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Abstract
In this paper, we present modifications of the iterative hard thresholding (IHT) 
method for recovery of jointly row-sparse and low-rank matrices. In particular, a 
Riemannian version of IHT is considered which significantly reduces computational 
cost of the gradient projection in the case of rank-one measurement operators, which 
have concrete applications in blind deconvolution. Experimental results are reported 
that show near-optimal recovery for Gaussian and rank-one measurements, and 
that adaptive stepsizes give crucial improvement. A Riemannian proximal gradient 
method is derived for the special case of unknown sparsity.

Keywords Matrix recovery · Iterative hard thresholding · Riemannian optimization · 
Blind deconvolution

1 Introduction

Since the seminal works on compressive sensing by Candès, Romberg, and Tao [7] 
and by Donoho [9], the question of recovering structured signals from subsampled 
random measurements has received significant attention. Two structural models of 
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fundamental importance in applications are sparse signals and low-rank matrices. 
A sparse signal is one that can be well approximated by a linear combination of just 
a few elements in a given basis or dictionary, and has proven to be appropriate for 
example in magnetic resonance imaging or remote sensing. Low-rank matrix models 
have been successful, e.g., for recommender systems and in applications related to 
phase retrieval and wireless communication. In these last two areas, the low-rank 
model arises from lifting, that is, a quadratic or bilinear measurement is equiva-
lently expressed as a linear function acting on the rank-one matrix formed from the 
outer product of the two inputs. Consequently, combined with a sparsity assumption 
for the underlying signal (or signals), this entails that the matrix to be recovered is 
simultaneously of low rank and row and/or column sparse.

In this paper, we focus on the low rank and row sparse scenario. Such a model arises 
for example in wireless communication as follows. When an encoded message is transmit-
ted via an unknown channel, the received signal can be modeled as the convolution of the 
encoded message vector with a channel vector. For this vector, sparsity can be assumed 
when only few transmission paths are active. The goal is then to estimate both the message 
and the sparse channel vector from the received signal. This problem of blind deconvolu-
tion can be recast into a recovery problem for a row-sparse rank-one matrix from linear 
measurements (see Section 4.2). For a subspace model instead of a sparsity model (that is, 
when the active transmission paths are assumed to be known), a number of recent works 
have discussed solution strategies, including lifting [3, 21] and nonconvex methods [23]. 
Subsequently, these methods have been generalized to the more difficult case of multiple 
simultaneous transmissions [18, 25, 26], but again only for subspace models.

To make our model precise, we consider the space ℝM×N of M × N matrices and 
denote by ‖X‖0 the number of nonzero rows of X. If ‖X‖0 ≤ s , we say that X is row 
s-sparse. The set of row s-sparse matrices is denoted by

The set of matrices of rank at most k is denoted by

In this paper, we focus on the intersection of these sets,

Throughout, we assume that

since otherwise the low-rank constraint is void. The problem we then consider is to 
recover a given matrix X ∈ Mk,s from m linear measurements

where A1,… ,Am ∈ ℝ
M×N , and ⟨⋅, ⋅⟩F is the usual Frobenius inner product. With a 

corresponding linear operator � ∶ ℝ
M×N

→ ℝ
m , this can be formulated as solving 

the problem

Ns = {X ∈ ℝ
M×N ∶ ‖X‖0 ≤ s}.

Mk = {X ∈ ℝ
M×N ∶ rank(X) ≤ k}.

Mk,s = Mk ∩Ns = {X ∈ ℝ
M×N ∶ rank(X) ≤ k, ‖X‖0 ≤ s}.

k < s,

⟨Ap,X⟩F = yp, p = 1,… ,m,
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for a given y ∈ ℝ
m.

The two simultaneous structural constraints defining Mk,s significantly reduce 
the degrees of freedom and allow for injectivity of � on Mk,s given a considera-
bly smaller number of measurements m as compared to constraining only on one 
of the two sets Mk or Ns . Injectivity properties have been shown to require only 
O(k(s + N)) measurements in various scenarios [10, 24]; for generic measurement 
operators, precise conditions on the number of measurements are known [19].

At the same time, the simultaneous objectives make it harder to practically 
recover at near-minimal sampling complexity. In particular, while both the low-
rank and the sparsity objective on its own admit tractable convex relaxations with 
recovery guarantees under random measurements, it has been shown that no linear 
combination of these two objectives allows for comparable guarantees for the joint 
objective [29], see also [20]. Greedy-type methods are also difficult to generalize to 
the joint minimization problem. A typical key step in these methods is a projection 
onto the set of admissible signals. For sparsity and low-rank models, this projection 
can be efficiently implemented by restricting to the largest coefficients or the larg-
est principal components, respectively. For the joint low-rank and (bi-)sparse model, 
however, this projection is an instance of the sparse principal component analysis 
problem, which is known to be NP hard in general [27].

For very special measurements, certain two-stage procedures can allow for 
guaranteed recovery. For phase retrieval, this works when measurements of the 
form |b∗

i
Φx|2 , i.e., Ap = b∗

p
ΦΦ∗bp and X = xx∗ in terms of the representation (1.1), 

are considered with Φ representing a linear dimension reduction, and the number 
of measurements is larger than the embedding dimension of Φ by at least a con-
stant factor [17]. Namely, for Φ ∈ ℝ

m×N ,m ≳ s log
N

s
 , and bi both chosen with 

i.i.d. Gaussian entries, such measurements allow the recovery of y = Φx via stand-
ard phase retrieval techniques, from which one can then infer x via compressive 
sensing. Similar nested measurements can also be constructed in the framework of 
bilinear problems  [4]. While arguably such very special measurements cannot be 
assumed in many scenarios of interest, these observations show that solving sparse 
bilinear problems is not an intrinsically hard problem in all cases.

That said, some recent progress has been made also for more generic classes of 
measurements. A number of works have established local recovery guarantees for 
a near-optimal number of measurements, that is, convergence to the true solution 
is guaranteed from all starting points in a suitable neighborhood. For sparse phase 
retrieval, such guarantees have been established for gradient descent [32] and hard 
thresholding pursuit [6]. For unstructured Gaussian measurements, local guarantees 
are available for the alternating algorithms sparse power factorization [22] and alter-
nating Tikhonov regularization and Lasso [11]. Suitable initialization procedures to 
complement these methods by constructing a starting point in a small enough neigh-
borhood of the solution, however, are known only for certain special classes of sig-
nals such as signals with few dominant entries [14, 22]. In [28], a model of low-rank 
recovery with essentially sparse nonorthogonal factors is considered, for which a 
robust injectivity property for several types of measurements is established. We also 

(1.1)�(X) = y, X ∈ Mk,s.
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mention the work [15] in which a rank-adaptive algorithm for finding global minima 
of nonconvex formulations of structured low-rank problems is presented.

Despite the recent progress, it remains largely an open problem whether and how 
joint (bi-)sparse and low-rank signals can be efficiently recovered from a near-min-
imal number of measurements when no such initialization is provided. For an in-
depth discussion of what makes the problem difficult and some initial ideas regard-
ing how to solve it, we refer the reader to [12].

