to have a quantum abacus, i.e. a quan-
tum system with energy levels related in a controllable way to
sequences of integers.

Given the role played by prime numbers in many problems,
from factorization of integers to celebrated conjectures of math-
ematics such as the Riemann hypothesis (10–12) or the Goldbach
conjecture (13), it is desirable to find new ways in which prime
numbers emerge from the experimental control of a quantum
system. This is particularly important in view of several theoreti-
cal proposals to tackle problems from number theory using quan-
tum mechanics ideas: prominent examples include Shor’s algo-
rithm (14), the factorization of large integers (15, 16), the computa-
tion of prime number functions by employing the so-called quan-
tum prime state (17, 18), primality tests (19, 20), and attempts to
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establish the validity of the Riemann hypothesis [see refs. (21, 22)
for reviews].

In this paper, with the aim of implementing a quantum abacus,
we choose to consider discrete sequences of numbers as spectra
of some quantum Hamiltonians. We focus on a particle of mass m
in one dimension, with the Hamiltonian expressed in the standard
form as

Ĥ = p2

2m
+ V(x), (3)

where p is the momentum operator and V(x) is taken to be a con-
tinuous function in a given interval J (which can be the entire
real axis). If a potential VN(x) is such that the eigenvalues En of the
time-independent Schrödinger equation

Ĥψn =
(

− h̄2

2m
d2

dx2
+ VN(x)

)
ψn = Enψn (4)

are the first N prime numbers, we call VN(x) a prime number quan-
tum potential. In saying that the eigenvalues of Eq. 4 are the prime
numbers, or any other sequence of integers, we are actually refer-
ring to the eigenvalues en of Ĥ defined in dimensionless units: in
physical units, the eigenvalues En are equal to their dimensionless
counterpart en multiplied by a constant having the dimension of
an energy, which depends on h̄, m, and a length characteristic of
the potential VN(x) itself. To fix the notation, hereafter, the ground
state in Eq. 4 corresponds to n = 0 (and therefore, in the case of the
primes, e0 = 2). For completeness, let us point out that in addition
to the discrete part of the spectrum featuring the desired first N
primes, the potential VN(x) will also have a continuous spectrum
for energies larger than the highest prime pN.

The experimental realization of VN(x) provides the first ingredi-
ent for the implementation of a kind of quantum abacus, in which
arithmetic operations can be translated into physical operations
on the quantum particle. As we will show, reproducing the desired
sequence of eigenvalues is a challenging task because it requires
control on the fine details of VN(x). Given the typical length scale of
atom traps, one needs to control VN(x) at the scale of micrometers.
In this regard, light sculpting techniques provide versatile tools
to dynamically control and engineer optical potentials for neu-
tral atoms. These techniques are based on devices such as spa-
tial light modulators (SLMs), digital micromirror devices (DMDs),
and scanning acousto-optic deflectors (AODs) (23). In particular,
SLMs underpin computer-generated holography, in which a spa-
tial phase modulation is applied to the trapping light such that a
desired intensity distribution is realized in the far field. This leads
to holographic optical traps, which have been employed in exper-
iments ranging from single atoms to Bose–Einstein condensates
(24). Therefore holographic techniques are a natural tool to im-
plement the prime number quantum potential.

The aim of this paper is to present the experimental realization
of such a potential. As discussed in detail in the next sections, the
problem presents a number of interesting points, which touch on
key theoretical and experimental questions in quantum mechan-
ics with fascinating outputs in number theory. The paper is orga-
nized as follows: In the section “The intriguing prime numbers,”
we recall some basic features of the prime numbers, pointing out
the main challenges one has to face to setup up a potential which
has them as spectrum. In the section “Holographic techniques,”
we provide a brief insight into light sculpting techniques. In the
section “Discrete sequences and quantum potentials,” we present
the theoretical framework of supersymmetric quantum mechan-
ics (SQM) (25–27), which leads to the exact expression of VN(x),

and we also discuss the pros and cons of this approach compared
to a semiclassical determination of the prime number potential
(19). In the section “Experimental prime number potentials,” we
present experimental prime number potentials suitable for atom
trapping, and we assess the feasibility of a subsequent implemen-
tation with ultracold atoms. In the section “The lucky quantum
potential,” to further demonstrate the flexibility of our approach,
we discuss the realization of another quantum potential associ-
ated to a different discrete sequence of integers, the so-called lucky
numbers. This is an interesting set of integers, which may be re-
garded as “cousins” of the prime numbers, generated by a slightly
different sieve than the familiar Eratosthenes’s sieve which gives
rise to the prime numbers (28). Finally, we draw our conclusions.