1.1  Contribution and outline

In this paper, we consider a class of non-convex iterative methods based on modifica-
tion of iterative hard thresholding (IHT) as proposed in the recent work [12]. In princi-
ple, under suitable RIP assumptions for the operator � , the standard IHT method could 
be used to approximate the solution of (1.1) at an exponential rate. The main obstacle is 
that the exact projections on the set Mk,s are NP hard to compute as mentioned above. 
It is, however, possible to compute quasi-optimal projections on Mk,s by simply using 
the successive projections on Mk and Ns , or vice versa. This approach is taken in Sec-
tion  where we first derive quasi-optimality constants for such projections. These results 
complement some of the investigations in [12] on the bisparse case. We then consider a 
practical version of IHT that uses these quasi-optimal projections in combination with 
line search, and present a local convergence result for such a method.

The main contribution of this paper is a further modification of the IHT algorithm 
that makes use of the manifold properties (of the smooth part) of the set Mk by apply-
ing a tangent space projection to the search direction. This idea is inspired by Rie-
mannian low-rank optimization, which has been shown to be efficient in several appli-
cations, including matrix completion and matrix equations; see [33] for an overview. 
We demonstrate that in the important case of rank-one measurements, which includes 
problems of blind deconvolution, the additional tangent space projection allows for a 
significant reduction of computational cost since the projection of the gradient onto 
the tangent space can be efficiently realized even for large low-rank matrices. This 
observation does not specifically rely on the sparsity structure and should therefore be 
of interest for other low-rank recovery problems with rank-one measurements as well. 
The proposed Riemannian version of IHT is presented in Section 3.1, with a detailed 
discussion for the case of rank-one measurements in Section 3.2.

Lastly, we also consider the scenario that the sparsity parameter s is unknown. 
One can then replace the hard-thresholding operator for the rows with a soft-thresh-
olding operator. As we show in Section 3.3, such a modification admits a natural 
interpretation as a manifold proximal gradient method on Mk with the (1, 2)-norm 
as a penalty. Notably, in contrast to other recent generalizations of the proximal gra-
dient method to manifolds [8, 16], the structural constraints considered in this work 
allow for a closed-form expression of the proximal step via soft-thresholding.

Finally, in Section 4, we present several numerical experiments. We test the three 
algorithms proposed in this work in scenarios with random measurements as well as 
rank-one measurements. This also includes a numerical experiment on blind decon-
volution with Fourier measurements.
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The main outcome of our results is that in practice, and in the noiseless case, the 
proposed variants of IHT are capable of recovering row-sparse low-rank matrices 
with a near optimal number of measurements, up to a constant oversampling factor. 
The theoretical guarantees are currently restricted to local convergence results, and 
will be subject to future research.

2  Review of iterative hard thresholding approaches

The sparse low-rank recovery problem (1.1) can be recast into the optimization problem

where ‖ ⋅ ‖2 denotes the Euclidean norm in ℝm . Noting that

an intuitive approach to the sparse low-rank recovery is the iterative hard threshold-
ing method, which takes the form

where �Mk,s
 is a metric projection on Mk,s , which is characterized by the best 

approximation property

By the standard arguments, one can show that under a suitable RIP assumption this 
method is globally convergent to the solution X∗.

A main obstacle is that the projection on the set Mk,s is usually prohibitively 
expensive to compute, essentially at the cost of checking almost all possible sub-
sets of s rows of X. For a subset S ⊆ {1,… ,M} , we denote by XS the projection of 
X where all rows not in S have been set to zero. We then have the following result, 
which has already been noted in [12] for the case k = 1.

Proposition 2.1 For given X, �Mk,s
(X) is given as a best rank k approximation of XS′ , 

where the submatrix XS′ maximizes �2
1
(XS) +⋯ + �2

k
(XS) (sum of squares of largest 

singular values) among all submatrices XS of X with |S| = s.

Proof For any row support set S with |S| ≤ s , the optimal closest point in Mk,s with 
this support is obviously a best rank k approximation �k(XS) of XS (which has the 
same row support). It has the squared distance

(2.1)min f (X) =
1

2
‖�(X) − y‖2

2
s.t.X ∈ Mk,s,

∇f (X) = �∗(�(X) − y),

(2.2)X
�+1 = �Mk,s

(X
�
− �∗(�(X

�
) − y)).

‖X − �Mk,s
(X)‖F ≤ ‖X − Y‖F for all Y ∈ Mk,s.

‖X − �k(XS)‖2F =‖XS̄‖2F + ‖XS − �k(XS)‖2F
=‖XS̄‖2F + ‖XS‖2F − ‖�k(XS)‖2F = ‖X‖2

F
− ‖�k(XS)‖2F,
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where S̄ is the complement of S. This shows that the minimum is achieved when 
‖�k(XS)‖2F = �2

1
(XS) +⋯ + �2

k
(XS) is maximal among all S with |S| ≤ s . However, 

since this quantity does not decrease when adding rows to a matrix, it suffices to 
take the maximum over |S| = s .   ◻

By the above proposition, the projection �Mk,s
 is in principle available by comput-

ing the k largest singular vectors of all possible submatrices with s rows, which has 
combinatorial complexity. Even if a smaller set of candidates for the rows, say 2s of 
them, could be identified beforehand, the complexity remains exponential in s, not even 
counting the cost for computing the singular vectors. The computation of �Mk,s

 should 
therefore be in general infeasible, which also makes it infeasible to compute (2.2).

2.1  Quasi‑optimal projections

Feasible variants of IHT can be obtained by employing projections on Mk,s that 
are only quasi-optimal, an idea already suggested in [12]. Such variants are derived 
from the fact that Mk,s is the intersection of the two cones Ns (row s-sparse matri-
ces) and Mk (rank-k matrices), and for both sets the metric projections are explicitly 
available. For Ns , it is given as

where S ⊆ {1,… ,M} contains indices of s rows of X with largest norm. For Mk , 
the best rank-k approximation of X can be computed from the dominant singular 
vectors as usual and is denoted by �k(X) . Both �s and �k are nonlinear maps. They 
are possibly set-valued, in which case we assume that some specific selection rule 
is applied. Since computing a best rank-k approximation does not increase the row 
support of a matrix, the composition

always maps into the cone Mk,s . Similarly, projecting onto the largest s rows does 
not increase the rank, hence the map

also maps into Mk,s.
Computationally, �k,s(X) is obtained from X by first restricting to the submatrix 

consisting to the s rows of largest norm, and then computing a best rank-k approx-
imation of that submatrix. Since this submatrix has only s rows, this reduces the 
cost of the SVD. In contrast, �̂k,s(X) requires first a truncated SVD UΣVT of X, 
which is in general more expensive. However, there is a potential scenario when 
�̂k,s(X) is applied to tangent vectors of the fixed rank-k manifold, where this step 
is cheap. Also note that for finding the largest s rows it is then sufficient to deter-
mine the largest rows of the matrix UΣ , which has only k columns, so this step 
becomes slightly cheaper too.

�s(X) = XS

�k,s(X) ∶= (�k◦�s)(X)

�̂k,s(X) ∶= (�s◦�k)(X)
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The following proposition shows that both �k,s and �̂k,s are quasi-optimal projec-
tions. This has already been shown in [12, Prop. 12]. We include a proof below, since 
the setting with only row sparsity that we consider in this paper allows to exploit a 
certain commutativity relation that is not available in the general bisparse case and 
leads to an improved quasi-optimality constant compared to the result in [12].

Proposition 2.2 For any X ∈ ℝ
M×N , the projections �k,s and �̂k,s map into Mk,s and 

are quasi-optimal in the sense that

Proof We first observe that both nonlinear mappings �s and �k for every input X in 
fact act as linear orthogonal projections in the space ℝM×N . Indeed, for given X, we 
can write

where DX is a binary diagonal matrix that selects s rows supporting the s largest (in 
norm) rows of X, and VX consists of the leading k right singular vectors of X. In the 
rest of the proof, we write D instead of DX and V instead of VX . We first consider the 
map X ↦ DXVV⊤ and show that it provides an (alternative) quasi-optimal projec-
tion. Note that

Since Mk,s ⊆ Mk , we have

By an analogous argument, since Mk,s ⊆ Ns , we also have ‖X − DX‖F ≤ ‖X − �Mk,s
(X)‖F . 

Therefore, we obtain

To conclude the proof, it remains to show that

Since �k,s(X) = �k(DX) is supported in the same rows as DX, we have the orthogo-
nal decomposition

The second term on the right can be estimated as

‖X − �k,s(X)‖F ≤
√
2‖X − �Mk,s

(X)‖F, ‖X − �̂k,s(X)‖F ≤
√
2‖X − �Mk,s

(X)‖F.

�s(X) = DXX, and �k(X) = XV
X
V⊤
X
,

‖X − DXVV⊤‖2
F
=‖X(I − VV⊤)‖2

F
+ ‖(I − D)XVV⊤‖2

F

≤‖X(I − VV⊤)‖2
F
+ ‖(I − D)X‖2

F
.

‖X − XVV⊤‖F = min
Y∈Mk

‖X − Y‖F ≤ min
Y∈Mk,s

‖X − Y‖F ≤ ‖X − �Mk,s
(X)‖F.

‖X − DXVV⊤‖F ≤
√
2‖X − �Mk,s

(X)‖F.

‖X − �k,s(X)‖F ≤ ‖X − DXVV⊤‖F and ‖X − �̂k,s(X)‖F ≤ ‖X − DXVV⊤‖F.

‖X − �k,s(X)‖2F = ‖X − DX‖2
F
+ ‖DX − �k(DX)‖2F .

‖DX − �k(DX)‖2F ≤ ‖DX − DXVV⊤‖2
F
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since DXVV⊤ is a rank-k matrix. It thus follows that

Similarily, since �̂k,s(X) = �s(XVV
⊤) , we have that

The second term on the right is not larger than ‖XVV⊤ − DXVV⊤‖2
F
 , which likewise 

shows

as desired.   

Remark 2.3 It is is interesting to note that for �k,s the constant 
√
2 is not attained for matri-

ces X where �s(X) is single valued. If it were attained, then the proof shows that we have 
‖X − DX‖F = ‖X − �Mk,s

(X)‖F , that is minY∈Ns
‖X − Y‖F = minY∈Mk,s

‖X − Y‖F . 
Then, however, �k,s(X) = �s(X) is an optimal projection. Similarly, the constant 

√
2 is 

not attained for �̂k,s when �k is single valued.

2.2  IHT with adaptive stepsize

Using the quasi-optimal projector �k,s , one obtains a modified version of IHT shown 
in Algorithm 1, in which we additionally include a step size control. In principle, 
one could use the projector �̂k,s instead, but as noted above it should usually be more 
expensive to compute unless further structure can be exploited. In principle, any 
starting point X0 ∈ Mk,s could be used, but we noted that in our experiments the 
proposed choice X0 = 0 works well.

Possible step sizes in Algorithm  1 are either �
�
= 1 (as in classical IHT) or 

�
�
=

‖�∗(�(X
�
)−y))‖2

‖�(�∗(�(X
�
)−y)))‖2 , which yields the optimal step size without projection. In our 

experiments, this did however not significantly improve the success or speed of conver-
gence. Instead, we found that an adaptive line search works well. We implemented an 
Armijo backtracking where �

�
= �p and p is the smallest nonnegative integer that fulfills

‖X − �k,s(X)‖2F ≤ ‖X − DX‖2
F
+ ‖DX − DXVV⊤‖2

F
= ‖X − DXVV⊤‖2

F
.

‖X − �̂k,s(X)‖2F = ‖X − XVV⊤‖2
F
+ ‖XVV⊤ −�s(XVV

⊤)‖2
F
.

‖X − �̂k,s(X)‖F ≤ ‖X − DXVV⊤‖F,

f (X
𝓁
) − f

�
(�k◦�s)(X𝓁

− �p�∗(�(X
𝓁
) − y)))

�
≥ � �p ‖�∗(�(X

𝓁
) − y)‖2

Algorithm 1 IHT with quasi-optimal projection.
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for parameters 𝛽 ∈ (0, 1), 𝛾 > 0 . We choose � = 0.5 and � = 10−4 in our experi-
ments. Note that the projection is included in the Armijo condition, but the search 
direction is not guaranteed to be a descent direction for f◦�k◦�s . In cases where the 
Armijo condition cannot be fulfilled, we resort to the regular stepsize rule �

�
= 1.

The most costly steps in Algorithm 1 are the computation �∗(�(X) − y) and the 
quasi-optimal projections. We consider this in more detail in Section 3.2.

2.3  Convergence

To our knowledge, for general measurements, no global convergence result is cur-
rently available for Algorithm  1, nor for any other algorithm in a near-minimal 
parameter regime. However, in the noiseless case, and with constant step size 
�
�
= 1 , it is easy to state a qualitative local convergence result under a RIP assump-

tion. We say that � satisfies a �k,s-RIP on Mk,s if

One can show that Gaussian measurements will satisfy a �k,s-RIP with high proba-
bility if the number of measurements is at least of order �−2

k,s
k(s + N) ln(MN) , cf. [22, 

Theorem 2].
The local convergence proof is based on the simple observation that in a suffi-

ciently small neighborhood of a matrix with s nonzero rows the quasi-optimal pro-
jection �k,s = �k◦�s is indeed the optimal projection on Mk,s , since the correct rows 
are selected.

Lemma 2.4 Let X∗ ∈ Mk,s have exactly s nonzero rows and let � be the smallest 
norm among the nonzero rows of X∗ . If Y ∈ ℝ

M×N satisfies ‖Y − X∗‖F <
𝜇

2
 , then 

(�k◦�s)(Y) = �Mk,s
(Y).