The intriguing prime numbers
A fundamental theorem of arithmetic states that every natural
number >1 is either a prime number or a product of prime num-
bers. Hence, the prime numbers may be regarded as the atoms
of arithmetic but, in contrast with the finitely many chemical el-
ements, the number of primes is instead infinite, as shown by a
classic argument by Euclid dated more than 2000 years ago. Be-
sides this fundamental role in arithmetic, what makes the prime
numbers intriguing is their bipolar personality, i.e. in the realm
of mathematics, they are the perfect Dr Jekyll and Mr Hyde. Such
an erratic behavior, almost an “insanity,” emerges by looking at
the short and large distance scales of these numbers. Indeed, at
short scale, their appearance along the sequence of the integers is
completely unpredictable but, on a large scale, their coarse grain-
ing properties, and in particular how many prime numbers there
are below any real number x, are aspects that can be controlled
with great precision. In other words, while there is no known sim-
ple function f(n) that gives the nth prime number pn [and the ac-
tual determination of prime numbers can only be done by means
of the familiar Eratosthenes’s sieve (5–9)], thanks to the insights
of many prominent mathematicians (in particular Riemann), we
have instead perfect knowledge of the inverse function π (x), which
counts the number of primes below the real number x (1–11, 29–
32). Such a function has a staircase behavior (since it jumps by 1
each time x crosses a prime) but becomes smoother and smoother
for increasing values of x. Its first estimate was empirically ob-
tained by Gauss and Legendre as

π (x) ∼ x
ln x

, (5)

and, even though this formula may be considered just a coarse ap-
proximation of π (x), it is nevertheless able to capture the asymp-
totic behavior of π (x)—a result that constitutes the content of the
“Prime Number Theorem” (29–32):

lim
x→∞

π (x) ln x
x

= 1. (6)

A more precise version of this estimate is given by π (x) � li(x) ≡∫ x
2

dt
ln t , while a further refinement was provided by Riemann (10,

11) in terms of the series

π (x) � R(x) =
∞∑

m=0

μ(m)
m

li
(
x1/m)

, (7)
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with the Moebius numbers μ(m) defined by

μ(m) =

⎧⎪⎨
⎪⎩

1 if m = 1
0 if m is divisible by a square of a prime

(−1)k otherwise

where k is the number of prime divisors of the integer m. It is worth
stressing that R(x) is the smooth function that approximates π (x)
more efficiently and it is well known that to reproduce the actual
staircase jumps of π (x) one needs to employ the zeros of the Rie-
mann zeta-function (7, 10, 11).

Knowing π (x) helps us estimate the growth behavior of the nth
prime number. Indeed, by setting pn = π−1(n) and inverting at the
lowest order the function π (x) (for instance, using Gauss formula
of Eq. 5), we have the following scaling law for the nth prime num-
ber:

pn � n log n. (8)

However, the true unpredictable nature of the primes becomes
particularly evident if we focus our attention on their gaps: for
every prime pn, let g(pn) be the number of composite numbers be-
tween pn and the next prime pn + 1, so that

pn+1 = pn + g(pn ) + 1. (9)

With this definition, g(pn) is the size of the gap between pn and
pn + 1. Using the scaling law of Eq. 8, we expect the average gap
ḡ(pn ) between pn and pn + 1 to go as ḡ(pn ) ∼ log n, but the interesting
question is: how wide is the range of values of these gaps? There
is an extensive literature on this topic, see, for instance, refs. (33–
38), and hereafter we only underline some basic features that are
important for our subsequent considerations.

The minimum value of g(p) is 1 and is obtained for the twin
primes, i.e. the pairs such as (17, 19) or (29, 31), etc., which differ
by 2. Presently, it is not known whether or not there are infinitely
many twin primes, although there are strong reasons to believe
that the number of twin primes is indeed infinite [see, for instance,
the heuristic arguments presented in ref. (6)]. On the other hand,
it is quite easy to show that g(pn) can be arbitrarily large, so that

lim
n→∞ sup g(pn ) = ∞. (10)

To prove this result, consider an arbitrary integer N > 1 and the
associated sequence of integers

N! + 2, N! + 3, N! + 4, N! + 5, ..., N! + N.

These (N − 1) consecutive numbers are all composite and
therefore, if p is the largest prime less than N! + 2, we have
g(p) > N − 1. Since we can send N → ∞, we arrive to the result
of Eq. 10. In summary, the sequence of primes shows a pattern of
the gaps which is not at all regular, for instance, one does not have
any clue where the smallest gaps may appear.

These features highlight the irregular behavior of the primes
and lead to the conclusion that the quantum potential VN(x) that
encodes them should be a rather peculiar function. Given that it
has N bound states with energies equal to the prime numbers and
strong variations in the energy gap between consecutive levels,
we expect VN(x) to display a rich structure of maxima and min-
ima which depends on N. Hence, the experimental technique to
realize VN(x) must be sufficiently flexible in order to accurately
reproduce this structure. As shown in the next section, experi-
mental techniques such as computer-generated holography start
with sampling VN(x) over a number of points (“pixels”). With more

pixels available, it is possible to increase the complexity of VN(x),
hence the number of energy levels.