Proof Let S be the row support of X∗ . Obviously the largest s rows of Y are sup-
ported in S and (�k◦�s)(Y) provides the best approximation with respect to this row 
support. We therefore need to show that the best approximation �Mk,s

(Y) also has 
this row support. Indeed, let Z be any matrix with a different support of size at most 
s and let y be any row of Y not in the row support of Z (but supported in S). Then, 
‖Y − Z‖F ≥ ‖y‖ ≥

𝜇

2
> ‖Y − X∗‖F ≥ (�k◦�s)(Y) . This implies that �Mk,s

(Y) needs 
to be supported in S.   ◻

Corollary 2.5 Let 𝛿3k,3s < 0.5 be the RIP constant of � for the set M3k,3s . Let X∗ be 
the (unique) solution of  (1.1) with exactly s nonzero rows, and assume 
‖X0 − X∗‖F ≤

�

2‖�−�∗�‖ , where � is the smallest norm among the nonzero rows of X∗ . 
Then, the sequence generated by Algorithm 1 with a fixed step-size �

�
= 1 satisfies

(1 − �k,s)‖X‖2F ≤ ‖�(X)‖2 ≤ (1 + �k,s)‖X‖2F for all X ∈ Mk,s.

‖X
�+1 − X∗‖F ≤ 2�3k,3s‖X�

− X∗‖F.
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Proof The proof is adapted from  [13, Thm.  6.15]. Let V be a linear subset of 
Mk,s +Mk,s +Mk,s ⊂ M3k,3s . The RIP implies the spectral bounds

for all X ∈ V  . Hence, the restricted operator �V satisfies the estimate

for the operator norm. This replaces the use of [13, Lem. 6.16] in the proof of [13, 
Thm. 6.15]. Lemma 2.4 implies, that for ‖X

�
− X∗‖F ≤

�

2‖�−�∗�‖ , the quasi-optimal 
projection is indeed optimal. Hence, the proof technique of [13, Thm. 6.15] can be 
applied.   

The asymptotic rate of convergence however is faster than suggested by Corol-
lary 2.5. To see this, let Mk,S∗ denote the variety of matrices with rank at most 
k and a fixed row support S∗ ⊆ {1,… , L} with |S∗| = s such that X∗ ∈ Mk,S∗ . If 
rank(X∗) = min(k, s) , then Mk,S∗ is a smooth manifold around X∗ and the asymp-
totic rate depends on a RIP constant of the tangent space of TX∗Mk,S∗.

Proposition 2.6 Let X∗ be a solution of (1.1) with exactly s nonzero rows and assume 
rank(X∗) = min(k, s) . Assume the spectral norm of � − �∗� on TX∗Mk,S∗ is 𝛿 < 1 . 
There exists an 𝜖 > 0 such that if the the sequence (X

�
) generated by Algorithm 1 

with stepsize �
�
= 1 satisfies ‖X

�
− X∗‖F ≤ � for some � , then X

�
 converges to X∗ 

and lim sup
�→∞

‖X
�+1−X

∗‖F
‖X

�
−X∗‖F

≤ �.

Note that TX∗Mk,S∗ ⊆ M2k,s and hence � ≤ �2k,s as for linear spaces the RIP con-
stant and the spectral norm of � − �∗� coincide. In fact, for Gaussian measure-
ments, the embedding dimension needed to obtain a spectral norm bounded by � 
with high probability does not require a logarithmic factor, which is why one can 
generally expect � to be smaller than �2k,s by a square root log factor.

Proof Lemma 2.4 implies that in proximity to the solution X∗ the quasi-optimal pro-
jection �k◦�s equals the best approximation �Mk,S∗

 in Frobenius norm onto the man-
ifold Mk,S∗ . For X

�
 close enough to X∗ , we then get

by linearizing the projection �Mk,S∗
 , see  [2, Lemma 4]. Next, we exploit that 

X∗ ∈ TX∗Mk,S∗ and (� − �TX∗Mk,S∗
)(X

�
− X∗) = o(‖X

�
− X∗‖F) (see, e.g.,  [35, 

Lemma 4.1]) to get

−�3k,3s‖X‖2F ≤ ⟨X,�∗(�(X)) − X⟩F = ⟨X, (�∗
V
�V − �V )(X)⟩F ≤ �3k,3s‖X‖2F

‖(�V )
∗�V − �V‖V→V ≤ �3k,3s

X
𝓁+1 − X∗ =(�k◦�s)(X𝓁

− �∗�(X
𝓁
− X∗)) − X∗

=�TX∗Mk,S∗
(X

𝓁
− �∗�(X

𝓁
− X∗)) − X∗ + o(‖(� − �∗�)(X

𝓁
− X∗)‖F)

=�TX∗Mk,S∗
(X

𝓁
− �∗�(X

𝓁
− X∗)) − X∗ + o(‖X

𝓁
− X∗‖F)

X
�+1 − X∗ = �TX∗Mk,S∗

(� − �∗�)�TX∗Mk,S∗
(X

�
− X∗) + o(‖X

�
− X∗‖F).
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By assumption, ‖�TX∗Mk,S∗
(� − �∗�)�TX∗Mk,S∗

‖F = 𝛿 < 1 . This allows to prove to 
assertion by induction.   

3  Riemannian optimization approaches

It is possible to exploit the structure of the set Mk,s as an intersection of Mk 
and Ns . Since the smooth part of the set Mk (matrices of rank equal to k) is 
a connected manifold, it is reasonable to replace the negative gradient 
−∇f (X

�
) = −�∗(�(X

�
) − y) by a Riemannian gradient, that is, by its projec-

tion on a tangent space. When using the Riemannian metric inherited from the 
embedding into Euclidean space, the Riemannian gradient is simply given as the 
orthogonal projection of the Euclidean gradient onto the tangent space of Mk at 
X
�
 . In this way, we obtain modifications of IHT with tangential search directions.

3.1  Riemannian IHT

Given the SVD X
�
= U

�
Σ
�
V⊤
�

 , and assuming rank(X
�
) = k , the orthogonal projection 

onto the tangent space is the linear map

see, e.g., [34]. Note that if k is small, then the computation of the projection requires 
multiplication by tall matrices only. For the cost function (2.1), the projected gradient is

Replacing the gradient in IHT with this projected gradient results in the scheme dis-
played in Algorithm 2.

Possible step size rules are again constant steps �
�
= 1 or an Armijo-like condition

Without further structure, the tangent space projection has a cost of O((M + N)k2) 
flops. An advantage of this approach is that application of the quasi-optimal projec-
tion �k◦�s then becomes somewhat cheaper. Indeed, since �

�
(X

�
) = X

�
 , and since 

elements in the tangent space are of rank at most 2k, a careful implementation of the 
tangent space projection (see [33, 34]) yields a decomposition

(3.1)�
�
(Z) = U

�
U⊤

�
Z + ZV

�
V⊤
�
− U

�
U⊤

�
ZV

�
V⊤
�
,

�
�
(∇f (X

�
)) = �

�
(�∗(�(X

�
) − y)).