Holographic techniques
Before discussing how to obtain the exact expression of VN(x), let
us review the experimental techniques that enable the optical re-
alization of the prime number potentials. Our optical potentials
are suitable for trapping ultracold atoms in a one-dimensional
geometry via the optical dipole force. The optical dipole potential
is proportional to the intensity of the light (39); hence, here we
shape the intensity profile of an incoming laser beam using holo-
graphic techniques. In computer-generated holography, a liquid-
crystal SLM spatially modulates the phase of the light. The phase
pattern on the SLM acts as a generalized diffraction grating, so
that in the far field, we have Fraunhofer diffraction and an inten-
sity pattern is formed, which can be used to implement VN(x). The
SLM acts effectively as a computer-generated hologram, and the
light field in the output plane is the Fourier transform of the light
field in the SLM plane. The calculation of the appropriate phase
modulation to give the required output field is a well-known in-
verse problem that, in general, requires numerical solutions. Here,
we use a conjugate gradient minimization technique which effi-
ciently minimizes a specified cost function (40, 41). The cost func-
tion is defined to reflect the requirements of the chosen light field
in the output plane. In addition to specifying the intensity profile
of the field, which gives VN(x), we also constrain the phase of the
light in the output plane. Namely, a uniform phase is programmed
across the whole intensity profile. Controlling the phase this way
leads to a well-maintained intensity profile as the light propagates
out of the output plane.

Figure 1 is a schematic of the experimental setup. Our SLM
(Hamamatsu LCOS-SLM X10468) is illuminated by laser light with
wavelength 1064 nm. The light diffracted by the SLM is focussed
on the output plane by a f = 75 mm achromatic doublet (Thor-
labs AC508-075-B), and detected by a CCD camera (Thorlabs
DCU224M). As shown in the figure, in order to accurately repro-
duce a given target light profile, we program only a small subset
of the output plane [the “signal region” (SR)], whereas the field is
left unconstrained in the rest of the plane (42). We use the follow-
ing cost function (41):

C = 10d

⎛
⎝1 −

∑
p,q∈SR

Re
{∣∣∣τ̃ ∗

p,qẼout
p,q

∣∣∣}
⎞
⎠

2

, (11)

where p and q denote the output plane coordinates. Here, τ p,q is
the target light field, Eout

p,q is the output light field, linked to the
SLM light field via a Fourier transform, and the over-tilde denotes
normalization over the SR. This cost function minimizes the dis-
crepancy between τ p,q and Eout

p,q in the parameter space of all the
different phase distributions that the SLM can generate. The pref-
actor 10d, where d = 9 for the results shown here, increases the
steepness of the cost function to improve convergence time and
accuracy.

In the algorithm, both the SLM plane and the output plane have
a size of 2m × 2m pixels, where m × m is the number of pixels in
the SLM array: namely, the SLM plane is “padded” with zeroes to
increase its size from m × m to 2m × 2m. The purpose of this is
to fully resolve the output plane (42). We find that with 512 × 512
SLM pixels available, we achieve 1D potentials that are up to 100-
pixel long in the output plane. This amounts to about 1/10 of the
linear dimension of the 1024 × 1024 output plane. If we increase
the length of the potential beyond this, we lose light-utilization
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Fig. 1. Experimental setup, showing the phase profile imprinted by the SLM and the resulting light intensity profile in the trapping plane. The
zoomed-in image shows the SR, i.e. the region of the output plane in which the field is programmed by the conjugate gradient minimization algorithm.
In this case, the SR contains a generic 1D trapping potential. The circular intensity distribution delimitates the boundary with the region of the output
plane where the intensity is left unconstrained. The scale bar is 100 μm.

efficiency, i.e. the light intensity in the pattern becomes too low.
With our holographic method, we can obtain any smoothly vary-
ing intensity profile over this 100-pixel interval. However, given
the nontrivial behavior of the potential described at the end of
the previous section, this 100-pixel maximum interval limits the
number of energy levels of the potential, i.e. the number of primes.
Therefore, we envisage that to increase the number of primes con-
tained in the potential beyond what we present in this work, it is
necessary to increase the number of SLM pixels.