(3.2)
f (X

𝓁
) − f

�
(�k◦�s)(X𝓁

− �p�
𝓁
(�∗(�(X

𝓁
) − y)))

�
≥ � �p ‖�

𝓁
(�∗(�(X

𝓁
) − y))‖2

F
.

Algorithm 2 Riemannian IHT with quasi-optimal projection.
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where Û ∈ ℝ
M×2k and V̂ ∈ ℝ

N×2k both have pairwise orthonormal columns. To 
apply �s , one hence needs to find the s largest rows of ÛK , which has complex-
ity O((s + k2)M) (since k ≤ s ), as opposed to O((s + N)M) in Algorithm 1. Since V̂  
is already orthogonal, the subsequent computation of a best rank-k approximation 
requires only an SVD of the resulting s × 2k matrix (cost O(k2s) ), as opposed to an 
s × N matrix (cost O(s2N) if s ≤ N ). A comparison including the cost of forming 
�∗(�(X

�
) − y) is made in Section 3.2.

Remark 3.1 Formally Algorithm 2 is well defined only as long as the iterates remain 
of full rank k. In the special case where X

�
 has rank lower than k, we can slightly 

abuse the above notation and let �
�
 denote the projection on the tangent cone, which 

is given,  e.g., in  [31]. Since the tangent cone is symmetric in 0, it indeed holds 
−�

�
∇f (X) = �

�
(−∇f (X)) . In practice, the rank usually never drops and this issue 

can be ignored, except for the starting point in zero, which for this reason we have 
stated explicitly as X1 = (�k◦�s)(�0�

∗y) . Here, the initial step size is calculated 
using the Armijo-rule (3.2) with X0 = 0.

Remark 3.2 It would also make sense to use the quasi-projection �s◦�k instead of 
�k◦�s , that is,

This can be interpreted as Riemannian gradient method on Mk with retraction �k , 
see [1, 2], but with additional thresholding by �s . Depending on s and k, this order of 
projections can be implemented even more efficiently in many cases. On the other hand, 
our experiments have shown that the improvement is negligible unless s ≫ 2k , in par-
ticular taking the more costly gradient computation into account. For the choice of initial 
point X1 , however, it appears to be very important to truncate the M − s smallest rows 
of �∗(y) before the rank-k truncation as in Algorithm 2, and not the other way round, as 
this greatly improves the success rate. After that initialization, we did not observe a sig-
nificant difference of the two orderings and therefore kept it consistent with Algorithm 1.

We now present a local convergence result for Algorithm 2 with constant stepsize 
�
�
= 1 and under similar RIP conditions as for Algorithm 1. Note that the statement is 

the same as in Proposition 2.6.

Proposition 3.3 Let X∗ be a solution of (1.1) with exactly s nonzero rows and assume 
rank(X∗) = min(k, s) . Assume the spectral norm of � − �∗� on TX∗Mk,S∗ is 𝛿 < 1 . 
There exists an 𝜖 > 0 such that if the the sequence (X

�
) generated by Algorithm 2 

with stepsize �
�
= 1 satisfies ‖X

�
− X∗‖F ≤ � for some � , then X

�
 converges to X∗ 

and lim sup
�→∞

‖X
�+1−X

∗‖F
‖X

�
−X∗‖F

≤ �.

Proof The proof is similar to the one of Proposition  2.6. We first note that in a 
neighborhood of X∗ the projection �s equals the projection DS∗ onto the row support 

X
�
− 𝛼

�
�
�
(�∗(�(X

�
) − y)) = ÛKV̂⊤

X
𝓁+1 = (�s◦�k)(X𝓁

− �
𝓁
�
𝓁
(∇f (X

𝓁
))).
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of X∗ , which is a linear operator represented by a diagonal matrix. Next, we also lin-
earize the projection �k at the point X∗ , and approximate the tangent space projec-
tion PTX�

Mk
 by �TX∗MK

 using ‖�TX�
MK

− �TX∗MK
‖ ≤ c‖X

�
− X∗‖F in spectral norm 

for some c > 0 (for instance c = 1

�k(X
∗)

 , see, e.g., [35, Lemma 4.2]). We get

where for the last equality we have used X∗ ∈ TX∗Mk . Let now X∗ = UΣV⊤ be a 
singular value decomposition. Since U has row support S∗ , we have

for any Z. Recalling the formula (3.1), this shows that the projections DS∗ and �TX∗Mk
 

commute. Therefore, DS∗�TX∗Mk
= �TX∗Mk

DS∗ = �TX∗Mk,S∗
 . As in the proof of Propo-

sition 2.6, we arrive at

which for any 𝜀 > 0 can be bounded by (� + �)‖X
�
− X∗‖F for X

�
 close enough to 

X∗ . This implies the local convergence at the asserted asymptotic rate.   

3.2  Improved numerical complexity for rank‑one measurements

In practice, Algorithms 1 and 2 often perform equally well. The main difference is 
that Algoritm 2 uses the projected gradient on the tangent space of (the smooth part 
of) Mk . Thus, a potential performance gain is tied to the question whether the low 
dimensionality of these tangent spaces can be exploited to achieve a lower computa-
tional complexity. It turns out that this is the case in the important scenario of rank-
one measurements, which occurs frequently in the literature.

The main bottleneck in both algorithms is forming �∗(�(X) − y) or its projected 
version. Rank-one measurements take the form

In this case, forming �(X
�
) − y for an X ∈ Mk,s that is already in the form 

X
�
= U

�
Σ
�
V⊤
�

 with ‖U
�
‖0 ≤ s needs only O(k(s + N)m) flops. In the Riemannian 

version, the application of the dual operator and projection to the tangent space can 
be combined in the following way:

X
𝓁+1 − X∗ =(�k◦�s)(X𝓁

− �TX𝓁
Mk

��∗(X
𝓁
− X∗)) − X∗

=�TX∗Mk
DS∗ (X𝓁

− �TX∗Mk
��∗(X

𝓁
− X∗)) − X∗ + o(‖X

𝓁
− X∗‖F)

=�TX∗Mk
DS∗ (� − �TX∗Mk

��∗)(X
𝓁
− X∗) + o(‖X

𝓁
− X∗‖F),

DS∗ (UU
⊤Z + ZVV⊤ − UU⊤ZVV⊤) = UU⊤DS∗Z + DS∗ZVV

⊤ − UU⊤DS∗ZVV
⊤

X
�+1 − X∗ = �TX∗Mk,S∗

(� − �∗�)�TX∗Mk,S∗
(X∗ − X

�
) + o(‖X

�
− X∗‖F),

⟨Ap,X⟩F = ⟨a
p
b⊤
p
,X⟩F = a⊤

p
Xb

p
, p = 1,… ,m.

(3.3)

�
�
�∗(z) = U

�

(
m∑

p=1

zpU
⊤
�
a
p
b⊤
p

)
+

(
m∑

p=1

zpapb
⊤
p
V
�

)
V⊤
�
− U

�

(
m∑

p=1

zpU
⊤
�
a
p
b⊤
p
V
�

)
V⊤
�
.
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The cost for this is O(k(N +M)m) since U
�
 and V

�
 as well as the matrices in the 

sums are M × k and N × k matrices. Note that in a careful implementation, only the 
terms in the brackets need to be computed to represent the tangent vector. From this 
representation, it is possible to apply the projections �s and �k efficiently as men-
tioned above.

In the non-Riemannian version in Algorithm 1, the tangent space projection is not 
applied. For rank-one measurements, �∗(�(X) − y) is a sum of m rank-one matrices, 
but this does not help since usually m ≥ N . The cost remains O(mNM).

We conclude that in the case of rank-one measurements, if k is much 
smaller than N, the Riemannian method should be computationally benefi-
cial. This is confirmed by our numerical experiment in Section 4.2. Table 1 
contains the complexities for the main steps in both algorithms. Note that 
unlike for Gaussian measurements, we usually cannot expect an RIP to hold 
for rank-one measurements and therefore even the local convergence result in 
Proposition 3.3 might not be applicable. It would be interesting to study under 
which conditions the contractivity of � − �∗� on the tangent space TX∗Mk,S∗ as 
required in this proposition can be guaranteed for rank-one measurements, but 
we do not pursue this here.

3.3  Soft‑thresholding as a Riemannian proximal gradient method

In the following, we consider the case where the rank k is known but the 
sparsity parameter s is not. Our main application of blind deconvolution falls 
exactly into this category for the special case k = 1 . Both methods proposed 
above can be made adaptive with respect to s by selecting in every step a 
threshold on the row norm to decide which rows to keep. A well-established 
approach is soft thresholding. Here we show that such an approach can be 
interpreted as a Riemannian proximal gradient method on the manifold Mk . 
We remark that soft thresholding could in principle also be applied to the rank 
if it is unknown but this case is not considered.

The method is derived as follows. For unknown s, to promote a row-sparse solu-
tion, it is common to use the (1, 2)-norm

as a convex penalty. Here, X(i,  : ) denotes the i-th row of X. The task is then to mini-
mize the function f (x) + �g(x) with a penalty parameter 𝜇 > 0 . Note that g is not 
differentiable in points X having zero rows. Since both the function f and g are con-
vex on ℝM×N , an intuitive approach would be to consider methods like the proximal 
gradient descent as presented, e.g., in [5, 30]. These methods consist in applying the 
so-called prox operator to �g after the gradient step for f. However, prox operators 
are usually defined on convex domains. In our case, we consider a non-convex defi-
nition on the manifold Mk instead:

g(X) = ‖X‖1,2 =
M�

i=1

‖X(i, ∶)‖2
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For general g, we cannot evaluate such an operator easily, as it technically involves 
optimization of a local Lipschitz function on a manifold. However, as it turns out, 
for the particular choice of the (1, 2)-norm, and for inputs Y ∈ Mk , the prox opera-
tor simply coincides with the prox operator on the full space ℝM×N , since the latter 
does not increase the rank. Its closed form solution is given via soft thresholding of 
rows. For completeness, we provide a proof of this observation.

Proposition 3.4 For given Y ∈ ℝ
M×N and 𝜇 > 0 , the prox operator for the function 

�g on ℝM×N has the closed form

where for each row �i ∈ ℝ
N of Y, S�

1,2
(Y) is the soft thresholding operator

(3.4)prox
Mk

�g (Y) ∈ argmin
X∈Mk

�
�g(X) +

1

2
‖X − Y‖2

F

�
.

(3.5)prox�g(Y) ∶= argmin
X∈ℝM×N

�
�g(X) +

1

2
‖X − Y‖2

F

�
= �

�

1,2
(Y),

(3.6)�
𝜇

1,2
(�i) ∶=

�
‖�i‖−𝜇
‖�i‖

�i, if ‖�i‖ > 𝜇,

0, otherwise.

Table 1  Complexities of 
operations in Algorithms 1 
and 2

Operation Computational cost

Application of general � and �∗ O(mNM)
Application of rank-one � O(mk(N + s))

Application of rank-one �∗ O(mNM)
Application of rank-one �

�
�∗ O(mk(N +M))

�
s
 of a full-rank matrix O((s + N)M)

�
s
 of a rank-k matrix O((s + k)M)

SVD of a row-sparse matrix O(s2N)

Overall cost of Alg. 1 and 2 with general � O(mNM)
Overall cost of Alg. 1 with rank-one � O(mNM)
Overall cost of Alg. 2 with rank-one � O(mk(N +M))

Algorithm 3 A Riemannian proximal gradient method.
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In particular, if Y ∈ Mk , then also proxMk

�g (Y) = �
�

1,2
(Y).

Proof Since the function g is convex in the ambient space, there exists exactly one 
solution

The equivalent optimality condition is 0 ∈ �g(X∗) +
1

�
(X∗ − Y) . For each nonzero 

row �∗
�
≠ 0 of X∗ , this means

Due to 𝜇 > 0 , this is only possible if ‖�‖ > 𝜇 , in which case we must have 
�∗
�
=

‖�i‖−�
‖�i‖

 . This shows  (3.6). For the second statement, we first note that �1,2(Y) 
acts on Y by multiplication of a diagonal matrix, and therefore does not increase the 
rank. Since the argmin in  (3.4) is taken over a subset of ℝM×N , we must have 
prox�g(Y) = prox

Mk

�g (Y) if Y ∈ Mk .   

By analogy to proximal gradient methods, we combine the prox operation on Mk 
with a Riemannian gradient descent for minimizing f on Mk . Using again the inherited 
Euclidean metric on Mk and �k as a retraction, this results in the following iteration

which can be regarded as a Riemannian version of proximal gradient descent. Note 
that this formulation differs from other possible generalizations of proximal gradient 
methods on manifolds [8, 16] which are based on minimization of quadratic models 
on the tangent spaces for finding an appropriate search direction. In our formulation 
above, while only applicable in this specific setup, the closed form solution of the 
prox operator on the manifold is available, which makes it a very intuitive alteration 
of the original algorithm. The full scheme is displayed in Algorithm 3.

In the proposed algorithm, the thresholding parameter � is reduced by a factor � 
in each iteration. Different values of � can be used depending on the problem. Other 
heuristics for selecting � are possible as well. We comment on our implementation 
of the algorithm in the experiment section.

Again, we suggest to initialize the algorithm with (�k◦�s0
)(�0�

∗y) , where s0 
is a guess for the a priori unknown sparsity s of the solution and �0 is the Armijo 
step size. As we have already emphasized above, the choice of the starting point has 
proven to be an important step and the success of the Riemannian proximal gradi-
ent method will be somewhat limited by the missing knowledge of s. In the experi-
ments, we picked s0 = min(M, (m + k(k − N))∕k) , which is the maximal row spar-
sity that can in theory be detected with a given number of measurements m from 
the degrees of freedom, but there was no significant improvement compared to a 
non-sparse starting point.

X∗ = prox�g(Y).

0 =
�∗
�

‖�∗
�
‖ +

1

�
(�∗

�
− �i) =

�
1 +

‖�∗
�
‖

�

�
�∗
�

‖�∗
�
‖ −

1

�
�i.