In future, it will be possible to realize prime number poten-
tials also with light sculpting techniques which are alternative
to the liquid-crystal SLM we use in this work. For instance, AODs
have been used to realize a wide range of optical potentials (43,
44). While the AOD potentials realized so far are simpler than the
prime number potentials presented here, it is possible in princi-
ple to increase their level of complexity. Another possibility is the
use of DMDs. A DMD is a matrix of individually addressable mir-
rors which can be used as an intensity mask that can be directly
imaged on the atoms. The projected image from a DMD is intrin-
sically binary, due to the individual mirrors being either “on” or
“off”; however, there are methods that overcome this limitation
and allow the realization of intensity gradients: half-toning and
time-averaging (23). Half-toning relies on the finite optical reso-
lution of the imaging optical system, whereby multiple mirrors
contribute to each resolution spot in the projected plane. This
provides a number of possible intensity levels in each resolution
spot, which is given by the number of contributing mirrors. In (45),
half-toning was used to demonstrate 1D potentials with a high
degree of control. If half-toning is combined with time-averaging,
in which a time-averaged potential is achieved with high-speed
modulation of the mirrors, intensity control can be further im-
proved. With this combination of approaches, it will be possible
to use DMDs to reproduce the prime number potentials presented
here. The DMD dimension required for this is comparable to the
dimension of the liquid-crystal SLM we use here, making the two
techniques equivalent.

Discrete sequences and quantum potentials
Let us now address the problem of how to design, in general, a
quantum potential V(x) in such a way that a given sequence of

real numbers

E = {e0, e1, e2, e3, . . .} (12)

coincides with the set of eigenvalues of the Schrödinger equa-
tion shown in Eq. 4. It is important to distinguish two cases:

� The sequence E is infinite. In this case, a necessary condition
for the existence of a continuous potential V(x) able to sup-
port the sequence E as spectrum is that asymptotically the
en’s satisfy the bound (19)

en ≤ A n2, n → ∞, (13)

where A is a positive real number.
� The sequence E is, on the contrary, finite, i.e. it only consists

of a finite number N of terms, e0, e1, e2, …, eN − 1, plus possibly
a continuous part of the spectrum with energies larger than
the maximum value of the en’s. In this case, there is no obsta-
cle to the existence of a potential V(x) which supports such a
spectrum, and the explicit form of this potential can indeed
be found using methods of SQM (25), as discussed below.

A familiar example of the first case is provided by the infi-
nite set N of all natural numbers, whose corresponding poten-
tial V(x)∝x2 gives rise to the well-known Hamiltonian of the har-
monic oscillator (46). Another example is provided by the se-
quence E = {1, 4, 9, 16, . . .} of squared integers, which can be real-
ized as a quantum spectrum in terms of a properly tuned infinite-
well potential (46). It is important to underline that, besides these
known cases and very few others, it is in general not known a uni-
versal procedure for engineering a potential V(x) with exactly all
elements of an infinite sequence E = {e0, e1, e2, e3, . . .} as eigenval-
ues. The best one can do in such a case is to identify a semiclassical
potential Vsc(x): it is worth to stress, however, that this quantity is
only able to capture the scaling growth of the eigenvalues rather
their actual values, since it is determined by the formula

x(Vsc ) = h̄√
2m

∫ Vsc

E0

dE
dE
dn

√
Vsc − E

, (14)

which depends upon the density of states dE/dn rather than the
individual energy levels en’s. Taking, for instance, the infinite set
P of the primes, it is easy to see that these numbers satisfy the
bound (13) (see Eq. 8). The corresponding semiclassical potential
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Fig. 2. Sequence of supersymmetric partner potentials Vk(x), where Vk

shares all the spectrum of the previous one Vk+1 except its ground state
energy.

was determined in (19) by substituting in Eq. 14 the density of
states coming from Eq. 7:

(
dE
dn

)−1

= dπ

dE
� 1

log E

∞∑
m=1

μ(m)
m

E (1−m)/m. (15)

Let us now consider the second case, where the sequence E =
{e0, e1, e2, e3, . . .} is instead finite. Here, there exists the general pro-
cedure of SQM (25) for engineering a potential V (x) with the en’s
as its exact spectrum. It is well known that there are many poten-
tials that share the same spectrum (47), and to identify uniquely
one of these potentials, in the following we impose the additional
condition V (x) = V (−x). Using the methods of SQM, one sets up
a chain of potentials Vk(x) (k = N, N − 1, …, 0), as those shown
in Fig. 2, with the property that the potential Vk−1(x) has the same
spectrum as the previous one Vk(x), except its ground state. In other
words, climbing down in the label k of these potentials Vk(x), there
is a depletion, one by one, of the lowest level of the previous po-
tential. This chain of potentials is determined by a system of dif-
ferential equations and, as we shall see below, this structure is at
the root of the exact reconstruction of the potential with a given
set of energy levels. Indeed, it is sufficient to reverse the procedure
and adjust, one by one, all the desired eigenvalues! With a finite
set of discrete eigenvalues, the final potential has a finite limit at
x → ±∞ and therefore also has a continuum part of the spectrum;
however, this is not relevant for our purposes and will not be dis-
cussed further. In more detail, the top-down procedure works as
follows (25):