X
𝓁+1 = prox

Mk

�g

(
�k

(
X
𝓁
− �

𝓁
�
𝓁
(∇f (X

𝓁
))
))

= (�
�

1,2
◦�k)(X𝓁

− �
𝓁
�
𝓁
�∗(�(X

𝓁
) − y))),
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For the soft thresholding parameter � , we propose the rule 
� = �� maxk(‖�k(X�

− �
�
�
�
�∗(�(X

�
) − y))i‖ ∶ i = 1,… ,M) , i.e., the norm of the 

k-th largest row of the current iterate. For sufficiently large � , this will set all but k of the 
rows of X2 to zero but ensures that the ones with largest norms remain active.

For determining the step sizes �
�
 , we again propose to use a line search method 

based on gradient step only, that is,

Remark 3.5 We remark that Algorithm  3 can be formally derived from the Rie-
mannian IHT method in Algorithm 2 by switching to the quasi-optimal projection 
�̂k,s = �s◦�k (cf. Remark 3.2), and then replacing the hard thresholding operator �s 
with the operator ��

1,2
 . For soft thresholding, this order of first truncating the rank 

before selecting the rows indeed is convenient due to Proposition 3.4. The potential 
alternative of applying first soft thresholding and then rank truncation caused incon-
sistent behavior in the Armijo line search in our experiments.

4  Numerical experiments

In this section, we present some results of numerical experiments with the proposed 
algorithms. In the first set of results, we consider recovery of synthetic data using 
Gaussian measurements. In the second, we use random rank-one measurements and 
also test the algorithms for a blind deconvolution problem.

4.1  Recovery with Gaussian measurements

For the recovery problem (1.1), we compare the success rates of Algorithms 1 and 2 
for different row sparsity levels s and different column sizes N when using random 
Gaussian measurements. Specifically, we generate a random matrix X∗ ∈ Mk,s and 
take m measurements yp = ⟨Ap,X

∗⟩F with normally distributed Ap ∼ N(0,
1√
m
) . We 

fix the row dimension M = 1000 and the rank k = 3.
Figure  1 shows a phase transition plot for different numbers of measure-

ments ( m = round(1.2j), j = 18,… , 36 ) on the y-axis and different row-sparsity 
( s = round(1.2j), j = 6,… , 15 ) on the x-axis. The values for m and s were empiri-
cally chosen because they yielded the most expressive results. The grayscale 
denotes the success rate for parameter setting, where white means no success 
and black means 100% success. Both algorithms were tested with a fixed step-
size �

�
= 1 (on the left) and with an adaptive stepsize using an Armijo linesearch 

(on the right). The column size is always taken to be equal to the sparsity, that is, 
N = s , and we performed each experiment 10 times. The initial points were taken as 
X1 = (�k◦�s)(�

∗y) , which we found to be crucial for the overall performance.
We can see that the algorithms with adaptive stepsize are in general more often 

successful. Note that the plots are provided on a loglog scale. Therefore, since we 
have set N = s , a line with slope one (depicted in red) indicates linear dependence on 

f (X
�
) − f

�
�k(X�

− �p�
�
(�∗(�(X

�
) − y)))

�
≥ � �p ‖�

�
(�∗(�(X

�
) − y))‖2

F
.
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s + N (as opposed to, e.g., linear dependence on sN, which would have slope two). 
The right plots therefore indeed suggest such a linear dependence m = O(s + N) for 
successful recovery when adaptive stepsizes are used. Recall that for a fixed rank k 
such a scaling is optimal. In the left plots with fixed stepsize, it is a bit more difficult 
to recognize the slope of the transition line, which could be slightly larger than one.

In a second experiment, we fixed the number of Gaussian measurements m = 300 
and varied the row-sparsity s and the column size N independently. The row size was 
again M = 1000 and rank k = 3 . The results are given in Fig. 2. Note that the axes 
have a linear scale in this experiment. The algorithms with adaptive stepsize per-
form clearly better. The precise relation between s and N for the transition curve is, 
however, difficult to assess from these plots.

We can also compare the convergence speed of each algorithm in terms of itera-
tion numbers. Figure 3 shows the relative errors to the exact solution for two different 
parameter settings, one that was borderline in the previous experiments (on the left) 
and another one for which all algorithms find the solution with ease (on the right). 
The observed behavior, however, was actually almost the same for other cases. We 
can see that the methods with adaptive stepsize converge faster, perhaps even super-
linearly, although they are of course more costly. For fixed stepsize, the Riemannian 
method outperforms its classical counterpart but the rate of convergence is the same.

Finally, we present a proof of concept for the Riemannian proximal gra-
dient method in Algorithm  3,  see Fig.  4. Specifically, we tested this method 
in the same setting as the first experiment. The factor � that decreases the 

Fig. 1  Success rate of IHT (upper left), adaptive IHT (upper right), Riemannian IHT (lower left), and 
Riemannian adaptive IHT (lower right) out of 10 tries on a loglog scale. The row-sparsity s is on the 
x-axis and equals the column size N, and the number of measurements m is on the y-axis. The rank is 
k = 3 and row size M = 1000 . The red line has slope one, indicating linear dependence on s and N 



1 3

Numerical Algorithms 

thresholding parameter � in each step was set to � = 0.99 , that is, � is decreased 
by 1% per step. We used adaptive stepsizes with linesearch and the initial 
guess X1 = (�k◦�s0

)(�0�
∗y) , as discussed in Section  3.3. As can be seen, the 

success rate of this method is lower than for the previous algorithm, which is 
natural since the sparsity parameter s is unknown here. The deviation from the 
red line with slope 1 could be due to the effect of the different initialization, 
which is more prominent for small sparsity. Yet, for larger s, the dependence 
of the required measurements m on s and N seems linear and hence optimal as 
well. We also repeated the borderline case from Fig.  3 and observe slow but 
linear convergence.

4.2  Rank‑one measurements and blind deconvolution

We now examine the case of rank-one measurements, where

As discussed in Section 3.2, using rank-one measurements enables a more efficient 
evaluation of gradients and tangent space projections. In particular, when imple-
mented accordingly, we expect the Riemannian version of IHT to be faster than the 
standard version.

⟨Ap,X⟩F = ⟨apb⊤p ,X⟩F = a⊤
p
Xbp, p = 1,… ,m.

Fig. 2  Success rate of IHT (upper left), adaptive IHT (upper right), Riemannian IHT (lower left), and 
Riemannian adaptive IHT (lower right) out of 10 tries. The row-sparsity s is on the x-axis, and the col-
umn size N is on the y-axis. The number of measurements is m = 300 , the rank is k = 3 , and the row size 
is M = 1000
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We consider two experiments with rank-one measurements. In the first, we take 
random rank-one measurements on synthetic data. Specifically we choose 
ap ∼ N(0, 1) and bp ∼ N(0,

1√
m
) to closely match the setting of random gaussian 

measurements (that is, with the correct scaling).
In the second experiment, we use deterministic rank-one measurements based on 

the discrete Fourier transform. This setting can be motivated from applications in 
blind deconvolution. Consider the convolution

w ∗ z =

(
m∑

�=1

w
�
zj−�

)m

j=1

,

Fig. 3  Number of iterations against relative error for the three methods. The number of measurements is 
m = 520 (left) and m = 800 (right), the sparsity s = 20 , and the dimension N = 10 . The rank is k = 3 and 
M = 1000

Fig. 4  Left: success rate of the Riemannian proximal gradient method out of 10 tries on a loglog scale. 
The sparsity s is equal to the matrix dimension N on the x-axis, and the number of measurements m is 
on the y-axis. The rank is k = 3 and M = 1000 . The red line has again slope 1 and corresponds to linear 
dependence on s and N. Right: number of iterations against relative error. The number of measurements 
is m = 520 , the sparsity s = 20 , and the dimension N = 10 . The rank is k = 3 and M = 1000
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of two real vectors of length m where the indices are to be considered modulo m. 
The inverse operation, where both w and z are reconstructed from their convolution 
w ∗ z , is called blind deconvolution. In general, this is of course an ill-posed prob-
lem. A common assumption that renders a recovery possible is that w and z lie in 
some known subspaces, that is, w = Bu and z = Cv for some B ∈ ℝ

m×M and 
C ∈ ℝ

m×N . As suggested in [3], one can then recast the problem as a linear recovery 
task for a rank-one matrix. More precisely, one can diagonalize the action of ∗ using 
the (unitary) discrete Fourier transform F = [

1√
m
exp(−

i2�(k−1)(j−1)

m
)]jk which yields

Here, the last equality implicitly defines the linear operator � ∶ ℝ
M×N

→ ℝ
m . This 

is possible since every bilinear map in (u, v) can be lifted to a linear map acting on 
uv⊤ . In certain applications, the vector u can also be assumed to be sparse. We there-
fore obtain an instance of our problem (1.1) with k = 1 . For further references, see, 
e.g., [18].

To see that the operator � defined in this way performs rank-one measurements, 
one verifies that

(FB)p,∶ and (FC)p∶ denote the p-th row of FB and FC respectively. Indeed, after a 
suitable reshape, the operator � effectively becomes the (row-wise) Khatri-Rao 
product of FB and FC, that is,

This representation allows us to show that �∗� is a real operator, since

Since B and C are real matrices, it suffices to show that the last sum is real. But this 
holds since for p, k,� ∈ {1,… ,m} , by elementary manipulations,

and the rows and columns of F are unitary. Therefore, while y = �(uv⊤) is a com-
plex vector, the problem itself as well as all steps in the algorithm remain real. For 
the efficient implementation of the action of � and �∗ as in  (3.3), however, some 
obvious modifications are required.

In both experiments, we set M = 150 and N = 50 . An exact solution X∗ = uv⊤ 
of rank k = 1 is generated by picking a random matrix X̂ ∼ N(0, 1) of size s × N , 

y = F(w ∗ z) =
√
mdiag(Fw)F(z) =

√
mdiag(FBu)FCv = �(uv⊤).

⟨Ap, uv
⊤⟩F =

√
m⟨(FB)�

p,∶
(FC)

p,∶
, uv⊤⟩F,

Ap,[i,j] =
√
m(FB)p,i(FC)p,j

(A�A)[i1,j1],[i2,j2] =

m∑

p=1

Ap,[i1,j1]
Ap,[i2,j2]

=m

m∑

k1=1

m∑

𝓁1=1

m∑

k2=1

m∑

𝓁1=1

Bk1,i1
C
𝓁1,j1

Bk2,i2
C
𝓁2,j2

⋅

m∑

p=1

Fp,k1
Fp,𝓁1

Fp,k2
Fp,𝓁2

.

(4.1)Fp,kFp,� =
1√
m
Fp,((k+�−2) mod m)+1
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computing its best rank-one approximation, and randomly distributing the result-
ing rows in a matrix of size M × N . We then run the three algorithms with input 
y = �(X∗) for different values m of rank-one measurements. For the Riemannian 

Fig. 5  Success rate of adaptive IHT (left), Riemannian adaptive IHT (middle), and Riemannian proximal 
gradient method (right) out of 20 tries using for random rank-one measurements (top) and the discrete 
Fourier transform (bottom). The matrix dimensions are M = 150 and N = 50 . The sparsity s is on the 
x-axis, and the number of measurements m is on the y-axis. The rank is k = 1

Table 2  Relative error of adaptive IHT, Riemannian Adaptive IHT, and Riemannian proximal gradient 
method against number of iterations and CPU time for the setting of random rank-one measurements and 
discrete Fourier measurements

The number of measurements is m = 200 , the sparsity is s = 3 , and the dimensions are M = 150 , 
N = 50 . The rank is k = 1

Adaptive IHT Adaptive RIHT RPG

� Iterations CPU time Iterations CPU time Iterations CPU time

Random rank-one measurements
10−1 196 0.4131s 196 0.2586s 6691 9.5539s

10−3 831 1.7495s 831 1.1103s 11490 16.675s

10−5 1583 3.3613s 1582 2.0928s 16095 23.931s
Fourier measurements
10−1 8 0.1455s 10 0.0691s 4211 25.331s

10−3 25 0.4592s 30 0.2189s 8941 58.069s

10−5 45 0.8268s 46 0.3392s 13545 91.412s
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proximal gradient method, we chose the decrease of the thresholding to be 
� = 0.999 , that is, a 0.1% decrease in each step.

In Fig. 5, we show the phase transition plot for the two settings and the algo-
rithms with adaptive stepsize, which performed better in the general setting and 
for the Riemannian proximal gradient method with unknown sparsity s. Again, 
the grayscale denotes the success rate for the different parameters m and s. We 
performed 20 tries for each setting as this yielded a sharper outline of the suc-
cess rate. In Table 2, we report computational times and iteration numbers for 
both settings and the three algorithms in terms of the relative error. Here, the 
number of measurements was m = 200 and the row sparsity s = 3 . Note that 
for m ∼ M + N = 200 , one expects convergence even without the sparsity con-
straint; however, we have observed that this is true only up to a large constant. 
We implemented the three methods in a comparable fashion, exploiting the 
structure of the rank-one measurements as discussed in Section 3.2. The com-
puting time was measured on an Intel Core i7-10510U with 16 GB memory.

We can see that the adaptive IHT and the adaptive Riemannian IHT perform 
well in these experiments, especially for the Fourier measurements. The Rie-
mannian method can be slightly better in terms of recovery, and significantly 
faster than the adaptive standard IHT method ( ∼ 40% improvement for random 
measurements and 50 − 60% for Fourier measurements).

The Riemannian proximal gradient method is capable of detecting the row spar-
sity but it has a lower success rate, and is also quite slow. We have found that this 
is almost entirely due to the choice of the starting point that can be chosen without 
the knowledge of the sparsity parameter s. Therefore, this algorithm can clearly be 
improved upon with some extra work on the start point. In any case, the relatively 
good success rate makes this a promising approach for further research in cases 
where the sparsity is not known a priori.
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