(1) First of all, we subtract from all the eigenvalues en the high-
est one eN, so that the new set of numbers {Ẽn}

Ẽk = eN−k − eN , k = 0, 1, . . . , N, (16)

will be considered as the new spectrum. The Ẽk’s are of
course the (negative) gaps computed from the highest eigen-
value eN. Notice that, consistently, they are enumerated
starting from the top to the bottom, so Ẽ0 = 0, Ẽ1 is the first
gap, Ẽ2 the second gap, and so on. A potential V (x) where its
only eigenvalue is Ẽ0 = 0 is of course V0(x) = 0. This poten-
tial is used as input for the Riccati equation for the super-
potential W1(x)

W ′
1(x) − W2

1 (x) + V0(x) = Ẽ1 (17)

with boundary condition W1(0) = 0.

(2) Once such a function W1(x) has been obtained, one can con-
struct another potential V1(x) as

V1(x) = 2Ẽ1 + 2W2
1 (x) − V0(x). (18)

This potential is then substituted into Eq. 17 (i.e. V0(x) →
V1(x), substituting also Ẽ1 → Ẽ2), so that one has a differen-
tial equation for another super-potential W2(x)

W ′
2(x) − W2

2 (x) + V1(x) = Ẽ2. (19)

(3) Proceeding iteratively in this way, one has a recursive se-
quence of differential equations

W ′
k(x) − W2

k (x) + Vk−1(x) = Ẽk,

Vk(x) = 2Ẽk + 2W2
k (x) − Vk−1(x), (20)

all of them solved with the boundary condition
Wk(0) = 0, which ensures that the final potential
V (x) = VN(x) is an even function. This recursive system
is continued until all the gaps have been taken into
account. Hence, solving (in general numerically) the differ-
ential equations of Eq. 20, one arrives to the Hamiltonian
which has exactly the spectrum {en}

H = − d2

dx2
+ VN(x) + eN. (21)

These are indeed the theoretical steps which lead to the poten-
tial VN(x) with exactly the first N prime numbers (26, 27), in other
words, our quantum abacus with a finite number of beads. From
what is discussed above, the pros and cons of the SQM method
are fairly evident:

� Pros: The method is exact, i.e., given a finite set of numbers
{en}, this method provides the exact potential which has these
numbers as the exact eigenvalues. If this set is made of the
first N primes, the potential exactly accommodates these
prime numbers in the spectrum.

� Cons: The method is not smoothly scalable, in the sense that
if we have determined the potential which has as eigenvalues
a set of N values en, when adding a new value eN + 1, we have
to start again from scratch and determine altogether another
potential that will accommodate exactly the (N + 1) eigenval-
ues.

In comparison, the semiclassical potential Vsc(x) (e.g. for the
primes) has somehow opposite pros and cons: it is scalable, in the
sense that once it has been implemented, all its eigenvalues are
fixed but, on the other hand, it is not exact, i.e. its eigenvalues are
not exactly the prime numbers.

In closing this section, it is important to stress two impor-
tant mathematical properties of the system of differential equa-
tions shown in Eq. 20. The first property is that there is one and
only one family of potentials which provide closed analytical so-
lutions of the system of differential equations and which recur-
sively reproduce themselves at each step of the procedure. This is
the family of the Pöschl–Teller potentials given by

V̂N(x) = − 1
2

N(N + 1)

cosh2 x
, (22)

associated with the exact sequence of gaps

Ẽn = − n2

2
, n = 0, 1, 2, . . . N. (23)
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Fig. 3. (a) Sequence of Pöschl–Teller potential V̂N (x) obtained by solving the recursive differential Eqs. 20 to accommodate the energy gaps shown on
the right hand side. (b) Potential V(x) which has exactly the first (negative) 20 natural numbers as energy gaps.

Fig. 4. (a and b) Experimental prime number potentials V10(x) and V15(x). The images show the light intensity profiles, where the red scale bar is 50 μm,
applicable to both images. The plots show the corresponding potentials, rescaled to dimensionless units, alongside their theoretical counterparts. The
experimental eigenvalues are shown as horizontal lines on the plots and are also tabulated in (c), alongside the first 15 prime numbers for comparison.

The Pöschl–Teller potentials V̂N(x) do not have oscillations and
present the typical shape of an inverted bell (see Fig. 3a). The sec-
ond property is that any finite sequence Ẽ of gaps other than the
one given by Eq. 23 is expected to give rise to a potential with oscil-
lations. This is true even for very straightforward sequences, as, for
instance, the potential which has exactly the sequence of the first
20 negative integers as its energy gaps, see Fig. 3b. This feature
is also pretty evident in our realizations of the prime potentials:
in Fig. 4, we show, for instance, the potentials V10(x) and V15(x),
which have, as eigenvalues, exactly the first 10 and 15 prime num-
bers, respectively. These potentials have a number of oscillations
which scales with the number of eigenvalues. These oscillations
are expected to be more pronounced in correspondence to more
irregular sequences of numbers chosen to be eigenvalues. This is
certainly the case for the prime numbers, as underlined earlier.

Experimental prime number potentials
We use the apparatus shown in Fig. 1 to realize the prime num-
ber potentials V10(x) and V15(x). The experimental light intensity
profiles and the corresponding potentials are shown in Fig. 4a and

b. The potentials are meant to be implemented with light that is
red-detuned relative to the atomic transition, so that regions of
higher intensity correspond to a lower value of the potential (39).
The potentials are rescaled so that they are plotted in dimension-
less units alongside their theoretical counterparts. [See code and
data available online (48).] The conversion between dimensionless
eigenvalues en and physical eigenvalues En is given by

En

en
= h̄2

m

(
l
L

)2

, (24)

where l and L are the lengths of the potential in dimensionless
and physical units, respectively. Assuming 87Rb atoms, we obtain
En/en = h × 0.029 Hz for V10(x) and En/en = h × 0.026 Hz for V15(x).
The potential depth can be calculated with the same conversion
formula, leading to a depth of kB × 47 pK for V10(x) and of kB ×
69 pK for V15(x). These figures show that we have shallow traps
with very low trap frequencies, and that we would need to work at
extremely cold temperatures, beyond what has been experimen-
tally realized (49, 50).

However trap depths and trap frequencies can be increased by
increasing the numerical aperture of the optical system, i.e. with
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Fig. 5. (a) Experimental lucky number potential V (L)
10 (x), where the red

scale bar is 50 μm. The corresponding eigenvalues are tabulated in (b)
alongside the first 15 lucky numbers.

stronger focusing in conjunction with a larger SLM physical size.
Our current optical system has a resolution spot of 10 μm. This
determines the typical distance between peaks in the potentials,
which is about three times the resolution spot. If in the future
we use a resolution of 1 μm, e.g. with a quantum gas microscope
(51, 52), then the distance between peaks and the overall physical
length of the potentials can be scaled down accordingly. As shown
in Eq. 24, energies scale with the inverse square of the physical
length L. Hence, it will be possible to achieve trap depths of sev-
eral nK, therefore improving experimental feasibility. In general,
the length–depth aspect ratio of the potential is constrained: to in-
crease the energy scale and correspondingly the potential depth,
while at the same time maintaining the same number of energy
levels and their relative spacing, it is necessary to scale down the
physical length of the potential.

The experimental eigenvalues, expressed in dimensionless
units, approximate the primes well. The potentials reported in
Fig. 4 are stable in time, but sensitively depend on the alignment of
the optical setup. Out of many experimental implementations we
have obtained, the figure shows the optimized potentials, i.e. those
whose eigenvalues match the primes if rounded to the nearest in-
teger, as shown in Fig. 4c. The residual differences between the
experimental eigenvalues and the primes arise from the discrep-
ancies between the theoretical and experimental potentials, small
but visible in the plots, which in turn are caused by an imperfect
SLM response and by aberrations in the optical setup. The root-
mean-square (r.m.s.) fractional discrepancy between the theoret-
ical and the experimental potentials is 10% for V10(x) and 7% for
V15(x), giving an r.m.s. fractional discrepancy between the eigen-
values and the primes of 8% and 6%, respectively. In future, these
errors can be reduced with error-correction algorithms as shown
in ref. (23). Another source of experimental uncertainty is due to
the optical power on the SLM fluctuating over time, as this will
change the eigenvalues. Specifically, a 1% fluctuation in the opti-
cal power leads to a ∼ 0.5% change in the relative position of the
eigenvalues. Hence, to achieve the three-digit precision shown in
Fig. 4c, it is necessary to stabilize the optical power to 1%, which
is feasible with active stabilization techniques.

The lucky quantum potential
The method presented in this paper can be straightforwardly ex-
tended to other sequences of integers. As a significant example
related to the primes, we present here the potential V (L)

N (x) having
as eigenvalues the so-called lucky numbers

L = {1, 3, 7, 9, 13, 15, 21, 35, 31, 33, . . .}. (25)

These numbers, introduced in the 50s by Gardiner, Lazarus,
Metropolis, and Ulam (28), are obtained with a sieve (known as
the sieve of Josephus Flavius) different from the sieve of Eratos-
thenes used for the primes. Briefly, to obtain the prime numbers,
one famously eliminates from the list of integers the multiples
of 2 (the even numbers), then the multiples of 3, then the multi-
ples of 5, and so on. On the contrary, for the lucky numbers, one
eliminates numbers based on their position in the remaining set,
instead of their original value, i.e. their position in the initial set of
natural numbers. So, one eliminates every second number (again
the even numbers), then, rescaling the remaining set, every third
number (since the first number remaining in the list after 1 is 3),
then every seventh number (since the first number remaining in
the list after 3 is 7), and so on. As for the primes, there are infinitely
many lucky numbers. Moreover, the prime numbers and the lucky
numbers share many properties, including the asymptotic behav-
ior according to the prime number theorem. A “lucky prime” is a
lucky number that is also a prime, and it has been conjectured
that there are infinitely many lucky primes.

Proceeding as in the earlier sections, in Fig. 5 we present, as
an example, the experimental realization of the potential V (L)

10 (x)
for the first 10 lucky numbers. Notice that, using the transmis-
sion and reflection properties of a quantum potential, it is possi-
ble to set up a simple physical experiment, shown in Fig. 6, to test
whether a given number w is both a lucky and a prime number.
It involves a generalization of the proposal originally made in ref.
(19) for checking the primality of a number: in the present case, let
us imagine that in the box A we have realized the lucky potential
V (L)

M with a number of levels M large enough so that LM � w, while
in the box B, we have instead realized the prime number potential
VN(x) with pN � w. Both potentials can be rounded and truncated
at an energy cutoff ε0 (which can be controlled by an external han-
dle) in such a way that the original energy levels are essentially left
unperturbed, but there are now asymptotic free states. Hence, we
can take advantage of the typical resonance phenomena of quan-
tum mechanics. We send on the composite apparatus G, made of
A and B, a wave-packet from the left (x → −∞) with dimensionless
energy w. If the number w is a lucky number, it will be completely
transmitted through box A, and if it is also a prime number, it will
be completely transmitted through box B as well. Therefore, if the
particle with energy w is observed coming out the apparatus G,
then the number w is both a lucky and a prime number. This way,
one could implement an experimental setup to test whether or
not any given number w is a lucky prime.

Conclusions
In this paper, we have provided the first experimental realiza-
tion of the prime number quantum potential VN(x), whose single-
particle quantum Hamiltonian has the lowest N prime numbers
as eigenvalues. The exact theoretical shape of this potential has
been determined using SQM, and experimentally implemented
by means of holographic techniques. As a proof of principle, we
have experimentally realized the potential VN(x) with N = 10 and
N = 15, finding a good agreement of the eigenvalues of these po-
tentials with the first 15 prime numbers. We have also discussed
how this procedure can be successfully used to implement poten-
tials having other sequences of integer or real numbers as eigen-
values. As an example, in this paper we discussed the “lucky” po-
tential V (L)

N (x), i.e. the potential that has the first N lucky num-
bers as eigenvalues, and we experimentally realized the case N =
10. Work is in progress to realize quantum potentials which have
as energy spectra sequences such as the Fibonacci numbers (53),
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Fig. 6. (a) The G-apparatus filter numbers that are both lucky and prime numbers. The devices A and B are made of the potentials V (L)
M (x) and VN(x) for

the M lucky numbers and N prime numbers, respectively, with an energy cutoff ε0. (b) The transmission amplitude T(E) versus the (dimensionless)
energy E from the G-apparatus, with sharp resonance peaks in correspondence of those values of E that are both lucky and prime numbers.

or the real sequence of the logarithms of the integers, or of the
logarithms of the primes, as considered in (15, 16, 54). Indeed,
as we have already emphasized, any finite sequence of integer
or real numbers can be obtained. One can also construct higher-
dimensional potentials starting from the 1D potentials presented
here. Another interesting future development is the use of the
prime number potential and its eigenfunctions to study the en-
tanglement entropy of a truncated version of the prime state in-
troduced in (17, 18).

It goes without saying that, in order to increase the capability of
the present device so as to have longer sequences as energy levels,
of course one needs to increase its resolution, as is the case for
any physical system which stores and manipulates numbers. In
particular, for us this means increasing the number of SLM pixels
used to sample the potential.

The present results provide a physical setup for a quantum me-
chanical manipulations of discrete sequences of numbers. This
paves the way toward using these potentials for a variety of math-
ematical tests (such as the primality test) and arithmetic manip-
ulations (such as prime factorization) by means of quantum ex-
periments. It will be interesting to populate the energy levels with
neutral atoms (bosonic or fermionic) and to induce transitions be-
tween levels by “shaking” the potential, either in terms of varying
its overall strength or its center of mass, using a periodic drive. A
compelling aspect is to determine whether it is better to employ
for such manipulations either fermionic or bosonic atoms. Prelim-
inary results seem to favor the latter, in absence of sizable atomic
interactions, and further work is currently in progress. Equally
interesting is to address other important open problems related
to temperature effects and to the role played by atomic interac-
tions, which can be controlled with Feshbach resonances (55), in
view of the efficient implementation of arithmetic operations on
integers.

Acknowledgments
We would like to thank G. D. Bruce for technical assistance.

Authors’ Contributions
D.C. contributed to the experimental part of the work, while G.M.
and A.T. contributed to its theoretical part.

References
1. Hardy GH, Wright EM. 1979. An introduction to theory of num-

bers. Oxford: Oxford University Press.
2. Apostol TM. 1998. Introduction to analytic number theory.

5thed. New York (NY): Springer.
3. Tao T. 2011. Structure and randomness in the prime numbers.

In: Schleicher D, Lackmann M, editors. An invitation to mathe-
matics. Berlin, Heidelberg: Springer.

4. Ore O. 1948. Number theory and its history. New York (NY):
McGraw–Hill.

5. Ribenboim P. 1996. The new book of prime number records.
Berlin: Springer-Verlag.

6. Schroeder MR. 1990. Number theory in science and communi-
cation. Berlin: Springer-Verlag.

7. Zagier D. 1977. The first 50 million prime numbers. Math Intell.
1:7–19.

8. Granville A, Martin G. 2006. Prime number races. Am Math
Month. 113(1):1–33.

9. Rose HE. 1994. A course in number theory. Oxford: Oxford Sci-
ence Publications.

10. Riemann GFB. 1859. Über die Anzahl der primzahlen unter
einer gegebenen Grösse. Berlin: Monatsberichte der Königlichen
Preussische Akademie des Wissenschaften. p. 671–680.

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/2/1/pgac279/6888012 by guest on 31 January 2023



Cassettari et al. | 9

11. Edwards HM. 1974. Riemann zeta function. New York (NY): Aca-
demic Press.

12. Borwein P, Choi S, Rooney B, Weirathmueller A. 2007. The Rie-
mann hypothesis: a resource for the afficionado and virtuoso
alike. New York: Springer.

13. Rassias MT. 2017. Goldbach’s problem: selected Topics. Cham:
Springer International Publishing.

14. Shor PW. 1997. Polynomial-time algorithms for prime factoriza-
tion and discrete logarithms on a quantum computer. SIAM J
Comput. 26:1484.

15. Weiss C, Page S, Holthaus M. 2004. Factorising numbers with a
Bose–Einstein condensate. Physica A. 341:586–606.

16. Gleisberg F, Di Pumpo F, Wolff G, Schleich WP. 2018. Prime fac-
torization of arbitrary integers with a logarithmic energy spec-
trum. J Phys B At Mol Opt Phys. 51:035009.

17. Latorre JI, Sierra G. 2014. Quantum computation of prime num-
ber functions. Quantum Inf Comput. 14:577–588.

18. Latorre JI, Sierra G. 2015. There is entanglement in the primes.
Quantum Inf Comput. 15:622–659.

19. Mussardo G. 1997. The quantum mechanical potential for the
prime numbers. arXiv:cond-mat/9712010. https://doi.org/10.485
50/arXiv.cond-mat/9712010, preprint: not peer reviewed.

20. Donis-Vela A, Garcia-Escartin JC. 2017. A quantum primality test
with order finding. Quantum Inf Comput. 17:1143–1151.

21. Schumayer D, Hutchinson DAW. 2011. Colloquium: physics of the
Riemann hypothesis. Rev Mod Phys. 83:307.

22. Wolf M. 2020. Will a physicist prove the Riemann hypothesis?
Rep Prog Phys. 83:036001.

23. Gauthier G, et al. 2021. Dynamic high-resolution optical trapping
of ultracold atoms. Adv Atomic Mol Opt Phys. 70:1–101.

24. Amico L, et al. 2021. Roadmap on atomtronics: state of the art
and perspective. AVS Quantum Sci. 3:039201.

25. Cooper F, Khare A, Sukhatme U. 1995. Supersymmetry and
quantum mechanics. Phys Rep. 251:267–385.

26. Ramani A, Grammaticos B, Caurier E. 1995. Fractal potentials
from energy levels. Phys Rev E. 51:6323.

27. van Zyl BP, Hutchinson DA. 2003. Riemann zeros, prime num-
bers, and fractal potentials. Phys Rev E. 67:066211.

28. Gardiner V, Lazarus R, Metropolis N, Ulam S. 1956. On certain
sequences of integers defined by sieves. Math Mag. 29(3):117–
122.

29. Hadamard J. 1896. Sur la distribution des zéros de la fonc-
tion zeta(s) et ses conséquences arithmétiques. Bull Soc Math
France. 24:199–220.

30. de la Vallée Poussin CJ. 1896. Recherches analytiques la théorie
des nombres premiers. Ann Soc Scient Bruxelles. 29:183–256.

31. Selberg A. 1949. An elementary proof of the prime-number the-
orem. Ann Math. 50:305–313.
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